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Introduction

FEvery good mathematician is at least
half a philosopher, and every good philosopher
is at least half a mathematician.

GOTTLOB FREGE
But every error is due to extraneous

factors (such as emotion or education)
reason itself does not err.

KURT GODEL

* WHY MATHEMATICS? As a student of philosophy, my main interests lie in the why
of things. Humans, since the origins, have tried to understand the main characters and
the main features of what we encounter in our everyday life, not limiting themselves
just to empirical observations but, and especially, by trying to understand things
thanks to reasoning and to intellectual abilities. Not by chance, indeed, it’s since
the antiquity that philosophers had learnt that, what is visible, is not the totality of
what there is, and that a proper philosophical investigation has to take into account
this fact. This present work, indeed, is in continuity with my idea of trying to
answer why questions, but — for space and interests reasons — we have decided to
restrict our considerations to one of the oldest disciplines all-over: mathematics.
As clear, mathematics occupies a very particular position among human knowledge
and sciences, for its truths are clearly not of the kind of those of physics or chemistry,
but — in this respect — it gives the basis to develop all the empirical sciences, such as
physics and chemistry themselves. Obviously, thanks to this particular character,
philosophers — since the birth of mathematics itself — have began asking what kind
of disciplines we have in front, which kinds of objects it treats, which kinds of
relations exist between mathematical entities and human knowledge. This kind of
questions are usually covered by a discipline called philosophy of mathematics
and — as many scholars sustain — its great “birth” has happened exactly with Plato’s
school. Plato, since the fifth century a.D., elaborated a metaphysical' system, which

! Actually the term “metaphysics” appeared just after Plato and Aristotle, and its usage has
to be attributed to Andronicus of Rhodes, whose main intent was that of giving a complete
systematizations of Aristotle’s writings. In particular, Andronicus proposed to systematize the
books concerning “prime philosophy”, after those regarding physics and the natural sciences.
This way of systematizing has its reason in Aristotle’s methodology, for which — in knowing and
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attributed a very special place to mathematics and its objects. Usually, philosophers
speak of Plato’s theory of forms, since — for the ancient philosopher — our reality
is just a “black mirror” of another and absolutely determinate reality, which he
called “Hyperuranion”. Within this latter, Plato inserted mathematical concepts
and geometrical figures, by considering them as objects in the proper sense, i.e., as
something that is mind-independent, objective and needs to be discovered after a
special inquiry. Differently, from the common and, somehow, limited conventional
use of the term “object”, we point out that in philosophy of mathematics, its usage is
very broad and, roughly, it is supposed to refer to whatsoever mathematical entity —
functions, variables, numbers, . ... But, as in the case of natural sciences, determining
the character of mathematical objects is not a simple work to accomplish, since
mathematical data are generally not conceived as sensorial data and, hence, the
inquiry to which they are subject is of a particular kind, i.e., mainly theoretical and
not experimental.

* Locic, OLD & NEw FRIENDS. The current research — apart being in continuity
with my idea of doing philosophy by considering why questions — is also in continuity
with the argument to which I devoted my Bachelor’s thesis. The work I've done
regarded Kurt Godel’s ontological argument and the philosophical assumptions that
inspired him in providing such a proof. Confronting with Godel’s deep formal and
philosophical work, I was driven in expanding my researches and in considering
Godel’s position and his work as good starting point. Furthermore, what Godel
profoundly (and, of course, indirectly) taught me, is that philosophy and mathematics
have more in common than what is mainly thought and that their collaboration is
fruitful for both. So, importantly for this feature, he suggested us that, if we want to
understand philosophically mathematics, a theoretical — and mainly not experimental
— methodology has to be adopted. In the context of this present work, we adopt,
indeed, several formal methods, coming from logic, in order to prove things and
to see, in which sense, in most cases, mathematical theorems and propositions are
supposed to “enclose” philosophical claims.

Having spent much time on Godel’s philosophy — after obtaining my Bachelor’s
Degree — I've began my Master’s studies by focusing my attention mainly on logic.
This “second” part of my studies has brought me in searching a new adventure
where to have the opportunity of deepening and, once for all, learning logic and its
fundamental features. My choice fell on the University of Munich (Germany), where I
took some classes at the Munich Center for Mathematical Philosophy, for one semester.
There, I've deepened my logical knowledge, and, in particular, my understanding
of Godel’s celebrated Incompleteness Theorems — gaining consequently an always

apprehending — we go from the given and most evident things (physics) up to the most hidden
and mysterious features of reality (prime philosophy). In this sense, the books concerning prime
philosophy should — in accordance to Aristotle’s methodology — put after those of physics. The
term devoted to represent the study of prime philosophy became, indeed, from Andronicus on out,
“metaphysics”, which in ancient Greek literally signifies “beyond physics”.
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clearer insight for what concerns his philosophy of mathematics. Additionally, always
in the context of my studies abroad, another perspective, in particular, captured my
attention — Gottlob Frege’s works. His pioneer work, within logic and the philosophy
of mathematics, has to be considered not only for his historical importance, but, also
and especially, for his innovative way of conceiving the work of philosophers. His
leading idea of “purifying” philosophical and mathematical languages from the errors
coming from the ambiguities of natural languages has brought him in formulating
one of the first logical formal vocabularies ever. We will still have time to return on
Frege’s and Godel’s philosophical ideas. For the moment, it is enough to focus the
attention upon what I think that Frege and Gdédel brilliantly suggested us from a
methodological point of view:

o GODEL-STYLE. Mathematical statements are philosophically meaningful
and an appropriate research within the philosophy of mathematics has to
take into account — as fundamental data — mathematical results.

o FREGE-STYLE. Natural languages are full of ambiguities and their usage
is not that healthy for formulating philosophical precise claims or mathe-
matical correct results. Formal languages are, indeed, helpful in seeing
things from a clearer and preciser perspective.

In the whole of the present work we will try to follow these two suggestions, by
— additionally — explaining why we think that Frege’s and Godel’s works in the
philosophy of mathematics are of profound inspiration for our analysis.

* HUNTING & INDIVIDUATING. We've said that a formal methodology will be
adopted along the entire thesis and, hence, logical languages and systems will be
deepened and discussed. Now, from a strictly philosophical point of view, we have — for
clarity — distinguished two main areas of the philosophy of mathematics: from one side
we will clarify metaphysical and ontological features of mathematics; from the other
side, instead, we will focus our attention on the problems concerning the knowledge
and apprehension of mathematics and of what it involves. For precision let’s say
that we believe that the two disciplines — the metaphysics and the epistemology
of mathematics — are very close and strictly related and that we distinguish them
just for clarity and to avoid misunderstandings. In this sense, we may say that
the first ones try to argue in favour or against an existential characterization of
mathematics and its objects, while the latter — usually in accordance with the first
one — justifies their knowledge and explains how humans are supposed to get in touch
with mathematical entities. Metaphysics/ontology and Epistemology, so, finally,
furnish the contexts of our reflections with respect to our subject of investigation,
namely mathematics and its objects.

With respect to the main theme of our inquiry, it could be said that the following
thesis is about one of the most discussed arguments, not only within the philosophy
of mathematics, but also in all other philosophical areas. Roughly, if we pay attention
to all of ours, for example, numerical statements — such as “There are two pens”,



NUMBERS, OBJECTS AND ABSTRACTION 9

and so on — we may easily see that we are treating the number-word “two” as
referring to something ezistent. We've said that it is possible to track back the birth
of philosophy of mathematics to Plato’s school and that, importantly, his leading
ideas have in, some forms, survived and influenced generations of philosophers after
him?. Not by chance, indeed, two of the most celebrated sustainer of contemporary
Platonistic philosophies of mathematics are the two main sources of inspiration
of the present work — again, Frege and Godel. In this sense, roughly, our work
takes seriously Plato’s idea of mathematical entities as existent, self-subsistent and
mind-independent, i.e., as entities of a particular kind and very different — in its
metaphysical characterization — from concrete or physical bodies. These particular
guys — conventionally called abstract objects — indeed, will occupy our entire
reflections: we will try to consider the possibility of admitting these objects within a
philosophy of mathematics and, so, consequently, arguing on how their admission
should be conceived of — metaphysically /ontologically and epistemologically. Exactly
this objective has motivated us in dividing our work in two main parts. In the first
part — titled HUNTING ABSTRACT OBJECTS — we will consider some criticism that
has been moved to mathematical Platonism, by trying to consider its tenability
from both perspectives, philosophical and logical-mathematical. In this sense, our
first part is a hunt, which — at the end — is supposed deliver a plausible answer
for what concerns our main philosophical doubt concerning, at least, the question
of the tenability and possibility of having abstract objects within a philosophy of
mathematics. Differently, the second part — whose title is INDIVIDUATING ABSTRACT
OBJECTS — takes the conclusions of the first part as starting points and develops
a methodology which is meant to help to individuate and recognize different and
well-defined abstract objects.

As obvious, we do not cover any topic and, indeed, our considerations will be
restricted to a particular context — furnished in Chapter 1. Starting from this
setting, we will — as the title remarks — try to develop a tenable philosophical
interpretation of mathematics. We precise, since now, that this version of our
following study will be subject to further deepening and developments, and — as we
hope — we wish to have given, at least, an idea of the direction which we think might
be considered and deepened in contemporary philosophy of mathematics.

Anyway, we do not want to drain all fun out of the reading, and so we stop our
introduction here.

Venezia
JUNE, 2019

2Instructively, the English mathematician, logician and philosopher A. N. Whitehead remarked:
«The safest general characterization of the European philosophical tradition is that it consists of a
series of footnotes to Plato».
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Chapter 1

From Godel to Benacerraf

Overview. In this first chapter our aim is twofold. Firstly, we wish to draw a
path that does follow a theoretical development of the problems to be considered.
In this sense, — as the title suggests — we will focus exactly on the philosophical
considerations, proposed by one of the major exponents of the so-called “Platonistic”
school in the philosophy of mathematics, — Kurt Godel —, by, linking them to the
challenges that the French philosopher Paul Benacerraf moved to a supposed sustainer
of the Platonistic claims. Secondly, since our purposes are not merely exegetical, we
will especially pose the attention on the foundations and on the tenability of the
claims we will analyse and submit to judgement. Hence, in order to be clear and
“clean”, as much as possible, starting from the very beginning, formal tools will be
adopted and any question will be “divided” into metaphysical and epistemological
concerns.

1.1 Godel’s Extreme Platonism

Kurt Godel is usually acknowledged through the major mathematicians and logicians
ever and this is an undoubtedly and widely accepted fact. What, maybe, is less
known is that Godel’s interests were broader then they concerning the range of pure
mathematics and, indeed, he spent his late career, especially, in doing philosophy
and practising physics. His philosophical production, unfortunately, is not uniform
and the writings that compose it have, in most cases, the character of personal
notes. Anyway, from the writings that we possess, it is possible to reconstruct
the fundamental claims Godel, explicitly or implicitly, endorsed and to establish
effectively something like a “Godelian” philosophy of mathematics. In order to be
precise, consider that Godel’s philosophical concerns were very inclusive — philosophy
of mind and metaphysics were, for example, two of his main interest areas —, even if
we will restrict here our considerations just to his metaphysics and epistemology of
mathematics.

12
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1.1.1 Metaphysical Foundation

With respect to the philosophy of mathematics Godel held a position that we will
call “Extreme Platonism”. The two fundamental aspects of his philosophical position
are Platonism, by one side, and its extreme version, by the other.

First of all, let’s define generally what a platonist would endorse about mathematics.
The fundamental claims are the following two:

(P1) Mathematical objects exist!.
(P2) Mathematical objects are abstract objects.

So, for instance, if we say, with respect to the set of natural numbers, that “there are
infinite prime numbers”, and we endorse a platonistic view of mathematical objects,
we would intend that there are infinite abstract entities that are characterized as
“prime numbers”. In addition, it is possible to define abstract objects by saying that,
unlike the concrete ones, they do not have a collocation in space and time. So, for
example, the table in front of me is not abstract in virtue of its being in a determined
space (world, nation, city, library) and its being inserted into a specific time (year,
day, etc.). Differently, the natural number 2 is not spatio-temporal located and,
therefore, we can think of it as a sort of platonic universal, which we have to “catch”
in some way.

Godel agreed with the general assumptions of mathematical Platonism and tried
to develop a tenable account. Indeed, «his platonistic view was more sophisticated
than that of the mathematician in the street»?. Godel thought that, as physical
theories should explain physical objects and their connections, so mathematics has
to explain its particular objects and their fundamental relations. Additionally, Godel
extended the parallelism between mathematical and physical universe, by considering
that, if concrete things are not free creations of human mind, and if, the thesis that
mathematics describes (abstract) objects is true, mathematical entities shouldn’t be
considered either “ideas” or “mental constructions”. Indeed,

Classes and concepts may, however, also be conceived as real objects, namely classes as
“pluralities of things” or as structures consisting of a plurality of things and concepts
as the properties and relations of things existing independently of our definitions and
constructions. It seems to me that the assumption of such objects is quite as legitimate
as the assumption of physical bodies and there is quite as much reason to believe in
their existence. They are in the same sense necessary to obtain a satisfactory system
of mathematics as physical bodies are necessary for a satisfactory theory of our sense

perceptions [...]3.

1Godel enumerate 14 propositions in a list titled “My philosophical viewpoint”, that, posthumous,
has been transcribed by Cheryl Dawson and published by Hao Wang. In this list, at the second
position, instructively, Godel wrote: «Concepts have an objective existence» (Wang 1996, p. 316).
For remarks consider, among others, Kennedy 2007, §3, Horsten 2007, §3.1 and Linnebo 2009c.

2Horsten 2007, p. 16.

3Godel 1944, pp. 456-457.
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Therefore, Godel’s first step of philosophical foundation of mathematical Platonism
consists in accepting the thesis for which mathematics (as sciences) is concerned
with the description of a realm composed by entities which are not spatio-temporally
located (different from physical objects). In his own words:

[With Platonism] I mean the view that mathematics describes a non-sensual reality,
which exists independently both of the acts and of the dispositions of human mind

and is only perceived, and probably perceived very incompletely, by the human mind.*

The second step into Godel’s foundation of mathematical Platonism is concerned
with the epistemological issues arisen from the metaphysical status he attributed to
mathematical objects. Indeed, we may ask to a platonistic philosopher: “Since we
are believing that numbers, sets, functions, etc. are abstract objects, how can we
apprehend them?” “How are we humans supposed to acquire knowledge of ‘things’
which aren’t immediately given by our sensorial experience?” Godel himself fell in
troubles while trying to answer these questions and the explanation he gave is the
main reason why we are calling his position “extreme”.

1.1.2 Epistemology and Mathematical Intuition

On our purpose, the main source for Godel’s epistemological account of Platonism
is his article devoted to Cantor’s set theory®. First of all, when Godel tried to
explain how human minds can achieve mathematical knowledge introduced the
notion of mathematical intuition®. Following Gdédel, in order to explain how this
particular human faculty works, we have to consider the parallelism between sciences
and mathematics again. We may think that humans achieve knowledge of the
physical world by perception, that is with innate sensorial faculties. Roughly, I know
that the object in front of me is a concrete entity, because my visual perception
and any scientific inquiry would confirm me that what I am actually seeing is, for
example, a table that has a specific location in space and time. For Godel, as
for many Platonists, the way we apprehend mathematical objects is parallel to
the way we know physical bodies. Actually, this is not Goédel’s answer, indeed,
he thought that this parallelism could just provide a useful way to answer the
question. Moreover, he thought that, even if we are allowed to speak of mathematical
perception, we must not forget the very nature of mathematical entities, namely their
being abstract. Therefore, the link between physics and mathematics becomes just
heuristic: if we want to understand how mathematicians arrive to their results, we
have to consider how scientists arrive to their scientific discoveries. Once then we’ve

4Godel 1951, p. 323.

5Goédel 1947 and Godel 1995.

6For an interesting discussion on the connections between Platonism and mathematical intuition
in Godel’s philosophy of mathematics, see Parsons 1995. In addition, it is to notice that Godel’s
epistemology of mathematics was strictly influenced by Gottfried Leibniz and Edmund Husserl’s
works. The austrian logician thought that some metaphysical intuitions of Leibniz and Husserl’s

phenomenology could provide good basis to clarify some aspects of the platonistic position (Berto
2008, especially part II).
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understood that mathematics studies abstract objects that we perceive, we can forget
about the parallelism with natural sciences, and focus our attention on the notion of
mathematical perception. Additionally, the parallelism is very useful to draw attention
on the notion of “certainty” that a Platonist would endorse. Our sensorial experience
is, at different degrees, fallible and might be corrected by successive perceptions.
The same can happen in mathematics. For instance, even if Frege’s intuitions on
the “third realm” were very sophisticated, further researches, such as Russell’s, have
shown that one of the most basic intuitions of his system entailed a contradiction.
For Goédel, this situation reflects what happens in natural sciences.

Abstract entities and mathematical intuition are the two principal elements of Godel’s
Platonistic conception. Much of his late philosophical work has been devoted to
the understanding of how it is possible for humans to access the Platonic heaven
of mathematics. Since mathematical intuition provides us with a sort of certainty
with respect to mathematical theories, Godel asks himself which kind of “data”
and “evidence” are necessary to believe in theories? For instance, what kind of
evidence do I need, to affirm that the “Zermelo-Fraenkel set theory with the Axiom
of Choice” (ZFC), really describes the mathematical universe composed by abstract
mathematical objects as sets, classes, functions and so on? Let’s focus on the notion
of evidence. We begin with a distinction that Godel himself proposed”:

1. “Intrinsic evidence”
2. “Extrinsic evidence”

The first kind of evidence is the certainty we get by considering the axioms of a theory.
Roughly, axioms codify the basic truths of the particular branch of mathematics we
are studying, so that further and more complicated truths can be obtained. In other
words, if we look at the axioms of ZFC, for instance, we are looking at the theory’s
internal and fundamental articulation. Hence,

[...] despite their remoteness from sense experience, we do have something like a
perception of the objects of set theory, as is seen from the fact that the axioms force
themselves on us as being true. I don’t see any reason why we should have less
confidence in this kind of perception, i.e. in mathematical intuition, than in sense

perception |[...]5.

The second kind of evidence is different from the first one and do not rely on the
internal articulation of a mathematical theory®. Indeed, it is difficult to understand
how an intuition can be responsible of our way of determining the truth or the
falsehood of specific mathematical axioms. Godel exactly noticed that «mathematical
intuition might not be strong enough to provide compelling evidence for axioms»*°

"See also Linnebo 2011, pp. 172-175.

8Godel 1947, pp. 483-484.

9This second kind of evidence is strictly linked to the philosophical meaning Russell was ascribing
to axioms. See chapter 3, section “The meaning of the axiomatic method”.

0Horsten 2007, p. 16.
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and, therefore, he tried to develop an account of evidence based upon the notion of
“true consequence”. Let’s focus on Godel’s argumentation:

[...] even disregarding the intrinsic necessity of some new axiom, and even it has no
intrinsic necessity at all, a probable decision about its truth is also possible in another
way, namely, inductively by studying its “success”. Success here means fruitfulness in

consequences, in particular in “verifiable” consequences |...]J!L.

So, the ability to discover always new truths from a basic set of axioms, via proofs, is
exactly what Godel had in mind. If we want to declare that our ZFC axiomatization
effectively describes the set theoretic universe, then we should consider how many
new truths of that universe are provable from the ZFC axioms. Therefore, what
this second kind of evidence requires is not an intuition of the internal necessity of
whatever mathematical axiom, but that the logical consequence, that brings us from
the axioms to new theorems, is well-established:

There might exist axioms so abundant in their verifiable consequences, shedding so
much light upon a whole field, and yielding such powerful methods for solving problems
[...] that, no matter whether or not they are intrinsically necessary, they would have

to be accepted at least in the same sense as any well-established physical theory.'?

This inspired Godel in searching new axioms to be added to ZFC, which could have
decided highly independent questions, such as the continuum hypothesis. Generally
speaking, this means that, in principle, according to Godel’s Platonism, every
mathematical problem has a solution and, so, for example, Cantor’s continuum
conjecture must be either true or false. But, actually, further set-theoretical researches
have shown that the continuum hypothesis is an independent question, that is its truth
(or falsehood) does not depend upon a particular axiomatization of set theory. So, if
we are Godel-like Platonists, we are convinced that every mathematical problem has
a definite solution and, hence, that the mathematical universe is perfectly complete
and determined. What is fallible are our intuitions and evidences for new axioms:
the continuum hypothesis «undecidability from the axioms assumed today can only
mean that these axioms do not contain a complete description of that reality»'3.

1.1.2.1 Incompleteness and Philosophy of Mathematics

First of all, we’ve seen that Godel’s Platonism held that there are mathematical
abstract entities that have to be considered as the mathematician’s data. Additionally,
we've seen that mathematical axioms stand to mathematical data (abstract objects)
as physical laws stand to sensorial bodies (concrete objects). The parallelism between
natural sciences and mathematics has shown that as scientists acquire their data by
(direct) perception, so mathematician enter the “third realm” by (indirect) intuition.
This indirect mathematical intuition is based upon of two basic kinds of evidence:

11 Godel 1947, p. 477.
12Godel 1947, p. 477.
13Godel 1947, p. 476.
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“intrinsic” and “extrinsic”. An intrinsic evidence is acquired by considering just the
axioms of the theory we’re studying and nothing else. Differently, extrinsic evidence
is achieved by considering the “consequences” that the axioms of a determined theory
have, that is the more new theorems are provable from the axioms of the theory we
are studying, the more the axioms themselves are to be considered valid. Additionally,
we're told that, it «should be noted that mathematical intuition need not be conceived
of as a faculty giving an immediate knowledge of the objects concerned»!*. Indeed,
since our way of “extrapolating” new informations from the mathematical reality, is
by intuition of the axioms’ validity and their consequent application in proofs, the
way we perceive that reality should be considered incomplete’®. Our mathematical
concepts and objects are not sufficiently defined and fine-grained, and this implies
that some questions, for instace, some set-theoretical issues, cannot be “immediately”
decided. In other terms, the fact that mathematical perceptions are not immediate
and, at different degrees, fallible, implies — according to Godel — the “incompleteness
claim”, i.e., that position for which, in conclusion, our access to the mathematical
universe is not (and cannot be) definitely complete. But, as Godel pointed out:

This seems to to be an indication that one should take a more conservative course, such
as would consist in trying to make the meanings of the terms “class” and “concept”
clearer, and to set up a consistent theory of classes and concepts as objectively existing
entities.!6 [...] the certainity of mathematics is to be secured not by proving certain
properties by a projection onto material systems — namely, the manipulation of physical
symbols — but rather by cultivating (deepening) knowledge of the abstract concepts
themselves which lead to the setting up of these mechanical systems, and further by
seeking, according to the same procedures, to gain insights into the resolvability, and

the actual methods for the solution, of all meaningful mathematical problems.”

Godel thought indeed that one of his main results “purpotes” his incompleteness
claim, that is, in other terms, the conviction that our ordinary methodologies are
not subtle and fine-grained enough to describe the entire “mathematical realm”. The
logician, indeed, in 1931, proved his famous Incompleteness Theorems for Arithmetic:
let’s focus for a moment upon the first one®. At the beginning of the century many
mathematicians and philosophers were convinced that a suitable logical theory could
provide the base to derive the basic truths of arithmetic, that is of Number Theory.
In order to see how it is possible to define number theory with axioms consider the
following definitions:

14Godel 1947, p. 484.

15 Always in the list of his main philosophical propositions, Gédel affirmed that «[t]here is
incomparably more knowable a priori than is currently knowny, Wang 1996, p. 316.

16Godel 1944, p. 468.

17Godel 1961, p. 383.

18See Godel 1931, Button and Walsh 2011, Berto 2008, and, especially, Smith 2013.
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Definition 1. The Robinson!® Arithmetic Q is given by the universal closures of
the following eight axioms:

QL. S(x)#0
Q2. S(z)=Sy) —»x=y
Q3. =z # 0 — Jy[z = S(y)]

Q4. z+0==x
Q5. x+ S(y) = S(x+vy)
Q6. zx0=0

Q7. zx S(y)=(r xy)+=
Q8. x <y<+— vz +v=1y]

If we add to Q’s axioms Q1-Q8 the following Induction Schema we get the theory of
Peano?® arithmetic, PA:

[p(0) AVY (p(y) = S(e(y))) = Yy e(y)]

In order to give an intuitive idea of Gddel’s theorems it’s enough to consider just
Q’axioms and some other notions. First of all, consider that our theory is composed by
symbols: we're presented with a logical vocabulary (variables, connectives, quantifiers,

.) and with a non logical vocabulary, in this case, the language composed by the
constant 0 and the “Successor” unary function, S(z). The n'* application of the
successor function to zero, S...5(0), intuitively, gives us whatever natural number,
greater than 0, we desire. Godel’s idea, in order to show the limits of formal theories
of arithmetic, established a particular coding strategy which transforms each symbol
of our (logical and non logical) language into a natural number. The first task is to
enumerate the symbols of our language, for instance:

9Raphael Mitchel Robinson (1911 — 1995) has been an expert in mathematical logic, set theory,
geometry, number theory, and combinatorics. In 1937 he has set out a simplified version of the John
von Neumann (1923) axiomatic set theory and he has co-worked with Alfred Tarski at Berkeley’s
mathematics department. In 1950 Robinson proved that a formalized theory need not to have
infinitely many axioms. “Robinson arithmetic”, Q, indeed, is finitely axiomatizable because it lacks
the so-called Schema of Induction. In any case, Q, like Peano arithmetic PA, is incomplete and
undecidable in the sense of Gédel” Incompleteness theorems (see the next sections and Godel 1931).

20Giuseppe Peano (1858-1932), has been a mathematician and logician, he served as professor
of mathematics at the University of Turin from 1890 to 1932. In 1891 he founded the Rivista di
matematica (“Review of mathematics”). Peano is especially known for having developed, around
1903, an international auxiliar language, called Latino sine flexione, based on Latin. Peano’s
contributions to mathematics include the simplification of logico-mathematical symbolism, the
first statement of vector calculus (Elementi di calcolo geometrico, published in Turin in 1891) and
some important results concerning the ordinary differential equations. He also obtained crucial
and subtle results within the debate around the foundations of arithmetic and of sets. Indeed,
Peano’s postulates (1899) gave a set of five axioms for the theory of natural numbers that allowed
arithmetic to be constructed as a formal-deductive system.
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S1, 52,83, 54, . . -
Suppose to have an arbitrary finite string of the symbols:

O = Sky» Skos Skas - - -1 Sk
According to Godel’s encoding strategy, we have to encode o with a number indicated
as follows:

k1 k

Fol=m X7T]2€2X7T§3X-"X7Tn”

In order to see more closely what Godel had in mind, consider the following arbitrary
coding definition:

S AV | = | YT | =(])]0|S|+|x|x|y]|z...

103 (5] 719 1113|1517 1921|2325 |27|2|4|6...

As it is clear we’ve encoded each symbol with an even number, except variables,
that have been assigned with an odd one. For the sake of the argument, take the
following formula, JyS(z) = y and consider it our o to be coded. According to the
previous mentioned strategy we have to:

1. write the position of the symbol we want to code using a prime number,
indicated as my;

2. write the symbol-code as an exponent of the prime number: 7T,]:";

ko k3

Mx mh? X X - x 7 in order to get the

3. multiply the number sequence 7]
“Godel number” of the string of symbols.

So, for example, JyS(x) = y is coded in the following manner:

3 Y S ( x ) = y

25 | 3% | 5Bx | TV | 112x | 139% | 175 % | 194

In order to avoid too difficult technical tools, we say that Q is strong enough to
capture any primitive recursive function (p.r.). First of all, p.r. functions are a
subset of the recursive ones and we define them as follows:

1. The initial functions:
S(x) (Successor)
Z(z) = 0 (Zero)
IF(zy,...,7) = z; for each 4, and for each k, 1 <i <k
(Projection or Identity function)

2. If f can be defined from the p.r. functions g and h by composition (namely,
by substituting ¢ into h), then f is p.r.
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3. If f can be defined from the p.r. functions g and h by primitive recursion, then
f is p.r. This means that, if?!:

f(@,0) =g(7)
f(@,S) =1z, y, f(Z,y)

then f is defined from g and h by primitive recursion.
4. Nothing else is a p.r. function.

This means that Q, given a p.r. function f : w — w, there is an open wff ¢(z,y)
such that:

(i) f(n)=miff QF ¢(n,m)
(i) QF 3y ¢(m,y)

Notice that, since our coding function is recursive too, Q captures it with some
formula p(z,y), however, «Q is so weak that it can prove almost nothing about this
formula»?2.

The same applies to deductions, which have to be considered as sequences of sentences
01,09, ...,0pn, 0,11, Where g, is the conclusion of the derivation. Now, the Super

Godel Number of a proof or deduction is coded as follows:

L R '_Un—&-l—I

Mo
X oo xm,On o xom, ]

With this subtle methodology, Godel constructed his famous undecidable sentence,
that is a sentence that has no proof nor refutation in Q and which shows us that Q
is incomplete. Consider the property of “being a proof of £”. To be more precise, the
property which tells us if there is a super g.n. that numbers, according to our coding
schema, a proof in Q. Call this the “Provability predicate”: Prov(x) =qer IVPrf(v,x).
Now we define the following wif?3:

U(y) =ger =3IXPrf(x,"y")

Consider the open wif U(y) and construct its “diagonalization”. In order to do this
job we have to find the g.n. of U, namely "U™, and substitute it (U’s g.n) for the
free variable y in U:

G=3y(y="UTAU(y)*

Let’s call the “diagonal” wif G. By some further specification we can see that the
foregoing sentence is equivalent to the following:

G = —-3xPrf(x,"U7)

That is, “G is true if and only if it is unprovable”.

2I'We allow abbreviations of the following form: z1,...,Tn =det T

22Button and Walsh 2011, p. 131.

23We allow the abbreviation of “well-formed formula(s)” by writing “wff(s)”.

24This wif is equivalent to the construction Godel himself used in 1931: G = U("U7). The capital
letter G indicates that we’re presented with an “undecidable Gédel sentence”.
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By inspection, hence, if Q proves G, than it would prove something false, which is
not the case. Recall, indeed, that “G is true iff it is not provable”, or, in other terms,
that “G is true just in case no Super Godel number numbers its proof”. Since Q
proves just correct theorems (Soundness Theorem), and since G is true, then G itself
has not a proof in Q. But, since G is true, =G must be false and therefore must
not have a proof in Q too. This situation leads us immediately to Godel’s First
Incompleteness Theorem, namely:

Theorem 1.1.1 (First Incompleteness Theorem). No consistent, computably enu-
merable theory which interprets Q is arithmetically complete. |

An arithmetical theory?>, which is consistent (no contradiction ca be derived in it)
and computably enumerable (there is an algorithm which enumerates the theory’s
sentences), is incomplete ifft T ¥ ¢ and T ¥ —¢. This is Godel’s most famous
result and, indeed, much of his philosophy of mathematics has been inspired by this
important achievement.

Recall, now, that humans acknowledge portions of the mathematical universe by
indirect perception, that is by what Godel called mathematical perception. This
latter is based upon two distinct kinds of evidence: the first is called intrinsic
evidence and has no meaningful help in this situation. The second kind, instead,
has the name of extrinsic evidence, since it’s main concerns are the “consequences”
that theories have and could be helpful in explaining Gédel’s view. Now, from a
philosophical perspective, we may ask ourselves: what is the suggestion that the
incompleteness result for formal arithmetical theories is delivering? Godel’s own
answer was given during his Gibbs Lecture, where he tried to sum up the major
philosophical connections between the Incompleteness theorems and the foundations
of mathematics. Indeed:

[...]the following disjunctive conclusion is inevitable: Either mathematics is incom-
pletable in this sense, that its evident axioms can never be comprised in a finite rule,
that is to say, the human mind (even within the realm of pure mathematics) infinitely
surpasses the powers of any finite machine, or else there exist absolutely unsolvable

diophantine problems?S.

According to Godel’s conception, clearly, the second option was not tenable: there are
not absolutely unsolvable mathematical problems, since human minds have an always
more specific and detailed access to the realm of mathematics. Human minds always
surpass the finite ability of a computer?” and, in this sense, mathematics is incomplete

25We’ve established Godel’s First Incompleteness Theorem by adopting Q. This is not actually
necessary, since the incompleteness result applies to any consistent and computably enumerable
formal theory.

26Godel 1951, p. 310.

2TConsider that Godel was writing his essay during the 50s, therefore his argument was directed
against the predecessor of our computer, namely the Turing machine.
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and incompletable. There cannot be a finite rule which captures all mathematical
truths, since human minds are infinite, that is, humans have capabilities that can
bring them to discover always new mathematical truths. In this sense, indeed, our
mathematical perception is incomplete:

1. We perceive just parts of the realm of abstract mathematical objects;
2. Human capabilities are infinite?®;
3. New mathematical perceptions can always be obtained.

This situation, for Godel, showed two fundamental aspects of his position: (i) every-
thing in mathematics, in principle, has or will have a solution and (ii) our knowledge
of the mathematical universe can always be deepened. Indeed, in the case of the
Incompleteness Theorems, which are also called limitative theorems of arithmetic,
we're presented exactly with this: suitable logical systems and reasoning are not
enough, in order to get a “complete” system of all arithmetical truths, and, therefore,
arithmetic should be considered inexhaustible and not as enclosed in an artificial
system?.

In this spirit, Godel provided also his own interpretation of the historical development
of mathematics and mathematical practice, trying to show how an idealistic concep-
tion, as opposed to a materialistic one, of mathematical entities could be more useful
to a mathematicians work. To see how did Goédel understand the development of
mathematical reasoning during the centuries, it is important to consider different philo-
sophical approaches to mathematics and systematize them according to their different
degrees of affinity with metaphysics. We have to imagine a right-oriented line which
divides the philosophical convictions about mathematics in the following manner:

| | | | | |

{ 1 1 1 1 1
Materialism  Skepticism Positivism  Spiritualism Idealism Theology

Empiricism Apriorism

According to Godel, so, the philosophy of mathematics has had different interpre-
tations, in particular each of the above mentioned philosophical conceptions tried
to develop a tenable account of mathematics. Despite Godel’s platonistic spirit,
mathematics, from the Renaissance, has tended to the left direction of the arrow
and the major consequence has been that many philosophers had tried to develop
empiric philosophical accounts of mathematics itself. Godel, instead, insisted that
«mathematics by its nature as an a priori science, always has, in and of itself, an
inclination toward the right [...]»3.

28 (Human reason can, in principle, be developed more highly (through certain techniques).» And,
«[t]here are systematic methods for the solution of all problems (also art, etc.)», Wang 1996, p. 316.
29 At this point of the discussion, the links between “realism” and “rationalism” — fundamental

for Godel’s perspectives — are explicit.
30Godel 1961, p. 377.
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As we will discover soon, exactly the metaphysical foundation of Platonism and the
appeal to mathematical intuition lead Godel’s view into troubles. In particular, it is
interesting to notice that the major problems connected to this version of Platonism
are not only epistemological, but also ontological. Let’s think for a moment to the
following doubt: assumed that it is almost impossible to justify our knowledge of
abstract mathematical entities, how can we, then, be sure and affirm that they exist?
In more logical terms: how are we supposed to claim that the existential quantifier
(3) of our theories “really” ranges over a domain of abstract objects, if we cannot
have any clear perception of them?3!

1.2 Against Platonism I: Metaphysics

1.2.1 Numbers are not sets! Benacerraf’s Argument

Does really a mathematician work with abstract objects? Is it possible to be
a Platonist while constructing new mathematical theories? In some articles?,
Paul Benacerraf proposed a challenge to platonistic philosophers and argued that
mathematics is not to be considered as an incomplete description of the realm
composed by particular abstract entities33.

For the sake of the argument, suppose that two young adolescents studied the
basic notions of arithmetic in a particular way: they were told that each natural
number greater than 1 could be identified with a set3*. Therefore, each one of
the young logicians, for example, considered the number “2” as the set composed
by two “things”, the number “27” as the set containing 27 “elements”, and so on.
In other words, each adolescent considered arithmetic as a branch of set theory
(the mathematical study of sets) and, therefore, numbers were just the elements of
the w—set®. So, in the case of number theory, they earned «the numbers merely
involved, learning new names for familiar sets. Old (set-theoretic) truths took on
new (number-theoretic) clothing»®%. They will say that the statement “there are n
F—things” means that “there is a relation which associates one-to-one the F'—things

31'We've called Gédel’s position “Extreme Platonism” for two main reasons: (i) the parallelism
between sciences and mathematics and (ii) the introduction of the notion of mathematical intuition.
In any case, there are also “Moderate” versions of Platonism, which we’ll encounter and describe in
the next paragraphs.

32Benacerraf and Putnam 1983, Benacerraf 1965 and Benacerraf 1973.

33In this section I'll explain the philosophical assumptions of Benacerraf’s criticism (See also
Plebani 2011) In the next paragraphs we’ll observe the same results in a precise formal way.

34Gince the aim of this chapter is to give just an informal description of Benacerraf’s argument,
we will consider sets as simple “collections of things”.

35We call w the first transfinite ordinal, which has to be distinguished from X, which is the first
transfinite cardinal. An ordinal number indicates simply the well-ordering of a set, that is, given
the first element of the sequence, it is always possible to reach the element immediately succeeding
it and going up to w. A cardinal number, instead, simply states the number of elements (the
cardinality or magnitude) of a set: Vg is to be considered the number stating the cardinality of the
set of the natural numbers, N.

36Benacerraf 1965, p. 273.



24 CHAPTER 1. FROM GODEL TO BENACERRAF

to the numbers starting from 1”. So, they will be able to define and apprehend
“addition”, “multiplication”, “exponentiation”, and derive the basic arithmetical
rules, namely arithmetic’s fundamental laws (the so-called Dedekind-Peano Axioms
for Number theory). Now, as the development of mathematics has stated, there is
not one correct set theory, but there are different ways to describe the set-theoretical
universe. Indeed, consider now that the two adolescents have taken two different
set-theory classes: one has been told about Zermelo’s theory and the other one has
studied von Neumann’s proposal. Consider, in addition, that both set theories satisfy
the prerequisites for a reduction of arithmetic to logic, but they differ in the way this
reduction is done. The boy considers von Neumann’s construction and for him, for
instance, the number “two” will graphically be as follows: 2 = {&, {@}}. The girl,
instead, apprehended Zermelo’s reduction and proposed the following use of sets:
2 = {{o}}. The contrast raises when we consider the “membership relation, €”. For
the boy, clearly, 0 € 2 since 2 = {&,{&}}. Differently, according to the girl’s use of
set theory 2 = {{@}}, and hence 0 ¢ 2.

How it is possible that, even if both set theories — Zermelo’s and von Neumman’s —
allow the reduction of numbers to sets, they do not agree upon a question concerning
the primitive relation of their languages, namely €7 Maybe, one could still claim
that both reductions are correct, that something as the number theoretical or the set
theoretical universe do not exist, and assert that, no matter how big, the mathematical
realm is enormous. But actually this poses a big philosophical problem: if we agree
that the mathematical universe is very vast and we consider that the number 2 is
2 ={{o}} and 2 = {&,{g}}, aren’t we saying that one single “element” (i.e., 2)
is identical to two different sets? One number can, of course, not be both sets and,
more generally, it is not possible for one single element being identified with two
other and different objects. Hence, both reductions must fail and the two young
logicians must — according to Benacerraf — be convinced that numbers are not sets.

1.2.2 Metaphysical Misunderstandings

According to Benacerraf, we should extend «the argument that led to the conclusion
that numbers could not be sets, that numbers could not be objects at all; for there is
no more reason to identify any individual number with any one particular object than
with any other other (not already known to be a number)»37. The whole situation
has arisen from the mistaken assumption that ascribed numbers other properties,
different from the arithmetical ones they necessarily have. These latter properties
are the fundamental and unique properties we have to consider while speaking of the
nature of numbers and could be defined as the properties they have just in virtue of
their being arranged in the N—progression:

To be the number 3 is no more and no less than to be preceded by 2, 1 and possibly 0,
and to be followed by 4, 5, and so forth. And to be the number 4 is no more no less

than to be preceded by 3, 2, 1, and possibly 0, and to be followed by... Any object

37Benacerraf 1965, p. 290.
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can play the role of 3; that is any object can be the third element in some progression.
What is peculiar to 3 is that it defines the role — not by being a paradigm of any
object which plays it, but by representing the relation that any third member of a

progression bears to the rest of the progression.3®

The two young logicians example and this metaphysical claim, are useful to explain
what Benacerraf’s point is. First of all, it is possible to reconstruct the argument’s
form into two ways, restricted or general. Let’s consider the first way:

(P1) Numbers have just arithmetical properties.
(P2) No set has just arithmetical properties.
(C) Numbers are not sets.

So, as we have seen numbers are defined uniquely by the properties their bear
standing into the number-series and, therefore sets, that have non-arithmetical
properties, cannot be identified with numbers. For the sake of the argument, consider
the following questions: are there types of objects which have only arithmetical
properties, except the numbers themselves? According to Benacerraf, the correct
answer is “no”:

[...] numbers are not objects at all, because in giving the properties (that is, necessary
and sufficient) of numbers you merely characterize an abstract structure — and the
distinction in the fact that “elements” of the structure have no properties other than

those relating them to other “elements” of the same structure.3?

Becarraf’s slogan is, therefore, numbers have only structural properties, namely those
properties they have thanks to their standing into a specific arithmetical structure.
Additionally, but without paying too much attention on it, Benacerraf defined the
notion of abstract structure as a “system of relations” and, indeed, only «when we are
considering a particular sequence as being, not the numbers, but of the structure of
the numbers does the question of which element is, or rather corresponds to, 3 begin
to make any sense»®. In this spirit, we can rewrite the previous argumentation and
obtain its more general version :

P1) Numbers have just structural properties.
J
(P2) No object has just structural properties.
(C) Numbers are not objects.

From an ontological point of view, therefore, Benacerraf is trying to operate a sort
of “ontological reduction”: mathematical entities are not objects independent from a
mathematician’s work but, instead, they are dependent from the structure in which
they are inserted. There is no special abstract object which is a particular natural

38Benacerraf 1965, p. 291.
39Benacerraf 1965, p. 291.
40Benacerraf 1965, p. 292.
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number, such as 3, but, for instance, there is a “system of relations” we obtain by
elaborating the “less-than” relation, in which 3 represents the relations (preceding
2,1 and 0 and succeeding 4, 5, ...) that any third member of a progression has in
virtue of its being part of the progression itself.

From an epistemological point of view, with this characterization, it is not necessary
to set up an account of mathematical intuition or perception which should help us
in trying to understand how we can apprehend numbers. According to Benacerraf,
indeed, mathematics is the study of abstract structures (i.e., “systems of relations”)
and so his epistemological account we’ll be different from the godelian one. In this
context, we have just to focus on the structure of the mathematical theory we want
to study and consider just the appropriate relations: for instance, «[a|rithemtic is the
science that elaborates the abstract structure that all progressions have in common
merely in virtue of being progressions. It is not a science concerned with particular
objects [...] there is no unique set of objects that are the numbers. Number theory
is the elaboration of all structures of the order type of the numbers. The number
words do not have single referents»*!.

This kind of objection is the one we’ve called metaphysical since it tries to reduce
the nature of the mathematical objects to their “being part” of a structure. The
consequence is strictly ontological: the structure has ontological priority than the
objects and the relations it contains, that are, therefore, ontologically dependent
from the first one. There is no platonic heaven to describe, instead there are
many systems of relations that realize abstract structures and which make sense of
our ordinary assertions. If we speak of the number three we are not picking any
particular abstract entity out of the domain of natural numbers, instead we are
simply considering any object which could occupy the third position in a structure,
that is the position immediately preceding 4 and immediately succeeding 2 in a well-
ordered progression. Therefore, any n belonging to the N—sequence is ontologically
dependent by the progression itself, while the N—sequence itself is ontologically
independent from the elements it contains. Hence, any collection which is infinite,
contains specific relations, has a smallest element, etc., is an abstract structure for
the number-theoretical progression, no matter whether it contains the signs “17, “2”

1.3 Against Platonism II: Epistemology

1.3.1 Benacerraf-Field’s Dilemma

In this section, we’ll consider the epistemological issues arisen from platonistic
philosophies, such as Godel’s*?. First of all, Benacerraf wrote his epistemological
considerations in an article which was originally devoted to discuss the notion of

3

“mathematical truth” and is quite difficult to access**. In any case, Benacerraf

41Benacerraf 1965, p. 292.
42Gee Benacerraf 1973, Plebani 2011, Linnebo 2009c.
43For clear reconstructions see Linnebo 2006 and Yap 2009.
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divided the discussion into his paper in two separate parts: in the first part we're
presented with some semantical considerations regarding the notion of mathematical
truth**, the following parts, instead, are devoted to the philosophy of mathematics,
in particular against Platonism again. Benacerraf wrote:

[My concerns are:] (1) the concern for having a homogeneous semantical theory in
which semantics for the propositions of mathematics parallel the semantics for the rest
of the language, and (2) the concern that the account of mathematical truth mesh

with a reasonable epistemology.*®

This time, Benacerraf’s criticism is, thereby, moved by epistemological issues. In the
paragraph titled “Knowledge”¥%, Benacerraf explained the epistemological theory
he would have assumed in order to develop his argument, i.e., the causal theory of
reference. Suppose we have an agent X and some statement p, we say that, for X to
know that p is true requires that there is relation between the referents of p (names,
predicates and quantifiers) and agent X. On this account, for example, I’ll know
that the statement “The table in front of you is brown” is true, when the concrete
brown table in front of me will have same causal relation with me, that is when I'll
see it, when I'll touch it, and so on. Roughly, if the objects to which I stand in causal
relation confirm me what the statement is saying, making it true, then I'll get an
explanation or description of the world: «[t]he proposition p places restrictions on
what the world can be like [...] In brief, in conjunction with our knowledge, we use p
to determine the range of possible relevant evidences»*”. By adopting a causalist
position in epistemology, Benacerraf formulated his criticism and the argumentation
can be given as follows:

(P1) For X to know that p, X must stand in a causal relation with the referents of
p.
(P2) No human subject stands in causal relation to mathematical abstract objects.

(C) No human subject can know a proposition whose referents are mathematical
abstract objects.

As before, Benacerraf’s position is anti-gddelian and refuses the identification of
mathematical entities with abstract objects. Since the previous argumentation was
based upon a very delicate epistemological theory, much criticism has been deserved
to it and, indeed, in his famous book Realism, Mathematics and Modality*®, H.
Field presented another very interesting version of the dilemma. Field’s challenge is

44Tn Benacerraf’s article we're presented with two problems: «the first is that the semantics for
mathematical propositions ought to mirror the semantics for the rest of natural language, in the
sense that truth conditions for both should be similar; the second is that there must be a reasonable
epistemology accompanying the account of truth», Yap 2009, p. 159.

45Benacerraf 1973, p. 403.

46Benacerraf 1973, pp. 412-414.

4"Benacerraf 1973, p. 413.

48Field 1989, pp. 230-239 and Linnebo 2009¢c, pp. 17-18.
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always directed to undermine Platonism, but not on the basis of “causality”, as did
Benacerraf, but starting from a new notion, namely from that of “reliability”. First
of all, let’s understand why “causality” is not the best way to formulate the dilemma
and why, according to Field, it would be better to embrace the notion of reliable:

Benacerraf formulated the problem in such a way that it depended on a casual theory
of knowledge. The present formulation does not depend on any theory of knowledge
in the sense in which the causal theory is a theory of knowledge: that is, it does not
depend on any assumption about necessary and sufficient conditions for knowledge.
[...] we do need — and do have, at least in outline — an explanation of between the
facts about electrons [numbers] and our “electron”[“number”] beliefs (i.e., the beliefs

we would express using the word “electron”[“number”]).4?

In other words, Field argues that in order to find a plausible explanation of human
knowledge of abstract entities — as postulated by physical and mathematical theories
— we have to, firstly, consider the “reality” to which they belong to and then, conse-
quently, noting if their introduction helps us in forming “true” beliefs about that
“reality” itself. In this sense, roughly speaking, if we find a meaningful explanation
on how (mathematical) abstract objects are helpful to our minds in generating “true”
beliefs or ideas of the portion of the (mathematical) universe they are supposed to
describe, then Platonism will turn out as epistemologically tenable. So, generally,
from the quote above, it can be implied that, according to Field, a fine-grained
Platonist should provide an adequate account of reliability®®. This latter is generally
based upon the agreement into the scientific community, that is: if a mathematician
accepts something about, for instance, the number series, we trust him, since his
mathematical knowledge is for sure very deep and we feel reliable in his faculties.
We can state the following claim as follows:

(Rely,): VS(mathematicians accept S — S is true)

Field’s example is the following: assume that in some cases, at least in outline, we
have an almost satisfying explanation of reliability for our beliefs in some physical
entities or phenomena. For instance, we have some beliefs about the existence and
nature of “electrons”, based on empirical observations, that have some influences
and consequences upon our brain. In other words, this means that our brains receive
“inputs” that force us in forming “true” beliefs upon the external world. According
to Field, a Platonist philosopher, in believing in a sort of “other reality”, thinks that
reliability in mathematical statements can be explained in the same way. That is,
(Rel,,) can be explicated in terms of:

(Rel,): V.S(physicists accept S — S is true)

49Gee Field 1989, pp. 232-233. In the foregoing passage, we’ve inserted the term “number”, beside
the the word “electron”, present in the original text, to clarify how Field’s objection applies also to

mathematical entities.
50See especially Plebani 2011, pp. 126-128 and Linnebo 2006, pp. 548-553.
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Here is exactly the problem : if physicists, or scientist in general, are reliable in
the sense that their theories give us an intuitive idea of the external world; then,
mathematicians, in which sense are reliable, if there is no concrete correspondence
between us, mathematical theories, abstract objects and the external world? In
Field’s view, a Platonist would argue that the parallelism between concrete objects
and mathematical entities is correct but just “heuristic”, and that the way in which
we form true mathematical beliefs is different, even if parallel, to that belonging
to sciences. Let’s explain this important point: if scientific theories and their
correspondence with the concrete reality are the starting point to justify why we
feel reliability in scientists, then, in mathematics, the consistency of a theory is
the first step in justifying reliability in mathematicians’ work. Recall that for
Godel-like Platonists a consistent mathematical theory, that is a theory in which
no contradiction can be obtained, corresponds to a correct, although incomplete,
description of the universe of abstract and existing mathematical entities. But is
it really sufficient to affirm that our reliability depends on the “personal” logical
faculties of a mathematician? Moreover, the consistent theories that mathematicians
produce are the real descriptions of the mathematical universe? More generally: are
Platonist’s explanations and definitions of reliability — as based on the mathematicians’
abilities to choose the correct and consistent theory — satisfying? Field clearly states
that Platonists’ explanations of reliability are not enough: there is difference in
establishing that reliability, as in the case of scientific theories, is based upon the
intuitive ideas that we form in us about the concrete reality, from saying that the
reliability is derived from consistency, as for mathematical statements. In the first
case, we have an almost “clear” description of the world, while for the second, it is
not clear why consistency allows us to produce “true” beliefs concerning the “third
realm” — assumed that we are not in direct touch with that realm itself. Likewise,

[...] it is impossible to give a scientific explanation of mathematical reliability claim.

