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Abstracts:

Air pollution is strongly affected by building’s ergy consumption. In this thesis we address the
problem of reducing the building energy consumptidmle providing comfort levels for the
inhabitants. We tackle this problem by adoptingrdarmation-driven approach to optimize the
use of HVAC systems, (heating, ventilation andcainditioning systems), both in terms of high
indoor comfort levels and in low energy consumptigiore specifically, we consider a real case
study, namely an office building in Verona, whee mentioned objectives depend on a large
set of variables which include temperature, humjdgitesence of people, building location and
etc...In this research we derive an algorithmic appinobased on Particle Swarm Optimization
(PSO) procedure and statistical models to achibeebest configuration of variables for the
optimization of the system. The results of thisdgtshow a good performance of the approach
and detect future relevant developments.
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INTRODUCTION

Heating, Ventilating, and Air Conditioning (HVACystem are advanced technologics for the
control of environmental comfort. These systenesraainly introduced on huge scale buildings
with the uses of offices, grocery stores, healiagilities, or schools. In this thesis we will
address the issue of the reduction of energy copsomin building which providing comfort
levels for inhabitants this prolem depends on aaddetontrollable variables such as blinds,
dimmers, and fan coil and a set of uncontrollat@igables such as room temperature, humidity
luminosity. Our ambition is to find the best configtion of controllable variables to minimize
energy consumption and maintaining optimal comiarels. This theme has a for environmental
problems, which pushed world’s government to qoessibout environmental consequences due
to the excessive use of nonrenewable energiesarticplar, energy expenditure due to buildings
seems to account for the 30% of the total worldrgymeconsumption. As a result, HVAC
performance can be improved by setting the besfigimations to minimize the energy
consumption.

Our study is aims to contribute the scientific ses on energy consumption through a
statistical approach variables. We will build tirseries model to predict the behavior of most
problems in this study and then we will drive a P&@orithm structure for the optimization of
these problems. Two well-known indicators with thepose of testing the indoor comfort of the
user in research building are represented the PMWRGI indexeSthat are in use to measure
thermal comfort and glare at daytime. The main gsab find out the best configuration of
dimmers, blinds, and fan coil to derive a set @f knergy consumption while ensuring the basic
comfort in the acceptability range of the userse TWo main procedures we use in this case

study are prediction modeling and optimization alpon.

The prediction modeling is performed through Rand@rest models to predict the behavior of

HVAC variables. For the optimization phase, a REtSwarm Optimization algorithm has been

! Ashrae. (2004)ANSI/ ASHRAE Standard 55-2004, Thermal Comfort @iond for Human Occupancmerican Society of
Heating, Air-Conditioning,and Refrigeration Engingénc.
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implemented to obtain the best configuration of twntrollable variables. The thesis is
organized in four chapters: in the first, we witlostly present a description of the pollution
problem and building energy efficiency; the secahdpter presents the methodology that we
chose to solve the problem. The third is dedic&adtie case study we choose for developing our
methodology, and finally the fourth chapter repostame conclusions with possible future

developments.
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CHAPTER 1

PROBLEM STATEMENT

1. The problem statement
1.1 Air pollution problem and building energy consumption

In the climate change conference in Parépresent about the necessary commitments aimed at
minimizing global climate pollution. Commitment & national scope is significantly reduce
emissions, with the goal to keep the global tentpegarise below two degrees Celsius. The city
and buildings are where the majority of the worlgipulation may play a significant role in
controlling energy waste. Through many statisticevs that the pollution from transportation
and energy use in buildings is significant, andtheetwo most important area of global climate
change. By Organisation for Economic Co-operatiod Bevelopment(OECD), total power of

the World rises year by year

OECD Electricity Production by Fuel Type Year-to-Date Comparison

Jan-5ep 2014 Jan-5ep 2015
6.5%
14.2% B Combu stible Fuels 14.1% ’,.-J"'_-.\ .

B Nudear

Hydro

13.2% 18.1%

Geoth fWind/
Solar/Cther

Total= 7 703.9 Total= 7 808.3
T"ll‘lll.h T"ll‘lll.h

Figure 1.1. OECD Electricity productions by fueldd14 and 201%

2 paris Climate Change Conference — 30 November 201% December 2015, in Paris, France.
3 Agency, |. E. (September 2018Jonthly electricity statisticg-reepublication.
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As we can see from the figure above, aggregate O&€@ricity production are accomplished 7
808.3 TWh, an increase of 1.4% or 104.5 TWh overghme time of the previous year. The
power creation from Combustible Fuels, Hydro, anatlsar fell by 0.6, 0.1 and 0.1 percent
focuses separately while that of Geoth./Solar/\Witkérs developed by 0.8 percent
concentrations. Plus, as indicated by factual oja@ization for Economic Co-operation and
Development(OECD), the power of Europe additionalbrease.

OECD Europe

Last 3 months Year-to-Date Past Year
lan-Sep-

Sep-15 Aug-15 Jul-15 15 change! share? 2014

+ Combustible Fuels 1306 1247 1315 11517 1.2% 45 6% 15651

+ Muclear 510 g2.2 63.1 58391 -2.2% 23.7% 830.8

+ Hydro 425 451 430 4545 1.0% 18.0% 5889

+ Geoth./Wind/Solar/Other 323 3za 36.9 3217 18.9% 127% 363.3

= Indigenous Production 266.4 265.4 280.6 2527.0 2.2% 100.0% 3348.1
+ Imports 337 344 36.0 309.6 5.6% 387.0

- Exports 343 349 36.0 305.9 4.4% 3954

= Electricity Supplied 265.8 265.0 280.6 2530.6 2.4% 3 349.7

Figure 1.2. OECD Europé

In September 2015, Indigenous production was 28&Vh. Contrasted with September 2014

figure, this was greater by 5.5 TWh or 2.1%, Casted with the earlier month, it was an

expansion of 0.4%. Contrasted with the prior morfitdamhmable Fuels creation developed by
4.8%, an expansion of 6.0 TWh. All out generationthe year-to-date was 2 527.0 TWh. This
with the same period a year ago demonstratesabgtegate creation was greater by 55.2 TWh,
or 2.2% and burnable Fuels generation developed.®%, an ascent of 13.1 TWh. Next to,

Geoth./Wind/Solar/Other generation demonstratedodyze of 18.9% or 51.2 TWh and Trade

volume ascends by 29.3 TWh or 5%.

