
Master’s Degree

in Computer Science

Final Thesis

Modularity Based Community Detection on the GPU

Supervisor

Ch. Prof. Claudio Lucchese

Graduand

Federico Fontolan

Matriculation Number

854230

Academic Year

2019 / 2020

Abstract

Modularity based algorithms for the detection of communities are the de facto stan-

dard thanks to the fact that they offer the best compromise between efficiency and

quality. This is because these algorithms allow analyzing graphs much larger than

those that can be analyzed with alternative techniques. Among these, the Louvain

algorithm has become extremely popular due to its simplicity, efficiency and preci-

sion. In this thesis, we present an overview of community detection techniques and

we propose two new parallel implementations of the Louvain algorithm written in

CUDA and exploitable by Nvidia GPUs, both with a new pruning approach on the

input data: the first one is based on the sort-reduce paradigm; the second one is a

new hash-based implementation. Experimental analysis conducted on 13 datasets

of different sizes ranging from 15 to 150 million edges show that both algorithms

provide some benefits, but there is not a clear winner. For this reason, we study

also an adaptive solution that exploits the best of the two approaches. We com-

pared this algorithm with the two fastest version available: the first is included in

the Nvidia project cuGraph; the second in the high performance library Gunrock.

Our algorithm performs better in terms of times in the largest graphs. Besides, we

optimize the memory consumption: we can analyze graph of almost double sized

compared to our competitors.

Contents

1 Introduction 3

2 Nvidia GPUs architecture and CUDA 7

2.1 Nvidia’s GPU Architecture . 9

2.2 CUDA . 10

2.3 Thrust Library . 14

3 Community Detection State of the Art 15

3.1 Community Definitions . 18

3.1.1 Local definitions . 19

3.1.2 Global definitions . 20

3.1.3 Based on Vertex Similarity . 20

3.2 Community Detection Algorithms . 21

3.2.1 Partitional clustering . 22

3.2.2 Graph partitioning . 23

3.2.3 Spectral clustering . 24

3.2.4 Hierarchical clustering . 25

3.3 Modularity Optimization . 26

3.3.1 Modularity . 27

3.3.2 Resolution Limit . 28

3.4 Girvan and Newman algorithm . 29

3.5 Modularity Optimization Techniques 31

3.5.1 Greedy Method of Newman 31

3.6 Other techniques . 32

4 Louvain Algorithm 34

4.1 Algorithm . 34

4.2 Pruning . 36

4.3 Parallel Implementations . 39

1

5 PSR-Louvain and PH-Louvain 42

5.1 PSR-Louvain . 42

5.2 PH-Louvain . 49

5.3 Speed-up the First Iteration in the Optimization Phase 55

5.4 Data structure and implementation details 56

6 Performance and Analysis 60

6.1 Datasets . 60

6.2 Results Overview . 64

6.3 Pruning analysis . 65

6.3.1 PSR-Louvain analysis . 67

6.3.2 Hashmap algorithm analysis 70

6.4 Algorithms comparison . 74

7 Adaptive Louvain Algorithm 79

7.1 Algorithm . 79

7.2 Analysis . 81

7.2.1 Comparison with PSR-Louvain and PH-Louvian 82

7.2.2 cuGraph Louvain algorithm 85

7.2.3 Gunrock Louvain algorithm 86

7.2.4 Comparison with cuGraph and Gunrock algorithms 87

8 Conclusion and Future Work 91

2

1 Introduction

The community detection problem is one of the most interesting fields of graph

analysis. In several real-world scenarios, we have the necessity of cluster some data

considering the relations between them: one example can be the problem of dividing

social network users in groups by the mutual friendship relations to suggest targeted

advertisings. A natural way to represent this kind of structure based on the rela-

tion is a graph, and several techniques based on this theory ware proposed in the

literature to solve this kind of problem. This problem is not easy to solve due to

the extremely high number of different possible partitions of the data that we can

perform, even if the dataset is composed of few elements. One the most famous and

used heuristic is the Louvain algorithm proposed by Blondel et al. [14], due to its

speed and its overall quality, even if its limits are well known in the literature. This

greedy algorithm divides the graph into partitions maximizing a quality function

that evaluate them, called modularity. This function is based on the idea that a

random graph doesn’t exhibit a community structure: therefore, we can evaluate

how the community structure is well defined comparing the graph with another one

that keeps some of its structural proprieties but it is generated randomly. This type

of graph is called null-model [6]. We can represent the comparison in the following

way. Given a graph G(V,E), its adjacency matrix A, a partition of nodes C and

the corresponding function c(x) that assign each node x to its community, we define

the modularity function as follows:

Q =
1

2|E|
∑
i,j∈V

(
Aij −

kikj
2|E|

)
δ(c(i), c(j)) (1)

where ki is the degree of the node i and δ is a filter function: its yields one if

c(i) = c(j), zero otherwise. The techniques proposed before the Louvain algorithm

are quite slow because, every time we assign a node to a community, we have to

recalculate the values with the previous formula, and this calculation takes a lot of

time. To speed up the computation, this algorithm propose to calculate the variation

in modularity assigning a node to another community without recalculating Q with

the Formula 1. The algorithm is composed of two phases: an optimization phase

3

and an aggregation phase. At the beginning each node is assigned to a community

composed only by itself; in the first, we pick each node i of the graph and we calculate

for each community cj in its neighbourhood the values ∆Qi→cj , that is the changing

in the modularity of assigning the node i to the community cj, as following:

∆Qi→cj =
li→cj − li→ci/{i}

2|V |
+ ki

kci/{i} − kcj
4|V |2

(2)

where li→cj is the sum of edges that connect i to the community cj, ki is the weight

of the nodes i and kcj is the weight of the community cj. Then, for each node, we

select the maximum values and if it is greater than zero, we assign the node i to

the community that corresponds to the maximum value. We repeat this procedure

sequentially for all nodes while the modularity score increases. When no more im-

provement can be achieved, we execute the aggregation phase. In this phases, we

create a new graph from the current community structure: each node is one of this

communities, and the edge between them is given by the sum of the links between

nodes that belong to the corresponding communities (edge between nodes in the

same communities lead to self-loop). After this step, we reapply the first step. The

algorithm ends up when no more improvement is obtained. This algorithm is quite

efficient with a complexity of O(m), where m is the number of edges in the graph,

but this algorithm requires a lot of time to find the communities in the bigger graphs.

For this reason, some approaches were proposed in the literature to speed up the

algorithm. One interesting technique proposed by Ozaki et. al [28], prune the nodes

in the optimization phase, considering only the nodes that have a neighbour that

has to change its community in the previous iteration. Apart from this kind tech-

nique, generally, the most effective method to improve significantly the performance

of an algorithm is to parallelize the execution. Especially, to obtain the maximum

speed, many frameworks that allow performing on the GPU computation normally

handled by the CPU became popular in recent times. The most used framework

is the Nvidia CUDA, a parallel computing platform and application programming

interface. CUDA was originally designed as a C++ language extension that allows

any developer to building application designed for the GPU with a low learning

4

curve. CUDA is also designed to transparently scale on different GPU.

In literature, several implementations of the Louvain algorithm for the GPU were

proposed. In this thesis, we present three new algorithms for the GPU based on

the Louvain algorithm: PSR-Louvain, PH-Louvain and Adaptive Louvain. All these

algorithms implement the pruning techniques proposed by Ozaki. No other Louvain

based algorithm for the GPU implements this technique before. These algorithms

compute the maximum score of ∆Q for each node simultaneously, and then we up-

date the community based on that score. Also, the creation of the edges of the new

graph in the aggregation phase is executed in parallel. The first two algorithms are

quite similar to each other. In both algorithm we start from the edge list composed

by the tuple (i, j, w) where i is the source node of the edge, j is the destination node

of the edge and w is the weight of the edge. Both algorithm, in the optimization

phase, first select only the edges such that the node i has a neighbour that has to

change its community in the previous iteration, then they substitute each destina-

tion node with the corresponding community cj. After them, the two algorithms

use different methods to sum up all the values w for each pair i and cj and obtain

the corresponding li→cj . We need this value to compute all the ∆Qi→cj , as shown

in the Formula 2. The first algorithm sorts the list and then performs a segmented

reduction to each value with the same pair i and cj; the second algorithm use a

hashmap to aggregate all of these values. After then, both select the maximum

value for each node and eventually update the community. Finally, they compute

if a node has a neighbour that change its community and store the results that will

be used in the next iteration for the pruning. Moreover, in both algorithms there

is a technique that optimizes the first iteration of each optimization phase. In the

aggregation phase, these two algorithms use the same aggregation scheme proposed

in the optimization phase to create the new graph.

This two algorithms, compared to the fastest sequential versions, obtain a speed-up

factor up to 56. During the analysis of this two algorithms, we discover that the

PSR-Louvain tends to perform better than the PH-Louvain in the early iteration of

the optimization phase; on the other hand, the PH-Louvain approach outperforms

the other when the number of a different key inserted in the hashmap falls below

5

a given threshold. Besides, the PH-Louvain aggregation phase is faster than the

PSR-Louvain one.

On these considerations, we create a new algorithm that combines these two algo-

rithms and selects the best aggregation scheme according to the situation. This

Adaptive approach performs better than the other, combining effectively the best

feature of these two algorithms. Finally, we compare this version with the two fastest

GPU Louvain based algorithm: the first one is included in the Nvidia library

cuGraph [34]; the second one is included in the high-performance library for graph

analysis Gunrock [35]. Our test highlights that our Adaptive algorithm optimizes

the memory occupation better than the other two allowing it to compute graph with

approximately twice the number of edges. Besides, our algorithm generally performs

better than these two algorithms in terms of time.

This thesis is structured as follows: in Chapter 2 of this thesis, we present the Nvidia

GPUs architecture and the CUDA framework, paying special attention to the fea-

tures that we use later on this thesis; in the Chapter 3 we present the field of the

community detection and the modularity optimization, highlighting the motivation

that leads to the design of the Louvain Algorithm; in the Chapter 4 we present the

sequential Louvain algorithm, the pruning techniques and the previous parallel im-

plementations presented in the literature; then, in Chapter 5, we present in details

our two first algorithm, that will be analyzed in details in the Chapter 6; finally, in

the Chapter 7, we present the Adaptive Louvain algorithm and we analyze it, com-

paring it first with our other two algorithms, then with the two algorithms included

in the two libraries. In the last chapter, we sum up our work and we highlight some

future research areas and development.

6

2 Nvidia GPUs architecture and CUDA

Scientists, years by years, face bigger and bigger problems. Even if Moore’s law

(that said: ”the number of transistors in an integrated circuit double about every

two years”) determines the increased power of the CPU since the sixties, even the

problems size grows and it grows also much more quickly. For example, the web

growth since the turn of the millennium raises new challenges that are hard to solve

with standard algorithms.

Besides, at the same time, the manufacturers face some serious physical limits. The

increase in performance was made possible by the reduction in the size of the transis-

tors and the increase in the frequency of the clock cycle. In the first half of the first

decade of 2000, the producers discovered that reducing, even more, the size causes

serious problems of heat dissipation and data synchronization. To find a solution to

this problems, the manufactures start to produce multi-core CPUs: the idea is that

if it’s impossible to increase further the speed with only one core, they add another

processing unit, to ideally halve the execution time.

For these reasons, in recent times the studies of new parallel approaches became

fundamental to solve problems that can not be solved classically. As a result of

this change and at the same time both the support of floating-point number on

the graphics processing units (GPU) and the advent of programmable shaders, it

became popular the general-purpose computing on GPU (GPGPU), i.e. the use of

a GPU to perform a computation that is commonly handled by the CPU.

Figure 1: Difference in CPUs and GPUs architecture. This image was
reprinted from [30]

The GPU architecture is radically different respect to the CPU. The CPU has sev-

7

eral ALUs (Arithmetic and Logic Unit), a complex control unit that controls those

ALUs, big fast cache memory and dynamic random access memory (DRAM); the

GPU has many ALUs, several simple control units, a smaller cache and a DRAM

(Figure 1). While the first one is focused on the low-latency, the second one is fo-

cused on the high throughput; while the first one is focused on handle various serial

complex instruction, the second is focused on handle much parallel simple instruc-

tion. In brief, the first one is a versatile processing unit, the second one is highly

specialized. Even if in recent time the multi-core CPU performance get closer to the

performance of the GPU [33], from the Figure 2 we can see how the performance of

the GPU outclasses the performance on the CPU.

2008 2010 2012 2014 2016 2018 2020
(a) Single-precision performance.

0

2

4

6

8

10

12

14

16

TF
LO

P
S

CPU Intel-Core-CPU Intel-Xeon-CPU AMD-Ryzen-CPU AMD-EPYC-CPU

GPU NVIDIA-Titan-GPU NVIDIA-GeForce-GPU NVIDIA-Tesla-GPU AMD-Radeon-GPU AMD-MI-GPU

2008 2010 2012 2014 2016 2018 2020
(b) Double-precision performance.

0

1

2

3

4

5

6

7

8

Figure 2: Comparing single-precision and double-precision performance of
CPUs and GPUs. The performance are measured in trillion of floating point
operations per Second (TFLOPS). This image was reprinted from [33].

For those reasons, the GPU-accelerated applications are the most effective to solve

big problems, due to the possibility of reach very high speed-up compared to the

classic multi-core applications. To simplify the development of this type of appli-

cations, in 2007, Nvidia releases CUDA (Compute Unified Device Architecture), a

parallel computing platform and application programming interface model. Nowa-

days, the CUDA framework is one of the main tools to develop HPC applications,

due to its performance and simple API, and for this, we choose to use it in this

project. In this chapter, we first present the Nvidia’s GPU architecture, then we

8

present CUDA and Thrust, a parallel computing library. This chapter was based

on [32] and [30].

2.1 Nvidia’s GPU Architecture

We present Nvidia’s GPU Architecture to introduce some key concepts that are used

later in the thesis. This introduction presents the Nvidia Turing architecture, which

is the latest released. We present the highest performing GPU of the Turing line,

The Turing TU102 GPU (Turing machine can be also scaled-down from this one).

In Figure (3a) we can see a scheme of this architecture. The cornerstone of each

(a) (b)

Figure 3: (a): Tuning GPU full architecture; (b) Streaming multiprocessor
(SM) in details. Those images was reprinted from [32]

Nvidia’s GPU is the concept of Streaming Multiprocessor (SM), that are represented

in Figure (3b): it contains some cores specialised to solve specific arithmetic oper-

ations on specific types of data (like integer, float, double, tensor...). In a Tuning

machine, each SM contains 64 FP32 cores, 64 INT32 cores, eight Tensor cores and

two FP64 cores (that aren’t present in Figure 3b). In Turing architecture is present

9

also a Ray Tracing cores in each SMs: this core is used in rendering.

The SM is the fundamental unit because the parallel execution of the code in a

CUDA application it’s organized in blocks, and each block is executed on a single

SM. Moreover, the SM contains also some registers (256 KB in Turing), an L1 cache

and a shared memory (in Turing 96 KB of L1/shared memory which can be con-

figured for various capacities). The multiprocessor creates, manages, schedules, and

executes threads in groups of 32 parallel threads called warps: when we give one or

more thread blocks to execute to a a streaming multiprocessor, it partitions them

into warps that get scheduled by a warp scheduler to be executed. A very important

notion is that each warp executes one common instruction at a time, so if threads of

a warp diverge via a conditional branch, the warp serially executes each branch path

taken, ignoring the instruction for the threads that are not on the active path. The

registers are private for each thread, but all threads share the SM’s shared memory.

The SMs are organised in Texture Processing Clusters (TPCs), that in a Turing

GPU contains two SMs. In their turn, the TPCs are organized in Graphics Pro-

cessing Clusters (GPC) that in a TU102 contains six TPCs. Finally, each GPU’s

contain six GPCs. Shared between all components, there is a shared L2 cache, i.e.

each thread can have access to it. In the Turing GP, it is large 6144 KB. Therefore,

in summary, a Turing TU102 GPU contains 72 SMs and 4608 FP32 cores, 4608

INT32 cores, 576 tensor core and 144 FP64 cores.

2.2 CUDA

In November 2006, CUDA (that stands for Compute Unified Device Architecture)

was realised by NVIDIA. This general-purpose parallel computing interface aims at

providing a framework to the developers that allow building applications that can

transparently scale with a low learning curve. To overcome this challenge, CUDA

was designed as a C++ language extension: in this way, a programmer that already

knows the language syntax can start to develop a GPU-accelerated application with

a minimal effort. The support of other language was introduced years by years, as

illustrated in Figure 4. In this chapter we present the C++ extension, that was used

to develop the project illustrated in this thesis, even if all extensions share the same

10

Figure 4: GPU Computing Applications. This image was reprinted from [30].

concept and programming model.

The first key concept is the kernel function. In a CUDA-based application we de-

fine as device the GPU and as host the CPU. The application starts at the host,

and when it is needed, it calls a kernel function that executes the function n times

in parallel by n different threads. To define a kernel, we have to add __global__

declaration specifier to the method and the number of threads that have to execute

the kernel call. Each thread has a unique ID. To set the thread number we use an

execution configuration syntax: after the method name, we include this setup en-

closed in three angle brackets <<< ... >>>. The configuration is used to define the

number and the size of the blocks: a block is a group of threads that are organized in

a one, two or three dimensional way. To identify the threads referring to the block,

each thread have a three-component vector named threadIdx that identifies its po-

sition in the block. In turn, also the blocks are organized into a one-dimensional,

two-dimensional or three-dimensional grid. Similar to the previous one, the vector

blockIdx identify the block into the grid. To define the dimensions of the grids

and the dimensions of the blocks in the angle brackets, we use two dim3 values

(or eventually int to define a one dimensional grid/blocks). The total number of

threads is equal to the number of threads per block times the number of blocks:

using the same logic, we can recover the unique ID of the vector from threadIdx

and blockIdx. In Figure 5a is illustrated the grid-blocks schema.