Since mathematical objects do not participate in the causal order, [(Rely,)] clearly

cannot be explained in the same way as [(Rel,)]. [...] According to Field, this radical

separation of platonic entities from our physical universe makes it impossible to give
any kind of explanation of [(Rely)]?!.

In any case, even if Field’s argument is also directed against the parallelism between
sciences and mathematics, he assumes the parallelism in order to show that mathe-
matical reliability cannot be successfully be explained in terms of physical reliability.
Therefore, concludes Field, there cannot be a justification at all of mathematical
reliability in terms of scientific or empirical reliability.

It is clear that one could criticize Field’s attempt to search scientific explanation of
mathematical reliability, by saying that mathematics is very different from sciences
and, indeed, it is useful to point out and to consider that, «Field’s challenge fails
as an objection to mathematical platonism. But this failure does not undermine its

5ILinnebo 2006, pp. 552-553.
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force as a challenge»52. 1In this spirit, according to Field’s challenge, the situation a
Platonist faces — slightly modifying Benacerraf’s dilemma — seems to be the following:

(P1) Mathematicians are reliable, in the sense that for almost every mathematical
sentence p, if mathematicians accept p, then p is true.

(P2) For belief in mathematics to be justified, it must at least in principle be possible
to explain the reliability described in (P1).

P3) Platonism cannot explain reliability.
(C) Platonism is not tenable.?

Field’s challenge against Platonism is so complete. We've seen that the parallelism
between physical bodies/knowledge - mathematical entities/knowledge is wrong if
based upon the parallelism between the notion of reliability for sciences and for
mathematics. According to Platonists, a consistent theory, considered the description
of a portion of the mathematical universe, could produce true beliefs of the abstract
objects it describes. Therefore consistency explains reliability in mathematical
theories and works. For Field, instead, consistency cannot be the unique criterion
to explain reliability, since no clear explanation can be given of the link between
mathematical consistent theories, the universe they are supposed to describe and our
way to generate true mathematical beliefs with respect to that universe. Moreover,
argues Field, physical theories, unlike mathematical ones, have a more clearer and
preciser notion of what counts as evidence and, hence, — at different degrees of
certainty — physics, for example, truly describes portions of the natural world.
Differently, the requirement of a tenable explanation of mathematical reliability has
not be accomplished yet and Platonism rests without justification. In conclusion,
it is important to notice that, even if, Field’s starting point has been Benacerraf’s
dilemma, it was directed not only to the difficulty arisen from the abstract nature of
mathematical objects, but also to the fundamental assumption that mathematics
describes a non-physical “reality”:

[...] whatever mathematical objects are, truths about them must be knowable. Any

account of their nature which fails to explain how that could be, is an adequate one.

And according to both Field and Benacerraf, mathematical Platonism is inadequate for

that very reason. Platonism, argues Benacerraf, is a view on which truth conditions on

the statements of mathematics are given in terms of objects whose nature places them

beyond our cognitive reach. Regardless of how well those truth conditions harmonize

with a semantics for the rest of the language, they are useless if we could never know
that they have been met.%*

52Linnebo 2006, p. 553.
53 «If these three premises are correct, it will follow that mathematical platonism undercuts our

justification for believing in mathematics», Linnebo 2009c, p. 17.
54Yap 2009, p. 162.
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1.3.2 Another Challenge: What is Mathematical Doxology?

There is another challenge that has been formulated by Vann McGee® and that is
useful to consider:

The problem is sometimes posed as a problem in mathematical epistemology: How can
we know anything about mathematical objects, since we don’t have any casual contact
with them? But to put it as a problem in epistemology is misleading. The problem
is really a puzzle in mathematical doxology: Never mind knowledge, how can we
even have mathematical beliefs? Mathematical beliefs are beliefs about mathematical
objects. To have beliefs about mathematical objects, we have to refer to them, we
have to pick them out; and there doesn’t appear to be anything we can do to pick out

the referents of mathematical terms®®.

So, according to McGee’s perspective, there is an even more important reading of
Benacerraf’s challenge, that is the interpretation concerning the doxological ques-
tions about mathematics. McGee argues that, if we put Benacerraf’s problem in
epistemological terms, then we are seeking for an explanation of the way we may
achieve mathematical knowledge starting from mathematical objects. But — and
here is the crucial point — this is just the second step in our epistemological foun-
dation of mathematics, indeed, before treating the epistemic connections between
mathematical abstract objects and us, we must find a faithful explanation of the
kind of “reference” invoked by mathematicians. For clarity consider the following
example. Let’s take the number word “14”. In order to establish the most accurate
epistemological account, it should be considered if our sentences, such as “14 is a
natural number”, really refer to an abstract object or not. Indeed, in order to do
this job it’s worthy to spend some considerations on the (problematic) notion of
mathematical reference. So, Benacerraf, according to McGee, has not just formulate
the so called “epistemological access problem”, but has proposed one of the most
puzzling problems in the philosophy of mathematics. It can be posed as follows:

e Dozology: How do we pick out (refer to) mathematical objects?

o Epistemology: How do we acquire and possess mathematical knowledge?
Hence, for example, from a doxological point of view, a Platonist could be asked:
(D1) How do we refer and pick out mathematical abstract objects?

For McGee, a Platonist will generally be unable to provide tenable answers to the
doxological questions and, therefore, he will not able to set up a consistent and
“moderate” epistemology of mathematics.

In conclusion it might be said that, for the moment, that, following Button and

% McGee 1993 (published in Armour-Garb and Beall 2005, pp. 111-142) and Button and Walsh
2011, pp. 145-146.
56McGee 1993, p. 135.
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Walsh, we've called Godel’s philosophy of mathematical knowledge “extreme” since
it postulates a human faculty that guarantees the access to, and justifies the exis-
tence of, the platonic heaven of abstract mathematical entities. The doxology and
epistemology we're seeking for are better called “moderate”, since our aim is to study
mathematical knowledge without involving particular neural processes or fantastic
human faculties. Indeed, we think that Putnam’s suggestion for which the «appeal
to mysterious faculties seems both unhelpful as epistemology and unpersuasive as
science»®” should be taken seriously®®. So, to avoid this kind of “psychologistic”
appeal to an almost inexplicable human faculty, the best way we have to understand
mathematical statements (and their philosophical implications) is to set down a
“formal theory”. Why? Logical languages are very helpful to clarify our understanding
of mathematical and philosophical reasoning and, therefore, in the following chapter
we are going to analyse some notions, such as the one of “object” or “set”, formally.
In this sense, it could be said that we aren’t seeking for a “doxology (and an episte-
mology) by acquaintance”, but for a “doxology (and an epistemology) by description”.
This means exactly that we aren’t trying to describe a neural cognitive process
between human minds and abstract entities, instead we believe that formal languages
(i) can provide good tools to describe and analyse the logic underlying mathematical
statements and (ii) clarify some ontological and epistemological issues concerning
mathematics itself.

STPutnam 1980, p. 471.

*8Putnam defines very briefly its idea: «the “moderate” position [...] tries to avoid mysterious
“perceptions” of “mathematical objects”» (Putnam 1980, p. 466), indeed, ask yourself «[w]hat neural
process, after all, could be described as the perception of a mathematical object? Why of one
mathematical object rather than another?»(Putnam 1980, p. 471).



Chapter 2

Numbers, sets and objects 1.
Naive Considerations

Overview. As we have seen in the previous chapter, Benacerraf pointed out that

7

the natural numbers such as “1,2,3,...” may not ontologically and logically be
reduced to sets. Moreover, Benacerraf extended his argumentation by affirming
that every ontology of mathematics which includes any sort of abstract objects
is incoherent for ontological and epistemological (-doxological) reasons. In this
chapter, we’ll deepen some aspects of set theory and its philosophy in order to
consider Benacerraf’s reductive argument from another perspective. At the end
of the present chapter, we should be engaged, another time, with the question of
whether something like abstract objects “exist” and whether their introduction within
an ontology of mathematics may be useful in order to fix our “reference” with respect
to mathematical entities.

Since in this chapter our main concern will be with the so called “naive set theory”,
we will start with some historical-philosophical remarks that will be useful within
the final discussion. First of all, we will consider and explain Frege’s logical and
philosophical attempt to provide an adequate account of “logical objects” and its
fundamental conception of “extensions”. Secondly, our analysis will be devoted to
the pioneering mathematical and philosophical work of the two brilliant German
mathematicians Richard Dedekind (1831-1916) and Georg Cantor (1845-1918).

2.1 Short Introduction to Frege

2.1.1 Frege’s Logical Objects and Extensions

Gottlob Frege (1848-1925) is considered as the “inventor” of our formal logic and of
its application within the study of metaphysics, of language, of mathematics and
so on. In this section, we shall investigate just a part of the immense fregean work
and, indeed, our reconstruction will focus only on Frege’s ontological conception of
“logical objects”.

33
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2.1.1.1 Frege’s Project and its Failure

Roughly, Frege rigidly distinguished “concepts” and “objects” and he denied that
concepts were “individuals”; since individuals were just objects. Additionally, before
giving examples, we have to distinguish two types of relations occurring between
these two types of entities!:

(i) “Falling under”: when we say that “Z falls under " we are relating some
objects (T) to some concepts (7).

(ii) “Being in”: when someone affirms that “Z is in §” he is relating some concepts
() to some objects(7).

Frege? thought that there are such logical objects and the list may include: truth-
values, courses-of-values, extensions, numbers, directions, shapes and so on. All these
abstract objects could be, according to Frege’s works, reduced to “courses-of-values”.
The main principle governing the aforementioned reduction, namely Basic Law
V, failed, since the English logician Bertrand Russell discovered that from Frege’s
system a contradiction could be entailed. The principle that undermined Frege’s
logic attempted to systematize the notion of “course-of-value of a function” and
“extension of a concept” The course-of-values of a function f could be considered as
the set of ordered pairs belonging to f itself, indeed, logically, the function outputs
a result y for every argument x to which the function is applied: f(x) =y. When f
represents a concept, Frege called its course-of-values its “extension” and considered
it as the set of all objects that fall under the concept that f represents. In this
sense, the extension “collects” all the objects that truly fall under the concept or, in
more fregean terms, an extension collects the objects that the concept f maps to
the logical object representing “the true”. For example, the extension of the concept
“r is a student in Venice” can be seen as the set or collection consisting of all those
individuals which are truly students in Venice. For a more mathematical example
consider the concept “x is a positive even integer greater than 0 and less than 10”.
Hence, its extension is the set of all logical objects, namely the integers, that satisfy
the condition that the concept is asserting; in this case, 2, 4, 6 and 8.

For our purpose, let’s suppose that we have primitive function terms f, g, h,... in our
formal language and that their functional applications such as f(x), g(y), h(z),...
are allowed. In Grundgesetze, §9°, Frege introduced his primitive notation for courses-
of-values and extension by adopting Greek letters such as € and «. Additionally, he
denoted by e/ and «/, the fact that the object variables € and « are bound in the
expressions f(e) and g(«), respectively, and that these resulting expressions indicate
course-of-values:

1Recall that, by overlining variables, such as  and 7, we abbreviate z1,..., 2z, and y1,...,Yn,
respectively.

2My reconstruction is principally due to Zalta 2018. For Frege’s preliminary works on arithmetic,
logic and their philosophy, we refer to the following English translations: Frege 1879, pp. 5-82, and
Frege 1884. Anyway, our main focus has been directed on and inspired by Frege 1893/1903.

3Frege 1893/1903, pp. 14-16.
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(i) erf(e).
and
(i) arg(a).

indicate, respectively, the course-of-values of the functions f and ¢g. Two fregean
examples are the following:

(ia) er(e* —¢).
denote the course-of-values of the function represented by the open formula:
(iila) 2% — .
Likewise, he adopted:

(ib) af(a x (@ —1)).

to denote the course-of-values of the function represented by the following open
formula:

(iib) = x (z —1).

Importantly, then, Frege noticed that, if the objects falling under the functions 2% — x
and = X (xr — 1) are the same, then the extensions of those two functions are the
same (and viceversa). So, formally, he noticed that

Va(z? —z =1z x (z — 1))
holds if and only if:
e —¢e) = alla x (a—1))4

Frege generalised the previous equivalence and, in §20°, he embodied it within his
famous and inconsistent principle, namely Basic Law V. Let’s represent it formally:

Principle 1 (Basic Law V for Functions). €/f(€) = a/g(a) <+— Va(f(z) = g(x)).

In current terms: the course-of-values of the function f is identical to the course-of-
values of the function ¢ if and only if f and g map every object to the same value.
Going a step further, recall that the extension of a concept is the set of objects that
fall under that concept and, indeed, Frege defined what does it mean for an object
to be the member of an extension or set. Although Frege used the z Ny to designate
the “membership relation”, we will follow the more usual practice, using x € y. So:

Definition 2. x € y =q¢f IF(y = eF' A F(2))

In other words, = in an element of y just in case x falls under a concept F' of which

4We adopt the symbol = to indicate the “material equivalence” between the two concepts

involved.
SFrege 1893/1903, pp. 35-36.
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y is the extension. For example, it is possible to show that 1 € e[z : z + 2% = 5],
starting from the premiss 1+ 2% = 5. The notation [z : x 4+ 2% = 5|1 indicates that
the property of “being an z such that x added to 22 gives as result 5” — our F in the
general definition — is witnessed by 1.

Example. Let [1 + 2% = 5] be [z : 2+ 22 =5]1. If [z : 2 + 2% = 5]1 then 1 € ¢[x :
T+ 2% =5].

Proof.
(a) [z:2x+2>=75]1 Premise
(b) €lz:x+22=5] =¢€[x:z+2%=5] Axiom of identity z = x

(c) elx:x+22=5]=¢€wv:x+22=5]Alr:2+22=5]1 From (a)-(b) by A—introduction

(d) IF(elxr : z+ 22 =5 =eF A F(1)) From (c) by 3—introduction
(e) 1 € ez :ax+22 =05 From (d), by definition of €
|

Thus, given the premise that “1 falls under the concept F”, namely [1 + 22 = 5],
one can prove that 1 is a member of the extension of the concept “being an x that
added to 2% gives 5 as result”, that is 1 € €[z + 22 = 5]. From this example it should
already be clear that the number 1 represents the logical object which truly falls
under the concept F', belonging therefore to its extension, i.e. eF'.

Most of all work has been done and the last thing we have to observe, in order to
engender the Paradox, is the special version of Basic Law V for concepts® and some
few other derived laws:

Axiom (Basic Law V for Concepts). €l = ¢G +— Va(F(z) = G(z))
Corollary 1 (Existence of extensions). VF3z(x = €F)
Corollary 2 (Law of Extensions). VFVz(x € eF «— F(z))

In current terms, the first axiom says that the extension of the concept F' is identical
to the extension of the concept G if and only if the objects falling under F' fall also
under GG. In contemporary se theory, we could have said that the set of the F's is
identical to the set of the Gs if and only if F' and G are materially equivalent:

SWithout explaining at length Frege’s conception, we will simply assume that, according to him,
concepts are special cases of functions.
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{z | F(z)} ={z| G(x)} «— Vy(F(y) = G(y)).
To see that the first corollary is a consequence of BLV, notice that when we instantiate
the variable F' to P in BLV, we can establish:

€P =¢P <— Va(P(x) = P(x))

Since the right side of this instance of BLV can be derived by logic rules alone, it
follows that eP = eP. But, then, by existential generalization, it follows that:

Jx(x = €P)
Now the first first corollary follows by universal generalization on P:
VF3x(z = €F)

The second corollary, the so-called Law of Extensions, asserts that an object is a
member of the extension of a concept if and only if it falls under that concepts.
In order to see this, consider our previous example involving the derivation of
1 € €[x + 2% = 5] from the premise [1 + 2% = 5].

Also with these few informations on Frege’s deep work, it is possible to focus the
attention on the discover of the existence of the paradoxical Russell Set within Frege’s
Grundgesetze. There are two strategies to derive a contradiction from Frege’s system
and we will present both of them.

Theorem 3 (Russell’s Paradox 1). BLV entails a contradiction.

Proof. For the moment, consider the the concept being the extension of a concept
which you don’t fall under and call it Q); formally:

Q=[z:3F(z = eF A—F())]

Further, by corollary 1, we know that the extension of the concept being the extension
of a concept which you don’t fall under, exists; namely:

Q)
Now suppose,

[z : JF(z = e N =F(2))](eQ)
Q

That is, Q(eQ). In current terms: the extension of ) falls under the concept being
the extension of a concept which you don’t fall under. Considering this, instantiate
the free x with €@ in order to get:

JF(eQ = eF N —=F(eQ))
Letting P be such a concept, we obtain

€Q) = eP N —P(eQ)
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Now, by applying BLV to the first conjunct it follows Vz(Q(x) = P(z)). But, since
—P(eQ), it follows =Q(eQ), contrary to the starting hypothesis.
Reverse the argument and suppose:

Sz IF(z = eF AN —F(2))](eQ)
2

That is, =Q(eQ). Now, instantiate again x with e to get:
—3JF(eQ) = eF N —F(eQ))
By simple logical transformations, this means that:
VF(eQ = eF — F(eQ))
By instantiating the second-order variable F' with @ itself, it follows:

€Q = eQ — Q(eQ)

Hence, Q(e®). But, another time, this is contrary to the initial hypothesis.
In both case we've derived a contradiction. |

In this way, without employing foreign strategies to Frege’s Grundgesetze (but simply
a different notation), we’ve derived the famous contradiction which lead Frege’s
dream into troubles.

Anyway, since our main concern remains set theory and its philosophy, we will now
focus on the method Russell himself adopted in 19027. Roughly, we will initially
derive a fundamental principle governing properties (absent, but implicit, in Frege’s
Grundgestze) and which will bring us directly in front of the set-theoretical version
of the paradox. Recall that Frege established his system within a second-order logic,
quantifying hence not only on individuals but also on properties. In this sense, the
domain on which the quantifiers range will be composed by n—ary predicate or
relation letters £, G™,...(n > 0) designating arbitrary properties. Indeed, consider
that a second-order logic contains a so-called “comprehension principle for properties”
that guarantees the existence of an n-place relation or property corresponding to
any open formula ¢ with n object variables z1,...,z,. We'll state it, even if Frege
did not formulate it explicitly within his entire work:

Axiom (Comprehension Principle for Concepts). IFVz(F(z) +— ¢)

The foregoing principle governs 1—place relations, but it is possible to extend it and
consider n—ary relations. So, for any schematic condition ¢ there is a corresponding
property F'. Anyway, what we actually need in order to engender Russell’s Paradox

"See Russell 1902, pp. 124-125, and Frege 1902, pp. 126-128 (both texts are collected in van
Heijenoort 1967). For philosophical commentary, see, among others, Linnebo 2011, pp. 33-37.



NUMBERS, OBJECTS AND ABSTRACTION 39

is the version of the Comprehension Principle, not for concepts, but rather for
extensions. Let’s see how to derive it from the definitions and theorems we’ve already
provided:

Proof.

(a) VEVz(x € €F <— F(x)) Given

(b) Va(x € eF <— P(x)) From (a), instantiation of VF with P

(¢) YV (x € y «+— P(x)) From (b), 3—introduction on eP

(d) VF3IyVe(z € y +— F(x)) From (c), V—introduction on P [

This last step is exactly the principle we were seeking for. The theorem in the last step
of the previous derivation is Frege’s “Naive Comprehension Principle for Extensions”;
it affirms that for any concept F', there in an extension y which collects as elements
all and only those objects that fall under F', namely all the xy,...,z, € €F. Now,
consider the schematic version of the Naive Comprehension Principle for Extensions,
namely:

JVa(z € y +— p(z))

Recall that the Law of Extension, from which we derived the Naive Comprehension
Principle/Schemata for Extensions, has been proved with the help of Basic Law V.
Being this latter an axiom of the Grundgestze system it should be considered as
truth-entailing in all of its applications, that is, nothing inconsistent or incoherent
should be derived from it. Let’s consider, finally, what Russell’s logical inquiry
discovered:

Theorem 2.1.1 (Russell’s Paradox 2). Basic Law V entails a contradiction.

Proof. Consider the Naive Comprehension Principle for Extensions and let ¢ = y ¢ y,
that is the “not-membership” relation. Hence,

WVa(z ey «—y ¢y)
Let a be such an y to get:
Ve(r €a<+—a ¢ a)
Since a is in the scope of the universal quantifier we obtain:
aca+—aéda

Contradiction. [ |
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As it is clear, the last sentence that have we derived in the foregoing proof entails
a contradiction. If (a € a «+— a ¢ a) = (a € a +— —a € a) then, using a simple
propositional logic vocabulary, it is easy to see that the logical form of Russell’s
conclusion is A «— —A. Recall that the Naive Comprehension Principle/Schemata
for Extensions has been derived from the Law of Extensions, while the latter was
implied by Basic Law V. In this sense, all the theorems which involved the appli-
cation of Basic Rule V| implicitly used an inconsistent rule, being thus incorrect.
All the strategies Frege developed in order to derive the Dedekind-Peano axioms for
arithmetic from his logical system failed since the derivation of the main principle
governing the existence of numbers as abstract logical objects applied to Basic Law
V. This principle is nowadays known as “Principle of Hume” and its introduction
would have allowed Frege to show that arithmetic is reducible to logical truths alone.

What have we achieved up to now?

Recall that our main purpose in this chapter is to deepen our set-theoretical knowl-
edge (and its philosophical foundations) in order to discuss Benacerraf’s ontological
reductive argument. Let’s summarize our main results:

1. Frege developed an interesting theory of extensions: pick a property F' and
analyse its course-of-values, thus determining its extension, that is all the
objects that have the considered property.

2. Frege’s theory of extensions is considered as a “naive set theory”, which is
to contrasted with its axiomatic version. This means that we do not have
all precise rules to form and define sets, but every collection of elements is
considered as a set itself.

3. Frege’s ontology of mathematics is full of abstract objects (such as extensions
and numbers), each of them governed by a logical principle (such as Basic Law
V and Hume’s Principle).

Now, Frege was not interested in the “mathematics” of sets but, rather in its philo-
sophical foundation and reduction to logic. Indeed, some years before Frege’s works
appeared, two brilliant German mathematician had independently developed some
interesting and almost pure mathematical considerations concerning sets, namely
R. Dedekind and G. Cantor. Even if their contributions to the early development
of naive set theory and to debate concerning the foundations of mathematics are
fundamental, their theories of sets are, in any case, exposed to Russell’s Paradox.
In the next section, while discussing some issues concerning sets and their elements,
we will present our “naive” ontological objection to Benacerraf’s reductive arguments
exposed in “What numbers could not be” (1965).

2.1.1.2 Logicism, Extensions and Natural Numbers

Frege’s main purpose was to derive all the basic truths for number theory from a
small package of logical concepts and axioms. In particular, Frege aimed to give clear
proofs — into his Grundgestze’s system — of the so called Dedekind-Peano axioms
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for natural numbers. Let’s state them in ordinary and formal language (zSy is the
formal version of “y is the successor of z” or of “y is preceded by z”, and N(z)
indicates that z is a natural number)®:

(A1) 0 is a natural number
N(0)
(A2) Successors of natural numbers are natural numbers
N(z) A xSy — N(y)
(A3) If a natural number is succeeded by two numbers, then they are the same
number
N(x)ANzSyANazSz —y==z
(A4) If a natural number is preceded by two numbers, then they are the same
number
N(y) NxSy A zSy -z ==z
(A5) Any natural number has a unique successor
N(z) — Jly xSy

(A6) Principle of mathematical induction. Let, m,n be restricted variables ranging
over natural numbers and £’ be an arbitrary predicate letter:

VF[F(0) AVm,n(F(m) AmSn — F(n))] — VnF(n)

It’s important to be precise and to say that Frege thought that arithmetic, i.e. the
mathematical study of the natural numbers sequence, could be reduced to and,
consequently derived from, logic alone. So, generally conceived, Frege’s logicist
project contains both, the following two logical theses:

(Ly) All arithmetical concepts are definable in terms of, and thanks to, the presence
of logical concepts.

(Ly) All arithmetical truths are derivable from logical truths,
and the following ontological claim:

(Ls) Logical and arithmetical objects can be thought of as particular abstract
objects.

Concerning (L3), Frege thought that “1,2,3,...” should be considered as indicating
the “number” of objects falling under some concept. So, if someone utters “there are
3 books”, the number-sign 3 refers to the extension of the concept “being a book”
under which fall three elements. Frege thought that, in order to affirm the existence
of the “numbers as extensions”, it was solely necessary to establish a general rule
regarding their “equipotency”. For instance, if the objects falling under the concept

8See Linnebo 2011, p. 33; Zalta 2018, p. 39.
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“being a book” and the objects falling under the concept “being a pen” are in a
biunivocal correspondence, then they have the same number of elements. Frege,
indeed, thought that the notion of sameness of cardinality, or in fregean terms of
“equinumerosity” between sets, is principal for his logicist account of arithmetic and,
indeed, it’s fundamental to state it formally. Let F' and G be two arbitrary predicate
letters and let ~ be the 2—relation symbol representing equinumerosity:

Definition 3 (Equinumerosity). F ~ G =q¢¢ AR[Vz(F(x) — 3y(G(y) A xRy)) A
Va(G(z) — 3(F(y) A yRzx))]

In other words, that F' and G are equinumerous means that there is a binary relation
R which establishes a one-to-one correspondence (bijection) between the objects
that fall under F' and those that fall under GG. Hence, it seems natural to reason in
the following way: two concepts F' and G will be equinumerous for definition if the
“number” of elements falling under F' is identical to the “number” of objects falling
under G. This latter claim will be, indeed, embodied within the so called Hume’s
Principle. It is possible to represent the situation we’ve described as follows: Recall

F G

Figure 2.1: Mapping of R

that in Grundgesetze?, Hume’s Principle has been derived from his Basic Law V,
determining thus its inapplicability during any proof and has not been assumed as
an axiom. In any case, since it has played a fundamental role in Frege’s project, let’s
state it adopting an additional operator, #F', indicating “the number of the objects
falling under F'” (or simply, “the number of the F's”):

Proposition 4 (Hume's Principle ). #F(x) = #G(z) «— F ~ G

In this case, the number of the F's is identical to the number of Gs if and only if
F and G are equinumerous. To see this clearly compare what Hume’s Principle is
asserting with the mapping presented in figure 2.1. With this framework, indeed,
Frege defined what a “cardinal number” is:

Definition 4 (Cardinal Number). Card(x) =q¢ IF (v = #F')

9Frege defined firstly Hume’s Principle in his Grundlagen (see, Frege 1884, pp. 84-85). For
commentary in his Grundgesetze, see, for instance, Frege 1893/1903, pp. 56-57.
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So, a cardinal number is the logical object & which is the number of some concept F'.
This considerations and, in particular, Hume’s Principle are «the basic principle[s]
upon which Frege forged his development of the theory of natural numbers»©.
This characterization has been renamed “Frege’s definition of cardinal numbers as
equivalence classes”. For with the previous formal assessment Frege has been able to
derive the Dedekind-Peano Axioms for Arithmetic. In particular, in order to show
the infinity of numbers Frege made use of a sequence of representative concepts such

as “the concept under which fall n objects”:

x| x=#NoVar=+#N]

3

Nl [l”x—#No]
3
[J]|{L‘—#N0\/ZL'—#N1\/ZL‘—#N2]

In other terms, Ny is the the set of all not self-identical members, i.e. the set which
has no elements in it and every N; represents the set under which all the preceding
members of the collection N;_;, (i > 0) fall. Thus enabled Frege to the following
characterization of finite cardinals within the Grundgesetze:

« #N;=0
o #N, =1
o #N; =2
. #N3=3

Although, equinumerosity and “naive” sets will occupy this entire chapter, we will
not follow Frege’s formalization of extensions and sets, but we will follow the more
usual practice and notation. Anyway, while considering from a closer point of view
neo-fregean proposals — at least, with respect to abstraction principles — we will see
that HP and BLV still play fundamental roles.

2.2 Short Introduction to Cantor

2.2.1 Naive Set Theory: Foundations

Recall that set theory is the mathematical study of “sets”, that is the study of
“collections of things”. In order to see, from a different perspective Benacerraf’s
argument, we still need new technical tools. Ontological and epistemological consider-
ations, such as the existence and knowledge of abstract objects and the possibility to
reduce the natural numbers to set-theoretical representations, will be discussed when
all the preliminary, formal and historical remarks have been presented. Without

107alta 2018, p. 34.
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assuming Frege’s theory of extensions and of logical objects, let’s begin with the
pure mathematical notion of set. In Cantor’s own word

By an “aggregate” (Menge) we are to understand any collection into a whole (Zusam-
menfassung zu einem Ganzen) M of definite and separate objects of our intuition or

our thought. These objects are called the “elements” of M.!!

The idea that a set represents a collection is perpetuated even in other modern
definitions. For instance, Frege, Schoenfield and Thomason, respectively, say that:

A class, in the sense in which we have so far used the word, consists of objects;
it is an aggregate, a collective unity, of them; if so, it must vanish when these ob-

jects vanish. If we burn down all the trees of a wood, we thereby burn down the wood.!?
A set is a collection of objects'®.

A set is many things considered as a unity...there are nine planets, taken sever-
ally. But taken together, as one, there is a single object: the set (collection, multitude,

aggregate, class) of the planets!?.

The description they propose are telling us something about two fundamental
properties of sets. Let A be designating any set!®:

1. Membership relation: Every set A has a member or element. In symbols,
z € A iff  belongs to (or is a member of ) A.

2. Extensionality Property: Every set is determined by its members. If A and
B are sets, then they are identical iff they have the same elements. Formally,

A=B<=Vi(xr € A«— z € B)

The result we are going to analyse are all based on the Extensionality Property and
on the following principle, which we have encountered in different fashion already in
Frege’s work:

Principle 2 (General Comprehension Principle). For each n-ary definite condition
P:

JA(A=A{z | P(z)})
whose members are exactly all the n-tuples satisfying P(%), such that

VT (T € A<= P(7)).

HCantor 1915, p. 85.

12Frege 1895, p. 212.

13Schoenfield quoted from Oliver and Smiley 2006, p.126

4 Thomason quoted from Oliver and Smiley 2006, p.126

15The formal remarks are due to the brilliant exposition of set theory of Moschovakis 2006. For
Italian readers, a very useful introduction to Cantor can be found in Costantini 2016 (Second Part).
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By the Extensionality Property it follows that at most one set A satisfies the condition
(2.1) and we can call the set A the “extension” of the definite condition P. Since we
are working with formal methods, we want to avoid “vague” conditions, which have
nothing to do with scientific reasoning. Consider, for instance, the following set:

A =4et {2 | x is a good citizen}

The condition of “being a good citizen” could be longly debated and therefore the
membership relation is not always clearly determined. In this case, in order to
avoid strange and arbitrarily defined sets, we define what is for P to be a “definite
condition”. We say that

Definition 5. An n-ary condition P is definite if for each n-tuple T of objects, it
is determined unambiguously whether P(7) is true or false.

In the same way, we do not want “casual” assignments within our theory, but we are
aiming to define unambiguously when an object can be assigned to a determined
value. This motivates the next restriction:

Definition 6. An n-ary operation I’ is definite if it assigns to each n-tuple T of
objects a unique, unambiguously determined object w = F(Z).

Thus, assuming that the laws of biology will not betray us, the following non-
mathematical operation is definite:

the egg of z, if z is an oviparous

F(JZ’) —def {

x, otherwise

In this manner, we are ensuring that F(Z) will get a determined value for each
T = x1,...,%Z,. In practice, we will not consider the values for F(Z) with not
oviparous’ T , thus we're allowed to define the operation simply as F'(x) =qe the egg
of x.

t16” and specify the

Additionally, we need to assume the existence of an “empty se
condition of “being a function” and there are «[...] no problems as mathematicians

have always made these assumptions, explicitly or implicitly»'7:

Definition 7. Let A and B be two sets. We define a function f from A to B as
follows:

16 «Somewhat peculiar is the empty set @ which has no members. The extensionality property
implies that there is only one empty sety (Moschovakis 2006, p. 2). Additionally, it is useful to
precise that «we define the @ as the unique set with no members; the empty set. Whilst there are
philosophical discussions to have about @’s existence, there are no technical discussions to be had»
(Button and Walsh 2011, p. 30). For philosophical criticism see, for instance, Oliver and Smiley
2006.

1"Moschovakis 2006, p. 21.
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Function(f,A,B) <— f: A— B
In order to be clearer we will employ different notation when different functions are
considered:

» Mappings such as a — f(a) are useful while considering functions without
officially naming them. For example, x — = + 1 (for € N) is the function
which associates each natural number to its immediate successor. If we “name”
the function f, then it is defined by the formula f(z) =z + 1 (for 2 € N).

o A — B is an “injective function” or an “injection” (one-one):

<= Va,be A (a=b= f(a) = f(b))

o A — B is a “surjective function” or a “surjection” (onto):

<= Vbe B,dac A (b= f(a))

o« A — B is a “bijective function” or a “bijection” (one-to-one correspondence):

<= Vbe B,3lac A (b= f(a))

These preliminary remarks are fundamental to the understanding of Cantor’s set
theory. In particular, all the results we are going to analyse are centred around the
few technical definitions we have briefly introduced. So, if our aim is to discuss some
features regarding the “size” of sets and how big they could be, it is important to
introduce some of their peculiar characteristics. As in the case of Frege’s theory, let’s
begin by introducing Cantor’s equinumerosity notion:

Definition 8. Two sets A and B are equinumerous or equipotent iff there is a
one-to-one correspondence between them, written A ~ B.

Since we’ve introduced the notion of equipotency, we can prove one of its main
particularity, namely that it corresponds to an equivalence relation. First of all
recall that from a mathematical point of view a generic relation R is said to be an
equivalence relation iff the following three conditions can be verified:

1. For all z, xRz (Reflexivity)
2. For all z and y, tRy — yRx (Symmetry)
3. For all z,y and z, xRy and yRr —> xRz (Transitivity)

Now, we can state the following result concerning the equinumerosity relation between
sets:

Proposition 5. The euinumerosity relation is an equivalence relation.
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Proof. Consider that our R is the relation A ~ B. We must prove that:
(i) for each set A, A~ A.
(ii) for each set A,B, A~ B = B~ A.
(iii) for each set A,B,C, A~ Band B~(C = A~C.

For (i): If A ~ A, then there must be a bijective function f : A — A. As clear
f is the identity function that for each a € A, a — a: the mapping is one-one
(injective) and onto (surjective), hence one-to-one (bijective). Therefore, ~ is a
reflexive relation.

For (ii): If A ~ B, then it follows that there is aﬁijection f:A— B. Since f is
bijective map, then there exists also the bijection f : B — A. Hence, B ~ A.

For (iii): Suppose that A ~ B and that B ~ C. By definition of ~, there are two

biunivocal correspondences A ENY; XENVo3 Hence, the composition of f and ¢ is a

one-to-one function A —X+ B — % (. Therefore, A ~ C. |
\_/
fog

Consider, for the moment, that the

[...] radical element of Cantor’s definition is the proposal to accept the existence of
such a correspondence as the characteristic property of equinumerosity for all sets,
despite the fact that its application to infinite sets leads to conclusion which had been

viewed as counterintuitive.l®

As we see from the quote above, we’ve encountered the notion of “infinite” set, and,
in order to introduce discussions around set sizes, we need to be able to say the
conditions under which a set is “less or equal in size” to another one. The next
definition will very be useful:

Definition 9. A set A is less or equal in size to a set B iff it is equinumerous to
some subset of B. Formally,

A§B<:>EIO(C§BAA~O>

Since in this chapter our aim is to discuss set theory “philosophically”, we have
to outline its fundamental results. Unlike Frege’s theory, all the formalism here
introduced should be considered as «a useful device which is compatible with every
philosophical approach to the subject»!®. Recall, indeed, that while discussing
Frege’s theory of extensions we’ve introduced his ontological conception of objects
and concepts. Here, instead, we won’t assume and defend any position concerning
mathematics, logic and their connection to philosophy, but all the philosophical
remarks will be outlined at the end of the present section.

Now, first of all, let’s introduce some other useful symbols: let A be a non-empty set,

Moschovakis 2006, p. 7.
9Moschovakis 2006, p. 30.
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finite or infinite, and suppose that for each A € A we are given a set A,. We say that
we have a family of sets F = {A; | A € A}?°.

Definition 10. A partition of a set A is family F = {4, | A € A} of non-empty
subsets of A, A; C A, such that:

1. ANA, #0 = A =4,

2. Upen A=A
We say that the A;s partition the given set A.

Consider now the following non-mathematical example. Let A = {a,b, ¢, d, e, f,g,h}
and let A; = {a7b7 G, d}7 Ay = {CL, c,ef,9, h}7 Az = {a,c,e,g}, Ay = {ba d} and
As = {f,h}. It follows that:
1. Ay ={a,b,c,d} and Ay = {a,c,e, f,g,h} are not partitions of A, since they
are not mutually disjointed.

2. Ay ={a,b,c,d} and A5 = {f, h} are not partitions of A since they leave out,
for instance, the element e.

3. A3 ={a,c,e, g}, Ay = {b,d} and A5 = {f, h} correspond to a partition of A.
A more mathematical example is the following. Consider the N set. If we establish
that N, = {z |  +2 = 0} and that N, = {z | z + 2 # 0}, then we’ve partitioned
the set of the natural numbers into the partitions of the even and the odd numbers.

Much, but not all, of the formal work is done. Finally, let’s introduce other useful
notions and achievements:

Definition 11. Given a generic equivalence relation R on a set A, the equivalence class
of an element x € A is defined as follows:

[z] ={y | (z,y) € R}

2] ={y | v =y}

The notation “a = b” has to be read “a is equivalent to b”. The next theorem, as we
will see, immediately follows:

Theorem 2.2.1. If R is an equivalence relation on a set A, then the equivalence
classes generated by R are partitions of A.

Proof. We have to prove that:

(i) for all a € A, a belongs to some equivalence class generated by R.

20For technical introductions to set partitions, see, among others, Carlucci Aiello and Pirri 2005,
p. XX. (for Italian speaker) and Biggs 2002, pp. 126-141.
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(ii) each pair of Ay, A, (A # p) is disjoint.

For (i): Suppose a € A and that R is an equivalence relation. By definition,
la]| = {y | (a,y) € R} and, hence, a € [a].

For (ii): If [a] N [b] # @, then there exists an element ¢ € [a] N [b]. Since R is an
equivalence relation, then it is also transitive, so, if (a,c¢) € R and (¢, b) € R, then
(a,b) € R, namely b € [a]. If we consider an element x € [b], namely (b, x) € R, by
transitivity of R we would get (a,x) € R, that is « € [a]. Hence, b C [a].

If (b,c) € R and (c,a) € R, then (b,a) € R, namely a € [b]. Always considering a
general element x € [a], (a,x) € R, we get, by transitivity of R, (b, z) € R, that is
x € [b]. Hence a C [b].

Finally, b C [a] and a C [b] = [a] = [b]. [

7

Now, in order to indicate the “bigness” of a set, let’s explain the notion of “cardinality
or “magnitude”. With the next two definitions, we've set up much of the formalism
we need to conclude our “mathematical” section:

Definition 12. Given a set A, we call cardinality or magnitude, the equivalence
class determined by A with respect to the equinumerosity relation, A/ ~. We write
|A| to indicate this class. Let’s establish that:

(i) |A| =|B| <= A~ B <= 3f: A— B, with f bijective.
(ii) |@] =0.

In other words, the class [a] is to be considered as the set of elements of A that
stand in an equivalence relation with a. Consider informally for a moment what
we’ve achieved and let n be a natural number. We can notice that all the sets
containing exactly n members belong to the same equivalence class. For the sake
of the argument, consider the set A containing two books and the set B containing
two bottles. Since A and B are equipotent, that is, there is a bunivocal map from A
to B, the two sets share the same cardinality. In other words, having A and B just
two elements, the equivalence class of the magnitude of A, |A|, is identical to the
equivalence class of the magnitude of B, |B|. In this case, in particular, A and B
share the equivalence class determined by the equinumerosity relation and, indeed,
2] = {{A},{B},...}, the equivalence class of 2 is the set that contains all the sets
containing just two elements (all the sets with magnitude or cardinality 2).

2.2.2 On Infinite and Finite Sets

As briefly sketched in the introduction to this chapter, the early developments of
set theory have been characterized by the works of Frege, Cantor and Dedekind.
Up to now, the reconstruction we’ve proposed is strictly related to that of Cantor.
Additionally, recall that our final aim is to reconsider how identities between set
theoretical representations of natural numbers may be conceived of. For the sake
of the argument, indeed, we have to understand how the notions of finiteness and
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infiniteness have been brought within the discussion concerning sets. In what follows,
we will care about the distinction between finite and infinite sets. In this spirit, we
will first consider a Cantor-style approach:

Definition 13 (Cantor). A set A is said finite if there exists a natural number
n € N such that:

A~{zeN||z<n}and A={0,1,2,...n—1},

otherwise A is infinite. Thus, the empty set is finite @ = {z € N | z < 0}.
We say that A is countable or denumerable, if it is finite or equinumerous with
the set of natural numbers N, otherwise it is uncountable or non — denumerable.

Indeed, we may denote any finite set A as follows:
Ay, ={meN|m<n-1}

By focusing on the previous definitions it trivially follows that:

Remark. If A is finite, then either A=& or A has an enumeration, that is a surjective
function f: N — A such that

A= f(N) ={7(0), f(1), f(2),.-. }.
]

The foregoing definitions and results allow us to prove the mathematical version of

921

the ancient principle for which “the whole is greater than its parts”< . In particular,

we are able to show that a subset of a finite set is finite:

Theorem 2.2.2. Let A be a finite set. If B is a subset of A, then B is also finite.

Proof. We have to prove that: If A is finite and a € A, then A/{a} is also finite.
If A is the empty set the case is trivial.

We next prove the general case by induction.

Base case:

If n =1, then A/{a} = @ is finite.

If n > 1, the function f is restricted to {m € N | m < n — 1} and yields bijection

into A/{a}. Hence, A/{a} is finite and has n — 1 elements.

Inductive step:

2l Historically, this principle has been found in-between Euclid’s axioms and postulates for
geometry.
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Now we need to show that, if our theorem is valid for sets with n elements, it is also
true for sets with n + 1 elements.

Let A have n + 1 elements, and B C A.

We have two case:

(i) If B = A, then we're done.

(ii) If B C A, then Ja € A/B. This means that B = A/{a}. Since A/{a} has n,
then it follows that B is finite.

From this important theorem, a corollary — regarding a feature of the cardinality of
subsets of finite sets — can be stated:

Corollary 6. Let A and B finite sets such that A C B. If |B| = n elements, then
|A] < n.

Proof. Let A C B. We have two cases:
(i) A+# B.
(ii)) A= B.

For (i): If A # B, then A C B. So, if A is a proper subset of B and |B| = n, then
|A| < n.

For (ii): If A= B and |B| = n, then |A| = n.

Hence, from (i) and (ii), |A] < n. |

Now, if we consider our definition of “finite” set, it is easy to see that we are assuming
the existence of the N set. But, precisely without an axiomatic setup of natural
numbers, the set N cannot be defined axiomatically and, hence, we have to assume
its existence. Indeed, the definition we have given is the one Cantor established, but
if we want to get rid of the set N, we can use a Dedekind-style approach to infinite
and finite sets. Instead of citing directly from Dedekind’s 188822 essay we will give
his proofs in a more conventional fashion. Let A be a set:

Definition 14 (Dedekind). A set A is Dedekind — finite if there is no injection
m:A— B, withB C A

from A into a proper subset B of itself. If A is not Dedekind-finite, then it is
Dedekind — infinite.?

22We will return on R. Dedekind’s 1888 essay in the section titled “Dedekind on Systeme and
Logical Abstraction”, where the German mathematician’s contributions to set theory, logic and

philosophy of logic are analysed.

23 «Definition. A system S is said to be infinite when it is similar to a proper part of itself;
otherwise S is said to be a finite system» (Dedekind 1888b, p. 806). For technical commentary see
Moschovakis 2006, pp. 48—49.
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With this definition, then, it is possible to prove the a statement similar to Cantor’s
theorem that, if A is a finite set and B is a subset of A, then B is also finite, namely:

Theorem 2.2.3. If A is Dedekind-finite, then every subset of A is also Dedekind-
finite??.

Now, the theorem follows:

Proof. Proof by contraposition
To prove: If B C A is Dedekind-infinite, then A Dedekind-infinite.

o Let A beaset and let B C A be Dedekind-infinite. We show that A is infinite.
By Dedekind-infinity there is an injective function (one-to-one) 7 : B — B’,
where B’ C B. By extending 7 to a function ¢ : A — A, put

m(a), ifa€eB
P(a) = .
a, if a ¢ B.

Y is injective and, hence, we can consider whether an element is in B or don’t.
Since B’ C B, there is an element a € B but not in B’. So, a € B determines
that m(a) = ¢(a). Otherwise, if a ¢ B and ¢(a) = a, then ¢(a) ¢ B. So,
finally, if B C A and the set of images of 1, formally ¥(A), is not in B, this
means that W(A) C A. This allows us to conclude that ) in an injection from
A to a proper subset of itself, namely:

v A— U(A)

e Now it is possible to state the contrapositive of the result:
If A is Dedekind-finite, then every B C A is Dedekind-finite.
|

Within the axiomatic framework and, especially thanks to Axiom of Choice?®, Cantor’s
and Dedekind’s notion of “finiteness” will become equivalent. Additionally, another
interesting element of Dedekind-finite sets is the following:

(i) Suppose A contains a proper subset A" with a bijection 7 : A — A’. This, in
particular, is an injection.

(ii) Suppose A contains a proper subset A" with an injection ¢ : A — A’. Then,
there is an injection ¢ : A" — A. Thus, applying the Cantor-Shroeder-Bernstein

24Dedekind 1888b, p. 807, Theorem 68 and Moschovakis 2006, p. 48. My own proof.
251’11 discuss the axioms of set theory in the next chapter. See Chapter 3, section “Zermelian
considerations on the axiom”, first paragraph “Well-orderings, choices and axiomatic method”.
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Theorem?®, which does not require the Axiom of Choice, there is a bijective
function 7 : A — A'.

This means that Dedekind-finite sets can be formulated either involving an injective
function or a bijection from a set to a proper subset of itself. Thus, without any
axiom and by showing (i) and (ii), the two conditions are equivalent.

Where are we now? In this section, mostly devoted to Cantor’s sets, we have
seen that:

1. Any property may determine a collection;
2. Equinumerosity is an equivalence relation between sets;
3. A set may be partitioned by considering equinumerosity between its elements.

Finally, we have seen that there are two way to deal with finite or infinite collections,
one devoted to Cantor, the other proved by Dedekind. While formulating our
argument as based upon this few achievements, we will consider finite sets in more
Dedekindian sense. Recall that Benacerraf argued that sets cannot be useful in
defining natural numbers: different and contrasting set theoretical representations
of a single natural number are available and, hence, every reduction, of the second
to the first, should be rejected. Since we are aiming to consider whether some sets
can be useful in representing natural numbers, their presence should not be assumed

from the beginning. In the next section, indeed, we will:
(i) Construct finite sets by using Dedekind’s notion of finiteness;
(ii) Establish between them an equivalence relation, i.e. equipotency;
(iii) Partition sets;
)

(iv) Revaluate the notion of identity, invoked by Benacerraf, and faithful represen-
tations.

2.2.3 Reconsidering Benacerraf’s Thesis 1
Bencacerraf’s article “What numbers could not be” (1965) showed us that:
(B) : Numbers are not sets and, moreover, numbers are not abstract objects

In this chapter, we've introduced a formal framework connected to the so-called
“naive set theory” and some elements of the algebra of sets. These tools allow us
to discuss Benacerraf’s problem from a different perspective than in the foregoing

26The theorem states that < is a partial order relation. As we will see, this result is a fundamental
logical tool since it will allow us to order the cardinals. Generally, it shows that, given two arbitrary
injective functions g : A — B and f : B — A, there exists a bijection h : A — B. The theorem
is fundamental from a set-theoretical point of view since if we have that |A| < |B| and |B| < |4],
then |A| = |B|, that is A and B are equipotent. It is interesting to notice that, although Dedekind
proved this theorem twice during his life (1887 and 1892) without the axiom of choice, his name is
not mentioned and explicitly connected to this result.
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chapter. Recall that we considered that «numbers are not objects at all, because
in giving the properties (that is, necessary and sufficient) you merely characterize

an abstract structuren?

