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Abstract

The intriguing nature of the BaTiO3 perovskite system has been largely debated and investi-
gated in recent years thanks to its intrinsic properties like high visible-light absorption coef-
ficients, high photoluminescence quantum yield, long charge carrier diffusion length, colossal
magnetoresistance, superconductivity, and many other interesting and valuable solid-state
properties. The general application of the perovskite systems covers a wide range of tech-
nological devices and solutions that are foreseen to be part of the next future general tech-
nological advancement. In this perspective, our work focuses on the ab initio prediction of
the basic properties of a subset of BaTiO3-based perovskite models which display different
doping rates ranging from 25% to 50%. These doping are performed by replacing Titanium
(Ti) with Tin (Sn) (50% substitution) and Barium (Ba) with Strontium (Sr) (25 and 50%
substitution), paving the way for more complex modifications required to engineer the intrin-
sic properties of the studied systems, such as band structure, density of states, bulk modules
etc.

Keywords: BaTiO3, Supercells, Doping, Strontium, Tin
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Chapter 1

Introduction

In this introductory chapter, a brief assessment of the origins of BaTiO3 system and its
properties is presented, together with some historical facts that made possibile its synthe-
sis, development and successive study. The phase transition diagram of the system is also
reported, showing how the phase transition occurs and listing which properties are system-
dependent. Finally, a general outline of the goals of the thesis and its general organization
are reported.
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1.1. A War Technological Problem

1.1 A War Technological Problem

The history[1] of BaTiO3 is tightly linked to the micas, imported from South America, a
dielectric phyllosilicate commonly employed in capacitors for military purposes, back in the
’40s. With the advent of WWII and the threaten of German U-boats to sink the suppliers’
boats, the United States government decided to invest in the research for an alternative solu-
tion. That brought to the discovery and employment of the BaTiO3 (BTO) ceramics in spite
of micas. The discovery of BTO were performed between the 1941 till 1944 in USA, Russia
and Japan, respectively. The first patent describing the process of synthesis of BTO was
deposited by Thurnaarer and Deaderick[2] from the American Lava Company in 1941, U.S.
Patent No. 2.429.588. It has been speculated that German scientists delayed the discovery of
BTO because of the extraction process of TiO2: the methods based on chloride exploited by
USA, Russia and Japan led to a lower content of niobium (Nb), therefore a lower conduction
was detected with respect to the extracted material via sulfuric acid route used in Germany.
In 1945 and 1946, von Hippel[3] (USA) and Wul and Goldman[4] (Russia), independently
demonstrated the ferroelectric switching in BTO ceramics. In fact, ferroelectricity1 was
believed to be a property only present in potassium dihydrogen phosphate (KH2PO4) and
related crystals, as a consequence of an order-disorder phase transition.

1.2 The BaTiO3 Compound

The discovery of ferroelectricity and piezoelectricity2 in polycrystalline BaTiO3 ceramics
prompted to a cascade of independent researches on this topic right after the end of WWII.
The potential use of these new compounds could be extended to sensors, transducers and
actuators. Major scientific advances were reported by Megaw[5], Kay and Vousden[6] in UK,
and Miyake and Ueda[7] in Japan, which were able to understand first, and rationalize after,
the structure and phase crystal changes through cooling process. Later in 1947, Blättner
and coworkers were able to synthesize the first BTO single crystal in Switzerland via ternary
melts. Because the procedure to obtain high-quality single crystals was quite expensive, the
discovery of the poling process for BTO ceramic powder marked another breakthrough. In
fact, the polarization of a system was though to occur only in single-crystal systems, and the
possibility to re-orient it was not yet known. This discovery[8] allowed to implement polycrys-
talline ceramics for piezoelectric applications, displaying an improved mechanical robustness
and a lower manufacturing cost. In the following years, between 1947 and 1950, the first
commercial technologies based on BaTiO3 polycrystalline system were put in productions,
i.e., by-pass capacitors, accelerometers, transducers for ultrasonic generation, phonograph
pickups and capacitors. The peculiar nature of BTO system is also at the origin of the
Devonshire[9, 10] theory3, which aims at phenomenologically reconcile its phase transition,
dielectric, electromechanical and thermal properties. The decade that followed the discov-
ery of ferroelectric ceramics was characterized by a incredibile effort to explore new solid

1
Definition: "Property of certain non-conducting crystalline systems, or dielectrics, which exhibits po-
larization, i.e., separation of the center of positive and negative electric charges, making one side of the
crystal positive, the other negative. This process can be reversed in direction by applying an external
electric field."

2
Definition: "Property of certain non-conducting crystals that display negative and positive charge sepa-
ration on opposite sides due to mechanical pressure or stress. Piezoelectricity is displayed by 20 out of 32
crystal classes."

3 The Devonshire theory can be classified as part of the statistical thermodynamics theories for explaining
phase transition as reported by Ginzburg[11], Landau and Lifshitz[12].

2



1.2. The BaTiO3 Compound

solutions that could enhance the already unique properties of BTO. An example of this
"gold rush" is the explorative synthesis of quaternary solid-state solutions by McQuarrie
and Behnke[13] between BaTiO3, BaZrO3, CaZrO3 and CaTiO3 and Coffeen[14] between
BaTiO3, BaSnO3, CaSnO3 and SrSnO3. The exploration of potential polycrystalline ceram-
ics displaying remarkable ferroelectric and piezoelectric properties, started during WWII, is
still ongoing in the current days. In fact, despite the effort, this class of compounds still
suffers from a limited temperature range of operability when acting as piezoelectrics[15].

The BaTiO3 compound, whose general formula ABO3 is a clear reference to perovskite
class of systems, displays the Ba2+ - A-site - at the corners of the cubic unit cell, while the
Ti4+ is located on the B-site of the cell center. The O2– anions instead are located on the
face centers of the cubic cell, where they form the BO6 octahedra. When cooled at ambient
pressure, the BaTiO3 undergoes to first-order phase transition, as schematically reported in
fig. 1.1, going from cubic crystalline habit (Pm3̄m) ⇠131�C

����! tetragonal (P4mm) ⇠0�C
���! or-

thorombic (Amm2) ⇠�90�C
�����! rhombohedral (R3m). The spontaneous polarization of BaTiO3

Figure 1.1: Schematic representation of the phase transition in BaTiO3 system
during the cooling process at ambient pressure. Each structure is associate with its
crystalline space group habit.

is usually related to the structural shift that both Ti4+ and O2– undergo during phase transi-
tion, from cubic to tetragonal. Above 131�C, the Curie temperature for BTO, the dielectric
susceptibility follows the Curie-Weiss4 law, meanwhile below TC, the re-orientation of the
polarization direction happens, sometimes referred as inter-ferroelectric transition.

4 The Curie-Weiss law for the dielectric susceptibility ⌘ is

⌘ ⇡
"0

"0
=

C

T � TC

where C is the Curie constant, TC is the Curie-Weiss temperature, "’ is the real part of the dielectric
permittivity and "0 is the permittivity of the free-space. Below TC , the system displays spontaneous
magnetization.

3



1.2. The BaTiO3 Compound

Doping BaTiO3

The thesis aims at being an explorative ab-initio computational work for assessing the qual-
ity of two different computational methodologies, based on plane-waves and Gaussian-type
orbitals, respectively, for studying solid-state systems in general, by testing BaTiO3 in par-
ticular. The study will go through three main steps:

• Step 1: comparison of the optimized unit cell parameters, bond lengths between atomic
species and related electronic structure properties, i.e., Density of States (DOS) and
Band structure, as obtained from the two computational methodologies employed.

• Step 2: comparison of cell parameters, bond lengths between atomic species and elec-
tronic structure (DOS and band structures) of the doped BTO supercell with strontium
(Sr) and tin (Sn) at 25%, exploiting the supercell approach.

• Step 3: comparison of cell parameters, bond lengths between atomic species and elec-
tronic structure (DOS and band structures) of the doped BTO supercell with strontium
(Sr) and tin (Sn) at 50%, exploiting the supercell approach.

4



1.3. Thesis Goal and Outlook

1.3 Thesis Goal and Outlook

The use of plane wave and all-electron basis set for the same purposed can help outline
similarities and differences between the two approaches by exploring and investigating the
complex nature of BaTiO3 perovskite-like system. The thesis is organized as follows:

- Chapter2: the general description of the computational framework is introduced, with
particular emphasis on the Density Functional Theory approach. The general descrip-
tion of the plane wave and all-electron basis set, together with the general description of
the atomic species via pseudopotentials and/or Gaussian type orbitals are briefly intro-
duced. This chapter ends with a description of the key properties that are investigated
and reported.

- Chapter3: to assess the quality of the methodologies to employ in the study of the BTO
system, sometimes before data production, a quality check of the pseudopotentials to use
and some key parameters is required. This is particularly true in case of the plane waves
codes. As such, in this chapter the quality check of the key parameters for the plane wave
code will be presented. Moreover, a comparative study of the BaTiO3 unit cell, space
group Pm3̄m, will be reported between plane waves and all-electron basis set, at the same
level of theory. The chapter ends with a comparison of the basis properties of the system,
i.e., density of states (DOS), band structure and possibile, bulk modulus.

- Chapter4: the study of a series of doped BaTiO3 supercells, with a strontium (Sr) atom
replacing a barium (Ba) one (Sr!Ba) and a tin (Sn) atom replacing a titanium (Ti) one
(Sn!Ti), is reported. The doping in both cases is performed at 25% and 50%, following
the supercell approach, and structural and electronic properties explored with both plane
waves and gaussian basis set, respectively.

- Chapter5: the conclusion of the thesis are drawn and the outline for future work in the
study of the BaTiO3-based systems with perovskite-like structure is provided.

5



Chapter 2

Methodology

In this chapter, the computational framework put in place to study the properties of the
barium titanate compound is presented. A brief introduction is devoted to the Density
Functional Theory (DFT) methodology, which plays a relevant is the role in this work. It
will follow the explanation of its implementation in both the plane waves and all-electron
configuration, and the general description of the properties (Band Structure, Density of
States, etc.) calculated via DFT.

6



2.1. Density Functional Theory

2.1 Density Functional Theory

The key advantage of the Density Functional Theory (DFT) methodology is the good com-
promise it offers between accuracy and computational cost. Moderately large systems can
be easily investigated, allowing to elucidate the electronic structure of the atoms, molecules,
and solids. The DFT methodology is based on functionals, i .e., a mapping of an entire
function f to a resulting number F [f ]; whereas a common function is defined to be a map-
ping of a variable x to a number f (x). DFT allows to describe the electronic structure of
atoms, molecules, and solids throughout the 3D electronic density ⇢, upon which functionals
depend. The groundbreaking article published by Hohenberg and Kohn[16] in 1964 led to
the practical development of the DFT approach, showing that a functional F [f ] exists such
that the ground state energy can be expressed as the minimum of the functional:

E[⇢] = F [⇢]

Z

dr V (r)⇢(r) (2.1)

where ⇢(r) is the charge density, and F [⇢] does not depend on the system. It follows that the
ground state properties of the system of interacting electrons can be described in terms of the
charge density only, rather than on the far more complicated many-particle wave function.

