

Corso di Laurea magistrale

in Computer science

Tesi di Laurea

Titolo

Privilege separation in browser architectures

Relatore
Ch. Prof. Michele Bugliesi

Corelatore
Dott. Stefano Calzavara

Laureando
Enrico Steffinlongo
Matricola 826043

Anno Accademico
2013 / 2014

2

List of Tables

2.1 Url pattern syntax. Table taken from [2] 10
2.2 A manifest file . 11
2.3 Sending a message. 13
2.4 Port creation. 14
2.5 Bundled code. 17
2.6 Unbundling. 18

3.1 onMessage handler in JavaScript and in λJS 22
3.2 Small-step operational semantics s

α−→ s′ 23
3.3 Small-step operational semantics of λJS 25
3.4 Flow analysis for values . 29
3.5 Flow analysis for expressions . 30
3.6 Flow analysis for systems . 32

4.1 Compositional Verbose part 1 . 46
4.2 Compositional Verbose part 2 . 47
4.3 Constraint generation part 1 . 48
4.4 Constraint generation part 2 . 49
4.5 Worklist Algorithm part 1. 50
4.6 Worklist Algorithm part 2. 51

3

Abstract

In many software systems as modern web browsers the user and his sensitive data often
interact with the untrusted outer world. This scenario can pose a serious threat to the
user’s private data and gives new relevance to an old story in computer science: pro-
viding controlled access to untrusted components, while preserving usability and ease
of interaction. To address the threats of untrusted components, modern web browsers
propose privilege-separated architectures, which isolate components that manage critical
tasks and data from components which handle untrusted inputs. The former components
are given strong permissions, possibly coinciding with the full set of permissions granted
to the user, while the untrusted components are granted only limited privileges, to limit
possible malicious behaviours: all the interactions between trusted and untrusted com-
ponents is handled via message passing. In this thesis we introduce a formal semantics
for privilege-separated architectures and we provide a general definition of privilege sep-
aration: we discuss how different privilege-separated architectures can be evaluated in
our framework, identifying how different security threats can be avoided, mitigated or
disregarded. Specifically, we evaluate in detail the existing Google Chrome Extension
Architecture in our formal model and we discuss how its design can mitigate serious
security risks, with only limited impact on the user experience.

2

Contents

1 Introduction 5
1.1 Background . 5

1.1.1 Privilege separation . 5
1.1.2 Privilege escalation attacks . 6

1.2 Chrome extension architecture overview 6
1.3 Bundling . 7
1.4 Purposes and methodology . 7

2 Background 9
2.1 Chrome extension architecture . 9

2.1.1 Manifest . 9
2.1.2 Content scripts . 10
2.1.3 Extension core . 11
2.1.4 Message passing API . 12

2.2 Permission bundling . 13
2.3 Flow logic . 15
2.4 Lambda JS . 16

3 Formalization 19
3.1 Calculus . 19

3.1.1 Syntax . 19
3.1.2 Semantics . 23

3.2 Safety despite compromise . 24
3.3 Example . 26

3.3.1 Privilege escalation analysis. 26
3.3.2 Refining the analysis. 27

3.4 Analysis . 27
3.4.1 Abstract Values and Abstract Operations. 28
3.4.2 Judgements. 28

3.5 Theorem . 31
3.6 Requirements for correctness . 33

4 Implementation 37
4.1 Analysis specification . 37

4.1.1 Compositional Verbose . 38
4.2 Constraint generation . 38

3

4.2.1 Constraints . 38
4.2.2 Generation . 40

4.3 Constraint solving . 40
4.4 Abstract domains choice . 41

4.4.1 Abstract Value . 41
4.4.2 Abstract operations . 43

4.5 Implementation-specific details . 45

5 Experiments 53
5.1 Findings . 53

6 Conclusion 55
6.1 Analysis results . 55
6.2 Future works . 55

4

Chapter 1

Introduction

In the last few years there has been an increment in the usage of web applications such
HTML5 apps and browser extensions. These increment also enhanced the popularity of
the JavaScript language used to develop them. Unfortunately, while traditional languages
has lots of tools made explicitly to help the programmer in the development and in the
process of validating programs, JavaScript has few of them. Indeed, actual tools for
JavaScript are limited and their purpose is no more than syntax highlighting and code
completion. Moreover there are almost no static analysis tool to check and validate web
applications. This lack of analyzer resulted in few controls on the software that must be
done by programmers. An other aspect that we have to consider is that usually these
programmers are not even security experts. This situation is very dangerous, even because
web applications and browser extensions have often to interact with the untrusted outer
world and with user sensitive data.

According to the need of security warranties, in this years various solutions has been
adopted in different fields.

1.1 Background

1.1.1 Privilege separation

Privilege separated architectures are built to force developers to split the application
in components giving to each only limited permissions. This choice reduces the attack
surface of the application, because each component is isolated from the others, and reduces
the impact of an attack since a compromised component has only limited privileges.

To preserve interaction between isolated components, the latter can communicate
using a tight message passing interface. Such message passing interface constitutes a
relevant attack surface against privilege-separated applications, because it may lead to
privilege escalation attacks: a compromised, or malicious component that does not have
a permission, can send messages asking other components to trigger security-sensitive
operations.

Other interesting features of some privilege separated architectures are:

• permissions are given statically before the execution of the application in order to
avoid privilege escalation attacks;

5

• and there is a strict punctual mapping between components and permissions in
order to reduce privileges acquired by an attacker.

Privilege separated architectures are adopted in various fields, for example Google
Chrome extension frameworks, Android and others.

1.1.2 Privilege escalation attacks

An attacker of a privilege separated architecture compromising a component can ex-
ercise only certain permissions, and not all the permissions given to the application. But
the problem is that he can try to trigger execution of other privileges that the compro-
mised component do not have. To do this he can use the message passing interface asking
to another component to exercise high privileges. Let us have an example: we have two
components A, B. Component A runs with high privileges and receives messages from
B; B has instead low privileges and it asks to A to perform security sensitive operations.
Assume also that the attacker can only compromise B. Compromising B, the attacker
gains low privilege, and so his potentiality are limited. But he can ask to component A
to exercise high privileges, and if A agreed, B can indirectly exercise such high privilege
defeating the aim of privilege separation. These attacks are very common in various
privilege separated architecture and are studied deeply in scientific literature [8, 11].

1.2 Chrome extension architecture overview

Chrome by Google, as all actual-days browsers, provides a powerful extension frame-
work. This gives to developers a huge architecture made explicitly to extend the core
browser potentiality in order to build small programs that enhance user-experience. In
Chrome web store there are lots of extensions with very various behaviors like security
enhancers, theme changers, organizers or other utilities, multimedia visualizer, games and
others. For example, we point out AdBlock (one of the top downloaded), an extension
made to block all ads on websites and ShareMeNot that “protects the user against be-
ing tracked from third-party social media buttons while still allowing it to use them”[5].
As we can notice, extensions have different purposes, and many of them has to interact
massively with web pages. This creates a very large attack surface for attackers and it is
a big threat for the user. Moreover, many extensions are written by developers that are
not security experts so, even if their behavior is not malign, the bugs that can appear in
them can be easily exploited by attackers.

To mitigate this threat, as deeply discussed in [7], the extension framework is built to
force programmers to develop the software using privilege separation, least privilege and
strong isolation:

1. Privilege separation, as explained in 1.1.1, forces the developer to split the ap-
plication in components and it gives a message passing interface to permit the
communication among them;

2. least privilege gives to the app the least set of permission needed through the
execution of the extension;

6

3. the strong isolation separates the heaps of the various components of the extension
running them in different processes in order to block any possible escalation and
direct delegation.

This reduces the attack surface because while the least privilege sets a static upper
bound on the possible permission exercised by the extension, the privilege separated
architecture and strong isolation reduce the possible malignant operations performed by
the attacker.

More specifically, Google Chrome extension framework [3] splits the extension in two
sets components: content scripts and background pages.

The content scripts are injected in every page on which the extension is running, using
the same origin. They run with no privileges except the one used to send messages to the
background, and they cannot exchange pointers with the page, except to the standard
field of the DOM.

Background pages have instead only one instance for each extension, are totally sepa-
rated from the opened pages, have the full set of privilege granted at install time and, if it
is allowed from the manifest, they can inject new content scripts to pages. Unfortunately
they can communicate with the content scripts only via message passing.

1.3 Bundling

Studying some real Chrome extensions we notice that programmers tend to concen-
trate most of the privileges of the application in a single component. This is dangerous
because if the attacker compromises that component, he escalates all privileges of the
extension. Moreover Chrome extension permission system gives all permissions to the
extension core, and no one to content script, so it is implicitly bundled [6]. Since the
architecture suffers this problem extensions written by programmers that are not secu-
rity experts sometimes suffer some kind of bugs that are exploitable by the attacker. In
section 2.2 we will deeply discuss problems derived by bundling.

1.4 Purposes and methodology

The main aims of this work are to introduce an analysis of JavaScript code of real
Chrome extensions, able to find security warranties on it and to build a real tool able to
perform such analysis on the source.

Our work is composed by a first part in which we carried out a deep study of the state-
of-the-art about Chrome Extensions framework looking both implementation specific
details and scientific works. Then we worked pairwise on the formal analysis and on the
implementation of a tool for statically checking an extension. Working together on both
aspects of the analysis (formal and practical) helped us because some problems arisen in
the proofs of the formal part guided the refinement of both the analysis and the tools.
Moreover similarly problems found in the implementation also influenced both analysis.

In chapter 3 we will present a sound analysis that is able to determine which capability
an extension leaks in extension in presence of an attacker, according to the power of the
attacker. In other words having an extension with some components that exercise some

7

privileges, the analysis shows which privilege an attacker gains if it compromises the
different components. In this way we can guarantee that an extension never leaks a
privilege to a potential attacker. For better understanding the importance of our finding
imagine a bank that wants to develop an extension to enhance user experience and safety
of its online banking website. With our analysis the bank can statically know which
permission are given to a possible attacker and be sure that an extension never allows
the attacker to do a critical task.

We also developed a tool in Microsoft F# for statically checking real extensions. The
tool starts from the analysis of the manifest of the extension, desugar the JavaScript
source in the more succinct λJS(described below), parse the desugared sources and per-
form the analysis returning the possible pairs attacker permission, escalate permission.
Since the analysis is sound, the tool gives an upper bound. So if the tool validate an
extension, this will work for sure, otherwise if the tool fails, then the extension may fail.