7 so that to be the number “2” is no more and no less than
any object preceded by 1, 0, and followed by 3,4,5,.... We called these suggestion
as Benacerraf’s ontological reduction: numbers are just “places” of any progression,
standing in well-defined relations. These “ontological” suggestions follow, according
to Benacerraf, why many philosophers have identified mistakenly numbers with sets.
Benacerraf’s thesis is against the identification of number with sets. Since we have

two good, but different, set theoretical representations, such as

(i) 9,{2},{{2}},... (Zermelo)

(i) 2,{2},{9,{9}},... (von Neumann),

it is not possible to identify any number-sign with them. Our first considerations are
settled within naive se theory, we do not have axioms that allow us to form new sets
starting from “empty set”, &, and, hence, thanks to the General Comprehension
Principle, every property determines a starting point to construct further sets.

We begin our (re-)consideration by giving some definitions:

Definition 15. Let F be the class containing all finite sets and let F/ ~ the quotient
set of F, that is the set partitioned by the equivalence relation ~ (equipotency).

Firstly, consider that our F contains all the sets that cannot have an injection within
a proper subset of themselves, i.e. they’re finite.

For the sake of the argument, consider the F/ ~, that is the set partitioned by the
equivalence relation of “equipotency”. We have proved that two sets A and B are
equipotent, written A ~ B iff there is a bijection f : A — B. In addition, we’ve
proved that the equipotency relation is an equivalence relation, that is reflexive, A ~
A, symmetric, A~ B = B ~ A, and transitive, A~ Band B~ (C — B~ C.
In order to draw our conclusions we need to define the equivalence classes generated
out by the equipotency relation on F:

Definition 16. Given the equipotency ~ relation on the set F, the equivalence class
of an element x € F is defined as follows:
[#] ={y [y ~ =z}

Starting from these achievement we might be apply Theorem 2.1 and say that the
equivalence relation, ~, partitions our set F. Suppose to have the following situation:

2"Benacerraf 1965, p. 291.
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{a} {b}
{a,a’} {b,b'}

{a,d,a"} {0,0,0"}

As it results from the Venn diagram representing F, we have a set that contains all
the finite sets. Recall that, by our definition, a set is finite iff it has no injection into
a proper subset of itself. In other terms, for any set B C A, there is, at least, an
element in A to which no element of B is associated.

In Cantor-style, — but, by assuming the existence of N — a set is finite iff there is
a bijective function f : A — N,,. In this way, the sets contained in F are all in a
biunivocal correspondence with some subset of the natural numbers, that is N,, C N.
In addition, recall that N,, is a notation to indicate the “set of numbers in N less
than n”, that is N,, ={0,1,2,3,...,n — 1}, for every n € N.

However, consider now JF/~, that is the set F partitioned by the equivalence
relation of equinumerosity between its elements. In this case, the equivalence class
will be determined by the number of elements that sets share, namely all the sets
containing n members will belong to the same equivalence class, [n]. The previous
image can be transformed into the following:

F/ o~

{a,d’} {b,0'}

{a,d',a"} {0,007}

The equivalence relation of equinumerosity between sets partitions our F into
equivalence classes determined by the number of elements that sets share. For
example, consider the sets determined by their having just two elements, namely:

{a,d'}
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{00}
{e.d}
{d, d’}

Suppose that two of them represent respectively a collection of 2 apples and a set
composed by 2 oranges. Since our class F includes all the finite sets, then the two
collections of apples and oranges belong to it. Consider the figure of F/ ~ and
the partition F» containing {a,a’}, {b,0'}, {c,'}, {d,d'}, and so on. This partition
is determined by the equivalence class based on the equipotency relation between
the two sets involved. Roughly, the set containing 2 apples, {a,a’}, and the set
containing 2 oranges, {b,0'} (and all the sets containing just 2 elements), belong to
the same partition of F and this means that:

() Ha,a'}| = {0,073 = {e,H = -+ <= {a,a'} ~ {0V} ~{e, '}~

Since the sets are equinumerous it is possible to conclude:

(i) [{a,d'}] = [{b, 03] = [{e,}] = [{d, d'}] = ...

In other terms, the equivalence class to which the sets in F, belong is the following:

(iii) [2] = {{a,d'}, {b,V'}, {c,d}, {d,d'},...}
Similarly, the equivalence class, to which the sets of any partition F,, belong, is so
determined:

n] = {{a,d,...;a"}, {b,¥,...; 0"}, {c,c,....,c"},{d,d,...,d"},...}
This means that, in our example, “2 is the class containing all the sets in F that

contain just two elements”. More generally, [n] is the class containing all the finite
sets in F that are equinumerous each with respect to the others.

2.2.4 Ontological Remarks I

As should already be clear this argumentation does not aim to refute Benacerraf’s
ontological reductive argument. This, probably, won’t even happen while having
the axiomatic version of set theory and the other techniques to discuss ordinal and
cardinal numbers “as sets”. Indeed, what we count to do is just to sketch different
perspectives from which Benacerraf’s argumentation can be judged and evaluated.
What we’ve achieved in this chapter is, indeed, a mere logical consideration concerning
numbers and equinumerosity: since a natural number indicates the cardinality of a
determined set, and since a set can be partitioned by the equinumerosity relation, it
is possible to affirm that numbers are equivalence classes of equipotent sets. Our
argument uses naive set theory and, indeed, any collection of things (such as apples,
oranges, ... ) is assumed to form a set. A version of our argument can be extended
to the axiomatic version of set theory to consider exactly the two set-theoretical
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reductions that Benacerraf’s article treated. In any case it is important to recognize
that doubting of Benacerraf’s conclusions, for which sets are not logically reducible
to sets, allows us — I'll maintain — to investigate again, more deeply and with a
different care, some ontological features of mathematical objects.

Anyway, up to now, we have seen that numbers can be considered as equivalence
classes of sets. What does this exactly mean? What are we operating here? We see
that, by saying that natural numbers are equivalence classes of sets we are allowing
someone to affirm that “two is the class which includes all the sets containing two
elements”, whatsoever elements they are. In this case, even if the set of two oranges
apparently does not share anything with the set of two apples, they actually share
the fact of having just two elements. In other words, what the two collections share is
the equivalence class, namely the partition of F obtained by the equipotency relation.
In this sense, hence, a number n could be considered as the class consisting exactly in
those sets that have n elements as members. Thus, n is not “one” particular set, but
corresponds to the partition — belonging to class of all finite sets, F — composed of
equipotent sets®®. As we have immediately noticed, the argument for which numbers
are sets, is based — according to Benacerraf — upon the identification of numbers and
sets. Are we sure that our set theoretical reductions imply the “total” identification
of what we represent, starting from the empty set, and the natural numbers? In
this context, for instance, Zermelo’s or von Neumann’s ordinals should be thought
as the natural numbers themselves, that is: are there no salient differences between
the two mathematical entities considered? While trying to answer this question
we will introduce exactly the sets Benacerraf’s article treats (Zermelo’s and von
Neumman’s) and we will see that — in order to develop whatsoever philosophical
claims starting from mathematics itself — we should carefully distinguish between
“identity statements” and “faithful representations”.

2.3 Little interlude. Back to Philosophy

The previous part of this second chapter has been engaged with the more logical
and mathematical arguments of Benacerraf’s paper and we have briefly argued how
we think our reflections might undercut Benacerraf’s starting point. Recall that the
French philosopher derived — from his analysis of sets and numbers — his desired
philosophical conclusion, i.e., the impossibility for an ontology of mathematics to
contain abstract objects. In contrast, here, we begin developing some rough and
introductory considerations on the path that, historically, applied to, and brought
into, the philosophy of mathematics, the discussion concerning abstract objects®.

28In the succeeding parts of the present work we will reconsider Benacerraf’s argument (B) also
in the axiomatic versions of von Neumann and Zermelo. This latter developments will, in some
sense, strengthen these preliminary “ontological remarks”.

29Since our aims are not strictly exegetical, we will briefly introduce the debate and return to
some of its contemporary developments within Chapters 4-5 of the present work.
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2.3.1 Frege’s Notion of Abstraction

Again, in this little interlude, the main source of inspiration has to be traced back
to Frege’s work. To see, how initially Frege thought that logical objects might be
introduced and characterized, let’s consider that in contemporary literature laws,
such as Hume’s Principle, Basic Law V or the General Comprehension Principle for
extensions, are called abstraction principles. The word “abstraction” is philosophically
and logically meaningful, therefore we restrict our usage to the following:

According to the philosophical tradition, to abstract is to “extract” from a class of
things a feature that these things have in common when they are equivalent in some
respect. For instance, we abstract the colour red from a collection of things that are

chromatically equivalent.3°

Let’s take, for instance, Hume’s Principle:
H#F =#G +— F ~ G

If we agree that one way in which concepts may be equivalent is expressed by the
equinumerosity relation, then, if we abstract on equivalent equinumerous concepts
we obtain the identity between their numbers (or cardinalities).

Another fregean examples concerns the “abstraction” of the concept of “direction’
from the sole notion of “line”:

Example (Directions).

d(gl) = d(ég) <—— 51 H 62

In other words, the directions of two lines (d(¢)) are identical if and only if the two
lines involved are parallel (||). The example concerning the directions of lines, can
be generalized. Let R be a generic equivalence relation between the lines considered
and = be the associate identity predicate on the abstracted objects (in our case,
the directions), which holds of them, just in case R holds of the lines from which
the directions are abstracted. Formally, the previous abstraction principle can be
rewritten as follows:

§(01) = §(f2) +— R (L, o).

Historically, hence, in Frege’s ontology, where there’s place for abstract individuals,
logical objects are introduced thanks to rules that

[...] allow us to talk about directions — just as more familiar objects — as presented in
different ways, as identified and distinguished, and as objects of various predications. At
the very least, this shows how it can be permissible to talk as if there are mathematical

objects — in this case, directions.3!

30Linnebo 2011, p. 30. For a clear treatment of the origins and of some contemporary discussions
of abstraction principles, see Ebert and Rossberg 2017, pp. 3-33. See also our Chapters 4-5.
31Linnebo 2011, p. 127.
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Notice that the object represented by d(¢), the direction of ¢, inherits all the properties
and relations that characterize the line ¢ itself. In this sense, the identity of the two
directions is nothing more and above the parallelism of the two lines in terms of

which the directions are specified. Problems explicitly arise while considering Basic
Law V:

e'f(e) = arg(a) «— Va(f(x) = g(z)),
or, with respect to concepts,
eF = G +— Va(F(z) = G(x)).

That is, when two concepts, such as F' and G, are coextensive, then they have the
same extension (i.e., the same objects falling under them). By considering the class
whose members are all and only those objects that are not members of themselves
we get a contradiction. Indeed, what post-fregean set theorists learned from Frege’s
failure is, that it should be considered «dangerous to abstract on concepts in a
way that yields objects»3? and developed several methodologies to avoid paradoxes.
Anyway, not only philosophers applied to abstraction techniques and, in the same
vein, Cantor’s implicit use of the General Comprehension Principle for sets bares the
same paradoxical conclusions as Frege’s Basic Law V:

Theorem 2.3.1 (Russell’s Paradox 3). General Comprehension Principle entails a
contradiction.

Proof. If the General Comprehension Principle for sets holds then the “set of all
sets” exists:

U={x]|zisaset},

and consider its peculiar property of “being a member of itself”, U € U.
Applying another time the General Comprehension Principle for sets let R be:

R={x]|zisaset+— x ¢ z}.
It follows, from the definition of R,
ReR+—R¢R

Contradiction. ]

2.4 Short introduction to Dedekind
2.4.1 Systems and Logical Abstraction

Historically and theoretically, both, set theory and abstraction techniques, deserve to
be analysed also from another perspective, i.e., R. Dedekind’s. In this context, the

32Linnebo 2011, p. 129.
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following explanations will follow two parallel, even if distinguished, lines. From one
side, we will clarify some logical and mathematical aspects concerning Dedekind’s
profound intuitions regarding “systems” (his term for sets)3* and how they can be
helpful in the discussion of the conception that views “numbers as sets”. Secondly, we
will consider his logicist attitude and his “innovative” notion of logical abstraction®*.
Now, it’s useful to point out that Dedekind, unlike Frege, has not always been
considered as an official “philosopher”, but recent works have tried to revaluate his
philosophical contributions to the foundations of mathematics®®. Our investigations
on Dedekind “as philosopher” will, indeed, be conducted in comparison with Frege’s
conceptions®® and aims to rehabilitate Dedekind’s figure into the philosophical debate

around mathematics3”.

2.4.1.1 Dedekind’s Contributions to the Early Development of Set The-
ory

Like Cantor, also Dedekind contributed much to the development of naive set theory.
Like Frege, Dedekind thought that the basic truths concerning natural numbers
could be derived from irreducible logical notions. Thus, in his famous essay of
1888, the German mathematician, starting from the notions of System®® (set), Ding
(object) and Abbildung (mapping, function), elaborated a theory of “systems” and,
consequently, showed how to characterize the set of the natural numbers:

If we scrutinize closely what is done in counting a set or number of things, we are led
to consider the ability of the mind to relate things to things, to let a thing correspond
to a thing, or to present a thing by a thing, an ability without which no thinking
is possible. Upon this unique and therefore indispensable foundation [...] the whole
science of numbers must, in my opinion, be established. [...]

In accordance with the purpose of this memoir I restrict myself to the consideration

of the series of so-called natural numbers??.

Indeed, Dedekind — in explicit accordance with the authors we’ve discussed at the
beginning of the section devoted to the foundations of naive set theory — defined a
System, or set, by saying that:

It very frequently happen that different things a,b,c,... for some reason can be
considered from a common point of view, can be associated in the mind, and we say
that they form a System S; we call the things a,b,c,... elements of the system S,

they are contained in S; conversely, S consists of these elements. Such a system S

33Dedekind 1890a, 1888b.

34Much of the considerations we will express on this point are due to Tait 1996, Linnebo and
Pettigrew 2014 and Reck 2018.

35For an introductive text consider, for instance, Potter 2000, pp. 82-104. For good commentary
see Reck 2003, Reck 2009, Reck 2016, Reck 2017.

36See, in particular, Reck 2013a, Reck 2013b.

37In particular, we will follow Dedekind 1888b, Dedekind 1890a.

38Dedekind’s original essay was written in German.

39Dedekind 1888b, pp. 791-792.
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(an aggregate, a manifold, a totality) as an object of our thought is likewise a thing;
S is completely determined when, for every thing, it is determined whether it is an

element of S or not*°.

So, as before, a system is a collection of elements and the members that it collects
are characterized by the membership-relation. Likewise, in Dedekind’s treatment
of systems we find a statement corresponding to the fundamental Extensionality
property of sets:

The system S is hence the same as the system T, in symbols S = T, when every

element of S is also an element of 7', and every element of T is also an element of S.4!.

The text continues by explaining all the fundamental notions, such as inclusion,
intersection, union, etc*?. In order to discuss his treatment of arithmetic it is
useful to focus for a moment upon the concept of dhnliche Abbildung (similar map),
that is Dedekind’s German characterization of an injective function (one-to-one
correspondence). In the essay we are first introduced to the general notion of map*?
and, just after a few pages, Dedekind gives us a definition of “similar mapping”:

A mapping ¢ of a system S is said to be similar [dhnlich] or distinct, when two
different elements a,b of the system S there always correspond different images
a' = ¢(a), V' =¢(b)*.

This is the dedekindian condition for ¢ to be a one-to-one correspondence. He

continues explaining that his statement is correspondent to a “negative” claim,
namely:

a#b— [0 = ola)] # V' = 6(0)].

In any case, he noticed that the “contrapositive” direction of his definition holds:

[0 = ¢(a)] = [t = ¢(b)] = a =b.

P <)_: S’. The inverse function is defined as the rule
that ¢ (a’) = a. In other words, ¢ : S” — S is the map that applied to o’ ,(_equivalent

to ¢(a), gives as result a. Now, ¢ is clearly one-to-one or similar and ¢ (S’) = S.

Now, put the set of images ¢(S

Finally, ¢ o ¢ is the identity function on S.

As we have seen earlier, Dedekind’s definition of “finiteness” and “infiniteness”
is very useful since allows us to have a “good” notion of finite sets without employing

40Dedekind 1888b, p. 797.

“Dedekind 1888b, p. 797.

42Dedekind employs a different notation for sets and their relations, but we will follow the
contemporary usual mathematical practice.

43Gee Dedekind 1888b, p. 799. The essence of his definition is the following: a function or map ¢
with domain S is a rule that assigns to any element s € S a value ¢(s), called the image of s. We

are allowed to say that ¢ maps s to ¢(s).
44Dedekind 1888b, p. 801.
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and assuming the existence of a particular set, such as N. Nonetheless, what is really
interesting concerning the infinite sets is the fact that their “existence” has been
“proved” by Dedekind. As we will turn to axiomatic set theory, the existence of
such a set will be guaranteed by an axiom. In any case, the German mathematician
stated that «there exist infinite systems» and tried to prove it in a very particular
and non-strictly mathematical way:

Proof. My own realm of thoughts, i.e. the totality S of all things, which can be
objects of my thought, is infinite. For if s signifies an element of S, the thought s,
that s can be object of my thought, is itself an element of S. If we regard this as
an image ¢(s) of the element s, then the mapping ¢ of S, thus determined, has the
property that the image S’ is part of S; and S’ is certainly a proper part of S, because
there are elements in S (e.g., my own ego) which are different from such a thought
s’ and therefore are not contained in S’. Finally, it is clear that if a, b are different
elements of S, their images a’, b’ are also different, and that therefore the mapping ¢

is a distinct (similar) mapping. Hence S is infinite, which was to be proved?®’.

Except the fact that Dedekind’s proof is in some sense “mystical”, he is introducing
the totality S of all things which can be objects of my thought — his “universal” system
or set — with arbitrary subset of that totality, namely each S’. As it is clear, however,
here we are not in front of numerical sets but we are dealing with any collection
of objects that will consequently count as a set. So, Dedekind’s contributions fall
under the so-called naive or early development of set theory. Indeed, consider that,
like Cantor’s sets or Frege’s extensions, also Dedekind’s systems fall under the
so-called Russell’s Paradox*. In any case, this antinomy does «not invalidate his
other contributions to set theory», such as «the definition of being Dedekind-infinite,
the formulation of the Dedekind-Peano axioms, the proof of their categoricity, the
analysis of the natural numbers as finite ordinal numbers»*”, and so on.

Similarly to Frege, Dedekind pursued a sort of logicist project but, differently
from Frege’s syntactic treatment of natural numbers, he tended to focus on model-
theoretical aspects. Also, unlike Frege’s treatment of cardinals, Dedekind’s analysis
is about “ordinals™:

Thus, nothing like Frege’s analysis of deductive inference, by means of his “Begriffss-
chrift”, can be found in Dedekind’s work. Dedekind, in turn, is much more explicit
and clear than Frege about issues such as categoricity, completeness, independence,
etc. This allows him to be seen as a precursor of the “formal axiomatic” approach

championed later by Hilbert and Bernays*®.

Indeed, in Dedekind’s 71. Definition, defines what is for a set to be simply infinite and

45Dedekind 1888b, pp. 806-807, Theorem 66. This notion will lead to the definition of an
“inductive set” or, in dedekindian terms, of a simply infinite system.

46Gee paragraphs before on Frege’s extensions and Cantor’s aggregates.

4TReck 2016, p. 17.

48Reck 2016, p. 20.
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how it can be helpful in constructing and characterizing arithmetic. Dedekind stated
some laws concerning the natural numbers — as Peano was doing — as definitions
within a larger theory, namely set theory. We’ll state Dedekind original claim by
allowing us to put it in contemporary notation:

Definition 17 (Simply — Infinite). A set N is said to be simply — infinite when
there exist a one-to-one map of N into itself such that N appears as the chain*® of
an element not contained in ¢(N). We call this element base — element and denote
it with 1.

Additionally, we say that N is ordered by ¢. The notation ¢(n) can be abbreviated
with n’.

Finally, if N is a simply-infinite set, with a mapping ¢(/V) and an element 1, then it
satisfies the 4 following conditions:

(i) NNCN

(ii) The chain of 1 is in N. Formally, N = 1,
(iii) The element 1 is not contained in N’. In symbols, 1 ¢ N’
(iv) ¢ is one-to-one.

By (i), (iii), and (iv) it follows that NV is an infinite set, in the sense of Dedekind-
infinite.

The characterization of N — (i)-(iv) — given here by Dedekind has become to be
known as the Dedekind/Peano axioms for the natural numbers. In other words,
Dedekind’s reasoning can be put as follows. Consider a set S and a subset N C S.
N is called simply-infinite if there is a function ¢ : S — S and the base-element
1 € N, such that:

. ¢ maps N into itself, o : N — N.

2. N is the chain of {1} C S, closed under ¢.*°
3. 1¢ ¢(N).
4

. ¢ is one-to-one.

—_

So, a simply-infinite system, such as N, will consist of a first element 1, a second
element ¢(1), a third element ¢(¢(1)), and so on. Intuitively, any simply-infinite
system N, with a base-element 1, and a “similar” map ¢, play the role of the
arithmetical notions of N, 1 and S, that is the “successor function”. This means that
Dedekind’s construction is a “model” for the natural number sequence. (Consider
the graphical representation of Dedekind’s N C S sequence, Figure 2.2.) Indeed,
Dedekind’s work is related to that of Peano for the following reasons:

49Dedekind defines a chain or Kette as follows: Given a map ¢ : S — S, we say that K C S is a
chain if  maps K to K’ C K. See Dedekind 1888b, p. 803, Definition 37.
50This is the dedekindian version of the mathematical induction principle.
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I I i l

N=1  6(N) =N 6(6(N)=N"  4(8(8(N)) = N"

cSs

Figure 2.2: N C S closed under ¢

o N =1 equals exactly with Peano’s axiom N(0)
o 1 ¢ N'is equivalent to S(x) # 0
¢ is one-to-one means what Peano states as follows: S(z) = S(y) >z =y
e« N’ C N corresponds to:
VX (X (0) A VY[X(y) = X(S(x))] = YyIN(y) = X(y)]).

Equipped with these definitions — some paragraphs later — Dedekind proved his
famous “categoricity” theorem, which states that any two simply-infinite systems

are “isomorphic”!:

Theorem. Every system which is similar to a simply infinite system and therefore to

the number sequence N is simply infinite5?.

In current language we’re allowed to say that “every set which is in one-to-one
correspondence to a simply infinite system is simply infinite”. The proof relies on a
simply idea. Let [A, a, ¢| and [B, b, 1] denote two simply infinite systems, where a
and b indicate their base-elements and ¢, 1 two “similar” mappings. Define, then,
an isomorphism 7 : A — B, by mapping one intial object to the other, 7(a) = b.
Extend 7, by putting 7(¢(z)) be ¥(n(x)), for any x € A. Using induction it is
possible to show that 7 is defined on the totality of A and is an isomorphism.53

As we have seen, Dedekind’s results in set theory are important and elegant as those
of Cantor and Frege. His way of constructing the natural numbers by introducing a
simply-infinite set as their model, is very innovative and abstract — indeed, with his
categoricity theorem he showed that any simply-infinite system is isomorphic to the
simple-infinite system representing the natural numbers. Despite the importance of
Dedekind’s strategies considered from a technical and mathematical point of view,
his work contains also some deep metaphysical and epistemological issues concerning
mathematics itself. In particular, our next inquiries will be devoted to the notion of

®1That is: it exists a bijective function (onto and one-to-one) from the domain of one set to the
codomain of the other. Recall that in naive set theory, the condition of being either an injection or

a bijection are equivalent.
52See Dedekind 1888b, p. 822, Theorem 133.
53For commentary see Linnebo 2011, pp. 157-159 and Button and Walsh 2011, pp. 154-155.
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“Dedekindian abstraction” or “creation” — concept that we have already implicitly
encountered in the proof regarding the existence of an infinite system.

2.4.1.2 Philosophical Revaluation of Dedekind’s Notion of Logical Ab-
straction

In his essay Dedekind tried to explain how his foundations for arithmetic should be
thought of and the passage we will quote contains one of the clearest declaration of
Dedekind’s conception of “abstraction”

Definition. If in the consideration of a simply infinite system N ordered by a mapping
¢ we entirely neglect the special character of the elements, simply retaining their
distinguishability and taking into account only the relations to one another in which
they are placed by the ordering mapping ¢, then these elements are called natural
numbers or ordinal numbers or simply numbers, and the base-element 1 is called the
base-number of the number-series N. With reference to this liberation of the elements
from every content (abstraction) we are justified in calling the numbers a free creation

of the human mind®%.

This passage has often been quoted by philosophers and logicians, since it is not
clear whether Dedekind is employing a sort of “psychologistic” approach towards the
philosophy of mathematics. According to M. Dummett®®, indeed,

One of the operations most frequently credited with creative powers was that of
abstracting from particular features of some object or system of objects, that is,
ceasing to take any account of them.[...]

It was to this operation that Dedekind appealed in order to explain what the natural

numbers are.?®

For Dummett, therefore, Dedekind’s philosophy of mathematics and, especially his
operation of abstraction or creation, is to be understood as “psychologistic”. Recall
that, in Dedekind’s perspective, by starting from a triple X = [X, a, ¢], where a is
the base-element (which is not in the range of ¢ and X is the least system containing
a closed under ¢) and ¢ is a one-to-one function ¢ : X — X. ¢ is said to order X
and X = [X, a, ¢] denotes any simply infinite system. By “abstracting” from the
elements of X we may obtain a simply-infinite system N = [N, 1, S], representing
the numbers. Thus — according to Dedekind’s result — arithmetic depends only on
the axioms of the second-order theory of simply infinite sets, and not on the choice
of any particular theory. When we consider just a simple collection of elements,
equipped with a “base” member, and a “similar” mapping, that is X = [ X, a, ¢], we

% Dedekind 1888b, p. 809.

S®Michael Dummett (1925 — 2011) has been a philosopher and logician, widely known for his
contributions to the philosophy of language, of mathematics and to logic. His work concerned
in particular intuitionistic logic and Frege’s logicism. He held a view for which the Frege-Russell
logicist project could have had success if it has had an underlying intuitionistic, and not classical,
logic.

56Dummett 1995, p. 50.
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consider it as a good explication and reduction of N = [N, 1, S]. Indeed, [N, 1, 5]
play the same roles of [ X, a, ¢] — the latter is technically called a “model” for the
first one by representing it in a more abstract and general way. Dummett holds that
Dedekind’s account of abstraction in not tenable since it would lead to a solipsistic
and psychologistic conception of arithmetic. If the way in which Dedekind conceives
abstraction leads us to the sole consideration «that mathematical objects are “free
creations of human mind”» then,

[...] it is implicit [...] that each subject is entitled to feel assured that what he creates
by means of his own mental operations will coincide, at least in its properties, with
what other have created by means of analogous operations. [...] Such an assurance

would be without foundation®”.

But, is it Dummett’s argument that precise? Dedekind — in the preface — doesn’t
say that “mathematical objects” are free creations of human mind, but that this
status concerns, in the context of his monograph, natural numbers. W. Tait correctly
points out that:

[...] it is too hasty to reduce [Dedekind’s] “philosophy of mathematics” to a psychol-
ogistic reading of this metaphor. [...] It is reasonable to conclude that Dedekind’s
conception is psychologistic only if that is the only way to understand the abstraction
that is involved. And we shall see that it is not. The difficulty with abstraction as a
psychological operation would that what is abstracted is mental, that what I abstract

is mine and what you abstract is yours.®8.

As it can be seen from our previous example concerning N = [N, 1, S] and X =
[X, a, ¢], the notion of abstraction that Dedekind involves is not a psychologistic
operation in the sense that, the system I obtain by abstracting from X = [X, a, ¢] is
not a system different from the one another person obtains. The notion of abstraction
can, indeed, be regarded as “logical” and, according to Tait and Reck, this latter
consideration can be useful in revaluating Dedekindian abstraction.

First of all, Dedekind’s work aims to treat «arithmetic (algebra, analysis) as merely
a part of logic»® and, moreover, as «an immediate product of the pure laws of
thought»%°. His theory of numbers, indeed, has been introduced after having devel-
oped a theory of systems composed by objects that are related by mappings. These
three elements — System (set), Ding (object) and Abbildung (map) — are primitive and
irreducible, that is they cannot be further clarified. At most, according to Dedekind,
we can have a better understanding of them in their usage and application. By taking
the simply infinite system X = [X a, ¢] and by abstracting from it N = [N, 1, 5],
we are able to understand the truth of the propositions of N just in terms of the

STDummett 1995, p. 49.
58Tait 1996, p. 11.
59Dedekind 1888b, p. 790.
69Dedekind 1888b, p. 791.
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truths of X. Hence, the truth of N is founded upon the truth of X% .So, having
understood how [X, a, ¢] (system, base-element, and similar mapping) behave, then
it is possible to understand how [N, 1,S] (natural numbers, base-element 1, and
successor function) behave.

This treatment clearly depends much on infinite systems and, maybe, this is the
reason for which Dedekind’s tried to prove its existence and did not assume it, as it
is done in standard contemporary set theory:

[...] does such a system ezist at all in the realm of our ideas? Without a logical proof
of existence it would always remain doubtful whether the notion of such a system

might not perhaps contain internal contradictions%2.

This last consideration, contained in Dedekind’s letter to Keferstein (1890), is in
precise connection with the methodology he develops and briefly explains in the
preface of his essay of 1888:

In science nothing is capable of proof ought to be believed without proof. Though
this demand seems reasonable, I cannot regard it as having been met even in the most
recent methods of laying the foundations of the simplest science; viz., the part of logic

which deals with the theory of numbers%3.

So, once we’ve understood some elementary logical notions such a set, object and
mapping, we are able to found in a precise way the “simplest science”, namely,
arithmetic. By abstraction, then, it is possible to “extract”, from the general theory
of systems, a “model” for the natural number sequence. Hence, logical notions are
needed in order to explain number theoretical concepts:

[...] it would seem that logical abstraction, as it is described here, does play a role,
not in proofs, but in that it fixes grammar, the domain of meaningful propositions,
concerning the objects in question, and so determines the appropriate subject matter

of proof®.
Let’s analyse for a moment how Dedekind’s abstraction may be conceived of%:

Dedekind simply posits, for each system S, a pure structure [S], such that S satisfies

Instantiation, Purity and Uniqueness®®.

Let now our N be the system S and X be the pure structure [S].
1. Instantiation: N is isomorphic to X, which we abbreviate with N ~ X.

2. Purity: a is an element” in N and P is a property. If P is a property of a,

61See Tait 1996, p. 15.

62Dedekind 1890a, p. 101.

63Dedekind 1888b, p. 790.

64Tait 1996, p. 16.

65We will follow Linnebo and Pettigrew 2014.

66T innebo and Pettigrew 2014, p. 278.

67Linnebo and Pettigrew were discussing mathematical-eliminative structuralism, that is the
view for which mathematics studies formal “structures” containing just “positions” and no abstract
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then for each system X, such that ¢ : X ~ N, P is a property of ¢(a).
3. Uniqueness: X is categorical.

Hence, by considering the number sequence N we can abstract its fundamental
structure, namely X, show that N ~ X and show that any N ~ X is categorical.
Therefore, despite the “psychologistic” metaphor of Dedekind’s preface, there is a
logical understanding of his notion of abstraction. Indeed,

[...] our applications of abstraction do not create the abstract objects; rather, they
pick out a certain realm of objects that already exist (and has always existed) and

give us semantic and epistemic access to that realm®s.

This understanding of logical abstraction showed us how that Dedekind — in similar
fashion to Frege — considered logic as, in some sense, preliminary and much useful in
order to gain a better comprehension of arithmetic and, indeed, also his contributions
to the foundations of mathematics can be thought of as a sort of logicism (based
upon precise abstraction principles).

2.4.1.3 Logicist Attitudes: Frege vs Dedekind

Logicism is the thesis that arithmetic is reducible to logic alone and, as we have
seen, even if differently, both, Dedekind and Frege, advocated this view. If we pay
attention to our characterization of logicism, we can see that it is composed by two
sub-claims:

(Ly) All arithmetical concepts are definable in terms of and thanks to the presence
of logical concepts.

(Ly) All arithmetical truths are derivable from logical truths.

Frege’s project culminated in the logical system he established in the Grundgesetze
(1884), while Dedekind pursued his logicist attitude towards his whole mathematical
work. We focused our analysis on Was sind die Zahlen und was sollen? (1888) where
Dedekind developed a natural numbers theory within a more larger set theory. In
any case, both, Frege and Dedekind — we argued — based their considerations on
particular operations of “abstraction” and

This brings us back to Frege’s main criticism of Dedekind: that he does not spell
out the fundamental laws for his logical system explicitly, much less investigate their
epistemological source further. Dedekind’s approach would have to include laws
governing all the existence assumptions in his constructions, concerning both classes

and functions. (As he does not reduce functions to classes, separate laws will be needed

entities. What we are calling “element” has renamed the original word invoked by the authors:
“position”. Linnebo and Pettigrew aimed to show how Dedekind’s and Frege’s abstractionist accounts
could not be useful in defence of an eliminative (structuralist) position. For clear introductions
to “mathematical structuralism”, see, among others, Linnebo 2011, pp. 154-169, and Button and
Walsh 2011, §2.4, §5.2.

68T innebo and Pettigrew 2014, p. 279.
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for them) [...] In Dedekind’s case, all corresponding laws remain implicit, although

they can be partly gleaned from his constructions®®.

Dedekind’s work provides the elements in order to construct a theory of abstraction,
which will correspond to a form of neo-logicism and will result different from the
fregean and neo-fregean proposals. Consider, indeed, that even if there are some
similarities, Frege and Dedekind disagreed upon some fundamental insights of their
respective theories. In Frege’s case we are presented with a “theory” (rules, symbols,
deductive system ...), while Dedekind left the underlying theory implicit™. Hence,
Frege provided a proof theoretical system based upon a determinate and precise

formalism, while

[...] Dedekind’s logicism consists precisely in the attempt to derive arithmetic and
analysis from core concepts, as opposed to relying either on geometric evidences or on
empty formalisms. In the case of analysis, he makes the concepts of field, ordering,
and continuity (line-completeness) basic; for arithmetic, those of infinity and simple
infinity play the same role. This amounts to a form of logicism insofar as Dedekind’s
key concepts are defined solely in terms of “logical” notions — those of object, set and

function!.

Many contemporary philosophers developed several neo-logicist and neo-fregean
proposals — many of them are based upon the elimination of Basic Law V from
the axioms of the Grundgesetze and the adoption of Hume’s Principle as sole non-
logical law™. This latter principle, indeed, has been defined adequate since it is not
“inflationary”, in the sense of raising the cardinality of the domain of objects. In the
case of Dedekind, the situation is slightly more difficult:

Recall that Frege also complained, rightly, about the lack of principles for “Dedekindian
abstraction”. But again, the observation that Dedekind did not provide the latter does
not establish, in itself, that they cannot be supplied for him retroactively. [...] This
suggests a general program for developing a Dedekindian form of neo-logicism — on a par
with neo-Fregean forms — namely: spell out all the needed basic principles, together
with motivations for them (their epistemic sources, connections to mathematical

practice, etc.)™.

Anyway, here, our aim is not to reconstruct a Dedekindian approach to abstraction,
therefore, we limit ourselves by observing that in the historical development of

69Reck 2013a, p. 261.

"In any case, for both authors, “logic” includes considerations on extensions or systems. See, for
instance, Reck 2013b, p. 153.

"Reck 2013a, p. 255.

72¢]...] C. Parsons (1965) was the first to note that Hume’s Principle was powerful enough for

the derivation of the Dedekind/Peano axioms. Though Wright (1983) actually carried out most of
the derivation, Heck (1993) showed that although Frege did use Basic Law V to derive Hume’s
principle, his (Frege’s) subsequent derivations of the Dedekind /Peano axioms of number theory

from Hume’s Principle never made an essential appeal to Basic Law V» (Zalta 2018, p. 29).
"Reck 2013a, p. 262.
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logicism and set theory has, in some sense, left Dedekind’s figure at a second stage.
We believe that, if Dedekind’s mathematical and conceptual work would be put at
the same level of Frege’s and Cantor’s, there could be a more deep understanding of
the early foundations of mathematics. In particular, it is noteworthy that, thanks to
the axiomatization of set theory, Dedekind’s systems and Cantor’s collections will
become equivalent. Additionally, we believe that an abstractionist point of view
might be helpful in developing philosophical considerations concerning mathematical
objects and theories. From this point of view, the contemporary philosophical logic
and philosophy of mathematics have been rigidly influenced by the leading ideas
of Frege’s works. What it might be suggested by our investigations is that also
Dedekind’s work merits to be revaluated and reconsidered.

Finally, let me consider just one last point. Our discussion started by considering
Frege’s ontological view of logical objects, but we did not say anything for what
concerns Dedekind’s philosophical assumptions. In contemporary discussions there
is a general agreement upon the thesis for which Dedekind has been the first “non
eliminative” or “eliminative” structuralist. Indeed, if we get a look back to his
treatment of sets and numbers, it is easy to see that, what is fundamental is the
existence of the “simply infinite” system N, representing a system reduced to the
general structure X. What generally is in quest is the fact of whether the elements
of N or of X are abstract objects or should be considered simply as “places” or
“positions” of the structure. Indeed, much of the criticism deserved to Dedekind’s
abstract and structuralist approach is that in his characterization of arithmetic as a
branch of a more larger systems theory there are no elements such as the natural
numbers. Hence,

Unlike Frege’s, Dedekind’s natural numbers have no properties other than their
positions in the ordering determined by their generating operation, and those derivable
from them; the question is whether such a conception is coherent™.]...]

He thinks, further, that if these numbers are to be specific objects, they must possess
properties other than the purely structural ones they have in virtue of their positions
in the sequence; but that is just what Dedekind would deny. He believed that the
magical operation of abstraction can provide us with specific objects having only

structural properties75.

Probably, Dedekind would have agreed with Dummett for saying that mathematical
“entities” have only pure structural properties, but he would have pointed out that
(i) we “create” the system (or the cut, in the case of analysis) starting from logical
notions, and (ii) that the natural numbers (or the irrational numbers) shouldn’t be
identified with such new “creations”. Therefore, our N is not the natural number

sequence itself, but it is what mathematicians call its “faithful representation”’®.

Dummett 1995, p. 51.

“Dummett 1995, p. 52.

"6We will return at length on this concept once the axiomatic setup of set theory has been
established. See Chapter 3, section “Reconsidering Benacerraf’s thesis I1”, paragraph “Dedekind-
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Therefore, Dummett’s criticism is not that precise, since it leaves out from the
discussion, very deep and profound intuitions of Dedekind. Let’s read Dedekind’s
own words:

(Letter to Lipschitz 1876) I show, without bringing in any foreign notions, that in the
realm of the rational numbers a phenomenon can be identified (the cut) that can be

used, by a single creation of new, irrational numbers, to complete the realm””.

(Letter to Weber 1888) [...] you say that the irrational number is nothing else
than the cut itself; whereas I prefer to create something new (distinct from the cut),

something that corresponds to the cut, and of which I say that it produces the cut’®.

From these passages it is not possible to draw solely a “psychologistic” reading of
Dedekind’s abstraction and, indeed, the notion of “creation” can be understood as a
metaphor: the operation of abstraction is not concerned with human and particular
thoughts, but becomes engaged with a “realm” of logical objects that can be picked
out exactly by abstraction principles. In this sense, the “eliminative” structuralist
perspective does not hold so strongly and

It might seem that Dedekind abstraction must give us what we want, since it functions
by asserting that there is something that satisfies our desiderata. And indeed, Dedekind
abstraction is closer to what most non-eliminative structuralists appear to have in

mind than Frege abstraction.”.

2.5 Lightened or Heavy Platonism?

In the subsection “Ontological remarks” we've said that in some context it could be
useful to invoke the “existence” of mathematical entities. In the paragraphs devoted
to Frege and Dedekind we’ve noticed that mathematical objects can be introduced
by well-defined “abstraction principles” and, to be precise, “Abstractionism” — i.e.,
the adoption of abstraction principles — does not immediately imply a definite
philosophical reading. For a first characterization of what is generally understood
under the term “Abstractionism”, let’s consider Ebert and Rossberg description:
Abstractionism in the philosophy of mathematics has its origins in Gottlob Frege’s

logicism — a position Frege developed in the late nineteenth and early twentieth
century.®? [...]

So understood, we can regard neo-Fregeans among the main proponents of Abstraction-
ism: the view that abstraction principles play a crucial role in the proper foundation
of arithmetic, analysis, and possibly other areas of mathematics. Abstractionism
therefore has two main aspects, a mathematical and a philosophical one. The main
aim of the mathematical aspect of any abstractionist program is the mathematics of

style reflections on ‘mathematical representations’”; of the present work.
"TQuoted in Linnebo and Pettigrew 2014, p. 279.
"8Dedekind 1888a, p. 835.
"Linnebo and Pettigrew 2014, p. 279.
80Ebert and Rossberg 2017, p. 3.
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abstraction — simply put: proving mathematical theorems about abstraction principles
or taking abstraction principles as basic axioms and investigating the resulting theories.
A primary aim is to capture various mathematical theories, such as arithmetic, analysis,
complex analysis, or set theory as deriving from a few basic abstraction principles
and (versions of) higher-order logic. Frege’s Theorem is one of the most import- ant
results for a mathematical Abstractionist and numerous other interesting results have
been discovered since. Philosophical Abstractionism covers, broadly speaking, three
philosophical topics: semantics, epistemology, and ontology.®!

We believe, indeed, that — just by introducing the debate here — the defence (of
a form) of Platonism fits with the usage of abstraction principles. We expose, for
the moment, three points which sketches the main differences between two forms of
Platonism and that should already indicate to the reader in which sense we think
that the presence of abstraction principles, combined with a specific Platonistic
reading, might render noteworthy considerations in the philosophy of mathematics.

Two types of Platonism? In this paragraph we will pause for a moment on the
main differences between a lightened or a heavy Platonism — from an ontological,

metaphysical®? and epistemological point of view.
Heavy Platonism Lightened Platonism
Ontology Abstract objects Abstract objects

Metaphysics | “Robust” sense of existence | “Thin” sense of existence

Epistemology Mathematical intuition Abstraction principles

As it should result from the tabular above, both — light and heavy Platonist philoso-
phers — have an ontology which includes “mathematical objects”, for instance, both,
Godel and Frege, explicitly admitted the existence of abstract entities in their ontolo-
gies of mathematics. The first main difference lies, in any case, in the metaphysical
characterization of the “entities” that they invoke. What we call “robust” sense of
existence is in some sense opposed to that sense of existence that we’ve named as
“thin”: a Godel-like (heavy) Platonist, indeed, thinks that abstract mathematical
objects exist as physical bodies but without spatio-temporal collocation. A light

81Ebert and Rossberg 2017, p. 5.
82Gince terms such as “metaphysics” and “ontology” are overloaded of meanings, here we restrict

our usage to the methodological suggestions contained in Quine 1948. In this spirit, ontology and
metaphysics are strictly connected and, while the first should answer the question “what there is”,
the latter investigates “what is what there is”. More simply, an ontology tells us which objects exist
(if any), while a metaphysics tries to explain the main characters of the objects included in the
ontology.
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Platonist, instead, thinks that the only way that we have to characterize “abstract
objects” is by saying that their exist in virtue of our mathematical practices and the-
ories. For example, indeed, Frege thought that the “fact” that the number of knives
on the table is equinumerous to the number of pens on the same table, guarantees
the existence of the “logical objects” denoting the “natural numbers”. Dedekind,
on the same line of thought, retained that the notion of “object” is primitive and
“logical”, and that their existence is justified by the purpose of obtaining a clear
notion of “counting” sequences. The metaphysical status that the two different
philosophical point of views defend are the main responsible for the epistemologies
that the two kind of Platonists endorse. Starting from the first chapter, we’ve said
that while defending a “robust” sense of existence, a Platonist — as G6del himself —
will be forced in accepting a sort of epistemology by intuition. Recall, indeed, that
for Godel, sets can be “perceived” by human minds and that there are “strong”
epistemological implications that can be drawn from the Incompleteness Theorems
for arithmetic. The main criticism upon this position has been exposed following
the so-called Benacerraf-Field dilemma. Differently, instead, a light Platonist will
employ different principles which will devoted to pick out the main mathematical
objects. So, for examples, Frege introduced a particular object — namely that of
“cardinal” — by specifying what we are doing while “counting” and by formulating
a formal and logical principle meant to govern and pick out the reference of each
logical object — in this case, for instance, Hume’s Principle.

Light Existence and Abstraction Principles Notice that Godel complaint the
absence of a correct and precise formalization of Platonism and suggested that this lack
has origins in the absence of an explicit and formal clarification of metaphysical and
ontological concepts. Contemporary forms of Abstractionism, instead, could provide
useful tools to discuss the “existence” of abstract entities and this can recover the
“lack” Godel was complaining. For what concerns the metaphysical characterization
of the entities we invoke in an ontology of mathematics, Godel thought that they
were identical to physical objects but without any “physical characterization” and
defective of casual powers. Recall, that the way we get knowledge of them is by
“perception” or “intuition”. Hence, to elaborate a mathematical theory — that is, to
explicate a new part of the mathematical realm — means to “perceive” some abstract
entities with some tools that we already possess. In this sense, the mathematician’s
aim is, therefore, to capture the entities, by defining them or by showing their
existence. Differently, for a light Platonist the abstract entities “exist” in the sense
that their ontological introduction is helpful for fixing our reference to mathematical
objects. What guarantees the existence and the “perception” of those entities are
the so-called abstraction principles. For example, we see that while counting things,
we are putting some objects into a precise relation with some other elements, such
as the natural numbers (See Figure 2.3, next page). This allows us, then, to define a
general law which introduces a new object, by considering the cases in which the
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Figure 2.3: Counting as a one-to-one relation

relation considered obtains.
So, generally:

Va, f(§a = §6 «— R (o, B))

That is, the identity relation between the elements — characterized by an abstraction
operator § — in the left-hand side of the biconditional, holds iff the equivalence
relation, R, stated in the right-hand side, holds. In this way, a new logical object is
introduced®3.

Light Existence and Reference Finally, epistemology will be defined by the
same abstraction principles and, hence, to know a logical object means to know the
conditions under which its “thin” existence is granted. Therefore, our knowledge
and reference of such logical objects is assured thanks to the abstraction principles.
These latter, indeed, define also the “thin” sense of their existence (metaphysics): if
an abstraction principle will turn out incoherent or inconsistent — consider the case
of Basic Law V —, nothing assures any more that the objects it postulates exist.

So — summarizing our achievements — we could state that from an ontological point
of view, logical objects are coherent with some mathematical practices — consider
the cases of arithmetic or of set theory. Metaphysically, we are trying to argue that
they exist in an abstract manner and that, perhaps, the parallelism between their
existence and that of the physical bodies is a bit misleading. Their existence is
not “robust” (spatio-temporal and physically characterized), but is to be considered
as “thin” (“simply” subject to precise logical abstraction principles). We have
argued that, for example, for the “directions” to exist, it suffice that it exists a line
from which the logical objects themselves — the directions — have been abstracted.
Additionally, these latter laws allow us to pick out the reference of the objects that
our ontology postulates, without employing the problematic notion of “mathematical
perception”. In this way, metaphysics and epistemology become strictly related and
their explications obtain in virtue of the same logical abstraction principles.

83By instantiating the variables involved in the previous formula, we recognize the general
form of rules such as Hume’s Principle, #F = #G +— F ~ G, or the Law for Directions,
d(gl) = d(fg) — fl H (2.
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First conclusions The comparison we've sketched — as clear — is not complete at
all and, indeed, much of the considerations concerning Abstractionism and Light
conceptions of existence will be developed at length within Chapters 4-5. Anyway, —
before turning to that point definitely — to undermine Benacerraf’s philosophical
conclusions and to attempt to re-introduce abstract objects into the ontology of math-
ematics, through abstraction principles, we will consider again Benacerraf’s logical
and mathematical premises, but, this time, shifting our attention to the axiomatic,
rather than to the naive, version of set theory, so as to finally encounter, from a
closer perspective, Zermelo’s and von Neumann’s set theoretical representations of
the natural numbers.



Chapter 3

Numbers, sets and objects 1I.
Axiomatic Considerations

Overview. In this chapter, we are going to deepen our inquiry into set theory to
get an always clearer insight for what concerns Benacerraf’s ontological thesis. Recall
that Benacerraf’s main point was that of eliminating any sort of realism within
the philosophy of mathematics by starting his considerations from the apparent
irreducibility of numbers to sets. Already in the foregoing chapter we've encountered
a way in which, also within a naive framework, Benacerraf’s argumentation does
not seem so conclusive as it should be. In this part of the thesis, we will enforce
our previous argumentation strategy by employing axioms for sets and by finally
considering von Neumann’s and Zermelo’s representations for sets as reducible (in
some determined way) to the sequence of natural numbers. Moreover, recall that
Benacerraf’s set-theoretical argument was directed to a more general aim: he wanted
to show that the adoption of abstract objects, within an ontology of mathematics, is
troublesome by, consequently, rejecting any form of mathematical Platonism. In this
spirit, our aim will be at the opposite side: starting from set-theoretical considerations
— as Benacerraf himself did — we will be led in considering the possibility of having
abstract objects within our ontology of mathematics, trying, finally, to restore and
defend a more Platonist approach to mathematics.