4 Agency, |. E. (September 2018)Jonthly electricity statistics=reepublication.
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1.2 HVAC systems
1.2.1 Building ener gy efficiency

Around the world, buildings represent a vast offérenergy utilization and greenhouse gas
(GHG) emanations. For instance, a lessening of fwdypercent in worldwide energy use would
spare what might as well be called more than 10amibarrels of oil for each day. In the United
States Buildings are considered as the biggestl lesergy efficiency, and outflows can be
permanently lessened by a method for energy udmiitgdings. Building productivity can have a
relative impact in the European Union as well.Indabzed nations confront an enormous
employment of retrofitting existing buildings whiteeating nations that are quickly urbanizing
have a unique chance to coordinate low-carbon advaent in their urban arranging. For
instance, China- one of the most polluted city byg too much energy has set up measures for
enhancing building productivity, broadening the lgyaand life ranges of buildings, and
escalating energy preservation for existing bugdirand the offer of green buildings in new
development is relied upon to achieve 50 percer2080. The term HVAC is the acronym for
Heating, Ventilation, and Air Conditioning. The ¢ext HVAC, it is very extensive because at
the moment when one considers a system of this Byidence exists to show that we may have
to do with a simple wood stove, used for heatingaihfort, as well as an extremely reliable
system of overall air conditioning used in submesirand spacecraft. Considering the cooling
equipment, they vary from the small domestic unittihe refrigeration machinery used in

industrial processes.

The main objective of an HVAC system is to ensuce@dain real comfort to the spaces of the
users in which they are constructed. However, &ai@it system is a determining factor for the
reduction of energy consumption in the environménta decrease in carbon dioxide emissions.
It is statistically proven that more than 30% of Z€@missions in the atmosphere are produced by

the buildings in which we live.

Among the personal factors is the level of activiiynce the human body continually it produces
heat through a process called metabolism and isesethe activity of the person this heat
increases (someone sitting it produces less heahahdividual who runs). The clothing is a

significant factor in that it acts as an insulaglowing down the loss of heat from the body. To
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achieve the comfort, we need to evaluate what cbeldhe clothing of the occupants and,
because of the wide variety of materials, weigimis gxtures of fabrics can be considered only

rough estimates.

In the characteristics of the person is also parthe expectation factor, since it affects the
perception of comfort about the type of room in ebhiit is (a person who enters into a

prestigious hotel has different expectations tlwaone that enters a building or loss).

Lastly, but no less important for this, there dre énvironmental factors. The air temperature,
i.e., the temperature of the room in which the pers located. The radiant temperature, heat is
transmitted from a hot body to a colder body witheffiect on intermediate space (for example,
solar radiation). The moisture that has effecthomans but also to the environment itself, in
fact for some people a moisture too low can causblems and on the contrary extremely high

levels in the air can cause serious problems oflrhollding and its content;

Finally, the air velocity that affects the temperat perceived by human, since the greater the
speed of the body of a person, the greater thangpeffect perceived; also too fast air can be

annoying.

The energy-saving concept is closely related to BV&ystems. In fact, considering the use of
energy in commercial buildings in the US in 2013s lkemerged as about a quarter of total
consumption Primary energy consumption is due ¢chibating, cooling and lighting and engage
each about one-seventh of the total. If we alscsidan ventilation with its 6% of energy, the

HVAC become a complete the largest user of enargpmmercial buildings Figure 1.2.1

Considering the use of energy in residential bnddiemerges as the heating engages about half
the energy consumption (Figure 1.2.1), followedaater heating (18%) and from the cooling of

the environments (9%).
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ADJUST TO SEDS
4%

OTHER 3% _
COMPUTERS 2%
.~ OTHER WET CLEANING
- 14% 3% B
COOKING 2% —— REFRIGERATION &
COMPUTERS 2% o ELECTRON‘T?; '
ELECTRONICS 3% 5%
A COOKING 4% =
VENTILATION ~~ ‘-‘G"“:g
6% f
SPACE |
WATER SPACE COOLING 9%
HEATING 7%  COOLING 10%

(a) The commercial construction sector ) The residential construction sector

Figure 1.3. Building energy consumption in the 2012

In a situation of this type, it is easy to undemst&iow the electric energy, it is a constant source
of consumption of commercial and residential buigli. To confirm this, a study in 2007 in the
27 states EU member showed that the electricityswmption of HYAC was about 313 TWh,
about 111% of the total (2800 TWh) of that year

1.2.2 Control strategies of HVAC system

Heating, Ventilating, and Air Conditioning (HVACystem are advanced technologics for the
control of environmental comfort. These systenesmaainly introduced on huge scale buildings
with the uses of offices, grocery stores, healenglities, or schools. As a conclusion, we could

recognize the importance of HVAC systems.

HVAC system has to maintain air pollution withircaptable limits, for example, high level of
CO2 in a building. Besides, it can remove moisfuwen the air. Therefore, this system include
many components to support thermal control in lgsl. To explain HVAC system, we can see

a list the essential elements:

fans
supply/return air duct
supply outlets and return air inlets

o O O O

filters
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boiler

chiller

pumps
heating/cooling coils

O O O o o

damper

The figure 1.4 is the mechanism of cooling or imgadf an indoor building

(]
HEATING,; COOLING
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andermier Supply (Cool|
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Water
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Figure 1.4. HVAC systems

There is the cooling zone (figure 1.4) in that dhdler produces cold water with the help of a
condenser. Condenser utilizing a vapor-compressiethod support to lose heat in the outside
air and to distribute in the cold water system. Tkiee water moves to the AHU (air handling
unit), especially in the cooling coil (see figureldw). The latter is cooled and diffuse in the
indoor environment. Besides, the boiler has to pcechot water then passed to the AHU to heat

the air that passes through it.
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Cold water valve

Figure 1.5. AHU system

1.3 The optimization problem for an office building

In this part, we address the issues of optimizatimm a mathematical point of view.
Optimization is a field of the applied mathematieghich studies theory and methods to
Individuate maximum or minimum points of a functidet's define a function f as:

f:XCSRP 5YCR

Where the set X is called decision space and thé& se called criteria space. Given f which
depends onx € X (that can be composed of one or more variablesiim@e f means

mathematically:

min f(x)

XEX

To find the points x that minimize our function@ptimization means minimization, and also
maximization:

e

This kind of optimization is even known as uncoaisted optimization, but it can also be

constrained to some equations (constraints):
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min,ex f(x) subjectto g;(x) <h; withj=1,...,n

