The project is focus on the synthesis and characterization of lanthanide bismuth oxyfluoride particles. The samples are synthesized through homogeneous precipitation using a microwave reactor to heat. Furthermore, by doping with different lanthanides (Tb, Eu, Tb-Eu; Pr; Nd; Yb-Ln, Ln=Er,Yb,Tm) it is tested how the optical response of the systems can be in terms of luminescence spectroscopy. The synthesized Ln3+ NPs are tested for the biological applications as nanothermometer. In recent times Luminescent nanothermometers have been widely investigated because they relate the local temperature of a biological system with their emission, as a result of an external radiation. Through these systems there is the possibility of excitation and / or emission in the so-called first and second biological window. The studies of these project are focused on NPs doped Ln3+ as thermal and emitting probes.
Luminescent materials based on lanthanide doped bismuth oxyfluoride particles for nanophosphor and nanothermometer applications
Zanella, Sofia
2019/2020
Abstract
The project is focus on the synthesis and characterization of lanthanide bismuth oxyfluoride particles. The samples are synthesized through homogeneous precipitation using a microwave reactor to heat. Furthermore, by doping with different lanthanides (Tb, Eu, Tb-Eu; Pr; Nd; Yb-Ln, Ln=Er,Yb,Tm) it is tested how the optical response of the systems can be in terms of luminescence spectroscopy. The synthesized Ln3+ NPs are tested for the biological applications as nanothermometer. In recent times Luminescent nanothermometers have been widely investigated because they relate the local temperature of a biological system with their emission, as a result of an external radiation. Through these systems there is the possibility of excitation and / or emission in the so-called first and second biological window. The studies of these project are focused on NPs doped Ln3+ as thermal and emitting probes.File | Dimensione | Formato | |
---|---|---|---|
843502-1222848.pdf
non disponibili
Tipologia:
Altro materiale allegato
Dimensione
3.41 MB
Formato
Adobe PDF
|
3.41 MB | Adobe PDF |
I documenti in UNITESI sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/20.500.14247/19111