3.1 One Number, Different Sets!

Summary. If we reconsider Benacerraf’s article we may easily see that his argument
is not directly concerned with naive set theory and, indeed, his main criticism focuses
upon the axiomatic version(s) of the theory. Moreover, he considers two young
adolescents that have learned the same logic fundamentals but have taken two
different set theory classes. Additionally, in those classes — Benacerraf considers —
both of them have learned the structure of the natural number sequence as a part
of the set-theoretical universe. But, Ernie, the young girl, has been educated to
von Neumann’s set-theoretical proposal, while his friend, Johnny, has apprehended

76
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Zermelo’s sets. According to Benacerraf, while comparing their (different) theories,
the two adolescents will face a situation like this:

Comparing notes, they soon became aware that something was wrong, for a dispute
immediately ensued about whether or not 3 belonged to 17. Ernie said that it did,
Johnny that it did not.!

In order to have a better insight on the motivations for which both theories, Ernie’s
and Johnny’s, are somehow different, let’s consider the main distinctions between the
set-theoretical constructions they learned. Indeed, before turning to the axiomatic
approaches of Zermelo and von Neumann, we shall give an intuitive and introductory
idea of the main differences lying between the two sets constructions.

Ernie and Johnny agreed that numbers, such as 1, 2, 3, 4, and so on, could be reduced
to sets, but disagreed on which set-theoretical representation should be considered.
Indeed, Ernie, was told that when we are saying that “z is the successor of y”, we are
simply representing the relation R that x bears to y. In this sense, y is the set consist-
ing of x and all the members of x. Hence, for Ernie, sets represent numbers as follows:

% =def

{o} =def

{2.{g}}  =au

{g.{a}.{2.{a}}} =

{g.{o}. {2 {a}}.{o.{2}.{2.{g}}}} =ao

-~ W N = O

nU{n} =def S(n)

Differently, for Johnny, saying that z is successor of y only means that for any set
y we take its unit set, namely {y}, to get its successor, i.e. z. Hence, Johnny will
represent the natural numbers progression in the following manner:

2 =det 0

(o} =def 1
wn
weny
wemy

= . 107) . o o
{n} \{V-/ 2} \,-/} “def S(n)
n+1 times n+1 times

1Benacerraf 1965, p. 278.
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So, in this sense, one of the main differences between the two number-sets conceptions
concerns the notion of “successor”.

Another fundamental point of disagreement, Benacerraf writes, is the following.
While Ernie thinks that any set has n members just in case there is a biunivocal
correspondence with the set n itself, Johnny believes that every set is single membered.
Indeed, the situation can be graphically understood as follows:

o, {2}, {2.(2}}. {2 {2} {2.{z}}}, ...
L A A )

O I/ @ \l

Differently, the other situation will be:

o, {g}, {{o};, {{9}}) -
ol } 3

And, set-graphically, we may represent Zermelo’s sets as follows:
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So, in «short, their cardinality relations [are] different. For Ernie, 17 ha[s] 17 members,
while for Johnny it ha[s] only one»?.

Finally, this will be our investigative background: we will consider how to build
Zermelo’s and von Neumann’s sets, discuss the axioms and follow the strategy
of building equivalence classes between those sets. In this spirit, consider that
the different notions of successor and cardinality are not the only problems that
Benacerraf envisaged, and, indeed, what — according to the French philosopher —
constitute the main philosophical disadvantage, in identifying numbers and sets, is
the violation of Leibniz Law. Benacerraf’s reasoning can be put in the following way:

Remark. For the sake of the argument, take the number-sign 2. Let’s say that

oo}y =2  {{o}) =2

By simple inspection of the properties of the two set-theoretical representations, it
follows that:

{o,{2}} # {{2}}

Hence, for instance, consider

{o.{2}} =2

Since the two sets representations are different, we may conclude:

{{o}} # 2

2Benacerraf 1965, p. 279.
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We may also reverse the reasoning and start by considering

{91} =2

As before, since the two sets are not identical:

{o.{2}} # 2.

Therefore, since 2, for instance, is identical to both sets — {@,{@}} and {{@}} — then
also both sets should be identical one to another. But actually the two set-theoretical
representations considered are not identical and hence, in violation of Leibniz Law,
one and the same object (namely the number-sign 2) would be identical to two
different and irreducible objects. Thus, according to Benacerraf, even if both theories
allow the set-theoretical study of the natural numbers progression, the identification
between sets and numbers has strictly to be rejected. Moreover, as we saw before,
Benacerraf enforces his claim by concluding that, in an ontology of mathematics, no
objects, of whatever sort, are needed.

This terminates our summary. The rest of this chapter will be devoted in seeing
whether the notion of “identity” between sets and numbers, as invoked by Benacerraf,
is the sole way for understanding the set-theoretical reduction of the natural numbers.
We claim, indeed, that a different result can be established if the relation between
sets and numbers is understood in terms of an equivalence relation, rather than the
actual identity. Philosophically, this will lead us in (i) positively reconsidering some
suggestions of Dedekind concerning what we usually call “mathematical represen-
tations” and (ii) open the door to the possibility of having abstract objects in our
mathematical ontology.

3.2 Axioms for Set Theory

3.2.1 The Meaning of the Axiomatic Method

First of all, differently from Frege, Cantor and Dedekind, — after the appearance
of Russell’s Paradox —, logicians and mathematicians tried to save and secure set
theory in different manners. In what follows, for our purposes, we will consider
the most successful strategy, that is the method, employed during the first half
of the twentieth century, of giving axioms that should govern every aspect of the
set-theoretical universe. In the twentieth century, mathematicians

[...] proposed to replace the direct intuitions of Cantor about sets which led us to
the faulty General Comprehension Principle with some axioms, hypotheses about sets
which we accept with little a priori justification, simply because they are necessary
for the proofs of the fundamental results of the existing theory and seemingly free of

contradiction.?

3Moschovakis 2006, p. 23.
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Indeed, the great help of the axiomatic method was not only perceived by math-
ematicians and logicians, but also from philosophers. In this context, Russell’s
“regressive” conception of the importance of the axiomatic method, to systematize
precise mathematical theories, can be conceived as a good path to understand its
usefulness.

)

Before deepening the conception of “regressive methodology” in mathematics, as
suggested by Russell, consider that axioms, within mathematics at least, have always
been used since the Greeks. Historically, indeed, the main source for the axiomatic
method has been Euclid and the rational tradition he started. From this early begin-
nings and along the entire medieval tradition, axioms have always been considered as
(a) “self-evident” and (b) “epistemologically fundamental” propositions. The main
troubles with (a) and (b) arise when Frege’s revolutionary work, by changing the
predominant conception of logic, rethought, consequently, also the traditional notion
of “axiom”. The paper Russell wrote in 1907, indeed, suggests to abandon the re-
quirement for axioms to be (a) self-evident, while maintaining (b), that their content
is epistemologically fundamental®. In this sense, Russell is suggesting not to consider
axioms as self-evident, but to take them as less-evident than their consequences, and
to evaluate their contents just on the basis of what they entail. So, it seems that
Russell is completely reversing the Euclidean perspective: while anciently axioms
were self-evident propositions, now, according to Russell, contemporary logic allows
us to take them as non self-evident. In other words, logicians and mathematicians do
not appeal any more just on the criteria of “self-evidence” to claim that a proposition
is an axiom. But, does this mean that there are non self-evident propositions that
are axioms? If yes, how do we justify their being considered axioms, if self-evidence
is out of games? Let’s read a very clear quote from Russell’s 1907 paper:

[...] in mathematics, except in the earliest parts, the propositions from which a given
proposition is deduced generally give the reason why we believe the given proposition.
But in dealing with the principles of mathematics, this relation is reversed. Our
propositions are too simple to be easy, and thus their consequences are generally easier
than they are. Hence we tend to believe the premises because we can see that their
consequences are true, instead of believing the consequences because we know the
premises to be true. But the inferring of premises from consequences is the essence of
induction; thus the method in investigating the principles of mathematics is really an

inductive method |[...]5.

As clear, hence, «Russell claims, mathematical axioms can be justified by their ability
to entail, explain and systematize more obvious mathematical propositions»®. Indeed,

41t is useful to notice that Gédel’s notion of extrinsic form of intuition (see chapter 1, subsection
“Epistemology and Mathematical Intuition”) has been proposed while agreeing with Russell on
the conception of axioms we are sketching in this section. For more on the dispute concerning the
axiomatic method into the philosophy of mathematics see Linnebo 2011, pp. 170-182.

5Russell 1907, pp. 273-274.

6Linnebo 2011, p. 174.
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in this general climate — as remarked — logicians, mathematicians and philosophers
tried to give a solid axiomatization of Cantor’s intuitions about sets. The first
successful systematization of set theory has been proposed by E. Zermelo in his
famous article A new proof of the possibility of a well-ordering (1908) and has been
bettered by J. von Neumann in the paper Introduction to transfinite numbers (1923).
Anyway, as reminded above, in both cases, the:

[...] basic model for the axiomatization of set theory was Euclidean geometry, which
for 2000 years had been considered the “perfect” example of a rigorous, mathematical
theory. If nothing else, the axiomatic method clears the waters and makes it possible
to separate what it might be confusing and self-contradictory in our intuitions about
the objects we are studying, from simple errors in logic we might be making in our

proofs”.

In order to get a clearer idea on how the axiomatic framework of set theory es-
caped Russell’s Paradox, we will first state and discuss some of the most important
mentioned axioms.

3.2.2 Towards an Axiomatization. Open Problems: 1880-

1930

What is a set? Cantor’s and Dedekind’s set theories had both been declared
affected by a contradiction and the fault of the inconsistency has been brought back
to two fundamental features of what we’ve called naive set theory, namely the fact
that any collection could have determined a set and the lack of definite and precise
conditions under which those collections could have been studied. Recall, indeed,
that Cantor, among other mathematicians of the 19" century, defined sets in the
following general manner: by «an “aggregate” (Menge) we are to understand any
collection into a whole (Zusammenfassung zu einem Ganzen) M of definite and
separate objects of our thought. These objects are called the “elements” of M»®.
From this informal definition, clearly, the faulty General Comprehension Principle
for sets can be derived and, hence, forms of Russell’s Paradox can be obtained within
our set theory. In order to avoid inconsistencies, hence, mathematicians after Cantor,
worked along a more precise and, in some sense, restricted notion of collection,
beginning thus the “heavy” mathematization of sets:

Set theory is an autonomous field of mathematics, enormously successful not only in
its continuing development of its historical heritage but also at analysing mathematical
propositions and gauging their consistency strength. But set theory is also distinguished
by having begun intertwined with pronounced metaphysical attitudes, and these have

been regarded as crucial by some of its great developers®.

But, with the mathematization, «set theory has proceeded in the opposite direction,

"Moschovakis 2006, p. 23.
8Cantor 1915, p. 85.
9Kanamori 2009, p. 1.
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from a web of intensions to a theory of extension par excellence, and like other fields
of mathematics its vitality and progress have depended on a steadily growing core of
mathematical proofs and methods, problems and results»'°.

Are sets well-ordered? So, — except the task of finding a precise definition of
sets — mathematicians sought also for a theory able to encapsulate (at least) three
fundamental questions conjectured by Cantor. It is useful to point out that, while
proposing his theory of collections, Cantor was trying to solve a problem he envisaged
in 1883:

The concept of well-ordered set turns out to be fundamental for the entire theory of
manifolds. [...] T shall discuss the law of thought that says that it is always possible
to bring any well-defined set into the form of a well-ordered set — a law which seems
to me fundamental and momentous and quite astonishing by reason of its general

validity'?.

Hence, for Cantor, already in 1883, one of the fundamental problems concerning sets
was that of finding a proof for the conjecture that “every set has a well-ordering”.
Even if the meaning of “well-ordering” for sets of elements, that Cantor suggested,
is very close to the intuitive ideas concerning orderings, it is useful to report the

mathematician’s idea:

A well-ordered set is a well-defined set in which the elements are bound to one another
by a determinate given succession such that (i) there is a first element of the set;
(ii) every single element (provided it is not the last in the succession) is followed by
another determinate element; and (iii) for any desired finite or infinite set of elements
there exists a determinate element which is their immediate successor in the succession

(unless there is absolutely nothing in the succession following them all).1?

Several years after Cantor’s publishing, at the International Congress for Mathemati-
cians in Paris, D. Hilbert announced to the world the importance for mathematics to
find a proof for the well-ordering theorem. Things began to change during the year
1904 when, at the Third International Congress of Mathematicians in Heidelberg, J.
Konig presented what he considered to be a proof of the fact that the continuum
has no well-ordering. Anyway, less than two months later, Konig himself withdrew
his own proof and Zermelo completed and presented his proof of the existence of
the conjectured well-ordering of sets'3. We will focus on Zermelo’s work in the next
paragraphs.

What are cardinal and ordinal numbers? Cantor formulated his theory of
Menge in order to capture the most fundamental mathematical notions, such as the

10K anamori 2009, p. 1.
" Cantor 1883, p. 886.
12Cantor 1883, p. 884.
13For the historical development of set theory after Zermelo’s papers, see Kanamori 2009, pp. 29—

47.
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one of number. In the foregoing chapter, we've seen how it is actually possible to
define a natural number, such as 2, just by considering collections of things. Cantor’s
interest, however, has been that of defining not just the notion of “number”, but also
the two more complicated notions of ordinal and cardinal numbers.

For what concerns sets and their cardinality, in 1895, the German mathematician
wrote:

)

Every aggregate M has a definite “power”, which we will also call its “cardinal number”.
We will call by the name “power” or “cardinal number” of M the general concept
which, by means of our active faculty of thought, arises from the aggregate M when
we make abstraction of the nature of its various elements m and of the order in which
they are given. We denote the result of this double act of abstraction, the cardinal
number or power of M, by

| M.

Since every single element m, if we abstract from its nature, becomes a “unit”, the
cardinal number |M]| is a definite aggregate composed of units, and this has existence

in our mind as an intellectual image or projection of the given aggregate M.

And, secondly, with respect of the ordinals, which Cantor used to call “ordinal type”,
he wrote:

Every ordered aggregate M has a definite “ordinal type”, or more shortly a definite
“type”, which we will denote by

M.

By this we understand the general concept which results from M if we only abstract
from the nature of the elements m, and retain the order of precedence among them.
Thus the ordinal type M is itself an ordered aggregate whose elements are units which
have the same order of precedence amongst one another as the corresponding elements
of M, from which they are derived by abstraction. [...]

A simple consideration shows that two ordered aggregates have the same ordinal type
if, and only if, they are similar, so that, of the two formulae

M=N, M=,N

one is always a consequence of the other!®.

)

Informally, therefore, we may understand a cardinal number as telling us the “size’
of a set, that is the number of its elements, and the ordinal numbers as informing us
on the “positions” elements have in sets.

Consider that other problems affected naive set theory, but, for our purposes, consid-
ering just these few, even if demanding, concerns is enough. Indeed — as done in the

14 Cantor’s notation for the cardinal number of M was M. In what follows, we adopt the more
conventional notation as given in the quote. See, Cantor 1915, p. 86.

15The notation we used preserves just in part Cantor’s notation: the formula M =, N was not
expressed in this way by Cantor, but it expresses the same proposition, that is M is identical, with
respect to the ordinal type, to N. See, Cantor 1915, pp. 111-112.
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chapter before —, we restrict our attention on how the situation has been faced up,
after the discover of Russell’s Paradox, by mathematicians. Treating, among others,
the questions we’ve mentioned — defining a set, proving the well-ordering theorem and
submitting to inspection cardinals and ordinals —, within an axiomatic framework,
will give us a clear idea of why sets — as is standardly accepted in mathematics — can
accomplish the mission of representing the natural numbers sequence.

Additionally, it is useful to point out that, while we are going to focus the attention
on how mathematicians, such as Zermelo and von Neumann, thought possible to
“save” set theory, at the same time, we are also accomplishing our mission of “faith-
fully representing” the natural numbers sequence within a set-theoretical framework.
Hence, — as in the previous chapter — the only formalism and mathematical tools
we are going to introduce are those that will help us in shedding more light on the
doubts we’ve raised with respect to Benacerraf’s criticism.

3.2.3 Zermelo’s Axioms
3.2.3.1 Becoming Precise! (Mathematization)
We begin by describing how E. Zermelo began his axiomatic foundation of sets. The
ingredients of the receipt are:
(i) A domain or universe Z of objects;
(ii) Some definite conditions, among them:
1. Identity: x = y <= x is the same object as y.
2. Sethood: Set(x) <= z is a set.
3. Membership: x € y <= Set(y) and x is an element of y.
(iii) Some definite operations.

We allow all objects to be sets and, if some objects are not sets, then we call them
atoms of Z. We point out that definite conditions and operations are neither sets
nor atoms. At this point, one of the fundamental distinctions between Zermelo’s
axiomatic approach and the traditional Greek one, emerges: «Euclidean geometry is
quite complex: there are several types of objects and a long list of intricate axioms
about them. By contrast, Zermelo’s set theory is quite austere: we just have sets
and atoms and only seven fairly simple axioms relating them»!°.

Finally, let’s take care about the axioms Zermelo proposed:

Axiom (I. Axiom of Extensionality). «If every element of a set A is also an element
of B and viceversa, if, therefore, both M C B and B C A, then always A = B; or,
more briefly: Every set is determined by its elements»'”. Formally:

VA,B[A=B<+— Vz(r € A<— z € B)]

6Moschovakis 2006, p. 23.
17Zermelo 1908b, p. 201.




86 CHAPTER 3. NUMBERS, SETS AND OBJECTS II

Axiom (II. Emptyset, Singleton and Pairset Axiom). (a) «There exists a (fictitious)
set, the null set, @, that contains no element at all»'®, i.e.:

JAVz(z ¢ A)

(b) «If z is any object of the domain, there exists a set {x} containing = and only x
as element» ! and (c) «if z and y are any two objects of the domain, there always
exists a set {x,y} containing as elements x and y but no object u distinct from
both»?°, namely:

Ve,y JAVu (u€ A«—u=xVu=y)

Remark. Every single membered set, such as {x}, is called singleton. Furthermore,
the axiom of extensionality, I, implies that there is only one empty set and, moreover,
that for any two object x,y there is just one set that can satisfy the paring axiom.
As Zermelo remarked, we denote it by {z,y} and call it a doubleton. Let’s say
that a and b are two any object of our domain. Suppose additionally that a = b. By
the paring axiom, II, the doubleton that collects a and b — denoted by {a,b} —is the
singleton {a} of the object a. Finally, as last part of this remark, consider that now
we are able to begin constructing sets such as:

2.{o}, {{2}1.{2.{g}}, {2, {{2}}},. ..

But, notice, each of them must have at most two members and, in order to construct
different sets, with more than two elements, we will need the entire Zermelian
axiomatization plus another fundamental notion we will encounter soon.

Axiom (III. Separation Axiom). « Whenever the propositional function P(x) is
definite for all elements of a set A, A possess a subset Bp(,) containing as elements
precisely those z of A for which P(z) is true»?!. In more contemporary terms, for
any set A and each unary, definite condition P, there exists a set B which collects
all objects that are in A and that satisfy P, namely:

VAVP 3Bz € B+— x € AN P(x)]

Remark. As before, by axiom I, it follows that only one set B can satisfy the axiom
of separation. Let’s denote the sets, such as B, as follows:

B={zreB|P@)

This fundamental axiom, separation ITI, is of much help in our theory since it helps
us to escape from Russell’s Paradox and to banish any so-called universe set of sets:

18Zermelo 1908b, p. 202.
19Zermelo 1908b, p. 202.
20Zermelo 1908b, p. 202.
21Zermelo 1908b, p. 202.
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Theorem 3.2.1. (a) For each set A, its Russell set:
R(A) —def {ZE cA | x §é A}

is not a member of A.
(b) The collection of all sets is not a set, i.e.:

-3V |[(x € V) <— Set(x)]
Proof. Consider A and its Russell set, namely R
R(A) —def {ZL’ cA | x ¢ A}

R(A) exists by the separation axiom, ITI. Now, assume, R(A) € A. As in all other
cases we obtain:

R(A) € R(A) +— R(A) ¢ R(A)

Which is, another time, inconsistent. [ |

Indeed, while considering his axioms, at the beginning of the 1908 paper, Zermelo
announced that something, that assured the restriction of the faulty Comprehension
Principle, was needed:

9

[...] in view of the “Russell antinomy” of the sets of all sets that do not contain
themselves as elements, it no longer seems admissible today to assign an arbitrary
logically definable notion a set, or class, as its extension. Cantor’s original definition

of a set [...] therefore certainly requires some restriction.??

With this precise aim — immediately after having proposed the axiom of separation,
I1I — Zermelo sums up the advantages of its adoption:

[...] Axiom IIT in a sense furnishes a substitute for the general definition of set that
was cited in the introduction and rejected as untenable [see above]. It differs from
that definition in that it contains the following restrictions. In the first place, sets may
never be independently defined by means of this axiom but must always be separated as
subsets from sets already given; thus contradictory notions such as “the set of all sets”
or “the set of all ordinal numbers” [...] are excluded. In the second place, moreover,
the defining cirterion must always be definite [...] (that is, for each single element = of
A the fundamental relations of the domain must determine whether it holds or not).
[...] But it also follows that we must, prior to the application of our Axiom III, prove

the criterion P(x) in question to be definite, if we wish to be rigorous [...].2

Axiom (IV. Powerset Axiom). «To every set A there corresponds another set §2(A),
that contains precisely all subsets of A»2*, namely:

VA 3B|C € B +— [Set(C) AVu(u € C — u € A)]|

22Zermelo 1908b, p. 200.
23Zermelo 1908b, p. 202.
24Zermelo 1908b, p. 203.
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As usual, we call the set of all subsets of a set A the powerset of A and we denote
it as follows:

§(A) =gt {C'| Set(C) A C C A},
where the notation C' C A abbreviates the formula Yu(u € C' — u € A).

Axiom (V. Unionset Axiom). «To every set A there corresponds a set | J(A4), the
union of A, that contains as elements precisely all elements of A»2%, formally:

VA, 3Bz € B+ (3C € A)z € C]].

We call any set B the unionset of A and we denote it by
UJ(A) =aet {z | (3C € A)[z € C]}

As always, axiom I implies that any unionset of a set is uniquely determined.
Moreover, it is useful to notice that with V, the unionset axiom, we are able to define
the binary, union operation between sets. Anyway, in order to complete Zermelo’s
axiomatic approach, we do need to state the two most controversial axioms the
mathematician proposed and see how their presence has been justified.

Axiom (VI. Axiom of Choice). «If A is a set whose elements are all sets that are
different from @ and mutually disjoint, its union U(A) includes at least one subset
B; having one and only one element in common with each element of A». Moreover,
we «can also express this axiom by saying that it is always possible to choose a
single element from each C, D, E, ... of A and to combine all the chosen elements,
c,d,e, ..., into a set By»?%. Formally,

VAl@ ¢ A— 3f: A= J(A),YB € A (f(A) € A)]

In other terms, for any set A of nonempty sets, there exists a choice function f
defined on A.

Remark. The main usage and apllication of the axiom of choice, VI., has that
of permitting, among other fundamental things, the proof of the well-ordering
theorem. We will discuss the main criticism deserved to axiom VI., and to its
application within a proof, in the next subsection. For the moment it is important
to understand the meaning of the axiom itself and to relate it to the context of the
general axiomatization of set theory which Zermelo was seeking for. The example we
will use here is taken from Russell’s work. Consider A as our set of pairs of “shoes”
(both, left and right) and let B = [ J(4). Additionally, let R(a,b) hold just in case

25Zermelo 1908b, p. 203.
26Zermelo 1908b, p. 204.
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a € b. We next define a function f(a) =gt “the left shoe in a”, for a € A. In this
sense, [ selects a shoe from each pair, namely Va € A R(a, f(a)). We will call such
a function f, a choice function.

However, if we understand A, for instance, as a set of “socks” (assumed to have no
distinguishing features), we have no way to define a function f: A — U(A), which
selects one f(a) € a from each pair, apart invoking the axiom of choice. In Russell’s
own words:

Among boots we can distinguish right and left, and therefore we can make a selection
of one out of each pair, namely, we can choose all the right boots or all the left boots;
but with socks no such principle of selection suggests itself, and we cannot be sure,
unless we assume the multiplicative axiom, that there is any class consisting of one

sock out of each pair.2”

First of all, notice that, with the name “multiplicative axiom”, Russell called what
here we’ve named axiom of choice. Anyway, by pursuing his analysis of this axiom,
Russell wrote, with respect to the possibility of an ordering of an infinite set of pairs
of objects:

There is no difficulty in doing this with the boots. The pairs are given as forming an
Ny, and therefore as the field of a progression. Within each pair, take the left boot first
and the right second, keeping the order of the pair unchanged; in this way we obtain
a progression of all the boots. But, with the socks we shall have to choose arbitrarily,
with each pair, which to put first; and an infinite number of arbitrary choices is an

impossibility. Unless we can find a rule for selecting [...].%%

And the rule — Russell thinks as appropriate to avoid a «number of arbitrary choices»
— is, indeed, the axiom of choice.

Finally one last axiom is somehow needed:

Axiom (VII. Axiom of Infinity). «There exists in the domain at least one set I that
contains the null set as an element and so is constituted that to each of its elements
a there corresponds a further element of the form {a}, in other words, that with each
of its elements a it also contains the corresponding {a} as an element»*. Formally:

A [@elAVzr (z €l+— {z} €1)]

This means that, there is a set I that collects the empty set and the singleton of each
of its members.

Remark. Even if we do not possess yet a precise and rigorous definition of “infinite”,
it is not difficult to see that axiom VII. implies that I is infinite: it should be clear

2TRussell 1919, p. 126.
28Russell 1919, p. 126.
29Zermelo 1908b, p. 204.
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that any set with the properties of I, as expressed by the axiom, must be infinite,
since:

gel, {o}el, {ot}el, {{{a}}}el,...

Moreover, notice that, it follows that, any of the sets &, {@}, {{@}},... is, by
axiom I. — namely Extensionality — distinguished by any other set. In this context,
it’s important to notice that, the postulation of something such as the “infinite
set” of axiom VII., could lead our Zermelian foundations of set theory into deep
(philosophical) troubles. Indeed, Zermelo himself thought that axioms I-VI «suffice,
as we shall see, for the derivation of all essential theorems of general set theory. But
in order to secure the existence of infinite sets we still require the [preceding] axiom,
which is essentially due to Dedekind». Moreover, Zermelo — whose intent was that of
treating rigorously Cantor’s and Dedekind’s intuitions — with this axiomatic warranty,
namely the existence of infinite sets, could accomplish the mission of representing
the natural number progression set-theoretically. Consider that,

[t]he set I contains the elements &, {@}, {{@}}, and so forth, and it may be called
the number sequence, because its elements can take the place of numerals. It is the

simplest example of a denumerably infinite set.3°

With all the necessary background, indeed, Zermelo — at the end of his 1908 paper —
proved the theorem for which the number sequence, as identified in the previous quote,
is an infinite set. We will return back to this point closely in the next subsection.

3.2.3.2 Ordered Pairs: from Frege to Kuratowski

A necessary historical and theoretical note, at this point of the discussion, must be
given. Consider, for instance, that, usually, the notation (z,y) indicates the ordered
pair of x and y. This means that (x,y) represents the set that has = as “first” member
and y as “second” element. Recall, now, that the Pairing axiom, II., enabled us to
form (unordered) pairs such as, {x, y}.But, since, unordered pairs are given to us from
axiom II., how should we introduce ordered pairs in our set-theoretical framework?
Clearly, logicians and mathematicians — at the beginning of the century — tried to
determine an operation, between sets, which would helped them in forming ordered
sequences of elements. As clear form the informal characterization of pairs, hence,
the main difference between ordered and unordered ones is that {z,y} = {y,z},
while (x,y) # (y,z). Therefore, formally, the desired operation must respect the
following condition:

(Cl). (z,y)=(z,u)¢«—2x=2 N y=u

Moreover, we have to ensure that the ordered pair (z,y) we have defined, is a set.
This fact allows us to define the notion of “Cartesian product” of sets, which is a
basic and very useful notion of set theory. Indeed, for every two sets A and B, we
define their Cartesian product as follows:

30Zermelo 1908b, p. 205.
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(C2). Ax B=4s{(z,y) |z €A N y€ B}

As Moschovakis remarked, «the problem of representing the notion of “pair” in set
theory takes the following precise form: we must define a definite operation (z,y)
such that [(C1)] and [(C2)] follow from the axioms of Zermelo»®'. Anyway, — before
turning to the now widely accepted solution to the problem — we will briefly give
some indications on how the debate surrounding ordered pairs was understood by
some of the first-line exponents of mathematical logic at the beginning of the 20th
century. The treatment of the ordered pairs, indeed, is of great interests for us,
since, the way in which set theorists encapsulated the operation for (x,y), is of great
difference from the strategies Frege and Russell-Whitehead applied. So, in order
to have a more clear idea on the debate concerning ordered pairs, we will sketch
the main ideas who were circulating at those time? Notice that, even if — from a
philosophical point of view — it might be seen as “not necessary” to inquire the
debate concerning ordered pairs, it actually is. The investigation on pairs will, indeed,
require a previous investigation on the notion of relation, as understood by naive
set theorists (especially, Frege and Russell) and, more importantly, as refined by
post-fregean mathematicians (starting from Peano). Relations have always played,
and still play, a crucial role in mathematics and so, — if our aim is to philosophically
understand maths —, then we have also to focus on what relations are and what are
they for. Moreover, in «modern mathematics, the ordered pair is basic, of course,
and is introduced early in the curriculum of study of analytic geometry. [...] the
historical development proceeded on the mathematical side, in the work of Peano
and Hausdorff. However, the development on the logical side, [has been buttressed]
in the work of Frege and Russell [...]»%.

Frege on relations. Frege’s philosophical conceptions, recall, comprise two fun-
damental categories, the one of function and the other of object. In fregean terms, a
function is an “unsaturated” entity, that is, something that has to be supplemented
with something different. In this sense, objects, which are “saturated” entities, con-
stitute the completion of functions, becoming their arguments. In such a context, as
previously said, concepts are special cases of functions, i.e. a concept is a function that
has two objects — the True and the False — as arguments. For instance, the concept
“being a student in Venice” is something that has not to be confused with the objects
that (truly or not) fall under its extension. Indeed, objects are considered saturated
individuals, while concepts — defined as functions — receive their “saturation” just in
case some object falls under them, allowing thus their mapping either to the True or
to the False. In this sense, relations are special cases of concepts and, therefore, of

31Moschovakis 2006, p. 34.

32Tn what follows, we will give a very brief introduction to the above mentioned debate, and our
reconstruction will chronologically consider just the major results of the years between 1880-1921.
The exposition will end with the now commonly accepted solution, devoted to K. Kuratowsi. See,
among others, Kanamori 2009, pp. 21-24. and, especially, Kanamori 2003, pp. 288-293.

33Kanamori 2003, p. 288.
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functions too. In Grundgestze, we're told that a relation is a concept that takes two
arguments and that its course-of-values is “double”. Differently, a one-place relation,
or simply, a concept, has as extension just its single course-of-values. As clear,
hence, relations, for Frege, are to be assimilated to concepts, thus not belonging to
the category of objects, being, henceforth, characterized as unsaturated individuals.
With repsect to ordered pairs, then, Frege, equipped with this sharp distinctions, in
§144 of his Grundgesetze, wrote:

We always pair one member of the cardinal number series with one member of the ¢-
series and form a series out of these pairs. The series-forming relation is determined
thus: one pair stands in it to a second if the first member of the first pair stands in
the f-relation to the first member of the second pair and the second member of the

first pair stands in the g-relation to the second member of the second pair.3*

In more common terms, it can be said that Frege defined the ordered pair of two
objects as the class of all relations that hold between these objects, assuming that
the notion of relation is primitive. Now, if z, y represent objects and R a relation,
then Frege’s definition can be formally rendered as follows:

(z,y) ={R | zRy}.

In Grundgesetze Frege introduced this notion for two main technical reasons. Firstly,
he wanted to define the “coupling” of two relations and, secondly, he wanted to have
a notion useful while treating the one-to-one correspondence between the natural
numbers and the extensions of concepts. However, this definition is not admissible
and, indeed, consider that:

[u]nfortunately, Frege’s definition of ordered pairs is, as George Boolos once put it,
extravagant and can not be consistently reconstructed, either in second-order logic or
in set-theory. According to Frege’s definition, the ordered pair (a;b) is the class to

which all and only the extensions of relations in which a stands to b belong?®.

Anyway, fortunately, meanwhile Frege’s logicist attempt, other mathematicians or
logicians were working upon a different conception of relations and pairs. Consider,
indeed, that — as it is nowadays usual practice — «[...] Peirce, Schroder and Peano
essentially regarded a relation from the outset as just a collection of ordered pairs»3¢.

From the logic to the mathematics of pairs. Consider that in «logic the
ordered pair is fundamental to the logic of relations and epitomized, at least for
Russell, metaphysical preoccupations with time and direction»3”. Indeed, from
a logical point of view, Frege’s and Russell’s treatment of relations considered

34Frege 1893/1903, p. 179.
35Heck 1995, p. 301.
36Kanamori 2009, p. 22.
37Kanamori 2003, p. 288.
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functions as basic or primitive, by trying to define the concept of ordered pair just
after having provided the notion of function. Differently, if the ordered pair is
understood as a class, then the it is possible to start from it as fundamental and, just
afterwords, accommodate the discussion concerning functions and relations. This
latter strategy is exactly the one mathematicians, unlike Frege and Russell, applied
to the mathematical study of relations and pairs:

Given the formulation of relations and functions in modern set theory, one might
presume that the analysis of the ordered pair emerged from the development of the
logic of relations, and that relations and functions were analysed in terms of the

ordered pair.38

Indeed, at the very beginning of set theory, logicians were still strictly concerned
with metaphysical preoccupations, while mathematicians were trying to separate
philosophy and logic from mathematics, by directing their approaches increasingly,
and almost exclusively, towards extensional features. Indeed, next to Frege’s Be-
griffschrift, during the last decades of the 19th century, it was proposed, by the
Italian G. Peano, another very interesting formalized language for mathematics.
This symbolic logic has been the one that Russell and Whitehead adopted to write
their Principia Mathematica (1910-13) and that Russell alone applied in all of his
formal-philosophical writings. Note, however, that whereas «Frege was attempt-
ing an analysis of thought, Peano was mainly concerned about recasting ongoing
mathematics in economical and flexible symbolism and made many reductions, e.g.,
construing a sequence in analysis as a function on the natural numbers»3Y. In such
a context, Peano, indeed, by using his notation, has been the first in stating the
fundamental properties of ordered pairs. His analysis highlighted, not only the fact
that the concept of ordered pair is of great importance, but also and especially that,
if a couple has to be determined as an ordered pair, then condition C1*° must hold:

(x,y) = (z,u) iff z =2z and y = u.

Indeed, it has been exactly B. Russell who — in different parts of his writings —
took position against Peano’s suggestion, among others, to consider the ordered
couple as a class. For instance, Russell’s criticism — as expressed in the Principles of
mathematics, with respect to Schroder’s and Peirce’s logics — points out that:

their method suffers technically (whether philosophically or not I do not at present
discuss) from the fact that they regard a relation essentially as a class of couple, thus
requiring elaborate formulae of summation for dealing with single relations. This
view is derived, I think, probably unconsciously, from a philosophical error: it has

always been customary to suppose relational propositions less ultimate than class

38Kanamori 2003, p. 288.

39Kanamori 2003, p. 289.

40Gee beginning of this section, i.e., “Ordered Pairs: From Frege to Russell”, for some further
specifications on condition C1.
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propositions (or subject-predicate propositions, with which class-propositions are
habitually confounded), and this has led to a desire to treat relations as a kind of
classes. However this may be, it was certainly from the opposite philosophical belief,
[...] that I was led to a different formal treatment of relations. This treatment, whether
more philosophically correct or not, is certainly far more convenient and far more

powerful as an engine of discovery in actual mathematics.*!

Aside Russell’s criticism and philosophical tastes, contemporary set theory has taken
the opposite path and, as remarked by Kanamori, the pioneer researches of Schroder,
Peirce and Peano, has led to the idea of intending couples of ordered elements as
sets. Russell and Whitehead, whose main intent was that of reducing all branches of
mathematics to their logical type theory, buttressed the Principles idea of deriving —
from other fundamental notions, such as the one of relation — the concept of ordered
pair. Indeed, in their Principia Mathematica, Russell and Whitehead adopted the
following definitional strategy: by defining the Cartesian product between elements,
they defined the ordered pair as follows*?:

r Ly =at {r} X {y}.

As clear, their work has been contrary to that of contemporary set theorists, who
have to define the ordered pair to obtain the desired notion of Cartesian product and
not wiceversa. Indeed, Peano, in his Formulario Mathematico (1905-8), aware of the
conception developed by Russell and Whitehead, «simply reaffirmed an ordered pair
as basic, defined a relation as a class of ordered pairs, and a function extensionally as a
kind of relation»*®. For example, already in 1901, when Russell sent to Peano’s review
his article, titled Sur la logique de relations avec des applications a la théorie des
séries, the Italian mathematician continued in pursuing his objective of understanding
relations as ordered couples. Indeed, in the same years Peano was arguing that the
«idea of a pair is fundamental, [but]|, we do not know how to express it using the
preceding symbols», Norbert Wiener elaborated the first mathematical successfully
strategy of characterization of ordered pairs. More specifically, his work provided
us with a «definition of the ordered pair in terms of unordered pairs of classes
only, thereby reducing relations to classes»**, and accomplishing, thus, the inversion
of trend, which contemporary set theory has inherited. Wiener’s work has been
conducted within Russell’s type theory and, — apart defining the notion of ordered
pair — as result, he made it possible to define “types” as sets. His definition can be
given as follows:

(iL‘,y) —def {{{IB}, @}’ {{y}}}

41Russell 1903, p. 24.

2We follow Russell’s and Whitehead’s notation. The “down arrow”, put between two elements,
symbolized that the two elements constituted an ordered pair.

43Kanamori 2003, p. 290.

44Kanamori 2003, p. 290.
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Exactly the fact that Wiener was working in type theory, justifies the fact that {{y}}
is inserted in place of simply {y}: in Principia, Russell and Whitehead had asserted
that every element of a class must be of the same type of any other element of the
same class. Almost at the same time, another mathematician — Felix Hausdorff —
arrived to a very similar solution to Wiener’s:

(ZL‘, y) —def {{$, 1}7 {y’ 2}}7

where 1 and 2 are two distinct objects, different from x and y and, moreover, alien
to the situation. He, thus, defined the ordered pair in terms of unordered pairs,
formulated functions in terms of ordered pairs, and ordering relations as collections
of ordered pairs, and, in doing so, he «made both, the Peano and Wiener moves in
mathematical practice, completing the reduction of functions to sets»*°. Indeed, his
definition verifies the condition Peano first formulate, namely C1. Anyway, before
arriving to the now widely accepted solution, it is worthy to point out that, Russell
had rejected Wiener’s and Hausdorft’s analysis, and that he continued in thinking of
relations as primitive and, especially, as intensional entities:

After his break with neo-Hegelian idealism, Russell insisted in taking relations to have
genuine metaphysical reality, external to the mind yet intensional in character. On
this view, order had to have a primordial reality, and this was part and parcel of the

metaphysical force of intension®®.

As remarked above, mathematicians — especially thanks to Hausdorft’s work and
unlike Russell — pursued the extensional understanding of relations and, finally, in
1921, the logician Kazimierz Kuratowski exposed his solution, that is, the result
— concerning pairs — he obtained by analysing Zermelo’s Well-ordering theorem®’.

Kuratowski’s ordered pair is defined as follows:

($7 y) —def {{ZE}, {l’, y}}

Two fundamental facts concerning the previous definition can be immediately seen.
Both consequences will, as expected, shed light on the definitional adequateness of
Kuratowski’s pairs. First, consider a couple where the first and the second coordinate
are identical, i.e. (z,x). According to Kuratowski’s definition, therefore, we can
write:

(SL’, *T) —def {{ZL‘}, {I7 [L‘}},

By inspection, {{z}, {z,z}} is equivalent to {{z}, {z}} and, hence, to {{z}}. This
simply means that Kuratowski’s definition is adequate to define an ordered couple
even if the elements it contains are identical. More importantly, now, we can easily
prove that Kuratowski’s definition satisfies C1. and C2., being thus the desired
notion of coupling for our set-theoretical framework.

45Kanamori 2003, p. 291.
46K anamori 2003, p. 290.
47The next section is devoted to this main result of set theory. See Zermelo 1908a.
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Lemma 1. The Kuratowski pair operation
(z,y) =aet {{z},{z,y}},
satisfies condition C1, i.e., formally,
(x,y) =(z,u) «—x=2 N y=u.

Proof. («) We have z = z and y = u. By Kuratowski’s definition we have that
{{z}.{z,y}} = {{z}. {2, u}}. But, this means (z,y) = (z,v).

(—) Assume (z,y) = (z,u). We have to distinguish two cases:

1. 2=y
2.z #y.
1. lfxe =y

Consider (z,y) = {{z},{z,y}} = {{z}, {z,2}} = {{x}}. Since the set (z,u) is
assumed to be equal to (x,y), we have z = uwand (z,u) = {{z}}. Moreover, since
by {{z}} = {{z}} we have that = = z, consequently, we obtain y =z = z = u.

2. Ifx#y:

The members of (x,y) in this case are {z} and {z,y}. By assumption they
must be equal to those of (z,u), namely to {z} and {z,u}. In this sense, from
{z} ={z} and {z,y} = {z,u}, we immediately get x = z and y = u.

So, this completes our research towards an appropriate set theoretic notion of ordered
couple. As sketched, the research of this characterization has had different difficulties,
in particular, arisen from the mistaken assumption of relations as primitive and
intensional entities. By developing a pure extensional notion of couple, the mission
of reducing relations and, consequently, functions to sets can be said accomplished
by the leading work of Kuratowski. Notably, the

general adoption of the Kuratowski pair proceeded through the developments of
mathematical logic: von Neumann initially took the ordered pair as primitive but later
noted the reduction via the Kuratowski reduction. Goédel in his incompleteness papers
also pointed out the reduction. Tarski, seminal for its precise, set-theoretic formulation
of first-order definable set of reals, pointed out the reduction and acknowledged his
compatriot Kuratowski. In his recasting of von Neumann’s system, Bernays also
acknowledged Kuratowski and began with its definition for the ordered pair. It is
remarkable that Nicolas Bourbaki in his treatise (1954) on set theory still took the

ordered pair as primitive, only later providing the Kuratowski reduction [...]48

48Kanamori 2003, p. 292.
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3.2.4 Zermelian Considerations on the Axioms

Before publishing the whole collection of axioms, Zermelo published two different,
but related, works. As said before, in 1904, Zermelo proved the fundamental claim
that any set can be well-ordered. In the paper where he presents his brief proof, much
of set theory is presupposed and no comments, for what concerns the usage of the
controversial axiom of choice, are offered. Differently, some years later, and precisely
in 1908, Zermelo published another proof of the well-ordering theorem, this time, by
using less set-theoretical presuppositions and by adding, at the end of the paper, a
careful analysis of the criticism deserved to his axiom of choice. Finally — always in
the year 1908 — Zermelo accomplished the mission of giving an explicitly formulated
axiomatization of set theory. This happened exactly by means of the axioms we've
just given, i.e., I.-VII.. The history of set theory, anyway, does not terminate here
and other works merit to be mentioned. Indeed, for our purposes, we have to arrive
to the last non Zermelian axiom, that is the so-called “Axiom of Replacement” as

249 and as axiomatized, in

announced by A. Fraenkel and T. Skolem around 192
the late 30s, by J. von Neumann. Indeed, in order to arrive to the addition of this
new axiom, let’s consider both, what our Zermelian framework is able to do and
which tasks it cannot absolve. Additionally, the philosophical import of Zermelo’s
axioms should be analysed at length, but — since it would take us away from our
main investigative path —, we restrict our considerations to two fundamental points:
(i) the axiom of choice and its Zermelian defence and (ii) the axiom of infinity and

its applicability within number theory.

3.2.4.1 Well-Orderings, Choices and Axiomatic Method

Zermelo worked in several European universities, including Gottingen, where he
arrived at the beginning of the century. There, moved by the great mathematician D.
Hilbert, Zermelo began his work in set theory, trying to do justice to Cantor’s and
Dedekind’s intuitions. His earliest contribution, as said, concerns the well-ordering
theorem (1904)°. The background of such a proof was that given always by Cantor
and its naive understanding of sets. In particular, within a letter sent to Dedekind,
Cantor explained what he meant with the concept of “well-ordering” for sets and,
moreover, he conjectured the existence of a proof of the well-ordering of any set.
Since Zermelo aimed to find a proof exactly of the well-ordering conjecture, let’s
read Cantor’s own words:

A multiplicity is said to be well-ordered if it satisfies the the condition that every

submultiplicity of it has a first element; I call such a multiplicity “sequence” for short®!.

Apart having this informal definition, it would be better to possess a more con-
ventional representation of what is meant for a set to be ordered and, moreover,

49Gee, in particular, Skolem 1922, pp. 290-301 and Fraenkel 1922, pp. 284-289. For clear
commentaries see Kanamori 2009, pp. 30-31.

50See, in particular, Zermelo 1904, 1908a,b. For technical and historical commentaries see
Moschovakis 2006, pp. 21-28 and, especially, Kanamori 2009, pp. 11-16.

5lCantor 1899, p. 114.
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well-ordered. So, starting from Cantor’s intuition, contemporary set theorists furnish
the following definitions:

Definition 18 (Ordering of a Set). A binary relation < on a set A is a partial
ordering if the following conditions hold:

1. Reflexivity: =z < x;
2. Antisymmetry: <y AN y<zx—2x=1y;
3. Transitivity: t <y AN y<z— 1z < 2.

We define the binary relation < as follows:
T<Yy=det TSY N THY.

The partial order < is total or linear, if, additionally to clauses 1-3, any two
elements of A are comparable with respect to <. Formally,

Ve,ye A)[z<y Vez=y V z<y]

Now, with this preliminary definition of what does it mean for a set being ordered,
we may state the definition of “well-ordered” set logically:

Definition 19 (Well-Ordering of a Set). The binary relation < on A is a well-
ordering of A, if the following two conditions hold:

(i) < is a total order;

(ii) every non-empty subset of A has a least element, i.e.:
(YC CA) [C# o — (Fzel)(Vye)x <y

Now, consider that < can be also defined on the set of natural numbers as the
relation “less or equal to”, between natural numbers. But, to do this job we have to
prove the existence of such a set — namely of N — and this, the required proof, will
be given in the next section devoted to the axiom of infinity.

As remarked in the quote, Cantor’s work, among other things, distinguished between
“consistent” and “inconsistent” multiplicities. The latter ones, by admitting a
contradictory and logically inadmissible notion, let mathematicians seek for another
proof, which does not rely on the introduction of “inconsistent” sets. The proof,
presented by Zermelo, differently, is brief and relies on the axiom of choice — a rule
that Cantor, for instance, had used implicitly and instinctively in order to gain the
possibility of a simultaneous choice. Differently, equipped with his axiom of choice
V1., Zermelo «shifted the notion of set away from the implicit assumption of Cantor’s
principle that every well-defined set is well-ordered and replaced it by an explicit
axiom about a wider notion of set, incipiently unstructured but soon to be given
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form by axioms»?2. Zermelo’s proof has been, indeed, pivotal to the development
of the axiomatic version of set theory and it is useful to summarize his main proof-
theoretical strategy. Arrived at this point, it is worthy to notice that, while Zermelo
has been very careful in mathematizing naive set theory, he almost did not care on
the logical features which his mathematization was involving. In fact, consider that
Zermelo, while trying to clarify the terms “relation” and “definite relation”, invokes
the generality and universal validity of the laws of logic. The difference between a
simple relation and a definite one is that, in presence of the axiom of separation, the
latter “separates” a subset from an already given set, while the first ones no. This
characterization is, somehow, too mysterious for mathematicians and it has been
argued that Zermelo did not pay «attention at all to the underlying logic, [the] laws
are left unspecified, and the notion of definite property remains hazy»°3. So, in order
to proceed towards the well-ordering theorem, let’s state what is for a relation to be
“definite”. We've specified, already at the beginning of the construction of Z, that
identity, sethood and membership are definite conditions®®. Furthermore, let’s
establish that:

1. For any object a and each n, the constant n-ary operation F
F(xy,...,z,) =a
is definite.
2. Any projection operation,
F(zy,...,x,) =2; (1<i<n)
is definite.

3. If P is a definite condition for n 4+ 1 arguments and for each x4, ..., x, there is
exactly one u, such that P(zy,...,x,,u) is true, then the formula

F(z1,...,x,) = the unique u such that P(zy,...,x,,u)

is definite.

4. If S is an m-ary definite condition, any F; is an n-ary definite formula for
1=1,...,m and

P(zy,...,x,) <= S(Fi(x1),..., Fu(x,)),

52Kanamori 2009, p. 1.

%3In the Introduction to Zermelo 1908b, p. 199. Further, note that we are assuming that set
tehory has always be done by taking a first-order language plus a sole non-logical constant, i.e.,
€, but, consider that the pioneer work of “assembling” the language of set theory within that of
first-order logic has been a success of — another time — A. Fraenkel and T. Skolem. See, indeed,
Fraenkel 1922 and Skolem 1922.