8

Chapter 2

Background

2.1 Chrome extension architecture

As already discussed before, a Chrome extension is a software that extends the po-
tentiality of the browser and enhances the user experience. Such extensions are not
stand-alone software, but are integrated in the browser. The integration is done through
a powerful API that expose to the developer lots of functionality of the browser. Since
Chrome extensions interact with web pages and with browser them are developed using
the classic web-style language: JavaScript. Extension can have even HTML or CSS files
and can contains various resources that can be either local or remote resources as typical
in the web.

As showed in [3] a Chrome Extension is an archive containing files of various kind like
JavaScript, HTML, JSON, images and others that extends the browser features.

A basic extension is composed by a manifest file and one or more JavaScript or Html
files.

2.1.1 Manifest

The manifest file manifest.json is a JSON-formatted file. It contains all the speci-
fication of the extension and for this reason is the entry-point of the extension. Indeed
when an extension is load, the loader finds the manifest file and from it create the compo-
nents of the extension. It contains two mandatory fields: name and version respectively
containing the name and the version of the extension. Other important fields are:

• background: contains an object with either script or page field. The former
contains the source of the content script, while the other the source of an HTML
page. If the script field is used, the scripts are injected in a empty extension
core page, while if it is used page the HTML document with all its elements (e.g.,
scripts) composes the extension core;

• content scripts: contains a list of content script objects. Each object contains
the field matches, a list of match patterns (Match patterns are explained below),
and a field js containing the list of JavaScript source files to be injected;

9

Table 2.1 Url pattern syntax. Table taken from [2]

<url-pattern> := <scheme>://<host><path>

<scheme> := ’*’ | ’http’ | ’https’ | ’file’ | ’ftp’ | ’chrome-extension’

<host> := ’*’ | ’*.’ <any char except ’/’ and ’*’>+

<path> := ’/’ <any chars>

• permissions: contains a list of privileges that are requested by the extension.
These can be either a host match pattern for XHR request or the name of the API
needed.

Another possible field is optional permissions. It contains the list of optional per-
missions that the extension could require. It is used to restrict the privileges granted to
the app. To use one of this permissions the background page has to explicitly require
it and, after having used it, the permission has to be released. A program using the
optional permissions can reduce the possible privileges escalated by an attacker.

A match pattern is a string composed of three parts: scheme, host and path.
Each part can contain a value, or "*" that means all possible values. In table 2.1
is shown the syntax of the URL patterns; more details are reported in [2]. In this
way we can decide to inject some content scripts only on pages derived from a given
match. This is used when a content script of the extension has to interact with only
certain pages. For example "*://*/*" means all pages; "https://*/*" means all
HTTPS pages; "https://*.google.com/*" means all HTTPS domains that are sub-
domains of google with all their possible path (e.g., mail.google.com, www.google.com,
docs.google.com/mine/index.html).

In table 2.2 we can see a manifest of a simple Chrome extension that expands the
feature of moodle. We can see that the extension has an empty background page on which
the file background.js is injected. It also has permissions tabs and download, and can
execute XHR to pages with every path in https://moodle.dsi.unive.it/. It has also
one content script that is injected in all subpages of https://moodle.dsi.unive.it/.

2.1.2 Content scripts

Content scripts are JavaScript source files that are automatically injected to the web
page if this matches with the pattern defined in the manifest. Otherwise it can be
programmatically injected by a background page using the chrome.tabs.executeScript
call (the function requires tabs permission). In the example of table 2.1 the JavaScript
file myscript.js is injected to all sub-pages of https://moodle.dsi.unive.it/. In
the extension framework content scripts are designed to interact with pages. Since this
interaction could be the entry point for an attacker, content scripts have no permissions
except the one used to communicate with the extension core. In order to reduce injection
of code in the content script from a malign page, there is a strong isolation between the
heaps of these two. Content scripts of the same extension are run together in their own
address space, and the only way they have to interact with the page on which they are
injected is via the DOM API. DOM API lets the content scripts access and modify only
standard fields of the DOM object, while other changes are kept locally[7]. This strong

10

Table 2.2 A manifest file

{

"manifest_version": 2,

"name":"Moodle expander",

"description":"Download homework and uploads marks from a JSON

string",

"version":"1",

"background": { "scripts": ["background.js"] },

"permissions":

[

"tabs",

"downloads",

"https :// moodle.dsi.unive.it/*"

],

"content_scripts":

[

{

"matches": ["https :// moodle.dsi.unive.it/*"],

"js": ["myscript.js"]

}

]

}

isolation mitigate the risk of code injection since it blocks almost completely pointer
exchange. In figure 2.1 is showed such relation.

In order to keep functionality of extensions, communication between content scripts
and extension core is done using a message passing interface. The message passing inter-
face has crucial importance in this work since it is the only way for a content script to
trigger execution of a privilege. We will discuss it later in 2.1.4.

2.1.3 Extension core

The extension core is the most critical part of the application. It is executed in a
unique origin like chrome-extension://hcdmlbjlcojpbbinplfgbjodclfijhce in order
to prevent cross origin attacks, but it can communicate with all origins that match with
one of the host permission defined in the manifest. In this environment are executed
all scripts defined in the background field of the manifest. Since background pages can
have remote resources of every kind (even scripts), they can also request to the web
such resources, but this can be very dangerous. In fact if the resources are on HTTP
connections these can be altered by an attacker. [9] describes how to enforce the security
policy in order to avoid such possible weakness. Background pages can interact with
content scripts via message passing.

11

Figure 2.1: On the left the normal one-to-one relation between DOM implementation
and JavaScript representation; On the right the one-to-many relation caused by running
content scripts in isolated worlds. Figure taken from [7]

2.1.4 Message passing API

Every content script of the extension can use the message passing interface. To do
this it has to use the functions contained in the chrome.runtime object [4] that exposes
such API.

The main way to send a message to the extension core is invoking the method
chrome.runtime.sendMessage. Like all Chrome APIs even the message passing is asyn-
chronous. As primary arguments it takes the message that can be of any kind and a
callback function that is triggered if someone answer to the message. Before sending, the
message is marshaled using a JSON serializer.

In order to listen to incoming messages, a component has to register a function on
the chrome.runtime.onMessage event. This function will be triggered when a message
arrives. Its arguments are the message (unmarshalled by the API), the sender and an
optional callback used to send response to the sender of the message. The sender field is
very important because it is the only way to know the real identity of the sender. In fact
the message may not be used to decide the sender, because it can be of every kind.

Since content scripts are multiple and injected in various pages (tabs), the extension
core for sending a message has to use the sendMessage method of the tab object to which
the message has to be sent. Its behavior is the same of the chrome.runtime.sendMessage
method.

In table 2.3 we can see how to use the simple message passing interface. A component
simply sends the message and wait for a response. The other registers onMessage function
in the event listener onMessage. When the handler is triggered by an incoming message
onMessage function it checks the message and decides to compute something according

12

to the request or refuses the message doing nothing.
Another way to communicate, that is more secure, is using channels as in table 2.4.

In the message passing API there is a method called connect that triggers the corre-
sponding event listener onConnect and returns a port. It has as optional arguments the
name of the channel that is creating. A port object is a bidirectional channel that can
be used to communicate. It contains the methods postMessage, disconnect and the
events onMessage and onDisconnect. Communication using ports instead of the classi-
cal chrome.runtime.sendMessage is more secure, because only who has one of the port
endpoint can communicate. Obviously ports are not serializable, so it is impossible to
leak the ownership of a port. Ports provide a guarantee for the sender of the message.

Table 2.3 Sending a message.

Sender Receiver

var info = "hello";

var callback =

function(response)

{

console.log("get response

: " + response);

};

chrome.runtime.sendMessage(

info , callback);

var onMessage =

function(message , sender ,

sendResponse)

{

if (message = "hello")

{

// compute message

sendResponse("hi");

}

else

console.log("connection

refused from"+

sender);

};

chrome.runtime.onMessage.

addListener(onMessage);

2.2 Permission bundling

Modern privilege-separated architectures mitigates various attacks coming from the
external untrusted world, but they still have weakness. A great part of this weakness
derive from bad-practice of developers that often are not security experts. One of this
is called bundling. Bundling is, as the name suggests, the practice of clustering in the
same component different privileges. This can be very dangerous because an attacker
that compromise the bundled component can escalate all privileges clustered in it.

In Chrome extensions sometimes programmers tend to aggregate in a single function
various privileges that are delegated to different components. Moreover, often, the bun-
dled function is the onMessage listener in the background, that is the entry point for
an attacker that has compromised a content script. The onMessage function is, indeed,

13

Table 2.4 Port creation.
Port opening active Port opening passive

var port = chrome.runtime.

connect ({name: "cs1"});

port.onMessage.addListener(

onMessage)

port.postMessage("hi")

var scriptPort = null;

var onConnect =

function(port)

{

if (port.name = "cs1")

{

scriptPort = port;

port.onMessage.

addListener(

onMessage);

}

else

{

console.log("connection

refused");

port.disconnect ();

}

};

chrome.runtime.onConnect.

addListener(onConnect)

critical because it receives messages from a possible compromised content script, since
attacker cannot access directly the background page from the web thanks to the privilege
separated and strong isolation behavior of the architecture. The practice of permission
bundling, especially in the onMessage function is very dangerous because an attacker
that compromises a content script can directly trigger the listener in order to escalate
privileges.

To reduce the attack surface exposed by bundled components, is important to base
the decision of which privilege has to be exercised on trusted elements. Indeed, as seen
in table 2.3, the choice taken by the bundled component when a message is received can
depend on various factors decided by the programmer.

Let us explain the example in 2.5: suppose to have three components Background,
CS1 and CS2. CS1 can only send messages that has "getPasswd" as title and CS2 only
"executeXHR". Here the Background deduct the sender checking the title of the messages
instead of of explicitly checking the argument sender. According to the check decides
which privilege has to be executed. This practice exposes all the weakness of the bundling
and is very dangerous because an attacker can compromise just one of the two content
scripts and from that one can forge messages with any form to escalate a permission that
it does not have in the original setting.

To mitigate such weakness, in chrome extensions, is important to check the sender
field of the onMessage function in order to be sure of the sender. This cannot be enough

14

because, as discussed before, contents script that are injected on the same page share their
memory, tab and origin, and the message passing interface are does not distinguish them.
The fix of this weakness is to use ports instead of the chrome.runtime.sendMessage

function in order to have different listener for each content script. In this way we unbundle
the onMessage function, separating in the various listeners privileges. In table 2.6 are
showed a not dangerous bundled code, and an unbundled code.