Similarly for maximization:

max,cy f (x) subjectto g;(x) <h; withj=1,...,n

So far we have considered single-objective optitiomaproblems, now | can introduce those
called Multi-Objective problems. The term objectivandicates the statement
minimizing/maximizing a function. Follow an uncoreshed multi-objective problem:

min,ey f; (x) with i=1,....m

It has the purpose to optimize more functions toatld be completely different among them. A
very common problem in Economics and Statisticsthe constrained multi-objective
optimization problem, which is described by thddaing notation:

min,cy f; (x) with i=1,...,m subject tg;(x) < h; with i=1,...,n

The constrained multi-objective optimization probl&vill be the one that we will use to solve
the Str.a.t.e.g.a problem. The other issue which mvantioned in the next lines is a full scenario
to what relates optimization. Firstly we can digtirsh two kinds of problems based on the
search zone in which we are working on

» Combinatorial problems

» Continuous problems

To explain them will be sufficient to describe timst category, which contains those problems
to determine an optimal solution from a finite sétsolutions, in other words, we are talking
about problems that own a discrete search zone.réember that the famous “traveling
salesman”: given a set of cities and their distanfieds the shortest path so as to reach each city
and go back to the beginning, it belongs to thesclaf combinatorial problems. In continuous
problems, variables in the model can get continualaes, commonly real values. To solve
continuous optimization problems, convexity whishsome general methods require the cost
function (objective function) to satisfy some prdms. In combinatorial problems are often
solved through metaheuristics capable of providmegarly optimal solutions. According to
literature, metaheuristic methods are abundantlglemented, so we will spend some time
talking about them. To mention some of them: Takar&h (TS), Simulated Annealing (SA),
Particle Swarm (PSO), Genetic Algorithms (GA) anat £olony (AC). As identified by their
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names, their algorithms are inspired by naturejrstance, PSO emulates bird flocking, and AC
reproduces the ant’s collaboration. Even thoughséhenethods were born to work out
combinatorial problems, they were extended to fam&tinuous ones. On the contrary to what
happen with other algorithms such as descent #fgoror gradients methods, they do not need
to calculate derivatives to get near the maximumiimim points. With the purpose to
understand the power of the metaheuristics, letisider to look for the global minimum of an

objective function, such that owns the followingph:

Objective function

: 3 - A
G G Gy Ca Configuration

Figure 1.6. Shape of an objective function depemdin configurations, source frédm

A naive iterative algorithm would choose a poinmtdamly, let’'s say,, and other two points one
smaller and the other one greater (respectivglyand c,) and would select the point that
minimizes the objective function betweep andc,. Supposec, minimizes the function, it
would take the role of,, at the next iteration. This algorithm certainlpwid produce a local
minimum, but it would be the case that it is n@l@bal minimum. This problem results from a
wrongly initial selection ot;, which causes the algorithm to get trapped incalloninimum.
Similarly it would happen in the most famous fiestler gradient descent optimization algorithm
which exploits gradients to get a local minimum.vBieheless, metaheuristics are structured
such that they can get out from a local minimunis giroperty is based on the idea to degrade
the solution some time to time graphically can l@ught as to climb the mountain next to the

local point.

> Collette, Y. (2003). Multiobjective optimizatioprinciples and case studidzhd thesis,6.
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Starting from continuous problems, they can bedd#i into linear and non-linear problems
whether their objectives functions and constraaméslinear or are not on decision variables. The
linear ones are solved using simple linear programgth On the other hand, nonlinear problems
can be solved in two ways depending on the quanfitpcal minimum presented by the cost
function. Local approaches perform an optimal wamkocal search, yet they risk to get trapped
in local minimum when the number of local minimurairgs is high. Earlier introduced, the
global methods can be discerned in classical mstland metaheuristic algorithms. The latter
can be further branched in distributed and neighdad classes.

GA and PSO are considered distributed since thepapulation-based, this implies that a set of
solutions is managed at each iteration, wheread@angs to neighborhood class since it can
deal with only one solution at each iteration. Tloatvconcern combinatorial problems, we can
distinguish approximate method and the exact dme |dtter can find the global optimum, but

they cannot be applied when the size of the seamh is too high. Heuristics and metaheuristics
can be then placed in approximate methods of gettear optimal solutions. Recently a new
class has been introduced; it is composed of aaihimetaheuristics and local search to exploit
the advantages of metaheuristics in global seardhlae benefits of local search, that algorithm
has been defined as hybrids.

® Gass, S. (2003)Linear Programming: Methods and Applicatio¢Bth ed.). Newyork, USA:
McGraw-Hill.
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Optimization

/

Combinatorial

[ s

—

Continuous

EXACT E APPROXIMATE NONLINEAR 1 LINEAR
method o rmethod and often not known X Linear
(specialized) . analytically ! programming
GLOBAL LOCAL
method method
HEURISTIC METAHEURISTIC CLASSICAL WITH WITHOUT
specialized (often with gradients) GRADIENTS GRADIENTS

Figure 1.7. Taxonomy of optimization solver, sodroen’

" Collette, Y. (2003). Multiobjective optimizatioprinciples and case studidzhd thesis,6.

17|Page



CHAPTER 2

METHODOLOGY FOR THE HVAC OPTIMIZATION

2. Methodology for the HVAC optimization
2.1. General methodology structure

In this chapter, we will introduction the methodattlwe chose to consider for addressing the
problem of optimal of an HVAC system that will reduenergy consumption and providing

comfort levels for inhabitants.

In the part, we will build linear stochastic Randéwrest model to predict the behavior of most
problems in this study and then we will apply PS@oathm for the optimization of these

problems.
2.2. The stochastic models

To solve a problem that with a large and compldaask, it means that has the high dimension
that datasets present. For example, in bioinfoosdield, energy saving field those data sets
with millenary of parameters (variables) has digptha characteristic. Therefore, in modeling
variable selection is the first step. It reducesribmber of dimensions, among the entire
variable, that will using in our problem. Therefpselection variable is so necessary can be
easily explained: it reduces unnecessary dategase the data quality, fatter algorithms that
will apply in future, simplify and improve the cewtness of the models. The technique used for
selection variables is Random Forest (RF) methoel heWe Boosting TréeBagging and the
most recent one Random Forest introduced in 20@reynart’. Random Forest could apply
for regression and classification, and preventstrefitting problem. The step of Random
forest works:

8 Breiman, L. (2003)The Boosting Approach to Machine Learning: An Oleavy NonlinearEstimation and Classification.
Springer.