54Consider that Skolem’s and Fraenkel’s considerations on the lack of a precise notion of “definite
condition” in Zermelo’s paper were presented in the early 20s. Zermelo himself, along his 1930
article, provided more precise characterizations of definiteness. In what follows, anyway, we will
deal with the more usual and conventional practice.
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then P is also definite.

5. Let T =get T1,...,2,. If Q,R,S are definite conditions on a number of ar-
guments, then so are the following conditions obtained by simple logical
manipulations:

P(z) <= ~P(7) <= P(7) is false.

P(z) <= Q(%) A S(T) <= both, Q(¥) and S(7), are true.
P(z) <= Q) V S(T) <= either Q(T) or S(7) is true.
P(z) <= Q(z) — S(7) <= if Q(z) is true, then S(z) is true.
P(z) <= Ju(S[(7),u]) <= for some u, S[(Z),u] is true.

P(Z) <= Yu(S[(T),u]) <= for any u, S[(T),u] is true.

That’s it for what concerns the definition of what Zermelo had in mind with “defi-
niteness” for conditions and relations. With this in our heads, let’s state the proof,
of Cantor’s conjecture, of well-ordered sets:

Theorem 7 (Zermelo’s Well-Ordering Theorem). Every set can be well-ordered.

Proof Sketch. Suppose that b is a set to be well-ordered. Assume, by the axiom of
choice, VI., that §2(b) = {z | 2 C b} has a choice function v, such that for every
non-empty element z of §2(b), it holds v(z) € z. We say that z is a v-set if there is a
well-ordering R of z such that for any ¢ € z it holds that:

”y({yc |z ¢ zV ﬂR(z,c)}) =c

Hence, each member of z is what v chooses from what does not already precede that
member according to R. |

Nice results immediately follow from Zermelo’s proof and, with this theorem at
hand, already at the end of his 1904, Zermelo noticed Cantor’s conjecture concerning
“cardinal comparability” could be finally secured. Even if also this latter point
should be treated at length, it would take us away from our main purposes. What
we actually are most interested in is the fact, that, already in 1904, Zermelo came
up near to what set theorists would have called — after von Neumman’s accurate
explications — “Recursion theorem” and “Axiom of Replacement”. Anyway, Zemelo
did not formulate completely neither the theorem nor the axiom, since his main
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objective while axiomatizing Cantor’s intuitions, «was not for the formulation and
solution of a problem like the Continuum Problem, but rather to clarify a specific
proof »®>, namely the demonstration of the well-ordering conjecture. In this specific
context, the work of Dedekind — we’ve sketched in the foregoing chapter — has played
a crucial rule for Zermelo’s work within the axiomatization of sets (at least) in two
senses. Firstly, in the proof the mathematician presented in 1908, titled A new
proof of the well-ordering, he explicitly recognises the merits of Dedekinds chains, by
applying them into his reformulated proof. Secondly:

By Dedekind’s time proof had become basic for mathematics, and, indeed, his work did
a great deal to enshrine proof as the vehicle for algebraic abstraction and generalization.
Like algebraic constructs, sets were new to mathematics and would be incorporated by
setting down the rules for their proofs. Just as “calculations” are part of the sense of
numbers, so proofs would be part of the sense of sets, as their “calculations”. Just as
Euclid’s axioms for geometry had set out the permissible geometric constructions, the
axioms of set theory would set out the specific rules for set generation and manipulation.
[...] For Dedekind it had sufficed to work with sets by merely giving few definitions and
properties, those foreshadowing Extensionality, Union, and Infinity. Zermelo provided

more rules: Separation, Power Set, and Choice®®.

So, like Dedekind®’, also Zermelo thought that proofs and rigorous definitions for
the construction and characterization of mathematical objects was a fertile way to
do mathematics. Indeed, for instance, with respect to its axiom of choice Zermelo
wrote:

This logical principle cannot, to be sure, be reduced to a still simpler one, but it is
applied without hesitation everywhere in mathematical deduction. For example, the
validity of the proposition that the number of parts into which a set decomposes is
less than or equal to the number of all of its elements cannot be proved except by

associating with each of the parts in question one of its elements.?®

Indeed, some couples of years later, Zermelo defended again his axiom of choice from
the criticism mathematicians and logicians deserved to it:

[...] the question that can be objectively decided, whether the principle is necessary for
science, I should now like to submit to judgement a number of elementary theorems
and problems that, in my opinion, could not be dealt with at all without the principle

of choice. [...] Cantor’s theory of cardinalities [...] certainly requires our postulate,

55Kanamori 2009, p. 13.

56Kanamori 2009, pp. 14-15.

5TWe've already explained Dedekind’s conception of mathematics in the previous chapter. For
the sake of the argument, anyway, that Dedekind himself began his monograph on natural number
by asserting:«In science nothing capable of proof ought to be accepted without proof» Dedekind
1888b, p. 790.

%8Zermelo 1904, p. 141.
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and so does Dedekind’s theory of sets which forms the foundations of arithmetic®®.

Hence, for Zermelo, the axiom of choice, or better, axioms for in general, are to
be understood as fundamental, when their applications result necessaries for the
development of mathematics and science. Indeed, while some may agree that the
choice principle, for instance, is not intuitive as the other axioms, and consequently
try to argue that it should be rejected, they do not consider at all, according to
Zermelo’s perspective, its fruitfulness in applications and consequences. Anyway:

[...] as long as [...], the principle of choice cannot be definitely refuted, no one has
the right to prevent the representatives of productive science from continuing to use
this “hypothesis” — as one may call it for all I care — and developing its consequences
to the greatest extent, especially since any possible contradiction inherent in a given

point of view can be discovered only in that way5°.

So, if we do not possess a refutation of inherent contradiction of some principle and
its usefulness is evident in the sense that, nice results follow from its application,
according to Zermelo, we should be convinced that its truth is, in this precise sense,
self-evident:

[...] That this axiom, even though it was never formulated in textbook styles, has been
frequently used, and successfully at that, in the most diverse fields of mathematics,
especially in set theory, by Dedekind, Cantor, F. Bernstein, Schoenflies, J. Konig, and
others is an indisputable fact [...] Such an extensive use of a principle can be explained

only by its self-evidence, which, of course, must not be confused with its provability.5!

So, as remarked by Zermelo himself, mathematics should not be done without
proofs and rigorous definitions, and, indeed, in order to give a clear and precise
systematization of Cantor’s and Dedekind’s intuitions, he provided, not only proofs
of some of the major claims and conjectures, but he furnishes us, especially, with
precise and explicitly formulated rules for the construction and manipulation of sets.
Moreover, he was attracted — as especially Dedekind has been some years before
him — by «the reduction of mathematical concepts and arguments to set-theoretic
concepts and arguments from axioms, based on sets doing the work of mathematical
objects». Linked to this, as it should be now clear, Zermelo agreed with the general
convictions concerning the axiomatic method and, a posteriori, his name can be well
signed — among those of Hilbert and Russell — within the defender of the necessity of
the axiomatic methodology for the development of mathematics.

Having a bit clarified Zermelo’s conception and use of the axioms for sets, we can
introduce how he thought to apply (and, consequently, justify) his other controversial
axiom, namely the axiom of infinity. In the context of that analysis, finally, — we
anticipate — something as the natural numbers sequence (as thought by Zermelo)

59Zermelo 1908a, pp. 187-189.
60Zermelo 1908a, p. 189.
61Zermelo 1908a, p. 187.
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will appear.

3.2.4.2 Infinite Sets, Natural Numbers and Axioms

Recall that one of the main important features of Dedekind’s work has that of
(trying) to prove — after having provided a definition of infinity— the claim for which
infinite sets exist. Differently, set theorists, during and after Zermelo’s pioneer work,
adopted an axiom to assert the existence of such sets and, as in the case of the
axiom of choice, some criticism has emerged. Roughly, it can be argued that being
convinced that the existence of infinite sets, as asserted by the axiom of infinity,
is much demanding — philosophically speaking. Now, we’'ve seen that one way to
defend the misunderstandings coming from the axioms of our mathematical theories
is to appeal to their self-evidence in the Zermelian sense, that is by considering
their usefulness and consequences. We will come to one of the most fundamental
proofs for both, set and number theory, which requires the application of the axiom
of infinity and which will shed more light on Zermelo’s idea of self-evidence soon.
For the moment, we will sketch another important way of defending the presence
of some particular or “extravagant” axioms within mathematical theories. This
defence strategy is not directly to be found in Zermelo’s work, but it is one the most
appealing consequences of the whole of his work in set theory. For the sake of the
argument, consider again the axiom of infinity and that it’s immediate reading seems
to commit us immediately to the existence of, at least, one infinite set. But, actually,
does the axiom of infinity really commit us to the existence of such a set? For some
set theorists, Zermelo’s axiom does not have this kind of commitment and, indeed,
it is generally accepted that, one of the major contributions, lying along the entire
Zeremelian work, is that of purging mathematics, ans especially set theory, from
philosophical and existential doubts:

The intuitive understanding of the axiom [of infinity] is that it demands precisely the
existence of the set

I={o,{2},{{a}},...},

but it is simpler (and sufficient) to assume of I only the stated properties, which imply
that it contains all these complex singletons.

It was a commonplace belief that among philosophers and mathematicians of the 19th
century that the existence of infinite sets could be proved, and in particular the set
of natural numbers could be “constructed” out of thin air, “by logic alone”. All the
proposed “proofs” involved the faulty General Comprehension Principle in some form
or another. We know better now: logic can codify the valid forms of reasoning but it

cannot prove the existence of anything, let alone infinite sets.52

But, notice, that this does not mean or imply that logical and philosophical concerns
about set theory should be completely rejected, but, rather, that the philosophy
of set theory should be separated from the mathematics of sets. In other words,

62Moschovakis 2006, p. 30.
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while elaborating mathematical theories, no ontological concerns must be considered
by mathematicians, since this kind of problems is exactly what a philosopher of
mathematics is called to investigate and to answer. Indeed,

By taking account of this fact[s] cleanly and explicitly in the formulations of his axioms,
Zermelo made a substantial contribution to the process of purging logic of ontological
concerns and separating the mathematical development of the theory of sets from

logic, to the benefit of both disciplines.53

Thus, Zermelo’s work can be seen as a step further in the development of mathematics,
as an always more autonomous discipline, thanks to his work in set theory: Cantor’s
collections, Dedekind’s systems and, especially, Frege’s extensions were born as sons
of both, mathematics and philosophy, but now, differently, Zermelo’s sets are just
the product of mathematics. In any case, as specified, this feature does not preclude
the possibility of the philosophical investigation of sets or, more importantly, their
fruitful application out of the range of pure mathematics.

Having, thus, seen how the axiom of infinity has been justified on the basis of a
division — not explicitly stated by Zermelo, but directly connected to his work —
between the ontology and the mathematics of sets, we are now going to analyse
the sense in which Zermelo himslef thought the axiom of infinity being self-evident.
Recall, another time, that — resounding Hilbert’s and Russell’s position — an axiom is
self-evident, according to Zermelo, when nice conclusions, concerning a specific field
of mathematics, can be proved while involving the axiom itself. So, to see in which
sense the postulation of infinite sets is necessary for the development of mathematics,
reconsider the natural numbers sequence 0, 1,2, 3, ... and the fundamental characters
the Dedekind-Peano axioms ascribe to it. The progression is usually structured as
follows: we begin with a least number, 0, and we continue by characterizing any
member n of the progression by applying the operation of “successor of” to 0 as
many times as necessary, i.e.:

0, S(0), SS(0), SSS(0),..., S...S8(0),...

As said several times, for instance, Frege, among others, tried to reduce the truths
concerning the natural numbers to “more basic” truths, namely to those concerning
the extensions. The theory of collections he developed was inherently inconsistent
and, therefore, as remarked, the reduction he had planned — i.e., the derivation of
the Dedekind-Peano axioms for number theory from the theory of extensions, as
developed in the Grundgesetze — failed. But now, having a more mathematized and
rich framework for sets that escapes the raise of several inconsistencies, it is possible
to characterize set-theoretically the axiomatization of Dedekind and Peano. Let’s
start this task.

Definition 20. A Peano system or system of natural numbers is any ordered

63Moschovakis 2006, p. 30.
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triple:
(N,0,5)

which satisfies the following conditions:
1. 0 € N i.e. the set N contains 0 as element;

2. S :N — N, such that n — S(n). That is, S is a function defined on N, in a
way such that each n € N is mapped to its successor, S(n);

3. S is an injective function, i.e. S(m) = S(n) — m =n;
4. Any successor number is different from 0, namely, for each n € N, S(n) # 0;

5. Induction Principle. For any subset A of N, if 0 is contained in A, and, if a
number is in A, then its successor is in A, then A is identical to N. Formally,

VACN[0€A A (neN)neA— Sn)€A| »A=N.

It is not difficult to see the similarities between these set-theoretical formulation
of the Dedekind-Peano axioms and the way we’ve expressed them in the previous
chapter. What we actually have to notice is that our main interests are not historical
or exegetical and, therefore, it is better to point out that we are simply working in a
Zermelian-style framework and, indeed, the definitions and the proofs we will give
are stated in a more conventional and contemporary fashion. With this in mind,
notice that our definition invokes a notion with which we are not so familiar yet, i.e.
the notion of “ordered triple”. The idea behind ordered triples can, roughly, be given
as follows:

Definition 21. The ordered triple (x,y, z) can be defined either as the ordered
pair:

((z,9),2)

or as the ordered pair:

(z, (y,2)),

where (z,y) and (y, z) are themselves ordered pairs.

So, returning to our definition, a doubt may arise: how do we assure that every
element of the n-sequence is a number different from any other? In more profane
words, what does it grant us that, at a certain point, we will not encounter a number
n equal to its successor S(n)? The answer’s clearly “by a proof”. Let’s clarify our
doubt by proving the next lemma and by paying attention to the application of the
set-theoretical version of the induction principle:
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Lemma 8. In a Peano system (N, 0,.5), any n # 0 is a successor. Formally:
Vn e N [n #0— (Im e N)[n = S(m)]}
Moreover, each number is different from its successor, namely:
Vn € N [S(n) # n).
Proof. Consider first that we have to prove that,
A={neN|n#0— (Im e N)n=5(m)}, (3.1)
which is logically equivalent to:
A={neN|n=0V(ImeN)n=Sm)|},
satisfies the following conditions:
(i) 0 € A
(ii) (vneN)lne A— S(n) € A
Both — (i) and (ii) — immediately follows from the definition of A.
Secondly we prove that:
Vn € N [S(n) # n]
satisfies the following conditions:
(i) S0 #0;
(ii) S(n) #n — SS(n) # S(n).
For (i) consider that, by axiom 4, for any n, S(n) # 0 and, hence, that also S(0) # 0.

For the second point, consider that S is an injection and, therefore, (ii) holds since
SS(n) =S(n) — S(n) =n. [

So, as it emerges from the proof, the set-theoretical version of the Induction principle
has the fundamental feature that it concedes us to demonstrate that if some conditions
are satisfied from a generic set A, namely that it contains 0, n and its successor S(n),
then A gets identified with set N. In other words, we are able to prove — and that’s
the intuitive meaning of inductive proofs — determinate characters of the natural
numbers along the entire sequence to which they belong. Indeed, without specifying
any number-sign, we've been able to see that — no matter how long the sequence is —
any number n is different from any other and, additionally, that each n is a successor
of another number m, starting by 0.

So, with all these background, we can finally meet our natural numbers. Recall that,
«[i]f number theory can be developed from the Peano axioms, then to give a faithful
representation of the natural numbers in set theory, it is enough to prove from the
axioms»%* that, (i) natural numbers exist, and, (ii) that their existence is uniquely
determined.

64Moschovakis 2006, p. 52.
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Theorem 9 (Existence of the natural numbers). There exists at least one Peano
system (N, 0, .5).

This theorem relies on a very simple and elegant proof that involves the usage of the
axiom of infinity. Let’s see how it works.

Proof. With our axiom of infinity we have the warranty that there exists a set I
which satisfies the following conditions:
(i) o el
(ii) Vn [n € I — {n} €]
Now, using our I we define a set:
I={ACIl|@€cAANVVn(neA— {n}e A}l
As obvious I € I. Now, let,

(i) N={(1);
(ii) 0= o;
(iii) S={(n,m) e Nx N |m = {n}}

What we have to show is that the triple (N, 0,.5) is a Peano system for arithmetic.
First, consider that if some set A € I, then it follows that @ € A. This implies that
N € I. Additionally, for @ € ﬂ([) = N. Now, suppose that n € N. We know that
N € I and, so, that it holds that {n} € N. This implies directly the first two Peano
axioms.

The third axiom holds because: since {n} # n, if n # m, then {n} # {m}. By
stating the contrapositive, axiom 3. arises, i.e. Vn,m ({n} = {m} — n = m).
Axiom 4 is obvious since, for all n it holds that {n} # @.

Last point. We've defined N as an intersection, namely ﬂ([ ). Consider that this
means that:

(e 0]
NL)=LnhLn---={z|zel,} =N
n=0

That is, by definition of I, @ € ()(I) and for any z, z € [(\(I) — {z} € ().
Hence, by letting N be the intersection of I, we've finally confirmed Peano’s last
axiom, i.e. the Induction principle. |

As clear, therefore, set-theoretical axioms has allowed us to prove the existence of a
Peano system. Moreover it would be nice to have the following result:

Theorem 10 (Uniqueness of the natural numbers). For any two Peano systems
(N1, 0q,57) and (Ng, 09,.55) there exists exactly one bijective function,

gb:Nl—)Ng,
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such that the following conditions hold:
¢(01) = 0,

6(S1(n)) = Sa(g(n)).
|

Some remarks are, at this point needed. First, we will not prove the uniqueness
theorem — other technicalities would be required, such as some versions of the
Recursion theorem -, since, for what concerns our philosophical interest, it is sufficient.
Indeed, we will describe soon how Zermelo’s sets faithfully represent the n-sequence
and, then, roughly turn to von Neumann’s work.

Consider the whole of the work we’ve done in this section devoted to the axiom of
infinity and to its application to natural numbers.

1. Thanks to our two above theorems (Existence and Uniqueness) we may now
fix a specific Peano system (N, 0, S) and let its members be called the natural
numbers.

2. We can, at this point, consider that the set, we constructed in the Existence
proof, gets identified with N. In this sense, the set that we have obtained from
the application of the axiom of infinity is the following:

N={2,{o},{{9}},...}

where 0 =qer @ and S(n) =get {n}.

3. As it should already be clear, one of the set-theoretical representation of natural
numbers — Benacerraf attacked — has been now axiomatically set up. We have
axioms which guarantee the existence of sets, in particular, of infinite sets, and,
moreover, we have a theorem which tells us that one of those infinite sets may
well be used to represent the natural numbers progression.

4. The notion of finiteness and infinity, with the axiomatic notions at our disposal,
emerge again.

Definition 22. A set A is finite if there is some natural number n, such that
A~{keN|k<n}={0,1,...,n—1}.

Infinite if it is not finite; and, finally, countable if it is equinumerous with N,
namely:

A is countable iff A ~ N.

Least, the finite cardinals are the cardinal numbers of finite sets.

Finally:
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Theorem 3.2.2. The set N of natural numbers is infinite.

Proof. The set N is characterized by the function .S, which is defined as an injection
n +— S(n) of N into N/{0}. In other words, for given a number n, the function S
maps it to its successor, S(n), in an open-ended process. |

As we see, “A is infinitely countable” means exactly “A is equinumerous with N”,
that is, there exists a bijection from A to N. In signs, A ~ N or, equivalently,
|A| = |N| = Ny, where ¥, standardly represents the cardinal number (or cardinality)
of the set of natural numbers, i.e. of N. Anyway, even if we've presented a way in
which Cantor’s intuitions on the set of natural numbers can be restored with the
help of the axiomatic framework, Zermelo’s interests were not primarily concerned
with transfinite numbers:

Zermelo’s axiomatization also shifted the focus away from the transfinite numbers to
an abstract view of sets structured solely by € and simple operations. For Cantor the
transfinite numbers had become central to his investigation of definable sets of reals
and the Continuum Problem [...]. Outgrowing Zermelo’s pragmatic purposes axiomatic
set theory could not long forestall the Cantorian initiative, as even 2% = R, could not
be asserted directly, and in the 1920s John von Neumann was to fully incorporate the

transfinite using Replacement.5®

Indeed, it might be said that, while set theorists, after Zermelo’s work, will try to
secure transfinite numbers within axiomatic set theory, differently, «a substantial
motive for Zermelo’s axiomatizing set theory was to buttress his Well-Ordering
Theorem by making explicit its underlying set existence assumptions»%®. As remarked
several times, much other technicalities and applications of the axioms I.-VI. could
be interesting, but, since, in this context, our aim was that of simply giving an idea of
how Zermelo accomplished the job of set-theoretically representing natural numbers,
we stop our “Zermelian considerations” here.

3.2.5 von Neumann’s contribution

3.2.5.1 Becoming Precise! (Consolidation)

In the general climate of the beginnings of axiomatic set theory, Zermelo had put
aside the question of transfinite numbers — which was central to Cantor’s project — in
order to prove the Well-Ordering theorem by specifying the set-existence assumptions
underlying his proof. Differently, John von Neumann, acknowledging Zermelo’s and
other results, accomplished the mission of giving a formal characterization of ordinals,
i.e. of ordinal numbers. Von Neumann’s analysis, indeed, carried at least two
fundamental results concerning set theory, namely the establishing of the Recursion
theorem and, consequently, with recursion at hand, the reconstruction of ordinals as
sets.

65Kanamori 2009, pp. 15-16.
66Kanamori 2009, p. 13.
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Von Neumann, and before him Dimitry Mirimanoff and Zermelo in unpublished 1915
work, isolated the now very familiar concept of ordinal, with the basic idea of taking

precedence in a well-ordering simply to be membership.5”

So, as clear, Zermelo’s proofs® of the well-ordering theorem have lead to the reduction
of transfinite numbers to sets. Anyway, the novelties von Neumann brought into set
theory, that we will consider, are all to be connected with his Recursion theorem,
i.e., the proof that allows us to define concepts through transfinite recursion. As
sketched in the foregoing section devoted to Zermelo’s axioms, even in his 1904
paper, Zermelo, anticipated von Neumann’s recursion theorem, but — and here’s the
crucial point — it has been explicitly formulated and proved just a couple of years
later. Mathematicians, in connection to Zermelo’s axiomatization, tried to solve
different concerns, in particular they observed that — in order to prove transfinite
recursion — a “fundamental” axiom was missing. Indeed, before von Neumann’s
complete axiomatization of set theory, in the 20s, Fraenkel and Skolem independently
had found that — for treating sets with large cardinalities — the following axiom is
required:

Axiom (VIII. Axiom of Replacement). For each set A and any definite operation
Z on A, the image of A under .% is a set. Formally,

FIA] =au {Z(2) | z € A}

Likewise, if we let Z =qef 21, . . ., 2n, then we may state the Axiom of Replacement as
a “schemata”, as follows:

vz, VA ((vz € A)(Fy) ¢(x,y,7, A) — (3B), (V) [y € B «— (3z € A) ¢(x,y,%, A)])

Notice, that while in first-order logic we're not able to quantify over the notion of
“definite function”, such as F', then the inclusion of the schema for replacement is
somehow needed. Indeed, consider that the advantages of a schemata, like VIII.,
is that any first-order definable function can be substituted to ¢. Anyway, another
interesting formulation of VIII. is the following, which we provide for its immediate
clarity:

¥A,3B,¥C [C € B+—3D (D€ A A C =.7Z[D])

That is, given any set A, it exists a set B such that, for all sets C, C'is an element of
B if and only if it exists a set D such that D is in A and C' is identical to D under
% . Hence, in other words, the essence of replacement is always the following: the
image of any set under a definite condition is a set.

Now, let’s think for a moment: Why did set theorists add an axiom, such as

67"Kanamori 2009, p. 29.
68Zermelo 1904, 1908a.
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Replacement, to their frameworks? Which help could have given to mathematicians?
In order to answer this question we have to go back, for a moment, to Zermelo’s
axiom of infinity. Consider the set:

E(z) = {z,P(2), P(P(x)),...}.

In order to ensure that E(z) is set precisely when z is a set of the form of I =
{@,{2},{{2}},...}, additional care was requested. Indeed, the set I has been
postulated by Zemerlo’s axiom of infinity and to ensure that E(x) was another
infinite set, Replacement has been added and applied. In this specific context,
consider that the task of Replacement was that of “replacing” the sets belonging to I
— as given by the axiom of infinity —, with other sets, in order to admit new infinite
sets, such as E(z). Indeed, for instance, consider what Skolem wrote in his 1922

paper:

It is easy to show that Zermelo’s axiom system is not sufficient to provide a complete
foundation for the usual theory of sets. I intend to show, for instance, that if M is
an arbitrary set, it cannot be proved that M, §(M), §2(§2(M)),.. ., and so forth ad
infinitum form a “set”. [...]

In order to remove this deficiency of the axiom we could introduce the following axiom:
“Let U be a definite proposition that holds for certain pairs (a,b), in the domain B;
assume, further, that for every set a there exists at most one b such that U is true.
Then, as a ranges over the elements of a set M,, b ranges over all elements of a set
M, .69

The first statements of the role of the axiom of replacement have been part of the
work that Skolem — and Fraenkel almost at the same time — accomplished within set
theory. But, despite the discover of all these advances, the history of axiomatic set
theory does not end here and, indeed, «the full exercise of Replacement is part and
parcel of transfinite recursion, which is now used everywhere in modern set theory,
and it was von Neumann’s formal incorporation of this method into set theory, as
necessitated by his proof, that brought in Replacement» ™.

Despite the importance of these discovers, von Neumann’s work in set theory has
given a solution to Cantor’s problem of representing ordinals within set theory. The
question can be put as follows: let A be a well-ordered set and let A be its ordinal
type. How may we, then, associate to each well-ordered set A its corresponding
ordinal type A? Von Neumann’s ingenious work has the main advantages that,
by allowing transfinite recursion, he can define A, by recursively substituting each
member of any A by the set of its predecessors:

What we really wish to do is to take as basis of our consideration: “Every ordinal is

the type of the set of all ordinals that precede it”. But, in order to avoid the vague

69We’ve slightly modified Skolem’s original notation. See Skolem 1922, pp. 296-297.
"0Kanamori 2009, p. 30.
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notion of “type”, we express it in this form: “Every ordinal is the set of the ordinals
that precede it”. This is not a proposition proved about ordinals; rather, it would be a

definition of them if transfinite induction [recursion]| had already been established.

For clarity, we reconstruct von Neumann’s procedure and, as always, we put it in a
more contemporary fashion. Let’s begin.

Definition 23. The von Neumann map of a well-ordered set A is defined as
follows:

va(x) =qef {va(z) | z <az}, (z€A).

We, henceforth, define the ordinal number of A to be the image of A under its
von Neumann’s map, i.e., va:

OI'd(A> =def VA(A).
Let, finally:

ON(«) =gef @ € ON =4t (3 well —ordered A) [o = ord(A)].

In this way, for instance, if we set up that:
A 0A7 1A7 2A7 s, WA, SA(WA)

is a well-ordered set with a least element, i.e., 04, first limit point, i.e., w4 and last
largest point, namely Sa(wa). If we repeat the application of the von Neumann map,
with respect to any member of A, by simple computation, we obtain the following

structure:
v(04) ={v(z) |z <404} =2 =0
v(la) = {v(@) |2 <alay = {2} =1
v(24) = {v(2) [ 2 <a 24} = {2, {2}} =2
v(34) = {v(z)

|z <a3a} ={9,{2},{9,{2}}} =3

v(wa) ={v(z) [z <awa} ={2,{2},{2.{2}},...} =w
V[Sa(wa)] = {v(z) [z <a Sa(wa)} = w U{w}
And, finally, the image of the whole of A under v4:

v[A] = {0,1,2,3,...,w,wU{w}}

So, as requested, von Neumann’s elaborated structure gives us what we were searching
for, namely an alternative set theoretical construction suitable to faithfully represent
the natural numbers sequence. From this statement many interesting Cantorian
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properties, with respect to the ordinals, were proved and, exactly for this reason, von
Neumann’s contribution — after Zermelo’s great beginning — brought the transfinite,
once for all, within set theory. Indeed, after von Neumann’s characterization, we
«think of ordinal numbers as standing for lengths of well-ordered sets, or for places
of points in a well-ordered set. The latter agrees more with the use of ordinals
in ordinary language, where “first”, “second”, ..., customarily describe the place
of objects in a sequence»’. In order to accomplish the task of this alternative
representation, let us define the fundamental notions of “least point”, “limit point”
and “first limit point”.

Lemma 2 (Least Point). (a) If 04 is the least point in a well-ordered set A, the
VA(OA) = .

(b) If S(x) is the successor of z in A, then,
va(S(z)) = valz) U {va()}.

Proof. (a) For a function f, the image of the empty-set, f[&] is empty. Let now
4: A —>ord(A). Since 04 has no member that precede it,

VA(OA) = VA[{Z cA | z < OA}] = VA[Q] = .
(b) Now, consider z <4 S(z). By the basic property of S on a set A, it follows:
z2<aS@x)+—z<ax V z=u1.

Using this fact as starting point, we can derive the desired conclusion in the following
way:

va(S(z)) = {va(z) | 2 <a S(z)}
= {valz) [ 2 <az}U{va(e)}
=va(a) U{va(z)}.

Lemma 3 (Limit point). (a) If z is a limit point in a well-ordered set A, then
& € va(z) and, (b)

a€valr) — aU{a} €va(x).

Proof. (a) If 04 is least in A, then 04 < z. Moreover, then @ = v4(04) € va(z).

(b) Consider that o € v4(z). This means that a = v4(z), for some z <4 z; but z
has a successor too, namely S(z) <4 z. By definition, since x is a limit point, then

"I Moschovakis 2006, p. 178.
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it follows that v4(S(z)) € va(z). By applying similar passages to the proof above,
we conclude:

va(S(2)) =va(z) U{va(z)} = aU{a} € va(z).
|

Lemma 4 (First Limit Point). If w, is the first limit point in a well-ordered set
A, then:

w=valwa)=N{C@€C A (VaeC)aufa}eCl}.
Moreover, v4(wya) is independent of the particular well-ordered set A chosen.
Proof. Consider:
T=N{Cl@eC A (VaeC)laU{a}eC]}.
Since wy is a limit point, by the previous lemma, we have that va(ws) € T and
T # o.

Proof towards a contradiction:

Assume that C' € T, such that v4(wa) € C, and let z be least in A such that
va(z) ¢ C. Now, z is not the least member of A, since v4(04) = @ and, by the
hypothesis on C, it follows that @ € C. Additionally, z is not a limit point of
A, since z < wy. Therefore, z must be equal to some S(x), for some = € A; this
means that v4(z) € C. Hence, we are allowed to conclude, by the hypothesis on C,
that va(z) = va(z) U{va(z)} € C. So, as clear, this result contradicts our initial
assumption on z, i.e., va(z) ¢ C' — terminating, thus, the proof. [

Hence, as before, — with this entire package of well-defined notions — we may fix a
specific (and unique) Peano system — such as (N, 0,.5) —, where N = w, 0 = @ and

the successor function is determined as always:

Theorem 11 (von Neumman'’s finite ordinals). If <y is the ordering relation on the
set N of natural numbers, then

ord(N, <y) = w,
where w is the first limit point. Moreover, by letting:
So(n)=nU{n} (new),

we define (w, @, S) as a Peano system and vy : N — w as the unique isomorphism
of N with w.
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Proof Sketch. Let A = Succ((N, <y)) = w is the set “next” to (N, <y) with t on the
top, then we have that t = wy4, N is identical to an initial segment of A, up to t,
and ord(N, <y) = v4(t) = w. The desired result, then, immediately follows from the
proof of the Least Point lemma.” |

This theorem is of particular importance since it allows us to secure ordinals and
cardinals. Since, we've defined what is an ordinal — i.e., ord(A) =g va(A) —, and
by, additionally, having the precise definite conditions of “successor” and “limit”
element, we may state the following notions.

Definition 24. (a) If P(«) holds, then

(ua € ON) P(a) = min{ar € ON | P(«)},
where the greek letter “u” has to be read as “the least”
(b) For each ordinal number «, there is a next one denoted by S(«):

S(ar) =gef (0 € ON) [ < 0] = aU{a}.
(c) Each set C of ordinal numbers has a least upper bound, denoted as:
sup(C) =qet (16 € ON)(Va € C)[a < 6] = | J(O).
(d) A limit ordinal is an ordinal A which is not successor of 0 and so that, for any
ordinal «, it holds that o < A — S(a) < A.

(d’) Formally, a limit ordinal A satisfies the following property:

Limit(A) «— A #0 A A=sup{a|a <A}

Anyway, this is not even a part of the work that von Neumann’s theorem allows us
to do. In particular, by defining ordinal multiplication and addition” we can, finally,
encounter the successor of w = (N, <y):

w+l=Sw), w+2=Sw+1), w+3=Sw+2),...
and, especially, the second limit ordinal “immediately above” w, namely:
wHw=sup{w+n|necewt=wx2.

Similarly, by adding n times w to itself, then we may obtain w x n. After a bit, we
may arrive at w?, which is:

"2We do not cover the entire proof, otherwise other technical notions would have to be proved.
Anyway, for a complete proof and definition of the concepts involved, consider Moschovakis 2006,
pp- 91, 177, 265, respectively.

"™That is, o+ 8 and « x f.
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wxw=sup{wxn|n<w}=wx2.

Generally, hence:

"= xw

Additionally to ordinal arithmetic, we’ve said several times that von Neumann’s set
theoretical construction secures also cardinal arithmetic. We, indeed, may get the
notion of “cardinal assignment” for a well-ordered set:

Definition 25 (von Neumann’s Cardinals). We define a cardinal number by
setting:
Al = {(uf €ON)[A~¢ (if Ais well — orderable),
A, (otherwise).

Thus, the value of |A| for any well-orderable set A is defined as follows:

Card(k) +— for some well — orderable A, k = |A].

Moreover, what is important in von Neumann’s approach is that cardinals are defined
as the “initial ordinals”, establishing thus, till to the end, the connections between
ordinals and cardinals:

Proposition 12. That a cardinal x is an initial cardinal means that:
Card(z) «+— k€ ON A (VYa < k)[k » a]
Moreover, for every k € Card, it holds that:
k| = K.

So, this is the general way in which cardinal and ordinal arithmetic are secured
within set theory. As before, some fundamental details are here left unspecified,
anyway for our purposes this is enough.

As we have just sketched, the work of to defining and representing natural numbers
with the help of sets, has not been that easy and, indeed, while philosophically
reflecting on its major contributions, we have to consider, as much as possible, all
the technical issues that the axiomatization of set theory has involved. Indeed, much
many other important discoveries were done, after von Neumann’s characterization
of ordinals, and indeed, the same Zermelo, in the 30s, returned to sets and presented
what we nowadays call the “Zermelo Universe”™. As briefly announced, von Neumann,

" Consider, now, that both — Zermelo and von Neumann — adopted an axiom of infinity, but, that
von Neumman’s version is different since it encapsulates his usage of the Kuratowski pair. Indeed,
the axiom von Neumann used, can be stated as follows: 31 [@ € IAVz (z € I +— 2 U {z} € I)].
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thanks to the intuitions of Fraenkel and Skolem, consistently added an axiom, the
so-called axiom of replacement, — implicit in many mathematical theorems — which
allowed him to reconstruct a valid axiomatization of set theory. His article (1925)™
is difficult to access, but thanks to the simplifications and clarifications P. Bernays
(1937)7 provided, it is now standard to take von Neumann’s 1925 work as a pioneer
strategy in order to get the division between “sets” and “classes”. The work von
Neumann established was based upon an intricate division between functions and
arguments, which was efficiently adapted — thanks to Bernays — to the division
between classes and sets and which, fundamentally, has been applied from Godel
(1940) to provide the result that Cantor’s Continuum Hypothesis is consistent if
added to the axioms of Zermelo (plus Replacement). Hence, for clarity, consider that
classes are different from sets in some respects otherwise Russell’s Paradox may be
derived again. Recall that we have given a precise characterization of the notion
definite condition, which was absent from Zermelo’s original work. Now, as sketched,
n—relations and n-properties — from a set theoretical point of view — are regarded
as subsets of given set. This means that an arbitrary condition P on a set A, set
theorists will regard P as a set, “under which” the objects of the superset A, which
satisfy condition P, fall. This little background will help us in defining a class in the
following way:

Definition 26 (Coextensionality and Classes). (a) A unary definite condition P
is coextensive with a set A if the objects which satisfy P itself are precisely the
members of A. Formally:

P = A=4t Yz (P(z) «— xz € A).

(b) A class is either a set or a unary definite condition which is not coextensive with
a set. For any unary condition P, hence, we establish that the class:

the unique set A such that P =, A, (if P =, A for some set A),
P, (otherwise).

{z ] P(x)} = {

If we denote the class of P as follows:
A={z|P(z)},
then it holds that:

Vo (x € A+— P(x)).

For example, pick P(x) =qef © # x. Consider that, from our definition it follows
that there is a set A = {x | x # x}, which is coextensive with P. But, by inspection,

75See von Neumann 1925, pp. 393413 and Moschovakis 2006, pp. 175197, for technical intro-
duction and commentaries.

76See Kanamori 2009, pp. 29-31.

""See Kanamori 2009, pp. 35-40.
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A = @ and, hence P is coextensive with the empty set, i.e., P =, @. Now, for
instance, let A =4 {x | P(z)}. According to our definition, then, (i) if P is
coextensive with a set, P =, A, then, z € A +— P(x); else, (ii) if P #. A, then,
A = P, and, hence,

r€A+—zx€P<+— Px).

So, as it emerges from our definition, every set is a class, but — to avoid paradoxical
situations — not every class determines a set. To see this, consider, for reductio, that
any class is a set. Suppose that:

P(z) <— Set(z) N z ¢ x.
Now, from our definition we obtain the following set:
A= {x|Set(x) N x ¢ z}.

But this means that x € A «— P(z), that is, z € A <— Set(z) A z ¢ x. Suppose
A to be such a set and conclude A € A +— A ¢ A, which is absurd. Therefore, our
initial assumption that any class is a set has to be refuted.

However — and not surprisingly —, indeed, the now standard name for the theory
which encapsulates the division between classes and sets is “von Neumann - Bernays
- Godel”, NGB, set theory. Anyway, returning to von Neumann’s work, one last
thing deserves to be mentioned, i.e. a brief reflection on the final considerations
he presented in his 19297 paper devoted, another time, on axiomatic set theory.
What emerged in the context of this new paper, is exactly the necessity for a set
to be “well-founded” and, indeed, in order to accomplish this latter requirement,
von Neumann established the so-called Axiom of Foundation™. In logical terms, the
axiom can be stated by clarifying some preliminary concepts:

Definition 27 (Ill- and Well-Founded Sets). Let E be a set and ¢ a function such
that £ —— FE. Let u € E be such that it exists a unique function f : N — E|
satisfying the following two conditions:

f(0) = u
fn+1) = glf(n)].

(a’) An object z is ill-founded if it is the beginning of a descending €-chains. This
means, that z is ill-founded if there is a function f : N — E such that

r=f0)3f1)>f(2)>....
(a”) Equivalently, an object x is ill-founded if
JA [:v €EAN VzeA)(Jue A)z> u]]

"8See von Neumann 1929, pp. 227-241. As always, our notation is adapted to the contemporary
one.
"In literature, this axiom is sometimes called the axiom of Regularity.
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(b) Finally, objects which are not ill-founded are, thus, well-founded or grounded®.
Thus, we include, within our axiomatization, this last following axiom:

Axiom (IX. Axiom of Foundation). Every set is well-founded.

V;E(:E#@—>(Elz€x)[xﬂz:®]>.

3.3 Zermelo’s vs von Neumann’s Sets

One of the most elegant and successful applications of the axiom of foundation
is within von Neumann’s construction of the so-called cumulative hierarchy. His
set-theoretical construction allowed him to prove the first consistency results in set
theory through “inner models”:

In the axiomatic tradition Fraenkel, Skolem and von Neumann considered the salutary
effects of restricting the universe of sets to the well-founded sets. Von Neumann
formulated in his functional terms the Axiom of Foundation, that every set is well-
founded [...].%!

Actually, with the notion of “founded”, von Neumann restricted the universe of sets
to those that may be called “well-founded”, via his method of transfinite recursion.
In contemporary set theory, this, as it is widely known, entails that the universe V is
“stratified” into cumulative ranks V,:

Definition 28 (Cumulative Hierarchy of Grounded Sets and von Neumann Universe).
For each ordinal « the set V, is defined by recursion on ON, as follows:

Vo=
Va—i—l = g‘)(Va)
Vi = |J Vo), for A limit ordinal.
a<h

So, finally, the von Neumann Universe is the union of all sets V,:

V=4t |J Vo) ={z]|(3a€ON)[zeV,]}

acON
and the rank operation on it:

Rank(z) =qef (v € ON) [z € Vora], (x € V).

80Notice that ill-foundedness is a notion strictly connected to self-membership, i.e., for instance,
if Ac A,then A5 A>A>....
81Kanamori 2009, p. 31.




120 CHAPTER 3. NUMBERS, SETS AND OBJECTS II

With these formal setting, henceforth, von Neumann proved the consistency of the
axiom of foundation with respect to Zermelo’s axioms I.-VII., plus Replacement, by
developing always in a deeper way set theory.

As we have seen, von Neumann’s work in set theory provides a useful construction
to study natural numbers, ordinals and cardinal arithmetic. We’ve introduced von
Neumann’s hierarchical universe of sets, but, now, consider that — almost in the
same years — that is, in the 30s, Zermelo came back to set theory by proposing a
“new” axiomatization®?. In this more recent study, Zermelo took in consideration all
the axiomatic studies that were proposed up to the 30s, by — amongst other things
— adopting Replacement and Foundation. The most interesting consequence, that
is possible to draw from Zermelo’s 1930 paper, is what set theorists nowadays call
“least Zermelo Universe”. In what follows, we will introduce how it is possible to
“construct” it and sketch the main differences underlying between Zermelo’s and von
Neumann’s Universes.

Definition 29 (Transitivity). (a) A class or set T' is transitive if:

Umcr.

(b) Equivalently:
(Ve eT)(Vzex)|zeT].
(¢) Or, equivalently:

(Ve)[zr €T — x CT).
And, through the notion of transitivity the definition of a Zermelo universe follows:

Definition 30 (Zermelo Universe). A transitive class T is a Zermelo Universe if
it is closed under the following operations:

(i) Pairing, {z,y};
(ii) Unionset, (J(C);
(iii) Powerset, §2(C).
Additionally, T contains:
No = {@. {2}, {{a}}. {{{z}}}, {{{{e}}}) - )

The Least Zermelo Universe is Z = T'(Ny) determined by the following identity
conditions:

827ermelo 1930.
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So, this is the result of Zermelo’s work in the 30s. Let’s focus, for a moment, upon
the differences lying between our two set-theoretical universes, Z and V.

3.3.1 Reconsidering Benacerraf’s thesis 11

Introductory remarks For the moment, we are going to introduce an example
that should clarify our main intent®3. Consider, for instance, the set S = {1,2} and
assume that it is partially ordered. This means that the elements in our set are
ordered with respect to a reflexive, anti-symmetric and transitive relation. Moreover,
notice that we may assume that the ordering relation between the elements of S is
< and, hence, our set is ordered as follows: 1 < 2. We notice, additionally, that any
of the elements of S is comparable, i.e., for all z, y, xt < yVax =y Vy < x. This
brings us in calling the set S as totally (or linearly) ordered. Our idea is now to
consider — as in our foregoing remarks — the already familiar notion of “partition”.
We recall that a set is said to be a partition of a set S if it is a family of non-empty
disjoint subsets of S, such that their union is equal to S itself. From a mathematical
point of view, a partition, along with a total order, on the sets belonging to the
partition, gives a structure called “ordered partition”. With respect to our example,
the ordered partitions of {1,2} are the following three:

{1}, {2}
{2}, {1}
{1,2).

Now, suppose that our S = {1,2} is a subset of N, which is — as clear — partially
ordered under <. In this sense, by considering S C N, S is considered as a chain.
Indeed, we may define chains exactly as totally ordered subsets of partially ordered
sets. In our example, by simple inspection, of course if S C N and (N, <), then
also (S, <). Thus, any chain of a partial ordered set, such as N, keeps the same
order relation to the superset to which it belongs. Clearly, therefore, since in N,
1 <2<3< ... and since S is a subset of N, then 1 < 2, i.e. the order relation is
preserved. At this point a fundamental question must be asked: if any two elements a
and b stand in a total order relation, a < b, is it possible to introduce a third element
¢ between them, such that a < ¢ < b without losing the total order? The answer is
“no” and the notions of “saturated” and “maximal” chains may reveal useful. Firstly,

83The following remarks are to due, as always, to Moschovakis 2006, but, especially, to Harzheim
2006, pp. 11-70.
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a chain such that no element can be added between two of its elements without
losing the property of being totally ordered is said a saturated chain. But, similarly,
a chain in a partially ordered set to which no element can be added without losing
the property of being totally ordered and that excludes the existence of elements
either less than all elements of the chain or greater than all its elements, is said to
be maximal. A finite saturated chain is maximal if and only if it contains both a
minimal and a maximal element of the partially ordered set to which the chain itself
belongs. For instance, let’s take the set S, = {n | n € N}, that is the set of natural
numbers “below” S,,. Moreover, we can easily see that S, is a chain, i.e. a totally
ordered subset of N. What we have to notice is that, by inspection, our S,, has a
minimal and maximal element belonging to the partially ordered set N to which it
belong, being thus a “maximal chain”. Indeed, for example, a set .S,, = {1, 2} ordered
by < is a maximal chain of N since (i) no third element ¢ may be added between 1
and 2, without losing the total order and (ii) it contains a minimal element, i.e. 1,
and a maximal member, 2, both from the partially ordered set N of which S is a
chain. Additionally, for S being a chain of N, we may be interested to its “length”.
In other terms, we may interested in seeing how long a chain of a partially ordered
set may be. Hence, if S C N is a chain such that S is finite and different from the
empty set, then its length is determined by the cardinality of S itself minus one, i.e.
len(S) = |S| — 1. For example, if S = {a,b}, we may compute its length as follows:
len(S) =2—-1=1.

Now, by considering order relation we have always assumed <, but there are other
order relations from which we may get a partial order. Consider a set of subsets
A ={B,C,D} and let C be the relation of inclusion on the elements in A. We denote
with (A, C) the “relational structure” of A as determined by C. To check that it is a
partial order relation, we see that the inclusion relation is reflexive, anti-symmetric
and transitive:

1. Reflexivity: VB € A (B C B);
2. Anti-symmetry: VB, C € A (B cCcCnCCB—B= C’);

3. Transitivity: VB,C,De A(BCCACCD— BCD). |

So, we conclude that two fundamental partial order relations are the “less than or
equal” relation on a set of natural numbers and the “subset” relation on a set of sets.
In this spirit, we introduce just a few other notions connected to chains and order
relations. We have already clarified the usage of “lengths” with respect to chains,
what we now have to sharply distinguish are the two fundamental notions of “height”
and “rank”. Let (A, <) be a finite partially ordered set, and a an element of A. The
height of a in A, denoted by ht(a), is the greatest natural number n € N; so that
there exists a chain {ao,...,a, = a}, where ap < - -+ < a,. In this sense, the height
indicates us the greatest number for which a chain of A with ht(a) + 1 elements and
which ends in a exists. Furthermore, For n € N, let L,, denote the set of all elements
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Figure 3.1: Graph of the set (A, <)

of A which have height n, i.e. the n-level or height-n-set of A. If A # &, we say
that ht(A) is the height of A, i.e., the maximum of all numbers ht(a) + 1, for a € A.
Differently, but in a very similar fashion, we may define “ranks”. Let (A, <) be a
partially ordered set in which all chains are finite. Then a mapping p: A — N is
called a rank function, if for all a,b € A with a < b there holds p(b) = p(a) + 1. So
let’s call p(a) the rank of a. For n € N we denote the set of elements of A which
have the rank n by p,(A) and let’s call it the n*-rank of (A, <, p). So, if A is finite,
and if the least number of {p(a) | a € A} is 0, then max{p(a) | a € A} is called the
rank of A. As it should be clear, height functions are defined for any finite partially
ordered set, while, generally, rank functions do not apply to finite ones.

Example. In order to be clear, we will represent this example graphically. For
instance, consider the partially ordered set (A, <), such that A = {a,b,¢c,d} and
a<b<candd<ec.

Consider Figure 3.1. By inspection, ht(a) = 0, ht(b) = ht(a) + 1 = 1 and, therefore,
the height of ¢, namely ht(c) = ht(b) + 1 = 2. Differently, the height of d is
ht(d) = 0. Additionally, consider that A has a rank function p, for which p(a) = 0,
p(b) = p(d) =1 and p(c) = 2. Notice that while the height of d is 0, its rank is 1
and, hence, height and rank do not always coincide. Instead, for the other three
elements of A heights and ranks are identical. In our case, in informal terms, the
height of d is 0 since it occupies the first position with respect to the order relation
d < ¢, but its rank is 1. The ranks of the 3-ordered relation a < b < ¢ are, p(a) = 0,
p(b) =1, and p(c) = 2. Now, consider that the 2-ordered relation d < ¢ has always
c as greatest element of the sequence and that this relation — with respect to the
other — lacks the 0-ranked member, i.e., the element occupying the position before d.
Indeed, since, in the other sequence, b comes immediately before ¢ and its rank is
1 (by a being of rank 0), it may be concluded that d — by immediately preceding
¢ — has the same rank as b, i.e., 1. In more simple words, the height measures the
greatest number of elements contained in a chain and a rank informs us about the
“distance” between one element and another one of the same chain. In this sense,
always with respect to our example, it could be said that a and d — by sharing the
same height — belong to the same n-level set Ly of the partially ordered set (A, <).