11

(a) (b)

Figure 5: (a): Grid of Thread Blocks; (b) Automatic Scalability. Those images
was reprinted from [30]

As mentioned above, each block is assigned to a different streaming multiprocessor.

On current GPUs, a block has a threads limit set to 1024, due to the limited memory

resources of the SM. This block scheme is used to implement automatic scalability:

indeed, the GPU schedules each block on any available SM, in any order. For ex-

ample, if we have a program that divides the threads into eight blocks, it can be

executed from both two GPU’s with respectively two and four SMs without any

intervention on the scheduling from the developer (Figure 5b). On the other hand,

the block schema allows also threads collaboration: as illustrated in the Figure 6,

thanks to the allocation of each block to the same SM, allows those threads to share

a fast per-block memory. Besides, all threads share the global device memory, even

if they belong to different blocks or kernel (some advanced settings permit to execute

two kernels simultaneously if there are enough resources. Those settings are not pre-

sented here because they are not used in this thesis, because a large amount of data

doesn’t permit to parallelize those kernels; moreover, for the sake of completeness,

they are well described in [30]). The data must be copied to this memory from the

12

Figure 6: Memory Hierarchy. This image was reprinted from [30].

host before the kernel execution. Those two types of memory, combined with several

primitives that synchronize thread at warp, block or device levels, permit threads

collaboration. Those synchronizing function acting as a barrier: all threads in the

specific level must wait for the others before any one is allowed to proceed. In ad-

dition, CUDA exposes some other primitives that allow atomic operations (like add

or compare and swap operation): if multiple threads call one of those methods on

a specific memory address, the access to it will be serialized. No information about

the order of the operation will be given a priori. In conclusion, we remark that every

new hardware architecture could introduce new features that aren’t supported by

the old GPU. For this reason, CUDA uses the concept of Compute Capability to

identify the features supported by the GPU hardware. Our project use a compute

capabilities greater than 6.0 .

13

2.3 Thrust Library

To conclude this CUDA introduction, we present Thrust, a powerful library of par-

allel algorithms and data structures that are largely used in this thesis project. This

C++ Standard Template-based library is included in the CUDA toolkit and pro-

vides a reach collection of data-parallel primitives (as transform, sort or reduce)

that allows writing a high performing and readable code with minimal effort. This

presentation is based on the Thrust section present in the CUDA manual [30].

We start the presentation from the two vector containers, host_vector and

device_vector. As their name says, they are arrays that are dynamically allocated

respectively in the host and in the device memory. Like the std::vector, they are

generic containers, their elements are allocated in contiguous storage locations and

they can dynamically change the size. Indeed, using the = operator, we can copy a

host_vector in a device_vector and vice-versa. Thrust also provides many useful

parallel algorithms, implemented for both host and device, like:

• Sort that performs the sorting of a vector. It is also present its ”by key”

version that sorts a vector of values using another vector as a key;

• Reduce that performs a reduction of a vector. It is also present its ”by key”

version that, given a vector of values and a vector of keys, performs a reduction

of the values for each consecutive group of keys;

• Transform that applies a function to each element of the vector;

• Exclusive and Inclusive Scans that perform a prefix sum, respectively ignoring

and considering the corresponding input operand in the partial sum.

In this thesis, we use only the device CUDA-based version of this algorithm. The

last useful feature that Thrust provides is the fancy iterators. These iterators are

used to improve performance in various situations. The transform_iterator, for

example, were used to optimize the code performing the transformation during the

execution of an algorithm. Another very useful iterator is the zip_iterator that

takes multiple input sequences and yields a sequence of tuples: in this way we can

treat many vectors as a single one and perform more operations simultaneously.

14

3 Community Detection State of the Art

Figure 7: An example of a communities structured graph. Three communities
are enclosed by the rectangles.

The problem of community detection raises in many application scenarios from the

necessity of finding groups of objects that have a large number of connections to

each other. To represent problems where it is fundamental to empathize connection

between objects, the graph theory is the main tool. A graph is a mathematical

structure composed of nodes (or vertices) that denote the objects and edges (or

links) that express some kind of relationship between objects and possibly having a

weights that quantifies this relationship. The Graph Theory born in 1736 when Eu-

ler used this mathematical abstraction to solve the puzzle of Königsberg’s bridges.

Since then, this tool was used in several of Mathematics, Social, Biological and

Technological application. In recent time, the approach to this studies has been

revolutionized to deal with bigger and more complicated challenges, supported by

the increasing computing power.

The necessity of finding this high-connected substructure in graph arises from real

problems in different research areas: for example, the study of Protein-Protein In-

teraction (PPI) networks is very important because the interaction between proteins

is the basis of all process in the cell.

A study demonstrated that this type of network shown to be useful for highlighting

15

Proteasome

Endo/exonuclease

EGF-like domains

Matrix
metalloprotease

SerpinsNuclear hormone
receptors

Hypoxia inducable
factor

Tubulin

Mitotic spindle
checkpoint

ATP transporter
proteins

Peroxisomal
proteins

Cell cycle / cytokinesis

TGF-β

Cell cycle
regulation

Myosin

Laminin

Actinin

Casein kinase

Transcription
 regulation

Vascular endothelial
growth factors VEGF

Intracellular signalling
cascade

Breast cancer
 anti-estrogen resistance

JAK/STAT
cascade

Karyopherin
docking complex

NF-kappaB
regulation

Nucleocytoplasm
transport

Figure 8: A protein protein iteration network of a rat cancerous cell. This
image was reprinted from [13].

key proteins involved in metastasis. [13]

Other examples can be found in the field of sociology: a historically well-know sce-

nario is the Zachary’s Karate Club. This dataset captures members of a Karate

Club for 3 years.[4] An edge between two nodes represents an interaction between

two members outside the club. At some point, a conflict between the administrator

and a master led to split of the club into two separate groups. The question is if it is

possible to infer who compose these two new groups basing on the information that

this graph give to us. This small network of 1977 is famous because it has often been

used as a reference point to test the detection algorithms used to analyze huge social

16

Figure 9: Zacahry’s karate club. [4]

web networks. In general this kind of problem, i.e. clustering people that belong to

the same community base on interaction, it’s useful not only in sociology but also

in marketing: by knowing people with similar interests, it’s possible to make better

recommendation systems.

There are several of similar real-world scenarios, all united by the fact that the

data is unregular but it’s present some well-defined topological structure that in a

completely random graph are absent. A random graph is a fully disordered graph,

firstly proposed by Erdös and Rényi [2] in 1959: it’s a graph where the probability

that there is an edge between two nodes it’s equal for all pairs of nodes and, for this

reason, the degree of the nodes (i.e. the number of edges incident to a node) is homo-

geneous. In real networks, this is not true, because they are often scale-free (follow a

power-law distribution). An example of this is the study about the citations in sci-

entific papers made by Derek J. de Solla Price in 1965 [3] or the study about World

Wide Web growing made by Albert-László Barabási et al. in 1999 [5]. Furthermore,

the degree distribution of the nodes is non-homogeneous not only globally but also

17

locally, this due to the observation that there is a high concentration of edges within

sets of nodes and a low concentration of edges between this sets. These two concepts

are essential to formulate the formal definition of Community and Modularity. In

this chapter will be presented some definitions of community and will be given an

overview of some methods that are used to identify communities.

3.1 Community Definitions

The informal definition of community is there are many more edges inside the com-

munity versus the rest of the graph, but there isn’t a unique quantitative definition

of community. This kind of freedom is necessary because the concept of community

is strictly connected to the problem that will be analyzed: for example, in some

cases, it’s necessary that communities overlap, but in other problems, this is not

necessary. There is a unique key constraint that allows talking about community

detection: the graph must be sparse. A sparse graph is a graph where the number

of nodes has the same magnitude of the number of edges. In the unweighted graph

case, if the number of edges is far greater than the number of nodes, the distribution

of edges among the nodes is too homogeneous for communities to make sense [16].

In that case, the problem nature is little different: we aren’t interested anymore on

the edge density between nodes but we have to use some kind of metrics (like sim-

ilarity or distance) to clustering. In that case, the problem is more similar to data

clustering. Despite this, assuming that a community is a subset of similar nodes it’s

reasonable; for this reason, some techniques (like spectral o hierarchical clustering)

belonging to this field are adopted in community detection and will be shortly pre-

sented later on this thesis. Following this, Fortunato [16] defines three main classes

of community’s definitions: local, global and based on vertex similarity. Other types

of definitions are still possible, but these three offers give a good summary of the

problem. We now present those classes to give an overview of the various approach

that has been used to define this problem.

18

3.1.1 Local definitions

Considering that a community has a lot of interactions with the other nodes that

are in it and few connections outside, it is fair to think about the communities as

autonomous objects. The local definitions are based on this concept. Directly from

this concept, we can think at the community as a clique, i.e. a subset whose vertices

are all adjacent to each other. This type of definitions it’s too strict: even if just

one edge is not present, the subset is not a clique, but the subset has a very high

concentration of edges. For this reason, the clique definition is often relaxed, using,

for example, n-clique, i.e. a subset in which all the vertices are connected by a path

of length less than n.

Anyway, this type of definitions ensure that there is a strong cohesion between the

nodes in the subset, but it does not ensures that there isn’t a comparable cohesion

between the subset and the rest of the graph. For this purpose, other definitions

were proposed. Given a graph G(V,E), the corresponding adjacency matrix A and

a subset of nodes C where C ∈ V , we define the internal degree kintv and the external

degree kextv for each vertex v that belongs to C as the number of edges that connect

the node v with another node that belongs to C and not belongs to C, respectively:

kintv =
∑
k∈C

Avk kextv =
∑
k/∈C

Avk (3)

where Avk is the entry of A at position (v, k). We also define the internal degree

kintC and the external degree kextC as the sum of all internal and external degree of

nodes that belongs to C.

kintC =
∑
i,j∈C

Aij kextC =
∑

i∈C,j /∈C

Aij (4)

A strong community is a subset of nodes such that the internal degree kintn for each

vertex n is greater than its external degree kextn . This type of definitions is once

again very strict, for this reason we define as weak community a subset of nodes

where the internal degree of the subset kintC is greater than its external degree kextC .

Many other variants of these definitions were presented in the literature.

19

3.1.2 Global definitions

The previous class quantifies the communities independently, considering every sub-

set individually. Overturning the point of view, we can define communities in a

graph-dependent way, considering them as an essential and discriminant part of it.

There are many different interpretations of this approach in the literature, but the

most important definitions are focused on this key fact: it’s not expected to see a

community structure in a random graph. For this reason, we define as null model

of a graph another graph that has some features in common with the original one

but it’s generated randomly. This graph is used as a comparison term to identify if

there is a community structure in the graph or not and, if it is present, to quantify

how it is pronounced. The comparison between a graph and the corresponding null

model, which is based the Modularity Optimization, is the main object of this study

and is presented in detail in the next chapter.

3.1.3 Based on Vertex Similarity

The last class of definitions assumes that edges in the same community are similar to

one another. All the definition used in the classic clustering methods belongs to this

class because they calculate a distance (similarity) between object and aren’t based

on the edge density like the previous definitions. This distance can be calculated in

various ways: if it is possible to embed the vertices into a n-dimensional Euclidean

space by assigning a position to them, one method consists to calculate the distance

between two nodes, considering that similar vertices are expected to be close to

each other. To calculate the distance, one could use a norm. Three norms often

used in the literature are the following. Given two points a = (a1, ..., an) and

b = (b1, ..., bn) that belongs to the n-dimensional Euclidean space E, we define the

norms l1 (Manhattan distance), l2 (Euclidian distance) and l3 (Maximum distance)

20

as:

l1(a, b) =
n∑

k=1

|ak − bk| (5)

l2(a, b) =
n∑

k=1

√
(ak − bk)2 (6)

l3(a, b) = max
k∈[1,2]

|ak − bk| (7)

Another option is the cosine similarity cos(a, b), that is very popular in literature:

cos(a, b) =

∑n
i=1 aibi√∑n

i=1 (ai)2
√∑n

i=1 (bi)2
(8)

If it is not possible to embed the graph in a Euclidean Space, it is possible to infer

the distance from the adjacency matrix. If it is not possible to embed the graph in

a Euclidean Space, it is possible to infer the distance from the adjacency matrix.

One idea is to map the distance in order to assign smaller values at nodes with the

same neighbourhood. Given an adjacency matrix A we define the distance between

two nodes a and b as:

d(a, b) =

√∑
k 6=a,b

(Aak − Abk)2 (9)

Many other variants of that definition (but based on the same principle) were pre-

sented in the literature, for example considering the overlap between neighbourhood

respect to the union.

Other alternative measures consider the number of independent paths between

nodes, i.e. path that does not share any common edges, or they are based on

random walk on a graph: for example, the average number of steps needed to reach

one vertex from another by a random walker.

3.2 Community Detection Algorithms

A partition is a division of the graph in clusters, such that each vertex belongs to

exactly one cluster. The partition of possible partitions of a graph G with n vertices

grows faster than exponentially with n, thus making it impossible to evaluate all

21

the partitions of a graph [16]. For these reasons, many techniques were introduced

to find the most significant ones. We now present an introduction to some classical

class of techniques used in the field of community detection: Partitional cluster-

ing, Graph partitioning, Spectral clustering, Hierarchical clustering. Moreover, the

Girvan and Newman algorithm is presented later on: even if this method is a Hier-

archical algorithm, this method firstly introduced the modularity function and it is

presented separately. The goal of this chapter is to give a useful overview in order to

get the differences with the Modularity optimization and empathize the motivations

that led to the choice of the Louvain algorithm, one of the most used nowadays,

especially for huge graphs. For this reason, all the methods that are presented in

this thesis find a partition, as the Louvain methods. For the sake of completeness,

we remark that in Fortunato’s report [16], that was mainly used to write this chap-

ter, is presented an analysis of algorithms that found also overlapping communities

(covers).

3.2.1 Partitional clustering

Partitional clustering is a class of methods that find clusters from data points. The

algorithms in this class embed the graph in a metric space as seen in chapter 3.1.1,

and then calculate the distance between these new points. The goal is to separate

the points in k clusters minimizing the distance between points and to the assigned

centroids (i.e. the arithmetic mean position of all the points in the cluster). The

number of clusters k is given as input. The most famous technique is k-means

clustering. The objective function to minimize is the following:

k∑
i=1

∑
xj∈Ci

||xj − ci||2 (10)

where Ci is the i-th cluster and ci is its centroid. This function quantifies the intr-

acluster distance. At the start, the k centroids are set far distance from each other.

Then, each vertex is assigned to cluster with the nearest centroid and the centroid

is recalculated. Even if the method doesn’t find an optimal solution and the solu-

tion is strongly dependent on the initial setup of the centroids, this method remains

22

popular due to the quick convergence that allows it to analyze big graphs. How-

ever, setting the apriori number of cluster k is not simple to estimate that number,

especially in a large graph, and for this reason, it is often preferred algorithms that

can automatically derive it. Moreover, the embedding of the graph in the Euclidean

Space may be tricky and not reliable for some graphs.

3.2.2 Graph partitioning

Given a graph G(V,E) and a number g of clusters, the problem of graph partitioning

consists of creating a partition of nodes composed by g subsets such that it minimizes

the edges lying between the clusters. To archive this goal, many algorithms perform

a bisection of the graph, even for partitions with more than two clusters, where the

bisection is iterated. One of the earliest and famous algorithms is the Kernighan–Lin

algorithm. This algorithm performs an optimization of the function Q = linkin −

linkbetween, where linkin is the number of edges inside the subsets and linkbetween

is the number of edges lying between them. The algorithm starts from an initial

partition (randomized or suggested by the graph), and the algorithm performs a

swapping between clusters for a fixed number of nodes pair to increase the value

of Q. To avoid local maxima, some swaps that decrease Q are kept. With some

optimizations, the complexity of this algorithm is O(n2) where n is the number of

nodes.

Other techniques are based on the max-flow min-cut theorem by Ford and Fulkerson

[1] and the minimization of cut-affine measures, like the normalize cut:

ΦN(C) =
c(C, V/C)

kc
(11)

where C is a subset of nodes, kc is the total degree of C and c(C, V/C) is the sum

of all the edges lying between the subsets C and V/C.

Like the previous class, specifying the number of clusters is the greatest limit of this

class of algorithm. In additions, iterative bisecting can lead to not reliable clusters,

because the sub-clusters are made breaking the previous ones: in this way, the new

subsets have vertices only from one of the ”parent” cluster.

23

3.2.3 Spectral clustering

Given a set of n object x1, x2, ..., xn and the matrix S of pairwise similarity function

s(x1, x2) such that s is symmetric and non negative, we define as spectral clustering

all methods that using the eigenvector derived from the matrix S to cluster the

data. In particular, this transformation makes a change from the reference system

of the object to another whose coordinates are elements of eigenvectors. This trans-

formation is made to enhance the proprieties of the initial data. After that, we can

cluster the data using other techniques as k-means and obtain a better result. The

Laplacian matrix is the most used in spectral clustering. Given a graph G and its

associated adjacently matrix A, we define the Laplacian matrix L of the graph G

as:

L = D − A (12)

where D is the degree matrix, a diagonal matrix which contains information about

the degree of each vertex. This matrix is used due to nice propriety: if the graph has

k connected components, the Laplacian of the graph will have k zero eigenvalues.