2.3 Flow logic

The goal of this work is to develop an analysis that is able to detect statically absence
of bundling in real Chrome extensions. Moreover we want to do this automatically, so
without any effort for the developer (e.g., code annotations or similar). Statically typed
languages are easier to check because the typing discipline provide strong foundation
for detecting the behavior of a program. On the contrary, the weak dynamically typed
nature of JavaScript code makes the analysis more difficult. Since extension are written
in JavaScript we have to face with problem deriving from a dynamic and weak typing
discipline. Indeed, in JavaScript there are lots of quirks that made the analysis very
hard with a classical typing approach. For example local and global scoping, passage of
functions, and access of a property of an object using a string are very hard to handle
statically. To achieve our purpose the analysis must track the flow of both control and
data during the execution. In this scenario we used the flow logic approach because of
its flexibility, high potential and easiness to use.

Flow logic, introduced in [22], is a static analysis approach that derives from state of
the art in program verification and has been successfully used in research projects [16, 15].
It has its root in classical approaches of static program analysis [20] like control flow anal-
ysis [12], abstract interpretation, constraint based analysis and data flow analysis. Flow
logic lets the specification to focus on when an analysis estimate is acceptable, instead
of how to compute such estimate. Another property is that, like structural operational
semantics, is adaptable to lots of programming paradigms. Finally it can be used with
various levels of abstraction according to the implementation details that are needed, but
can be easily translated from one level to another.

The principal levels of abstraction are grouped in some possible approaches: abstract
versus compositional and succinct versus verbose. The abstract style is closer to standard
semantics while the compositional one is more syntax directed. The succinct approach is
similar to the typical style of type systems because it focuses the top part of the analysis,
while the verbose approach traces all the internal information in cashes and are typical
of the implementation of control flow analysis and constraint based analysis.

The modularity fits very well for analysis, because the abstract succinct style is very
clean and expressive without dealing with implementation details, and from such specifi-
cation is easy to commute it to a compositional verbose specification. From the latter is
possible to build an algorithm for generating the set of constraints of a program and com-
bining it with a simple constraint solver like the worklist algorithm [20] or with a more
sophisticated ones like the succinct solver [21] or the BANSHEE solver [1], is possible to
compute the estimate for a program.

Let us have an example: suppose to have a program and “magically” an estimate for

15

it: using flow logic judgments we are able to establish if such estimate respect our analysis
for the program, or not. This decision is granted by the fact that one of the constraint of
generated by the constraint generator is not satisfied. Moreover we can compute starting
from the constraint an estimate that satisfy the analysis.

In this work, is used the flow logic, and as described before, the various specification-
to-implementation steps are done. In chapter 3 is used an abstract-succinct approach,
and in chapter 4 the analysis is expanded in the compositional-verbose one; from this
the algorithm for constraint-generation is built and finally is used a worklist algorithm
to solve the constraints and to find an estimate for a program.

2.4 Lambda JS

Since JavaScript is a real world programming language that has high level constructs,
weak and dynamic typing discipline and unconventional semantics, it is very complex to
analyze. We reduce JavaScript to λJS as described in [13]. λJS is a dialect of Scheme, with
a small-step operational semantics, that, in contrast with JavaScript, has few standard
constructs taken from the lambda calculus. λJS models features of JavaScript in a way
that corresponds closely to well known languages semantics.

Thanks to this we can simplify a lot the analysis without losing expressiveness because
λJS contains just few construct with simple semantics.

Unfortunately λJS is not proved to be a sound representation of JavaScript, but all
test on desugared file showed that its semantic coincide with JavaScript. In figure ?? is
shown the testing method adopted to validate semantics of λJS.

Figure 2.2: The λJS test. Figure taken from [13]

16

Table 2.5 Bundled code.
Background

function onMessage(message , sender , response)

{

switch (message.title) {

/* Requests from content script 1 */

case "getPasswd":

// get passwords

response(passwd)

break;

/* Requests from content script 2 */

case "executeXHR":

var host = message.host

var m = message.content;

// execute XHR on args

break;

default:

throw "Invalid request from contentScript";

}

}

Content script CS1

var mess = {title: "getPasswd"};

chrome.runtime.sendMessage(mess);

Content script CS2

var mess = {title: "executeXHR", host: "www.google.com",

content: "hi there"};

chrome.runtime.sendMessage(mess);

17

Table 2.6 Unbundling.

Unbundling checking sender

function onMessage(message , sender , response)

{

switch (sender) {

/* Requests from content script 1 */

case CS1:

// get passwords

response(passwd)

break;

/* Requests from content script 2 */

case CS2:

var host = message.host

var m = message.content;

// execute XHR on args

break;

default:

throw "Invalid request from contentScript";

}

}

Unbundling using ports.

// Handler for messages from CS1

function onMessage_cs1(message , sender , response)

{

/* Requests is content script 1 since it is on its port */

// get passwords

response(passwd)

}

// Handler for messages from CS2

function onMessage_cs2(message , sender , response)

{

/* Requests is content script 2 since it is on its port */

var host = message.host

var m = message.content;

// execute XHR on args

}

port_cs1.onMessage.addListener(onMessage_cs1);

port_cs2.onMessage.addListener(onMessage_cs2);

18

Chapter 3

Formalization

This chapter is about the formal part of the work and explains the calculus, the safety
property, the analysis specification, theorem and requirements for correctness. It is part
of the work done together with Stefano Calzavara.

3.1 Calculus

In this section we introduce the language used to study privilege escalation. The core
of the calculus models JavaScript essential features and is a subset of λJS. λJS is a Scheme
dialect described in [13] and used to desugar JavaScript in order to simplify it in few con-
struct with easy semantic behavior. It has been used to do static analysis on JavaScript
code in [14] and [17]. It admit functions, object (i.e., records) and mutable references.
Here we are not using exceptions and break statements for the sake of simplicity. On
the other hand, we added specific constructs to explicitly deal with privilege-based access
control and privilege escalation. We rely on a channel-based communication model based
on asynchronous message exchanges and handlers. Send expression and its corresponding
handler are similar to the ones used in [8].

The desugaring function has an interesting feature since it translates JavaScript, that
is not lexically scoped, to λJS that is lexically scoped. This simplifies the analysis because
it removes the complexity of dealing with a scoping different to the statical one. In [13]
is shown how the desugaring function transforms correctly these two different scoping
approaches.

3.1.1 Syntax

Now we introduce the syntax of our calculus starting from values, expressions, mem-
ories, handlers, instances and systems. We then have a example to show how it works.

We assume denumerable sets of names N (ranged over by a, b,m, n) and variables
V (ranged over by x, y, z). We let c range over constants, including numbers, strings,
boolean values, unit and the “undefined” value; we also let r range over references in R,
i.e., memory locations. The calculus is parametric with respect to an arbitrary lattice of
permissions (P ,v) and we let ρ range over P . Finally, we assume a denumerable set of
labels L (ranged over by `) to support our static analysis. All the sets above are assumed
pairwise disjoint.

19

Variables can be either bound or free. Expressions λ, “let”, the handler a(x / ρ : ρ′).e
are binding operators for variables: the notions of free variables fv arise as expected.

Values.

We let u, v range over values, defined by the following productions:

c ::= num | str | bool | unit | undefined,

u, v ::= n | x | c | r` | λx.e | {
−−−−→
stri : vi}.

A value could be either a name, a variable, a constant, a reference, a lambda or a record.
A constant is either number, a string, boolean, unit (that means nothing) or undefined.
Undefined is a JavaScript special value returned from an invalid lookup on an object
field. Records are maps from string to a value and we consider them closed, without loss
of expressiveness. This means that all lambdas in a record are closed, i.e., without free
variables. Notice that references contains a label `. This is needed in our static analysis,
but has no role in the semantics.

Definition 1 (Serializable Value). A value v is serializable if and only if:

• v is a name, a constant, or a reference;

• v = {−−−−→stri : vi} and each vi is serializable.

This means that a serializable value are only names, constants references and record
containing only serializable values. Functions and variables cannot be serialized. This
fits the model of Chrome extension message passing interface described in 2.1.4 because
it let only to send JSON-serialized objects, or strings.

Expressions.

Since the calculus is functional there are no statements, but just expressions. We let
e range over expressions, defined by the following productions:

e, f ::= v | let x = e in e | e e | op(−→ei) | if (e) { e } else { e } | while (e) { e }
| e; e | e[e] | e[e] = e | delete e[e] | ref ` e | deref e | e = e | e〈e . ρ〉
| exercise(ρ).

The operations op(−→ei) is used for all arithmetic, boolean and string operations. It includes
also string equality, denoted by ==. The creation of new references comes with an
annotation: ref ` e creates a fresh reference r` labelled by `. As said before, ` plays no
role in the semantics: annotating the reference with the program point where it has been
created is useful for our static analysis.

We discuss the non-standard expressions. The expression a〈v . ρ〉 sends the value v
on channel a: the value can be received by any handler listening on a, provided that it
is granted permission ρ (this allows the sender to protect the message). The expression
exercise(ρ) exercises the permission ρ. Indeed, in order to keep simple the calculus and
to more clearly state our security property, we abstract any security sensitive expression
(such as the call of a function library) with the generic exercise of the correspondent
privilege. So, since the execution of a privilege is only used in API calls, the exercise(ρ)
expression is placed in such libraries just for marking the permission execution.

20

Memories.

We let µ range over memories, defined by the following productions:

µ ::= ∅ | µ, r`
ρ7→ v.

A memory is a partial map from (labelled) references to values, implementing an access

control policy. Specifically, if r`
ρ7→ v ∈ µ, then permission ρ is required to have read/write

access on the reference r in µ. Given a memory µ, we let dom(µ) = {r | r`
ρ7→ v ∈ µ}.

Handlers.

We let h range over multisets of handlers, defined by the following productions:

h ::= ∅ | h, a(x / ρ : ρ′).e.

The handler a(x / ρ : ρ′).e contains an expression e, which is granted permission ρ′.
The handler is guarded by a channel a, which requires permission ρ for write access:
this protect the receiver against untrusted senders. When a message is sent over a, the
handler is triggered and the expression e will be disclosed and a new instance with e is
created.

In other words when a a〈v . ρs〉 is executed on a channel a all handler a(x / ρ : ρ′).e
on the same channel a with permission ρ′ v ρs may be triggered. Triggering a handler
means that the message value v is bound to variable x in the environment of e and e is
executed in a new instance.

Instances.