Thomas-Fermi Model

The original DFT method developed by Thomas and Fermi[17, 18] in 1927 reported the
kinetic energy of the system of electrons to be approximated by an energy functional of the
density. In this system under consideration, electrons do not interact to each other but they
belong to a homogeneous gas displaying a density that is equal to the local density at any
given point. The kinetic energy functional proposed by Thomas and Fermi is:

TTF [⇢] =
3

10
(3⇡2)

2

3

Z

⇢(r)
5

3dr (2.2)

It follows that the energy of an atom can be estimated using the functional

ETF [⇢(r)] =
3

10
(3⇡2)

2

3

Z

⇢(r)
5

3dr� Z

Z

⇢(r)

r
dr+

1

2

Z

⇢(r1)⇢(r2)

r12
dr1dr2 (2.3)

where Z is the nuclear charge in atomic units. The correct density to be used in 2.3 is
estimated by means of the variational principle, by minimizing the functional for all possible
⇢(r), under the constraint on the total number of electrons

Z

⇢(r)dr = N (2.4)

Variational Principle

The variational principle applied to the density function ⇢(r) states that

the energy computed from a guessed density function ⇢(r) is an upper bound to
the true ground state energy E0

from which it follows that the full minimization of the functional E[⇢] w .r .t . all allowed
N -electrons wavefunctions will give the true ground-state, ⇢0, and the corresponding energy,
E0. The variational principle provides a way to determine the ground-state wavefunction  0

and energy E0 for a given system of N electrons and a given nuclear potential Vext, that is

E0 = E[N, Vext] (2.5)
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2.1. Density Functional Theory

2.1.1 The Kohn-Sham Method

The revolutionary idea that made DFT viable in practical terms was proposed by Kohn and
Sham[19] in 1965. The idea was to replace the many-body Hamiltonian1

Ĥ = T̂N + T̂e + V̂NN + V̂ee + V̂Ne (2.6)

where

• T̂N is the nuclear kinetic energy

• T̂e is the electronic kinetic energy

• V̂NN is the internuclear repulsion potential energy operator

• V̂ee is the interelectronic repulsion potential operator

• V̂Ne is the electron-nuclei attraction potential energy operator

with an auxiliary system, form by a set of independent and non-interacting particles. The
so-called Kohn-Sham (KS) ansatz assumes that the ground-state density of the original
interacting system is equal to that of the non-interacting one. This ansatz is based on two
key assumptions:

1. The exact ground-state density is equal to the ground-state density of the auxiliary
system of non-interacting particles

2. The auxiliary Hamiltonian is chosen in order to have the usual kinetic operator and
an effective local potential V σ

eff(r) acting on an electron of spin � at point r. The local
form is not essential, but it is a useful simplification which is considered as one of the
KS equation main features.

The KS ansatz can be graphically summarized as

Figure 2.1: Schematic representation of the KS ansatz linking the original many-
body system to the auxiliary one.

1 The analytic expression form of the Hamiltonian in 2.6 is

Ĥ = �
1

2

M
X

A=1

r2

A

MA

�
1

2

n
X

i=1

r2

i +

M
X

A=1

M
X

B>A

ZAZB

rAB

+

n
X

i=1

n
X

j>i

1

rij
�

n
X

i=1

M
X

A=1

ZA

riA

where i, j and A, B refer to electrons and nuclei, respectively; MA and ZA denote the mass and nuclear
charge of nucleus A, riA is the distance between electron i and nucleus A, rij is the distance between
electron i and electron j, and rAB is the distance between nucleus A and nucleus B.
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2.1. Density Functional Theory

2.1.2 The Kohn-Sham Equations

The key question is to understand how the fundamental physical quantities of the real system
are accounted in the DFT method. To do so, it is important to reconsider the KS ansatz :
"the ground-state density of the interacting system is considered to be equal to the ground-
state of the non-interacting one". The electron density ⇢(r) and the kinetic energy TKS[⇢]
can be defined as

⇢(r) =
N
X

i=1

| i(r)|
2 (2.7)

and

TKS[⇢] = �
1

2

N
X

i=1

h i|r
2| ii (2.8)

where  i represents the occupied molecular orbitals and the sum runs over each occupied
molecular orbital N . In a similar way, the kinetic energy of the complex system is replaced
by the kinetic energy from the auxiliary one, so that a universal functional F [⇢] can be
written as

F [⇢] = TKS[⇢] + EHT[⇢(r)] + Exc[⇢] (2.9)

In this expression, the TKS[⇢] term represents the kinetic energy functional of the auxiliary
system which depends upon the electronic ground-state density ⇢0, while the second term
represents the Hartree energy in terms of the Hartree density and potential as

EHT[⇢(r)] =
1

2

Z

⇢(r)n(r0)

|(r)� (r0)|
d(r)d(r0) (2.10)

The complex many-body effects due to exchange and correlation are then condensed in the
exchange-correlation energy term Exc[⇢], which can be written in terms of the HK functional
as

Exc[⇢] = FHK[⇢]� (TKS[⇢] + EHT[⇢]) (2.11)

In this respect, the determination of the orbitals  i proceed in a similar way like in the
Hartree-Fock method, but solving this time the so-called KS-equations

HKS KS
i = ✏KS KS

i for i = 1, ..., N (2.12)

where the HKS is the KS operator. In KS-DFT, differently from the Hartree-Fock theory,
where only exchange but not correlation is included, the exchange-correlation potential op-
erator Vxc(r) groups all the many-body effects in one term. The optimization of the orbitals
 i is performed self-consistently, leading at convergence to the ground-state density of the
system investigated. Apriori , the obtained optimized density can lead to obtain all the
remaining properties of the system considered. Nonetheless, it is not known what exact
form the exchange-correlation potential term should have, which lead, along the years, to
a plethora of exchange-correlation functionals trying to approximate it. Among the most
widely used it is worth mentioning the Local Density Approximation (LDA), Generalized
Gradient Approximation (GGA) and the hybrid ones, like B3LYP.

9



2.1. Density Functional Theory

Local Density Approximation

The Local Density Approximation (LDA), which considers the exchange-correlation potential
term of a given particle locate in r, depends on the the electronc density ⇢ at a specific point,
specifically

ELDA
xc =

Z

⇢(r)✏LDA
xc [⇢(r)]dr (2.13)

where the ✏LDA
xc term represents the sum of the exchange and correlation quantities

✏LDA
xc (r) = ✏LDA

x (r) + ✏LDA
c (r) (2.14)

Specifically, while the exchange terms is derived from the uniform electron gas definition for
a fix point r as

✏LDA
x (r) = �

3

4

✓

3

⇡

◆
1

3

⇢(r)
4

3 (2.15)

menawhile the correlation terms are inferred from parametric equations fitting perturbative
or Quantum Monte Carlo[20, 21] results. The most used are the Wigner[22], Perdew and
Wang[23, 24] (PW92), Lee-Yang-Parr[25], Perdew-Zunger[26] (PZ). The LDA, being exact
for the uniform electron gas, is well suited for the investigation of homogeneous densities
(e.g ., systems based on elements of the s and p block.) However, for systems displaying
inhomogeneous densities, it is necessary to also account for the shape of ⇢(r) around point
r, that is, the density gradient.

Generalized Gradient Approximation

The Generalized Gradient Approximation (GGA) differs from the LDA one for containing the
gradient of the functional as extra term, introducing a semi-local character of the electron
density in the definition of Exc. This allows to account for the shape that ⇢(r) assumes
around point (r)

EGGA
xc [⇢,r⇢] =

Z

⇢(r)✏GGA
xc (⇢(r),r⇢(r))dr (2.16)

Thus, the exchange energy terms become

EGGA
xc [⇢,r⇢] =

Z

Fx s(r)⇢(r)
4

3dr (2.17)

with Fx being the reduced density gradient

s(r) =
|r⇢(r)|

6⇡2⇢(r)
4

3

(2.18)

In this sense, a great effort was placed and is still put in developing suitable GGA functionals
because of their ability to provide a consistent and reliable description for the system not
only based on the elements of the s and p block, but also to some extent to the f and d

block ones. Among the most popular GGA functionals, the there is the PBE[27, 28] one,
also used in this work for the structural optimization reported.

10



2.1. Density Functional Theory

Hybrid Functionals

Another class of popular functionals that displayed great success in terms of properties, both
structural and electronic ones, are the hybrid functionals. These functionals, introduced by
Becke in 1993, account for a part of "exact exchange" derived from the Hartree-Fock exchange
and a part inferred by interpolation of post-Hartree-Fock and semi-empirical results. A
popular hybrid functional is the B3LYP[28, 29] one, which stands for Becke, 3-parameters,
Lee-Yang-Parr, and defined as

EB3LYP
xc = (1� a0)E

LDA
x + a0E

HF
x + ax∆EB88

x + acE
LYP
c + (1� ac)E

VWN
c (2.19)

where a0 = 0.20, ax = 0.72 and ac = 0.81. The ELDA
x is the standard local exchange

functional[30], ∆EB88
x is Becke’s gradient correction to the exchange functional, ELYP

c is the
term for the correlation functional from Lee, Yang and Parr[25], and finally, EVWN

c is the
Vosko-Wilk-Nusair[31] local density approximation to the correlation functional.

2.1.3 Kohn-Sham in Plane Waves Basis-Set

The nature of crystalline systems inspired the development of DFT theory based on plane
waves, suitable to reproduce the repetitive network of atomic and molecular units. The
Bloch theorem[32] is efficiently exploited to express the one-electron wavefunction in terms
of Fourier expansion; moreover, plane waves is a mathematical tools relatively simple to
handle, which has the advantage to cover the space equally. This is particularly important
if, a priori, the form of the wavefunction is unknown. To achieve a finite basis set, the Fourier
expansion of the plane wave must be truncated. This is done by introducing a kinetic energy
cutoff Ecut as

Ecut =
~
2

2m
|k+G|2 (2.20)

where k is the wave vector and G is the reciprocal lattice vector. The choice of Ecut deter-
mines the truncation of the plane waves expansion at a particular G. The KS equations can
be reformulated as

X

G’



1

2
|k+G|2 + Vion(G�G0) + VH(G�G0)

�

ci,k+G = ✏ici,k+G (2.21)

where the reciprocal space of the kinetic energy is diagonal and the potentials are described
in terms of Fourier components. This secular equation can be solved by diagonalizing the
Hamiltonian matrix Hk+G,k+G0 . As such, the size of the matrix is defined by the energy
cutoff Ecut. The final energy value depends upon the pseudopotential employed to describe
the atomic species composing the molecule or crystal.