In that case, the matrix can be organized in a way that displays l square blocks

along the diagonal. When is it in this block-diagonal form, each block is at his

turn a Laplacian matrix of one of the subcomponent. In this situation, there are

k degenerate eigenvectors with equal non-vanishing components in correspondence

with the vertices of a block and zero otherwise. Considering the n× k matrix where

n is the number of nodes of G and the columns of this matrix are the k eigenvectors,

we can see that vertices in the same connected component of the graph coincide.

If the graph is connected but the connections between the k subgraph are weak,

only one eigenvalue is zero. By the way, however, the lowest k − 1 non-vanishing

eigenvalues are still close to zero and the vertex vector of the first k eigenvectors

still identify the clusters.

An application of these techniques is the spectral bisection methods: this algorithm

combines ideas from spectral clustering and graph partitioning. Given the graph G

24

with n nodes, the cut size R of the bipartition of the graph is:

R =
1

4
sTLs (13)

where L is the Laplacian matrix and s is the n-vector that represents the affiliation

of the nodes to a group (if the node i belongs to the first group, the i-th entry of

s will be 1, −1 otherwise). s can be writtens as s =
∑n

i=0 aivi where vi is the i-th

eigenvector of the Laplacian. If s is normalized, we can write the equation (14) as

follows:

R =
n∑

i=0

a2
iλi (14)

where λi is the eigenvalue corresponding to vi. From this, choosing the s parallel

to the second-lowest eigenvector λ2 we have a good approximation of the minimum

because this would reduce the sum to λ2. We remark that we use the second one

because the first one is equal to zero. To cluster the data in the vector s, we match

the signs of the components of v.

The exact computation of the all eigenvalues requires time O(n3), a too high com-

plexity for big graphs, but there exist some techniques that allow calculating ap-

proximate values faster [16].

3.2.4 Hierarchical clustering

The possible partitions of a graph can be very different in scale and some cluster in

turn may show an internal community structure. In that case, there is a hierarchy

between partitions. The most common way to represent this kind of structure is to

draw a dendrogram, i.e. a diagram representing a hierarchical tree. If we draw an

horizontal line in the dendrogram, observations that are joined together below the

line are in the same cluster (Figure 10). The hierarchical clustering algorithms build

an entire dendrogram starting or from the bottom (agglomerative algorithms), or

from the top (divisive algorithms) using a similarity function to cluster. In the first

type of algorithms, each node is initially considered as an independent community

and the clusters are iteratively merged if the similarity score exceeds a threshold. A

divisive algorithm inverts the starting point: at the start, all nodes belong to one

25

Figure 10: Example of dendrogram. At left we have the data in a Euclidean
space, at right we have the dendrogram. The dotted line in the dendrogram
divides the data in two cluster, and we show the corresponding line in the
Euclidean space.

single community and then the clusters are iteratively split. An example of this

type of algorithm, the Girvan and Newman algorithm, is presented later on this

thesis. The algorithms that belong to this class doesn’t need the number of clusters

as input, but there is the problem of discriminating between the obtained partitions:

with these algorithm we obtain a entire hierarchies of partitions (from the partition

in which each nodes is in a different communities to the one with all the nodes are

in a unique community) and we haven’t a directed way to isolate the best ones. We

need some quality function to find the best partition and the Modularity Function

was introduced to overcome this problem. Moreover, as we see in the Girvan and

Newman algorithm, building the entire hierarchy using similarity metrics requires

a lot of computations: for these reasons the complexity of this class of algorithms

tends to become much heavier if the calculation of the chosen similarity measure is

costly [16].

3.3 Modularity Optimization

Historically, the modularity function Q was introduced as a stop criterion for the

Girvan and Newman algorithm in 2002. It is a quality function, i.e. a function

that allows distinguishing from a ”good” clustering and a ”bad” one. The function

assigns to a partition a score that is used to compare partitions. This is not a trivial

goal, because defining if a partition is better than another is an ill-posed question:

the answer may depend on the particular concept of community that it is adopted.

26

Nevertheless, this sometimes is necessary, for example in the case of hierarchical

clustering, where it’s necessary to identify the best partition in the hierarchies. A

simple example is the sum of the difference between internal degree kintv and the

external degree kextv [3.1.1].

The modularity function became very popular and a lot of methods based on this

quality function were created. In this chapter we present the functions and their

limits in details, the algorithm in which it was firstly used and some optimization

techniques based on modularity.

3.3.1 Modularity

The function is based on the idea that a random graph would not exhibit a com-

munity structure. We define as null-model of a given graph, another graph that

is generated randomly yet keeping some structural proprieties of the original one.

Comparing the graph with its null model, we can quantify how much the community

structure is well defined. Therefore, the modularity function is dependent on the

choice of the null model. Given an undirected graph G = (V,E), a partition of

nodes C and a function c(x) that assign each node x to its community, we define a

generic modularity function as :

Q =
1

2|E|
∑
i,j∈V

(Aij − Pij)δ(c(i), c(j)) (15)

where A is the adjacency matrix of G, P is the matrix of expected number of

edges between nodes in the null model and δ is an filter function: its yields one if

c(i) = c(j), zero otherwise.

In principle, the choice of a null model is arbitrary, but we have to consider care-

fully the graph properties to keep in the null model because they determine if the

comparison is fair or not. For instance, it’s possible to choose as a model that keeps

only the nodes and edges numbers, assuming that an edge is present with the same

probability for each pair of nodes (in this case Pij is constant). For this reason, The

standard null model of modularity imposes that the expected degree sequence(after

averaging over all possible configurations of the model) matches the actual degree

27

sequence of the graph [16]. In this scenario, the probability that two vertices i and

j are connected by an edge is equals to the probability to get two stubs (i.e. half-

edges) incident to i and j.

This probability pi of piking a stub from the nodes i is ki
2|E| where ki is the degree

of nodes i. The probability that two stub joining is pipj =
kikj
4|E|2 . Therefore, the

expected number Pij of connections between the nodes i and j is:

Pij = 2mpipj =
kikj
2|E|

(16)

Replacing Pij from (16) in (15) we obtain:

Q =
1

2|E|
∑
i,j∈V

(
Aij −

kikj
2|E|

)
δ(c(i), c(j)) (17)

that is the standard modularity function. This function can be rewritten considering

that only the vertex pairs in the same community contribute in the sum:

Q =

|C|∑
c

(
lc
|E|
−
(

kc
2|E|

)2
)

(18)

where lc is the sum of edges that connect nodes in c and kc is the sum of degree of

nodes that belongs to c, i.e. total degree.

The modularity function Q it is in range [-1/2, 1] [15], and if we consider the whole

graph as a unique community c we obtain Q = 0. Opposite, if we consider each

node as an independent community, Q < 0. Then, if a partition has a modularity

score < 0, the partition has not a modularity structure.

3.3.2 Resolution Limit

There is a well-known limit of the modularity function, identified by Fortunato and

Barthélemy [12] in 2006. Considering (16), we can easily compute the expected

number of edges PAB between two clusters cA and cB, that are separate cluster in

partitions C, as:

PAB = kAkB/2m (19)

28

where ka (ka) is the total degree of ca (cb). We can compute from (18) the difference

∆QAB that affecting the modularity when we consider cA and cB in a partition

where they are two different cluster, with respect to the partition where they are

merged in one cluster cAB:

∆QAB =
lAB

|E|
− kAkB

2|E|
(20)

where lAB is the sum of edges that connect nodes that belongs to A to nodes that

belongs to B. Now considering the case lAB = 1: there is only one edge that connects

these two clusters. Therefore we expect that we obtain a greater modularity score

keeping these two clusters separate with respect to merging them. Instead, from

(20) we have that the modularity increase if kAkB
2|E| < 1. For the sake of simplicity, we

assume that kA = kB = k. We obtain that if k <
√

2|E|, the modularity is greater

if we merge the communities. From this it follows that if the communities are suffi-

ciently small in degree, the expected number is smaller than one: in this case if there

is only one edge between the two communities, we obtain a better result merging

them. The result of this observation is that the modularity optimization has a reso-

lution limit that prevents it to detect communities that are too small with respect to

the graph as a whole. This problem has many implications: the real networks have

a community structure composed by communities very different in size, so some of

these communities may be wrongly merged. Fortunato identifies as week point the

assumption that in the null model each vertex can interact with every other vertex

[16]. Some solutions are proposed, as tunable parameters that allow avoiding the

problem or also algorithm that eliminate artificial mergers. Nevertheless, in many

real cases, the modularity-based algorithms still obtain very good results and permit

to analyze quickly very large graphs. For those reasons, the algorithms of this class

remain the most used, but it’s important to remark their limits.

3.4 Girvan and Newman algorithm

Now we present the Girvan and Newman algorithm [6]. This method deserves to

be presented because it is the first method that uses the modularity as quality

29

�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

������
������
������

������
������
������

Figure 11: Considering the shortest path definition of the edge betweenness,
the highlighted has the much higher values of betweenness than all other edges:
indeed all shortest path connecting left vertices and right vertices run through
it. For this reason, we chose to remove this edge and we obtain two clusters.
This image was reprinted from [16].

function [9] and it represents a turning point in the history of community detection.

This method is a divisive algorithm, i.e. it tries to identify edges that connect

two communities and then remove that edge. The goal of the algorithm is to get

clusters disconnected from each other. To select which edge we have to remove, we

introduce the concept of edge betweenness. The edge betweenness it is a measure

that quantifies how an edge is least central for a community. If an edge connected

two communities, it should have a greater value compared to an edge that is incident

to two nodes that are in the same community.

The algorithm has 2 steps iterated until all edges are removed:

1. computation of the edge betweenness for each edge;

2. removal of the edge with the largest betweenness (Figure 11);

The algorithm constructs an entire dendrogram of partitions, and the modularity is

used to select the best one. Girvan and Newman proposed three different definitions

of edges betweenness [9]: shortest-path, current-flow and random walk. The first one

is the number of shortest paths between all vertices that include the edge (Figure 11).

The computation of this value for each edge of the graph has a complexity O(n2) on

a sparse graph [9]. The second definition considers the graph as a resistor network

created by placing a unit resistance on every edge of the network. If a voltage

difference is applied between any two vertices, each edge carries some amount of

current. The current flows in the network are governed by Kirchhoff’s equations

and the calculations are performed on each edge in the graph. This calculation has

30

a complexity O(n3) on a sparse graph [9]. The last one is the expected frequency of

the passage of a random walker on the edges. The calculation requires the inversion

of the adjacency matrix followed by the calculus of the averaging flows for all pairs

of nodes. The complexity is O(n3) on a sparse graph [9]. The first definition is

the most used for its speed (O(n2) < O(n3) and it is also shown that in practical

application this edge betweenness gives better results [9]. The authors also show

that the recalculation step is essential to detect correctly communities: this means

that we have to recalculate the betweenness every time an edge will be removed,

raising the complexity of the algorithm to O(n3) on a sparse graph. The complexity

is the strongest limit of this algorithm, which, however, was the first one to introduce

the modularity and has many ideas that were used later on.

3.5 Modularity Optimization Techniques

After the introduction of the modularity function Q, many algorithm were presented

in the literature to directly optimize the modularity function Q. In this chapter we

present the Newman’s greedy algorithm which was the first one, in order to make

a comparison with the Louvain algorithm that is also greedy. This algorithm also

introduces for the first time the concept of ∆Q, that will be expanded and used in

the Louvain method. Moreover, we present also some other class of techniques that

are used in modularity optimization like extremal optimization, simulated annealing

and spectral clustering.

3.5.1 Greedy Method of Newman

The first modularity optimization algorithm is presented by Newman [8], and it

is an agglomerative method. Given a graph G(V,E) where n are the number of

nodes and m the number of edges, the algorithm starts creating a supporting graph

that represent the community structure. In this graph at the beginning there are all

nodes and no edges between them: this represent the situation in which each node is

assigned to a single cluster. The first step of the algorithm is to pick an edge from the

original graph to add to the support graph such that it give the maximum increase

(or minimal decrease) of the modularity with respect to the actual configuration.

31

22 14 4 13 8 3 10 23 19 16 15 21 9 31 33 29 25 26 32 24 27 30 34 281 6 17 7 5 11 12 20 2 18

Figure 12: Dendrogram of the communities found by Newman algorithm in
Zachary karate club network. This image is reprinted from [8].

This value is indicated as ∆Q = Qnow −Qold The modularity will be calculated on

the full graph and not only on the ”cluster” graph. Then we add the edge to the

support graph: if the edges connect two sets of unconnected edges, it delivers a new

partition and reducing by one the number of the partitions. So, the algorithm find

n different partitions of the graph (Figure 12). We make some consideration of this

procedure:

• If we add some edges that don’t merge any partitions (i.e. it is internal), the

modularity doesn’t change.

• Considering this, we have to calculate the modularity difference ∆Q only when

we merge different partitions and so this operation is executed n times.

• Computing Q requires a time of O(m) that became O(n) on a sparse graph.

For those reasons, the complexity of this algorithm is O(n2) on a sparse graph.

Many improvements of this algorithm were proposed later (like the Clauset et. al

version [7] that uses a max-heap to reduce the complexity to O(n log2(n))) but the

complexity of the algorithm remains the biggest limit of it, even if this algorithm

still allows to analyze large graphs.

3.6 Other techniques

The previous and Louvain algorithms are the two most famous greedy algorithms

of community optimization, but other optimization strategies were proposed in the

32

literature. A class of techniques are based on the concept of simulated annealing, i.e.

an exploration of the space of the possible configuration looking for the maximum

Q. Transitions between states are performed combining two types of ”move”: the

first one assigns a vertex to a cluster chosen randomly; the second one merges or

splits communities [11]. These methods reach a very high score of modularity, near

to the maximum. Unfortunately, it’s very slow [16].

To overcome this time problem, a heuristic denominated extremal optimization (EO)

was proposed to perform an exploration of the space quickly. We define as fitness

function F of the vertex x is the local modularity of x divided by its degree. Start-

ing from a random equal size bi-partitions of nodes, at each iteration a node is

picked with a probability proportional to the score of the fitness measure and it is

assigned to the other cluster. When there is no more improvement in modularity,

the algorithm is called recursively on the two clusters. With a total complexity of

O(n2 log(n)), this algorithm is a good trade-off between accuracy and speed [10].

Finally, in literature it was presented the idea of combining modularity optimiza-

tion with the spectral clustering. Given the adjacency matrix A of the graph G, we

define the matrix B whose elements are:

Bij = Aij −
kikj
2|V |

(21)

Modularity can be optimized by using spectral bisection on the matrix B [16]. This

algorithm has a total complexity of O(n2 log(n)).

33

4 Louvain Algorithm

The Louvain algorithm is a greedy modularity optimization technique designed by a

team of researcher composed by Vincent D. Blondel, Jean-Loup Guillaume, Renaud

Lambiotte and Etienne Lefebvre in the 2008 [14]. The algorithm bears the name

of the university to which they belong to, i.e. Université Catholique de Louvain.

In 2008, the fastest algorithm presented in the literature was the one proposed by

Clauset et al. [7], but the biggest graph at the time that was analysed has 5.5 million

users. This was a not so big graph even at the time. For example, Facebook in 2008

has 64 million active users, more than ten times the size of the biggest analyzed

graph. This algorithm was proposed to resolve this scaling problem: indeed the first

version of this algorithm identified communities in a 118 million nodes network in

152 minutes [14]. From that year, many improvements were made and some parallel

versions were proposed. This algorithm and its parallel version is the main topic of

this thesis. The algorithm is very popular due to his simplicity, efficiency and overall

precision. In this chapter, we present the sequential algorithm in details and some

optimization technique presented in the literature. Then we present the parallel

version of the algorithm, focusing on the implementations exploiting GPU.

4.1 Algorithm

This greedy algorithm is quite simple. There are two phases that are repeated

iteratively: the optimization phase and the aggregation phase. At the start of the

optimization, given a graph G(V,E), each nodes is assigned to its self-community,

i.e. , each node belongs to a community composed by only itself. In the first phase,

given a node i ∈ V , its community ci and its neighbourhood N(i), we evaluate, for

each community cj such that cj has at least one node in N(i), the gain of modularity

∆Qi→cj that we have if we remove i from its community ci and we assign it to

the community cj. We can use the equations (18) to calculate the modularity in

current configuration Qi→ci and the modularity Qi→cj in the configuration where i

is assigned to cj and compare the difference, but this is quite inefficient. Instead,

34

Figure 13: Scheme of the Louvain algorithm. Given a graph, we first exe-
cute the modularity optimization phase that assign each nodes assigned to a
community. We have 4 different communities, identified by the colours. Then
we perform the communities aggregation phase to create a new graph based
on the communities found. After that, the first pass is finished and we re-
peat these steps until we have an improvement in modularity.This image is
reprinted from [14].

we can calculate directly ∆Qi→cj as:

∆Qi→cj =
li→cj − li→ci/{i}

2|V |
+ ki

kci/{i} − kcj
4|V |2

(22)

where li→cj is the sum of edges that connect i to the community cj, ki is the weight

of the nodes i and kcj is the weight of the community cj. Then we define the subset

Zi the set of community cz with z ∈ N(i) such that:

∆Qi→cz ≥ ∆Qi→cj ∀j ∈ N(i) (23)

If there is more than one community in the group, one community c∗z is selected

using a braking rule, otherwise we pick the only community in Zi. If ∆Qi→c∗z > 0,

we move the node i to the community c∗z.