Instances are the active part of a system. They are spawned when a message is
received by a handler and the function in it is executed. Instances contains a permission
ρ that is the same granted to the handler that has spawned it. We let i range over pools
of running instances.Instances are multisets defined as follows:

i, j ::= ∅ | i, a{|e|}ρ

Instances are annotated with the channel name corresponding to the handler which
spawned them: this is convenient for our static analysis, but it is not important for
the semantics.

Systems.

A system is defined as a triple s = µ;h; i. It is the representation of a running exten-
sion in a certain moment. Its components are the memory µ that contains all the data
referenced in the program, all the handler registered in it and all the running instances:
listeners that have been triggered and that have not yet finished their execution. An
initial state is a state where there are no instances sinitial = µ;h; ∅.

21

Example.

Handlers can be used to model the single entry point of a Chrome component, which
is represented by the the function onMessage. To understand the programming model,
let’s consider a simple protocol:

A→ B : {tag : ”init”, val : x}
B → A : y
A→ B : {tag : ”okay”, other : z}

Here the component A sends to B a message containing {tag : ”init”, val : x}. Then B
reply to A with y and finally A respond to B with {tag : ”okay”, other : z} In Chrome,
and in λJS, the handler of the component B is programmed as in table 3.1.

Table 3.1 onMessage handler in JavaScript and in λJS
JavaScript

void onMessage (Message m) {

if (m.tag == "init")

process_request (m.val) >> rho;

else if (m.tag == "okay")

process_other (m.other) >> rho’;

else

do nothing;

};

chrome.runtime.onMessage.addListener(onMessage);

λJS

a(x <| SEND: BACK).

if (== (x["tag"], "init"))

{

process_request (x["val"])

exercise(rho)

}

else if (== (x["tag"], "okay"))

{

process_other (x["other"])

exercise(rho ’)

}

else

do_nothing

22

3.1.2 Semantics

In this section we introduce the semantic of our calculus. The small-step operational
semantics is defined as a labelled reduction relation between systems, i.e., s

α−→ s′. The
auxiliary reduction relation between expressions that is directly inherited from λJS se-
mantic [13], i.e., µ; e ↪→ρ µ

′; e′. We associate labels to reduction steps just to state our
security property easily and to provide additional informations in the proofs, however
labels have no impact on the semantics.

Tables 3.2 and 3.3 collect the reduction rules for systems and expressions, where the
syntax of labels α is defined as follows:

α ::= · | a : ρa � ρ | 〈a : ρa, b : ρb〉.

The step s
a:ρa�ρ−−−−→ s′ identifies the exercise of the privilege ρ by a system component a

with privileges ρa, while the step s
〈a:ρa,b:ρb〉−−−−−−→ s′ records the fact that an instance a with

privilege ρa sends a message to an handler b allowing the spawning of a new b-instance
running with privilege ρb. Any other reduction step is characterized by s

·−→ s′. We write
−→α
=⇒ for the reflexive-transitive closure of

α−→.

Table 3.2 Small-step operational semantics s
α−→ s′

(R-Sync)

h = h′, b(x / ρs : ρb).e ρs v ρa ρr v ρb v is serializable

µ;h; a{|E〈b〈v . ρr〉〉|}ρa
〈a:ρa,b:ρb〉−−−−−−→ µ;h; a{|E〈unit〉|}ρa , b{|e[v/x]|}ρb

(R-Exercise)

ρ v ρa
µ;h; a{|E〈exercise(ρ)〉|}ρa

a:ρa�ρ−−−−→ µ;h; a{|E〈unit〉|}ρa

(R-Set)

µ;h; i
α−→ µ′;h′; i′

µ;h; i, i′′
α−→ µ′;h′; i′, i′′

(R-Basic)

µ; e ↪→ρ µ
′; e′

µ;h; a{|e|}ρ
·−→ µ′;h; a{|e′|}ρ

Rule (R-Sync) implements a security cross-check between sender and receiver: by
specifying a permission ρr on the send expression, the sender can require the receiver to
have at least that permission, while specifying a permission ρs in the handler, the receiver
can require the sender to have at least that permission. If the security check succeeds,
a new instance is created and the sent value is substituted to the bound variable in the
handler.

Evaluation contexts are defined by the following productions:

E ::= • | let x = E in e | E e | v E | op(−→vi , E,−→ej) | if (E) { e } else { e } | E[e]
| v[E] | E[e] = e | v[E] = e | v[v] = E | delete E[e] | delete v[E] | ref ` E
| deref E | E = e | v = E | E; e | E〈e . ρ〉 | v〈E . ρ〉.

The full reduction semantics λJS is given in Table 3.3. The semantics comprises two
layers: the basic reduction e ↪→ e′ does not include references and thus permissions play

23

no role there; the internal reduction µ; e ↪→ρ µ
′; e′ builds on the simpler relation. Labels

on references do not play any role at runtime: to formally prove it, we can define an
unlabelled semantics (i.e., a semantics over unlabelled references) and show that, for
any expression and any reduction step, we can preserve a bijection between labelled
references and unlabelled ones, which respects the values stored therein. Intuitively, this
is a consequence of (JS-Ref), which never introduces two references with the same name.
Hence, there might be two references with the same label but different names, but no
pair of references with the same name and two different labels.

We discuss some important points: in rule (JS-PrimOp) we assume a δ function,
which defines the behaviour of primitives operations. In rule (JS-Ref) we ensure that
running instances can only create memory cells they can access; in rule (JS-Deref) and
(JS-SetRef) we perform the expected access control checks. For simplicity we excluded
the rules for prototype inheritance of λJS with no impact on the analysis, but them are
included in the implementation. The prototype inheritance of JavaScript is modeled in
λJSas a recursion on the proto field if an attribute is not found in the current object,
and if the proto field does not exist is returned the value undefined.

3.2 Safety despite compromise

Definition 2 (Exercise).

• A system s exercises ρ if and only if there exists s′ such that s
−→α
=⇒ s′ and a : ρa �

ρ ∈ {−→α }.

• A system s exercises at most ρ iff ∀s′,−→α such that s
−→α
=⇒ s′, if a : ρa � ρ′ ∈ {−→α }

then ρ′ v ρ.

This means that a system exercises ρ if and only if through its execution (reduction
steps) a permission ρ is exercised and that a system exercises at most ρ if and only if
all the permission required during all possible executions are lower than ρ. The second
statement gives an upper bound on the permission required by the system.

We now introduce our threat model. We partition the set of variables V into two
sets Vt (trusted variables) and Vu (untrusted variables). We say that all the variables
occurring in a system we analyse are drawn from Vt, while all the variables occurring in
the opponent code are drawn from Vu.

Definition 3 (Opponent). A ρ-opponent is a closed pair (h, i) such that:

• for any handler a(x / ρ : ρ′).e ∈ h, we have ρ′ v ρ;

• for any instance a{|e|}ρ′ ∈ i, we have ρ′ v ρ;

• for any x ∈ vars(h) ∪ vars(i), we have x ∈ Vu.

So an ρ-opponent is a pair of handlers and instances such that for each expression
in the instances or in the handlers of it, the expression exercise at most ρ and all the
variable used in the expression by the opponent are untrusted since it can modify their
value.

24

Table 3.3 Small-step operational semantics of λJS
Basic Reduction:

(JS-PrimOp)

op(−→ci) ↪→ δ(op,−→ci)
(JS-Let)

let x = v in e ↪→ e[v/x]

(JS-App)

(λx.e) v ↪→ e[v/x]

(JS-GetField)

{−−−−→stri : vi, str : v,
−−−−−→
str′j : v′j}[str] ↪→ v

(JS-GetNotFound)

str /∈ {str1, . . . , strn}
{−−−−→stri : vi}[str] ↪→ undefined

(JS-UpdateField)

{−−−−→stri : vi, str : v,
−−−−−→
str′j : v′j}[str] = v′ ↪→ {−−−−→stri : vi, str : v′,

−−−−−→
str′j : v′j}

(JS-CreateField)

str /∈ {str1, . . . , strn}
{−−−−→stri : vi}[str] = v ↪→ {str : v,

−−−−→
stri : vi}

(JS-DeleteField)

delete {−−−−→stri : vi, str : v,
−−−−−→
str′j : v′j}[str] ↪→ {

−−−−→
stri : vi,

−−−−−→
str′j : v′j}

(JS-DeleteNotFound)

str /∈ {str1, . . . , strn}
delete {−−−−→stri : vi}[str] ↪→ {

−−−−→
stri : vi}

(JS-CondTrue)

if (true) { e1 } else { e2 } ↪→ e1

(JS-CondFalse)

if (false) { e1 } else { e2 } ↪→ e2

(JS-Discard)

v; e ↪→ e

(JS-While)

while (e1) { e2 } ↪→ if (e1) { e2; while (e1) { e2 } } else { undefined }

Internal Reduction:

(JS-Expr)

e1 ↪→ e2

µ; e1 ↪→ρ µ; e2

(JS-Ref)

r /∈ dom(µ) µ′ = µ, r`
ρ7→ v

µ; ref ` v ↪→ρ µ
′; r`

(JS-Deref)

µ = µ′, r`
ρ7→ v

µ; deref r` ↪→ρ µ; v

(JS-SetRef)

µ = µ′, r`
ρ7→ v′

µ; r` = v ↪→ρ µ
′, r`

ρ7→ v; v

(JS-Context)

µ; e1 ↪→ρ µ
′; e2

µ;E〈e1〉 ↪→ρ µ
′;E〈e2〉

25

Our security property is given over initial systems, i.e., a system with no running
instances, since we are interested in understanding the interplay between the exercised
permissions and the message passing interface exposed by the handlers. In particular, we
want to understand how many privileges the opponent can escalate by leveraging existing
handlers.

Definition 4 (Safety Despite Compromise). A system s = µ;h; ∅ is ρ-safe despite ρ′

(with ρ 6v ρ′) if and only if, for any ρ′-opponent (ho, io), the system s′ = µ;h, ho; io
exercises at most ρ.

In other words, This crucial definition state that an initial system is ρ-safe despite ρ′

if each ρ′-opponent cannot alter the system in order to access to a privilege bigger than
ρ.

3.3 Example

Consider an extension made of two content scripts CS1, CS2 and a background page
B. Assume that CS1 sends only messages with tag Message1 and CS2 sends only
messages with tag Message2.