124 CHAPTER 3. NUMBERS, SETS AND OBJECTS II

In the same vein, b and d — by sharing their rank — belong to the same n' set p, of
(A, <), i.e., in this case, to p1(A, <).

In turn, we consider — with respect to this consideration — the two set-theoretical
construction we’ve introduced in this long chapter, namely Zermelo’s and von
Neumann’s. Let’s establish that:

V=0{2},{2,{9}},...

and

Z =0 {2}, {{z}},...

are the two sets under inspection. We have seen that if we compare them, by
taking the membership relation, then two representations show up as divergent. In
particular, exactly from this divergence, as remarked several times, Benacerraf raised
doubts against the possibility of identifying the two sets reductions. Indeed, if two
objects a and b are both identical to a third one, call it ¢, then it is not admissible
that a and b are different one with respect to the other. According, hence, to the
French philosopher, the situation we will encounter is the following: let a = {@,{@}},
b={{2}} and ¢ = 2. So, we know that a = ¢ and b = ¢, but that also — with respect
to € — a # b and, therefore, also ¢ # ¢, which is, of course, absurd. We have said
that a set can be investigated also by considering its partial order relations, such as
< or C. Indeed, if we get, for a moment, rid of the usage that Benacerraf made of
the €-relation, then a different conclusion may be drawn.

Let’s consider finite subsets of both partially ordered sets, for example, V,, C V, such
that.

V, ={V C V|V is finite.}, for some n € N,
and Z, C Z, such that:
Z, =42 C Z| Z is finite.}, for some n € N.

Furthermore, the two collections V and Z can be considered as partially ordered
under the relation C and hence we may consider the two relational structures (V, C)
and (Z,C). In this sense, also any of the subsets V,, CV and Z,, C Z is ordered by
the subset relation and, moreover, any of them may be considered as a chain, which
respects the maximality condition.

Example. Pick V, = {{@}} and Z, = {@,{@}}. Consider that both are chains
(totally ordered sets) of the partial ordered sets V and Z. We assume that the
relation which defines the order is, in both cases, the C relation. We easily check
that

{{o}} =2 c {2} € {{7}}

and that
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{0.{2}} =2 c{o} c {,{g}}
Additionally, if any other element c is inserted between each of the sets standing in
the C relation, then both representations loose their total order, so for example, nor
{@,{2},c}, nor {{c,@}} are valid chains of V and Z. Additionally, as clear, both
of them have the least and maximal element taken from the partially ordered sets
to which they belong. Thus, both, V5 and Z,, preserve the maximality condition.
Furthermore, graphically, the two representations share sameness in height and ranks,
always with respect to C relation. For what concerns Zermelo’s representations of
natural numbers we obtain the directed graph as represented in the following figure:

With respect to the height of Z; we easily see that ht(@) = 0, ht({@}) = 1 and,
finally, ht({{@}}) = 2. Identically, the height of the chain V5 we easily see that
ht(@) = 0, ht({@}) = 1 and, finally, ht({@,{2}}) = 2. Both sets, namely Z,
and V;, share identity between ranks and heights: p(@) = 0, p({@}) = 1 and
p({2}) = p({2,{}}) = 2.

Now, for our purposes, we may consider, indeed, that Z, and V; represent the same
maximal chain:

Zy =2 C{o} € {{o}}
Vo =0 C{o} C{o,{a}}.
Indeed, what we mean with the term same is that Z, and V5 are not identical,
but just equivalent chains (ordered by C) under the condition of maximality, by

additionally knowing that both set theoretical constructions allows us to define the
natural number “2”.

By considering these last reflections we will try to analyse again Benacerraf’s criticism.

Our main inter is threefold in this section. We will, indeed, consider (1) the logical-
mathematical strategy of Benacerraf, (2) his philosophical conclusions and (3)
establish a Dedekind-style reading of mathematical representations.
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3.3.1.1 Logical-mathematical Development of Benacerraf’s Paper

Already at a first reading of Benacerraf’s article®*, it is easy to notice that the
strength of the article is not obtained by carefully analysing axioms and Zermelo’s
or von Neumann’s proposals. From a mathematical point of view, Benacerraf tried
to show that the identification of sets and numbers is wrong, while, philosophically
speaking, he tries to argue against abstract objects. Taking into account Benacerraf’s
objectives, his analysis — as developed in the article — is misleading for two main
reasons: (i) it does not offer an overview concerning the foundational importance of
the set theoretical study of the natural numbers and (ii) simplifies in a exceedingly
exaggerate way the comparison between Zermelo’s and von Neumann’s sets. In
the foregoing section,indeed, we have tried to show that by shifting the attention
from the e-relation to the C-relation, Zermelo’s and von Neumann’s sets become
equivalent. Hence, as it emerges, Benacerraf’s argumentative strategy is somehow ad
hoc constructed in order to arrive to his desired philosophical conclusion and — apart
not considering the extraordinary complexity of set theory — he, additionally, did not
dedicate any part of his paper by distinguishing naive sets from axiomatic ones. What
Benacerraf identified as the main problem for the re-conduction of numbers to sets,
can somehow be avoided by taking in considerations other relations between sets and,
indeed, an implicit error in Benacerraf’s strategy is, according to us, to consider the
membership relation as the sole relation that allows to argue in favour or against set
theoretical representations of mathematical objects. Therefore, Benacerrat’s ad hoc
path from the reflections concerning the €-relation, to his philosophical conclusions,
holds just in case no other relation between sets is introduced. In this sense, our
path has been different by considering the C-relation and, by additionally, trying to
furnish a clear insight on how sets (Zermelo’s and von Neumann’s) were supposed to
accomplish the work of representing the natural numbers sequence. Indeed, from
the early developments and, hence, from the first reflections of Frege, Cantor and
Dedekind, set theory — by becoming always more “mathematized” and consolidated
— has furnished the “arena” where a great amount of mathematics can be secured.
Indeed, by not seeing the faithfulness of representing mathematical objects trough
sets, Benacerraf seems, additionally, not to consider that — especially thanks to
Zermelo’s pioneer work — foundational issues and mathematical ones became always
more separated. Clearly, this does not mean that mathematics and philosophy of sets,
for instance, are deeply disconnected, but, more simply, that set theory represents a
proper mathematical discipline with its own subject matter and that additionally
can be helpful in discussing foundational, i.e., philosophical, problems concerning
mathematics itself. Indeed, if we take care of this distinction, then — as we have tried
to do — we have to consider, firstly, the mathematical theory itself, by focusing the
attention, as much as possible, on its technical and historical exigences and, than,
trying to understand its philosophical consequences and its foundational power. For
example, during the 19 century, the problem of finding the correct systematization

84We always refer to Benacerraf 1965.
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of the negative integers (..., —2,—1,0,1,2...), within the universe of numbers, has
to be considered as a foundational concern of mathematicians. Differently, the fact,
for instance, that an imaginary number —¢, if multiplied to itself, gives as result
always a negative number, — contradicting, thus, the basic rules for positive and
negative signs —, has to be considered as a pure mathematical problem to solve. Here,
as I am trying to argue, the same distinction applies, even if Benacerraf disregarded
it: e.g., considering whether arithmetic can be secured within set theory means to
be worried on foundational issues about a determined branch of mathematics; but,
differently, considering problems — such as the presence of paradoxes, for instance —
and, by trying to solve to them, means to focus the attention on the mathematics and
logic of a determined discipline or mathematical branch. For our concerns, indeed,
we are not aiming to show or to comment mathematical features of sets, but, we aim
to use these latter properties of sets as fertile basis for the foundational discussion of
arithmetic.

In conclusion, — I believe —, Benacerraf’s path, that moves mixed philosophical
and mathematical criticism to Zermelo’s and von Neumann’s set identification, by
concluding against Platonism in general, is not that tenable. Moreover, we claim,
Benacerraf’s argumentation is, additionally, not so informative and precise about
sets and their “identity” with the natural numbers sequence. Consider, indeed, that,
of course, if we apply the equinumerosity of, e.g., either Z, or V5, then two sets
under consideration will show unavoidably “different”. But, — even if Benacerraf
did not consider alternatives to the identity as determined by the e-relation — it is
possible to consider another basic feature of sets, namely the C-relation. The French
philosopher, in this context, additionally, wrote:

I know that 2 # 3 because I know, for example, that 3 is odd and 2 is not, yet it seems
clearly wrong to argue that we know that 3 = {{{@}}} because, say, we know that 3
has no (or seventeen, or infinitely many) members, while {{{@}}} has exactly one.

We know no such thing. We do not know that it does®®.

In this respect, Benacerraf — apart not considering maximal chains — seems to be
completely misunderstanding how sets were supposed to accomplish the mission
of representing, for example, the natural number 3. Here’s exactly the point upon
which we will stress in the third point of the present subsection. We suspect that
Benacerraf — for the sake of his purposes — completely avoided to consider the
difference between the possible readings of the “identity”, involved in statements of
the form 3 = {{{@}}}. Let’s say that the general form of an identity statement is of
the following form:

a=b.

With respect to the identity that the previous statement expresses, we may consider
that the sign = indicates two distinguished features: either, the complete identification

85Benacerraf 1965, p. 288.
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of the first term a to the second one, b, or — more simply — we may introduce the
identity a = b by considering that the two terms “faithfully represent” each other.
In different words, if a represents b in a way such that a is able to gives us an idea of
the main properties of b, then their identity — a = b — follows. Anyway, some care is
needed and we will return to this discussion soon.

Now, consider that, already, at the beginning of the following work, we have reserved
much attention on the division between naive and axiomatic set theory, since —
by developing different frameworks — as clear, also objectives, methodologies and
conclusions may be different. This consideration is probably — I think — one of the
biggest lacks in Benacerraf’s paper. Unlike naive set theory, indeed, the axiomatic
version allows us to prove well-defined properties of orderings of sets, permit us
to focus the attention on chains, with the additional features of measuring length,
height and rank and gives us a precise idea of why sets are sometimes understood
as a foundations for, at least, number theory. Indeed, as I claim, philosophers of
mathematics have to consider a (Zermelian) heuristic path, that takes into account
the division between “foundational issues” and “pure mathematical ones”, so as to
avoid mixed and wrong conclusions.

Benacerraf, we remark, indeed, (i) does not explicitly distinguish naive set theory
from its axiomatic version; (ii) apart the €-relation, he does not consider the complex
of partial orderings relations to which sets are subject and, (iii) purely philosophically
speaking, he does not consider a clear notion of identity and an explicit concept of
faithful representation of mathematical objects. We will focus on this exact notion
in the third part of this section.

3.3.1.2 Towards a Philosophy of Sets

In this point I'll try to argue against the conclusions that Benacerraf established with
respect to the existence of abstract objects. We will reserve a more deep discussion
concerning their existence and possible knowledge in the next two chapters. Before
trying to introduce them explicitly — as we will do in the fourth chapter —, here, we
will just introduce the discussion.

When we remarked that it is important to take into account a clear and precise
distinction between naive and axiomatic set theory, we have done it since, Benacerraf
mixed inappropriately the two theories. Indeed, by simple inspection of his paper, it
immediately emerges that he criticises, for example, Frege’s realism by employing an
axiomatic approach to sets. If the distinction between naive and axiomatic set theory
would have been considered, then, Benaceraff would have seen that, while Frege was
moved by strict philosophical convictions, Zermelo and von Neumann, for instance,
were moved by more mathematical interests. Indeed, the last two mathematicians
rarely reserved ontological or epistemological considerations concerning their works,
while — oppositely — Frege started exactly his writings inspired in finding the “laws”
of rational thought. It should be considered, indeed, that Zermelo and von Neumann
gave a precise and powerful framework that could be discussed and applied by
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philosophers coming from different schools of thought, it was somehow neutral
philosophically speaking. In this respect, Frege’s work has taken the opposite
direction: he systematized his philosophical convictions by applying his concept
of “collection of objects” and his newly proposed notation. Hence, any part of
Frege’s work is connected and linked to the philosophical ideas he wanted to develop
and, trying to argue against one of its thesis, by employing a different framework
— not explicitly distinguished from Frege’s original one — suggests that something
important is missing. In order to be clear, it should be always considered, indeed,
that — for example — Frege could not use the Kuratowski pairing operation to form
von Neumann’s set means exactly that for Frege relations were not determined as by
contemporary set theorists. Probably, also Frege would have agreed that if [{{@}}| #
{2,{2}}|, then {{&}} ~ {&,{@}}. But this does not consequently mean that no
other way to determine positively the identity between {{&}} and {@,{2}} can
be find. Indeed, with respect to the notion of maximal chain (developable in the
axiomatic framework), the two sets can be re-declared — if not identical — at least
equivalent. For Frege recall that a number is identical to another just in case the
object that fall under the first one are in a one-to-one correspondence with the
objects that fall under the second one. In our example, Zermelo’sand von Neumann'’s
set can rendered equivalent by their sharing the same maximal chain length:

{o}} =9 c {g} c {{a}},
where & is the first subset in the chain, {@} is the second one and, finally, {{@}} is

the third one. We compute the length of the chain — namely the number of subsets
it includes — as follows:

en({{2}}) = |{{2}}| ~1=3-1=2.

Likewise,

{,{}} =0 C {o} c{o.{a}},
where, as before, @ is the first subset in the chain, {@} is the second one and, finally,
{2,{@}} is the third one. We may compute the length of this chain, i.e., the number
of sets it includes, as follows:

len({2,{2}}) = {2,{2}}|-1=3-1=2.

Of course, it may be objected that things are anyway different from how Frege and
logicists wanted to develop them, and, indeed, our aim — up to now — is to show
that Benacerraf’s philosophical abolition of abstract objects — as based upon his
more mathematical discussion of sets — has not the desired strength. With a simple
change in Benacerraf’s argumentation, equivalence between sets can be re-settled.
Anyway, we do not claim that thanks to this equivalence re-settling something as
“strong identity” follows. We will develop this last consideration at length within the
next point.
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3.3.1.3 Dedekindian Reflections on “Mathematical Representations”

We’ve insisted several times upon the importance of the notion of representation
within a mathematical context. Here, we will offer, finally, a more detailed account
of what we mean with this notion and how it is helpful in considering Benacerraf’s
argument. Firstly, we will quote the most appropriate characterization of the notion
of “representation” we possess. Now, consider that, for example,:

[...] the “identification” of the directed line IT with the set R of real numbers, via the
correspondence which “identifies” each point P on the line with its coordinate x(P)
with respect to a fixed choice of an origin O. What is the precise meaning of this

“identification”? Certainly not that point are real numbers®S.

And, henceforth:

What we mean by this “identification” of II with R is that the correspondence
P —— x(P) gives a faithful representation of II in R which allows us to give

arithmetic definitions for all the useful geometric notions and to study the mathematical

properties of II as if point were real numbers®”.

So, in order to be clear, we can summarize the main points of Moschovakis charac-
terization as follows:

1. The identification of two kinds of mathematical objects is subject to their
possibility to faithfully represent each other;

2. That a is a faithful representation of b means that:
(i) a helps me in characterizing in a precise and determined way b;
(ii) always more mathematical properties of a may be discovered.

In this sense, we may reformulate the example concerning I and R. Let’s say that
the identification of points of II with the real numbers respects the conditions at
point (i) and (ii), then it might be concluded that:

(i) R helps me in characterizing arithmetically a geometric object such as II;

(i) gives us the opportunity of gaining an always deeper understanding concerning
the mathematical structure of R itself.

Finally, the conjunction of this two features together gives us a way in which two
divergent mathematical objects — such as Il and R — may be identified. This should,
already, warn us that “identity questions”, in mathematics, are complex than it may
seem and, probably, as subtle as their philosophical counterparts.

Previously, we’ve argued that this point of view is not new in mathematics, and,
actually, that’s true. We may trace back its origin to R. Dedekind’s work on rational
numbers. As said in the paragraph devoted to the German mathematician, Dedekind
has had fundamental and brilliant intuitions not only with respect to arithmetic,

86Moschovakis 2006, p. 33.
87"Moschovakis 2006, p. 33.
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but also in other and different areas of mathematics. We will give an idea of how
Dedekind arrived to his intuition and how it applies to Zermelo and von Neumann’s
sets. First, consider that a rational number is any number that can be expressed
as the quotient or fraction n/m of two integers, a numerator n and a non-zero
denominator m. Since n may be equal to 1, every integer is hence a rational number,
and their set is usually denoted by Q. Furthermore, out from this set, Dedekind
constructed the set of real numbers, i.e., of those numbers whose value is that of
a continuous quantity that can represent a distance along a line such as II. To be
clear:

N={0,1,2,...} CcZ{...,—2,-1,0,1,2,...} cQ={...,3, 2, 214,...} C

Ap = {...,v2, VT, 1+T\/5,...}CR:{...,7T,€, —2m, ...}

Where, Z is the set of integers, QQ the set of rational numbers, Ag is the set of real
algebraic ones and finally R, the reals. Consider that the real algebraic numbers and
the real ones are both called also irrational numbers, while only the members of R
are characterized as transcendental numbers. The mathematical characterization of
these sets does not affect out intent and, indeed, we will briefly present Dedekind’s
work and the commentary that himself moved with respect to his mathematical
strategies, in order to adopt and adapt to our purposes his argumentative schema.

Arrange the rational numbers in a row or a line in the usual way, increasing from
negative to positive as you go from left to right. By a “cut” Dedekind means a
separation of this row into two pieces, one on the left, one on the right. The row can
be cut in infinitely many different places. Dedekind regards such a split or “cut” in
the rationals as being a new kind of number! He shows in a natural way how to add,
subtract, multiply, or divide any two cuts (not dividing by zero, of course). In an
equally natural way, he defines the relation “less than” for cuts, and the limit of a
sequence of cuts. Once these rules of calculation are laid out, the cuts are established

as a number system®s.

Hence, consider that the

[...] basic idea of Dedekind was that a real number z is completely determined by
(and hence can be “identified” with) the set

(—0,2) NQ =gt {r € Q| 7 < z}

of all rationals preceding it, and that the set of the form (—oo,z) N Q can be charac-

terized by three simple conditions®®.

The “three simple conditions” to which we are referring are encapsulated within the
next definition and are exactly the characterization that Dedekind offered us with
respect to the reals:

88Hersh 1997, p. 274.
89Moschovakis 2006, p. 216.
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Definition 31 (Dedekind Cut). A Dedekind cut is any set C' of rational numbers
which satisfies these three conditions:

1. C# 2, (Q\C) # ;

2.r<qNqgqeC —recd;

3.gqeC— (3r)jg<r Nre].

So, we set:

D =get {C C Q| C is a Dedekind cut}.

What actually happens is that

Every rational number x defines an associated cut. The left piece is simply the
set of rational numbers less or equal x, and the right piece is the set of rationals
greater than z. By this association between cuts and rational numbers, we make the
rational numbers a subsystem of the system of cuts. To identify Dedekind cuts as the
sought-for “real number system”, we must show that they include all the rationals
and irrationals—all the numbers that can be approximated with arbitrary accuracy

by rationals®.
So, just to understand, using Dedekind’s definition we may define /2 as follows:

I must identify a left half-line and right half-line associated with v/2 . What rationals
are less than v/2? Certainly all the negative ones, and also all those whose squares
are less than 2. All numbers z such that either © < 0 or z? < 2. That specifies
the left piece of the cut, the left half-line associated to v/2 . Its complement is the
corresponding right half-line. It’s easily verified that when this cut is multiplied by
itself, it produces the cut identified with the rational number 2. Among Dedekind

cuts 2 does have a square root!%!
So, let’s say that:
A={reQ|2* <2V z <0}
B={zcQ|2*>2A x>0}
Now we check the following conditions:
1. Both A and B are non-empty;
2. Every member of A is less than every member of B; and

3. The set A contains no greatest element. In this case that means that given
a € A there exists ¢ € Q such that a < c and ¢® < 2.

Additionally, if B contains a least element, the cut corresponds to that rational
number. i.e. the rational number is a member of the real numbers. Differently, if B

9OHersh 1997, p. 274.
91 Hersh 1997, p. 274.
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does not contain a least element, then the cut defines a unique irrational number
that “separates” the two sets. In this case the irrational number is b ¢ B, such that
b = 2 (or b= +/2). But, actually, in order to show that b ¢ B, we must show that
b corresponds to an irrational number — in the case of v/2 we have such a proof.
To clarify this example, imagine an infinite right-oriented arrow that contains all
rationals in Q:

A B

The number we are trying to insert into the oriented line is precisely v/2. By
inspection, the set A — as defined — collects all rationals ¢, such that ¢> < 2, or ¢ is
less than 0, i.e., all rationals (including positive and negative integers) whose square
is less than 2. The set B is A’s complement and, indeed, it collect all rationals,
major than 0, whose square is greater (or equal) to 2. By simple inspection, B has
no least element — that is, there is no number representable as a ratio between two
integers — and, hence, v/2 ¢ B. In our oriented line, the space left between the two
sets A and B, metaphorically identified with the red point, is the cut that represents
the irrational number /2. More mathematically speaking, the cut, given by the
partition (A, B), represents the irrational number v/2. So, as it should be clear that,
representing the reals (rationals and irrationals) within the geometric oriented line
means — in Dedekind’s work — to fill a gap where there should be a value. His idea
has been that of “isolating” those gaps by describing them as “cuts” (i.e., as sets of
rationals that share the least upper-bound property, but have no greatest member)
of the geometric oriented line.

Anyway, without spending to much time on this elegant, but complex, construction
let’s ask, if what we are characterising as “cuts”, are the real numbers themselves:
in other words, cuts do just represent — in a mathematically appropriate way— the
reals, or, are they completely identical to the real numbers? Now, consider that, for
what concerns the answer, there’s some general agreement and, probably, the first
formulation of the commonly accepted answer has to be traced back to Dedekind’s

work. Let’s, hence, focus for a moment on his reflections”?:

(Letter to Weber 1888)[...] where you say that the irrational number is nothing other
than the cut itself, while I prefer to create something new (different from the cut) that
corresponds to the cut and of which I say that it brings forth, creates the cut. We
have the right to ascribe such a creative power to ourselves; and moreover, because

of the similarity [GleichartigkeitJ of all numbers, it is more expedient to proceed in

92We have already quoted the following passages in the section devoted to Dedekind’s abstraction.
Here our main intent is different.
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this way. The rational numbers also produce cuts, but I would certainly not call the

rational number identical with the cut it produces;®3.

So, as we might imagine, Dedekind is saying that the identity between a cut and
the rational it should represent, is not more than an “expedient” for mathematical
practice and that establishing equality between these two objects would be an error.
What is instructive is that, in the letter quoted above, Dedekind is answering to a
question that concerns his cuts, by comparing them to what happens within natural
numbers when represented with collections:

I hold the cardinal number (Anzahl) to be only an application of the ordinal number,
and in our [“counting”] too one reaches the concept five only via the concept four.
But if one were to take your route — and I would strongly urge that it be explored
once to the end — then I would advise that by number (Anzahl, cardinal number) one
understand not the class itself (the system of all finite systems that are similar to each

other) but something new (corresponding to this class) which the mind creates®*.

What should we learn from this suggestions coming directly from Dedekind? Ac-
tually, we should carefully consider that sometimes some peculiar and well-defined
mathematical objects (such as sets or the geometric line IT) are useful to “create”
new mathematical objects (e.g., the set N or the reals R). What actually Dedekind
meant with creation is doubtful®®, but — it is clear — that, what he had in mind, at
least in part, was connected to the work of giving systematizations of all possible
branches mathematics. In this context, I believe, Dedekind’s deep intuition should
be considered: even if some objects are suitable to systematize determined portions
of mathematics, this does not mean that the two branches get identified. Indeed,
recall that our previous investigation on the concept of “identification” has brought
us in characterizing the notion of “faithful representation”, where, with this latter,
we are meaning exactly what Dedekind — already at the end of the 20" century —
theorized. So, the Dedekind-style suggestion we were searching for can be put as
follows: whenever two distinct mathematical objects are helpful in characterizing
each the fundamental properties of the other (and viceversa), then their identification
has just to be considered as a“representative” expedient. As it should already emerge,
hence, the ontological argument, which tries to ascribe identity to sets and numbers,
even if to negate it, is based upon a misunderstanding on the mechanism for which
sets and numbers are supposed to represent each other. In this sense, we claim
that Benacerraf — apart not considering the different versions of set theory, with the
consequences we’ve exposed above —, did not, additionally, care about the notion of
mathematical representation and, hence, cannot see the importance of, for instance,
the set theoretical study of natural numbers. Generally speaking, if we are trying to
do philosophy of mathematics, the “data” that we researcher has at our disposal, are

93Dedekind 1888a, p. 845.
94Dedekind 1888a, p. 835.
95See our philosophical valuation of Dedekind’s notion of abstraction.
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those coming directly from the successes and failures of the works of mathematicians.
In this context, if we get rid of some parts of their works and did not care about
their results — just to arrive to our desired philosophical conclusions — then, we did
not render a good service to both disciplines, mathematics and its philosophy. Hence,
in conclusion, it might be said that Benaceraff, with his clear ontological objective,
disregarded and wrongly simplifies some fundamental features of the objects which
he was using as examples. If sets are “good representatives” of natural numbers
and if cuts are the same for real numbers, then this does not imply their reciprocal
“ontological reducibility”. If Benacerraf would have considered that in no case sets
are natural numbers and cuts are reals — because of their just “good representatives”
each one of the other —, then probably he could not have drawn his philosophical
conclusions.

By criticizing Benacerraf’s paper we’ve found out three main problems with respect
to the analysis of set theory he establishes and that — according to us — undermine
his ontological conclusion:

1. The superficiality in distinguishing naive and axiomatic set theory and, conse-
quently, the inability in seeing the divergences with respect to their frameworks,
objectives, methodologies and, especially, motivations.

2. Implicitly admits that Zermelo’s and von Neumann’s sets would be “identical”
just in case their equinumerosities were equal. He does not consider any
further possibility for letting the two set theoretical constructions be, at least,
equivalent.

3. Did not consider an identity relation, as based upon the notion of faithful
mathematical representation. For him mathematical identity propositions
can be identified with ontological identity statements, but, thinks — from an
ontological point of view — are more general. So, for example, asking if abstract
objects have identity conditions means asking something of whatever object
in which we may be interested in and, hence, in any entity which respects
determined, let’s say, ontological conditions (e.g, being not spatio-temporal
located). Differently, by trying to argue if natural numbers are representable by
sets we are not worried about existential or epistemological problems, but we
have mathematical and maybe logical concerns with our theories. But, reflect
that, also sets and numbers are within the range of abstract objects, falling,
thus, under the investigations of ontology, but — as clear — the systematization
we are searching for, in this case, is rather different from the one mathematicians
could be interested in. In conclusion, as repeated severally, it should not be
the case to draw conclusions within the philosophy of a determined science,
such as mathematics, by not considering the complexity of the science itself
and its different and philosophically independent exigences.
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Chapter 4

Mathematics by Abstraction

Overview. In the present section our aim is to discuss from a closer point of
view some aspects of abstraction principles. In particular, recall that, by trying
to undermine Benacerraf’s logical and mathematical premises (Chapters 2-3), as
said several times, our purpose was that of reconsidering his final philosophical
observations, i.e., his conclusion for which no abstract objects are needed for a
philosophical development of mathematics. Roughly, from its origins, Frege’s logicism
has brought the attention on the possibility of (i) reducing arithmetic to logic and (ii)
of faithfully introducing logical objects (truth values, numbers, course-of-values; . ..)
as referents for the statements in which those objects themselves figure. As remarked,
Frege’s attempt (i) failed for his system was inconsistency entailing and the main
fault was to be tracked back to one of his principles, i.e., Basic Law V which was
meant to govern “extensions”. Nevertheless — as sketched at the end of Chapter 2 —
the story of Fregean attempts towards the philosophy of mathematics did not end
here and, indeed, since the early 60s, the philosophical debate has envisaged the
possibility of rendering justice to Frege’s original project, in particular thanks to the
usage of abstraction principles different from BLV. In this context, in what follows,
we will develop a formal model which, we think, will help us in speaking about some
instances of abstraction principles. So, rather than to use specific and determined
abstraction principles we will, in some sense to be specified at length, evaluate when
their usage is “allowed”. Therefore, the main territory of investigation of the present
chapter deals with some semantic, truth-theoretic aspects of Abstractionism. For
what concerns our ontological and epistemological interpretation of the model we
will discuss soon and, more generally, for a philosophical evaluation of the whole of
the work we’ve done up to now, consider our arguments in Chapter 5.
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4.1 Three Problems for Abstraction Principles

Abstractionism is the philosophy of mathematics which is engaged with the arrange-
ment and usage of abstraction principles for foundational purposes!. In this spirit, it
is useful to point out that we will consider abstraction principles of the following
form:

§a = §3 «— R(a, ) (2)

As it is easy to check, I is a biconditional that contains an equivalence relation R on
its right-hand side (RHS) and an identity statement on its left-hand side (LHS). It is
to understand, that the abstracta, standing into the identity relation, are introduced
thanks to the abstraction principle, given the equivalence relation. This means that
the equivalence relation, in the RHS, of X has conceptual priority, with respect to the
objects that are abstracted from the equivalence relation itself, and which are to be
considered as the resulting items of the abstraction operation. By saying to we will
conduct a semantic inquiry, we mean that we will consider whether «our capacity to
have singular thoughts about objects of certain type derives from and is constituted
by an appreciation of the truth-conditions of identity judgements about objects of
that type»? . In this context, we will sketch how — given an equivalence relation R on
a RHS — it is possibly to give truth-conditions of identity judgements on a LHS, by
means of an abstraction principle. What we ideally should get, after an abstraction
operation, is a new concept which grasps our comprehension of particular abstract
objects. So, for example, in HP case, the equinumerosity relation, from which we
start abstracting, should concede us to apprehend and grasp our understanding of
the term “number”.

Anyway, consider that abstraction principles, also in contemporary debates, are
threatened by problems and objections and, indeed, in the following three paragraphs
we will deepen some of them, by, consequently discussing how our model theoretical
considerations might be helpful.

4.1.1 Symmetry/Asymmetry

By analysing the two sides of any abstraction principle expressed by biconditional,
we see that the relation between the Left-Hand-Side (LHS) and Right-Hand-Side
(RHS) is not that explicit®. This means that we are not told whether the objects
postulated in the LHS are, in some sense to be explicated, presupposed by the entities
involved in the RHS. In more technical terms, it could be asked whether impredicative
abstraction principles — the LHS’s objects are presupposed by the RHS’s entities — are

IThis chapter should be considered as a “work in progress” since much of the literature concerning
semantic, mathematical and philosophical abstractionism has not been considered yet. Anyway, for
the purposes of this present work, the literature considered here can be regarded as sufficient.

2Ebert and Rossberg 2017, p. 5.

3This paragraph owes much to Linnebo 2017, pp. 247-268.
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more suitable than predicative ones. In order to have a clear idea of the distinction
between predicativity and impredicativity, let’s consider the following definition*:

Definition 32 (Characterization of Abstraction Principles). (a). An axiomatic
abstraction principle is a law of the following form:

where:

la. § is the so-called abstraction operator, which takes second-order variables
to first-order terms;

2a. P expresses the equivalence relation under consideration.

A schematic abstraction principle is a law of the following form:

§:L‘g0(l’) - §:L‘¢(I) A q)[@/dej/G]’ (E S)
where:

1b. § is the so-called variable-binding abstraction operator, that takes open
formulas to first-order terms;

2b. ®[¥/r,¥/q| expresses the result of substituting, in ®, simultaneously ¢(t) and
Y(t) for any occurrence of F'(t) and G(t), respectively, with ¢ first-order term.

(b). An abstraction principle is impredicative if the terms on its LHS refer to
objects which would be included in the range of some quantifier occurring on its
RHS. Otherwise, it is predicative.

We will return to the distinction between axiomatic or schematic principles very soon.
Anyway, by considering our characterisation of “impredicativity”, one requirement
for abstraction principles could considered that of predicativity, in the sense that
the RHS of an abstraction principles does not quantify over the sort of objects to
which its LHS refers. Indeed, it may rightly asked: is it actually a good move to
banish impredicative abstraction principles, in virtue of the fact that there is a sort
of presupposition between the two sides of the biconditional? In order to answer this
question, let’s focus on the following argument?:

(P1) Asymmetry
The right-hand side of an abstraction principle must not presuppose any of the
objects to which the left-hand side refers.

(P2) Quantification incurs presupposition
A quantified statement presupposes every object in the range of its quantifiers.

4We’ve slightly modified Linnebo’s definition, but its main features remain always the same.
Compare, Linnebo 2017, pp. 249-250.
5See Linnebo 2017, pp. 258-259.
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(C) Conclusion
Impredicative abstraction principles are unacceptable.

(P1) is the claim that contains the “impredicative thesis” concerning abstraction
principles, while (P2) states in terms of presupposition the “logical” behaviour and
understanding of a quantified statement. If (P2) is applied to (P1), the latter can be
reformulated by saying:

(P1*) Asymmetry
The quantification over the right-hand side of an abstraction principle must
not involve any of the objects that the left-hand side “newly” introduces.

In such a spirit, the conclusion of the argument, (C), by unifying (P1) and (P2) (or
(P1*) and (P2)), establishes the untenability of the “impredicative thesis” concerning
abstraction principles. The “predicate” version of those principles, differently, escapes
the negative argument we’ve just exposed and has very interesting features and
consequences. By focusing upon a concrete example it should become intuitively
clear why a “predicative” reading of such principles has been thought of as more
suitable. Recall the abstraction principle governing directions:

According to our definition, (Dir) belongs clearly to those principles which we will
call predicative. The LHS should contain entirely new objects, namely entities that
were not available before their introduction, given the abstraction principle. Indeed,
within (Dir), the quantifier ranges just over lines (¢; and ¢3) but not over directions,
which, therefore, have to be understood as not presupposed by the RHS. In this sense,
by having, for instance, the parallelism relation between two lines, we can introduce
new concepts, namely the directions of those lines. Our new objects, d(¢1),d(¢3),
have not been derived from the objects that were available at the stage before, and
this means that the new objects, before their introduction, were not presupposed by
something already existing, namely ¢ || {5 (the parallelism between the two lines).
Differently, for example, two other laws — of Fregean reminiscence — are impredicative
abstraction principles. Let’s consider them closely:

eF = eG +— Vr(F(z) = G(z)); (BLV)

#F =#G +— F ~G. (HP)

As clear, both RHSs quantify over some objects whose identity conditions are
specified by their LHSs, being therefore impredicative. Differently from before, the
“impredicative” abstractionists — without rejecting the notion of “presupposition”
— try to understand the abstraction process by two fundamental means. The first
point can be also common to most sustainer of the “impredicativity thesis”, while
the second is directly connected to the acceptance and assessment of the relation of
presupposition between LHSs and RHSs. Schematically:
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1. Abstraction can be understood as a well-behaved process by which more and
more abstracta are “introduced”.

2. Each stage of the process “presupposes” only what was available at the foregoing
stage.

In what follows, the instances of abstraction principles we want to speak about,
through the construction of our model, will consider exactly (i) impredicative ab-
straction principles and (ii) a strategy that encapsulates the notion of presupposition
semantically.

Before turning to that point, consider that, abstractionism faces at least other two
puzzling problems, that we will roughly introduce in order to give an idea of which
concerns have brought us in considering and constructing the model we will develop
soon. Furthermore, the distinction between axiomatic and schematic principles —
just sketched — is of prime importance for our work and, indeed, will be adequately
covered while introducing the first formal details of our model.

4.1.2 “Bad Company” or “Embarrassment of riches” prob-
lem

A question that abstractionist proponents are requested to answer is the following:
is there a way to distinguish good wvs bas, acceptable vs unacceptable, abstraction
principles?® For some philosophers the untenability of abstractionist accounts of
mathematics is strictly to be linked to the presence of “too many” principles, in
the sense that, some of them are, for instance, individually consistent, correct or
philosophically informative, but, — when compared to other abstraction principles —
they turn out as inconsistent, incorrect or philosophically uninformative. In other
words:

The bad company problem is one of the most serious problems facing one of the
most exciting philosophical approaches to mathematics. [...] The problem is that
not every abstraction principle is acceptable: some are downright inconsistent, while
others are unacceptable for more subtle reasons. Abstraction principles with desirable
philosophical and technical properties are thus surrounded by “bad companions”. Some
philosophers claim that this gives rise to a devastating objection to the neo-Fregean

programme, while others respond that the challenge it poses is perfectly surmountable”.
Again, differently put:

The embarrassment of riches objection is that there is a plurality of consistent but
pairwise inconsistent abstraction principles, thus not all consistent abstractions can

be trued.

6For introductory remarks see Linnebo 2009b, pp. 321-329. For an attempt that tries directly to
confront with the “Bad Company” problem see, among others, Linnebo 2009a, pp. 371-391. Both
papers, in different respects, have inspired our research.

"Linnebo 2009b, p. 321.

8Weir 2003, p. 13.
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Now, we draw our solution, as said, by constructing the model we have in mind,
especially by giving a semantic characterization of what we mean with the notion of
“well-founded process”. In this sense, — I announce it preventively —, the strategy we
have elaborated, finally, will suggest to “restrict” abstraction principles in a specific
and well-determined way — thus, furnishing a “criteria”, different from “acceptability”,
to evaluate the behaviour of abstraction principles. What we will discover, with
respect to the “Bad company” problem, is that — according to our presentation — the
dichotomy good ws bad abstraction principles is misguiding, so that, at the end, we
will have no «good guys left, no bad company either»®.

4.1.3 The “Julius Caesar” Problem

In Grundlagen, §55, Frege himself showed to be aware of the so-called “Julius Caesar
Problem”. Referring to HP, in particular, we are able to recognize that two concepts
are identical by the fact that they share the same number of objects, but we are
not told what exactly the “numbers” themselves are. In other terms, Frege is asking
himself what does it mean for a logical object to be a “number” and, more generally,
whether this answer can be given directly by HP. His answer within the Grundlagen, is
negative and, indeed, Frege rejected HP as a definition for numbers and its usefulness
as axiom in his logicist project. Consider his words:

[...] we can never — to take a crude example — decide by means of our definitions

whether any concept has the the number Julius Caesar belonging to it, or whether

that same familiar conqueror of Gaul is a number or is not. Moreover we cannot prove

that, if the number a belongs to the concept F' and the number b belongs to the same

concept, then necessarily a = b. Thus we should be unable to justify the expression

“the number which belongs to the concept F”, and therefore find it impossible in

general to prove a numerical identity, since we should be quite unable to achieve a

determinate number. It is an illusion that we have defined 0 ans 1; in reality we have
only fixed the sense of the phrases

“the number 0 belongs to”
“the number 1 belongs to”;

but we have no authority to pick out the 0 and 1 as selfsubsistent objects that can be

recognised as the same again'®.

In other terms, Frege is posing a very intricate question. Consider that statements
such as:

“the number of F' is identical with x”,
that is, formally,
#I' =z,

cannot be asserted since we are not given a definition — by HP — of the concept of
“number” and, hence, this statement is neither true nor false, unless x is stated in

9Leitgeb 2017, p. 270.
10Frege 1884, p. 68.
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the form “the number of G”. So, Frege concluded, that even something absurd such
as

#F = Julius Caesar

could be concluded. This Fregean example motivates the label “Julius Caesar”

problem. Recall, that — starting from the 60s — some philosophers argued that
Frege’s logicism could be saved by appealing to HP as an axiom and by rejecting any
application of BLV during the proofs. The problem is that, originally, Frege rejected
HP as a definition and characterization of the concept of “number”, since it was
subject to the aforementioned problem. The “Julius Caesar” problem, clearly, poses
not only a definitional limitation to HP, but also an epistemic one, since the only
characters we know — given HP — are the identity conditions for two logical objects
labelled numbers, but not further defined. In this spirit, moreover, Frege noticed
that, if HP would have been considered as a definition of the concept “number”,
then, consequently, his famous context principle (CP)M would have been violated.
According to CP, if our knowledge of logical objects, such as numbers, derives from
the analysis of the content of those sentences, in which these objects figure as referents,
then we should be able to recognize — through a general criterion — when some object
x is the logical object we are speaking about. But, given the “Caesar” problem,
according to Frege, this does not seem to be given by HP again.

Contemporary debates, instead, by focusing the attention on the usefulness of HP as
an axiom, argued in favour of its epistemic features in different manners, by trying to
answer the “Caesar” problem. Now, putting aside HP, it is possible to consider any
abstraction principle, such as ¥, and ask whether there is some way to give definite
truth-conditions of mixed statements of the form:

Sa = t, where t # §f.

So, finally, as clear, the “Julius Caesar” problem is intricate and ambitious to solve
and, indeed, we believe that some suggestions — as developed in the last part of
Chapter 5 — can just indicate the direction that we wish to take. Anyway, since our
model describes exactly “grounded” passages to settle truth-conditions for identity
statements, we have to primarily consider its development and, just in a second
moment, its philosophical, in this case epistemological, interpretation. As said, given
its high ambitions, there wont be a complete ans satisfactory answer to the “Julius
Caesar” problem, but we think that the suggestions we will give could be expanded
and deepened in an interesting way.

UErege writes: «How, then, are number to be given to us, if we cannot have any ideas or
intuitions of them? Since it is only in the context of a proposition that words have any meaning,
our problem becomes this: to define the sense of a proposition in which a number word occurs.
That, obviously, leaves us still a very wide choice. But we have already settled that number words
are to be understood as standing for selfsubsistent objects. [...] When we have thus acquired a
means of arriving at a determinate number and of recognizing it again as the same, we can assign
it a number word as it proper name», Frege 1884, p. 73.
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4.2 An Interesting Response: Groundedness and
Abstraction

One way to answer, for instance, the “Bad Companion Objection” against abstraction
principles, is to claim that the distinction acceptable vs unacceptable, good vs bad,
abstraction principles is a mistake from the start.!? Let’s begin our reflections by
considering that in the history of philosophy, two main forms of abstraction has
been developed: Plato’s theory of ideal forms and Aristotle’s conception of forms as
contained within sensory objects. The first one held that our whole world is just an
imperfect “shadow” of the realm consisting in ideas or abstracta. The latter realm is,
indeed, ontologically and epistemologically independent from our world. Aristotle,
differently, held that abstract forms are just extrapolate from sensory objects. Indeed,
by a mental process we are able to recognize the fundamental characters present in
different objects and isolate them. Thus forms are existent just within the objects of
our experience and, moreover, their existence is ontologically and epistemologically
dependent on the latter. As it should clear, the two positions — Plato’s and Aristotle’s
— are in contrast one with the other, and it may be correctly asked if there is a sort
of midway. If there is, then some elements of the Platonic conception should be
maintained, while other should be rejected and substituted with concepts deriving
from the Aristotelian tradition; and viceversa.

A standpoint intermediate between Plato and Aristotle can be adopted. One can hold
with Aristotle against Plato that the existence of an abstraction somehow depends
on the given, and at the same time hold with Plato and against Aristotle that an
abstraction does not exist in the objects from which it is abstracted. In other words,
abstract objects are not multiply instantiated — they do not exist in space and time.
But their existence depends on the objects from which they are abstracted nonetheless.

This is sometimes called a “light” conception of abstract objects'3.

We will focus on the “light” conception of existence at the end of the section. Up
to now, we are seeking for an “abstraction process” for which (i) the abstractum
depends on the objects from which it is abstracted and (ii) the abstractum does not
exist before its introduction within the objects from which it is extrapolated. In
order to be clearer, let’s focus upon a concrete example:

eF = eG «— Vo (F(z) = G(2))

By considering our mixed Platonic and Aristotelian ideas, it could be said that (i)
the extensions on the LHS depend upon the equivalence between the object falling
under F', and G, as expressed in RHS, while (ii) the existence of the extensions
themselves is not contained in what RHS expresses. This latter point, consequently,
means that what we encounter in a LHS of an abstraction principles is a new object,

12Gee especially Horsten and Leitgeb 2009 and Leitgeb 2017.
BHorsten and Leitgeb 2009, pp. 217-218.
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that is an object simply construed from the objects already existing. In this spirit,
extensions are not in the equivalence between the two courses of values, but instead
they are something that is introduced, starting from the equivalence of course of
values, at a more advanced stage. Moreover, a methodology of abstraction is very
useful in both mathematics and philosophy (thanks to the contributions of Frege and
Carnap) since it allows us to introduce new abstract objects in a very fruitful way:
by considering “equivalence classes”'*. By reconsidering the abstraction principle for
directions and by taking equivalence classes explicitly, it could be read as follows:
“G is a collection of straight lines; R is the relation of parallelism; A is a collection
of directions”. Thus, A is the new collection composed by each equivalence class
determined by the equivalence relation R on . In other words, the members of A —
the directions — are considered as abstracted from the elements in G — the straight
lines — through the equivalence relation R, in this case the relation of parallelism.

Other two famous examples we will consider soon are Frege’s celebrated BLV and

HP:

eF = eG «— Vo (F(z) = G(2)) (BLV)

#HE =#G+— F ~ G (HP)

As it should already be evident, BLV and HP regulate the identities and differences of
some presented abstract objects (numbers or extensions in this case).Note, moreover,
that the abstracta in the LHS of the biconditional are settled once the identities and
differences between the objects in the RHS are settled. Hence, for instance, once the
sameness of cardinality between F' and G has been established, then the identity of
the number of the objects falling under both, F' and G, can be established. With the
same reasoning, it could be said that, if the cardinality of F' and G is different, then,
likewise, the two numbers counting the objects of F' and G are different. In this sense,
the identity or difference between some presented abstracta involve the identity or
difference between two other presented abstracta. Hence, the asymmetry/symmetry
problem raises again: «can we come up with a general method for generating abstracta
when the equivalence relation itself involves the abstract entity already?» How it is
possible to answer to the circularity worry? By considering Boolos” description of
Frege’s abstraction, our starting point will emerge:

14Recall that in the previous chapters we were dealing with some aspects regarding equivalence
classes of equipotent sets in order to consider Benacerraf’s argument. It emerged somehow that
the arguments against the identification between natural numbers and sets, invoked by the French
philosopher, does not hold since it did not consider the identity notion but the simpler and innocent
concept of “faithful mathematical representation”. Moreover, Benacerraf directed his attack to
abstract mathematical objects in general by saying that their truth and identity conditions can never
be established correctly. This chapter aims to show that (i) there are ways to introduce abstract
mathematical objects and (ii) that there is the possibility to establish clear identity conditions for
abstracta.
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For how does Frege show that the number 0 is not identical with the number 1?7 Frege
defines the number 0 as the number belonging to the concept not identical with itself.
He then defines 1 as the number belonging to the concept identical with 0. Since
no object falls under the latter, the two concepts are, by logic, not equinumeorus,
and hence their numbers are, by Hume’s Principle, not identical. [...] 2 arises in like
manner: Now that 0 and 1 have been defined and shown different, from the concept
identical with 0 or 1, take its number, call it 2, and observe that the new concept is
coextensive with neither of these concepts because the distinct objects 0 and 1 fall

under it. Conclude by Hume’s Principle that 2 is distinct from both 0 and 1.1°

Therefore, the identities (or differences) of some abstract objects depend upon the
identities (or differences) of some other abstracta. The process of forming numbers,
for instance the concept number 2, — according to Boolos — starts by setting all the
identities or differences between what we want to introduce and what comes “before”.
Hence, the introduction of a new object, namely 2, depends upon the identities
(or differences) settled between 0 and 1 at earlier stages. Since, the concept of not
identical with itself and identical with 0 are not equinumerous'®, then by HP, the
numbers belonging to both concepts are different. Formally,

[wlaFa]=ele=0]— #x|z#z]##x]|z=0
Hence,
z|x#z|w[z|z=0—0#1

Likewise for number 2: since identical either with 0 or 1 is not equinumerous with the
concepts not identical with itself and identical with 0, then its number will likewise
be different from both, 0 and 1. Consider that this process describes an abstraction
process which proceeds at different stages and may be preliminarily represented as
follows:

Tt
”
#Hlxlx=0Ve=1Vr =2 =g 3
fr
£
#Hlrx|x=0Var=1] =g 2
fr
”
#[I’JIZO] :def].
)

5Boolos 1990, p. 272.
16We denote “non equinumeorusity” between two concepts as F « G — which is equivalent to
-(F ~ Q).
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£
#la |z # 2] =aet 0

Therefore, it may be concluded that «there is an ontological dependence of identities
and differences between concepted abstracta on identities and differences between
other concepted abstracta. Especially the differences are important»'”. Moreover, it
emerges that the identities or differences for abstracta in LHS are not established
at the same time when the equivalence relation for the objects in RHS is settled.
Indeed, — as we will be shown soon —, the identities or differences of the abstract
objects in the RHS are settled at an earlier stage than the identities or differences of
the abstracta in the LHS. In this way, indeed, abstracta are not something already
contained in the objects in the RHS and merely extrapolate, but, instead, abstracta
are objects, whose identity conditions simply depend on the identity conditions of
other abstract objects. In other words, by focusing our attention for a moment on
a concrete example, the identity #F = #G depends on the equivalence relation
F ~ @. In particular, setting the equivalence relation F' ~ G gives us the conditions
to state and introduce correctly, at a following stage, the identity #F = #G. As a
crude example, take A = {a,b,c} and B = {d, e, f}. Notice that

A={a,b,c} ~B=1{d,e,f}
and conclude, by HP, that
#A=#B

As it should already be clear from the example, the equivalence relation between
the two concepts, ~, settled at the first passage, permits the introduction of the
identity between the numbers of the two concepts. Likewise, but differently, take
C ={g,h,i} and D = {l,m} and say that

C ={g,h,i} » D ={l,m}
Apply HP and conclude
#C # #D.