Pseudopotentials

In general, if both core- and valence electrons of each atomic species are accounted, the plane
waves expansion computational cost would quickly become prohibitive. Besides, because of
the different nature of the two kinds of electrons, higher Ecut values would be required:
the core ones strongly bound to the nucleus, the valence ones highly flexible. Because
the majority of the physical properties are consequence of the interactions of the valence
electrons of neighboring atoms, then it comes in handy to separate the core- from the valence-
contributions, respectively.

11



2.1. Density Functional Theory

Figure 2.2: Scheme showing the trend of a pseudo wavefunction and potential (or-
ange), compared to the real Coulomb potential and wavefunction trend of a nucleus
(blue). The match between real and pseudo wavefunction is found above a certain
cutoff radius rc

The pseudopotential is a mathematical approximation of the effective potential that mimics
the effect of ionic nuclei and core electrons, see fig. 2.2. As such, the core states are frozen
and not explicitly taken into consideration, meanwhile the valence electrons are described
by means of pseudo wavefunctions, which makes plane waves DFT practicable. Two key
properties are pivotal in the pseudopotential generation: a) smoothness, i .e., a pseudopo-
tential should be as smooth as possibile to have a convenient plane waves expansion, thus
small Ecut; b) transferability, i .e., accuracy, related to the ability of the pseudopotential to
generate pseudo-orbitals that are as much accurate as possible to the true orbitals outside
the core region, for all the system containing a given atom[32]. Pseudopotentials come in dif-
ferent flavors , among which the most popular ones are the ones called Norm-Conserving[33]
(NC) and Ultrasoft[34] (US):

• Norm-Conserving Pseudopotentials (NC): this class of pseudopotentials are generated fol-
lowing a specific set of requirements, as defined by Hamann, Schlüter and Chiang[33], that
guarantee both transferability and smoothness, fixing that:

1. the pseudo-valence and all-electron eigenvalues coincide for a chosen prototype atomic
configuration.

2. The all-electron and pseudo atomic wave functions coincide beyond a chosen core radius
rc[32]. Consequence: the potential is uniquely determined by the wavefunction and
energy ✏.

12



2.1. Density Functional Theory

3. The logarithmic derivates of the all-electron and pseudo-wave functions coincide in rc.
Consequence: it follows that both the wavefunction  i and its first derivative Wln,
defined as

Wln(✏, r) = r
 0

i(✏, r)

 i(✏, r)
= r

d

dr
ln  l(✏, r)

are continuous in rc for any smooth potential.

4. The charge, integrated inside rc, agrees for each wavefunction. Consequence: the
integrated charge

Qln =

Z Rc

0

dr r2| ln(r)|
2 =

Z Rc

0

dr �ln(r)
2

is the same for Ψ
PS
l , radial pseudo-potential, as for the all-electron radial orbital  PS

l ,
for a valence state. Qln conservation ensure that i) the total charge in the core region
is correct and ii) the normalized pseudo-potential is equal to the orbital outside rc. In
other words, this constraint on the charge ensures that the wavefunction  l(r) and its
radial derivative  0

l(r) are continuous at rc, for any smooth potential, leading to the
correct representation of the region between atoms, i .e., outside rc.

5. The first energy derivative of the logarithmic derivates of both the all-electron and
pseudo-wave functions coincides in rc. Consequence: pseudopotentials are guaranteed
to adapt as a function of the system to simulate.

• Ultrasoft Pseudopotentials (US): this class of pseudopotentials, introduced by Vanderbilt[34]
in 1990, relaxes the NC conditions listed above to generate softer potentials, which in turn
require a smaller amount of plane waves. Nonetheless, these relaxed conditions are related
to some loss of transferability. The pseudo-wavefunctions are allowed to be as much soft as
possibile within the core region, leading to a dramatic reduction of the kinetic Ecut values.
From a technical perspective, this is achieved by introducing a generalized orthonormality
condition. The electron density ⇢(r), see eq. (2.7), has to be augmented in the core region
to recover the full electronic charge. ⇢(r) is then subdivided in two contributions:

– a hard part located in the core region;

– a smooth part that extends in the unit cell.

The augmented contribution appears only in the density, but not in the wavefunctions.
Another advantage that comes with the US generation is done by the algorithm used to
generate them, which guarantees good scattering properties over a pre-specified energy
range, resulting in a much better transferability and accuracy of pseudopotentials. US
usually also treats “shallow” core states as valence by including multiple sets of occupied
states in each angular momentum channel. This also contributes to high accuracy and
transferability of the potentials, although at a price of computational efficiency.
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2.1. Density Functional Theory

2.1.4 All-Electron Basis-Set

The study of molecular and solid-state systems at DFT level can also be pursued by means
of a different set of mathematical functions describing the atomic orbitals[35]. This alter-
native basis is composed by a set of mathematical functions describing the atomic orbitals
of each atomic species centered at each atomic position. The resulting molecular orbital  i

is then represented by a Linear Combination of Atomic Orbitals[36] (�i) (LCAO). These
atomic orbitals are generally known to display an exponential decay with the distance r

from the nucleus of the atom of the following form

�i / e�r (2.22)

Their linear combination generates a molecular orbital  i as

 i =
X

m

am�m (2.23)

where the am coefficients "weight" the different contributions to form the electronic struc-
ture of the atomic species. The resulting molecular orbitals are iteratively optimized till
convergence is reached optimizing the am coefficients.

Slater Type Orbitals vs . Gaussian Type Orbitals

The physically motivated type of orbitals that better reproduces the correct trend far away
from the nucleus are the Slater-type of orbitals[37] (STO), introduced by John C. Slater
back in the 1930. Unfortunately, the use of the STO atomic orbitals displays a relevant
disadvantage: their mathematical employment makes quite a challenge the solution of the
interactions terms for exchange and correlation. An alternative to the use of STO basis set
was proposed by Boys in 1950, replacing the complex Slater-type orbitals, proportional to
e�r, with a Gaussian-type of orbitals[38] (GTO), proportional to e�r2 , see fig. 2.3. GTO
mathematically display the advantage of being more easily tractable but the disadvantage
of only partially capturing the correct asymptotic decay trend of the STO. However, the

STOGTO

Distance r

Figure 2.3: Graphical representation of the Slater-type Orbitals (STO) in red and
Gaussian-type Orbital (GTO) in blue.
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2.1. Density Functional Theory

use of a single GTO is not sufficiently accurate to replace a single STO; it follows that a
linear combination of GTO, can then be employed in these terms, using de facto the GTO
as basis functions

�h = STO ⇡
X

h

ch(GTO)h where (GTO)h / e�αh·r
2

(2.24)

The �h term represents the resulting orbital from LCAO, in analogy to eq. (2.22), while the
ch terms represent the coefficients of the linear combination, while the ↵h ones represent
the coefficients determining the evolution of each gaussian function, respectively. Each
single GTO is referenced as primitive, and a basis set generated starting from a linear
combination of GTO is called contracted. In general, increasing the number of primitives
leads to better approximated atomic orbitals, but also to a rapid increase of the compu-
tational cost. Following this logic, one of the first GTO basis set to be developed and
used was the so-called STO-3G: that is, each Slater-type orbital (STO) is approximated
by a linear combination of three Gaussian primitive functions �h. The resulting molecular
orbitals  i are found by the subsequent optimization (throughout the iterative process) of
the coefficients of the atomic orbitals approximated by the primitive GTO basis functions

 i =
X

m

am�m =
X

m

am
X

h

ch(GTO)h (2.25)

where only the am coefficients are optimized, while the ch ones are kept fixed. The STO-
3G basis set represents a class of basis set called single-⇣ (=single-zeta), which "treats"
both the core and valence electrons in the same way. It has been noticed that, despite
increasing the number of basis functions, e.g., moving from STO-3G to STO-5G, while the
accuracy does not increase substantially, the computational cost does. Considering that
the majority of the molecular and material properties come from the valence electrons
interactions, a new class of basis set called multiple-⇣ was proposed, specifically called
split-valence basis set. One of the earlier examples of this class of basis set is, for instance,
the 3-21G basis set, that is, the core orbitals are approximated by a single-⇣ basis set,
i.e., one contraction of 3 primitive Gaussians functions is used for each core orbital ;
meanwhile, valence orbitals are double-⇣, i.e., each valence orbital is approximated by a
contraction of 2 Gaussian functions plus 1 extra, providing more flexibility. Subsequently,
the computational cost increases, but there is a certain gain in terms of accuracy. In
the last three decades a plethora of multiple-⇣ basis sets have been reported, sometimes
tailoring them to specific sets of compounds or properties. In case of periodic systems, the
same kind of basis set can be employed in order to obtain the crystalline orbitals, this time
employing, like in the plane waves framework, the Bloch theorem. Sometimes, basis set
employed to describe atomic species displaying large atomic numbers are approximated
by effective core potentials[39] (ECP). These ECP, similar to the pseudopotential concept
used in plane waves basis set, approximate the core part of the atom by replacing it with an
effective potential, eliminating a large portion of basis function that are otherwise required
to properly simulate the system considered, and consequently reducing the computational
cost.
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2.1. Density Functional Theory

2.1.5 Properties Investigated

Band Structure

The reciprocal basic unit of repetition belonging to a periodic systems is called Brillouin
zone (BZ). The elements of symmetry that are characteristic of the BZ represent the
irreducible part (IBZ), whose characteristic vectors are usually referred as ~k. To obtain
the density and total energy, it is necessary to solve continuous integrals at, in principle, an
infinite number of ~k-points. Nonetheless, to solve the resulting integrals, the discretization
of the ~k-space to only few ~k-points is necessary, rewriting the integrals as a weighted sum

X

n

Z

BZ

d3kF (k) ⇡
X

k

[!(k) · F (k)] (2.26)

where !(k) are the weights containing the effects of symmetry that must sum up to 1,
and F (k) is a lattice periodic function. The resolution of this expression is related to the
sampling of the BZ for a small number of ~k-points, finding their integration weights, and
resolving the DFT equations at these selected ~k-points. Generally, the simpler manner
to achieve this is by using an even-space integration grid of ~k-points along the directions
of the reciprocal lattice vectors. In general, the ~k-points mesh, depending on the system
considered, needs to be tested, in order to achieve the best compromised between com-
putational cost and accuracy. As mentioned above, periodic systems allows to effectively
exploit the Bloch theorem. In this sense, the eigenfunction of the one-electron Hamiltonian
can be expressed as