A simple encoding of the Google Chrome extension in our calculus is the following:

Content script 1:

cs1(x <| CS1: SEND).b〈{tag: "Message1"}.BACK〉
Content script 2:

cs2(x <| CS2: SEND).b〈{tag: "Message2"}.BACK〉
Background:

b(x <| SEND: BACK).

if (== (x["tag"], "Message1")) then exercise(ρ)
else exercise(ρ′)

Assume that both ρ and ρ′ are bounded above by BACK, while all the other permissions
are unrelated. More sensible encodings are possible, but this is enough to present the
analysis.

This scenario is composed by two content scripts and a background. Each content
script is modeled by a handler that receives messages respectively on channel cs1 and
cs2, requires permissions CS1 and CS2 and exercises permission SEND. When triggered
each content script sends a message to the background with tag Message1 or Message2

on channel b with permission BACK. The background waits for messages on channel b
having at least permission BACK. Then, according to the tag of the message, exercise ρ or
ρ′.

3.3.1 Privilege escalation analysis.

The idea is that each handler has a “type” which describes the permissions which
are needed to access it, and the permissions which will be exercised (also transitively)
by the handler. For instance, the example above is acceptable according to the following
assumptions:

26

cs1: CS1 ---> ρ t ρ′
cs2: CS2 ---> ρ t ρ′
b: SEND ---> ρ t ρ′

These assumptions environment tells us that a caller with permission SEND can escalate
up to ρtρ′. All these aspects are formalized in the abstract stack we introduce below and
our novel notion of permission leakage, which quantifies the attack surface of the message
passing interface.

3.3.2 Refining the analysis.

While it is perfectly sensible that an opponent with permission SEND can escalate
both ρ and ρ′, the typing above may appear too conservative if we focus, for instance,
on an opponent with permission CS1. Indeed, an opponent with CS1 can access the first
content script, but not directly the background page: since CS1 sends only messages of
the first type, it would be safe to state that the opponent can only escalate ρ rather than
ρ t ρ′, which is not entailed by the typing above.

Our analysis is precise, though, since it keeps track also of an abstract network, which
approximates the incoming messages for all the handlers. In the example above we have:

cs1: TOP

cs2: BOTTOM

b: {{tag:"Message1"}}

where TOP signifies that cs1 can be accessed by the opponent (hence any value can be
sent to it), while BOTTOM denotes that cs2 will never be called. Having BOTTOM for
cs2 is important, since our static analysis will not analyse the body of cs2, hence there
is no need to include {tag:"Message2"} among the messages processed by b. Since the
“else” branch in b is unreachable, we can admit the more precise typing:

cs1: CS1 ---> rho

b: SEND ---> rho

which captures the correct information for a CS1-opponent (i.e., a CS1-opponent can
only escalate ρ).

3.4 Analysis

In the analysis we predict statically which privileges an opponent can escalate through
the message passing interface. To do this, as in abstract analysis, we approximate values
an expression may evaluate to using abstract representation of concrete values. The
abstract-succinct style flow logic specification that follows consists of a set of clauses
defining a judgement expressing acceptability of an analysis estimate for a given program
fragment.

In this section, the main judgement for the flow analysis of systems will be C

s despite ρ, meaning that C represents an acceptable analysis for s, even when s interacts
with a ρ-opponent. We will prove in the following that this implies that any ρ-opponent
interacting with s will at most escalate privileges according to an upper bound which we
can immediately compute from C.

27

3.4.1 Abstract Values and Abstract Operations.

Here we show the abstract values semantic, but we do not fix any specific represen-
tation leaving in the implementation the decision of the domains. Later we will state
some properties required by abstract domains in order to prove soundness. Moreover we
assume that abstract values are ordered by a pre-order v.

In chapter 4 we describe the actual choice of the abstract domains used in the imple-
mentation and the operations on them and how they respect properties listed in section
3.6.

Let V̂ stand for the set of the abstract values v̂, defined as sets of abstract prevalues
according to the following productions1:

Abstract prevalues û ::= n | ĉ | ` | λxρ | 〈|−−−−→stri : vi|〉C,ρ,
Abstract values v̂ ::= {û1, . . . , ûn}.

The abstract value ĉ stands for the abstraction of the constant c. We dispense from
listing all the abstract pre-values corresponding to the constants of our calculus, but we
assume that they include true, false, unit and undefined.

A function λx.e is abstracted into the simpler representation λxρ, keeping track of
the escalated privileges ρ. Since our operational semantics is substitution-based, having
this more succinct representation is important to prove soundness. In the following we
let Λ = {λx | x ∈ V}.

The abstract value 〈|−−−−→stri : vi|〉C,ρ is the abstract representation of the concrete record

{−−−−→stri : vi} in the environment C, assuming permissions ρ. As said before, we do not fix any
apriori abstract representation for records, i.e., both field-sensitive and field-insensitive
analyses are fine.

We associate to each concrete operation op an abstract counterpart ôp operating on
abstract values. We also assume three abstract operations ĝet, ŝet and d̂el, mirroring
the standard get field, set field and delete field operations on records. These abstract
operations can be chosen arbitrarily, but they have to satisfy the conditions needed for
the proofs.

3.4.2 Judgements.

The judgements of the analysis are specified relative to an abstract environment C.
The abstract environment is global meaning that it is going to represent all the environ-
ments that may arise during the evaluation of the system. We let C = Υ̂; Φ̂; Γ̂; µ̂, that is,
the abstract environment is a four-tuple made of the following components:

Abstract variable environment Γ̂ : V ∪ Λ→ V̂

Abstract memory µ̂ : L × P → V̂

Abstract stack Υ̂ : N ×P → P × P
Abstract network Φ̂ : N ×P → V̂ .

The abstract variable environment is standard: it associate abstract values to variables
and to abstract functions. Abstract memory is also standard: if associate abstract values

1We occasionally omit brackets around singleton abstract values for the sake of readability.

28

to labels denoting references, but they also keep track of some permission information to
make the analysis more precise. Specifically, if µ̂(`, ρ) = v̂, then all the references labelled
with ` contain the abstract value v̂, and are protected with permission ρ.

Abstract stack is used to keep track of the permissions required to access a given
handler and the permissions which are exercised (also transitively, i.e., via a call stack)
by the handler itself. Specifically, if we have Υ̂(a, ρa) = (ρs, ρe), then the handler a with
permission ρa can be accessed by any component with permission ρs and it will be able
to escalate privileges up to ρe, even by calling other handlers in the system.

Also abstract network is novel and it is used to keep track of the messages exchanged
between handlers. For instance, if we have Φ̂(a, ρa) = v̂, then v̂ is a sound abstraction of
any message received by the handler a with permission ρa.

To lighten the notation, we denote by CΓ̂, Cµ̂, CΥ̂, CΦ̂ the four components of the ab-
stract environment C.

Table 3.4 Flow analysis for values

(PV-Name)

n ∈ v̂
C
ρ n v̂

(PV-Var)

CΓ̂(x) v v̂
C
ρ x v̂

(PV-Cons)

{ĉ} v v̂
C
ρ c v̂

(PV-Ref)

` ∈ v̂
C
ρ r` v̂

(PV-Fun)

λxρe ∈ v̂ C
ρ e : v̂′ � ρ′ v̂′ v CΓ̂(λx) ρ′ v ρe
C
ρ λx.e v̂

(PV-Rec)

{〈|−−−−→stri : vi|〉C,ρ} v v̂
C
ρ {

−−−−→
stri : vi} v̂

The judgements have one of the following form:

• C
ρ v v̂
meaning that, assuming permission ρ, the concrete value v is mapped to the abstract
value v̂ in the abstract environment C. The rules to derive these judgements are
collected in Table 3.4.

• C
ρ e : v̂ � ρ′

meaning that in the context of an handler/instance with permission ρ, and under
the abstract environment C, the expression e may evaluate to a value abstracted
by v̂ and it will escalate (i.e., it will transitively exercise) at most ρ′. The rules for
these judgements are collected in Table 3.5.

• C
 µ despite ρ, C
 h despite ρ, C
 i despite ρ, C
 s despite ρ
meaning that the respective pieces of syntax are safe w.r.t. a ρ-opponent under the
abstract environment C.

The formal definitions of the last judgements are in Table 3.6, where we put in place the
required constraints to ensure opponent acceptability, while keeping the analysis sound.
We also employ two additional definitions.

29

Table 3.5 Flow analysis for expressions

(PE-Val)

C
ρs v v̂

C
ρs v : v̂ � ρ

(PE-Let)

C
ρs e1 : v̂1 v CΓ̂(x) � ρ1 v ρ
C
ρs e2 : v̂2 v v̂ � ρ2 v ρ
C
ρs let x = e1 in e2 : v̂ � ρ

(PE-App)

C
ρs e1 : v̂1 � ρ1 v ρ
C
ρs e2 : v̂2 � ρ2 v ρ

∀λxρe ∈ v̂1 : v̂2 v CΓ̂(x) ∧ CΓ̂(λx) v v̂ ∧ ρe v ρ
C
ρs e1 e2 : v̂ � ρ

(PE-Seq)

C
ρs e1 : v̂1 � ρ1 v ρ
C
ρs e2 : v̂2 v v̂ � ρ2 v ρ
C
ρs e1; e2 : v̂ � ρ

(PE-Op)

∀i : C
ρs ei : v̂i � ρi v ρ
ôp(
−→
v̂i) v v̂

C
ρs op(−→ei) : v̂ � ρ

(PE-Cond)

C
ρs e0 : v̂0 � ρ0 v ρ
true ∈ v̂0 ⇒ C
ρs e1 : v̂1 v v̂ � ρ1 v ρ
false ∈ v̂0 ⇒ C
ρs e2 : v̂2 v v̂ � ρ2 v ρ
C
ρs if (e0) { e1 } else { e2 } : v̂ � ρ

(PE-While)

C
ρs e1 : v̂1 � ρ1 v ρ
true ∈ v̂1 ⇒ C
ρs e2 : v̂2 � ρ2 v ρ

false ∈ v̂1 ⇒ undefined ∈ v̂
C
ρs while (e1) { e2 } : v̂ � ρ

(PE-GetField)

C
ρs e1 : v̂1 � ρ1 v ρ
C
ρs e2 : v̂2 � ρ2 v ρ

ĝet(v̂1, v̂2) v v̂
C
ρs e1[e2] : v̂ � ρ

(PE-SetField)

C
ρs e0 : v̂0 � ρ0 v ρ
C
ρs e1 : v̂1 � ρ1 v ρ
C
ρs e2 : v̂2 � ρ2 v ρ
ŝet(v̂0, v̂1, v̂2) v v̂

C
ρs e0[e1] = e2 : v̂ � ρ

(PE-DelField)