® Breiman, L. ( 1996). Bagging predictoiachine Learning, 21123-140.

10 Breiman, L. (2001). Random Forest4achine Learning, 45-32.
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1. The dataset divides two parts such as traiarsttest set
2. Selection n bootstrap units from the train set.

3. Create binary regression tree for every bogistmait and during the splitting phase
instead of choosing the best split node amonghallpt variables, it determines the best

split variable choosing among m variables randofmiy< p).

4. The prediction for every tree, in terms of regien it uses average among the results

of n tree.
2.3. Particle Swarm Optimization(PSO) Algorithm
2.3.1. Thestructure of the PSO algorithm

A first develop to the complex non-linear optimiratissue by following the action of swam
flocks are built up by Kennedy and Eberhart. Thehoe of a particle swarm generates the
concept of function optimization them. The formofaa global optimum of an n-dimensional

function is

fxy, X0, %3, 0, X)) = f(X) (2.3.1)

Wherex; is the search variable. The aim is to find a valtisubject to the functiofi(x*) is a

maximum function or a minimum function in the sdarone.

The formulas given by

fi=x3+22 (232)

andf, = x; sin(4mx,) — x, sin(4mx; + m) + 1 (2.3.3)
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(a) Unimodel (b) Multi-model

Figure 2.1: the functions unimodel and multi-model

From figure 2.1(a), it is the global minimum of thanction f; is at(x,,x,) = (0,0), i.e.
at the start of functiory in the search zone that isuaimodelfunction, which has only
one smallest. However, finding the global optimwdifficult for multi-modelfunction.
Figure 2.1(b) presents the functignwhich has a pursuit space with various crestd suc
a variety of specialists need to begin from variptimary areas and keep investigating
the hunting space until no less than one operatmrse to the worldwide ideal position.
Amid this procedure, all operators can convey dratestheir data among themselves.
The PSO algorithm keeps up a swarm of particlesemsaty each particle speaks to a
future solution in the swarm. Every patrticles flydugh a multi-dimensional pursuit
space where every molecule is modifying its posi@s per its specific experience and
that of neighbors. In the multi-dimensional seazoh€i.e.R™), supposex/ denote the
position vector of molecule at time stgpthen updating the position of each molecule in
the search zone

xf* = xb + vf with x) ~U (i, Xmax) (2.3.4)

Where,
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v} is the particle velocity vector that makes theimj#tation method and displays

experience information and the social experienamiag from every particle; The

Xmin 1S @ Minimum value and,,,, is a maximum values becau8€x,,;,, Xmax) IS the

uniform distribution.

Accordingly, all particles are initiated randomiydhestimated to measure global best and

fitness together with determining the personal.best

Global Best

The global best is a method where the best suitpatécle affects the state of each

particle. It will use a star network structure &t the information from all particles in the

entire swarm. In this way, every single particle [1, ..., n] wheren > 1, has a current

state in search zong, a current velocityyp;, and a best position in search zoRgg, ;.

The objective functiofi(.) will determine the best positioR,.. corresponds to the

position of particle had the smallest value, analyzing a minimizatgsue. Besides, the

position allowing the smallest value among all fre¥sonalPy..; is position of the

global best;,.,;. The following equations (2.3.5) and (2.3.6) uptathe personal and

global best values are.

Considering minimization problems, and then positd the personal be#,.. ; at the

next time stept + 1, wheret € [0, ..., N], is:
pizh = { e TOE0 > P

’ xi U ) S Prese,i

Wheref:R" = R is the fitness function. The global best positihp,; at time stegt is

(2.3.5)

calculated as

Gpese = min{Pf,, ;}, wherei € [1, ...,n] andn > 1(2.3.6)
In this way, it is vital to note that the b&3t, ; is the best position which the individual
particlei has visited since the first time step. On the ottand, the global best position
Gpest 1S the best position discovered by any of theiga# in the whole swarm.
For gbest of the algorithm method, the velocityaifticlei is computed:

vigt = vig + e[ Phese; — Xia] + c2rialGpese — xf4] (2.3.7)

Where

v}, is the velocity vector of particlein dimensiond at time t;
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x!, is the position vector of particieén dimensiond at time t;

Pf.s:; is the personal best position of partitlim dimensiond found from initialization
through time t;

Gpest 1S the global best position of particlein dimensiond found from initialization
through time t;

c; andc, are positive constants;

ri, andrf, are random numbers from uniform distributid¢0,1) at time t.

The following Figure 2.2 shows tlgbestalgorithm.

2|Page



START

|

Initialize particles with
random position and velocity vector

Mext interation

NO

For each particle's
position (p)

Update v

UUpdate x

Evaluate fiiness

Mext paricle

If iz }=f{gbest)
gbest=x

function fix)

Satisfy Termination
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2.3.2. The parameters of PSO Algorithm

PSO algorithm has some parameters that could aftscperformance. The basic
parameters of PSO are swarm size, iteration numbelgcity component, and

acceleration coefficient presented below.
Size of swarm

The number of particles is called swarm size or/podulation. Per iteration covers a
vast swarm generates bigger parts of the searoh. 2osignificant number of particles
might decrease the number of iteration want toeehian optimization result well. In
opposition, important measures of particles risedbmputational difficulty by iteration,
and more time. From some observational studiest ofdbe algorithm implementations

apply an interval for the size of swarrmis [30,70].
Iteration

The number of iterations to achieve a result veelllso concerns. A too big iteration have
the some computational complexity is useless ancertime while too small iterations

can finish the search method early.
Velocity Component

These components are imperative for updating thécfe velocity. There are three
phases in formulas (2.3.7) and (2.3.8):

« The termvf,; gives a memory of the previous flying way thatdives action in
the ready-to-use past. These elements the similanoamentum that stops

drastically change the way of the particle and Biaghe current way.

« The termc; 1y, [P,ﬁem- — xfd] is calculating the performance of the partickbout
past performances. This component resembles anidodi memory of the best
position for the patrticle.