�(x) =
X

k

Ak�k(k) =
X

k

Ake
ikxuk(x) (2.27)

where Ak are constants. The one-electron wavefunctions can be labelled by a constant k,
which represents the wave vector in the Bloch functions. The energy plot vs. k that is
subsequently derived is known as band structure. Alternatively, band structure path of a
specific system can also be defined exploiting Group Theory (GT). The approach of the
GT is only here briefly discussed. Group Theory is a mathematical branch that studies the
so called Groups, where a group is an algebraic structure characterized by an associative
binary operation, equipped with a neutral element, for which every element belonging
to the structure owns an invert element. Various physical systems, such as crystals and
the hydrogen atom, can be modeled by symmetry groups. Band structure diagrams are
like maps and the group theory notations are like symbols on the map. Understanding
symbols means exploring the electronic properties of the material under investigation.
Special high symmetry points in the BZ are labelled as, e.g., Γ, ∆, etc., according to the
unit cell symmetry in the reciprocal space. Energy bands allows to explore and classify
the nature of the gaps in crystalline solids, namely

– indirect band gap: the closest states found right above and below the band gap that
do not share the same k vector;

– direct band gap: the closest states found right above and below the band gap that
share the same k vector.
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2.1. Density Functional Theory

Density of States

The density of states (DOS) of a system describes the number of energetic states that are
available to the electrons. The DOS at a certain energy level E is equal to the sum of the
energy levels between E and E+dE with respect to the energy interval dE

DOS(E) =
1

Nk

X

i,k

�(✏i,k � E) (2.28)

while the DOS per unit of volume Ω in extended systems is

DOS(E) =
Ω

(2⇡)d

Z

BZ

dk �(✏i,k � E) (2.29)

In the independent-particles states, the equations above represent the number of indepen-
dent particles states per unit of energy, where ✏i,k represents the energy of an electron. The
DOS can be obtained once the orbitals of the system are known, allowing to discern the
nature of the material under investigation, i .e., insulator, conductor or semi-conductor.

Equation of State

The equation of state (EOS) is an equation that relates pressure, volume and bulk modulus
of a body. There are several EOS, but the one used in this work is the so-called Birch-
Murnaghan[40, 41], proposed by Birch in 1947 and based on the work of Murnaghan from
the 1944. It is a third order isothermal equations defined as

E(V ) = E0 +K0V0



1

K 0

0(K
0

0 � 1)

✓

V 1�K0

0

V0

◆

+
1

K 0

0

V

V0

�
1

K 0

0 � 1

�

(2.30)

where K0 is the modulus of incompressibility, K 0

0 is the first derivative of K0 with respect
to the pressure, V is the final volume and V0 is the volume not compressed. If the reduction
of volume under compression is low, i.e., for V

V0

greater than 90%, the Murnaghan equation
can model experimental data with satisfactory accuracy.

Infrared- and Raman Spectra

Nowadays, computational spectroscopy can complement experimental spectroscopy to de-
termine the nature of of some systems of interest. In general, infrared- and Raman
spectroscopy[42] occupy a prominent role in material science study, due to their ver-
satility and reliability. The IR and Raman simulations, despite the prediction power,
cannot unfortunately reproduce in full details the experimental spectra, due to the intrin-
sic approximations that are made in the implementation of the techniques in the codes.
as it will be explained below. Nonetheless, these two complementary methodologies are
extremely useful when investigating the properties of molecules and solids. Within the
Born-Oppenheimer (BO) framework, where electronic and nuclear motions are decoupled,
the potential energy surface represents the sum of many electronic energy contributions
for many nuclear conformation

EPES(R) = V̂NN + Ee(R) =
M
X

A=1

M
X

B>A

ZAZB

rAB

+ Ee(R) (2.31)
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2.1. Density Functional Theory

where EPES(R) is the total energy of the system for many nuclear conformations, V̂NN , see
eq. (2.6), is the internuclear repulsion potential operator and Ee(R) the electronic energy
for a set of coordinates R. Once the electronic problem is solved, then the Schrödinger
equation for nuclei can consequently be solved. The nuclear Hamiltonian that is used in
the description of the nuclei motions is

Ĥnuclei = T̂N + EPES = �

M
X

A=1

1

2MA

r2
A + EPES(R) (2.32)

where T̂N is the nuclear kinetic energy. It follows that, within the BO framework, nuclei
are moving on a PES obtained by solving the electronic problem. The solution of Ĥnuclei

is Ψnuclei(R), which describes the motion of nuclei like vibration, rotation and translation.
Generally, the complete PES is unknown since only a small fraction of the electronic energy
terms is estimated as a function of the coordinates position q; despite this limitation,
what is exactly known, at the end of a geometrical optimization, are indeed the atomic
coordinates for which the first derivative of the potential term with respect to the position
is 0, that is

@EPES

@q1
=
@EPES

@q2
= ... =

@EPES

@qn
= 0 (2.33)

This conditions assures that the optimization has converged in a minimum of the PES,
which might be local or global, despite not knowing the real for of the PES. Thus, to
obtain an expression to use in the nuclear Hamiltonian, several approximation needs to
be accounted, the most important of which is the harmonic approximation one.

In IR spectroscopy, the main phenomenon of interest is the vibrational motion of a chemi-
cal bond. Considering the simplest case of a biatomic molecule, where its equilibrium bond
distance is req corresponding to the energy minimum of the system, the Taylor expansion
of potential energy term EPES(r), rewritten as U(r) for convenience, is

U(r) = U(req) +
dU

dr

�

�

�

�

r=req

(r � req) +
1

2!

d2U

dr2

�

�

�

�

r=req

(r � req)
2 + ... (2.34)

if the value of U(req) is equal to 0, knowing that for r = req the minimum of the PES is
found and that, as a consequence, the first derivative is also equal to 0, it follows that the
first two terms of the Taylor series go to 0. The truncation at the second order term of
eq. (2.34) is a parabolic curve

U 0(r) =
1

2

d2U

dr2

�

�

�

�

r=req

(r � req)
2 (2.35)

where

k =
d2U

dr2

�

�

�

�

r=req

(2.36)

is the force constant. For a general biatomic molecule XY, the Schrödinger equation for
the nuclear motion can be written as

"

�
X

k

1

2mk

r2
k +

1

2

d2U

dr2

�

�

�

�

r=req

(r � req)
2

#

Ψnuclei(R) = Evibr Ψnuclei(R) (2.37)
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2.1. Density Functional Theory

By using the reduced mass term2 m⇤ for the generic biatomic XY molecule, eq. (2.37) can
be rewritten as

"

�
1

2m⇤

d

dr2
+

1

2

d2U

dr2

�

�

�

�

r=req

(r � req)
2

#

Ψnuclei(R) = Evibr Ψnuclei(R) (2.38)

In eq. (2.38) it can be noticed the appearing of the second derivative of the potential
energy term U(req). Reformulating the Schrödinger equation for the nuclear motion that
accounts for the Taylor expansion truncated at the second order can be generalized as

"

�
X

k

1

2mk

r2
k +

1

2
(R�Req)Heq(R�Req)

#

Ψnuclei(R) = Evibr Ψnuclei(R) (2.39)

being R the vector for a generic set of coordinates, Req the set of coordinates at the
equilibrium position and Heq the Hessian matrix, i.e., the matrix of the second derivative
of the potential energy U with respect to the atomic coordinates, evaluated for the equi-
librated geometry. The eigenvalues associated with the wavefunction Ψnuclei provide the
vibrational levels of the system. For a certain vibrational mode m

Em
vibr =

✓

n+
1

2

◆

h!m with n = 0, 1, 2, ... (2.40)

where n represents the vibrational quantum number. The selection rules that hold for the
harmonic approximation allow for transitions to occur with ∆n = ±1, that translate in a
vibrational energy equal to

∆Em
vibr = h!m (2.41)

where !m is the frequency associated to the vibrational mode m. For a non-linear molecule
of N atoms, there are 3N -6 vibrational modes3, 3N -5 if the molecule is linear. The
eq. (2.39) holds if some conditions are met, specifically

#1 eq. (2.39) is only valid for minima and saddle points, i.e., the IR simulation is valid
only for an optimized geometry, not for an arbitrary non-optimized structure.

#2 The most computationally expensive part of an IR simulation is the estimate of
the Hessian matrix, and it has to be solve at the same level of theory used for the
geometry optimization within the same computational framework (e.g. not mixing
plane waves and all-electron basis set).

#3 The appearing of a single negative frequency in the IR spectrum is symptomatic of
the fact that the structure considered belongs to a transition state (saddle point)
and not a minimum of the PES. On the contrary, absence of any negative frequency
means the system is in a minimum of the PES.

2 The reduced mass term, m⇤, for a biatomic XY molecule is defined as

�
X

k

1

2mk

r2

k = �

✓

1

2mA

d2

dr2
+

1

2mB

d2

dr2

◆

= �
1

2

mA +mB

mAmB

d2

dr2
= �

1

2m⇤

d2

dr2

3 Each non-linear molecule composed on N atoms has 3N degrees of freedom, six of which are translation
and rotations of the molecule itself.
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4 The selection rule ∆n = ±1 is only valid for the harmonic approximation; this
translates on the fact that, in calculated spectra, some peaks might be missing with
respect to the real one.

The intensity (I) of the peaks in a simulated IR spectrum is proportional to the square of
the transition dipole moment µ as

I / |µm|2 (2.42)

which, in turn, it can be approximate as

µm =
dµ

dq

Z

Ψ
exqΨgrdq (2.43)

where Ψ
ex and Ψ

gr are the wavefunctions for the excited- and ground-state configuration,
respectively. As such, the intensity I is strongly dependent upon the transition dipole
moment variation of the system associated to the same vibration. A vibration that does
not change the transition dipole moment will result inactive in the IR. Computationally,
the intensity of the IR vibrational are estimated by calculating the second derivative of the
energy w.r.t. the nuclear motion and an external electric field F , since the dipole moment
is the first derivative of the energy w.r.t. F

IIR /

✓

dµ

dq

◆2

! I /

✓

d2U

@F@q

◆2

(2.44)

A complementary technique to the IR is the Raman spectroscopy, where the selection rule
requires that the polarizability ↵ of the system must change during the vibrational motion.
The intensity of the Raman spectra requires the calculation of the third derivative of the
energy w.r.t. nuclear motion and the electric field F
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◆2

! I /
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where ↵ =
@2U

@F 2
(2.45)

The Supercell Approach

The supercell method is a ubiquitous method for studying solid-state system in the periodic
boundary conditions approach. This is particularly useful when considering the formation
of doped systems or systems with defects, vacancies etc.. This approach allows to reach,
on one side, a more realistic picture of the compound under investigation, resembling the
experimental arrangement of the material; this is particularly useful when the doping or
the defect formation are found experimentally to be in the very low concentrations. On the
other hand, when applying the supercell approach, defects and doping species are found at
sufficiently long distances to not interact with each other, and this is extremely important
to model realistic conditions. In this work the supercell approach will be employed to study
the doped structures of BaTiO3 at 25% and 50% respectively, giving the chance to highlight
similarities and differences between the structures and the subsequent modifications that
the doping species induce.
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Chapter 3

Computational Investigation of BaTiO3

The computational investigation of solid-state system requires to benchmark some param-
eters, in particular when dealing with periodic codes based on plane waves. The study
hereby presented is based on the comparison, in terms of structural and electronic prop-
erties, obtained by employing the plane wave Quantum Espresso v.7.0 code[43, 44] (open
source), mainly developed at the Scuola Internazionale di Studi Avanzati (SISSA) with
respect to the proprietary CRYSTAL14[45, 46], developed at the University of Torino,
which instead is based on GTO basis set.
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3.1. Accuracy and Convergency Tests

3.1 Accuracy and Convergency Tests

The key goal of the convergence tests is to assess the best set of parameters to employ in
the simulation to achieve a good compromise between computational cost and accuracy.
In this work, this analysis is partially carried out on the inputs of the Quantum Espresso
code. The selected structure for testing purposes is the unit cell of the cubic BaTiO3,
downloaded from The Materials Project Repository repository1.