Even in this context, the difference established by ~ between two concepts is respon-
sible to the corresponding difference between the numbers of the concepts previously
considered. In other terms, #C' # #D depends on C ~ D (in a way to be specified).

In order to clarify our ideas and to move from simple examples to concrete de-
velopments and applications of these preliminary remarks, it is better to get a look
to some formal features we are going to employ and discuss.

THorsten and Leitgeb 2009, p. 221.
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4.3 Dependence and Supervenience

4.3.1 Introductory Remarks

First of all, in order to establish what we mean by claiming that there is “depen-
dence” between identities (or differences) of some abstract objects and identities (or
differences) of other presented abstracta, we need to specify the general framework
thanks to which we are going to analyse abstraction processes. Let’s deepen our
starting point just a bit:

The identities and differences between some presented abstracta do not depend on
identities and differences between presented abstracta at all. These will be our
Archimedean starting point. But many identities and differences will only be deter-
mined once certain other identities and differences are settled. Thus the identity
and difference conditions of presented abstracta can depend on other identities and
differences. Identities and differences are no long settled in one go, but are determined
in stages. At some point, “settling process” gives out.

The objecthood of an abstractum presupposes that the abstractum has been given
determinate identity conditions In Quinean terms: no entity without identity! Thus
the objecthood of abstracta can depend on the objecthood of other abstracta. (This is
of course a thoroughly un-Aristotelian idea.)

If at the end of the process all identities and differences have been settled, then all

presentations present abstract objects with an associate determinate identity relation'®.

The formal framework was, in any case, implicit in Leitgeb 2005'°. Indeed, the author
suggests to extend and adapt the considerations of his previous article within the
context of abstraction processes. This is exactly what we are going to do in the next
sections. Anyway, before turning to the expansion of Leitgeb’s proposal, we have
to notice that in contemporary philosophical literature, the notions of “grounding”,
“dependence” are overloaded of meaning and, thus, in order to explain what is meant
for facts to depend each on the other and that something grounds something else,
we introduce the additional notion of “supervenience”. This latter can be generally
understood as the American philosopher D. Lewis defined it:

To say that so-and-so supervenes on such-and-such is to say that there can be no

difference in respect of so-and-so without difference in respect of such-and-such. Beauty

of statues supervenes on their shape, size, and colour, for instance, if no two statures,

in the same or different worlds, ever differ in beauty without also differing in shape or

size or colour.2°

More close to our purposes, Leitbeg gives a characterization of the notion of “su-

8Horsten and Leitgeb 2009, p. 221.

19Compare also Kripke 1975, Yablo 1982 and Leitgeb 2007.

20Lewis 1983, p. 358. D. Lewis (1941-2001) has been one of the most famous philosophers of the
20%" century and, indeed, many of his intuitions and works are, still nowadays, a great source of
inspiration. His main contributions, among others, are within modal metaphysics, counterfactuals
semantics and mereology.
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pervenience”, clearly linked to that of Lewis, and which is of great importance for
our understanding of the formal work we are going to settle. Let £, be the formal
language to which we add the truth-predicate Tr(p), which indicates that ¢ is true.
Let’s say that ¢ is a statement and ® is a set that contains ¢ (and maybe some
other statements). Now,

Our notion of dependence m ay be circumscribed in the following ways: if ¢ is a

sentence of Zr,., and ® is a subset of Zr,., ¢ depends on ® if and only if the truth

value of ¢ depends on the presence or absence of the sentences that are in ® in/from

the extension of the truth predicate; [...] These formulations show that the notion of

dependence which we aim at is a kind of supervenience: the truth value of ¢ supervenes

on which members of ® are to be found in the extension of Tr. [...] ¢ does not really

depend on anything “outside” of ® then.?!.

So, starting from this kind of context, we aim also to study the behaviour of
abstraction principles in similar terms. Indeed, what we should achieve is a first
characterization of dependence between RHS and LHS of any abstraction principle,
so that — roughly, for X C Z — the identity of some individuals z,y € X will
supervene on the identity of any other pair of individuals in X. In other terms,
always given a set X C £, any identity, between a pair of individuals z,y € X,
depends on any other identity between any other pair of individuals, always in X
— as determined by the abstraction principle considered. At the end, some or all
identity /difference instances of a given abstraction principle will turn out — in a sense
to be explicated — grounded in some other identity/difference instances. Anyway,
to do this job precisely, let’s move from this sparse and informal intuitions, to our
formal and model-theoretical construction.

4.3.2 Formal Framework

4.3.2.1 Logical Preliminaries

First of all, in order to consider how it would be possible to “ground” abstraction
principles, let’s establish the following vocabulary??:
o variables letters®: @, Yn, 2n, .., Th, YL, 20, ..
 function-variable letters: f/', g, h7, ...
« relation-variable letters: F*, G, H, ...

o the identity sign: =

e unary or one-place sentential connective: —

21 Leitgeb 2005, p. 160.

22For the present formal work consider Horsten and Leitgeb 2009 and Leitgeb 2017 as our primary
resources. Other useful papers have helped us in developing our model-theoretical considerations,
especially, Horsten and Linnebo 2016, Linnebo 2017 and Linnebo 2018. For what concerns our
(semantic) conception of “groundedness” as applied in context different from abstractionism, see, in
particular, Leitgeb 2005 and Leitgeb 2007. Additionally, some useful sources have been found in
Linnebo 2004 and Heck 2011.

238ub- and superscripts are allowed.
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e binary or two-place sentential connectives: A, V, —
o quantifier: V
o auxiliary symbols: (), ,

We now offer a recursive definition of the syntax of the language:

Definition 33. The following, and nothing else, is a first-order Z-term:
e any variable from .Z.

The following, and nothing else, are first-order .Z-formulas:
oty = to, for any Z-terms ty, ts.
o f™(t1,...,t,), for any ZL-terms ty,...,t, and a n-place function-variable f.
o F™(ty,...,t,), for any L-terms ty,...,t, and a n-place relation-variable F".
o —p, for any Z-formula ¢.
o AP, PV, o — 1, for any Z-formulas ¢, 1.

o VF"p, for any n-place relation-variable F™ and for any .Z-formula ¢ which
contains no instance of VF™.

Remark. As always, recall that p «— ¢ =qcr (p — ¢) A (¢ — p) and Fp =qor ~Vp.
We begin by building a .Z-structure, M?*:
Definition 34. A Henkin .Z-structure is a triple M = (D', D? Fun,N), with
D? C £9(D"). Let:

o D! be the first-order domain Dom of abstract (pre)-objects.

« D? be the subset Con C §2(Dom) of concepts on the pre-objects.

e Fun is a set of n—place functions.

o N :Con — Dom be the abstraction map.

Some specifications on our M may be useful:

e The non-empty domain Dom is regarded as the set of abstract pre-objects.
We are speaking of pre-objects (or labels) since what we actually have in our
domain are all the objects that — once our individuation process has ended —
may “become” proper abstract objects. In order to distinguish, if x € Dom
is a pre-object, then, we may rewrite the variable standing for the same, but
this time proper, abstract object x € Dom.

e Con C §2(Dom) is the set of concepts from which we abstract. It is our second

24See Button and Walsh 2011, pp. 24-26.
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order domain composed by Z-first-order formulas () with an appropriate
number of free-variables. This means that if ' € Con, then F' = {(z1,...,x,) €
Dom | ME p(x1,...,2,)}.

o First of all, NV is an injective map, which is not necessary onto. It applies
to concepts and outputs one of the pre-objects of Dom: for some F' € Con,
N(F) = x. So, generally, if F' =4¢¢ ¢(x), and N (F) =y is the abstraction map
of F, then N : p(z) — y. Once, the mapping has output one of the pre-objects
or labels y € Dom, the proper abstract object will be, for clarity, rewritten as
y € Dom. In other terms, N interprets §, namely the abstraction operator.

Consider now our Abstraction Principle:

(2.7 p) = (§2.Y)/q) +— @)/ p ¥(@)/g].

We denote with ®[F, G| a second-order formula (with exactly two free-variables) that
encapsulate the equivalence relation occurring between the two concepts involved.
An equivalence or congruence relation R (i) determines the formula ®[F, G| of an
abstraction principle and (ii) settles the interpretation of =. Hence, since . contains
a primitive identity symbol, by (ii), M “thinks” that it is an identity symbol, that
we interpret as a congruence predicate rather then the actual identity. Additionally,
denote with Valg(y) the valuation function of ¢ in our second order model. It
follows that any ¢ of .Z, such that [VEF"™(F™...F™...)], is subject to the maximal
constraint that the second-order quantifiers range over all concepts, with respect to
the equivalence relation R. So, for F' € Con, if R(z,y), then for all Con C Dom,
r € Fiff y € F. Moreover, if =R(z,y), then, for some Con C Dom, such that
FeCon,zeFifty¢F.

Anyway, before we give the main truth clauses of our account, let’s focus on a
moment on the notion of variable assignment. We consider a function o that (i) for
each variable outputs an object x € Dom, (ii) for each relation-variable outputs an
element of Con, namely o(F™) € Con and (iii) for every function-variable outputs
an element of Fun, i.e. o(f") € Fun:

Definition 35. We define satisfaction for an element ¢t of Dom with free variables
X1,...,Ty, as follows:

tM7 = o(z),
if ¢t is the variable z;. Now, we define satisfaction relative to variable-assignment o:
M, o Ety =ty iff 217 = )17,
Furthermore,
Mo E [ (ty,. .. t)iff M,oE &, .. tM9) e o(f"M)

and,

M, o E F™Mty, ... t,) iff ME @G, M) € o(F™M),
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for, ZL-terms tq,...,t,.

M, o0 E —piff M,0F ¢
M,oE (pAY)iff: Mo F pand Mo FE 1
M,oE (V) iff: Mo Epor Mo E ¢

M,oE (¢ — ) iff 1 if M,0F ¢, then M,o E 9
We add the clause for universal quantification:
M o EVE"o(F") iff M,7E ¢(F"),
And
Mo EVro(f") it M, E o(f"),

for every assignment 7 which agrees on everything with o, except possibly on F™
(or on fm).

Finally, we are able to say that for any .Z-sentence ¢:
ME @ iff M,oE o,

for any variable-assignment o.

Remark. Consider M and suppose R is any one-place relation variable such that
R C Dom. We want M to satisfy the following principle: 3FVv(R(v) <— F(v)).
By inspection, we see that R is itself a witness to the second-order quantifier. But
this holds just in case R € Con, and this is not guaranteed in any .Z-structure.
Thus, it is natural to add the following principle:

Axiom (Comprehension principle for relations or properties).
JF" Yy, ..., 0, [F”(vl, coy ) (v, ,vn)},

for every formula ¢(vy,...,v,) which does not contain the relation variable F™
itself?®.

Furthermore, the notion of a Henkin model has to be restricted still further: we
accept only those Henkin models that satisfy the comprehension principle, as well
as the remaining second-order axioms. Hence, we assume that the Henkin models
considered are restricted to those that satisfy the comprehension schema, and these
are to be considered faithful models.

251f we do not add the following restriction, it could be always derived a Russell-style paradox.
As usual, in what follows, we allow the n-tuples of variables, such as x1,...,x,, to be abbreviated
as 7.
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Return considering abstraction principles. We want the RHS determine the truth
value of the LHS in a well-founded manner: thanks to the truth value of the elements
in the formula encapsulating the equivalence relation on Dom, we will be able to
determine the truth-value of the identity statement between the two abstracted
concepts. Our formal machinery is supposed to work in the following manner:

®[F, G

equivalence relation

!

second-order formula
whose range is restricted to Con

+
[/ r,"/c]
1
where R determines the value of @,
with respect to the variable-assignment o
1
Valr(®[?/r,%/cl)
+
R settles also the interpretation of =,
and hence the truth value of the abstracta

!

Valr| §(%/r) = §(%a) |
N(F)=x N(@)=y

Proper abstract objects
As we can see from their formal general version, it becomes clear that the value of
the RHS, containing an equivalence relation between two concepts, yields the value
of the LHS, therefore of the identity between the two “abstracted concepts”, i.e. the
new objects.

Now, recall that we allowed our model to think that = is the identity sign. It is
natural to want that Leibniz’s Law remains valid®® and, in order to do this, we want
that our equivalence relations R satisfy the following closure condition:

o Let t1,ty be two terms denoting (pre-)objects, such that for some F,G € Con,
N(F) =t; and N(G) = tp. Let T",7"[*?/,,] be two complex terms, such that
T” is the result of substituting each instance of ¢; in T” with ¢t3. Then, if
(t1,t9) € R, then (T",T") € R.

This closure condition allows us to prove the following proposition:

Proposition 13. Let Con C §2(Dom) be the set of all first-order definable formulas
with one (or more) free variable(s). Let Dom be the set of (pre-)objects, and R any
equivalence relation on Dom that respects o. Then, M|R] is a Henkin model of
second-order logic.

26See Horsten and Linnebo 2016, p. 5.
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Proof. The only part of the proof that is not immediate from the definitions of
satisfaction for M, it is the one that concerns Leibniz’s Law. Let ¢t and ¢’ be terms
in Dom and ¢ any formula. We want to show that:

M(R],0 E ¢ +— o('),).

The proof goes by induction on the complexity of ¢. Suppose ¢ is atomic. If
© =qef t = t, then, by the fact that R is an equivalence relation on Dom, it follows:

MR, cEt=t+— "/, =",

For the remaining atomic cases, we simply need to invoke the closure condition o.
Suppose now, ¢ =q¢¢ Fx1,...,x,, where F' is a second-order variable. We have to
show that Leibniz’s Law holds for any first-order definable formula ¢. Let’s prove it
via induction on the complexity of ¢. The base case is the one considered above.
The induction steps are:

if M[R],0E —p(t=1)+— —p("/, ="/, then :
MIR), 0 ¥ o(t = t) iff M[R],0¥ (") ="/,)

t) < [p A¢)("/s ="/s), then:
M[R ],a|=cp(t—t)/\1p(t—t) iff
MR, 0 E (") = t/)Aw( Je="10), i
M[R],0 F ¢(t =t) and M[R ],(ﬂ:d)(t:t) iff
M[R], o & @(*/i ="/;) and M[R],O' =0 ="11)

it M[R],0FE [p AY](t =

it MR, 0 E [pV o]t =1) «— lpVo](“/e ="/s), then:
MIR],oc Ep(t=1t) vVt =1t) iff

MR, o= oo ="1) V() ="/ it

M[R] oEp(t=t)or M[R],o E(t=t) iff

MIR] 0= o("/i="/:) ot M[R),o = 9("/s ="/

M), F o = ¢](t =1t) «— [ — ¢I(“/e = /1), then:
M[R), 0 E o(t =t) = (t =t) iff

MIR],o = o(")i="1) = (/e ="],) ift

it M[R],o0F ¢(t =1t) then, M[R],0 E¢(t =t) iff

if M[R],0F ("), ="1/) then, M[R],0 E("/; ="/,
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MIR],0 E [Vp|(t =t) «— [Vy] (t,/t ="/,), then :
MIR],0c EVp(t =t) iff M[R],TE p(t =1),

for every 7 which agrees with o on everything, iff
MR, o V(") ="/1) ifft M[R],7E o("/: ="/1),

for every 7 which agrees with ¢ on everything.

This completes our inner induction on the complexity of .

The outer induction cases are identical to the previous and, thus, our proof of
Leibniz’s Law is complete.

Consider now full comprehension for relations. We want our model to satisfy:

MI[R), o F 3F™5 | F"(T) +— (1))

Let ¢ be a formula with second-order variables. Thanks to our clause for quantifica-
tion, every assignment ¢ maps any second order variable to a first-order definable
formula of C'on. Thus, any second-order variable F™ in ¢ may be replaced by a
first-order formula, which establishes that comprehension on ¢, relatively to o, is
allowed.

This last point terminates our proof and we can easily establish that M[R], o is a
Z-Henkin model for second-order logic. [

But, how do we determine the value of a formula in the setting we’ve just sketched?
Leitgeb offers an answer. The notion of “dependence” we are seeking for can be
informally rendered as follows: the identity between two abstracta depends upon
the identities between other abstracta — the latter, having been previously settled
in a well-founded manner. Our work will be firstly concerned with the notion of
“dependency” and, secondly, with respect to that notion, we will provide a hierarchical
construction of sets of grounded identity /difference facts, which allow us to prove some
nice theorems concerning the usage of abstraction principles. As stated, Leitgeb’s
approach remains our main inspiration source.

4.3.2.2 Dependence, Identity and Difference

Consider that, even if in a different context,

“The” notion of dependence is one of the most frequently employed (and perhaps also
abused) notions in philosophy. Different kinds of dependency have been considered
in fields such as metaphysics, philosophy of mind and philosophy of science, but few
general, systematic theories of dependence have been developed that are also applicable

in a semantic context2?.

2TLeitgeb 2005, p. 159. As remarked several times, our considerations are semantic oriented,
in the sense that we are studying a faithful way to formalize, with a model-theoretic approach,
notions such as “dependence”, “supervenience” and “groundedness”. For more about ontological
and epistemological concerns about the usage and the interpretation of this model, see our Chapter

5.
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The notion of dependence we are seeking for may be posed as follows: “the identities
(or differences) of two (pre-)objects depend on the identities (or differences) between
other (pre-)objects”, with respect to N' and ® (defined above):

Definition 36. For all (x,y) € Dom x Dom, for all Z C Dom x Dom:
(r,y) depends, 4 on 7 iff

for some A, B € Con, such that x = N(A), y = N(B), and for any equivalence
relation Ry, Ry C Dom x Dom, it holds that:

if, for all A’, B’ € Con, such that (N (A"),N(B')) € Z,

Valg, o(§(A) = §(B') = Valg, ,(§(4) = §(B'))
then,

VCLlRl,U((I)[Z, ED - Vale,U(q)[Z7 ])

Recall that, since N is injective, then A and B in our definition are uniquely
determined. Hence, “(x,y) dependsy ¢ on Z” indicates that the identity between
x and y depends univocally on which identities are already settled in Z. If we
state the contrapositive of our if-then clause, then dependence means: if there
is difference with respect to ®[A, B] as determined by an equivalence relation R,
then there is a corresponding difference with respect to the members of Z. Hence,
here, the semantic sense of dependence means exactly that the (truth-value of the)
identity (or difference) between §xFz and §xGz, “supervenes” the (truth-value of
the) equivalence relation R as expressed by ®[F,G]. Therefore, in outline, two
concepts, A and B of our codomain, thanks to an abstraction mapping N, and with
respect to ®, are mapped to some pre-objects, © = N (A), y = N(B); where, these
resulting items are what we might call proper abstract objects, i.e., x = N(A) and
y = N(B) . Hence, with respect to the choice of N’ and ®, different sets, of proper
abstract objects — whose identity or difference conditions have already been settled —
will emerge. Remember, additionally, that sets generated by two different abstraction
principles are not identified by the start, because, perhaps, at further stages and
thanks to another well-defined equivalence relation, such a cross-identification may

be successful.?®

Furthermore, by analysing our definition of dependence, if we fix our first relatum?’

of the dependence relation, then the following properties may reveal useful:

Lemma 14 (Properties of Dependence with respect to the Fixed First Relatum).
For all (x,y) € Dom x Dom and for all A;T' C Dom x Dom:

(1) if (x,y) dependsy ¢ on A and A C T, then (z,y) dependsy ¢ on I,

28Leitgeb 2017, p. 274.
29For our main source, see Leitgeb 2005, p. 161.
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(2) if (x,y) dependsy o on A and (z,y) dependsyr o on I', then (z,y) dependsy o
on ANT.

(3) (z,y) dependsy o on Dom.

Additionally, by taking some notions from set theory, let’s say that X C §2(Dom) is
called a filter iff for all I', A C Dom:

(i) X € Dom and @ ¢ X
(i) if T € X, C AC X, then A € X;
(iii) if A e X, then 'NA € X.

Remark. For any A C X, with A # &, the set {I' € Dom | A C I'} is called the
principal filter generated by A.

Moreover, X C §2(Dom) is an ultrafilter iff:
(i) X is a filter on Dom;
(ii) for all I' € Dom, either I' € X or Dom\I" € X.

Now, for any Z C Dom x Dom, let
Dne(Z) ={(z,y) € Dom x Dom | (x,y) dependsy ¢ on Z}

the dependence chain of Z, that is the set of all pairs (z,y) in Dom that depend
(in the sense of our previous definition) on Z. In other words, we've encountered the
dependence chain of a set Z, i.e., all the sets of pairs in Dom x Dom that depend
on Z. Additionally, the notion of dependence chain of (x,y) may reveal useful. For
(x,y) € Dom x Dom:

Snvoe((z,y)) ={Z C Dom x Dom | (x,y) dependsy ¢ on Z}

In other terms, §y o({z,y)), — the dependence chain of pairs of individual -,
is the collection of all subsets of Dom x Dom on which pairs of individuals, such as
(x,y), depend on (as previously defined). In this context, notice that, the notion
of least element in a set can be introduced: let X C §2(Dom), we call T least in
X iff ' € X and for all A € X, it holds that I' € A. In other words, I' is the
“generator” set of X. As in the case of truth, least members of §y o(Z) correspond
to sets of pairs that (z,y) depends on essentially. We may, indeed, define for
(x,y) € Dom x Dom, Z C Dom x Dom:

Definition 37. (z,y) depends, ¢ essentially on Z iff:

Z is least in §yxo((z,y))

Clearly, §x ¢ maps pairs of individuals to the set of pairs individuals on which they
depend; while © ¢ maps any set Z on which a pair of individuals depend on, to
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: \
for (x,y) € Dom x Dom
ZCI'CA

Z g F > g./\/',@(<xvy>)

N/

> §€9(Dom x Dom)

Figure 4.1: Z is least in $y .o ((z,v))

the other sets characterised by the same dependence relation with respect to the
pair of individuals. Hence, D¢ maps sets of pairs of individuals to other sets of
pairs of individuals. The relation between the two dependence chains considered is:

Z € 3na((z,y) iff (2,y) € Dy.a(2).

Proof. (=)
Suppose Z C Dom x Dom and assume Z € Fn o((x,y)). By definition:

Z € {Z C Dom x Dom | (x,y) dependsy ¢ on Z}

Indeed, (x,y) dependsy ¢ on Z means that, actually, Z is one of the sets on which
our pair of individuals depends on. This means that Z belongs to the collection of
sets on which (x,y) depends on, namely D, ¢(Z). Likewise, the pair of individuals
depending on Z is in the collection of all of the pairs of individuals that depend on
Z, SO

(x,y) € :D/\/,CI)(Z)

(<)

Suppose (z,y) € Dom x Dom and assume (x,y) € Dy ¢(Z). By definition:
(x,y) € {{x,y) € Dom x Dom | (x,y) dependsy .o on Z}

Since, (x,y) is in the dependence chain of Z and, thus, Z is one of the set of pairs of
individuals on which (z,y) depends on, we may conclude

AS §N7@(<Jf,y>>
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With all this background we may interested in the following lemma:

Lemma 15 (Properties of dependence with respect to the abstraction operator).
For all (x,y) € Dom x Dom, Z C Dom x Dom:

(z,y) € Z iff,

for some A, B € Con, such that N'(A) =x, N(B) =y, and for all R C Dom x Dom
it holds that:

(N(A),N(B)) dependsy o on Z
Equivalently:

(x,yy € Z iff (N(A),N(B)) € Dno(2)

What we’ve encapsulated in the previous lemma is fundamental, since it tells us that
a dependence chain of Z is closed under the application of the abstraction operator
to the couples of individuals members of Z. In other words, abstracta are within
the of dependence chain of Z, just in case the pair of individuals that may become
proper abstract objects (what we’ve called pre-objects) are in Z.

4.3.2.3 The Set of Grounded Identity and Difference Facts

Well, the next step is to proceed towards the construction of the set of grounded
identity and difference facts. First of all, let’s begin by considering some characters of
D¢ itself. Consider that in this context, the operator D¢ is a map §2(Dom) —
§2(Dom), such that, Z — D 4(Z). Asin the case of truth, its fundamental property
is that of being monotonic, that is, for all ', A C Dom x Dom: if ' C A, then
Dn.e(l) € Dya(A)*. The monotonicity we've just stated implies the following
points:

(i) it exists a least fixed point Ey C Dom x Dom of Dy 4.
(ii) for all, (x,y) € Dom x Dom: (x,y) € Ej iff (x,y) dependsy ¢ on Ejy.

(iii) Ey can be reached from below by iterated application of ® ¢, as follows:

Ey =qef @
Ea+1 —def QN,é(EOé)

B, =get U E, (for A limit ordinal).
a<h
30 Proof Sketch: Suppose that (z,y) dependsy ¢ on T, that is (z,y) € Dar,e(I). Assume that,
for all T A C Dom with I' C A. Then, by (1) of Lemma 15 of the present chapter, we know
that (x,y) dependsyr,g on A too. Hence, (z,y) € Dar 4 (A). Since I' C A, we may conclude that
Dy o) COna(A). |




160 CHAPTER 4. MATHEMATICS BY ABSTRACTION

Furthermore, this sequence can be shown to be monotonically increasing and Ej is
what we were searching for: the set of grounded identity and difference facts.

Now, recall that in order to restrict abstraction principles to their grounded instances
we were searching all and only those identities on which the identities of abstracta
depends on. In other words, we were interested in restricting abstraction principle in
the following manner, by using an accurate terminology: x is identical to y, according
to a given abstraction principle, just in case their identity depends (only) on the
identities that hold in a subset of the domain. Reformulating once again, the identity
between two “proper” abstract objects hold if the identity settled previously between
the A —preimage of the labels in Dom hold. With this formal framework we have
already reached the set of identity and difference facts, namely Ej;. This means that
the set Ejy, with the iterated application of ® s, collects all the sets on which the
pairs of individuals depend on and viceversa. That is, within Fj there are not just
the identity, but also the difference facts and, indeed, Ej; is the set that collects
the dependence and not-dependence relations between pairs of individuals. Recall,
indeed, that our dependency definition implies that, if in some Z C Dom x Dom the
identity of z,y does not hold, then the identity between the abstracted z,y does not
hold. It follows that, for a € Ord, E, is increasing and there is a least ordinal o,
such that E,- = Ey. Anyway, Ej; is not the only fixed point of ® ¢ and, indeed,
for instance, Dom = Dy ¢(Dom) is its largest point. The abstraction process E,
has the following property:

Lemma 16 (Properties of (E,)acors With respect to the abstraction operator). Let
E, C Dom x Dom. For all ordinals «:

(x,y) € B, ift

for some A, B € Con, such that x = N(A),y = N(B), and for all R C Dom x Dom,
it is the case that:

N(A),N(B') € Eana

Hence, by the previous lemma, members of Ej may be assigned with an ordinal rank,
such that the first occurrence of the identity (or difference) fact in the progression
E,, defines its dependence rank. Indeed,

Definition 38 (Dependence rank). For (z,y) € Ey, (x,y) has a dependence rank «
iff:
(z,y) € E, and for all < a: (z,y) ¢ Ej

What we're told in the previous definition is that, every (z,y) € Ej is also a member
of a set F, and that there is a least ordinal o* such that Ejy =gt Eu+. This least
ordinal is the dependence rank of (x,y). Moreover, recall that the class a € Ord is
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well-ordered and, thus, the dependence rank of any (x,y) € Ej is uniquely deter-
mined.

Now, in order to determine only which instances of an abstraction principles hold,
let’s isolate the identity facts, rather that the difference ones, from Ej. Let’s do it
in the following way:

FO =def D

Foi1 =daet {{7,y) € Eqy1 | FA, B € Con : x = N(A),y = N(B),
Valgsr(r,)(§(4) = §(B)) = 1}

B =get U F, (for A limit ordinal).

a<)h

This definition implies:

Lemma 17 (Properties of (F,)acora With respect to (Eq)acora). For a € Ord:
E,=F,UF;,
where, for E C Dom x Dom, we set:

F~ ={(z,y) € Dom x Dom | —~(z,y) € E}.

As it should already be clear, Fys is (just) the set of grounded identities facts, while,
as defined before, Fj; contains just the negative identity facts, namely the differences.
The union of both Fys gives as result the entire /—hierarchy. Recall, that at the
beginning of the following section, we’ve said that we allowed our second-order
language to contain the identity symbol “=", but that our M interprets it as the
equivalence relation on Dom. If we have a look to the recursive definition of F,
we notice that the value of the elements in sets F, . is restricted to the reflexive-
symmetric-transitive (RST') closure of the elements in F,,. This means that the truth
value of the identity between members of F, ;1 (as given by an abstraction principle),
is determined by the value of the RST closure of the elements in F,, and from which
we abstract.

By having isolated just the identity facts, let’s establish the following definition:

Definition 39 (Identity rank). For (z,y) € ] Fu, (2,y) has an identity rank o,
aeOrd
iff:

(x,y) € F,, and for all < a: (x,y) ¢ Fs
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In order to say when an identity instance is true in our Dom, we need the following

result®!:

Theorem 18 (Convergence of (Fy,)acora). For all a, 5 € Ord, with f < a:

FoNEs=Fjs

The theorem implies that (F,,)acorq is increasing and, moreover, that it must converge
to a limit. This means that, for some a®™ € Ord, o™ is the least ordinal « such that,
for all € Ord, with 8 > a, Fg = F,,. We define, finally, Fjy =qer F,+. This implies

that U F,, can now be simply renamed Fj.
aeOrd
Now, consider our dependence definition. We have that for (z,y) € Ejz, such that

a > 3.

Valg,((z,y)) = Valp,({z,y))

This fact is important since it tells us that for any (x,y) € Ey, its truth value, as
determined by V'al(r,)..,..0 Stabilise after its dependence rank. By a previous result,
we know that an identity statement in the set of grounded identity and difference
facts has a dependence rank (the ordinal indicating the first time of its occurrence).
Now we've just stated that the truth value, as evaluated by Valg . r,, stabilises after
its dependence rank. Let’s consider an example: if (x,y) is in some Ejg, then — by
isolating the identity facts, by means of the F'—hierarchy — the evaluation function
of Fj gives 1 if the identity between (z,y) holds (0 if it is not the case). Moreover,
for all & > f, the evaluation function of any F, will output 1 (or 0, dependently)
and, hence, the truth value of an identity (or difference) statement gets settled after
its dependence rank has been established. Therefore, we may conclude that for any
(z,y) € Fy the identity rank of (z,y) and its dependence rank coincide:

Lemma 19 (Rank-coincidence). For (z,y) € Ey:
(x,y) has a rank « iff:
(x,y) has a dependence rank «, iff,
for (z,y) € Fy:

(x,y) has an identity rank «.

Of course, this lemma entails that F}, eventually reaches a fixed point Fj at the
same ordinal as the corresponding F—progression. That is least fixed points of F,
and E, coincide as well, o* = a* and, indeed, let’s denote Fjf = F,» and Eyy = E,-.
The whole theory we've just setup, finally, concedes us to introduce the following
properties of the truth value of a pairs of individuals in Fj, with respect to Ej:

31 Proof sketch: Standard transfinite mathematical induction.
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Theorem 20 (Truth in Fjr, with respect to Ej). For all (z,y) € Ey,

1. (z,y) € Fy iff ValFlf(<a:,y>) =1.
For all (z,y) € Ey, for all A,B € Con, st. z = N(A),y = N(B) and for
R C Dom x Dom, it holds that:

for all A’, B € Con:
2. (N(A),N(B')) € Fy iff Valgsr(r,).o(§(A’) = §(B')) = 1.

Finally, we are able to define for (x,y) € Dom:
Definition 40. (z,y) is true in Dom iff (x,y) € Fy.

By point (1.) of the previous theorem, this definition is adequate with respect to the
members of Fj, namely with respect to the pairs of individuals that depend on the
set of grounded identity facts.

One important result, concerning in particular abstraction principles, is the following.

Theorem 4.3.1. Let Fiy U Fyy = Ey, where Ejy C Dom x Dom. Then, M[Fy|, o is
a model of any instance of any abstraction principle of the form:

§z.p(x) = §a.9(x) ¢— [/, "/ g] (XA)

Proof. Suppose first R is an equivalence relation on Dom, encapsulated by the second-

order formula ®[¢®)/ . ¥(®)/,]. According to our model, R settles the interpretation of

“=": we will indicate this fact with the subscript RST (reflexive-symmetric-transitive

closure). Recall that the variable-assignment ¢ assigns each second-order variable

F,G € Con a first-order definable formula ¢(x),1(z) of .Z. (1) Assume:
MIFy),0 E §z.0(z) = Sx.4)(z).
This means that:
Valg rst(r.) 0 (§7-0(2) = §z.9p(2)) = 1,

with o < A (for A limit ordinal).
By a previous definition, this implies that:

<N(Lp(z)/F)7N<w(z)/G)> € Fa-
By the notion of dependence, we may imply:
VCLZR7F5((I>[@($)/F,w(x)/G]) =1, for some 3 < a.

Hence:

M[Fyl,0 F @79/ p, ") ]
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(2) By the same reasoning, assume:

M[Fyl, 0 ¥ §z.0(x) = §z.ap(2).

This means that:

Valg rst(F.).0(87-0(x) = §z.9(x)) = 0,

with o < A (for A limit ordinal).
By a previous definition, this implies that:

NP ), N (")) ¢ Fo
By the notion of dependence, we may imply:
ValR,Fﬁ,g((I)[W(”)/F,1”(9”)/(;]) = 0, for some 3 < a.
Hence:
M[Fy],0 ¥ @7 p, "/ g].

Terminating, thus, the proof. |

4.3.3 Hume’s Principle, Basic Law V and Grounded Con-
cepts

Now, in order to see the formal machinery we've just proposed at work, consider the
following example concerning HP.32

Example (Hume’s Principle).
#F =#G +— F ~ G

Dom ={0,1,2,3,...,8}, Con = {2,{0},{0,1},{0,1,2},...,N}
N: @—0,{0}—1,{0,1} —2,{0,1,2} — 3,...,N— R
O[F, G| : F is equinumerous to G

We collect the pairs into our E—hierarchy of grounded identity/difference facts:

Ey : (0,0, (1,1),(2,2), ..., (0,1),(0,2), (0,3), ... (1,0), (2,0), (3,0), ..., (Ro, Ry},
(0,R0), (Ro, 0)

By (1,2), (1,3, (1,4), ..., (2,1), (3,1), (4,1), ..., (1,Re), (R, 1)
By (2,3), (2,4), (2,5), ... Vo (2,0), (R, 2)

—~
\.C)O
[\
~
—~
N
[\
~
o~
ot
DN

32We take Leitgeb’s example, see Leitgeb 2017, pp. 277-279.
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Here, our abstraction principle settles all the identity /difference facts for abstracta
taken from the concepts in Con. For instance, (0,0) € E} since Valg (9D, @) = 1,
for any R. (0,1) is in Ey, and Valg,(P[&,{0}]) = 0, since a non-empty set {0}
cannot be equinumerous to the empty set. Once the identities for pairs in £ have
been settled, for instance, (1,2) will appear at the next stage, in Es, since — indeed —
Valg,(®[{0},{0,1}]) depends only on the differences and identities that have been
already established at the previous stage, in F;. That is the identity/difference facts
that have been determined at E; determine further identities or differences between
pairs at next stages of the E'—hierarchy.

Now, by isolating the corresponding identity facts (namely di F'—sets), we indicate
them by double-underlining their instances:

Er o {0,0), (1,1, (2,2), ..., {0,1), (0,2), (0,3), ... (1,0), {2,0), (3,0), ..., (Ro,Ro),
(0,R0), (No, 0)

By (1,2), (1,3), (1,4), ..., (2,1), (3,1, (4,1), ..., (1,R), (Ro, 1)

By (2,3, (2,4), (2,5), ..., (3,2), (4,2), (5,2), ..., (2,R0), (Ro,2)

Here, E—sets determine dependences among their members, while the identity
relation is determined by proceeding through the F'—sets. We have already seen
that once in F; identities or differences between pairs of individuals, namely 0
and 1, have been settled, (1,2) will be determined at the stage further. Since,
Valg,(®[{0},{0,1}]) = 0 and we know, from the previous stage, that the pre-object
0 is different from 1 with respect to Fy, it follows that (1,2) is a pair of distinct
object. This, simply, means that (1,2) is not in Fj. Likewise, e.g., at Ey we have
established the difference between 1 and 2 and, since Valg,(®[{0,1},{0,1,2}]) =0,
the pairs of individual (2,3), appearing in Fj, are distinct objects and, therefore,

are not members of F5. Notice that our initial assumption, that our second-order
quantifiers respect the identity relation that each model establishes, is here verified.
Identity relations, indeed, are to be understood as equivalence relations, compatible
with second-order quantification: there is no possibility for our models to establish
the equinumerosity, for instance, between {0} and {0, 1} when the model treats 0

and 1 as distinct. Viceversa, we cannot count {0} and {0, 1} as not equinumerous, if
the model treats 0 and 1 as identical. Trivially, 0 is identical to 0 and, therefore, the
equinumerosity relation between @ and & is determined. Differently, 0 is different
from 1 and, hence, @ cannot be established as equinumeorus to @

In our example, all the pairs of the form (z,x) are to be considered as identity facts.
Now, at the last stage w all the pre-objects have “become” proper abstract objects,
with respect to their identity or difference as given by Fj;. In this sense, every subset
of Dom turns out to be grounded in a sense that, now, we may state explicitly:

Definition 41 (Groundedness). For y € Dom, A € Con, R C Dom x Dom, such
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that y = N'(A), we say that

A set X € Con is grounded iff:

ValR,FZf,U(q)[7> §<Z)]) =1

In other words, a subset of Dom is grounded just in case it stands in a ®—equivalence
relation with an AN'—pre-object of Dom, that has become a proper abstract object

at the stage a where @ is evaluated by Valg,,. In our example, all concepts

are grounded, since any of them stands in an equivalence relation with some (pre-
Jobject: & ~ O,m ~ l,m ~ 2,...,N ~ Ry. In this example, likewise, all
subsets of Dom are grounded, since anyone of them is equinumerous with a concept:
0~3,1~{0},2~1{0,1},...,8 ~ N. Thus, in this framework, every pre-object
x € Dom, determined by a member A of Con, such that x = N(A), has, finally,
“become” a proper abstract object. In other words, at the last w—stage every pre-

object of Dom will turn into a proper abstract object and every concept will be
grounded with respect to Val. g, o
In this sense,

1.

We determined identity and difference facts between pre-objects (or labels)
along well-ordered stages;

. The abstraction map A and ® determined the set of proper abstract objects,

for which all identity and difference facts have already been been settled at the
fixed point stage;

. The concepts from which we abstract the proper abstract objects are grounded

in the sense that they stand in a ®—equivalence relation to any of the former
concepts at the fixed point stage;

. Impredicative abstraction principles are understood, thus, in a well-founded

fashion and, indeed, what we are calling “abstraction process”, looks more
alike an “individuation process”. Let’s be clearer: if the process, which starts
always with the emptyset, reaches some pair of individuals (x,y) of labels,
then they're reached at some well-determined ordinal stage, which, in turn, is
completely determined by identity and difference facts settled at stages before.

. Our pair of individuals (z,y) of labels can be reached by iterated application

of an abstraction principle from the emptyset just by involving identities and
differences between x and y.

. If an abstraction principle leaves indeterminate the question of whether x and

y are identical, always starting from @, is a point we will discuss soon?3.

33There are different options either invoking classical logic or employing three-valued models for
second-order languages. See Leitgeb 2005, p. 171 and Leitgeb 2017, p. 281 — this latter regarding
exactly the case of abstraction principles.
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It is interesting to notice that HP, when added to second-order logic, gives raise to
what we nowadays call “Frege’s Arithmetic”. Many scholars, since C. Parson’s article
(1965) appeared and conjectured that the banning of BLV in favour of HP, could
restore — even if in an altered fashion — Frege’s Grundgesetze, added (i) a non-logical
symbol, #, to their vocabulary, that applies to second-order variables and (ii) HP
as an axiom. The main result has settled positively Parson’s conjecture® and the
derivation of the Dedekind-Peano axioms for arithmetic from second-order logic (+
HP) has shown successful. Moreover, unlike BLV, HP is not an inflationary principle
and, hence, second-order full comprehension is admitted. In the following decades,
other Fregean studies emerged and, in particular, by modifying the setting in which
BLV is evaluated or by modifying BLV itself (in the sense of considering either its
axiomatic or its schematic version), some nice conclusions have been drawn.

In this spirit, our intent is limited in showing how our second-order model — which
is based upon a non-standard semantics — yields a model for BLV. The foregoing
example concerning HP served as “informal” description of how our framework is
supposed to work. In turn, consider the second-order language to which the non-
logical symbol, eF'; is added and which has to be read as “the extension of F'”. Recall
that our F, G € C'on were defined as ranging over first-order definable formula of our
first-order .Z. In order to be clear, if our second-order domain would be the entire
powerset of the domain, in what follows, we would not need to take care about the
distinction between the axiomatic and the schematic version of BLV:

eF =eG «— [F =(] (BLV4)

ev.p(r) = ex.(x) «— Va(p(r) = ¢(r)) (BLVs)

Instead, since we have posed some restrictions, namely by allowing comprehension
just with respect to the members of C'on, then it is important to establish which
formulation to analyse. Indeed, in order to avoid paradoxical conclusions, we restrict
the following results to the axiomatic version of BLV. In order to continue remember
that a variable-assignment of a second-order variable outputs a first-order formula of
our domain. In this sense, if 0(G) = p(u), and €G, then, according to o, it may be
concluded eu.p(u). First,

Theorem 4.3.2. BLV,4 has grounded instances.

In order to be clear, we want to show that there are some grounded instances for
which BLV 4 comes out true.

Proof. First of all, consider that ®[F', G] encapsulates the equivalence relation R of
material equivalence between the variable-assignment of F' and G.

Pick a formula ¢(u) =gt (v = u) and let o(F) = ¢(u). By logic alone, we establish
that o(u) is materially equivalent to itself. Hence, for some ordinal a:

34See, among others, Zalta 2018, p. 29.
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ValR@Fa (@[F, F]) =1.

In other words, the material equivalence between a concept F' and itself, in this
context, is positively evaluated and hence, the identity between the extension of F'
with itself may be easily checked.

Aside the determination of @, recall that R settles also the interpretation of =, and,
given BLV 4 and our variable-assignment o (F'), we may infer:

eu.(u =u) = eu.(u = u)

Thus, for the pairs (eF', eF) being in some set F,, of the grounded hierarchy F; (as

settled by the equivalence relation), this implies that the RST value of €(F') = ¢(F')
is 1. |

Thus, the label [eu.(u = u)] = x — identified with the extension of the objects
identical with themselves — turns as proper abstract object, x = [eu.(u = )], at
the very ordinal stage when evaluated by the ®—equivalence relation, in this case,
with itself. Therefore, the property F' defined by the first-order formula v = u is a
grounded instance of BLV 4. Henceforth, a more general result, concerning our study
of BLV 4 may be established.

Theorem 4.3.3. M[Fy|, o is a model for BLV 4.

Proof. We want to show that for some variable-assignment, o, such that o(F) = ¢(z)

and o(G) = ¢(x):
M[Fy],0 F ex.p(z) = ex.ap(x) +— O[F@)/ @)/ ]

Suppose that ®[F, G] is a second-order formula determined by the equivalence relation
R. In this case, we have to consider material equivalence. Assume:

M[Fyl, 0 E ex.p(z) = ex.ah(z)
This means that, for some ordinal «:
Valo rsr(r,)(ex.0(x) = ex.p(x)) = 1.
By dependence, then we may imply for some ordinal § < a:
Valp o 5, (B[P0 4@/ 6]) = 1.
Hence,
M([Fyl, 0 F [0/ ¥/ ¢]

For the other direction, simply invert the starting point. |
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Further Researches. Abstractionism and the semantic, mathematical and philo-
sophical studies of abstraction principles are one of the most debated and fruitful
perspectives within the philosophy of mathematics. Indeed, the literature surround-
ing abstractionism is very vast and, indeed, we claim that what we've produced
within this chapter should be deepened — also with respect to other positions and
contributions, different from the one quoted in this chapter. Indeed, what we claim is
that, our sketchy considerations can be even consolidated by explicitly studying the
strength of our model. In this sense, — by having a second-order Henkin semantics,
plus impredicative abstraction principles, — we would like to study how much of the
so-called Frege’s Arithmetic can be secured within our model and, consequently,
which are the divergences between ours and other approaches. Predicative second-
order systems, to which Basic Law V is added as an axiom, have been studied from
different perspectives and, interestingly, many of them have been shown as strong
as Q, i.e., as Robinson’s arithmetic®. So, for what concerns the proof-theoretical
strength and the possibility of encapsulating Frege’s Arithmetic, we reserve these
inquiries to a second moment of the present analysis.

Back to Platonism! With respect to the background logic, our attempt has
consisted in limiting, in a Henkin way, the Comprehension Schema, by allowing
second-order quantification just within a specific subset of the powerset of our domain.
With respect to abstraction principles, we’ve allowed them being impredicative
and studied their consequent “logical” behaviour. Finally, we’ve sought a model-
theoretical construction for which the impredicativity of any abstraction principle
gets disentangled in a well-founded and well-individuated manner — thanks to which,
the axiomatic version of Frege’s unfortunate Basic Law V gets a model. So, as
remarked several times our study has focused upon truth-theoretical considerations,
i.e., we have mainly worked within semantic abstractionism, and, in this sense, we
have no clear “picture” of the main features of the “objects” that our abstraction
principles introduce in a well-founded manner. In this sense, we think it’s useful —
for the moment — to pause our formal and semantic study of abstraction principles
and trying to justify how our considerations, according to us, can render justice
to a Godel-like philosopher — allowing us, anyway, to prefer an ontologically and
epistemologically moderate Platonistic interpretation of mathematics®6.

35For an introductory overview on such a formalization of arithmetic see also our Chapter 1. For
similar remarks see, Linnebo 2004, Heck 2011 and Linnebo 2017.

36For the main differences we think subsist between a moderate and an extreme Platonistic
philosopher of mathematics see our Chapter 1. In that context we’ve also sketched our first
reflections on why we think “moderatism” is a better way to traverse. For a deepening of the
comparison see also Chapter 2, last section “Lightened or Heavy Platonism?”. In what follows
(Chapter 5), we are going to sum up our philosophical observations, by trying to give a plausible
(moderate Platonistic) interpretation of mathematics.



Chapter 5

Philosophy of Abstraction and
Platonism

Overview. In our previous discussion we have seen how the model sketched in
Leitgeb 2017 can be adapted in order to give a model for BLV 4. Our reasoning has
involved many features, such as the notions of identity, of grounding, and the usage
of (Henkin) second-order models, which should be discussed more deeply from a
philosophical point of view.

First of all, let’s consider that we have not proposed a theory which derives the
Dedekind-Peano axioms from logic alone, but we have simply proposed a formal
model in which precise abstraction principles may be evaluated. In this spirit, it is
useful to point out that the abstract (pre-)objects have no characterization yet and
that our logical machinery does not tell us anything about their main features. In
this sense, by a very simple inspection, it is clear that our model cannot directly
clarify ontological and epistemological issues concerning abstracta in general, but,
we claim, this can be done secondly and by considering our model as a starting point
for philosophical debates. Indeed, since our main purpose was that of evaluating the
tenability of ontologies as based on abstract objects (introduced thanks to abstraction
principles), we will restrict our focus on this point.

Recall that Godel-like philosophers held that abstract object may fit well within an
ontology of mathematics and that we apprehend all of them thanks to a incomplete
intellectual perception. We have taken seriously Godel’s platonistic ontological
position, especially trying to circumvent Benacerraf’s main criticism (1965). As
we have seen, Benacerraf misunderstood the difference between identity statements
and faithful representations. In the foregoing chapter, indeed, it was argued that
while {{@}} # {2, {a}}, both can, anyway, viewed as reducible to the same natural
number, 2, in this case, just by considering a precise equivalence relation.

Here’s the fundamental role of our formal model: things are not so general as Benacer-
raf had desired and, indeed, we have established a way in which equivalences relations

1See chapters 1-3.

170



NUMBERS, OBJECTS AND ABSTRACTION 171

determine identity statements without violating Leibniz’s Law of Indiscernibles. We
reason in the following way:

a. Pick an equivalence relation between the concepts from which you want to
abstract.

b. Construct the hierarchy of grounded identity/difference facts as established by
the equivalence relation.

c. Isolate the identity facts.

Hence, of course, Benacerraf, while understanding the identity relation as the starting
point of his considerations was brought to affirm that no set-theoretical reduction
can accomplish the work of representing univocally a natural number, we have
introduced a step earlier. Start with equivalence relations and let them determine
the interpretation of the identity symbol.

As it already should be clear, in order to do so we have employed a lot of notions,
which might well be objected. Indeed, consider the following questions:

1. What is an abstract object?
2. How does our formal machinery address the so-called bad-company objection?

3. Are we closer or even farer from giving a plausible answer to epistemological
concerns (such as to the much debated Julius Caesar problem)?

We think that trying to restrict our focus on these three questions, our reasoning might
reveal other (positive or negative) details of an abstractionist program. Moreover,
we believe that some of ours Godel-like doubts, especially epistemological, may be
addressed in a way which get rid of any sort of neural or psychologistic process.