* The termc,ry;[Pjes:; — x{;] for gbestis the social component and computing the
achievement of the particieabout an association of particles or neighborshEa

particle flies to the best position determineduefice to the social component.
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a) Coefficients

The coefficientsc,, ¢, are constant and; andr, are random values, keep up the
stochastic impact of the psychological and socegngents of the particle’s speed
individually. Whenc, = ¢, = 0, all particles remain flying at their current veity until

they hit the inquiry zone's limit. Accordingly, frothe formula (2.3.7) and (2.3.8), the

velocity renew formula is:

t+1

vt =i (2.3.9)
Whenc; > 0 andc, = 0, all particles are independent. The velocity refeunula will

Vit = vy + iy Phesei — xia (2.3.10)

On the opposite, whea, > 0 andc; = 0, every particle are seduced to an individual

point(i. e. Gps:) in the whole herd and the velocity will be updalgd

vidt = vy + crg[Gpest — x14] (2.3.11)

Whenc; = c,, every particle are seduced to the meaﬁgpsft_i andG,g;-

Whenc; > c,, each patrticle is more strongly influenced bypgssonal best position,
bringing about inordinate meandering. In oppositeenc, > ¢, every particle is much
more affected by the gbest position, which is caesery particle to move early to the
best result.

Normally, c; andc, are constant, with trial and error to find theasbvalues. Incorrect
initialization of ¢; andc, might lead to conflicting or loop behavior. Frohetdiverse
factual inquiries about, it has been suggestedtiieaiiwo constants ought to be= ¢, =
2.

2.3.3. Geometrical representation

The updated velocity for particles includes threetp in formula (2.3.7) and (2.3.8)

respectively. Consider a journey of an individuaitgele in a search zone.
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Figure 2.3updating position angelocity for a particle.

(b)Time step t+1

The figure 2.3 represents the three velocity elémgive to moving the particle to the gbést

position at time stepsandt + 1.
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Figure 2.4 Updating position and velocity

11 Global best
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The figure 2.4 displays the position of more pé&etio search zone is updated. The point of the
¢ w ?

figure is the best position.

Figure 2.4 (a) presents the original situationwarg particle with a gbest position. The cognitive

basis is 0 at t=0, and the best position for theupar segment will attract all particles. The gbest

position does not replace.

Figure 2.4 (b) presents the new points of evertiqdate matter and a new gbest position after
the initial iteration at t=1.

2.3.4. Neighbor hood Topologies

An area must be characterized for every moleculds Brea decides the degree of social
association inside of the swarm and impacts a dpwaknt of specific particles. The

convergence is slower for the little neighborhaddwever, it could develop the performance of
resolutions. The convergence is quicker if neighbod is bigger, yet the danger that
occasionally convergence happens prior. Addressigbue, the search process begins with little

neighborhoods size and afterward the little neighbods size is expanded over time.

This algorithm is social communication amongst phgicles in the whole herd. Each particle in
the herd exchanging knowledge by particles connedts each other. A particle in the whole

herd gets a better situation, and entire partiiigpass through this particle. The neighborhood
of the particles determines this performance ofp@wicles. Nowadays, neighborhood structures

are developed by researchers. Some structuresgsfieehood or topologies are:
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(a) Star or ghest. (b} Ring or lbest.

Focal particle

P

(c) Wheel. 0
{d) Four Clusters.

Figure 2.5: Neighborhood topologies

Figure 2.5(a) explains each point connects withryewgher point (star structure). This structure

is fast convergence than different structures; ivandocal minima problem can appear.

Figure 2.5(b) explains each point is combined amilh its next neighbors. In this structure, at
one point detects a better performance, the paihpass it to its next neighbors, and these two
next neighbors give it to their next neighbors luittarrives the ending point. Therefore, the
optimum result is propagated slowly throughout ¢hrele at all points. It is bigger components
of the search zone that are covered them withrasstecture, and convergence is slower the star

structure.

Figure 2.5(c) explains only one point combine te tithers, and communicating all information

through this point. That mean the focal point wallljust its position to moving the best
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achievement point and compare with the best achiewe of all points. And then all the points

notify the new location of the focal point.

Figure 2.5(d) explains two sides of neighboringugp® and one side between different groups
connect with four groups. There is not the besbhkogy known to obtain the best for all

characters of optimization problems.
2.3.5. Comments on the methodology

This algorithm is a standout amongst the most iefictechniques for determining the global

optimization issues, and there are a few bendifidscrawbacks.
The advantages and drawbacks of PSO are talked béoeath:

Advantages:
o Itis a derivative-free algorithm.
It is simple to perform.
PSO has a finite amount of parameters, the effgghi@meters are small.

The calculation is exceptionally straightforward.

o O o o

There are a few methods guarantee convergencehartkest value of the
issue effortlessly inside of a brief time frame.

o Itis conceptually exceptionally basic.
Drawbacks:

0 To degrade the control of its direction and velpaite difficult.

0 There are the problems with the non-coordinatesgyst
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CHAPTER 3

THE OPTIMIZATION PROCEDURE FOR AN OFFICE
BUILDING

3. The optimization procedurefor an office building

The goal is to determine the optimal configuresetiuce total electric power (y) maintain
inhabitant comfort through PMV(x1) and DGI(x2).rdtly, | describe an Explorative Data
Analyses (EDA) method that describes the behavithesystem. In the second part, | will
present the way choose the variables by RandonsH#&€&) model. Finally, the PSO algorithm

is used to determine the optimal configures conttmna
3.1. Exploratory data analysis

Exploratory data analysis defines an approachuiess numerically and graphically a set of data
for performing inference on it. Tukey used the téinstly to explore data since from Exploratory
data analysis is probable to detect outliers, reizegpatterns, install hypotheses and validate
assumptions. Exploratory data analysis can use itemhy such as max, min, mean, median
values for descriptive analysis that to explainrédations among variables. Regarding the

problem, | named as the most suitable tools:

0 time series
0 boxplot

0 density distribution plot
3.1.1. Descriptive analysis

The optimization approach is constructed and tested set of data chosen as a case study, and
related to a building located in Verona (ltaly). tlns building, an office is selected for the
experimentation, and a set of sensors are instaledcord the most relevant variables that can

affect the energy consumption and the thermal gghdihg comfort levels.

Specifically, we record the following time seriemnsisting of 29,435 observed values with a

constant time interval of 5 minutes:
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- Indoor Comfort levels: temperature, humidity, @@locity, central mean radiant temperature,

luminosity, CQ concentrations, occupancy, window sensor, dosaeorridor temperature;

- User habits;
- Weather condition variables: temperature, illuamoe, radiation and humidity;
- Electric and thermal consumption variable: thdrpoaver and electric power.