Table 3.1: Fractional atomic coordinates of the pristine cubic BaTiO3 system.

Atom X Y Z

Ba 0.0 0.0 0.0
Ti 0.5 0.5 0.5
O 0.0 0.5 0.5
O 0.5 0.0 0.5
O 0.5 0.5 0.0

The fractional atomic coordinates of the BTO system are reported in table 3.1, with the
a = b = c lattice parameters equal to 4.036 Å, while ↵ = � = � = 90�. The space
group, as already mentioned above, is Pm3̄m. The crystal system has been refined by
means of the XRD diffractometry and scanning electron microscopy[47]. The benchmark
is performed by employing the PWscf ToolKit2, a code that interfaces with Quantum
Espresso allowing to operate a systematic change of a parameter at a time, so that to
systematically investigate the influence of the same with respect to the system considered.

Convergence test of the lattice parameter

The lattice parameter of the cubic BaTiO3 is made varying in the around of the reference/-
experimental one, keeping fixed the atomic positions. The resulting total energy vs lattice
parameter plot, see fig. 3.1, provides a reasonable guess on the equilibrium lattice param-
eter that should be expected after convergence. The dataset forming the classic parabolic
trend of these graphs can subsequently be fitted with a Birch-Murnaghan equation of
stateeq. (2.30), which will provide a guess for the Bulk modulus to be later compared
with experiment. The resulting plot, fig. 3.1, for BaTiO3 shows that the minimum of the
parabola is set around ⇠3.9 Å, as expected. As such, the lattice parameter highlighted
with the yellow star is the our choice for all the subsequent calculations.

1 Last access performed on February 2022 at https://materialsproject.org/materials/mp-2998/
2 http://pwtk.ijs.si/index.html
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Figure 3.1: Total energy vs. lattice parameter variation. The yellow star shows the
selected value for the BaTiO3 system

Convergence test of the kinetic energy cutoff

Convergence test for the energy cutoff employed for the ONCV pseudopotentials[48, 49].
This test is performed by keeping fixed the lattice parameter to an ideal value obtained
from step (1), while the kinetic energy cutoff is made varying from low (30 Ry) to high (90
Ry) values and plot against the corresponding total energy of the system. From fig. 3.2
it can be seen that the asymptotic behavior is reached at around 60 Ry. This value,
highlighted with a yellow star in the fig. 3.2, was selected for the whole set of calculations
reported in this work done via QE.
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Figure 3.2: Total energy vs. Ecut variation. The yellow star display the selected
value to employ.
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3.1. Accuracy and Convergency Tests

Convergence test on the ~k-points

This test is performed to evaluate which is the smallest integration grid that should pro-
vide accurate data at a reasonable computational cost. The plot in fig. 3.3 shows that
convergence is basically achieved with a 4x4x4 grid, equivalent to 10 ~k-points. The use of
a larger number of ~k-points would make the calculation increasingly expensive with little
gain in terms of accuracy. As such, the 4x4x4 grid is selected for the actual study of BTO.
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Figure 3.3: Total energy vs. ~k-points. The star shows the selected point, corre-
sponding to a 4x4x4 grid.

3.1.1 Gaussian Type Orbitals

The selection of the GTO basis set for the Crystal14 code is mainly based on the reference
literature available for the study of BaTiO3 and related systems. Specifically, a non-
exhaustive collection of all-electron and effective core potentials (ECP) are available at
Crystal - Basis Set Library3. In case of the BTO, optimized all-electron and ECP basis
set are currently available.

3 https://www.crystal.unito.it/basis-sets.php
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3.1. Accuracy and Convergency Tests

3.1.2 Summary of the Computational Settings

Quantum Espresso - Plane Waves basis set code

The DFT simulations with the plane waves basis set have been performed by employing the
Quantum Espresso[43, 44] suite of code, version 7.0. The Perdew-Burke-Ernzerhof (PBE)
approximation is used for the exchange and correlation functional terms. The ONCV
norm-conserving pseudopotentials are employed for the atomic species, with a kinetic en-
ergy cutoff of 60 Ry. To improve the convergence, the Marzari-Vanderbilt "cold" smearing
parameter of 0.015 Ry is employed. The structural relaxations for the lattice and atomic
positions are converged when forces are found below than 10�6 Ry/Bohr, with the elec-
tronic total energy differences of 10�8 Ry. While the pristine BaTiO3 is modeled as a single
unit cell, the doped structures are modeled throughout a supercell approach, by expanding
the optimized 1x1x1 unit cell in a 1x1x2 (for the 50% doped systems) and 1x2x2 (for the
25% doped crystals), respectively. The supercells are then subsequently re-optimized in
order to equilibrate the forces induces by the substitution of the Strontium and Tin atoms
in spite of Barium and Titanium ones, respectively. The electronic structure properties,
i.e., DOS and band structure, of the 1x1x1 cell and 1x1x2 and 1x2x2 supercells are then
studied both at PBE and PBE04 (hybrid functional) level of theory[50, 51].

CRYSTAL14 - Gaussian Type Orbitals basis set code

The DFT calculations based on the all-electron basis set and effective core pseudopoten-
tials have been performed by employing the CRYSTAL14[45, 46] package, using both the
PBE and hybrid PBE0 functionals. The former functional is used, once more, for the
optimization of the same set of structures reported above, while the latter functional for
the calculation of the corresponding electronic properties, that is DOS and band struc-
ture. In all the calculations the atomic centers are described by the ones developed and
tested by Baranek and co-workers[52] for the BTO, where the Oxygen and Titanium are
all-electron, while the Barium is Hay-Wadt small-core pseudopotential (ECP)[53–55]. The
electronic integration is performed by using a 8x8x8 Monkhorst-Pack[56] ~k-point mesh for
the pristine and doped supercells. The accuracy of the Coulomb and exchange integrals
calculations is controlled by setting the threshold to 8, 8, 8, 8, and 16 values, while the
remaining set of parameters for the geometrical convergence is kept to 10�4 for maxi-
mum gradient, 5x10�5 for root-mean square of the gradient, 2x10�4 for both maximum
and root-mean square of the displacement, respectively. In all cases, the both the lattice
parameters and atomic positions are optimized at PBE level.

4 The PBE0 hybrid functional mixes Hartree-Fock exchange energy (EHF
x ) with PBE exchange energy

(EPBE
x ) in a 1:3 ratio, along with the full PBE correlation energy (EPBE

c ) as

EPBE0

xc =
1

4
EHF

x +
3

4
EPBE

x + EPBE

c

25



3.1. Accuracy and Convergency Tests

The thesis presented here, as already mentioned, is an explorative work for assessing the
quality in the use of the plane waves vs. GTO basis sets. The use of the PBE functional for
investigating both the structural and electronic properties, the latter ones compared with
the results at a hybrid level (i.e., PBE0), are then intentional. The author is aware of the
fact that GGA functionals underestimate the band gap in solids due to self-interaction,
which in PBE0 is partially compensated by introducing a fix amount of exact exchange.
Despite the intrinsic limits that PBE presents, it is still probably one of the most popular
functionals in use today and, for the goals outline in the introductory part, it fully satisfies
our requirements. More detailed investigations are already ongoing in order to refine the
computational settings and methods to properly study the class of systems presented in
this work, by making use, for instance, of other hybrid functionals like B3LYP.
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3.1. Accuracy and Convergency Tests

3.1.3 Optimized BaTiO3 Unit Cell

The optimization of the BTO unit cell performed with QE and CRYSTAL displays sim-
ilarities and differences that might be recasted to the different basis set employed in the
two codes. Specifically, table 3.2 summarizes the optimized structures at PBE level of
theory calculated in this work, the experimental value and previously reported values, and
the resulting percentual error5 (PE)

Table 3.2: The relaxed structures of the cubic BTO obtained in this work compared
to the experimental data and prior theoretical results from literature and correspond-
ing percentual errors.

Phase Source Lattice Constant a (Å) PE %

Cubic Exp.[57] 4.000 -
This Work - PW 3.934 -1.650

This Work - CRY14 4.179 4.475
[58] 4.000 0.000
[59] 4.030 0.750
[60] 4.006 0.150
[61] 3.943 -1.425

It can be observed that, while in the case of the plane waves basis set the lattice pa-
rameter a is of the same order of 3.943 Å as reported by Ghosez and co-workers[61], and
only slightly underestimated the experimental value. Meanwhile, the results for the lattice
parameter obtained via GTO basis set seems to overestimate and expand the unit cell of
⇠ 4.5 %. This cell expansion can be related, in first approximation, to the formulation of
the GTO basis set that leads to potential dispersion effect arising from the outers shells of
the GTO basis used for Ba, Ti and O. Despite these differences, it can be seen the order of
magnitude of the lattice parameter is capture within the 5% error of accuracy. The average
Ba-Ti distance in the PW optimized structure is 3.407 Å, while for the GTO optimized
one is 3.619 Å, with a difference of 0.2. The same difference is found if considering the
average distance between Ba (0,0,0) with respect to O (0,1

2
,0). Due to these geometrical

distortion arising from the two methods, it can be expected the electronic properties will
also be partially affected.

5 The percentual error is estimated as

(Calculate Value � Reference Value)

Reference Value
⇤ 100
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3.1. Accuracy and Convergency Tests

3.1.4 Band Structure

The band structures plot for the BTO system have been calculated with both methods and
compared, as reported in fig. 3.4. The same format of the images is also used for the doped
cells. Specifically, the band structure calculated via plane wave pseudopotential method
displays the valence band with black- and the conduction one with dashed-orange lines,
respectively. The projection onto the corresponding DOS is also shown for completeness.
The red and green lines identifie the VBM and CBM, respectively, and the corresponding
band gap is highlighted in purple. Conversely, because the use of CRYSTAL14 is tightly
linked to the used of a specific visualization software (CRYSPLOT) for the post-processing
analysis of the output files, the rendering of the corresponding band structure is lower.
Despite this, the distribution of the valence and conduction bands are clear and they can
be compared with the counterpart from Quantum Espresso.
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Figure 3.4: Left - Band structure calculated with the plane waves PW method.
Right - Band structure calculated with the GTO basis set.