This process is applied sequentially on all nodes, and it is repeated while modular-

35

ity score increases. When no more improvement can be achieved, the second phase

starts. In this phase a new network was created from the results of the previous

phase: in the new graph, the nodes are the communities found, and the edge be-

tween them are given by the sum of the links between nodes that belong to the

corresponding communities (edge between nodes in the same communities lead to

self-loop). Then we reapply the first step and then the second one until no more

improvement is obtained. An example of the algorithm is shown in the Figure 13.

The complexity of this algorithm is O(m) where m is the number of the edges of

the graph, due to the fact that we can compute the gains in modularity for each

neighbour easily. Respect to the previous approach, this techniques reaches the goal

of the execution in linear time. Indeed, this algorithm can create an entire hierarchy

of partitions and this can be useful to avoid the resolution limit problem: we can

analyze in the dendrogram the intermediate solutions to observe its structure with

the desired resolution [14].

4.2 Pruning

This algorithm is quite efficient even in the first formulation, but large networks

requires improvements to be executed quickly. The parallel techniques are very

useful for this task and it will be presented in the next chapter. Now we focus on

a method that speeds up the computation in the sequential field but that is also

suitable in parallel.

The first optimization phase is the most time consuming one [14], requiring about

80% of the time [22]. To reduce the impact of this first phase, in literature were

proposed various approach. For example, in [26], V. A. Traag proposed to randomize

the choice of the community to which assign the nodes. The idea behind these

technique is that the nodes that are close to each other tend to be in the same

community, so the randomization tend to assign a node to a ”good” community. This

technique performs well sequentially if the graph has a community structure well

defined. Instead, in parallel behaviour, this method doesn’t perform well due to the

fact that nodes change communities simultaneously: this may lead to a convergence

problem and there is no way to prevent simultaneous swaps without introducing

36

some overhead. For this reason, we choose another technique more parallel friendly,

introduced by Ozaki et al. [28]. Now we present this simple and efficient technique

of optimization for this algorithm that doesn’t afflict the quality of the partitions.

This method makes a pruning of the nodes in the optimization phase in order to

compute the maximum delta modularity for only the nodes that have the potential

to change community. Every time a node i changes community from X to Y , it

affects the ∆Q of its neighbourhood and all nodes linked and in X and Y . Referring

to (22), we describe all these cases:

• Nodes in X that aren’t connected to i: for those nodes, the value of ∆QX

increase because of the degree of the community kX decrease without affecting

the value of lX .

• Nodes in Y that aren’t connected to i: for those nodes, the value of ∆QY

decrease because the degree of the community kY increase without affecting

the value of lY .

• Nodes that are linked to a node in X, but not to i: for those nodes, the value

of ∆QX increase because of the degree of the community kX decrease without

affecting the value of lX .

• Nodes that are linked to a node in Y , but not to i: for those nodes, the value

of ∆QY decrease because the degree of the community kY increase without

affecting the value of lY .

• Nodes that are linked to i in X: in this case both kX and lX decrease for

∆QX ..

• Nodes that are linked to i in Y : in this case both kY and lY increase for ∆QY .

• Nodes that are linked to i but that are not either in X or in Y : in that case

afflict both ∆QX and ∆QY (increase kX , lX , kY and lY).

The nodes considered in first and the fourth case, doesn’t have the potential to

change community: in the first case one increase the value of ∆QX that is the

maximum (because they are already in the community X); in the fourth case one

37

Figure 14: Example of graph where the nodes i changed community from
X to Y . The black and striped nodes are the ones with the potential of
change community; the white one doesn’t have this potential. The pruning
technique consider only the black nodes, because considering also the striped
ones introducing overhead. This image is reprinted from [28].

decrease the values of ∆QY that aren’t the maximum (because they are not in

the community Y). In all other cases, there is a chance that some nodes change

community. In the Figure 14, the white nodes are the nodes that doesn’t have the

potential to change community, instead the black and striped ones are the ones that

may have. Considering only these nodes, the computation time will be reduced

without reducing the quality of the partition.

The optimization proposed by Ozaki et al. consists in creating a set of nodes during

the iteration of the optimization that will be analyzed in the next step: at the

start of the optimization phase, an empty set S is created and every time a node i

changes its community, all nodes in its neighbourhood that doesn’t belong to the new

community are added to S. The next iteration considers only the nodes in S and the

process is iterated. They consider only one of the four previous categories of nodes:

this is because calculating all nodes (explicitly the ones in the second and third

group) introduce overhead and this group is the most influential for ∆Q [28]. The

selected nodes to be add to S are the black one in the Figure 14. The experimental

result show that reduce the computational time by up to 90% compared with the

38

standard Louvain algorithm. In terms of accuracy, surprisingly, the modularity is

almost the same, not only the final one, but also the transition of the modularity

during the iterations [28].

4.3 Parallel Implementations

Now we present various approaches that were used in literature to improve the per-

formance of the Louvain algorithm. We can divide the parallelization techniques

in two different classes: the coarse-grained approach and the fine-grained approach.

The methods in the first-class divide the nodes in some sets and they are processed

independently in parallel for each set. The optimization phase of nodes in the same

set are executed sequentially. When all sets are analyzed, the algorithm merges

the results for the next phase. Instead, the second approach considers each node

independently. The community that gives the best modularity for each node is

calculated simultaneously and, when all of this values are calculated, we update

the communities still in parallel: therefore the decision of the new community for

each node is based on the previous global configuration. Wickramaarachchi et al.

[22] proposed one of the first coarse-grained algorithms: in the first iteration, the

algorithm partition the graph in subgraphs and the execution is performed simul-

taneously and independently on each partition. Edges that cross the partition are

ignored. In terms of quality, they showed that ignoring cross partition edges does

not impact the quality of the final result.

In 2015, both Staudt and Meyerhenke [25] and Lu et al. [23] proposed an fine-

grained implementation based on OpenMP. To compute Qi→cj for each node i and

each community cj in neighbourhood of i , the algorithm must calculate li→cj(i.e.

the sum of edges that connect i to the community cj). These values may change

in every new configuration: for this reason, we must have a method to get them

fast. In [25], they try to associate each node with a map in which the edge weight

to neighbouring communities was stored and updated when node moves occurred,

but they discover that introduced too much overhead. Instead, recalculating the

weight to neighbour communities each time a node is evaluated turned out to be

faster. Therefore, they proposed to use a map for each node as an accumulator of his

39

Figure 15: Examples of cases which can be handled by using the minimum
labelling heuristic. This image is reprinted from [23].

edges to calculate every li→cj . In contrast, the total weights of each community kcj

is stored and updated every time nodes change community. This algorithm obtains

a speed-up to a factor of 9 with the same quality of the sequential algorithm. The

same scheme is used in [23] and they obtain a speed-up to a factor of 16. This algo-

rithm also highlights a problem of the fine-grained approach: as we can see in the

Figure 15 at the case 1a, neighbouring singleton vertices can simultaneously moving

to each others communities if they have the same modularity score. To avoid this

problem, they define a rules that say: if a vertex i which is in a community by itself

ci decides to move to another community cj which also contains only one vertex j,

then that move will be performed only if cj < ci. A similar heuristic was used as

breaking rules to determine the new community for the nodes: as we see in the in

the Figure 15 at the case 2b, it will improve convergence and permit to avoid local

maxima.

A more complex schema was proposed by Que et al. [24]: they proposed an algo-

rithm based on a communication pattern that permits to propagate the community

state of each node. Due to his complex behaviour, this schema is hard to implement

on the GPU.

Forster in [27] presented a GPU implementation based on the first two previous

OpenMP version: he reports a speed-up to a factor of 12 respect to the OpenMP

40

version, but, in the paper, there isn’t information about the quality of the partition.

Following, the algorithm proposed form Naim et al. [29] parallelize the hashing

of the edges both in optimization and also in the aggregation phase. In addition,

they partitioning the vertices into subsets on their degrees to obtain an even load

balance between threads. A different implementation was proposed by Cheong et

al. [19]: it is a multi-GPUs implementation that used a coarse grain model between

the GPUs and then a fine grain model for the computation of the modularity of

each sub-graphs. This algorithm its also peculiar because doesn’t use hashing to

calculate the modularity: it creates a neighbour community list for each node, sort

every list and then sum up the value. In the test with 4 GPUs, this multiple GPUs

version is about 3.5 times faster respect to the single GPU version but also reports

a loss of up to 9% in modularity.

In addition to these algorithms presented in literature, in our research we discover

two implementations of the Louvain algorithm for the GPU that are not supported

by any publication: the first one is included in the Nvidia library cuGraph [34]; the

second one is included in the Gunrock library [35]. Despite the poor documenta-

tion, these two algorithms are quite fast, faster than any other algorithm presented

previously [31]. For this reason, we choose this two algorithm for our comparative

test in the

Chapter 7. We present these algorithms in details in that Chapter, to empathize

the difference between these two algorithms and ours.

41

5 PSR-Louvain and PH-Louvain

In this chapter, we present two novel parallel implementations of the Louvain al-

gorithm: both versions implement the pruning presented by Ozaki et. al. [28].

The two algorithm differ on the way in which they accumulate the edges to calcu-

late li→Cj
(see formula 18). The first one, the PSR-Louvain, where PSR stands for

Prune, Sort and Reduce Louvain, is based on the sort-reduce pattern: it sorts the

list and performs a reduction of consecutive values with the same key. We also use a

reduction on a sorted array to compute the maximum values of modularity for each

node. The second algorithm, PH-Louvain, where PH stands for Prune and Hashmap

Louvain, uses a map to accumulate that values. In this chapter, we present firstly

the algorithms, then a special speed-up technique of the first iteration of the opti-

mization phase included in both algorithms and finally the data structure and the

implementations details.

5.1 PSR-Louvain

The Prune, Sort and Reduce Louvain algorithm is the first version of the algorithm

that we present in this thesis. As the sequential Louvain algorithm, we can divide

it into two steps iterated alternately: the optimization phase and the aggregation

phase. Furthermore, we divide the optimization phase in eight sub-phases, in which

the operations are executed in parallel. This algorithm takes in input a graph stored

as a list of edges, where each entry is a tuple (i, j, w): i is the source node, j is the

destination node and w is the weight of the edge; in this algorithm, even if the graph

is undirected, we consider every edge twice reverting the order of the source and the

destination. This list is sorted by (i, j). In the beginning, we have each node is

assigned to a community composed only by itself. The weight of each node, a map

that associate at each nodes the corresponding communities and the total weight of

each communities. At the first iteration each node is in a community by itself and

the total weight of each community corresponding at the weight of the unique node

in it. The sub-phases of the optimization phase are the following:

42

Figure 16: Schema of the PSR-Louvain algorithm. At the beginning, we first
execute the eight sub-phases that composed the optimization phase. After
that, if there isn’t an improvement respect the value of Q that we have before
the start of the first iteration of the optimization phase we stop the algorithm.
Otherwise, we check if the current ∆Q is greater than a threshold: if this is
true, we re-iterate the optimization phase, otherwise we execute the four sub-
phases of the aggregation phase. After the optimization phase, we re-start
from the optimization phase.

1. Copy sub-phase: this algorithm implements firstly the pruning presented

by Ozaki in the parallel behaviour [28]. Therefore, in the first step, we copy

from the list of edges, all those that belongs to a node that we have consider

in this iteration. To due this, we check on a support vector if the source nodes

of the edges have a neighbour that has change community according to the

43

criteria presented in Chapter 4.2. We use a support vector to check if the

node matched the requirement: in position i there is a True if the nodes i

matched the criteria in the previous iteration, False otherwise. At the first

iteration all the nodes are considered. We exclude from the copy also the

self-loops because we don’t consider them in the computation of the various

values of ∆Q. Besides, in this phase, we don’t copy destination nodes j but we

substitute that values with the associated community cj. Therefore, we obtain

a list of tuples that contain the source node i, the community cj related to the

linked node j and the weight of the edge w.

2. Sort sub-phase: This algorithm uses a scheme of computation inspired by

[19]. In the second phase, we sort the data obtained in the first phase. Given

the list of tuples (i, cj, w) created in the previous sub-phase, we sort it using

the pair (i, cj) as key. At the end of this phase, we have that all the tuples

(i, cj, w) with the same (i, cj) are consecutive. Besides, all the tuples with the

same source node i are consecutive.

3. Reduce sub-phase: in this step we perform a reduction by key, i.e. we sum

up all consecutive values with the same key. We use as key the tuple (i, cj):

doing this, we obtain a unique tuple (i, cj, li→cj) for each pair (i, cj) where

li→cj is the sum of all the weights of edges that links the node i with a node

in the community cj. We need this value to calculate later the ∆Qi→cj .

4. Self community counting sub-phase: In this phase, we isolate all the

tuples (i, cj, li→cj) such that cj is the actual community for the nodes i, i.e. ci.

We need to isolate these values li→ci because we use it in the next phase to

compute the various values of ∆Q (Eq. (22)).

5. Compute Delta sub-phase: Now we can calculate the ∆Qi→cj for each

tuple using the Eq. (22) , because we calculated all the li→cj in the previous

steps and we have the weights of the communities and the weights of the nodes

in input. After the computation, we obtain a list of tuple (i, cj,∆Qi→c).

6. Select Max sub-phase: Now we need to isolate the maximum ∆Qn→cj for

44

each node n. Considering that the vector is already sorted, we can perform

this operation using another reduction, but, in this case, we return only the

maximum weight. We execute this operation using the nodes i as keys. After

this step, we have exactly one tuple (i, cz,∆Qi→cz) for each nodes i where cz

is the community that gives the maximum increase in modularity ∆Qi→cz if

the node i is assigned to j.

7. Update Community sub-phase: In this step, we update the community for

each node if the value of ∆Qi→cz is greater than 0. We also update the related

community weights: we remove the weight of the node from the previous

community and we add it to the new one. These operations are implemented

as atomic to avoid concurrent operations. We also keep track if each node

changed or not its community. We remark that this vector is different respect

to the array that we use in the first step. In the following step, we create the

pruning vector from this one.

8. Update Pruning sub-phase: : To update the vector that handles the prun-

ing criteria, we firstly set all its elements to zero. After that, a method takes

each edge of the graph and check if the destination edge has changed its com-

munities in the previous iteration: if this happened, the corresponding node

value is set to True. This update operation is not atomic, because multiple

threads can set only a True to the same position and there aren’t conflict.

Afterwards, we compute the new modularity score and than we compare the obtained

value with the old one: if the value is larger than a given threshold, we repeat these

steps, otherwise we start the aggregation phase. We highlight that we can not add

directly the various ∆Q obtained in the optimization step to the old modularity like

the sequential algorithm, because all nodes change communities simultaneously and

consequently this value is not reliable any more. The Algorithm 1 summarize the

phase.

45

Algorithm 1 Prune-Sort-Reduce: Optimization phase

procedure optimizationPhase(Graph G, Community C)
pruning = vector(True, n nodes)
old delta = 0
delta = modularity(G,C)
while delta− old delta < THRESHOLD do

node to community = []
self values = []

. copy
for each edge (i, j, w) in G in parallel do

if pruning[i] == True and i != j then
node community.append(i, C[j], w)

. sort
node community.parallel sort(by = source, community)

. reduce
node community.parallel reduce(by = source, community,

operation = sum)
. self-counting

for each (i, cj, l) in node community in parallel do
if C(i) == cj then

self values[i] = l

. delta
s = size(node community)
for z in [0, 1, ..., s] in parallel do

node community[z] = compute delta(node community[z],
self values,
communities weight,
nodes weight)

. max
node community.parallel reduce(by = source,

operation = max)
. update community

is change = vector(False, nnodes)
for each (i, cz, delta) in node to community in parallel do

if delta > 0 then
atomicAdd(communites weight[C[i]],−nodes weight[i])
atomicAdd(communites weight[cz], nodes weight[i])
C[i] = cz
is change[i] = True

. update pruning
for each edge (i, j, w) in G in parallel do

if is change[j] == True then
pruning[i] = True

old delta = delta
delta = modularity(G,C)

46

The aggregation phase uses several similar concepts presented previously, and we

can divide it into four sub-phases in which the operations are executed in parallel:

1. Re-indexing communities sub-phase: in the first phase, before the graph

contraction, we assign a new id to the communities. Actually, we have only

certain communities associated to the nodes respect to the initial configuration:

for example, if a nodes i change community from c1 to c2 in the first iteration

of the optimization phase, no nodes are assigned to c1 after the update and

no nodes can select the communities c1 from that moment. This cause a

useless waste of memory if we continue to keep all those unused values in the

community weight. For this reason, we need to create a map to rearrange the

communities index. First, we create a support vector such that at the position

c there is a 1 if the community c has a weight greater than 0 (i.e. there is at

least one node assigned to this community). Then we perform a prefix sum on

this vector: in this way at the position c there is the new index incremented

by one for the community c (please note: incremented by one because we

counting from zero). We remark that even if the empty communities are still

mapped with this method and have the same indexes of the community at

the preceding position respect them, we doesn’t have any conflict because we

doesn’t use these entry. When this renumbering map is ready, we start the

next phase.