For the optimization process, a set of actuataesspecified and codified: the power of the fan
coil, the position of the blinder and two dimmabghts. The response variables to optimize are
the energy consumption represented by the totatredg@ower {1) - which includes thermal and
electric consumptions - and two comfort indices tfoe office user: the Predictive Mean Vote
(PMV, y,) and the Daylight Glare Index (DGk) [20, 22]. The Predictive Mean Vote variable
measures the level of satisfaction of the officerumn the thermal environment and is mostly
influenced by the temperature, the humidity, the \alocity and the central mean radiant
temperature observed in the considered room. PMyanaoptimal value of comfort equal to O
and within+ 0.5 is deemed acceptable by criterion ASHRAE25%he Daylight Glare Index
expresses discomfort glare due to the lightingesysand depends on the luminosity inside the
room and the electromagnetic radiation given ofth®/sun. DGI is considered optimal when its
values are lower than or equal 22. All the variabiecorded in this case study are presented in
Tab. 1.

12 Ashrae ANSI/ ASHRAE Standard 55-2004, Thermal Comfort @ione for
Human OccupancyAmerican Society of Heating, Air-Conditioning,chRefrigeration Engineers, Inc., 2004
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Table 1. The set of variables recorded by Buildhgpomation System

Variables Notation
Indoor Comfort variables Internal Temperature 1V
Humidity "
Air Velocity V3
Central mean radiant Temp Y
West luminosity '}
East luminosity ¥
CO2 2
User habits Occupancy gV
Weather Condition Outside Temperature 9 V
Outside llluminance %
Outside Radiation N
Outside Humidity Y2
Other Comfort requirements Window sensor 13V
Door sensor M
Corridor temperature 19
Electric and thermal consumption variable Fan @wtmal power Wad
Actuator Variables Dimmer 1 1d
Dimmer 2 d
Blinds b
Fan Coil Device g
System response variables Total Electric Power y
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Predicted Mean Vote (PMV) 1X

Daylight Glare Index (DGI) X

The multi-objective optimization process is realizgy deriving a prediction for each response
variable in all the experimental space through Ramd-orest models and then using PSO
algorithm to identify the best combination of attuwdevels that optimize the comfort responses
and simultaneously minimize energy consumption. &kgerimental space is composed of 36

actions representing all the possible level contimna of the actuators variables. The actuator
levels are summarized in Table 2.

Table 2. The actuator levels.

Actuator Variables Notation Levels
Dimmer 1 d {0, 1}
Dimmer 2 d {0, 1}
Blinds b {0, 0.5, 1}
Fan Coil Device d {0, 0.5, 1}

The uncontrollable variables are all those variables that are due to the sfdtge system in the
moments before since the system does not reaenihsto a change but is also reflected in the
detected values in the periods next. In particula,variables temperature, humidity and mean
radiant temperature Central are influenced by paktes of the HVAC system. Other variables,
such as brightness in the east and west, the laicig and CO2 are influenced more by values
close to time. Also, there is a variable which shdlae presence or absence of individuals in the

room. Finally, variables that are not affected latog the past values of the system are those
relating to external weather conditions.

Two indices constitute the variables of comfort tlee assessment of thermal comfort and bright

room (allow to synthesize quality comfort throughraque numeric value).
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The Predicted Mean Vote (PMV) is the result of an equation that relatesctions of clothing
the person (clothing insulation and ratio of suef@overed and bare surface), activity duties of
the person (metabolic heat production and metalpbcluction of free energy), environment
variables (temperature air, mean radiant temperana@lative speed of the air and the water
vapor pressure) and also considers if the skirets Whe optimal value of the index is 0, moving
away increases the sensation of warmth perceived thge value of -3, moving away positively

increases the feeling of cool up to the value ofcedd)"®
PMV = (0,303e~2100*M 4 0,028) % [(M — W) — H — E, — Cyos — Eyos]
Where the different terms represent, respectively:
M- The metabolic rate, in Watt per square n@gfm?);
W- The effective mechanical power, in Watt per squaete(W /m?);
H- The sensitive heat losses;
E.- The heat exchange by evaporation on the skin;
C,.s- Heat exchange by convection in breathing;
E,.s- The evaporative heat exchange in breathing.

The Daylight Glare Index (DGI) or glare index is calculated for each piefesource view
through the window (sky, obstructions, land,...) rBtover, relates the illumination source, the
average illumination of the background, the angsiae of the source in steradians as perceived
by the eye and the solid angle of the source, ffleeteof modifying the observer's position about
the source in steradiaifsConcerning DGI, it is metric which measures disfart due to glare;

it developed by Hopkinsdhin 1972:

n
DGI =10 - logZGi

=1

13 Ashrae ANSI/ ASHRAE Standard 55-2004, Thermal Comfort @iong for

Human OccupancyAmerican Society of Heating, Air-Conditioning,caRefrigeration Engineers, Inc., 2004.
4 The steradian (symbolized sr) is the Standardratenal (Sl) unit of solid angular measure.

» Hopkinson R.O. worked at the Building researchi@taiGarston, Watford, England
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Where the glare inde&; represents the glare due to each source (ouroéasedy presents only
windows) and it is calculated through the formula:

L16. 08
G; = 0.478 ( T )

L, + (0.07 - w%5-L,)

Let’'s define one by one the parameters used:

L,: is the luminance of each part of the source (6d/m

L,: average luminance of the surfaces in the enviesrtnwithin the field of view(cd/f)
L,,: the weighted average luminance of the window(ég/m

w: the solid angle of window (sr stands for sterad)a

£ the solid angle of source (sr)

To expatiate more on those variables | put forwand to give a glance &t DGI a discomfort
metric the higher is its value more annoying is tilare. Nevertheless light glare can be
considered acceptable for value 22, inferior valresirrelevant.