At first, by analyzing the two band structure plots, it can be seen that both present the
same trend for the few bands right below the VBM and right above the CBM, with respect
to the chosen ~k-path Γ -X-M -Z-R-A. While from these plot is it not possible to elucidate
the different contributions coming from the different atomic species, nonetheless a direct
comparison with reported literature can help to interpret them.

Figure 3.5: Electronic band structure of cubic BTO along different high symmetry
point as taken from Ghosez[61]

The band structure depicts the distribution of the energies as function of the different
atomic contributions. It can be seen that the conduction band major contribution comes
from the 3d orbitals of Ti4+ atom, while the valence band is mainly generated by the 2p
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3.1. Accuracy and Convergency Tests

orbitals of the oxygen atoms, as reported by Ghosez in fig. 3.5. More detailed analysis
have demonstrated a partial hybridization between the O 2p and Ti 3d orbitals in these
systems, which is reflected on the Ti charges that oscillates between 2.5 to 3. Pertosa[62]
instead found that Ba has only a minor contribution to the band structure distribution,
mainly influencing the interactions at a deeper energetic level. The estimate of the band
gap is not unique because it depends on the initial reference ~k-path provided in the sam-
pling of the reciprocal space. In the both the plane waves and GTO calculation carried
out in this work the following coordinates for the high-symmetric ~k-points are used: Γ

(0,0,0), X(1
2
,0,0), M(1

2
,1
2
,0), Z(0,01

2
), R(1

2
,0,1

2
) and A(1

2
,1
2
,1
2
), and these might differ with

respect to those reported by Ghosez and co-workers. For sake of completeness, in table 3.3
are reported the whole set of relevant band gaps estimated with the two methods here
employed.

Table 3.3: Band gaps calculated for BaTiO3 at PBE level of theory for different
high-symmetry ~k-path points.

Source Type of Gap ~k-path Gap (eV)

This work - PW Indirect M!Γ 1.99
This work - PW Indirect R!Γ 1.99
This work - PW Direct Γ!Γ 2.02

This work - CRY14 Indirect M!Γ 1.84
This work - CRY14 Indirect R!Γ 1.84
This work - CRY14 Direct Γ!Γ 1.97

Ghosez and co-workers reported an indirect R!Γ band gap of 1.72 eV and a Γ!Γ direct
one of 1.84 eV, but at a LDA level of theory, which generally performs even worse w.r.t.

GGA. However, the ratio between indirect and direct gaps, within the same methodology,
is equal to ⇠0.9 in all the cases, proving that the results here presented are aligned with
those reported in literature. It can be noted from table 3.3 that, despite the 0.2 eV differ-
ence in M!Γ and R!Γ between PW and GTO basis set, the values are consistent among
them, that is, it should be a warning that the comparison between different methodologies
can be dangerous and misleading if not correctly handled. The direct comparison with
experiment cannot be done at this level of theory due to DFT misfit6. The actual experi-
mental value for the band gap that is generally accepted for pristine BaTiO3 is set to 3.2
eV, as estimate by Wemple[63], and it is attributed to the direct Γ!Γ point.

6 The discrepancy only involves excitation energies, but it does not influence the accuracy obtained for the
ground-state properties.
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3.1. Accuracy and Convergency Tests

3.1.5 Density of States

A complementary analysis carried out to show similarities and differences not only between
PW and GTO, but also between GGA and hybrid functionals (within the method), is the
plotting of the DOS normalized with respect to the intensity, as reported in fig. 3.6.
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Figure 3.6: Left - DOS calculated at PBE and PBE0 level of theory with PW.
Right - DOS calculated at PBE and PBE0 level of theory with GTO. In both cases
the blue line and grid highlight the PBE DOS and the corresponding gap; the same
happens for the black line and grey area, which instead put in evidence the PBE0
DOS and corresponding gap.

The corresponding PBE band gaps are also obviously found here. What is instead inter-
esting to notice is how the gap opens up when using the PBE0 functional in both cases,
with a gap of 3.67 eV for the PW case and 3.93 eV for the GTO ones. The 0.3 eV difference
between the two depends upon the implementation of the functional and, once more, on
the difference formulations for the basis set employed. In both cases the gaps, if compared
with the experimental one of 3.2 eV reported by Wemple, is overestimating it, a behavior
found also in case of the B3LYP functional as reported by Piskunov and co-workers[59],
where they adopted an older version of CRYSTAL code, i.e., CRYSTAL09[64]. In this
sense, the PW approach performs slightly better. The careful comparison of the PBE0
results shows that, in the case of the PW approach, two small peaks can be detected,
one at 0 eV and the other centerer at 4 eV, respectively. These two small peaks might
be the result of the introduction of the exact exchange throughout the PBE0 functional.
Unfortunately, due to some missing terms in the original ONCV pseudopotentials used
in this work, the projection of the single contributions to each band is not available at
the moment. This lack of information is also valid for the doped cells. A more detailed
analysis is already ongoing on this aspect.

30



Chapter 4

BaTiO3-doped System

In this chapter the results for the doped structures of BaTiO3 with strontium (Sr) and
tin (Sn) are presented. In particular, the systems considered here feature a 25% and 50%
doping for both Sr2+ and Sn4+. In this chapter firstly the data for the Sr doping are
presented, then it follows the presentation of the data for the Sn doping, respectively.
Specifically, for each doped system, a comparison between structural optimized parame-
ters, band structures and density of states will be presented and commented and, whenever
possible, compared with the available experimental or theoretical data from literature.
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4.1. Ba(0.50)Sr(0.50)TiO3

4.1 Ba(0.50)Sr(0.50)TiO3

The doping of BaTiO3, and systems of formula ABO3 resembling the perovskite, has
found great interest over the years due to the possibility of manipulating structural and
electronic properties which might have an enormous repercussion on industry and, in
general, technology. That is, the solid solution of BaTiO3 with SrTiO3 results in the
barium strontium titanate, which is thought to be a promising material for its dielectric
properties. The tuning of the mole ratio between Ba and Sr can fine tune several properties
meeting a variety of applications that can range from capacitors to phase shifters and else.
Both the starting structures feature a cubic phase at high temperature, facilitating the
substitutional process. The doping procedure is done by means of the supercell approach.
The optimized BTO unit cells obtained with PW and GTO basis set are expanded as
1x1x2, containing each one 10 atoms, as shown in fig. 4.1. The Ti4+ atoms are coordinates
with 6 oxygen atoms, which produces an octahedral TiO6 cluster. At the same time, Ba
and Sr are coordinated with 12 O atoms, which results in a BaO12 and SrO12 clusters. The

a) b) c)

1x1x1

1x1x2 1x2x2

Figure 4.1: Schematic representation of the propagation of the BaTiO3 (a) unit
cell to build up the (b) 1x1x2 and (c) 1x2x2 supercells.

analysis of the lattice parameters optimized for the lattice constant of the 1x1x2 supercells
shows that the one from GTO overestimate of about 4.3% the experimentally determined
value. On the contrary, the cell optimized at the same level of theory with plane waves
basis set shows a compression of ⇠-1.5% with respect to the experimental lattice. Both the
calculations are in agreement with the experimental results, although it might be expected
that the GTO ones could be further refined.
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4.1. Ba(0.50)Sr(0.50)TiO3

Table 4.1: The relaxed structures of the Ba(0.50)Sr(0.50)TiO3 1x1x2 supercells ob-
tained in this work compared to the experimental data, prior theoretical results from
literature and corresponding percentual errors

Phase Source Lattice Constant a=b (Å) PE %

Cubic Exp.[65] 3.957 /
This Work - PW 3.898 -1.491

This Work - CRY14 4.127 4.296
[65] 3.939 -0.455

 PW GTO 

 

Figure 4.2: Plane waves (PW) and Gaussian Type Orbitals (GTO) optimized
structures of the 1x1x2 supercell of Ba(0.5)Sr(0.5)TiO3.

The detailed analysis of the optimized structures reported in fig. 4.2 marks similarities
and differences between the two computational method employed. Specifically, analyzing
the Ti-O bonds, it can be noticed that in both cases (PW and GTO), in the surrounding
of the Sr atom the stretching of Ti-O bond on one side and the complementary elongation
from the opposite one occurs, with current values as 1.983 Å to 1.913 Å for the PW case,
and 2.117 Å to 2.010 Å in the GTO one. These differences in the Ti-O bonds generate a
"compressed" octahedral cluster, with Ti atoms in the center. Notice that the unaffected
Ti-O bond is of the order of 1.949 Å. Despite the fact that the GTO supercell displays
larger values of bonds, the influence of the doping species can still be properly accounted.
A general analysis of the other interaction with the cells shows that, in average, the Sr-Ti
bond distances are 3.355 Å for PW and 3.544 Å for GTO. The complete list of relevant
bonds is reported in table 4.2, with the corresponding percentual error1 between them. It
can be seen that the GTO method tends to overestimate the bond of approximately 5.1%

1 The percentual error is estimated as

(GTO value � PW Value)

PW Value
⇤ 100
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4.1. Ba(0.50)Sr(0.50)TiO3

to 6.8%, with respect to PW.

Table 4.2: Comparative table of the most important bond distances obtained by
using PW and GTO methods and corresponding percentual errors.

PW GTO PE
Bonds (Å) (Å) (%)

Ti-O 1.949 2.063 5.849
Ti-O 1.983 2.117 6.757
Ti-O 1.913 2.010 5.071
Ba-O 2.756 2.919 5.914
Sr-O 2.756 2.919 5.914
Sr-Ti 3.355 3.544 5.633
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4.1. Ba(0.50)Sr(0.50)TiO3

4.1.1 Band Structure

The band structure investigation of the system with both PW and GTO shows approxi-
mately the same behavior at the upper energy levels of the VBM and CBM, respectively.
In the PW band structure the gap is highlighted with a purple horizontal bar, separating
the valence band (black lines below 0 eV) from the conduction band (orange-dashed lines)
found above 0 eV. The contributions to the single energy levels cannot be distinguished
neither in the PW case not in the GTO one. However, the introduction of the Sr atom in
such high percentage is believed to promote some intermediate electronic levels that might
mix with the Ba ones at a deeper energy level. On the other hand, from the structural
analysis, it could be observed that introducing Sr at 50% doping has a direct impact on
the local structural arrangement of the BaTiO3 supercell, which will be reflected on the
its electronic structure. Whilst the ~k-path is defined in the same way in both PW and
GTO cases, the projection of the bands displays that, in the former case the indirect gap
is found between R!Γ , while in the latter between M!Γ . The corresponding values are
1.96 eV for PW and 1.78 eV for GTO.
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Figure 4.3: Left - Band structure calculated with the plane waves PW method.
Right - Band structure calculated with the GTO basis set.