C
ρs e1 : v̂1 � ρ1 v ρ
C
ρs e2 : v̂2 � ρ2 v ρ

d̂el(v̂1, v̂2) v v̂
C
ρs delete e1[e2] : v̂ � ρ

(PE-Ref)

C
ρs e : v̂′ � ρ′ v ρ
v̂′ v Cµ̂(`, ρs) ` ∈ v̂
C
ρs ref ` e : v̂ � ρ

(PE-Deref)

C
ρs e : v̂′ � ρ′ v ρ
∀` ∈ v̂′ : Cµ̂(`, ρs) v v̂
C
ρs deref e : v̂ � ρ

(PE-SetRef)

C
ρs e1 : v̂1 � ρ1 v ρ
C
ρs e2 : v̂2 v v̂ � ρ2 v ρ
∀` ∈ v̂1 : v̂2 v Cµ̂(`, ρs)

C
ρs e1 = e2 : v̂ � ρ

(PE-Send)

C
ρs e1 : v̂1 � ρ1 v ρ′
C
ρs e2 : v̂2 � ρ2 v ρ′

∀m ∈ v̂1 : ∀ρm w ρ : CΥ̂(m, ρm) = (ρr, ρe) ∧ ρr v ρs ⇒ ρe v ρ′ ∧ v̂2 v CΦ̂(m, ρm) ∧ unit ∈ v̂
C
ρs e1〈e2 . ρ〉 : v̂ � ρ′

(PE-Exercise)

ρ v ρs ⇒ ρ v ρ′ ∧ unit ∈ v̂
C
ρs exercise(ρ) : v̂ � ρ′

30

Definition 5 (Permission Leak). Given an abstract environment C, we let its permission
leak against ρ be:

Leakρ(C) =
⊔
ρe∈L

ρe, with L = {ρe | ∃a, ρa, ρs : CΥ̂(a, ρa) = (ρs, ρe) ∧ ρs v ρ}

Remind that Υ̂(a, ρa) = (ρs, ρe) means that the handler a can be called by any compo-
nent with privileges ρs and it transitively exercises up to ρe privileges. Then, intuitively
the permission leak is a sound over-approximation of the permissions which can be esca-
lated by the opponent in an initial system.

Let C be an abstract environment and pick a ρ-opponent. We define the set Vρ(C) as
follows:

Vρ(C) = Vu ∪ {x | ∃`, ρr v ρ, ρe : λxρe ∈ Cµ̂(`, ρr)}.

We let v̂ρ(C) = {û | vars(û) ⊆ Vρ(C)}. Intuitively, this is a sound abstraction of any
value which can be generated by/flow to the opponent (the second component of the
union above corresponds to functions generated by the trusted components, which may
be actually called by the opponent at runtime).

Definition 6 (Conservative Abstract Environment). An abstract environment C is ρ-
conservative if and only if all the following conditions hold true:

1. ∀n ∈ N : ∀ρ′ v ρ : CΥ̂(n, ρ′) = (⊥,Leakρ(C));

2. ∀n ∈ N : ∀ρn, ρs, ρe : CΥ̂(n, ρn) = (ρs, ρe) ∧ ρs v ρ⇒ CΦ̂(n, ρn) = v̂ρ(C);

3. ∀n ∈ N : ∀ρ′ v ρ : CΦ̂(n, ρ′) = v̂ρ(C);

4. ∀` ∈ L : ∀ρ′ v ρ : Cµ̂(`, ρ′) = v̂ρ(C);

5. ∀x ∈ Vρ(C) : CΓ̂(x) = CΓ̂(λx) = v̂ρ(C).

In words, an abstract environment is conservative whenever any code that can be run
by the opponent is (soundly) assumed to escalate up to the maximal privilege Leakρ(C)
(1) and any reference under the control of the opponent is assumed to contain any possible
value (4). Moreover, the parameter of any function which could be called by the opponent
should be assumed to contain any possible value and similarly these functions can return
any value (5). Finally, handlers which can be contacted by the opponent and handlers
registered by the opponent may receive any value (2) and (3).

3.5 Theorem

Now we introduce the main finding of our analysis. This theorem gives a quantitative
measure on how a system is safe against the attack of an opponent.

Theorem 1 (Safety Despite Compromise). Let s = µ;h; ∅. If C
 s despite ρ, then s
is ρ′-safe despite ρ for ρ′ = Leakρ(C).

31

Table 3.6 Flow analysis for systems

(PM-Empty)

C
 ∅ despite ρ

(PM-Ref)

C
ρr v v̂ v̂ v Cµ̂(`, ρr)

C
 r`
ρr7→ v despite ρ

(PM-Mem)

C
 µ1 despite ρ
C
 µ2 despite ρ

C
 µ1, µ2 despite ρ

(PH-Empty)

C
 ∅ despite ρ

(PH-Single)

CΥ̂(a, ρa) = (ρ′s, ρ
′
e) ρa 6v ρ⇒ ρ′s = ρs

CΦ̂(a, ρa) 6= ∅ ⇒ CΓ̂(x) w CΦ̂(a, ρa) ∧ C
ρa e : v̂ � ρe ∧ (ρa 6v ρ⇒ ρ′e = ρe)

C
 a(x / ρs : ρa).e despite ρ

(PH-Many)

C
 h despite ρ
C
 h′ despite ρ

C
 h, h′ despite ρ

(PI-Empty)

C
 ∅ despite ρ

(PI-Single)

C
ρa e : v̂ � ρe ρa 6v ρ⇒ ∃ρs : CΥ̂(a, ρa) = (ρs, ρe)

C
 a{|e|}ρa despite ρ

(PI-Many)

C
 i despite ρ
C
 i′ despite ρ

C
 i, i′ despite ρ

(PS-Sys)

C
 µ despite ρ C
 h despite ρ C
 i despite ρ C is ρ-conservative

C
 µ;h; i despite ρ

In other words, given ρ (permission of the attacker), is possible to compute an ac-
ceptable estimate of the system despite ρ (behavior of the system with the opponent
into). And from such estimate, is possible to predict an upper bound of all permissions
that such ρ opponent can escalate.

In section 3.3 we showed how an opponent that compromises cs1 was able to escalate
only permission ρ because Leakρ(C) = ρ, while an opponent with permission SEND was
able to escalate up to ρ t ρ′ because LeakSEND(C) = ρ t ρ′.

The importance of this theorem is showed by the fact that given an real Chrome
extension, with this theorem and the analysis, we are able to show all possible privileges
that an attacker can escalate to. This is very important because we can prove that a
certain extension exposes to the attacker only certain permissions, protecting the other.

32

3.6 Requirements for correctness

In the previous part we abstract the choice of the abstract domains used in the
analysis. Here we state the requirement that the abstract domains must satisfy in order
to keep the analysis sound.

Assumption 1 (Abstracting Finite Domains). ∀c ∈ {true, false,unit,undefined} :
ĉ = c.

This means that an element of a finite domain has the abstraction that coincide with
itself. For example true true or undefined undefined.

Assumption 2 (Soundness of Abstract Operations). ∀op : ∀−→ci : ∀c : δ(op,−→ci) = c ⇒
{ĉ} v ôp(

−→
ĉi).

In words, we say that each concrete operation op has its counterpart that is less
precise since the abstraction of the result of the concrete operation is contained (v) in
the result of the abstract operation on the abstracted arguments.

Assumption 3 (Soundness of Abstract Record Operations). All the following properties
hold true:

1. {−−−−→stri : vi}[str] ↪→ v ∧ ĝet(〈|−−−−→stri : vi|〉C,ρ, ŝtr) = v̂′ ⇒ ∃v̂ v v̂′ : C
ρ v v̂;

2. {−−−−→stri : vi}[str] = v′ ↪→ v ∧ C
ρ v′ v̂′ ∧ ŝet(〈|−−−−→stri : vi|〉C,ρ, ŝtr, v̂′) = v̂′′ ⇒ ∃v̂ v v̂′′ :
C
ρ v v̂;

3. delete {−−−−→stri : vi}[str] ↪→ v ∧ d̂el(〈|−−−−→stri : vi|〉C,ρ, ŝtr) = v̂′ ⇒ ∃v̂ v v̂′ : C
ρ v v̂.

As in the case of the abstract operation in 2, the result of the concrete record oper-
ations must be abstracted to at least one value must that is contained (⊆) in the result
of counterpart operation on the abstracted arguments. We say “must be abstracted to
at least one value that” because a concrete record can be abstracted to many different
representation (e.g., {} {}, even {} >, but not {”a” : 5} 6 {}) and here we say
that at least one of them must be contained in the result.

Assumption 4 (Monotonicity of Abstract Operations). The following property holds
true:

∀ôp∗ ∈ {ôp, ĝet, ŝet, d̂el} : ∀
−→
v̂i : ∀

−→
v̂′i : (∀i : v̂i v v̂′i ⇒ ôp∗(

−→
v̂i) v ôp∗(

−→
v̂′i)).

We say that the same abstract operation on two different arguments with a partial-
order relation between them, must preserve the partial-order on the respective results.

Assumption 5 (Totality of Abstract Operations). ∀ôp∗ ∈ {ôp, ĝet, ŝet, d̂el} : ∀
−→
v̂i : ∃v̂ :

ôp∗(
−→
v̂i) = v̂.

All abstract operation are closed in the abstract domain. Means that each operation
is always applicable on abstract arguments, no matter which these are, and the result
is an abstract value too. So even operation that with some concrete values fails in the
abstract domain never fails; in the worst case the result is ⊥

33

Assumption 6 (Ordering Abstract Values). The relation v over V̂ × V̂ is a pre-order
such that:

1. ∀v̂, v̂′ : v̂ ⊆ v̂′ ⇒ v̂ v v̂′;

2. ∀v̂ : v̂ v ∅ ⇒ v̂ = ∅;

3. ∀n : ∀v̂ : {n} v v̂ ⇒ n ∈ v̂;

4. ∀` : ∀v̂ : {`} v v̂ ⇒ ` ∈ v̂;

5. ∀λxρ : ∀v̂ : {λxρ} v v̂ ⇒ ∃ρ′ w ρ : λxρ
′ ∈ v̂;

6. ∀c ∈ {true, false,unit,undefined} : ∀v̂ : {ĉ} v v̂ ⇒ ĉ ∈ v̂.