5.1 Towards a Metaphysical Characterization of
Abstract Objects

5.1.1 The “Parallelism” Thesis

In developing our formal model we have fixed a domain of abstract (pre-)objects by
defining these items as the entities which, once our evaluation process has terminated,
may become proper abstract objects. An equivalence relation that operates on
concepts, additionally, settles the interpretation of the identity sign. So, for instance,
in more fregean terms, if some objects fall under a concept F' and some other objects
fall under concept GG, and we are able to establish a biunivocal correspondence
between the two concepts involved, then the identity between the number of the
F's and the Gs immediately follows. Henceforth, by following our reasoning, the
abstract pre-object representing the number of the F's (or the number of the Gs),
namely #F (or #G), “becomes” a proper abstract object. In other words, the main
difference occurring between pre- and proper abstract objects is that the latter has
been given precise and definite identity conditions. Aside the epistemic problem
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(how do we apprehend abstracta?), we have to care one moment on some ontological
concerns. Let’s recall that some paragraphs ago we’ve sketched one of the main
differences lying between Godel-like philosophers and some contemporary forms of
neo-fregeanism: shortly, while the former invoke a “strong” conception of existence,
the latter, instead, argue in favour of a “light” (or “thin”) conception of being. In
this spirit, since our final objective in this chapter is both, ontological /metaphysical
and epistemic, we believe the an investigation within the conception of existence,
involved by mathematical abstract objects, may reveal the best route in order to
provide tenable epistemological considerations.

Consider again, for the moment, our Godel-like philosopher of mathematics and the
following claim:

(Par) Mathematical abstract objects exist and describe a non-sensory reality, just
as physical bodies and scientific theories do with respect to our empirical
reality.

Let’s call (Par) the parallelism thesis, which we’ve already introduced in the first
chapter. Recall, additionally, that what we've called Extreme Platonism had (Par)
as one of his leading premisses. Indeed, an inquiry within the admissibility of such
a parallelism should be conducted, as we think that one of the main characters
of mathematical abstract objects is that their existence is «less demanding»? on
the world, then the existence of physical bodies. In other words — we argue — the
tenability of (Par) is a misleading route to understand ontological and metaphysical
questions concerning abstract objects.

But — let’s think for a moment — 1. if we get rid of (Par), from where should we
start understanding the main ontological characters of our mathematical abstract
objects? Additionally — begin asking yourself — 2. if the parallelism thesis is
false and we believe in the existence of abstract objects (at least, for an ontology of
mathematics), then any argument which tries to compare scientific/empiric perception
to mathematical /intellectual perception, has to be refused?

1. In order to shed light on our point of view, re-consider the following abstraction
principle:

#HE =#G+— F~G (HP)

Now, suppose that ' =4, “the pens on the table” and G =4t “the bottles in the
fridge”. If we are able to verify the equinumerosity (~) between the F,G, that
is we are able to establish a one-to-one correspondence between the two concepts
considered, then the identity between the numbers of the elements falling under F, G
is identical. Hence, the number of the pens equals the number of the bottles, in our
case. The objects standing on the LHS of the biconditional — the numbers — are proper
abstract objects, whose identity conditions — as settled by our informal example —
grant their existence and, moreover, we claim, that those identity conditions are

2Expression taken from Linnebo 2018.
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their unique “existence conditions”. This latter point explains precisely the meaning
of the concept of thin existence that we’ve already simply cited. At this point,
then, it should already be clear why we are refusing (Par) from our ontological
considerations: we believe that something as numbers, sets and lines exist, but that
their existence has to be characterized very differently and in a less demanding
way than that of physical bodies. Recall, now, the general working of our formal
second-order model. Thanks to the grounded hierarchy we have been able to isolate
the concepts rightly standing into an equivalence relation each to the other and,
hence, to “transform” (metaphorically speaking) into proper abstract objects, with
definite identity conditions. The strategy has been that of letting the equivalence
relation determine the identity symbol. Reconsider our example: once the elements
of the table can be put into a biunivocal correspondence with the elements in the
fridge, then the identity conditions for the (abstract) objects representing the number
of those elements follow in a grounded way.
This is, in addition with some godelian features, our archimedean starting point:
abstract mathematical objects are not concrete, not spatio-temporally located and,
moreover, their existence is grant by their grounded identity conditions been given.
This latter point will shed more light on the conception of light existence we have in
mind and, secondly, will conduct us directly to epistemology?.
First of all, consider the following reflection:

The vast ontology of mathematics may well be problematic when understood in a

thick sense. If mathematical objects are understood on the model of, say, elementary

particles, there would indeed be good reason to worry about epistemic access and

ontological extravagances. But this understanding of mathematical objects is not

obligatory. If there are such things as thin objects, then the existence of mathematical

objects need not make much of a demand on the world. [...] More generally, the less

of a demand the existence of mathematical objects makes on the world, the easier it
will be to know that the demand is satisfied?.

But, what does it actually mean that “thin objects are less demanding on our worlds
than concrete ones”? Are there just abstract and concrete objects or — as suggested
by C. Parsons — a third mid-way may be conceived?

Recall, for example, the fridge containing some determined objects. Now, if we pick
some object b in the fridge, say, the bottle of water, then, by inspection, we see that
it occupies a specific portion of space and a specific region of time. Let’s say that our
bottle b is divided into spatiotemporal parts b =gt b1, bo, . .., b,. Moreover consider
that any b; must be necessarily part of the entire material that we call bottle and
that we identified with b. Hence, a concrete object, such as b, makes a substantial
demand on our world, since — to exist — it has to occupy a determined space-time
region. In other words, objects that “demand” to occupy a determined region of

3Notice that by asserting that (Par) is false and by assessing a conception of thin existence,
we are somehow aiming not to invoke any sort of mathematical and/or intellectual perception,
whatsoever meant. We will discuss this point soon.

4Linnebo 2018, p. 9. Our emphasis.
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space-time, exist in a way to be conceived as “thick” or “robust”. Differently, if we
say that numbers, figures and sets are “less demanding” on the world, we mean that
their existential status is characterized by ontological “thinness”. Consider, for the
sake of the argument, HP that allows us to define “numbers as collections of objects”.
Now, let the collection of bottles in the fridge, say B, be the collection of (concrete)
objects that share the “bottle-being” property. Now, consider the collection of eggs
(i.e., of concrete objects that share the “egg-being”) and let’s call it E. Suppose that
we are able to establish a biunivocal correspondence between B and E, letting, thus,
the two sets be equipotent. According to HP, then, it follows that the number of B
is identical to the number of F. By existential generalizations, finally, it is possible
to conclude that something as the number of a collection (represented by a concept)
of things, exists.

As it should already be clear — we claim —, our strategy settles the existence of abstract
objects, such as the natural numbers (as introduced by HP), by not “occupying” any
region of space-time. Indeed, the abstract object, identified with the natural number
representing the bottles (or eggs) in the fridge, «is far less demanding than what we
found in the case of physical bodies», and, in «general, abstract objects are thinner
than concrete objects because they do not make demands on any particular region
of spacetime»®. By inspection, our second example, actually, may be generalized by
saying that any well defined collection of objects provides a referent for the (abstract
object) representing a natural number. In different terms, independently from our
sets B or E/, numbers, meant as thin abstract objects, exist. Therefore, as I have said
up to now, we may conclude that the first step in trying to furnish the ontological
definition of thinness is obtained by excluding that abstract objects may occupy a
portion of space and time.

5.1.2 The “Indefinite Extensibility” Thesis

The second step is linked to the previous, but, instead of focusing on the possibility,
for abstracta, to occupy a region of space and time, it concerns the different notions
of determinacy invoked by concrete and abstract objects. Another time, examples
will shed light on what we mean. Suppose we possess an almost perfect definition of
the concept of “liquid” and we assume that scientists won’t betray us. The definition,
for the details it contains, yields (or, should yield) the extension of the concept of
“liquid”. In other words, thanks to the definition of liquid we are able to settle all the
concrete things which fit the definition of liquid. For instance, by a simple inspection,
if I have in front of me a laptop, I won’t never assert that it bears the “liquid-being”
property, while, if I consider the material within my bottle of water, I will see that it
perfectly falls under the concept “liquid”. Hence, the determination of the concept of
liquid is perfectly given by its extension, namely, once we have a clear idea of which
concrete features belong to a liquid, then the world immediately furnishes an answer
to the question concerning the liquid-existence. In other words — we claim —, by

5Linnebo 2018, p. 45.
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comparing what scientist mean with liquid, to some concrete objects in the reality,
then we can have an almost complete lists of possible referents for the concept liquid.
Mixing both components together, we may say that thick existence (i) grants that
concrete objects are spatiotemporal located and, (ii) that, this location grants their
determinacy:

For most, if not all, concepts of physical objects, the determinacy of the concept
ensures the determinacy of its extension, given the usual input from reality®.

Now, let’s turn to mathematical abstract objects. We've said that, for instance, sets or
numbers lack spatio-temporal connotations and that, this particular feature, enables
us to introduce the first characterization of their thinness. The previous example
— concerning thick objects — has shown that, by comparing determinate definitions
to reality, a more or less precise list of concrete objects falling under the definition
considered will arise. But, if an objects is not inserted in our spatio-temporal
reality, how should we understand their determinacy? We claim, in accordance to
Linnebo’s line of argumentation”, that mathematical objects are characterized by
their indefinite extensibility. Consider, now, numbers as introduced by HP and recall
that, by abstraction from collections of things, bearing a precise relation to one
another, it is possible to form the number belonging to the collections of elements
considered. Let’s say that a, b, ¢ are the only objects falling under a concept P and
that #P is the number of the concept considered. Let a, b, ¢ other three objects
falling under another concept, say ) and let #@ be as before. By HP, since, P ~ @)
holds, then #P = #(@) holds too. Using our common number-sign we may therefore
conclude #P = #) = 3. By inspection of the definition of liquid, for instance, and
thanks to the input coming from the world, it was noticed that it is (or should be)
possible to settle down all the objects that fall under the “being-a-liquid” property.
Following this line of thought, it is natural to ask whether mathematical concepts
possess the same extensional determinacy as physical objects do. We claim that, any
sort of collection can form the number of its elements and, hence, even if we have an
almost clear way to form number statements, we cannot have their complete extension:
«[fJor any plurality of instances, we can use this plurality to define a new instance of
the concept, that is, an instance that is not member of the given plurality»®. That
is, by having many instances, for example, of sets characterized by the presence of 3
elements, we can use the totality including all of these 3-sets as a new number object.
In other words, mathematical abstract objects are indefinitely extensible: given some
acceptable instances of some abstract object, then, by collecting the totality of those
instances, we do not obtain — as in the case of liquids — the almost complete list of
all objects sharing their “being-a-liquid”, but what we get is another mathematical
abstract object. This is exactly what we mean by the terms “having no definite
extension”. In other words, for example, the totality of the “3-sets” is not the entire

6Linnebo 2018, p. 191.
"Linnebo 2018, pp. 189-192.
8Linnebo 2018, p. 191.
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list containing the collections sharing 3 elements, but it is the new formed abstract
object, identified with the number representing the totality of “3-sets”. Let’s call the
totality of 3-sets S. If S would have a determined extension, then we would able to
produce an almost complete list of 3 elements collections, but — as we have claimed
— this totality does not determine the extension of 3, in our case, but determines
another number that can be defined, just by starting from the totality S, namely
#S. The situation we are sketching can be put graphically as follows:

#A 4B #C 4D
S
{a7 a/7 a//} {b7 b/7 b//} {c’ Cl, C//} {(j7 d/7 dl/}

4S5

Thus, we have a clear way in which collections of objects form numbers (meant as
abstracta) and, moreover, we’'ve understood that, despite this clearness in forming
number-like abstract objects, they do not possess a determinate extension. Indeed,
as showed by our example, from any totality (seen as the indefinite extension of any
number-concept), such as S, it is always possible to build a new abstract object,
namely the number of the totality of abstracta falling under the specific number-
concept considered, that is #S. In conclusion, concrete concepts do have, more or
less, precise extensions, while abstract objects have indefinite ones.

5.1.3 Our Metaphysical Picture

This second point terminates our discussion of the tenability of (Par) — the parallelism
thesis. At this point, indeed, some fundamental feature of our abstracta finally arise:

AQO1. Abstracta lack spatio-temporal location.
AQO2. Abstracta are indefinite extensible.

The combination of AO1 with AO2 corresponds to the first characterization we
have provided for the sense of “thin existence” we are trying to defend. The first
purpose, here, was, indeed, that of seeing whether the parallelism between physical
bodies and abstracta hold. Our answer has been negative and we’ve proposed, in
connection to AO1, to understand the abstracta existence as “poorly” demanding
on the world. Secondly, we have seen that, by analysing the notion of “determinacy”,
with respect to abstract and concrete objects, respectively, AO2 follows.

Last point of this section. Our previous reasoning was involving two categories for
objects (abstract and concrete) and we have said that something as numbers and
sets do not share the same ontological features of tables and bottles. Moreover,
we argued, for example, that a number (meant as abstracta) is less demanding on
the world than the table (meant a concrete), and what we had in mind with this
formulation is exactly embodied by AO1 and AO2. The argumentation seems to fit
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for all these objects which are purely thin: «an object is pure abstract if it lacks both
spatiotemporal location and any kind of intrinsic relation to space and time. The
natural numbers and pure sets are examples»®.

But, if we consider letters or figures, then, by looking back at our everyday experience,
we may observe that these entities — letters or figures —, generally conceived, lack
spatiotemporal location, while some of their realizations are inserted in some space
and in a specific time. For instance, while letters lack spatial and temporal relations,
their concrete realizations — namely tokens — are in some space and time and, likewise,
for geometrical figures. So, in the case of purely thin abstracta we can never encounter
one of their concrete realizations (e.g., sets and numbers), resulting therefore as
characterized by a very poor existential demand on the world. In the case of thick
concrete objects, instead, we are in front of a very strong demand on the world. And,
finally, as it should already be clear, objects such as figures and letters do not belong
to none of the two preceding categories and, indeed, following some recent literature,
let’s introduce a midway between abstracta and concrete objects, i.e., quasi-concrete
entities:

The surprising discovery is that quasi-concrete objects are somewhat thicker than

pure abstract objects. The existence of a quasi-concrete object makes a non-trivial

demand on spacetime, however weak and indirect: there must be, or at least possibly

be, concrete realizations of the object somewhere or other in space and time.'°

So far so good. Recall our Quinean definition of ontology and metaphysics: roughly,
the former inquires “what there is”, the latter investigates “what is what there is”.
By starting from this subdivision, let’s precisely summarize, in the next table, the
way we are conceiving as a good route to construct an ontology — and consequently,
a metaphysics — for mathematics.

Ontology Metaphysics Specification

Concrete objects v Thick existence | Non-trivial, strong
and direct demand on
spacetime.

Quasi-concrete v Thin/Thick exis- | Non-trivial, weak and

objects tence indirect demand on
spacetime.

Abstract objects v Thin existence No demand on space-
time.

Finally, the three-partition of objects — as sketched above — summarizes what we’ve

9Linnebo 2018, p. 45.
10Linnebo 2018, p. 45.
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specified up to now. From an ontological point of view, abstract, quasi-concrete
and concrete objects exist. From a metaphysical point of view, we’ve argued that
different conceptions of existence could be traced. Indeed, thanks to the deny of
the parallelism thesis (Par), we have seen that, by considering the different possible
demands that an objects has with respect to reality, three different sense of the
word “existence” can be defined. In this, sense, even if mathematical abstract (or,
quasi-concrete) objects exist, this does not mean that the way in which they exist is
the same. In other words, we believe that there is no extravagance in asserting that
physical bodies exist differently — with respect to their demanding on reality — from,
for example, sets.

5.2 Platonism & Ontological Remarks II

The discussion concerning the existence of abstract objects has an ancient route
and, indeed, many scholars track back the origin of this debate to Plato and to the
school he founded. The influence of such a view — that postulated the existence of
a realm of abstracta — has exercised much strength on the philosophy immediately
succeeding Plato and, indeed, Platonism has remained as one of the prominent line
of thoughts, not only in philosophy of mathematics, but in philosophy generally
conceived. As R. Heck writes, «much of our ordinary discourse seems to involve
reference to abstract objects»!! and, indeed, our entire work has seriously taken
Heck’s affirmation. Anyway, it is useful to point out that — as always in philosophy
— there is no general agreement for what concerns the right way to understand
the ontology of abstract objects and, consequently, the debate can be regarded
as overloaded. In any case, since the position we are trying to outline, has used
some particular “techniques” or notions let’s deepen our philosophical considerations.
Recall that in the first section devoted to Godel’s metaphysics of mathematics, we’ve
introduced Platonism as the conjunction the following two theses:

P1. Mathematical objects exist.
P2. Mathematical objects are abstract.

Now, as it should already be clear — even if with some changes in the general
setting — our considerations are compatible with P1 and P2. Moreover, we've tried to
accomplish a step further, by not simply assuming the existence of abstract objects,
but, by trying to understand what we could have in mind while using terms such
as “abstract” and “existence”, always with respect to mathematics. Indeed, by
considering our three-partition of objects, a more detailed specification, for what
concerns P2, can be added:

P2*. Mathematical objects are either abstract or quasi-concrete.

Thus, the realm of mathematical entities is twofold covered. We claim, indeed, that
both, abstract entities (such as numbers or sets) which lack any sort of spatio-temporal

HHeck 2017, p. 50.
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relation, and quasi-concrete ones (objects which can have concrete, spatio-temporal
located realizations) populate Plato’s heaven.

In any case, some precisions are needed. The first part of this work (“Hunting abstract
objects”) has been devoted to the analysis of Benacerraf’s “reductive” argument
(1965). The second part — of which this chapter is the closing point — differently, has
analysed a possible way of introducing abstract objects. Our intention was that of
seeing whether the concept of “abstraction principle” (as developed by neo-fregeans)
could have helped us in forming a clear picture of we mean by mathematical abstract
object. The first of our concerns has been another time Quinean and, in this spirit,
we have tried not to admit any entity, in our ontology, which lack identity conditions.
This route has brought us in building a formal model capable of suggesting in which
sense abstracta were introduced. Philosophically, we claim, the main advantage of
the model we’ve built, has been that of giving us a general method to construct
hierarchies of identity /differences facts, as settled by an equivalence relation. This
has been done thanks to the definition of dependence we have assumed and stated
already from the beginning of chapter 3. For example, suppose that the RHS of
an abstraction principle holds for some concepts, that is, there is an equivalence
relation positively occurring between these concepts. From the point of view of our
model, these latter equivalent concepts determine the identity between the newly
introduced objects. Hence, differently put, the (identical) objects standing in the
LHS of an abstraction principle depend on the equivalence relation occurring between
the concepts (in the RHS) and from which our new abstract objects have been
abstracted. As it has been argued, the hierarchy proceeds in a well-founded manner
and this proceeding grants that, whatsoever identity claim is made at some n-stage,
then there is an equivalence relation, at some stage n — 1, determining the further
identities themselves. Indeed, the impredicativity of any abstraction principle gets
disentangled exactly once a dependence-hierarchy may be established. Furthermore,
this hierarchical strategy, when implemented with thin conceptions of existence,
reveals an interesting point: before it was argued that some abstraction principles
are untenable since the quantifiers they involve presupposes the totality on which
it quantifies and, hence, some philosophers have argued in favour of predicative (or
symmetric) abstraction principles. The main difference is that a predicative principle
allows us to introduce objects which where not already included in the RHS and,
thus, by not including the objects in the LHS within the range of the quantifier.
Simply put, predicative principles are not presupposing. We see that the adoption
of the distinction between thin and thick existence may furnish an answer to this
problem and may reveal helpful in revaluating the value of impredicative principles:
«The left-hand side of an abstraction principle makes demands on the world that go
beyond those of the right-hand side. Thin objects are nevertheless secured because
the former demands do not substantially exceed the latter. For the truths on the left
are grounded in the truths on the right»!2. In this sense, we have not provided an

12Linnebo 2018, p. 5.
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answer to the tenability of asymmetric principles just from a model-theoretic point
of view, but — and this is a fundamental point — we’ve argued in their favour, also
and mostly, philosophically*3.

5.3 Groundedness, Impredicativity and “Bad Com-
panions”

In the previous chapter, we have began our discussion by enumerating three of the
main concerns that abstractionist philosophers usually face and tried to circumvent
them by establishing some model-theoretical considerations. Recall that the first
two problems we have exposed, are the impredicativity of abstraction principles and
the so-called “bad company” problem. Roughly, their respective main claim can be
rendered as follows:

(Imp) Impredicative abstraction principles are untenable, since the LHS of any
of them presupposes the RHS.

(BC) Consistent abstraction principles are surrounded by “bad companions”,
i.e., unacceptable ones.

In what follows, we wish to discuss how our previous semantic work, accompanied
by our metaphysical characterization of abstracta, can lighten both problems. First
of all, the main idea of our semantic work has been that of developing a model
in which the ontology of mathematics gets constructed through a well-determined
process. This latter, more closely, has been developed as a well-ordered individuation
of entities, where the notions of “dependence” and “presupposition” have played
crucial roles. But, how does this process determine a lightening with respect to
(Imp) and (BC)?

First of all, consider that — according to (Imp) — there is presupposition between
the two sides of a biconditional expressing an abstraction principle and, in this sense,
what is on their left side depends on what belongs to their right side. Our model, we
think, by previously modelling the notion of presupposition, provides a way thanks
to which impredicativity gets disentangled. Indeed, the entities that an abstraction
principle introduces, are given just with respect to what comes before, or, in other
terms, the new objects presuppose just what is available at the stages coming before
their introduction. More specific, an abstraction principle allows us to introduce
entities by specifying their identity conditions within the LHS, but, as based upon

I3A significant distinction has to be made: in the whole of our work we were not aiming in
proposing specific abstraction principles capable of deriving portions of mathematics (remarkable
examples can be found in Zalta 1999, Zalta 2001 and Anderson and Zalta 2004; consider also Linnebo
2018) but, instead, our main objective was that of seeing whether the adoption of some formal
framework, in which principles may be evaluated, could be useful in discussing some philosophical
problems surrounding abstractionism.
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the equivalence relation settled within the RHS. For clarity, consider always our X:

§a = 8§58 «— R(a, f). (%)

So, for example, let P,Q € Con, pick two relations Ry, R, C Dom and let them
determine two second-order formulae with exactly two free variables, i.e., ®;[P, Q]
and Oy P, Q)]. If we see that the value of ®,[P, @], as determined by Ry, is different
from the truth-value of ®,[P, @], determined by Ry, this means that the values of
their corresponding abstract objects are different. In other terms, if the values of the
two formulae ®4[P, Q)] and ®5[P, Q] are different, then the two pre-objects, to which
the abstraction map links the concepts involved, are likewise different. In this sense,
different objects — with respect to ®1[P, Q] and ®3[P, Q] as determined R; and Ry
respectively — will turn out as proper abstract objects from the abstraction from P
and Q.

Importantly, if we recall our construction F, it is easy to check that we have imposed
a groundedness condition, i.e., a restriction for which, the identity conditions
between two entities of every stage of the grounded hierarchy of identity /difference
facts E, presuppose exactly those, and just those, identity conditions between
entities that were available at some stage earlier. The same applies to the set
of grounded identity facts F' — as extracted from the E-hierarchy by considering
just the identity statements between two pre-objects, this latter influenced by the
Reflexive-Symmetric-Transitive closure between the concepts from which the (proper)
abstract objects gets abstracted. In this sense, as it should already be clear, we have
addressed the impredicativity problem for abstraction principles, not by banishing
them from our philosophical attempts, but rather by trying to disentangle the charge
of presupposition which affects them. Moreover, from the beginning of this work,
we have tried to argue in favour of the presence of abstracta within an ontology of
mathematics — now, we know, as introduced by abstraction principles and thanks
to a groundedness condition — by trying to indicate and defend a (Light or Thin)
Platonistic conception of their existence. Hence, in conclusion, we claim that, by
seriously considering (Imp), one might give raise to a construction in which the
presupposition problem has not necessarily to be excluded, but gets modelled and
encapsulated as a fundamental notion of our semantic study concerning abstraction
principles.

The same elements can now be considered and adapted to the (BC) problem.
Roughly, some abstraction principles are consistent and acceptable, while some
others — which are, at least, intuitive — turn out as inconsistent and as unacceptable.
This argument has led many philosopher to abandon and declare abstractionist
approaches within the philosophy of mathematics as inherently mistaken and corrupt.
Differently, we claim that our model-theoretic approach can also indicate an answer
for what concerns (BC), by, consequently, arguing in favour of the applicability of
abstraction principles within a foundational abstractionist program. In this respect,
a central role has been played by the groundedness condition we have imposed on



182 CHAPTER 5. PHILOSOPHY OF ABSTRACTION AND PLATONISM

our construction. Our main idea has been that of, this time, banishing the (BC)
problem by indicating that any abstraction principle should be restricted to its
grounded instances. What we actually had in mind was to furnish a clear device
whose objective was that of withdrawing, in order to exclude, the distinction good wvs
bad abstraction principles. As clear, for instance, BLV'* belongs to the so-called “bad
companions”, but — as previously showed — if restricted to its grounded instances, as
suggested by us, it gets a model. As Leitgeb spells this situation out, «no good guys
left, no bad company either»!?.

5.4 Epistemological Suggestions

In Chapter 1 we have analysed Benacerraf’s problem from two separated, but con-
nected perspectives. In his 1965 paper Benacerraf challenged any Platonistic position
which introduces abstract objects to explain mathematical or scientific ontologies.
We've argued that his premises — as majorly based upon set theory — can be weakened
by carefully analysing the logic of his argumentation (Chapters 2-3). Moreover, start-
ing from our attempt to undercut Benacerraf’s ontological “elimination”, we have
tried to develop a method that allows us to introduce whatsoever sort of abstract
object, especially thanks to a semantic study of the notions of “dependence” and
“groundedness” (Chapter 4). Finally, the resulting construction we have proposed,
as remarked several times, does not tell us anything about the abstract objects that
abstraction principles allow us to introduce. This has led us in re-considering the
tenability (of some form of) Platonism. With respect to this situation, then, we
have tried to provide a first main clarification — whose objective was to give a first
metaphysical and ontological characterization of the “existential” sense of abstract
objects. Up to now, anyway, no explicit answer, for what concerns Benacerraf’s'®
initial epistemic worries, has been given. In what follows, indeed, we wish to give
some epistemological suggestions, which, we believe, fit in a coherent manner with
our previous (semantic and metaphysical /ontological) considerations.

5.4.1 Frege, Logicism and Epistemology

In what follows, we wish to briefly discuss Frege’s original logicism from an episte-
mological point of view. Recall that the main purpose of Frege’s logicist attempt
was that to give a clear and undoubted foundation of arithmetic, by deriving the
most fundamental laws governing natural numbers from just logical definitions and
notions. Additionally, ontologically, to secure reference to entities — such as concepts,
extensions and so on — Frege posited a “third realm” of logical objects. In the whole
of this context, if we were asked the motivation for which Frege developed such a
program, then we were immediately led to his epistemic worries concerning logic and

MFor limits and further researches with respect to the model of Chapter 4, see section “Hume’s
Principle and Grounded Concepts”.

15Leitgeb 2017, p. 270.

16See Chapter 1, section “Against Platonism II: Epistemology”. See also Benacerraf 1973.
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mathematics. By describing his logicism, in his Grundlagen, Frege clearly wrote:

The problem becomes, in fact, that of finding the proof of the proposition and of
following it up right back to the primitive truths. If in carrying out this process, we
come only on general logical laws and on definitions, then the truth is an analytic one,
bearing in mind that we must take account also of all propositions upon which the
admissibility of any of the definitions depends. If, however, it is impossible to give the
proof without use of truths which are not of a general logical nature, but belong to the
sphere of some special science, then the proposition is a synthetic one. For the truth
to be a posteriori, it must be impossible to construct a proof of it without including
an appeal to facts, i.e., to truths which cannot be proved and are not general, since
they contain assertions about particular objects. But if, on the contrary, its proof can
be derived exclusively from general laws, which themselves neither need or admit of

proof, then the truth is a priori'”.

In this part of his Grundlagen, Frege was trying to distinguish what does it mean for
a statement being or synthetic either analytic, and, consequently,what does it mean
for a truth to be or a priori either a posteriori. First of all and from a general point
of view, we have to consider that Frege — in a Kantian spirit'® — divided scientific
propositions in the following way:

o Analytic Statements. A proposition p is said to be analytic if its
truth depends just on a small package of undoubted primitive logical
propositions.

o Synthetic Statements. A proposition p is said to be synthetic if its
truth does not follow from logical laws alone, but, depends on the laws
derived from the objects of inquiry of some special science.

In the same vein as Kant, then Frege proceeded in defining the notions of truth a
priori and a posteriori. Let’s summarize the division as follows:

e A Priori Truth. A proposition p is said to be a priori, if it is proved to
be true just by involving general logical laws and any appeal to empirical
evidences.

o A Posteriori Truth. A proposition p is said to be a posteriori, if it is
proved to be true thanks to the appeal to particular laws, established
starting from the objects of inquiry of a particular science.

For instance, generally conceived, biological statements are synthetic and a posteriori,
for their truth not depending just on the pure laws of thought, but following from
the particular biological laws, i.e., those laws established thanks to observations and
experiments. Likewise, geometry is synthetic, i.e., we do possess — according to Kant

"Frege 1884, p. 4.
18t is interesting to notice that I. Kant has reserved much space of his philosophical work to
mathematics, see, for introductory remarks, Shabel 2013.
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and Frege — something as “spatial intuition”, at least, to see the truth of geometrical
statements. But its truth has an a priori character: since the more sophisticated
and complex areas of geometry treat spaces which are very hardly perceivable or
empirically testable, we do possess — in addition to spacial intuition — the a priori
concept of “all that is spatial” — as not limited to the perceivable or imaginable. For
what concerns mathematics, the thoughts of Kant and Frege diverged. For the first
one, mathematical statements have a synthetic, even if a priori, character, i.e, in
Kant’s view, in mathematics, we start by concrete representations of some objects
(synthetic component), that we encapsulate in propositions which will be proved just
thanks to the appeal to general logical laws (a priori component). Differently, for
Frege, mathematical cognition does not involve any appeal to empiric representations,
and, indeed, any mathematical statement p gets its truth only on the basis of the
meaning of the primitive logical terms occurring in it. Importantly, for Frege, while
proving the truth of a mathematical proposition p, we do not consider anything
except the logical terms and the general logical laws that govern them, and, therefore,
—in a pretty non Kantian way — no synthetic component is required for mathematical
statements to be true. In conclusion, so, in Frege’s philosophical view, mathematics
is analytic and a priori, and, exactly, in pursuing the objective of deriving the natural
numbers laws from logic alone, — apart his foundational aim —, we believe, Frege
was trying to prove that, at least, arithmetic, among all mathematical disciplines, is
analytic and a priori:

The gaplessness of the chains of inferences contrives to bring to light each axiom, each
presupposition, hypothesis, or whatever one may want to call that on which a proof
rests; and thus we gain a basis for an assessment of the epistemological nature of the

proven law.19

So, in order to assess the “epistemological nature” of mathematical, or better
arithmetical, propositions, Frege thought as necessary to show, in a clear and precise
way, that all arithmetical laws are derived from logical laws. In other words, according
to Frege, our knowledge and understanding of any mathematical proposition p, flows
analytically from some basic and universally valid principles, these latter, considered
as true a priori. Hence, general logical laws — in Frege’s original project — have
a twofold objective, namely that of providing an ontological and epistemological
foundation of mathematics:

He aimed to identify a few select general logical laws, or basic laws, that were needed to
provide an epistemic foundation: namely, mathematical knowledge was meant to “flow”
from those basic principle and (what is now called) second-order logic. In addition,
Frege also thought of the basic principles as providing an ontological foundation.
Basic Law V was meant to identify the logical objects (extensions) by means of which

numbers could then be defined. For Frege, logic was the most general of all sciences

YFrege 1893/1903, p. XXVI. Our emphasis.
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and concerned with the laws of thought?°.

As remarked several times, Frege’s logicism failed and, consequently, also the project
of giving a secure, at least, epistemic foundation of mathematics failed.

Several attempts — in the context of contemporary abstractionism — have tried to
argue in favour of a renewed Fregean epistemology of mathematics. For instance, if
we accept that HP plus second-order logic suffice to carry out the derivation of the
Dedekind-Peano axioms for arithmetic, then we should also contemplate whether
we are working with an analytic or a synthetic proposition, with an a priori or an a
posteriori truth. Being very far from proposing an epistemology that argues in favour
or against the epistemic tenability of some particular abstraction principles — such as
BLV or HP —, we would like just to indicate some epistemological suggestions, which
we think could fit with our Platonistic — ontological and metaphysical — conceptions
of abstract objects as introduced by abstraction principles.

5.4.2 Abstract Objects: Benacerraf, Doxology and Episte-
mology

Summary. Some paragraphs ago we have argued that the existence of abstract
objects has not, necessarily, to be conceived in a “hard” way — on the model of
physical objects —, but, rather, we have suggested that this parallelism could be
misguiding. What we meant, was exactly that, unlike physical ones, abstract objects,
to exist, simply request their identity conditions being well-defined and specified.
The demand on our reality, that an abstract object imposes, with respect to the
demand of a concrete body, is — as argued — very poor. Additionally, we have
reasoned that some kind of abstract objects — different from the “pure” ones — can
have concrete realizations that we may encounter (e.g., letter and tokens). We have
called the kind of existence that characterizes pure abstracta as light or thin. Our
reasoning concerning the demand that some abstract (or quasi-concrete) objects have
with respect to our reality, has led us in revaluating the function of our abstraction
principles: what an abstract object demands for its existence to be ensured is the
settling of its identity conditions. Consider again our X:

§a =58 «— R(a, B) ()

From a semantic point of view (Chapter 4),we have studied abstraction principles
by trying to restrict their usage and application, to their “grounded instances”. In
other words, we have proposed a model in which the truth-value of the LHS of
any > depends on the truth-value of its RHS. Now — by having explained how
metaphysically the existence of abstracta may be characterized — we additionally
know that the identity conditions that any > expresses in its LHS, are the unique
existential condition requested for abstract objects to exist. In other words, an
abstract object to exist requires simply that its identity conditions gets introduced

20Ebert and Rossberg 2007, p. 54.
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in a grounded manner thanks to a well-defined Y. This is the main reason for which
we are characterizing thin, or light, existence as poorly demanding on the reality.

Recall, now, that, in Chapter 1, we have explained that Benacerraf-Field’s Dilemma
is concerned with the problem of finding a plausible explanation of the connections
between abstract objects and our ability to refer to them, given that abstracta do
not participate in the causal order. In other terms, following Field’s elaboration of
the problem, we aim to search for a motivation that justifies our way of forming
true (mathematical) beliefs, given our metaphysical characterization of mathematical
entities as abstract (or quasi-concrete) objects. Finally, as emerged from the end
our previous analysis?!, Benacerraf-Field’s problem is concerned not only with the
possibility of “apprehending” abstract objects (epistemology), but also, and maybe
primarily, with the possibility of “referring” to them at all (doxology). In this
respect, given our metaphysical and ontological characterization of abstract and
quasi-concrete objects (as introduced thanks to laws such as ¥J) and concrete bodies,
we will try to give plausible explanations to the following two doubts:

Doxology. How do we refer to an abstract or quasi-concrete objects, given that
they lack spatio-temporal location, causal powers and are indefinite extensible?
What does it grant to us that, words or symbols ,occurring in statements, really
refer to abstract or quasi-concrete entities?

Epistemology. If there is way thanks to which humans refer to abstract and
quasi-concrete objects, then, how should we explain our consequent knowledge
of their existence and their force of giving meaning to mathematical or scientific
theories — given that we are rejecting any appeal to mysterious and psychologistic
epistemic faculties?

5.4.2.1 Suggestion 1

Mathematical Doxology. In this little paragraph we wish to discuss how we
think that our semantic and metaphysical works can lighten the problem of referring
to abstract objects. If we recall how our model works, we can see that we have tried
to unpack a mechanism for which, some kind of entities, may be introduced by well-
defined identity conditions. Furthermore, we have claimed that what characterizes
their thin existence is exactly and simply given by their identity conditions — which
are the unique demand that they impose on our reality to exist. We have, hence,
a minimal condition that an entity has to respect in order to be classified as an
existent abstract object. Furthermore, apart characterizing their existential status,
grounded identity conditions — we believe — furnish also the minimal condition that
grants human reference to abstracta. Consider the case of (unfortunate) Basic Law

21Gee Chapter 1, Section “Against Platonism II: Epistemology”, Subsection “Another Challenge:
What is Mathematical Doxology?”.
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V:
eF = eG +— Va(F(x) = G(2)). (BLV)

Now, the abstract objects that BLV introduces are the so-called predicate or concept
extensions. As it emerges, any concept extension, e€F’, has determined identity
conditions — as explicitly stated within the LHS of the biconditional —, that are
dependent on the truth conditions of the equivalence relation expressed within its
RHS. We additionally know that any extension “exists” in a thin manner, i.e., they’re
not spatio-temporal located and their existential demand requires just the settling of
the identity conditions that BLV expresses. We can reason as follows: by considering
a concept, such as F, we see that its application is defined on the basis of the objects
that satisfy F', i.e., all the F'(z). These latter elements all together form the extension
of F| i.e., eF. Furthermore, if we consider another concept, let’s say G, and we
inspect again its applicability, i.e., all the entities x, such that G(x), then eG denotes
its extension. By inspection, so, if for any =, F'(z) is materially equivalent to G(z),
then the same objects fall under the concept F' and under G. Provided this, and
by previously having defined a concept-extension, eF' (or €G), as the collection of
objects that satisfy the specific concept F' (or (), it might be concluded that the
two extensions are identical, e = eG. This latter identity fact, finally, — we claim —
grants that the extension exist (in our sense) and confirms our ability to pick out
abstract objects.

What we actually wanted to render evident with this explanation of BLV, is that, by
introducing abstract objects in a thin way, i.e., by simply stipulating their identity
conditions, you not merely characterize them ontologically, but, importantly, you
refer to them. We know that abstracta are introduced in a grounded manner and that
their identity conditions are the minimal requirement for them to exist. In this sense,
identity conditions — aside furnishing the minimal requirement for abstracta to exist
— furnish also a grant for our referring to them. The example of BLV is illuminating:
the collection of entities which fall under F' constitutes its extension, which is — as
obvious — an abstract object. By simple inspection, indeed, we never encounter
something as the collection of the F's itself, but rather we meet its constituents —
i.e., any of the individuals  which falls under F' and which its “union” gives me
the entire extension of F'. We recognise, furthermore, that, thanks to the relation
of material equivalence between two concepts (stated in the RHS of BLV), denoted
by the predicate letters F' and G, determines also when to concept extensions are
identical. So, while observing that F'(z) is materially equivalent to G(x), we pick out
the same extensions, i.e., the fact that eF' and eG share the same objects. Thus, our
first suggestion is to extend what we are calling the minimal existential condition for
abstract objects — which defined their main metaphysical characters — to the study
of the possibility of referring to them. In other words, an abstraction principle, by
introducing abstract objects through simply stipulating their identity conditions,
allows us to consider them as (thin) existent and, moreover, to pick them out.
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We conclude, so, that — in according to Quine’s celebrated dictum — whatsoever
entity may be conceived of, it must be ontologically introduced, metaphysically
characterized and doxologically explained thanks to its explicit and specific identity
conditions.

5.4.2.2 Suggestion 2

Towards Platonized Naturalism. In this conclusive paragraph, we wish to give
some epistemological suggestions concerning the central question of how are we
supposed to apprehend abstract objects — given their thin existence and referentiality.
Moreover, we wish to draw some suggestions that are, somehow, supposed to explain
our knowledge of abstract entities and their fruitfulness for scientific and mathematical
theories. First of all we have to take as background the synthetic/analytic — a
priori/a posteriori distinctions. In what follows, our main source of inspiration,
are the considerations of the two American philosophers, B. Linsky and E. Zalta.
They expressed, with respect to the possibility of giving a plausible epistemology
for abstract objects, some interesting considerations, which we think could fit with
what we’ve called minimal condition for abstracta to exist and that grants us our
referring to them??.

As remarked several times, Platonism is one of the most prominent schools in the
philosophy of mathematics and, for many Platonistic philosophers, abstract entities
were considered as part of the “natural realm” — i.e., as something to be “caught”
and considered as necessary for our best scientific and mathematical theories. Let’s
call this view — in accordance with Linsky and Zalta — Naturalized Platonism:

Naturalism is the realist ontology that recognizes only those objects required by the
explanations of the natural sciences. But some abstract objects, such as mathematical
objects and properties, are required for the proper philosophical account of scientific
theories and scientific laws. This has led some naturalists to locate properties or sets
(or both) in the causal order, and to suggest that philosophical claims about properties

and sets are empirical, discovered a posteriori, and subject to revision.??

Now, in order to be clear, we have to take into account another form of epistemology,
principally devoted to W. V. Quine?* and bettered, somehow, by H. Putnam. They,
respectively, claimed:

e Quine. Some abstract objects (sets and all the mathematical entities
thought to be reducible to sets themselves) are required for obtaining the

22Gee Linsky and Zalta 1995, pp. 525-555. Consider that both authors defend their epistemological
considerations by taking as basis what they call Axiomatic Metaphysics. This latter approach,
characterized by a formal way of doing metaphysics, has been proposed by Zalta 1983. We do not
discuss the features of Axiomatic Metaphysics, that both authors link to the epistemology developed
in their 1995 paper, but, rather, we will focus exclusively on their epistemological proposal and try
to connect it to our previous — metaphysical and doxological — dialogue.

23Linsky and Zalta 1995, p. 525.

24See again his Quine 1948.
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best explanations of the physical world. In other words, for some abstract
mathematical objects to exist means simply to be in the range of the
quantifier of some scientific theory.

« Putnam. Some abstract objects are not only required, but, moreover,
indispensable for scientific theories to be formulated. Sets are not
the only mathematical entities considered as necessary, but, also and
importantly for science, properties figure as objectively existing.

Summing up all together we may characterize Naturalized Platonism with the
following two statements:

o Parsimony. Not all of the abstract mathematical objects are required
for our best scientific theories and, indeed, any form of ontological com-
mitment is reduced at the minimum indispensable for working scientists.

« Reduction. Any entity — apart sets or properties — that serve as a proper
explanation of some natural phenomena, have to be reduced to sets (Quine)
or to sets and properties (Putnam).

Now, consider that «Quine’s formulation of a limited Platonism was seen by many
as incomplete, however, for it did not provide an account of our access to abstract
objects. How do we obtain knowledge of individual abstract objects?»2> We have
already analysed Goédel’s idea of a form of cognitive perception guided by the
axioms and, with Putnam?® and Benacerraf-Field?", agreed that intellectual and
rather inexplicable perception-like faculties are not the best way for developing an
epistemology for a Platonistic philosophy of mathematics. By having in mind our
objective and by starting from Quine-Putnam’s epistemological suggestion, we wish
to take the distances from their position in different respects: (i) the failure of the
parallelism between abstract objects and physical ones?® and (ii) the position for
which all abstract object may be rightly introduced in an ontology of mathematics.
Let’s begin.

First, as clear, for our account of “thin” or “light” existence, it is not plausible that
abstract objects participate in the causal order thanks to our “magic” perceptions
of them and, indeed, we've argued that — by simple stipulation of their identity
conditions within an abstraction principle — we have the warranty that they exist
and that we may non vacuously refer to them. From a traditional point of view,
for Platonistic philosophers, anyway, abstract objects are — as in our metaphysical
account — non spatio-temporal and, hence, outside of the causal order. Moreover,
we have different principles that assert the existence of different abstract objects,
such HP, in the case of numbers, or BLV, in the case of extensions. Moreover,
previously, we have said, that, in second-order logic, a special principle — that asserts

% Linsky and Zalta 1995, p. 527.

26See Putnam 1980, pp. 466, 471.

2"Benacerraf 1973.

28See the beginning of our Chapter 5, where we discuss the “Parallelism Thesis”.
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the existence of properties or relations — has to be added. Consider it as follows:
AFVz (F(x) <— ¢(x)). (Comp)

It simply assert that for any schematic condition ¢, it exists the corresponding
second-order property F'. In this sense, for instance, we are granted that the property
represented by F' is the abstract property which exists and is satisfied by all the
objects which satisfy . If we stipulate that — in order to instantiate RHSs of
abstraction principles — it is somehow needed that the properties to be substituted
for the second-order variables exist, then we may think that this “existential grant”
comes from our Comprehension Principle. In other words, we may easily believe that
principles, specially such as (Comp), deliver abstracta:

Comprehension principles are very general existence claims stating which conditions
specify an object of a certain sort. Some of these principles are distinguished by the
fact that they assert that there are as many abstract objects of a certain sort as
there could possibly be (without logical inconsistency); [...] Any theory of abstract
objects based on such comprehension principles constitutes a principled Platonism.
Some principled Platonisms are built around comprehension principles for properties,

relations and propositions??.

It is actually true that we have not proposed a formal ontology, in which (Comp)
absolves exactly the job of delivering abstract objects, indeed, — for the moment
—, we simply believe ,that the «claim that the comprehension principle is required
for our understanding of any possible scientific theory is stronger than the claim
that it is part of the best scientific theories», and we wish to discuss this view.
So, differently from Quine, we do not think that abstract objects serve just as a
“proper” explanation of the theories we possess and that they exist in this arbitrary
way; indeed, we claim that their existence is to be considered as required for our
understanding of those scientific theories themselves and non arbitrary. In this
sense, providing a framework with a principles, such as (Comp), may be useful to
characterize a plenum of abstracta and to introduce them in a well-founded manner.
If we desire to apply, for example, HP to some concepts P and (), we must be sure
the our second-order quantifier range over a collection of predicates such that it
includes P and ). We may be sure that P, () or whatever concept we may desire,
exist, exactly by (Comp). In this sense, continuing our example, we have the grant
that P and @ exist — thanks to (Comp) — and we may apply HP to see whether the
objects — which we abstract from P and () — exist, i.e., if the identity between the
number of P and of ) holds, allowing us then to introduce them into our grounded
hierarchical construction of identity /difference facts, E,. In this sense, we agree that
Platonistic claims — concerning an ontological introduction of abstracta — may be
defended, if based upon principles which allow philosopher to introduce whatsoever
abstract mathematical object or concept they might have in mind. The epistemology

29Linsky and Zalta 1995, p. 533.
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based upon an ontology developed by starting form principles, such as (Comp), has
been renamed — by Linsky and Zalta — Platonized Naturalism:

[...] know the comprehension principle if we can rationally conclude that it is part of

the best analysis and offers the most uniform understanding of scientific theories.3°

Furthermore, a crucial role is played — as happens in most philosophical cases —
by the settlement of identity conditions between abstracta. From this point of
view, our work, has been different from Linsky’s and Zalta’s and, indeed, we have
not developed, as remarked, a formal ontology for abstract objects, but, rather,
we have have furnished some semantic considerations regarding a special way of
conceiving abstraction processes. In this sense, the work of our comprehension
principle for properties or relations does not deliver individuals, meant as objects,
but rather properties or relations which serve as basis for our future application
of some abstraction principle — this one, meant as delivering abstract individuals.
Consider the following example. By (Comp) — as said — properties, such as P and @,
exist; instantiate HP RHS with those properties:

P~Q.

If this equivalence, i.e., equipotency, holds between the two concepts involved, then
we may easily conclude:

#P = Q.

That is, the number of the Ps is equal to the number of (Js. We may reason as
follows:

1. A Comprehension Principle (with the needed restrictions) grants us the
existence of a complex of abstract concepts, properties or relations.

2. Starting from some of these concepts, properties or relations, it is possible
to individuate, between them, some equivalence relations, as imposed by
the RHS of some well-defined abstraction principle.

3. By starting from the truth-value of the equivalence relation that occurs
in the RHS of the abstraction principle under consideration, it possible
to abstract from those items, in order to get abstract individuals and the
truth-value of their identity or difference relation.

4. Abstract individuals, as abstracted from concepts, properties or relations,
are meant to be introduced, in stepwise manner and, exclusively, by con-
sidering that, if there is difference, with respect to two or more equivalence
relations, then there is a corresponding difference between the abstracted
items.

39insky and Zalta 1995, p. 550.
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So, roughly, if we believe that existence of, and the reference to, abstract objects may
be introduced this way, then our perspective reconcile in an epistemology, for which
the existence of, the reference to, and the knowledge of abstract objects, satisfies the
definition of Naturalism we have quoted at the beginning of this section:

We defined naturalism at the outset, somewhat ambiguously, as the realist ontology
that recognizes only those objects required by the explanations of the natural sciences.
Platonized naturalism satisfies this definition (in two senses) because it only recognizes
the objects falling under the quantifiers of scientific theories and the objects required for
a proper philosophical account of those theories. [...] Moreover, Platonized naturalism
postulates nothing outside space-time which could be subject to enquiry by one of the

natural sciences.?!

Aside the different metaphysical framework, we think that Linsky’s and Zalta’s
suggestion to develop a principled Platonism, could actually be a good move to
restore a sort of naturalistic conception of abstract objects. We've actually tried to
clarify the main differences between two different ways of understanding Platonism
and Naturalistic epistemology, in order to draw our desired conclusions. As remarked
several times, this little paragraph — or, more in general, the entire section devoted
to epistemology — has just a general character and, indeed, all the positions here
defended, or attacked, should be deepened and developed within a separate and
specific chapter. We wanted just to light up two suggestions, which — we think — could
be addressed by our much deeper, semantic and metaphysical, work. Nonetheless,
we think that by expanding and developing — as said at the end of Chapter 4 — our
model-theoretical framework, we may reach some answers with respect to doxological
and epistemic question concerning the philosophy of mathematics.

31 Linsky and Zalta 1995, p. 551.
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