Instead, the direct Γ!Γ gaps are found to be 2.15 eV in PW and 1.97 eV for GTO, respec-
tively. The energy difference can be related to the two computational method employed
and the used basis set. This is important to consider when comparing similar results.
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4.1. Ba(0.50)Sr(0.50)TiO3

4.1.2 Density of States

The computational investigation performed via DOS analysis of the system shows that the
use of the GGA vs. hybrid PBE0 functional, as already demonstrated for the unit cell of
BaTiO3, opens the gap up. A gap of 1.96 eV and 1.78 eV is found at PBE level for the PW
and GTO methods, respectively, while using the PBE0 a gap of 3.57 eV and 3.65 eV can
be reported. The values obtained at a hybrid level of theory are in agreement with respect
to literature[65], this one obtained at B3LYP level, of 3.73 eV. The atom-resolved DOS
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Figure 4.4: Left - DOS calculated at PBE and PBE0 level of theory with PW.
Right - DOS calculated at PBE and PBE0 level of theory with GTO. In both
cases the blue line and grid highlight the PBE DOS and the corresponding gap;
the same happens for the black line and grey area, which instead put in evidence
the PBE0 DOS and corresponding gap.

Figure 4.5: Atom-resolved DOS for the BTO system[65].

from Oliveira and co-workers[65], see fig. 4.5, clearly shows that contribution to the energy
levels of Sr is found at deeper energy levels which in general have little to no influence on
the valence band. The VBM and CBM are mainly generated by the 2p and 3d orbitals of
O and Ti atomic species, as already reported in the case of pristine BTO. The key point
to keep in mind here is that, despite the little influence at the electronic level that Sr
displays, structurally its presence might have an important repercussion, especially with
respect to the bulk properties of the system that here are not considered.
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4.2 BaTi(0.50)Sn(0.50)O3

Similarly to the previous case, the substitution of one Ti4+ with one Sn4+ at 50% is of
interest for the assessment of the computational methodology. The system optimized at
PBE levels both with PW and GTO basis set are reported in fig. 4.6. As found in the
case of the Ba(0.5)Sr(0.5)TiO3, the GTO bond distances are found to be larger with respect
to the PW calculated ones, with a general trend that oscillates between 5.0 to 7.6%. The

 PW GTO 

 

  

Figure 4.6: Plane waves (PW) and Gaussian Type Orbitals (GTO) optimized
structures of the 1x1x2 supercell of BaTi(0.5)Sn(0.5)TiO3.

list of the most important bond distances and corresponding percentual errors2 that can
drive the characterization of the doped system are reported in table 4.3. At first, it can
be noticed that in both PW and GTO structures the oxygen bonds perpendicular to Sn4+

atom and connecting to the following Ti4+ tend to get stretched with respect to the ones
not directly linked to Sn. This structural modification induces the formation of SnO6

clusters with larger volume of the titanium-based ones. The expansion of the cell can be
ascribed to the difference in the atomic radius between Sn4+ and Ti4+, being equal to
0.690 Å and 0.605 Å, respectively.

2 The percentual error is estimated as

(GTO value � PW Value)

PW Value
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Table 4.3: Comparative table of the most important bond distances obtained
by using PW and GTO methods and corresponding percentual errors

PW GTO PE
Bonds (Å) (Å) (%)

Ti-O 1.994 2.140 7.322
Ti-O 1.923 2.025 5.304
Sn-O 1.994 2.140 7.322
Sn-O 2.056 2.225 8.220
Ba-O 2.820 3.027 7.340
Ba-Sn 3.482 3.740 7.410

4.2.1 Band Structure

The band structure analysis of the BaTi0.50Sn0.50O3 reveals a more complex interplay of
the energy levels with respect to the strontium doped one. This is partially caused by the
potential localization of the 4d orbitals of the Sn on the conduction band, as highlighted
from literature[65]. At a careful inspection of the band structures plots, fig. 4.7, for the
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Figure 4.7: Left - Band structure calculated with the plane waves PW method.
Right - Band structure calculated with the GTO basis set.

CBM Γ -X for both the Sr- and Sn-doped systems at 50%, it can be noticed that while for
the former case the band is practically flat, on the latter it has a quasi-parabolic shape.
Based on the relation between the effective mass of the charge carries and band curvature,
in first approximation it can be speculated that the electron-hole recombination is more
effective in the Sn-doped system rather than in the Sr-doped one[65]. This is due to the
fact that a broader band induces a larger effective masses and, in turn, reduces the charge-
carrier mobility, while a highly-localized minimum point can reduce the effective mass and
hence, increase the mobility. As such, the different shapes of the CBM of the Sn- and
Sr-doped systems can already at this preliminary stage of the study suggest which of the
two (Sn-doped) is more likely to be a promising material for electron-optical application.
The indirect gaps of the two systems are found for R-Γ = 2.07 eV in the case of PW and
M -Γ = 2.05 eV in the case of the GTO one, meanwhile the Γ -Γ gap reported for both the
system is equal to 2.24 eV for PW and 2.34 eV for GTO. The indirect gaps are found at
different high-symmetry points like in the Sr-doped case because, while in the PW system
the path is manually set throughout a punctual selection of the ~k-points in the reciprocal
space, in the GTO software, once defined the points, they are mapped with respect to
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tabulated data which might slightly differ. In turn, the information that is provided in
both cases is the same, and as usual, the comparison is for qualitative purposes.
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4.2. BaTi(0.50)Sn(0.50)O3

4.2.2 Density of States

Similarly to the Sr-doped system at 50%, the BaTi(0.50)Sn(0.50)O3 DOS comparison between
PBE and PBE0 functionals highlights the impact that the level of theory can have on the
determination of the electronic properties of this class of complex systems, see fig. 4.8. In
particular, the PBE0 gap in both cases differs of 0.04 eV, being the gap with PW at PBE0
equal to 3.81 eV and with GTO 3.85 eV, respectively.
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Figure 4.8: Left - DOS calculated at PBE and PBE0 level of theory with PW.
Right - DOS calculated at PBE and PBE0 level of theory with GTO. In both
cases the blue line and grid highlight the PBE DOS and the corresponding gap;
the same happens for the black line and grey area, which instead put in evidence
the PBE0 DOS and corresponding gap.

Figure 4.9: Atom-resolved DOS for the Sn-doped system[65].

The single contributions to the DOS have been previously investigated for a similar system
presented here, where also the strontium atom is accounted at the same time. The atom-
resolved projection on the DOS in fig. 4.9 shows that, first of all, Sr does not practically
contribute in any case to the valence and conduction bands at all, having only a minor
effect on the core electrons. The conclusions derived on the previous section for the Sr-
doped BaTiO3 system at 50% are still valid in this case. Interestingly, it can be observed
that tin has instead a non-negligible contribution in the conduction band in particular,
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thus corroborating the analysis done for its direct influence on the resulting band structure
of the system.
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4.3 Ba(0.75)Sr(0.25)TiO3

The study of models at high doping percentages as presented till now is helpful to set the
bases on top of which more realistic models can be built. This is the case for both Sr- and
Sn-doped systems presented till now. While in the previous sections the limiting cases for
50% doping was reported, now more realistic structures are going to be presented and their
structural and electronic properties discussed. Following the same order of appearance, in
this section the BaTiO3 doped at 25% with Sr is reported, see fig. 4.10. To achieved this
stoichiometric substitution, a supercell propagated along the b and c axis is performed
(1x2x2), starting from the corresponding optimized BaTiO3 unit cell, both for PW and
GTO. The resulting supercells feature four Ti4+ atoms which are six-coordinated, while
both Ba2+ and Sr2+ are twelve-coordinated. The two supercells, once operated the Sr !

 PW GTO 

 

Figure 4.10: Plane waves (PW) and Gaussian Type Orbitals (GTO) optimized
structures of the 1x2x2 supercell of Ba(0.75)Sr(0.25)TiO3.

Ba substitution, have been re-optimized preserving their symmetry. The results show that,
reflecting the 50% doping case, for the GTO larger bonds are obtained, with optimized
cell parameters of a = 4.14 Å and b = c = 8.30 Å with GTO, while for PW a = 3.91 Å
and b = c = 7.83 Å, confirming the tendency that has already been demonstrated above,
that GTO generally displays structural values that are 5-6% larger than PW. The two
structures with the most important bond distances are reported in table 4.4. with the
correspoding percentual errors3. The Sr-O bonds in PW is 2.726 Å and 2.744 Å, while in
GTO they are 2.901 Å in both cases, highlighting that PW is more sensitive to the local
surrounding environment with respect to GTO. This is very important when considering
the local modifications that doping atomic species or defects can have on the resulting
cluster. The average difference between the PW and GTO methods is found to be around
6.0%, in line with previous analysis reported in this work. One of the most important
conclusions on the structural investigation of the 25% substitution of Sr atom in BaTiO3

3 The percentual error is estimated as

(GTO value � PW Value)

PW Value
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Table 4.4: Comparative table of the most important bond distances obtained
by using PW and GTO methods and corresponding percentual errors. Not all
bonds highlighted in are listed in the following table, only the most relevant
ones.