Zone Feeling DGl Level
intolerable >28
just intolerable 28

Discomfort zone

uncomfortable 26

just uncomfortable 24

comfortable 22
) just acceptable 20
Discomfort zone _
noticeable 18
just perceptible 16

Table3: Zone Comfort DGI

16 Bellia, L. C. (2011). Energypaylight glare: a review of discomfort indexes, 3635-5943.
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The statistics analysis will display general chegastics of our dataset.

variables: d1, d2, b, fc, v8, v13, v14 and oth&rey are summarized:

dl
Min. :0.0000
1st Qu.:0.0000
Median :0.0000
Mean :0.2446
3rd Qu.:0.0000
Max. :1.0000

vl
Min. :17.09 M
1st Qu.:22.27 1
Median :23.51 M
Mean :23.03 M
3rd Qu.:24.61 3
Max. :26.75 M

v5
Min. : 16.26
1st Qu.: 17.45
Median : 17.75
Mean 1 22.68
3rd Qu.: 23.71
Max. :156.17

v9
Min. :-10000000
1st Qu.:-10000000
Median :-10000000
Mean : -6408908
3rd Qu.: 18
Max. 18

v12
Min. :-10000000
1st Qu.:-10000000
Median :-10000000
Mean : -6408893
3rd Qu.: 61
Max. 6l

x1
Min. :-1.65816
1st Qu.:-0.21380
Median : 0.12604
Mean :-0.01601
3rd Qu.: 0.41551
Max. : 1.04988

y_Tload

Min. :-0.4493
1st Qu.: 0.1040
Median : 0.1393
Mean : 0.2880
3rd Qu.: 0.2570
Max. : 2.3134
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d2 b
Min. :0.000 Min. :0.0000
1st Qu.:0.000 1st Qu.:0.0000
Median :0.000 Median :1.0000
Mean :0.244 Mean :0.6921
3rd Qu.:0.000 3rd Qu.:1.0000
Max. :1.000 Max. :1.0000
V2 v3
in. :10.36 Min. :0 Min.
st Qu.:32.92 1st Qu.:0 1st Q
edian :41.13 Median :0 Media
ean :39.70 Mean :0 Mean
rd Qu.:48.30 3rd Qu.:0 3rd Q
ax. :65.02 Max. :0 Max.
vb6 v7
Min. : 14.62 Min. : 321.8
1st Qu.: 15.81 1st Qu.: 383.4
Median : 16.26 Median : 411.8
Mean : 19.77 Mean : 430.7
3rd Qu.: 21.32 3rd Qu.: 455.6
Max. :215.47 Max. :1424.0
v10 vll
Min. :-10000000 Min.
1st Qu.:-10000000 1st Qu.:
Median :-10000000 Median :
Mean : -6408915 Mean
3rd Qu.: 0 3rd Qu.:
Max. : 0 Max. 17
v13 v14
Min. :-10000000 Min. :0
1st Qu.: 0 1st Qu.:0
Median : 1 Median :0
Mean : -679 Mean :0
3rd Qu.: 1 3rd Qu.:0
Max. : 1 Max. 11
X2 y
Min. :-49.3009 Min. :
1st Qu.: -0.8440 1st Qu.: 15.
Median : -0.5607 Median : 60.
Mean . 2.6279 Mean : 63.
3rd Qu.: 2.9227 3rd Qu.:105.
Max. : 33.0361 Max. :146.
v15
Min. :17.02
1st Qu.:22.29
Median :23.56
Mean :22.97
3rd Qu.:24.54
Max. :27.38

0.

M1

1st Qu.:
Median :

Me

3rd Qu.:

Ma
v4

:15.
21.
122.
122,
23.
:26.

u.:
n

u.:

M

0.
2.

4.

1 45,

38.
41.

.00000
.00000
.00000
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.00000
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00
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X.
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1st Qu.:
Median :
Mean
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We can see that outside temperature (v9), Air \islow3), illuminance (v10) and humidity
(v12) variables did not run well as established niehsllected the data. Therefore, our dataset

will remove these variables.
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3.1.2. Graphical analysis
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Figure 3.1 Time series, density distribution, amaiot of Room temperature (v1) in 2013
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Figure 3.10 Time series, density distribution, &ocplot of daylight glare index(x2) in 2013
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The internal temperature (v1) is distributed witedian around 24 and presents behavior for the
building. Their distributions (figure 3.1) exhil@tlonger left tail (visible in figure 3.1) due toet
presence of outliers (evident in the boxplots) et be temporarily speaking individuated in
two periods from October and from November to the ef the detection period. Humidity (v2)
is distributed in the building (figure 3.2), the di@ns are slightly greater than 40% of humidity,
however a big variability is shown in figure 3.2ne the min and the max values are
respectively at 10% and 70%, as a result PMV (x1) be surely #fected by this strong
variability. Looking at the time series plot (figuB.2) a decreasing trend can be easily observed,
but it is quite normal since in winter season adoWwumidity is expected. Regarding the mean
radiant temperature (v4) is expected just a slififierence with respect to internal temperature,
in fact the medians are lower than v1. Besidesawd v4 present a similar trend over the time

and also the peaks of minimum are situated in @n@estime points.

To what concern EAST and WEST luminosity in themo@espectively v6 and v5), high peaks
are evident daily in the morning (figures 3.5 and).3 CO2 (v7) from the 21st October 2013 is
high peaks and PMV depends on internal and radeemperature, and the PMV trend follows a
very similar pattern over the time. Concerningdaglight glare index (figure 3.10) is sometimes
the DGI sensor gets blocked and returned thosemmimi values. About total electricity power

(figure 3.11) which slight increase from SeptemtzerOctober and rise from October to the
middle December. Thus, they tend to grow over tiha is precisely the problem that we need

to optimize while maintaining comfortable for therpons in the building.
3.2. Features Selection

Regarding feature selection, some consideratioed teefinish. Our final purpose is to detect the
best configuration of the controllable variableq,(d2, b, fc), they will be surely present as
explanatory variables of each model therefore waatmeed to implement them in the features
selection process. Moreover, some categorical b@sahave been purposely removed from our
final models such as v8, v13, v14. This arguablyiah has been taken since their effects can be
detect paying more attention to some uncontroll@akgables, for example, the occupancy (v8)
could be observed by an increment on CO2 emisgiof)s We will show the results of feature

selection via Random Forest:
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Figure 3.12. Variable importance for total electpower model(y)

Regarding energy consumption are considered by étarfebrest the following features: room
temperature (v1) and humidity (v2), mean radiamperature (v4) influence the total electric
power. Besides, our attention is the high scor€©0R emissions (v7) which influence the total
electric power, because increasing of CO2 is a sigaccupancy in the room, and then CO2
warms the around the room consequently relaxindh\éaer. The last variable to enter the model
is the outside corridor temperature (v15), we caaldgine the door is often open, so being a
corridor normally a bit colder than the temperatof@ room; the system needs more energy to
heat the entire room. Surely predictors as roomperature and humidity, mean radiant
temperature affect PMV. An impressive result haanba&chieved by the outside radiations (v11),

then reasonably the position of the building well
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Figure 3.13: Variable importance for PMV model
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Figure 3.14: Variable importance for DGI model

The DGI model will enter the EAST and WEST lumingdqv5, v6) and the outside radiations

(v11l) and internal humidity (v2), corridor tempena (v15), thermal load (y load) and CO2

emissions (v7) get high scores; Correlation Analysill compare the results obtained between
variables and a Correlation Analysis is appliedetsponse variables. Given two variables X and
Y which invented by Pearson, the most known cotimecoefficient:

cov(x,y)

Ox0y

3.1)

PX,Y =

WhereCOV (X,Y) is the covariance between X and Y. Thg coefficient can assumd <

Pyy < 1.