2. Transform edges sub-phase: In this step, all the pairs of edges (i, j) of the

original graph are transformed in the pair (ci, cj) where ci (cj) is the community

associated to i (j). In this phase, we also apply the map to renumber the

communities that we create in the previous step.

3. Sort-Reduce sub-phase: In this phase we sort all the edges (ci, cj, w) using

as a key for the sorting the pair (ci, cj). After this, we reduce the edges vector

still using as a key (ci, cj). After this step we have contract the graph summing

up all the edges that lay between two communities.

4. Update variables sub-phase: In the last step, we update all the support

value in the graph object, like the number of the nodes, the number of edges,

47

the nodes weights. We also reset the communities object reordering the com-

munities weight according to the re-indexing map and assigning each node to

a community composed only by itself.

The Algorithm 2 summarizes this phase. The PSR-Louvain continues to alternate

this two phases until we can not have further improvement in the modularity update.

In this version of the algorithm, we keep only the best result to not occupy several

device memory, but it is possible trivially save the intermediate result adding a step

that save the clustering results after the re-indexing sub-phase (in this way we have

consistent indexing among the dendrogram).

Algorithm 2 Prune-Sort-Reduce: Aggregation phase

procedure aggregationPhase(Graph G, Community C)
. re-indexing

for i in size(communities weight) in parallel do
if communities weight[i] == 0) then

map[i] = 0
else

map[i] = 1

map.prefix sum()
. transform

for each edge (i, j, w) in G in parallel do
Substitute i, j with map[C[i]],map[C[j]]

. sort-reduce
G.edges.parallel sort(by = ”source, community”)
G.edges.parallel reduce(by = ”source, community”,

operation = ”sum”)
. update

G.update()
C.update(G)

48

5.2 PH-Louvain

This second version of the parallel Louvain algorithm is quite similar to the previous:

it still has a pruning approach, but uses a different way to aggregate the weights of

edges that link a node to the same community: we use a special global hashmap

instead of sorted vector. Using a map to accumulate some values by its key is a

standard approach to solve this problem because the map allows to retrieve and

insert an object in O(1) time. To obtain this performance, the hashmap uses a

function named hash function to dispose at random the objects in the memory. This

creates a problem on the GPU because uncoalesced memory accesses is an order of

magnitude slower than sequential memory accesses. To overcome this problem this

map uses a system of open-addressing based on the cuckoo hashing: this type of

map is the one that performs better on the GPUs [18], thanks to a simple and

efficient management of the conflicts. This map uses 64 bits for the key and 32

bits for the value. We choose to use 64 bits for the key because we need to store a

pair of 32 bits keys (the pair (node, community) in the optimization phase and the

(community, community) pair in the aggregation phase). This map has r different

hash function, each one associated to an id ri where i ∈ [0, r − 1]. When we insert

a new pair key-value (k, v), we use the hash function with id r0 to compute the

position of the new key v: if the slot is empty, we add the key and the value, we use

the next function r1 otherwise. We continue to search a empty slot following this

schema: if ri is not empty, we retry to insert the pair with function ri+1. If all the

function fails to insert the new pair, we raise an error.

The main difference between this map and the classic cuckoo hashing is that the

original version of the map when we try to insert an entry in a position that is

already filled, the map remove the old pair key-value, insert the new one and try to

find a new position for the old value using another hash function. In our map, we

don’t ”kick out” the old key when we have a conflict in order to find a new memory

address for it, but we hash with a different function the pair that we have to insert:

this because to make a classic cuckoo hashing, we need a set of atomic operations for

128bits to do the ”kick out” operation in parallel without generating race condition.

This type of atomic operation in CUDA can be done only on variable up to 64 bits.

49

Besides, this map has another special feature: if we insert a pair (k, v) and there is

already an entry in the table with a key k, the map automatically sum the values

v to the one stored in the map. Indeed, we use this map only to aggregate values,

and for this reason, we design it to perform this operation as fast as possible. The

last feature that we add to this table is the contract table operation: this methods

transform the map in a pair of contiguous vector re-arranging the memory, in order

to allow us to access to each pair key-value sequentially. After this operation, we

can not get the entry using the hash function, because the memory is re-organized.

We use this operation before the computation of ∆Q to increase the performance

and still working considering the edges (nodes, communities) independently. Now

we present the algorithm. At the start of the optimization phase we have each edge

represented as a tuple (i, j, w), a the weight of each node, a map that associates

each nodes with the corresponding communities and the the total weight of each

communities like the previous algorithm. We divide the optimization phase into six

sub-phases:

1. Fill Map sub-phase: in the first step, for each edge (i, j, w), we insert

into the map the tuple (n, cj, w) where cj is the community associated to the

destination node j. We use as a key the pair (n, cj). We consider only the

tuple that has the source node that matching the criteria presented in

Chapter 4.2. We use a support vector identical to the one presented in the

previous algorithm. We also exclude all the self-loops in this phase. At the

end of this step we obtain a map where every non-empty entry has the form

(i, ci, li→cj). The map also isolate in a different vector each value li→ci such

that ci is the community of the node i. Each value li→ci is stored at position i.

This operation was made because in the delta step, after the contraction, we

can not get any more the position of the entry using the hash function, and

we need a method to get the nodes communities weights quickly.

2. Contract Table sub-phase: in the first step, using a map to calculate li→cj

allows accessing to the memory address in O(1) time for each edge. But to

compute the relative delta and the maximum, we obtain better performance

50

Figure 17: Schema of the PH-Louvain algorithm. At the beginning, we first
execute the six sub-phases that composed the optimization phase. After that,
if there isn’t an improvement respect the value of Q that we have before the
start of the first iteration of the optimization phase we stop the algorithm.
Otherwise, we check if the current ∆Q is greater than a threshold: if this is
true, we re-iterate the optimization phase, otherwise we execute the four sub-
phases of the aggregation phase. After the optimization phase, we re-start
from the optimization phase.

if we access to the memory using an uncoalesced memory access pattern. In

addition, we have no idea of how and which community are in the neighbour-

hood of a given node. One alternative may be to allocate a thread for each

edge, each thread transforms the edge destination from nodes to community,

gets the consequent pair from the map and then check the maximum. This

approach lay to check multiple time the score of the community c if two neigh-

bours of the nodes n are in c. To overcome this problem, we contract the table:

51

the vector that composed the table are re-organized in order to permit sequen-

tial access, without empty slots between the entries. After this operation, the

map becomes a vector containing the tuples (i, cj, li→cj). The support vector

with the sum of edges of the node that connects it with another in the same

community is not re-arranged by this operation.

3. Compute Delta sub-phase: now we can compute the ∆Qi→cj for each tuple

(i, cj, li→cj) using the Equation 22. The result overwrites the last value in the

tuple (we doesn’t need that value any more). To get the sum of edges that

connect the nodes to its actual community, we use the vector created in the

first step.

4. Select Max sub-phase: now we have a vector of tuple (i, cj,∆Qi→cj). Now

we have to select the pair (ci,∆Qi→cj) for each node i such that ∆Qi→cj is

maximum. We can not use as the previous algorithm a reduce operation

because we haven’t a sorted array and the sorting operation is too expansive.

Instead, for each tuple, we check if the value ∆Qi→cj is greater compered to

the one of the tuple saved in a support array at the position i: if it is, we

substitute the old value with the new one, we do nothing otherwise. To avoid

race condition in the insert, these operation are executed atomically. At the

end of this step, we have exactly one tuple (i, cz,∆Qn→cx) for each node i, like

the previous algorithm.

5. Update Community sub-phase: This phase update the community just

like the one presented in the Prune-Sort-Reduce version (5.1, optimization

sub-phase 7).

6. Update Pruning sub-phase: This phase create the array with the pruning

information just like the one presented in the Prune-Sort-Reduce version (5.1,

optimization sub-phase 8).

The Algorithm 3 summarizes this phase.

52

Algorithm 3 Hashmap: Optimization phase

procedure optimizationPhase(Graph G, Community C)
pruning = vector(True, n nodes)
old delta = 0
delta = modularity(G,C)

while delta− old delta < THRESHOLD do
. fill map

for each edge (i, j, w) in G in parallel do
if pruning[i] == True and i != j then

hashmap.insert(i, C[j], w)
. contract

list = hashmap.contract()
. delta

for z in size(list) in parallel do
list[z] = compute delta(list[z], hashmap.self values,

communities weight, nodes weight)

. max
result = []
for each (i, cj, delta) in list in parallel do

START OF THE ATOMIC BLOCK
(i, cjold, deltaold) = result[z]
if delta > deltaold then

result[z] = (i, cj, delta)

END OF THE ATOMIC BLOCK
list = result

. update community
is change = vector(False, nnodes)
for each (i, cz, delta) in list in parallel do

if delta > 0 then
atomicAdd(communites weight[C[i]],−nodes weight[i])
atomicAdd(communites weight[cz], nodes weight[i])
C[i] = cz
is change[i] = True

. update pruning
for each edge (i, j, w) in G in parallel do

if is change[j] == True then
pruning[i] = True

old delta = delta
delta = modularity(G,C)

53

We continue to execute this step until the difference in modularity between the

configuration drops below a given threshold. The consideration of the computing

of ∆Q in parallel behaviour presented in the previous chapter is still valid. The

aggregation phase of this algorithm use once again the map to aggregate, but the

key in this context is composed of (communitysource, communitydestination). We can

divide this phase in four sub-phase like the previous version:

1. Re-indexing communities sub-phase: In this sub-phase we associate each

community to a new id to reduce the waste of memory. This sub-phase is

identical to the sub-phase with the one with the same name presented in the

PSR-Louvain description (5.1, aggregation sub-phase 1).

2. Communities map sub-phase: In this step, all the tuple of edges (i, j, w)

of the original graph are inserted in a hash table. Before the insertion, we

transform each entry in the tuple (ri, rj, w) where ri is an index of the com-

munity associated with i after the remapping. We use as key the pair (ri, rj).

At the end of this step, we have each edge of the new graph, because we sum

up all the edges that lay between two communities.

3. Contract-sort sub-phase: At the beginning of this phase, we have a map

containing all the edges of the new graph. However, the graph object store the

edges information using three ordered vectors, so we have to re-organize the

information stored in the unordered and uncoalesced map. To do this, we use

the contract operation to transform the map in a vector of tuple (ci, cj, tot)

and then we sort the arrays according to the order of the first one. Finally, we

have the updated graph.

4. Update variables sub-phase: This phase update the new graph and the re-

lated communities object just like the one presented in the Prune-Sort-Reduce

version (5.1, aggregation sub-phase 4).

The Algorithm 4 summarize this phase. Like the previous algorithm, this one contin-

ues to alternate the two main phases until no further improvement in the modularity

update can be obtained.

54

Algorithm 4 Hashmap: Aggregation phase

procedure aggregationPhase(Graph G, Community C)
. re-indexing

for i in size(communities weight) in parallel do
if communities weight[i] == 0) then

map[i] = 0
else

map[i] = 1

map.prefix sum()

. map
for each edge (i, j, w) in G in parallel do

hashmap.insert(map[C[i]],map[C[j]], w)

. contract-sort
G.edges = hashmap.contract()
G.edges.parallel sort(by = ”source, community”)

. update
G.update()
C.update(G)

5.3 Speed-up the First Iteration in the Optimization Phase

In this chapter, we present an optimization technique that we add into our code to

speed-up the first iteration of each optimization phase. We include this method in

both versions of the algorithm presented previously. We focus this presentation on

the Prune-Sort-Reduce version, even if the concept that allows us to optimize the

algorithm is still present in the Hashmap version. At the beginning and also after

each aggregation phase, we notice that we have a configuration in which each node

is assigned to each self-community, i.e., each node i is assigned to the community

ci and it is the only node assigned to it. In this configuration, when in the copy

sub-phase we transform each edge (i, j) in the pair (i, cj) where cj is the community

of the node j, we obtain the same original pair, because the index of cj is equal

to j. In addition, considering that each node is assigned to a different community,

we don’t need the sort and reduce sub-phases, because the pairs (i, j) are already

sorted by the construction of the graph object (we need a sorted vector for the select

max sub-phase) and the reduction is useless, because all the pairs have a different

composite key (i, j). Also the self-counting sub-phase is useless, because no edge

55

that isn’t a self-loop lay nodes in the same community and during the copy sub-

phase we excluding the self-loop from the computation. Considering all these facts,

we choose to remove in the first iteration this three sub-phases and also to avoid

the useless transformation in the copy sub-phase. For the Hashmap version of the

algorithm, we still use this optimization based on the other version because we use

the hashmap to aggregate different edges and this aggregation is no longer necessary.

5.4 Data structure and implementation details

The two main structures that we need to represent are the original graph and the

community structure. Commonly a graph G(V,E) is represented using its adjacency

matrix: each node is associated with an incremental id in the range (0, n − 1)

where n is the number of nodes. To retrieve the weights of an edge between two

nodes, we look to the values stored at the position (id1, id2). As we say in the

chapter 3.1, the community detection techniques are effective if executed on sparse

graphs. Therefore, if we use a matrix to represent a sparse graph, this matrix

will have a lot of zeros. Even if this pattern allows to retrieve the weight of an

edge in constant time, this data structure isn’t suitable for a problem that involves

millions of data because we need too much memory to allocate this matrix and

it has several unused values. Therefore, we have the necessity of compress the

adjacency matrix. To do this, we choose to represent it using a coordinate list (often

referred to as COO). We have three vectors edges_source, edges_destination

and weights that contain respectively the ids of the rows, the ids of the columns

and the values. The standard modularity optimization is computed on undirected

graphs: this means that the adjacency matrix is symmetric and we can store in

the COO list only the upper triangle of the matrix and we still have all the edges

represented. Despite this observation, we store all the values of the adjacency matrix

because we need those repeated values in these algorithms when we transform the

destination node in the destination community. These vectors are also sorted by the

pair (source, destination) and there is a vector named neighboorhood_sum of length

n in which at position i there is the starting position of the edges that have source

i in edge_source. Thanks to this vector, we can retrieve fast all the neighbour of

56

a given node. These particular COO lists are also known as compressed neighbour

lists. In the graph object, we also store a vector named tot_weight_per_nodes

that associate each node i to its degree, the total degree of the graph, the number

of nodes and the number of the edges. We use thrust::device_vector to store all

this data on the GPUs memory. In summary, the graph object is the following:

1 s t r u c t GraphDevice {

2 unsigned i n t n nodes ;

3 unsigned long n l i n k s ;

4 double t o t a l w e i g h t ;

5

6 th rus t : : d ev i c e ve c to r<unsigned> t o t w e i g h t p e r n od e s ;

7 th rus t : : d ev i c e ve c to r<unsigned int> neighbourhood sum ;

8

9 th rus t : : d ev i c e ve c to r<unsigned int> edge source ;

10 th rus t : : d ev i c e ve c to r<unsigned int> e d g e d e s t i n a t i o n ;

11 th rus t : : d ev i c e ve c to r<unsigned int> weights ;

12 }

We design the community object so that it contains the graph associated with it.

We notice that the maximum number of different communities is pair to the total

number of nodes: this is also the configuration at the beginning of the algorithm.

Considering this, we choose to identify each community with an incremental id in the

range (0, n− 1), like we do previously with the nodes. Therefore, in the community

object, we have a vector named communities of length n in which in the position

i there is the id of the community of the node i. Besides, there is a vector of size

n that associate each community to its total weight. In summary, the community

object is the following:

1 s t r u c t Community {

2 GraphDevice graph ;

3

4 th rus t : : d ev i c e ve c to r<unsigned int> communities ;

5 th rus t : : d ev i c e ve c to r<double> communit ies weight ;

6 }

After the initial parsing, we use only the device memory to store the data. The

57

GPU memory is related to the machine and it is usually smaller than a RAM. To

reduce the memory used simultaneously during the optimization phase, the Prune-

Sort-Reduce algorithm divides the edges in buckets of fixed size. The algorithm

executes the sub-phases from the first to sixth on a bucket, stores the results and

start the execution on another bucket. When all buckets are considered, we execute

the last two updating sub-phases. This reduce the required memory used to store

the data from 2 ∗m (used to store two vector that can store all the nodes: one for

the copy and one to store the reduced values) to 2 ∗ size(bucket) + n (two vector of

the bucket size for the copy and the reduce operation and a vector to store the best

result for each node). In order to compute the right maximum values of ∆Q for each

node, we split the edges into buckets such that if there is an edge with source node

n in the bucket, also all the other edges that belong to n are included. To perform

this, we use the neighbourhood_sum vector to select the right range. The Hashmap

version implements a similar logic, performing repeatedly the first four sub-phases

on different buckets, and then eventually update the communities and the pruning

vector when all buckets are processed. We use buckets of maximum size equals to

50 000 000.

Both algorithms implements also the minimum label heuristic (Chapter 4.3): we

change communities only if the id of the new communities is lower than the old

one for communities composed only by a single node to prevent the simultaneous

swap. We also select the communities with the lowest id when we have multiple

communities with the greatest ∆Q for the same node: this method leads to a faster

convergence.