PW GTO PE
Bonds (Å) (Å) (%)

Ti-O 1.956 2.075 6.084
Ti-O 1.939 2.049 5.673
Ti-O 1.972 2.103 6.643
Ti-Ba 3.387 3.595 6.141
Ti-Ba 3.388 3.596 6.139
Ba-O 2.761 2.920 5.759
Ba-O 2.762 2.921 5.757
Sr-O 2.744 2.901 5.722
Sr-O 2.726 2.901 6.420
Sr-Ti 3.370 3.564 5.757
Sr-Sr 3.913 4.151 6.082

is the generation of localized clusters of SrO12 which might are depicted by the Sr-O
bonds in PW, while for the GTO case this is less obvious at a first inspection. However,
the compression of the Sr-cluster in GTO system can be equally deduced by the general
decrease of the bond length between Ba-Ti with respect to Sr-Ti.
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4.3. Ba(0.75)Sr(0.25)TiO3

4.3.1 Band Structure

The band structure of the Ba(0.75)Sr(0.25)TiO3 presents more complex bands population
with respect to the previous cases, this due to the increasing number of atoms required to
generate the supercell. Despite this, it can still be recognized the same band distribution
around the gap, specifically for the VBM and CBM. While the same coordinates for the
~k-path are maintained, obviously the reciprocal structure of the system is different and,
in turn, the reference for the indirect band gap. In fact, in this case, analyzing the PW
band structure, it can be found that the indirect band gap changed from R!Γ to Z!Γ ,
with a corresponding value of 1.98 eV. The same happens to the GTO case, where the
indirect gap moved from M!Γ to X!Γ , whose corresponding value is 1.79 eV. The
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Figure 4.11: Left - Band structure calculated with the plane waves PW
method. Right - Band structure calculated with the GTO basis set.

direct Γ!Γ gaps of the two systems are, at PBE level, 2.15 eV and 1.87 eV, respectively.
The composition of the bands, like for the 50% case, can be ascribed to the 3d of Ti and
2p orbitals of the O, with a contribution coming from the Sr atom that is likely to be
hidden deeper in the energy levels. However, the careful analysis of the Γ!X segment of
the two band structures plot shows that, in both cases, the CBM is almost flat. This is
in line with what discussed before comparing the Sr- vs. Sn-doped systems for the 1x1x2
supercell. This feature is found also at lower content of Sr, that is, it might be expected
that also at these levels of doping the mobility of the charge carriers is lower if compared to
Sn-doped systems. Nonetheless, the 25% presence of Sr can still show promising structural
modifications enhancing the general performances of the systems. With this regards, in
the next future the study of the dielectric properties will also be performed and compared
with experimental values, if available, in order to better depict pros and cons of such
material.

44



4.3. Ba(0.75)Sr(0.25)TiO3

4.3.2 Density of States

The analysis of the density of states performed at PBE and PBE0 levels of theory shows
that, like in the previously reported cases, the hybrid functional open the gap up with
respect to the GGA approximation, see fig. 4.12. The estimate of the gaps at a hybrid
levels shows a certain mismatch between the two approaches here employed, namely PW
and GTO, appears. Specifically, it is shown that, for the 25% Sr doping of BTO, the PW-
PBE0 method predicts a gap of 4.69 eV, while in the GTO case of 3.65 eV. This mismatch
can be related to the problems encountered during the simulation of the PW data, possibly
related to the integration grid used with the ~k-point. Further investigations are already
planned to solve this issue. Conversely, the PBE0 gap found with the GTO-based method
provides a gap that is more aligned with those previously found, at around 3.65 eV.
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Figure 4.12: Left - DOS calculated at PBE and PBE0 level of theory with
PW. Right - DOS calculated at PBE and PBE0 level of theory with GTO. In
both cases the blue line and grid highlight the PBE DOS and the corresponding
gap; the same happens for the black line and grey area, which instead put in
evidence the PBE0 DOS and corresponding gap.

Once more, it was not possibile to distinguish the atom-resolved contributions to the
states due to some limitations in the codes used, however, the data previously reported
fig. 4.5, can still operate as qualitative guide for the correct interpretation of the total
DOS. Because of a more relative presence of Ti and O atoms in a 1x2x2 supercell compare
with Sr, then their contribution to the bands, as discussed in the previous section, becomes
predominant. That is, the 3d orbitals of Ti partially hybridize with the 2p orbitals of the
O, populating the VBM and CBM. As it might be expected by also investigating systems
with higher content of Sr, the contribution of this atomic species to DOS is practically
negligible, even more at lower doping percentages.
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4.4 BaTi(0.75)Sn(0.25)O3

Finally, the last structure analyzed in the benchmarking work presented here is the 1x2x2
supercell of BaTiO3 doped at 25% with Sn4+, see fig. 4.13. Like for the previous case, an
expansion of the optimized unit cell of BTO is first performed, followed by the substitution
of one Sn!Ti, which replaces the center of one of the octahedral clusters forming in the
supercell. The supercells are then optimized in order to minimize the interatomic forces,
as reported in fig. 4.13. The optimized lattice parameters are a = 3.96 Å with b = c =
7.91 Å in the PW case and a = 4.24 Å with b = c = 8.44 Å in the GTO case, confirming
the systematic difference between the two methods. The comparative table 4.5, with

 PW GTO 

 

  

Figure 4.13: Plane waves (PW) and Gaussian Type Orbitals (GTO) optimized
structures of the 1x2x2 supercell of BaTi(0.75)Sn(0.25)O3.

percentual error4 difference between the plane waves and GTO approaches, highlights that
in the surrounding of the Sn4+ atom a general elongation of the bonds occurs, as already
noticed in the 50% doped supercells. This is even more appreaciable when comparing the
shared oxygen atom between Ti and Sn, which is pulled towards Ti. This phenomenon
is also affecting other nearby atoms like Ba. So, contrary to the case of Sr, the effect of
doping with tin generates an expanded octahedral cluster where Sn finds itself to be 6-
coordinated. The most intuitive reason for this structural modification is the ionic radius
difference that is featured by Sn with respect to Ti, the first being equal to 0.690 Å while
the second 0.605 Å.

4 The percentual error is estimated as

(GTO value � PW Value)

PW Value
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Table 4.5: Comparative table of the most important bond distances obtained
by using PW and GTO methods and corresponding percentual errors. Not all
bonds highlighted in are listed in the following table, only the most relevant
ones.

PW GTO PE
Bonds (Å) (Å) (%)

Ti-O 1.915 2.024 5.692
Ti-O 1.919 2.025 5.524
Ti-O 1.989 2.131 7.139
Ti-O 1.969 2.089 6.094
Ti-Ba 3.426 3.659 6.801
Ba-O 2.824 3.017 6.834
Sn-O 2.038 2.195 7.704
Sn-O 1.980 2.1185 7.020
Sn-Ba 3.460 3.703 7.023

4.4.1 Band Structure

Similarly to the 25% Sr doped system, the band structure plot of the BaTi(0.75)Sn(0.25)O3

system at PW and GTO features an indirect gap that is found to be Z!Γ for the PW
case, while it is X!Γ for the GTO one, see fig. 4.14. The corresponding values are 2.07
eV in the first case and 1.26 eV in the second, with a large discrepancy at PBE level of
theory. This difference will be further investigated in the future, refining the calculation
in order to minimize the energy gap difference. The Γ!Γ gap is instead equal to 2.13 eV
with PW and 1.34 eV with GTO.
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Figure 4.14: Left - Band structure calculated with the plane waves PW
method. Right - Band structure calculated with the GTO basis set.

By inspecting the gaps values reported above it might be deduced that a sort of systematic
shift is present between the two computational approaches employed. Nonetheless, it is
has also to be considered that tiny structural differences might have a large impact on the
resulting electronic structure. This particular aspect is going to be further investigated in
the next future. Another key point that will be elucidate in the future for this system is
the nature of the CBM structure, i.e., the difference that is found w.r.t. 50% content at
the PW level. In fact, while in the higher Sn content the X!Γ section of the CBM was
found to show a rather well localized structure, in this case it is flat, resembling the Sr
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doping. This behavior is slightly less clear in the GTO case, which instead shows a rather
intermediate situation. However, from these bands plot it is not possible to conclude, like
in the 50% case of Sn4+, that the system will favor charge carrier mobility.

4.4.2 Density of States

The study of the density of states of the BaTi(0.75)Sn(0.25)O3 shows that in both PW and
GTO cases the PBE0 results to have a major influence on the gap opening, thus fostering
the conclusion that the system is an insulator, see fig. 4.15. In particular, the PBE0 gaps
are found to be more or less in agreement, differently from the previous case of the 25%
of Sr-doped structure, with a value of 3.84 eV for PW and 3.54 eV for GTO. Despite the
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Figure 4.15: Left - DOS calculated at PBE and PBE0 level of theory with
PW. Right - DOS calculated at PBE and PBE0 level of theory with GTO. In
both cases the blue line and grid highlight the PBE DOS and the corresponding
gap; the same happens for the black line and grey area, which instead put in
evidence the PBE0 DOS and corresponding gap.

relatively low content of tin in the system, by comparing with atom-resolved DOS reported
in fig. 4.9, it can be deduced that a small amount to the CBM can be derived from the tin
atom, combined with orbital contributions from oxygen and titanium. A more detailed
analysis of the single contribution will help to further elucidate the role that each atomic
species has and how the doping percentage operate in this sense.
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Chapter 5

Conclusions and Future Challenges

In conclusion, in this explorative work two computational methodologies, both based on
density functional theory (DFT) approach, have been used and applied to the same set of
systems, comparing structural and electronic properties of the same. Namely, the pristine
BaTiO3 system, Ba(x)Sr(1–x)TiO3 at 25% and 50% and BaTi(x)Sn(1–x)O3 at 25% and 50%,
where the doping atomic species are strontium and tin, respectively, has been investigated.
While in one case the Plane Waves (PW) basis set is employed, in the other case the
Gaussian Type Orbitals (GTO) basis set is used. The major differences that are consistent
throughout the whole study is the persistent overestimation, with respect to PW, of the
GTO optimized structural parameters, set around 6%. This is partially due to the actual
definition of the atomic species, and in particular the valence electron shells. Nonetheless,
starting from the study of the pristine BaTiO3, it can be assessed that the two methods
are consistent and both reproduce with high fidelity the band structure and corresponding
density of states (DOS), also compared with literatures data. First, the study of the 1x1x2
supercells for both strontium and tin substituted systems at 50%, and then of the 1x2x2
supercells with the same doping atomic species at 25% of stoichiometric content, highlights
the general differences between the two approaches. Namely, the formation of [SrO12] and
[SnO6] clusters within the doped supercells is not always clear if not by a careful inspection
of the bonds surrounding the doping atom. The GTO method is shown to systematically
lead to larger bonds values with respect to PW. The electronic structure analysis instead
is more involved, since moving from the 1x1x1 ! 1x1x2 ! 1x2x2 supercells needs to
account for a resampling of the reciprocal space. In this sense some discrepancies are
noticed between PW and GTO. However, within the same method and within the same
structure considered, it can be found that, the BaTiO3 unit cell displays indirect gap
at M!Γ and R!Γ , for both PW and GTO. Meanwhile, for the 1x1x2 supercells, it is
found that the preferential path for the indirect gap is R!Γ for PW and M!Γ for GTO.
Finally, in the case of the 1x2x2 system, the indirect gap is found at Z!Γ for PW and
X!Γ for GTO. The calculation of the corresponding density of states for each structures
are, for the majority of the cases, in agreement among them, providing a gap, both for the
PBE and PBE0 functionals, in line with literatures data. Only in the 25% Sr-doping case,
the gap found in the corresponding DOS is quite large (4.69 eV) at PBE0 level of theory
as obtained with the PW method, while the one obtained at the same level of theory with
GTO is 3.85 eV. These discrepancies will be further investigated in the next future in
order to sort them out and rationalize the behavior. This explorative work is the starting
point for future studies, partly of which are already ongoing, to investigate in details the
structural and electronic properties of ABO3 doped systems.
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