Gli Organs-on-chips (OOCs) sono modelli 3D in vitro di organi umani miniaturizzati, progettati per riprodurre la biologia e fisiologia degli omologhi in vivo. I sistemi OOCs integrano: microingegneria, tecnologie di microfluidica e principi di biomimesi per ricreare gli aspetti chiave di un organo, includendo anche criticità dell’architettura tissutale, interazioni cellula-cellula e ambiente extracellulare. In sostanza, sono costituiti da un chip multifluidico in cui le cellule d’interesse vengono coltivate in 3D; è possibile realizzare questi sistemi a partire da cellula staminali da cui vengono ottenuti organoidi che messi in coltura su una matrice di supporto all’intero del sistema microfluidico mimano l’organo. Nel presente studio si è voluto testare la capacità di una serie di matrici di supporto, naturali e sintetiche, a sostenere la proliferazione e il differenziamento di organoidi di fegato murino, con applicazione futura all’interno di un sistema OOCs. Queste piattaforme creative, e la loro ulteriore integrazione in Multi-Organs-on-chips, possono portare nuovi benefici a diverse applicazioni come: lo sviluppo in vitro di modelli umani di organi sani e malati, l’indagine dei meccanismi fondamentali di eziologia delle patologie e organogenesi, valida alternativa alla sperimentazione animale per quanto riguarda la tossicità dei farmaci e lo studio di target farmacologici ed infine ideale piattaforma per lo sviluppo di nuove terapie.

Matrici Naturali e Sintetiche per colture 3D di Organoidi

Dinelli, Giulia
2019/2020

Abstract

Gli Organs-on-chips (OOCs) sono modelli 3D in vitro di organi umani miniaturizzati, progettati per riprodurre la biologia e fisiologia degli omologhi in vivo. I sistemi OOCs integrano: microingegneria, tecnologie di microfluidica e principi di biomimesi per ricreare gli aspetti chiave di un organo, includendo anche criticità dell’architettura tissutale, interazioni cellula-cellula e ambiente extracellulare. In sostanza, sono costituiti da un chip multifluidico in cui le cellule d’interesse vengono coltivate in 3D; è possibile realizzare questi sistemi a partire da cellula staminali da cui vengono ottenuti organoidi che messi in coltura su una matrice di supporto all’intero del sistema microfluidico mimano l’organo. Nel presente studio si è voluto testare la capacità di una serie di matrici di supporto, naturali e sintetiche, a sostenere la proliferazione e il differenziamento di organoidi di fegato murino, con applicazione futura all’interno di un sistema OOCs. Queste piattaforme creative, e la loro ulteriore integrazione in Multi-Organs-on-chips, possono portare nuovi benefici a diverse applicazioni come: lo sviluppo in vitro di modelli umani di organi sani e malati, l’indagine dei meccanismi fondamentali di eziologia delle patologie e organogenesi, valida alternativa alla sperimentazione animale per quanto riguarda la tossicità dei farmaci e lo studio di target farmacologici ed infine ideale piattaforma per lo sviluppo di nuove terapie.
2019-07-08
File in questo prodotto:
File Dimensione Formato  
865780-1224840.pdf

non disponibili

Tipologia: Altro materiale allegato
Dimensione 8.03 MB
Formato Adobe PDF
8.03 MB Adobe PDF

I documenti in UNITESI sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14247/1646