In the algorithms, each parallel sub-phase presented for both algorithm takes as

an input a list of element on which execute its computation, and we assign to each

thread one of this element in our kernels. We also use the thrust library to perform

the sorting, the transforming, the reducing and the prefix sum operations. When

we need to consider the edges vector as a unique tuple, we use a zip_iterator to

handle the data correctly. The hashmap is stored in the device global memory and

it is composed by two thrust::device_vector: the first one, used for the keys,

contains a unsigned long long; the second one float, used for the value, contains

58

float. We choose to use a unsigned long long because in this way we can perform

atomic operation on the composite key. The contract table operation is made quickly

using the function thrust::remove_if that removes from the vector every element

x that satisfies a predicate and then contract the vector. The predicate that we use

check if the memory slot in the vectors is empty.

In the Select max sub-phases of the Hashmap version, to avoid race condition

caused by the two atomic operation that we have using considering independently

each community c and the associated ∆Qi→c (atomicMax on the value and possibly

atomicCAS (compare and swap) for the associated community), in the implementa-

tion we transform this of 32 bits variable in a unique word of 64 bit. The half most

significant bytes are filled by the value, the other part by the community. Thanks

to this, we can consider it as a unsigned long long and we can use an unique

atomicMax to substitute both the values.

59

6 Performance and Analysis

In this chapter, we present the results obtained by these two algorithms. We use

13 datasets to test the algorithms, and we analyze the performances globally on the

entire algorithm but also locally on specific phases and sub-phases to highlight the

points of strength and the weaknesses of both algorithms. In this chapter, we firstly

present the datasets on which we have executed our tests. Then we give an overlook

of the results obtained. They are useful for the subsequent analysis which, in turn,

we dived in two parts: in the first part we analyze the contribution of the pruning

approach on each algorithm; in the second part we make a comparison between

the two algorithms, to enhance when one algorithm performs better than the other.

These considerations are the base of the Adaptive algorithm that we present in the

next chapter. It implements the logic of the two algorithms and selects to use the

best according to the situation, so the information that we have collected in this

part are fundamental for the design choice that we make.

6.1 Datasets

In this section, we present the 13 datasets used in this thesis. These datasets

comes from three main sources: the Stanford Large Network Dataset Collection (also

known as SNAP) [21], the Florida Sparse Matrix Collection [17] and the Koblenz

Network Collection (also known as KONECT) [20]. In Table 1 there is a brief pre-

sentation of the datasets and in Figure 18 there is the degree distribution of the

graphs. We point out that even if all these graphs are unweighted, some of them are

directed: during the parsing phase we doesn’t keep the ”directness” of the graph,

and we treat it as an undirected one as required from the algorithm. In addition, if

in the original graph there are some repeated edges, we consider it once. In the Table

1 the numbers of edges are those obtained after this parsing, ordered by increasing

edges number. Now we present the datasets:

• coPapersDBLP: this graph model the citation and co-author network from

the DBLP - Digital Bibliography and Library Project. Each node represents

an author and each edge a citation.

60

Datasets
Name Source Number of nodes Number of edges
coPapersDBLP Florida 540 486 15 245 729
patentCite KONECT 3 774 768 16 518 947
packing-500x100x100-b050 Florida 2 145 839 17 488 243
soc-pokec-relationship SNAP 1 632 803 22 301 964
delaunay n23 Florida 8 388 608 25 165 784
soc-LiveJournal1 SNAP 4 847 571 43 369 619
wikipedia link ja KONECT 1 610 638 56 237 763
hollywood-2009 Florida 1 139 905 57 515 616
wikipedia link it KONECT 1 865 965 68 049 979
wikipedia link fr KONECT 3 023 165 83 472 152
com-orkut SNAP 3 072 441 117 185 083
wikipedia en(dbpedia) KONECT 18 268 991 126 890 209
indochina-2004 Florida 7 414 768 153 487 303

Table 1: Datasets overview

• patentCite: This is the citation network of patents registered with the United

States Patent and Trademark Office. Each node is a patent, and an edge

represents a citation. The network contains loops. This graph is also directed.

• packing-500x100x100-b050: this is a synthetic graph created from numer-

ical simulation.

• soc-pokec: Pokec is the most popular online social network in Slovakia. Pokec

has been provided for more than 10 years and connects more than 1.6 million

people. This dataset map the relationship between people.

• delaunay n23: given a random set of point, this graph represents a Delaunay

triangulations of them.

• soc-LiveJournal1: LiveJournal is a free online community with almost 10

million members; a significant fraction of these members is highly active. Live-

Journal allows members to maintain journals, individual and group blogs, and

it allows people to declare which other members are their friends. This graph

model these friendship relations.

• wikipedia link jp: This network consists of the wikilinks of Wikipedia in

the Japanese language (.ja). Nodes are Wikipedia articles, and directed edges

61

are hyperlinks. Only pages in the article namespace are included. This graph

is directed and some self-loop is possible.

• hollywood-2009: The graph of movie actors. Vertices are actors, and two

actors are joined by an edge whenever they appeared in a movie together. The

data date back to 2009.

• wikipedia link it: This network consists of the wikilinks of the Wikipedia

in the Italian language (it). Nodes are Wikipedia articles, and directed edges

are hyperlinks. Only pages in the article namespace are included. This graph

is directed and some self-loop is possible.

• wikipedia link fr: This network consists of the wikilinks of Wikipedia in the

French language (.fr). Nodes are Wikipedia articles, and directed edges are

hyperlinks. Only pages in the article namespace are included. This graph is

directed and some self-loop is possible.

• com-orkut: Orkut is a social network where users form a friendship with

each other: the nodes represent the users and the edges the friendship between

them.

• wikipedia en (dbpedia): The network is the hyperlink network of Wikipedia,

as extracted in DBpedia. Nodes are pages in Wikipedia and edges correspond

to hyperlinks (also known as wikilinks). The edges correspond to the relation-

ships in DBpedia. Network info. The original graph is directed and multiple

edges are possible.

• indochina-2004: A fairly large crawl of the country domains of Indochina

performed for the Nagaoka University of Technology. This is a directed graph

and each node represent a site and each edge a link from one site to another.

62

Figure 18: Degree distribution in the datasets: we divide the nodes into or-
dered classes wherein the class i there are all the nodes with a degree in the
range [2i, 2i+1). On the x-axes there are these classes; on the y axes there is
the percentage of nodes assigned to them.

63

6.2 Results Overview

In this section, we present an overview of the obtained results and we make some

general consideration about them. Some more insights about the first optimization

phase and about the aggregation phase are presented next and we make some con-

sideration in light of what we present in this section.

The algorithms were run on a Ubuntu 18.04.4 LTS machine with a 2.10GHz Intel(R)

Xeon(R) Silver 4110 CPU, a TITAN Xp GPU with 12 GB of memory and CUDA

10.2. To run our code we need an Nvidia GPU with a compute capability ≥ 3.5 due

to the 64 bits atomicMax operation used in PH-Louvain. This GPU has a compute

capability 6.1, so it complies with the technical specification. We remark that we

keep executing our optimization phase until the value of ∆Q between the various

iteration is greater than a threshold t. Both our parallel version in the test uses

t = 0.01.

Modularity Score
Graph Sequential PSR-Louvain PH-Louvain
coPapersDBLP 0.8490 0.8544 0.8544
patentCite 0.8095 0.7911 0.7878
packing-500x100x100-b050 0.9353 0.9434 0.9416
soc-pokec-relationship 0.6837 0.6934 0.6852
delaunay n23 0.9881 0.9856 0.9857
soc-LiveJournal1 0.7251 0.7491 0.7482
wikipedia link ja 0.5928 0.5690 0.5724
hollywood-2009 0.7511 0.7542 0.7542
wikipedia link it 0.7221 0.7190 0.7196
wikipedia link fr 0.6777 0.6834 0.6871
com-orkut 0.6545 0.6613 0.6629
wikipedia en(dbpedia) 0.6629 0.6612 0.6618
indochina-2004 0.9638 0.9632 0.9632

Table 2: Modularity result

First of all, we analyze the modularity score obtained by the two algorithms respect

to the sequential version as presented in [14] to check the correctness of our algo-

rithms. In Table 2, we present the obtained results. We notice that both scores of

the algorithm are in pair between them and also with the sequential version for all

the graphs. In some cases, we obtain also a better result in the parallel implementa-

64

Execution Times
Graph Sequential PSR-Louvain PH-Louvain
coPapersDBLP 11 906.89 419.59 412.79
patentCite 88 620.13 1 796.88 2 555.14
packing-500x100x100-b050 13 746.14 1 045.25 1 090.03
soc-pokec-relationship 30 162.70 1 843.95 2 186.81
delaunay n23 44 392.42 1 020.23 1 319.22
soc-LiveJournal1 77 225.64 2 187.45 2 677.51
wikipedia link ja 76 816.01 2 654.88 2 305.11
hollywood-2009 52 306.71 2 092.09 1 758.27
wikipedia link it 82 599.92 3 875.04 2 732.99
wikipedia link fr 115 977.81 3 910.95 3 273.91
com-orkut 193 835.34 7 566.90 7 484.10
wikipedia en(dbpedia) 300 431.38 5 287.65 6 464.03
indochina-2004 113 195.87 2 899.50 2 303.52

Table 3: Execution Time in milliseconds

tions respect to the sequential version. The parallel optimization, changing all the

communities assigned to the vertices simultaneously, can avoid some local maxima.

In Table 3, there are the execution times of the two algorithms respect to the sequen-

tial version. We notice a big improvement in the performance for both algorithms

respect to the sequential version: we obtain a speed-up in range of a variable factor

from 12 to 56 for our two algorithms. Besides, we notice that, according to the

graph analyzed, the two algorithms obtain different performance. In some case, one

approach outperforms the other of even more than one second. In the following

sections, we analyze in details these two algorithms to discover the motivation of

these different performances.

6.3 Pruning analysis

In this section, we analyze the effectiveness of the pruning approach: we focus our

research on the first optimization phase. As we said previously, the first optimiza-

tion phase is the most time-requiring, consuming about 80% of the time [22], so

the pruning approach should increase the performance especially in this phase. For

this reason, we concentrate our analysis of this technique over it. First of all, we

present the percentage of the edges that we analyze in each iteration of the opti-

65

Figure 19: Percentage of edge analyzed in the first optimization phase.

mization phase (Figure 19). The number of the edges analyzed are quite similar

for both the algorithms. Excluding certain fluctuations in the earlier stages (we

remark also that the two graphs with the highest noise are the synthetic ones, i.e.

packing-500x100x100-b050 and delaunay n23), we notice that the portion of the

edges analyzed tends to decrease iteration by iteration. The percentage of reduc-

tion highly depends on the graph examined: we have the smallest reduction for the

wikipedia link ja (only the ∼ 2% of the total are excluded in the last iteration);

instead, in the graph packing-500x100x100-b050, we have run the optimization only

on the ∼ 50% of the graph edges in the last iteration. Our study on the dataset

66

doesn’t find any direct correlation between the decrease of the number of the edges

analyzed and the degree distribution of the nodes, presented in Figure 18.

6.3.1 PSR-Louvain analysis

Figure 20: Comparison of the execution time between the Prune-Sort-Reduce
(in blue) and a version of comparison without the Pruning approach (in or-
ange) for each execution of the first optimization phase, excluding the first
one.

Now we evaluate the impact in terms of times of the pruning approach in the PSR-

Louvain algorithm: to do this, we create a comparison version of the algorithm from

the presented one. This version doesn’t prune the node in the Copy sub-phase and

67

Figure 21: Comparison of the execution time between the Prune-Sort-Reduce
(on the left) and a version of comparison without the Pruning approach (on
the pruning) for each execution of the first iteration phase in the LiveJournal1
dataset. We highlight the contribution of each sub-phase in terms of time.

doesn’t collect the data used to create the support pruning array in the last two sub-

phases (the first one only update the community assigned to each node; the second

one is skipped). The execution times of each iteration of the first phase are illustrated

in Figure 20. We exclude from this graphic the first iteration because this one doesn’t

make the same step of the other due to its special optimization (Chapter 5.3). We

notice that the reduction in terms of times in the pruning version is proportional to

the reduction of edges analyzed: in the graph in which the reduction of the edges

analyzed highly decreases, the pruning version outperforms the standard version; in

the graphs in which the reduction in terms of edges is small, the execution times

are quite similar. In some cases, the pruning algorithm is slower up to ∼ 15 ms

at iteration (like dbpedia-link) because the computation of the pruning information

requires some extra time, but the reduction that leads to is smaller. In general, we see

that the ratio between execution times of the pruning version and the non-pruning

one is in pair with the number of nodes pruned in each iteration. We notice also

that the execution times decrease iteration by iteration even for the version without

the pruning. To analyze this fact, in Figure 21 is illustrated the contribution of

each sub-phase in terms of times for each iteration of the pruning version and the

standard in the LiveJournal1 dataset. We notice that the reduction in terms of the

time is caused by the reduction of the Delta computation sub-phase. We notice that

68

Figure 22: Contribution of each sub-phase in terms of time for each iteration
of the first optimization phase.

the Sort sub-phase is the most consuming one and this behaviour is similar also in

the other graph: this sub-phase at least 50% of the time, reaching a peak of even

more than 80% of the time in the first and the last graph (Figure 22). From the

Figure 21, we notice also that the pruning on the data in the input has a direct

effect on the sorting phase and the decreasing in terms of time is proportional to

the number of the edges pruned (as we can see by comparing Figure 22 and Figure

19). The pruning update sub-phase has a small impact on the total execution time.

In conclusion, even if the pruning approach isn’t always effective and can introduce

69

a little overhead, the gain in terms of time that we obtain when we prune a portion

of the edges is high, therefore adding the pruning approach is a valid optimization

technique for the algorithm that uses a sort-reduce pattern to aggregate.

6.3.2 Hashmap algorithm analysis

Figure 23: Comparison of the execution time between the Hashmap (in blue)
and a version of comparison without the pruning approach (in orange) for each
execution of the first optimization phase, excluding the first one.

We evaluate the impact in terms of time of the pruning approach in the PH-Louvain

algorithm as before: we compare the algorithm with another test version in which

we have removed the pruning. In Figure 23 there are the execution times of the first

70

optimization phase for each iteration of both versions. As before, we exclude from

this graphic the first iteration.

We notice that the two algorithms perform generally in a similar way, with a signifi-

cant difference only when the pruning reduce considerably the number of edges: the

pruning algorithm is slower up to ∼ 25 ms per iteration (in the graph dbpedia-link),

caused by the extra time needed to compute the pruning information. Even if we

reduce the execution time reducing the number of edges analyzed, the gap between

the two version is not directly proportional to the number of edges pruned like in

the previous version: this is due to the branching problem for thread in the same

warp.

During the Fill Map sub-phase, we insert in the map each pair node-community such

that the nodes have almost one neighbour that change community in the previous it-

eration. To perform this operation, an edge (source, destination) is assigned to each

thread: it checks if the source node matches the pruning requirement, it changes

the destination node with the destination communities and inserts the value in the

map. If an edge has a source node that doesn’t match the criteria, its thread will

return without doing nothing else. The problem is that the nodes are organized in

a warp of 32 threads assigned to a core of the Streaming Multiprocessor: the GPU

execute a new warp on the same core only when all threads of the old warp finish

the execution. If in a warp there is even just one thread that has to insert the pair

in the map, all the other thread have to wait for it. This reduces the gain in terms

of times in the Fill-Map sub-phase.

We notice that in the no-pruning version the execution time tend to strongly

decrease even in the case in which the pruning doesn’t remove a considerable part

of the edges (like the wikipedia link jp dataset), so we analyze the sub-phases to see

what changes between each iteration: in the Figure 24 is illustrated the consuming

time of each sub-phase compared to the total time of each iteration. The most

consuming sub-phase is the fill map one: this sub-phase consumes at least 50% of the

time, reaching a peak of even higher than 75%. We notice that in each iteration, the

time required decreases: therefore we focus our analysis on this behaviour of the map.

We analyze the number of conflicts that we have when we try to insert a new key in

71

Figure 24

the map. We notice that the number of conflicts in the map decrease iteration by

iteration: the reason is that, in each iteration, the number of different keys inserted

decrease. Indeed, in every iteration, the number of communities decrease because

similar nodes tend to converge into one community: this reduces the number of

possible different keys node-community that we have. Then, we analyze the number

of different keys inserted in the map in each iteration.

In Figure 25, we have on the x-axis the number of different keys at that iteration in

relation to the maximum possible number of keys (i.e. the number of edges, because

we have the maximum when each node is in its self-community); on the y-axes we

72

Figure 25: Execution time of the Hashmap version in relation to the number
of different pair (node, community) inserted (expressed with respect to the
maximum number of keys).

have the execution times. We notice that there is a direct correlation between this

data and this two values, and this explains why the PH-Louvain algorithm performs

better in the last iterations with respect to the first ones.

73

6.4 Algorithms comparison

Figure 26: Modularity Progression in the first ten iteration of the optimization
phase.

In this section, we focus our analysis on the comparison between the two algorithms

in order to find the advantages and disadvantages of each method. First of all, we

notice from Table 2 that the two algorithms obtain a very similar score of mod-

ularity. In Figure 26, we expose the progression of the modularity Q in the first

operation. As we can see, the modularity in the two algorithms grows in an almost

identical way: this is due to the minimum labelling heuristic (Chapter 4.3) that

force the algorithms to converge to a similar result.

74

Figure 27: Comparison of the execution time of the first iteration of the first
optimization phase between the two unoptimized presented versions of the
algorithm and the optimized version.