0 P = 1is strong linear positive correlation
0 P = 0 no correlation between X and Y

0 P = —1 is strong linear negative correlation.

Random Forest support the choices of these caoetatione (see the figure 3.15)
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Figure 3.15: Spearman correlation matrix
3.3. Modeling

The model would like to explain the real meaninghwf system and help ours understand better
how it works. We will use models to predict the &elbr of 3 components: total electric power
(function y), predicted mean vote (function x1) ataylight glare index (function x2) that we
need three continuous response variables (regregsiblem). Therefore, we set the cost
functions:

y=f(d1, d2, b, fc, v1, v2, v4, v15, yload, x1, x2) (3.2)
x1=f(d1, d2, b, fc, v1, v2,v4, v7, v11, yload) 3B

x2=f(d1, d2, b, fc, v5, v6, v11, yload) (3.4)
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Likewise Kusiak’s work’, we decided to extent the three models addingthls@revious lag of

the response variable itself in order to take attoount the previous state of the model, now the

cost functions take the following shapes:

y=f(d1, d2, b, fc, v1, v2, v4, v15, yload, x1, *2g9(y,1)) (3.5)
x1=f(d1, d2, b, fc, v1, v2,v4, v7, v11, yload, (ad),1) (3.6)
x2=f(d1, d2, b, fc, v5, v6, v11, yload, lag(x2,1)) (3.7)

To determine the accuracy degree of a model wipeaet to the real system and select the best model
among several ones, the one which better fits ata @e have to evaluation model. These are thédtresu

of Random Forest model validation

MAE Std_AE MAPE Std_APE
Total electric powe 1.7745393 | 0.61846697 0.01527942 0.0050206
PMV 0.00784867 | 0.00667541 0.01359459 0.0095417
DGl 0.0171176 | 0.04851613 0.08257809 0.5913536

Table.4. Performance metrics of Total electric pow1V, DGI on 6 hours predictions

We obtain the quite good predictions are achiewyeRdndom ForesfThe next part we will optimal
these objective.

3.4. The system optimization
We will formula mathematically as a constrainedgbeon of multi-objective:
@D Y
Subject to
y=f(d1, d2, b, fc, v1, v2, v4, v15, yload, x1, x&@g(y,1))
x1=f(d1, d2, b, fc, v1, v2,v4, v7, v11, yload, (ad),1)

x2=1f(d1, d2, b, fc, v5, v6, v11, yload, lag(x2,1))

1 Kusiak, A. X. (2012). Energodeling and optimization of HVAC systems usingreachic neural network, 4241-250.
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where the lag variables represent the variableegadi the previous time, in our case 5 minutes
before. The formulation describes our final objetperfectly that to avoid misunderstanding.
The purpose is to find the best future configuratsettings of (d1, d2, b, fc ) that allow me to
minimize the energy consumption (y), and at theesime maintaining good levels of comfort
as PMV and DGl (x1, x2) expressed mathematicallgomstraints.

Optimization Results

The multi-objective optimization with the Paretorit combined with PSO algorithm allows us
to identify the actions that are considered optifoalthe two comfort variables. Optimization
algorithm predicts the comfort response variablealb possible action in time t+1 and selects
the set of non-dominated solutions that simultasBowptimize PMV and DGl variables.
Among these solutions we choose one that corresptimdhe minimum energy consumption
predicted by the model. This procedure is iterébvecach t+d, d=2,...T, where T=70 (6 hours).

Figure 3.16 presents the predicted values of cdmfoiables for set of non-dominated solution

identified by optimization procedure for t+1. Treglrpoint identifies the selected solution.
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Figure 3.16. The Pareto front at time t +1
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We optimize response value of x1 (PMV) and x2 (D&id compare the optimize responses
with observed response values. The figure 3.173ab8 are represented the comparison of the
optimized and observed behaviors of the comfortesl As can be seen from the figure, we
provide higher comfort values for PMV, the PMV amled values much closer to 0 (0 is optimal

value for PMV) with respect to the observed values.

The behavior of the visual comfort variable DGalso enhanced as presented in the figure 3.18.
The optimal value for DGI is 21 and the optimizedues are closer to the optima in comparison
to the observed values.

The behavior of the total electric power is presdrih Figure 3.19. We can see that setting the
optimal action obtained with the optimization prdeee the large amount of energy can be
saved. At the end of the period (70 time points) measure a reduction of the energy
consumption of about 19%.

The results can be improved by enchasing the gredimodel identification. The optimization
procedure combined with predictive statistical maden be proposed as an efficient system for

reducing the energy consumption of the buildinglevhaintaining the high comfort level.
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Figure 3.17. Optimal mean vote (PMV) value in 6rsou
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Figure 3.19. Optimal Energy value in 6 hours

We note that blue line is optimal value and red Isobservation value. We can see that we
have optimal value of total electric power well {ehmaintain two values predicted mean vote
(PMV) and daylight glare index (DGI).
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CHAPTER 4

CONCLUSIONSAND FUTURE DEVELOPMENTS

4. Conclusions and further research suggestions

In this thesis, we address the problem of the apétion of the HVAC system. We developed
research focusing on the real case study, theedfficlding with HYAC system which was
designed to be completely automatic.

The objective of this study is to identify the opél combination of controlled variables
(actuators) in order to reach the required theamdlvisual control taking care of minimizing the
energy consumption of the building.

We applied the correlation analysis to select tlstraignificant variables to construct three
prediction models for each of the response varal®&1V, DGI and total electric power.

To build the model we train the Random forest waittnaining set of 13000 observations and
validate the model for all three responses (objesii

The PSO optimization algorithm was adopted to théirobjective problem and implemented in
order to find the best combination of controlledi&hle for each 5 minutes of the prediction
period.

This optimization procedure can be proposed asieffi predictive algorithm for automatic
HVAC system in order to reduce energy consumpticthe building
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