Here is stated an ordering on abstract values:

1. the subset inclusion ⊆ between two abstract values always implies an ordering v on
them. So if an abstract value is contained in another then its representation is more
precise than the second one (e.g., true ∈ v̂∧true ∈ v̂′∧undefined ∈ v̂′ ⇒ v̂ v v̂′);

2. if an abstract value is contained in the empty set it must be the empty set.

3. if the singleton {n} is contained in an abstract value then n is contained in the set
represented by it;

4. the same as (3), but with labels;

5. the singleton {λxρ} is contained in a value if exists a permission ρ′ bigger than ρ
(i.e., ρ v ρ′) such that the lambda using ρ′ is contained in the set represented by
the abstract value;

6. the same as (3), but with finite domains;

Assumption 7 (Abstracting Serializable Records). If {−−−−→stri : vi} is serializable, then for

any C, ρa and ρb we have 〈|−−−−→stri : vi|〉C,ρa = 〈|−−−−→stri : vi|〉C,ρb.

In other words, if a record is serializable then its abstract representation do not
depend by the permission and cache with whom it is abstracted. This holds because any
serializable record does not contains any lambda, but only elements that do not holds
permissions.

Assumption 8 (Variables). All the following properties hold true:

1. ∀ĉ : vars(ĉ) = ∅;

2. ∀ôp : ∀
−→
v̂i : vars(ôp(

−→
v̂i)) = ∅;

3. ∀v̂1, v̂2 : vars(ĝet(v̂1, v̂2)) ⊆ vars(v̂1);

4. ∀v̂0, v̂1, v̂2 : vars(ŝet(v̂0, v̂1, v̂2)) ⊆ vars(v̂0) ∪ vars(v̂2);

5. ∀v̂1, v̂2 : vars(d̂el(v̂1, v̂2)) ⊆ vars(v̂1).

34

This last assumption states that no abstract constants contains variables (1), that
every abstract operation return a value that is not a lambda neither an object, and so do
not contains any variable (2), that, since a record can contains lambdas (the only possible
value where a variable can occur), all abstract record operations do not add any variable
to the result that is not contained in the arguments. More specifically the abstract get
return a value with variables contained in the initial record (3), abstract set do not add
variable that are not in the original record or in the setted value (4), and the abstract
delete do not add to the result variables that are not in the original record (5).

35

36

Chapter 4

Implementation

In this chapter we will show how the calculus and the analysis of chapter 3 has been
implemented. We developed a tool written in F# that from a real chrome extension is
able to detect which privileges ca be obtained by an attacker that infect a content script.

In order to apply the analysis we had to desugar the JavaScript sources in λJS. To this
purpose we use the desugarer prototype that is a tool written in Haskell and described
in [13]. Then we parse the desugared λJS file and we start the analysis.

Since we are using the 0-CFA approach for the analysis, we do not have any context,
so to enhance the precision of the analysis (soundness is kept) we alpha-rename the bound
variables in order to distinguish them. We also mark the nodes of the abstract syntax
tree with unambiguous labels and we annotate references with `. After that the AST
is passed to the algorithm that generates the constraints producing a set of constraints.
After that, given an abstract value representation, the constraint are resolved without
using the AST any more producing an estimate for the initial program. Finally analyzing
the estimate we show the permission that an attacker can escalate if it infect a content
script.

4.1 Analysis specification

As explained in section 2.3 the flow logic can be done using various approaches. In the
analysis of section 3.4 it is used an abstract succinct approach, but for the implementation
of the analysis it is needed a compositional verbose one. The difference between abstract
and compositional approach are that the former is closer to the semantic and tend to be
simpler, while the latter is more syntax directed. Moreover the abstract approach lets
the analysis of lambdas in the application point, while the other analyze it at definition
point. The function call in the compositional approach just link the arguments to the
formal parameters of the lambda, and links the result of the lambda to the value of the
call node.

The differences between a succinct and a verbose analysis are that the succinct analysis
focus on the top-level part of the analysis estimate, while the verbose, as in data flow
analysis and constraint based analysis, reports all the internal flow data. This second
approach is done using caches that holds the analysis informations.

In the following sections we translate the analysis of section 3.4 to a compositional
verbose one and then we transform the judgments to a set of constraints.

37

4.1.1 Compositional Verbose

In compositional verbose approach we add an unambiguous label α ∈ A to all expres-
sion in the syntax and the result of each expression are stored in an abstract cache Ĉ
that its a map from nodes to abstract values. Even the permissions of each expression
are stored in caches P̂ .

A labeled expression is eα has the following property:

Let be eα and e′α
′

two expressions:

α = α′ iff e = e′

This property says that two different labeled expression has different labels.
To enhance readability we let CV = Ĉ, P̂ , Γ̂, µ̂, Υ̂, Φ̂ to be the the compositional ver-

bose environment that is a six-tuple made of the following components:

Abstract cache Ĉ : A→ V̂

Permission cache P̂ : P → P
Abstract variable environment Γ̂ : V → V̂

Abstract memory µ̂ : L × P → V̂

Abstract stack Υ̂ : N ×P → P × P
Abstract network Φ̂ : N ×P → V̂ .

While Γ̂, µ̂, Υ̂, Φ̂ are the same of the previous chapter, the abstract cache Ĉ, and
permission cache P̂ are specific of the compositional approach.

Table 4.1 4.2 contains the rules for the compositional verbose analysis. Note that are
very similar to the abstract succinct except that the expression of the form C
ρ e : v � ρ
do not produce v and ρ, but analysis store them in the cache and became CV
cv,ρ (eα1)α

so CV Ĉ(α) = v and CV P̂ (α) = ρ.

4.2 Constraint generation

Now since we have an analysis that is compositional-verbose, we can design an algo-
rithm to compute the set of constraints derived from the analysis. Then such set is given
to a constraint solver algorithm to compute an estimate for the program.

4.2.1 Constraints

We now define the following elements:

Cache C : A→ V̂
Permission P : A→ P
Var Γ : V → V̂

State M : L × P → V̂
Stack Υ : N ×P → P × P
Network Φ : N ×P → V̂ .

38

This are the implementation of the elements of the environments and are maps as de-
scribed above.

A constraint element named E is a pure syntactical element that represent the index
of the map described above.

Cache element C(α)
Permission Element P(α)
Var element Γ(x)
State element M(`, ρ)
Stack element Υ(a, ρ)
Network element Φ(a, ρ)

As we can see an element is composed by the cache element to which is referred and its
index.

Now let us introduce the constraints. We let c range over constraints, defined by the
following productions:

c ::= {v̂} v E Term inclusion
| E v E Element inclusion

| Ôp(
−→
Ei) v E Operationinclusion

| c ⇒ c Implication

We notice that there are no constraint specific for the three record operations Ĝet, Ŝet,
D̂el, because we treat them as standard operations. The main forms of constraints are:

• v̂ v C(α) that means that v̂ must be in the possible estimate of the node marked
with α (e.g., {true} v C(α) means that true is in the possible estimate of the node
marked with α);

• v̂ v Γ(x) that means that v̂ must be in the possible estimate of the x variable;

• C(α1) v C(α) that means that the estimate of node α1 must be contained in the
node α (as before the same are with the variables);

• Ôp(
−−−→
C(αi)) v C(α) that means that the result of the abstract operation with

−−−→
C(αi) as

arguments must be contained in the estimate of C(α) (e.g., Ôp(C(α1),C(α2)) v C(α)
means that the result of the abstract operation corresponding to + with C(α1) and
C(α2) as arguments must be contained in the estimate of C(α));

• v̂ v C(α0)⇒ C(α1) v C(α) means that the fact that v̂ is contained in C(α0) implies
that value in C(α1) must be contained in the estimate of the node C(α) . For
example, {true} v C(α0) ⇒ C(α1) v C(α) means that if true is contained in the
estimate of C(α0) than the value of C(α1) must be contained in the estimate of the
node C(α) (this form is used in the if construct); and {λx.e0

α0} v C(α1)⇒ C(α0) v
C(α) that means that if λx.e0

α0 is contained in the estimate of C(α1) then the value
of the lambda (contained in C(α0)) must be contained in the estimate of the node
α (this form is used in the application);

39

In order to transform the ∀ construct of the compositional rules in our constraints
(e.g., in the app expression or in the deref expression), since both lambdas and references
are finite sets in the program, we generate one implication constraint for each element in
the program in this way: let be Ref∗ the set of all reference labels of the program ∀` ∈ v1 :
CV µ̂(`, ρs) v CV Ĉ(α) is transformed in the set {` ∈ C(α1)⇒ M(`, ρs) v C(α)|` ∈ Ref∗}.

In this way we define these finite sets:

Ref∗ is the set of all references of the program;
lambda∗ is the set of all lambdas of the program;
Names∗ is the set of all names in the program;
NamePerms∗ is the set of all permission associated with channel in the program.

4.2.2 Generation

To obtain the set of constraint the AST of the program (composed only by expression
since there are no statements) is given to an algorithm that traverse it and, for each
subtree of it, returns the set of constraint generated. The algorithm in tables 4.3 and 4.4
C∗ρsJ(e)αK explore the tree and produces the set of constraints.

As simple example the program (((λx.x1)2(λy.False3)4)5True6)7 , ignoring the per-
mission check, yields this set of constraints:

{
{true} v C(6),
{false} v C(3),
{λx.x1} v C(2),
{λy.true6} v C(4),
Γ(x) v C(1),
{λx.x1} v C(2)⇒ C(1) v C(5),
{λx.x1} v C(2)⇒ C(4) v Γ(x),
{λx.x1} v C(5)⇒ C(1) v C(7),
{λx.x1} v C(5)⇒ C(6) v Γ(x),
{λy.true6} v C(2)⇒ C(3) v C(5),
{λy.true6} v C(2)⇒ C(4) v Γ(y),
{λy.true6} v C(5)⇒ C(3) v C(7),
{λy.true6} v C(5)⇒ C(6) v Γ(y)

}

4.3 Constraint solving

To compute efficiently an analysis estimate from the constraint set we used an al-
gorithm derived from the worklist algorithm presented in [20, 12]. It has in tables 4.5
and 4.6 is shown a simplification of the algorithm that solves only constraint for data,
permission and network constraint are removed for sake of readability.

The algorithm works on a graph where each constraint element E is represented by a
node and each constraint (except to the term inclusion) is represented by either standard

40

or conditional edges according to the kind of the constraint. Each node p contains a data
field D[p]. The algorithm also have a worklist W of nodes to be processed.