To analyze the differences in terms of performance, we start analyzing the impact

of the optimization of the first iteration of the optimization phase for both the al-

gorithms. We are expecting a huge reduction in terms of times, considering that

we remove the most consuming time phase from the Prune-Sort-Reduce routine, i.e.

the sorting phase. As shown in the Figure 27, we obtain the expected results: we ob-

tain a reduction in a range between ∼ 51% and ∼ 86% respect to the PSR-Louvain

not optimized and a reduction in a range between ∼ 84% and ∼ 95% respect to

the PH-Louvain not optimized. From the data we also see that in the second al-

gorithm, this optimization introduce a little delay in the next iteration respect to

the first one: this is caused by the deallocation of the support variable used in the

fast approach (that are the same used in the PSR-Louvain) and the allocation of

the hashmap and other support variables. But, this overhead is much smaller than

the gain obtained by the optimization, therefore we consider it a valid technique to

improve the performance.

From Figure 27, we also note that the PH-Louvain is always slower with respect

75

Figure 28: Execution time in the first ten iteration of the first optimization
phase, excluding the first optimized iteration.

to the PSR-Louvain, and for this reason, this technique has a greater impact on

it. Considering this particular feature, we choose to go further in our analysis: we

compare the iterations of the first optimization phase in terms of times of the two

version of the algorithms, excluding the first iteration. In Figure 28 are exposed

the results. We notice that the second iteration of the PH-Louvain is always slower

respect to the PSR-Louvain. Considering the observation presented in the previous

chapter, we conclude that in the first iterations the PH-Louvain algorithm suffers

respect to the other due to the high number of different pair key-community that

76

we insert in the map. On the other hand, if the number of different pair drops

below a given value, the hashmap performs better. Instead, the PSR-Louvain does

not benefit from a similar behaviour and its performances are generally more stable

(they are improved consistently only by the pruning). We analyze similarly also

the other optimization phases (Figure 29a). We notice that, from the second opti-

mization phase, generally the PSR-Louvain performs better in terms of total time

(i.e. the sum of the times of each iteration) than the PH-Louvain: this because

the number of iteration generally decrease phase by phase and the first approach

generally performs better than the second one in the first iterations of the phase.

Even if the number of conflicts decreases (since we allocate in a map with the same

order of magnitude of the first phase in the following phases), also the time of the

sorting sub-phase of the other algorithm decreases: to see an improvement of the

hashmap respect to the other approach we need a convergence similar to the one

saw in the first optimization phase. For these reasons, the sorting version of the

algorithm tends to perform better than the hashmap one starting from the second

optimization phase.

We also study the differences between the algorithms in terms of aggregation phases:

the results of our study are presented in Figure 29b. We notice that the execution

times of the PH-Louvain tend to perform better with respect to the PSR-Louvain.

Considering the observation about the performance of the hashmap that we made

previously, it is easy to motivate these performance results. The hashmap performs

better respect to the sorting approach when the number of keys decreases consis-

tently. In the aggregation phase, the number of active communities is decreased

compared to the starting situation. Besides, in this phase we insert in the map a

key composed by the two communities id: this involves a further reduction of the

number of keys inserted because we tend to insert more often the same key in the

map. Therefore the performance is related to the number of different active commu-

nities find at the end of the optimization phase: indeed, the only two cases in which

the sort-reduce version performs better than the hashmap version are those in which

the number of communities decreases slightly in relation to the number of edges (i.e.

the maximum possible number of communities). All of these considerations are at

77

(a) (b)

Figure 29: (a): Execution times of the first four optimization phases;
(b) Execution times of the first four aggregation phases.

the base of the design of an adaptive approach that we present in the next section:

indeed, we can estimate if the PH-Louvain performs better than the other algorithm

by the comparing of the number of different keys in relation to the number of the

possible one, and select the right algorithm to use.

78

7 Adaptive Louvain Algorithm

In this chapter, we finally present the adaptive algorithm: it uses a heuristic to switch

from the sort-reduce version to the hashmap version when the number of different

node-community keys falls below a certain threshold. This threshold is calculated

in percentage with respect to the total number of possible keys, i.e. the number of

edges. Next, we analyze the result of this new algorithm, comparing it to the two

original algorithms that we presented previously and other two implementation of

the Louvain heuristic, integrated in two important libraries for the graph analysis

on the GPU: cuGraph [34] and Gunrock [35].

7.1 Algorithm

Our adaptive Louvain algorithm for the GPU combines the Prune-Sort-Reduce al-

gorithm and the Hashmap algorithm in order to select the best behaviour basing

the choice on the situation.

In the previous chapter, we showed that the Prune-Sort-Reduce algorithm per-

forms better than the Hashmap in the first iteration of the optimization phase.

We also showed that, if the number of different key falls below a given threshold,

the Hashmap version starts to perform better than the Prune-Sort-Reduce version.

Based on these considerations, we design the optimization phase of our adaptive

algorithm as following, bearing in mind that we keep iterating this phase until the

difference of modularity ∆Q between the iteration is greater than a given threshold

T∆Q:

1. At the beginning, we optimize the first iteration of the optimization phase

using the optimized approach presented in Chapter 5.3.

2. Next, in the second iteration, we use the Prune-Sort-Reduce version of the

optimization phase, with one addition compared to the standard version: we

keep track of the number k∗ of different tuples (i, cj, li→cj) that we have after the

Reduce sub-phase, where i is the source node, cj is the destination community

and li→cj is the sum of all the edges that link the node i with a node in the

79

Figure 30: Schema of the Adaptive Optimization phase: before starting a new
optimization routine, we check if the value k∗

m falls below a given threshold:
if it happens, we will use the hashmap based routine, otherwise we use the
sort-reduce routine.

community cj . This value is the number of different keys that we would insert

in the map if we had used the other version of the optimization phase.

3. From the third iteration onwards, before anything else, we divide the value of

k∗ by the total number of edges m: the second value is equal to the maximum

number of different keys that we can insert in the hashmap, i.e. the situation

that each node is in each own community. If the value k∗

m
falls below a given

threshold Tkey, we execute the following iteration using the Hashmap approach,

otherwise, we use the Prune-Sort-Reduce one.

Figure 30 shows a schematic diagram of the optimization phase. It is technically

possible to switch back from the hashmap version to the sort-reduce one when, in

the iteration i, we consider some nodes that we didn’t consider in the iteration i− 1

because of the pruning. Indeed, in this situation we increase the number of different

keys considered. Nevertheless, this case is very improbable. Now, all it takes is to

80

find the right values of Tkey that allows us to switch to the hashmap-based version

when it performs better. From the data presented in the next chapter, we observe

that the two versions take about the same time to perform an iteration of opti-

mization when k∗

m
is between 0.3 and 0.4. When k∗

m
> 0.4, the sort-reduce approach

performs better; when k∗

m
< 0.3, the hashmap approach performs better. So we fixed

the value of Tkey equals to 0.3.

As regards the aggregation phase, we use the hashmap based approach in the adap-

tive algorithm, because, still from the observations presented in the previous chapter,

we notice that this version tends to perform better with respect to the sort-version.

This behaviour is due to the reduction of the possible number of keys that we insert,

mainly caused by the reduction of the active communities.

7.2 Analysis

In this section we analyze the results obtained by the Adaptive algorithm: we make

a comparison between this version and the two other versions presented previously

in this thesis. Next, we present the two fastest available versions of the Louvain

Algorithm for the GPU: the first one is part of the Nvidia’s RAPIDS cuGraph library,

a collection of GPU accelerated graph algorithms, actually still under development

but available with an open-source license on GitHub; the second one is part of the

Gunrock library, a CUDA library for graph-processing specifically designed for the

GPU released in June 2019. The Gunrock team is one of the main contributors

of the cuGraph library and some modules of the Gunrock library are integrated in

the other. Both algorithms don’t implement any pruning approach or any adaptive

approach. Finally, we make a comparison between our Adaptive algorithm and these

two, in order to discover the points of strength and the weaknesses of our algorithm

with respect to the competitors. To make our test we use the same 13 datasets

presented in Chapter 6.1 and the same Ubuntu 18.04.4 LTS machine used in the

test presented previously. We remind that the machine is equipped with a 2.10GHz

Intel(R) Xeon(R) Silver 4110 CPU, a TITAN Xp GPU with 12 GB of memory and

CUDA 10.2.

81

Execution Times and Modularity
Graph Adaptive PSR-Louvain PH-Louvain

coPapersDBLP
369.14 419.59 412.79
0.8543 0.8544 0.8544

patentCite
1 660.79 1 796.88 2 555.14

0.7927 0.7911 0.7878

packing-500x100x100-b050
993.35 1 045.25 1 090.03
0.9403 0.9434 0.9416

soc-pokec-relationship
1 636.53 1 843.95 2 186.81

0.6935 0.6934 0.6852

delaunay n23
987.63 1 020.23 1 319.22
0.9856 0.9856 0.9857

soc-LiveJournal1
2 078.29 2 187.45 2 677.51

0.7493 0.7491 0.7482

wikipedia link ja
1 919.34 2 654.88 2 305.11

0.5691 0.5690 0.5724

hollywood-2009
1 685.98 2 092.09 1 758.27

0.7542 0.7542 0.7542

wikipedia link it
2 417.01 3 875.04 2 732.99

0.7190 0.7190 0.7196

wikipedia link fr
2 741.07 3 910.95 3 273.91

0.6834 0.6834 0.6871

com-orkut
6 282.37 7 566.90 7 484.10

0.6616 0.6613 0.6629

wikipedia en(dbpedia)
4 655.72 5 287.65 6 464.03

0.6612 0.6612 0.6618

indochina-2004
2 277.44 2 899.50 2 303.52

0.9632 0.9632 0.9632

Table 4: Adaptive vs. PSR-Louvain vs. PH-Louvain: in the first line of each
row there is the execution time in milliseconds; in the second one there is the
modularity score obtained.

7.2.1 Comparison with PSR-Louvain and PH-Louvian

We start comparing and analyzing our Adaptive algorithm respect to PSR-Louvain

and the PH-Louvain presented in Chapter 5. We present the results in terms of time

and terms of modularity in Table 4. We use a threshold T∆Q equals to 0.01. As we

can see, we have an improvement in terms of times: we obtain a reduction of the

execution up to ∼ 17% (in the com-orkut graph), thanks to the correctness of the

params Tkey that allows us to switch between the two approaches when it is needed.

We have no significant loss in terms of modularity, thanks to the minimum label

82

Figure 31: Execution time in the first ten iteration of the first optimization
phase, excluding the first optimized iteration. The dotted red line indicate
that, from the follow iteration, the Adaptive algorithm uses a Hashmap based
approach. Before that line, the algorithm uses a Sort-Reduce approach.

heuristic. We study in detail the behaviour of the algorithm: Figure 31 shows the

execution times of the first ten iterations of the first optimization phase for the PH-

Louvain (in blue), the PSR-Louvain version (in orange) and the Adaptive version (in

green). The red dotted vertical line highlight when the Adaptive algorithm switch

behaviour from the sort-reduce one to the hashmap one. When the algorithm switch

83

from the sort-reduce approach to the hashmap one, the algorithm doesn’t use the

first one until the next phase. We notice that, in the dataset in which the sort-reduce

version performs better (for example in the dataset wikipedia en), the algorithm uses

only this version and doesn’t perform any change. In the other cases, we notice that

the first iteration with the hashmap aggregator in the Adaptive algorithm shows

a little delay concerning the same iteration of the PH algorithm. This is due to

the deallocation of the support variable used in the sort-reduce approach and the

allocation of the hashmap variables, as in the second iteration of the PH-Louvain,

after the first optimized phase (Chapter 6.4). Besides, we investigate the behaviour

of the algorithm also in the other optimization phase, in order to explain why the

Adaptive version performs better than the other two approaches, also in the datasets

in which the PH-Louvain performs better in the first iteration phase (as indochina-

2004). We notice that the algorithm uses the sort-reduce approach in the phases

after the first one for the most of the iterations: this caused the increment of the

performances because, as we present in the Chapter 6.4, the sort-reduce approach

tends to perform better in the first iterations of the phases, and, in turn, these

phases tend to execute less iteration.

84

7.2.2 cuGraph Louvain algorithm

Now we present in details the cuGraph implementation of the Louvain heuristic.

This algorithm is included in the cuGraph library developed by Nvidia, a collection

of GPU accelerated graph algorithms that processes data on the GPU. In turn, this

library is part Nvidia RAPIDS, a suite of software libraries for GPU-accelerated

data analysis and machine learning.

In the optimization phase, this algorithm uses a hashmap for each node to aggregate

the tuples (node, community, weight): each map is assigned to a unique vertex

and the algorithm insert the weight using only the community as key. If there is

already an entry in the map, the map automatically sums up the values. After

this, the algorithm calculates the delta for each entry of the map and then select

the maximum. To implement the hashmaps, they use two vectors of length m,

where m is the number of edges, and assign to each node a private part of them

in which insert its keys and values. They assign to each node a space equal to the

size of its neighbourhood and use an open-addressing procedure for the conflict,

checking the subsequent free position. After this, they use a procedure similar to

the Select Max sub-phase of the PSR-Louvain algorithm: they use the method

thrust::reduce_by_key to get the best values using the two hashmap vector as

values and as a key a vector that keeps track to which source node is assigned

each position in the hashmap vectors. Besides, this algorithm proposes different

techniques to avoid simultaneous swaps: instead of forcing the node in a single

community to select a community with a greater id like us, they permit to the

nodes to select a community with a greater id only in the even iteration and to

select a community with a lower id only in the odd iteration.

To contract the graph, this algorithm uses a procedure similar to the one proposed

in the PSR-Louvain algorithm: firstly, they renumber the communities, then they

create a vector of (community source, community destination, weights) from the

edges vector replacing each node with the relative communities, and finally, they

sort and reduce this vector to obtain the new graph.

85

7.2.3 Gunrock Louvain algorithm

The Gunrock algorithm uses a logic similar to our PSR-Louvain version to aggregate

the nodes: they start copying the edges, changing the destination node with the cor-

responding community. Then they sort all key-value pairs, and they use segmented

reduce to accumulate the values in the continuous segments. Finally, the algorithm

uses a reduction by keys to select the maximum value. To aggregate the graph, they

use a procedure similar to cuGraph and our Prune-Sort-Reduce version. Our study

on this algorithm find an error in the stopping criteria logic of the optimization

phase: this algorithm, to calculate the difference ∆Q, between two configurations,

sum all the various ∆Qi→c∗z for each node i that changes its community to c∗z ob-

tained during the optimization phase, to the previous modularity value. This value

is incorrect because, changing all the communities simultaneously, the various l and

kc values of the Equation 22 are referred to a situation that isn’t the actual any

more. This causes a wrong calculation of the temporary modularity score, that can

also exceed its upper bound of one during this phase. This causes also a reduction in

the execution time because this algorithm doesn’t recalculate the modularity after

each iteration. Nevertheless, our tests on this library highlight that the algorithm

doesn’t iterate the optimization phase more than 10 times: this early stop criterion,

combined with a recalculation of the final score after the optimization, allows the

algorithm to find a valid configuration.

86

Execution Times and Modularity
Graph Adaptive cuGraph Gunrock

coPapersDBLP
369.14 589.27 561.15
0.8543 0.8541 0.8416

patentCite
1 660.79 1 175.62 1 615.13

0.7927 0.7936 0.7806

packing-500x100x100-b050
993.35 885.77 734.37
0.9403 0.9437 0.9372

soc-pokec-relationship
1 636.53 1 546.91 1 019.44

0.6935 0.7109 0.6935

delaunay n23
987.63 1 041.23 1 608.63
0.9856 0.9877 0.9860

soc-LiveJournal1
2 078.29 2 474.60 2 226.35

0.7493 0.7504 0.7504

wikipedia link ja
1 919.34 2 744.37 2 283.09

0.5691 0.5825 0.5647

hollywood-2009
1 685.98 2 210.50 2 028.64

0.7542 0.7511 0.7468

wikipedia link it
2 417.01 4 184.10 2 653.13

0.7190 0.7326 0.7112

wikipedia link fr
2 741.07 4 017.74 3 392.85

0.6834 0.6848 0.6759

com-orkut
6 282.37 - -

0.6616 - -

wikipedia en(dbpedia)
4 655.72 - -
0.6612 - -

indochina-2004
2 277.44 - -

0.9632 - -

Table 5: Adaptive vs. cuGraph vs. Gunrock: in the first line of each row there
is the execution time in milliseconds; in the second one there is the modularity
score obtained. The missing values in the last three datasets mean that the
cuGraph and the Gunrock algorithms are not able to analyze these datasets,
running out of memory.

7.2.4 Comparison with cuGraph and Gunrock algorithms

To have comparable results between these three versions in our tests, we set the

threshold T∆Q equals to 0.01 for the Adaptive and cuGraph version. To set this

value, we change the source code of the cuGraph algorithm, because this value is

fixed in the actual release. Using these parameters, the execution time and the final

modularity are comparable with the Gunrock version. We present the results in the

Table 5.

87

Figure 32: Execution time in relation to the number of the edges. We highlight
that our Adaptive algorithm can analyze graphs with almost twice the number
of the edges compared to the other two.

The first thing that we notice is that our algorithm is better optimized in terms

of memory: on our machine, we can analyze graphs up to ∼ 175 000 000 edges,

instead, our competitor goes out of memory when the graph has∼ 90 000 000 (Figure

32). One of the reasons that allow us to reach graph of bigger size is the memory

optimization of our optimization phase: therefore, as we presented in Chapter 5.4,

we divide the edges into some buckets of fixed size, we execute the phase, store the

results and start the execution on another bucket; when all buckets are processed

we update the communities. With this technique, we reduce the amount of memory

used to store the data in that phase from about 2m, where m is the number of

edges, to 2∗ s+n, where s is the bucket size and n is the number of nodes (Chapter

5.4). Moreover, our tests highlight that we use less memory to store the graph in

the device memory.

In terms of modularity, we notice that our algorithm is on par with the cuGraph

version that, for the reason presented previously, is more accurate than the Gunrock

algorithm. In terms of performance, we notice that our algorithm performs better

with the bigger graphs. Analyzing the cuGraph optimization phase, we notice that

this version tend to perform more iterations concerning the Adaptive version: this

behaviour is probably caused by the fact that they allow each node to select a

88

community with a greater id or a smaller id intermittently. We also notice that their

optimization iterations tend to go faster iteration by iteration, acting as our PH-

Louvain algorithm (Chapter 6.3.2); furthermore, the optimization phase is generally

slightly faster concerning our hashmap approaches at the same iteration, and so this

algorithm is quicker than ours when both perform the same number of iterations.

It’s not clear if the improvement is made by internal optimization of the operation

or thanks to the fact that they use a hashmap for each node instead of a global

one: the analysis of this is left as future work. Finally, we notice that our algorithm

contract the graph quicker by using the hashmap approach instead of the sorting one

(Chapter 6.4). Analyzing the Gunrock algorithm, we notice that it doesn’t calculate

the modularity after each step and it has an early stop at the tenth iteration: this

causes a gain in term of time with respect of our algorithm. Indeed, if we execute

more than ten iterations without swapping behaviour to hash-mode (or when the

gain that we have, using the map, is not high), that algorithm is faster thanks to

the time saved from the modularity calculation. On the other hand, they don’t

stop the iteration when they should: this can lead to performing some extra useless

iterations in the optimization phase. This behaviour can lead to a decrease in global

modularity between two iterations. In the worst case, it could not find the local

maximum. Surprisingly, this algorithm finds a good modularity score. We left as a

future work the analysis of this behaviour: in particular, if we can avoid performing

the modularity calculation at each iteration without significant loss in modularity,

we can reduce significantly the execution time. Concluding, our adaptive algorithm

performs very well even compared to a some Louvain algorithm presented in some

library related with Nvidia: we even occupy less memory and we also perform better

on the largest graphs. Indeed, we execute the analysis ∼ 13% faster in mean on our

six biggest datasets.

The pruning approach helps the algorithm to reduce time, but it highly depends on

the graphs. This approach can be very useful in multi-GPU algorithms, where one

of the bottlenecks is the data transfer between the global memory to the GPU. We

have a gain even using a hashmap to aggregate: our tests show that it has a smaller

improvement compared to the sort-reduce aggregation technique. This technique

89

can be also useful to compute the modularity on a graph that doesn’t fit in the

device memory. We left the design and the analysis of that algorithm as future

work.

The adaptive behaviour is very effective and allows us to reduce the computation

time of the first inefficient operation with the hashmap. We left as future work the

analysis of the performance of using a private hashmap for each node instead of a

global one, and the impact using this behaviour on an adaptive approach.

90

8 Conclusion and Future Work

Summing up, in the first half of this thesis we explain the community detection

problem and the Louvain algorithm and why the parallelization of this algorithm

but also, in general, the High-Performance Computing are interesting fields nowa-

days. After this brief introduction, we proposed our algorithms. In conclusion, the

objectives of this thesis are two: the first is to propose and analyze the effectiveness

of a pruning approach in a GPU parallel Louvain algorithm for the first time; the

second is to analyze the different approaches to aggregate the edges used in litera-

ture, i.e. the sort-reduce approach versus the hashmap, in order to find the pro and

cons of each one.

In this thesis, we demonstrate that introducing a pruning approach in a GPU al-

gorithm based on the Louvain is possible and we have a variable improvement that

depends on how many nodes were pruned during the iteration. If we prune a lot of

nodes, we have a significant improvement with respect to a similar version without

the pruning approach enable. In our algorithms, we store all the variables on the

GPU and every parallel computation are executed on it. As a consequence, we are

limited to the size of the GPU memory, that allows us to analyze graph up to

∼ 175 000 000 edges. As future work, we left the creation of a hybrid CPU-GPU algo-

rithm that can analyze graph that exceeds the GPU memory, permitting to transfer

part of the edges to analyze in the GPU from the CPU only for the computations.

This kind of algorithm may have advantages by using the pruning techniques: there-

fore one of the biggest bottlenecks of this kind of algorithm is the time needed to

transfer the data from the host memory to the device memory; reducing the number

of data transferred in the GPU may lead an improvement in terms of times. A

similar observation can be made for the design of a Multi GPUs algorithm.

We also analyze the differences between two different approaches to aggregate the

edges in order to calculate how many edges links a node with each community in its

neighbourhood. The first approach sort a list of tuples (node, community, weight)

and perform a segmented reduction using the pair (node, community) as key. The

second approach inserts these tuples in a map, using as a key the pair (node, commu-

91

nity) and sum the weight to the value in the map, if it is already present. Our tests

discover that the two approaches perform differently according to the situation: the

first one performs better in the first iterations of the optimization phases; instead,

the second approach performs better if the number of different keys inserted on the

total possible key drops below a threshold. We notice also that the aggregation phase

based on the map tends to performs better than the other, thanks to the reduction in

the number of community. We left as future work a more in depth analysis of when

one approaches performs better than the other in this phase. Therefore, we create

an adaptive version of the algorithm that chooses the best technique to aggregate

based on the situation. Our test shows that this technique performs better than the

original two, with a maximum improvements of ∼ 17%. Besides, we evaluate the

performance of this algorithm with two GPU algorithms presented in two important

libraries: the first one is included in the cuGraph library, part of the Nvidia project

RAPIDS; the second is the Gunrock library, whose its research team is one of the

main contributors of the cuGraph library. We discover that our algorithm scales

better than the other two, thanks to a technique that allows us to process the opti-

mization phase on buckets of a given size, reducing the consumption of memory in

that phase. Our tests show that we can analyze graph with almost twice the edges

compared to the other algorithms. This technique could be an important starting

point to define an algorithm that can analyze a graph that doesn’t fit in the GPU

memory. We also discover that our algorithm performs slightly better of this two

on the biggest graph in our test, with a mean improvement of the ∼ 13% on our

six biggest datasets. This tests open also two new interesting research area. The

cuGraph Louvain algorithm uses a hashmap for each node instead of a global one

like in our Adaptive Louvain algorithm: we left as future work the analysis of the

performance of this aggregation technique compared to the global hashmap that

we present in our thesis. Besides, the Gunrock Louvain algorithm doesn’t perform

the modularity recalculation correctly after each iteration of the optimization phase

and has a limit on the different number of iteration that can perform in one phase.

Despite this behaviour, that, theoretically, can in some case even lead to not reach

the local maximum, this algorithm performs well and find a good score of modular-

92

ity. We left as future work the analysis of this particular behaviour, paying special

attention to how avoiding some operation, could have an impact on the overall per-

formance, both in terms of modularity and in terms of times.

Ultimately, the most important contribution of this thesis is that lay the foundation

for the design of a new Louvain algorithm for the GPU that can allow us to analyze

graphs with billion edges quickly. We have quantified the impact of the pruning ap-

proach in the parallel algorithms, and this can be extremely useful for an algorithm

that can handle graphs that don’t fit in memory. We highlight also the pro and cons

of the various approaches used in literature to compute the score ∆Q, suggesting

an adaptive approach to compute quickly the partitions.

93

Ringraziamenti

Vorrei usare l’ultima pagina di questo elaborato, che rappresenta anche la fine di

questa mia avventura universitaria, per ringraziare tutti coloro che mi hanno

permesso di arrivare a scrivere su quest’ultimo foglio.

Ringrazio innanzitutto il Professor Claudio Lucchese per avermi accompagnato

durante la stesura di questa tesi e per la disponibilità pressoché infinita ad aiutarmi

a distendere tutti i miei dubbi, tecnici e non.

Ringrazio la mia famiglia, ovverosia le fondamenta della mia vita, perché non

avete smesso di supportarmi e spronarmi nonostante non sempre vi sia

esattamente chiaro perché io mi stia innervosendo davanti al computer.

Ringrazio i miei colleghi Fabio, Martina, Andrea, Marco e Kotono per avermi

aiutato a raggiungere questo obbiettivo dedicandomi ore a risolvere null pointer

nella giungla del mio codice e a spiegarmi come ha fatto il prof a ottenere quella

formula sui loro appunti molto più ordinati dei miei.

Ringrazio i miei amici, in particolar modo coloro che si identificano sotto il nome

di ”Quarantadue”, per essere la mia risposta alla vita, l’universo e tutto quanto.

Ringrazio in particolar modo il mio amico Edoardo Busetti per aver dato a me e

Ludovica un nido accogliente nel quale scrivere la tesi durante i mesi di

quarantena: torneremo a viaggiare, vecchio mio.

E, dulcis in fundo, ringrazio Ludovica per essere la spalla su cui piangere, il

sorriso con il quale ridere e semplicemente la persona con cui voglio condividere

ogni istante. Grazie di esserci stata sempre.

References

[1] D.R. Fulkerson L.R. Ford. “Maximal Flow Through a Network”. In: Canad.

J. Math. 8 (1956).

[2] A.Rényi P.Erdös. “On Random Graphs”. In: Publ. Math. Debrecen 6 (Dec.

1959), pp. 290–297.

[3] Derek J. de Solla Price. “Networks of Scientific Papers”. In: Science 149.3683

(1965), pp. 510–515. issn: 0036-8075. doi: 10.1126/science.149.3683.510.

eprint: https://science.sciencemag.org/content/149/3683/510.full.

pdf. url: https://science.sciencemag.org/content/149/3683/510.

[4] W.W. Zachary. “An information flow model for conflict and fission in small

groups”. In: Journal of Anthropological Research 33 (1977), pp. 452–473.

[5] Albert-László Barabási and Réka Albert. “Emergence of Scaling in Random

Networks”. In: Science 286.5439 (1999), pp. 509–512. issn: 0036-8075. doi: 10.

1126/science.286.5439.509. eprint: https://science.sciencemag.org/

content/286/5439/509.full.pdf. url: https://science.sciencemag.

org/content/286/5439/509.

[6] M. Girvan and M. E. J. Newman. “Community structure in social and bio-

logical networks”. In: Proceedings of the National Academy of Sciences 99.12

(June 2002), pp. 7821–7826. issn: 1091-6490. doi: 10.1073/pnas.122653799.

url: http://dx.doi.org/10.1073/pnas.122653799.

[7] Aaron Clauset, M. E. J. Newman, and Cristopher Moore. “Finding community

structure in very large networks”. In: Physical Review E 70.6 (Dec. 2004). issn:

1550-2376. doi: 10.1103/physreve.70.066111. url: http://dx.doi.org/

10.1103/PhysRevE.70.066111.

[8] M. E. J. Newman. “Fast algorithm for detecting community structure in net-

works”. In: Physical Review E 69.6 (June 2004). issn: 1550-2376. doi: 10.

1103/physreve.69.066133. url: http://dx.doi.org/10.1103/PhysRevE.

69.066133.

95

[9] M. E. J. Newman and M. Girvan. “Finding and evaluating community struc-

ture in networks”. In: Physical Review E 69.2 (Feb. 2004). issn: 1550-2376.

doi: 10.1103/physreve.69.026113. url: http://dx.doi.org/10.1103/

PhysRevE.69.026113.

[10] Jordi Duch and Alex Arenas. “Community detection in complex networks

using extremal optimization”. In: Phys. Rev. E 72 (2 Aug. 2005), p. 027104.

doi: 10.1103/PhysRevE.72.027104. url: https://link.aps.org/doi/10.

1103/PhysRevE.72.027104.

[11] Roger Guimerà and Lúıs A. Nunes Amaral. “Functional cartography of com-

plex metabolic networks”. In: Nature 433.7028 (Feb. 2005), pp. 895–900. issn:

1476-4687. doi: 10.1038/nature03288. url: http://dx.doi.org/10.1038/

nature03288.

[12] S. Fortunato and M. Barthelemy. “Resolution limit in community detection”.

In: Proceedings of the National Academy of Sciences 104.1 (Dec. 2006), pp. 36–

41. issn: 1091-6490. doi: 10.1073/pnas.0605965104. url: http://dx.doi.

org/10.1073/pnas.0605965104.

[13] Pall F. Jonsson et al. “Cluster analysis of networks generated through ho-

mology: automatic identification of important protein communities involved

in cancer metastasis”. In: BMC Bioinformatics 7.1 (Jan. 2006), p. 2. issn:

1471-2105. doi: 10.1186/1471-2105-7-2. url: https://doi.org/10.1186/

1471-2105-7-2.

[14] Vincent D Blondel et al. “Fast unfolding of communities in large networks”.

In: Journal of Statistical Mechanics: Theory and Experiment 2008.10 (Oct.

2008), P10008. issn: 1742-5468. doi: 10.1088/1742-5468/2008/10/p10008.

url: http://dx.doi.org/10.1088/1742-5468/2008/10/P10008.

[15] Ulrik Brandes et al. “On Modularity Clustering”. In: IEEE Transactions on

Knowledge and Data Engineering 20.2 (2008), pp. 172–188. doi: 10.1109/

TKDE.2007.190689.

96

[16] Santo Fortunato. “Community detection in graphs”. In: Physics Reports 486.3-

5 (Feb. 2010), pp. 75–174. issn: 0370-1573. doi: 10.1016/j.physrep.2009.

11.002. url: http://dx.doi.org/10.1016/j.physrep.2009.11.002.

[17] Timothy A. Davis and Yifan Hu. “The University of Florida Sparse Matrix

Collection”. In: ACM Trans. Math. Softw. 38.1 (Dec. 2011). issn: 0098-3500.

doi: 10 . 1145 / 2049662 . 2049663. url: https : / / doi . org / 10 . 1145 /

2049662.2049663.

[18] Dan A Alcantara et al. “Building an efficient hash table on the GPU”. In:

GPU Computing Gems Jade Edition. Elsevier, 2012, pp. 39–53.

[19] Chun Yew Cheong et al. “Hierarchical parallel algorithm for modularity-based

community detection using GPUs”. In: European Conference on Parallel Pro-

cessing. Springer. 2013, pp. 775–787.

[20] Jérôme Kunegis. “Konect: the koblenz network collection”. In: Proceedings of

the 22nd International Conference on World Wide Web. 2013, pp. 1343–1350.

[21] Jure Leskovec and Andrej Krevl. SNAP Datasets: Stanford Large Network

Dataset Collection. http://snap.stanford.edu/data. June 2014.

[22] Charith Wickramaarachchi et al. “Fast parallel algorithm for unfolding of com-

munities in large graphs”. In: 2014 IEEE High Performance Extreme Com-

puting Conference (HPEC). IEEE. 2014, pp. 1–6.

[23] Hao Lu, Mahantesh Halappanavar, and Ananth Kalyanaraman. “Parallel heuris-

tics for scalable community detection”. In: Parallel Computing 47 (2015),

pp. 19–37.

[24] Xinyu Que et al. “Scalable community detection with the louvain algorithm”.

In: 2015 IEEE International Parallel and Distributed Processing Symposium.

IEEE. 2015, pp. 28–37.

[25] Christian L Staudt and Henning Meyerhenke. “Engineering parallel algorithms

for community detection in massive networks”. In: IEEE Transactions on Par-

allel and Distributed Systems 27.1 (2015), pp. 171–184.

97

[26] V. A. Traag. “Faster unfolding of communities: Speeding up the Louvain al-

gorithm”. In: Phys. Rev. E 92 (3 Sept. 2015), p. 032801. doi: 10.1103/

PhysRevE . 92 . 032801. url: https : / / link . aps . org / doi / 10 . 1103 /

PhysRevE.92.032801.

[27] Richard Forster. “Louvain community detection with parallel heuristics on

GPUs”. In: 2016 IEEE 20th Jubilee International Conference on Intelligent

Engineering Systems (INES). IEEE. 2016, pp. 227–232.

[28] Naoto Ozaki, Hiroshi Tezuka, and Mary Inaba. “A simple acceleration method

for the Louvain algorithm”. In: International Journal of Computer and Elec-

trical Engineering 8.3 (2016), p. 207.

[29] Md Naim et al. “Community detection on the GPU”. In: 2017 IEEE Interna-

tional Parallel and Distributed Processing Symposium (IPDPS). IEEE. 2017,

pp. 625–634.

[30] Cuda Programming Guide. 2018. url: https://docs.nvidia.com/cuda/

cuda-c-programming-guide/index.html.

[31] HIVE workflow report for Louvain GPU implementation. 2018. url: https:

/ / gunrock - docs . readthedocs . io / en / latest / hive / hive _ louvain /

#community-detection-louvain.

[32] NVIDIA TURING GPU ARCHITECTURE. 2018. url: https://www.nvidia.

com/content/dam/en-zz/Solutions/design-visualization/technologies/

turing-architecture/NVIDIA-Turing-Architecture-Whitepaper.pdf.

[33] Yifan Sun et al. Summarizing CPU and GPU Design Trends with Product

Data. 2019. arXiv: 1911.11313 [cs.DC].

[34] cuGraph. 2020. url: https://github.com/rapidsai/cugraph.

[35] Gunrock. 2020. url: https://gunrock.github.io/docs/#/.

98