Here we show which edges are generated by a constraint:

• {true} v E do not generate any edge; it insert true in D[E] and add E in W;

• E1 v E2 generates an edge from E1 to E2;

• Ôp(
−→
Ei) v E generate an edge from each Ei to E;

• t v E⇒ E1 v E2 give rise to a conditional edge in E and in E1 both from E1 to E2;

When a conditional edge is been processed there is a check on the precondition (the
part before the arrow) and if the check succeed the edge is traversed, otherwise no.

The initialization of the algorithm is done in steps 1: it just creates the structure
for storing the graph and the worklist. In step 2 the graph is build as shown in the list
above according to the constraint in input. Finally the graph is traversed in step 3. The
traversal is done removing an element from W and processing all his edges. When a node
is processed its data are propagated to his neighbors and in case of conditional constraint
if the precondition is respected the data is propagated, otherwise no. If in a propagation
the data of the destination is modified, the destination node is added to W.

Notice that the propagation of a value do not replace the old value with the new one,
but it joins the values in a lattice. Since this the analysis is sound because the partial
ordering is maintained.

When W is empty the system is in a fix point and step 3 terminates. In step 4 all data
contained in each node of the graph is copied in the cache, environment and memory of
the analysis and form an acceptable program estimate.

4.4 Abstract domains choice

In this section we introduce all abstract domains used in the analysis. In this purpose
we used the classical approach of abstract interpretations of [10, 20].

4.4.1 Abstract Value

In the implementation of the analysis an abstract value is a set containing the ab-
straction of each atomic domain defined in the calculus in section 3.1.

Definition 7 (Partial order on abstract values). Given two abstract values v̂, v̂′ we say
that v̂ v v̂′ if ∀û ∈ v̂ : ∃û′ | û v û′

This means that abstract values are partially ordered according with prevalues of
which they are composed.

In the definition 7 we assumed a pre-order relation on abstract pre-values. In the
following part we introduce all abstract pre-values domains, and so even the pre-order
relation used here.

41

Finite domains

As required in 1 the abstraction of finite domains coincide with their concrete them-
selves. So, both abstraction and concretization function are just the identity function. We
use this abstraction for boolean (true, false) and undefined and unit. The pre-order
relation in this case is the simple ⊆ between abstract values.

Lambdas

Since all lambdas defined in a program are a finite set, their abstraction coincide with
their concrete representation. So, as finite domains, the abstraction and the concretiza-
tion function, are the identity function. Again the partial order relation in this case is
the simple ⊆ relation between abstract value.

References

Since labels ` associated to references are finite (the count is the number of ref ` e
expressions) we abstract as finite domains and lambdas. Even in this case the partial
order relation between references is the ⊆ relation between abstract values.

Numbers

Numbers are abstracted with sign domain as in [20] with this abstraction function:

σ(n) =


+ if i > 0

− if i < 0

0 if i = 0

Of course an abstract values can contain more than one abstract number (e.g., v̂ =
+, 0, . . . means that v̂ can contains positive numbers or zero, or other).

Even in this case the pre-order relation is the ⊆ between abstract values.

Strings

Since we need to track the form of the messages we need an abstraction of strings that
is enough precise to perform the analysis. Aimed by this purpose we adopt, as abstraction
of string values, a domain derived from the prefix notation defined in [10].

A string can be either: exact or a prefix. An exact string represent itself in the
concrete domain (e.g., ”tag” stand for ”tag”) while a prefix represent all strings with
them as prefix (e.g., ”abc*” stand for ”abc”, ”abcde”, ”abc123”, but not ”bdf”). Prefix
strings are pre-ordered by the following relation:

Ŝ vP̂R T̂


exact(Ŝ) ∧ exact(T̂) ∧ T̂ = Ŝ

S = ⊥P̂R
¬exact(T̂) ∧ (∀i ∈ [0, len(T̂)− 1] : len(T̂) ≤ len(Ŝ) ∧ T̂ [i] = Ŝ[i])

We say that a string Ŝ is smaller than T̂ if Ŝ is ⊥P̂R or if T̂ is not exact and is a prefix of

Ŝ or if both are exact strings and are equals. Where the function exact states if a string
is exact. Notice that and >P̂R = ” ∗ ”.

42

The t operation between two abstract strings is an prefix strings containing the
longest common prefix between them.

An abstract string represent or itself if it is exact, or all the strings that starts with
it. This grants the prerequisites given in 3.6.

Records

Records are abstracted using a field sensitive approach since the analysis must track
them with high precision. The abstraction of a record r is a map r̂ from abstract strings
to abstract values. In order to maintain simplicity in the implementation, an abstract
record contains various exact field, but just one prefix field with value > where all prefix
strings are collapsed. This can seem weird, but do not alter the soundness of the analysis;
moreover we found that in real JavaScript code accessing a record with a string that is
computed, and not literal, is a rare practice. This helps a lot with the Ŝet operation.

Abstract records has this property:

let be r = {−−−−→stri : vi} and r̂ = {
−−−−−→
ŝtrj : v̂j}. σ(r) = r̂ if all the following conditions hold

true:

• ∀i : ∃j | σ(stri) v strj;

• ∀i : ∃j | σ(stri) v ŝtrj ⇒ σ(vi) v v̂j.

This means that the abstraction of a record must contain an abstract field bigger than
the abstraction of the concrete field, and the value associated with it is greater than the
abstraction of the concrete value. For example σ({a : 12}) can be {a : +}, but even
{a : {+, false}}, and {a : +, b : true}, but not {b : true}.

Note that σ({}) = any record because since the empty record has no field, all possible
abstract record contains all its field.

To collect more information on records we state the t as the union of the two maps.

4.4.2 Abstract operations

All operations on abstract values are just operations on the Cartesian product on each
component. For example the abstract plus operation +̂(v̂1, v̂2) is the +̂ on each element
of v̂1 and v̂2 such that they are numbers.

+̂(v̂1, v̂2) =
⊔

(+̂(û1, û2 | û1 ∈ numbers(v̂1) ∧ û2 ∈ numbers(v̂2)))

Where numbers is a function that returns the set of all abstract numbers in an abstract
value.

This example show how abstract operations are total as assumed in 5, indeed, if one
of the two arguments v̂1, v̂2 does not contains any abstract number, the operation returns
⊥ that is a valid abstract value. The same are with other operations.

In this section we present the main abstract operations of the abstract pre-value
domains.

43

Numbers

The arithmetic operation on sign domain are the following:

−̄ + 0 - > ⊥
- 0 + > ⊥

+̄ + 0 - >
+ + + > >
0 + 0 - >
- > - - >
> > > > >

∗̄ + 0 - >
+ + 0 - >
0 0 0 0 0
- - 0 + >
> > 0 > >

/̄ + 0 - > ⊥
+ + 0 - > ⊥
0 ⊥ ⊥ ⊥ ⊥ ⊥
- - 0 + > ⊥
> > 0 > > ⊥
⊥ ⊥ ⊥ ⊥ ⊥ ⊥

Strings

String operation are interesting, especially the concat function.

concat(ŝtr1, ŝtr2) = ŝtr1

It simply return the first string as a prefix. Indeed, the concatenation of two strings are
for definition contained in the abstraction of the first followed by any character.

Another important function on string is the comparison operation =̂=

ŝtr1=̂=ŝtr2



true if exact(ŝtr1) ∧ exact(ŝtr2) ∧ ŝtr1 == ŝtr2

false if exact(ŝtr1) ∧ exact(ŝtr2) ∧ ŝtr1 6= ŝtr2

>b if exact(ŝtr1) ∧ ¬exact(ŝtr2) ∧ ŝtr1 v ŝtr2

false if exact(ŝtr1) ∧ ¬exact(ŝtr2) ∧ ŝtr1 6v ŝtr2

>b if ¬exact(ŝtr1) ∧ exact(ŝtr2) ∧ ŝtr2 v ŝtr1

false if ¬exact(ŝtr1) ∧ exact(ŝtr2) ∧ ŝtr2 6v ŝtr1

>b if ¬exact(ŝtr1) ∧ exact(ŝtr2) ∧ ŝtr1 v ŝtr2 ∨ ŝtr2 v ŝtr1

false if ¬exact(ŝtr1) ∧ exact(ŝtr2) ∧ ŝtr1 6v ŝtr2 ∨ ŝtr2 6v ŝtr1

We finally say that a string ŝtr1 is compatible with ŝtr2 if true ∈ (ŝtr1=̂=ŝtr2).

Records

Record operations are three: Ĝet, Ŝet, D̂el.
Get operation returns the join of all the values contained by all fields compatible with

a string.

Ĝet({ŝtri : v̂i}, ŝtr) = undefined t (
⊔
{v̂i | ŝtr v ŝtri})

44

We notice that undefined is added to the result. This is required since an abstract
record can contains more field of the concrete one. Moreover we have to remember that
two concrete strings can have an abstract representation that can be compatible.

Set operation adds the value in the corresponding field or adds a property with the
value. Its abstract corresponding function it adds the value to all the compatible fields.

Ŝet({
−−−−→
ŝtri : v̂i}, ŝtr, v̂) =
{
−−−−→
ŝtri : v̂i, ŝtrj : v̂j t v̂} if exact(ŝtr) ∧ ∃j | exact(ŝtri) ∧ ŝtr == ŝtrj

{
−−−−→
ŝtri : v̂i, ŝtr> : v̂> t v̂} if ¬exact(ŝtr)

{
−−−−→
ŝtri : v̂i, ŝtr : v̂} otherwise

Del operation removes a field from an object. Its abstract representation has to remove
a field from a record, but abstracted records can contain more field than the concrete
ones, hence the D̂el return the same object in input.

D̂el({ŝtri : v̂i}, ŝtr) = {ŝtri : v̂i}

4.5 Implementation-specific details

As stated before our tool, written in F# implements the analysis of 3 for a real chrome
extension, and is able to detect which privileges ca be obtained by an attacker that infect
a content script.

In order to analyze the JavaScript code we desugar the JavaScript code λJS using the
desugarer prototype. This tool is written in Haskell and described in [13]. It also include
in the desugared file a prelude containing JavaScript standard API (e.g., Arrays) and non
standard operation of it.

Then we parse the desugared λJS using a yacc parser.
Since we are using the 0-CFA approach for the analysis, we do not have any context,

so to enhance the precision of the analysis (soundness is kept) we alpha-rename the bound
variables (all because a desugared file is closed) in order to distinguish them through the
analysis. We also mark the nodes of the abstract syntax tree with unambiguous labels
α ∈ A and we annotate all references with `.

Then the abstract syntax tree representing the program is passed to the algorithm
that generates the constraints producing a set of constraints.

Finally, given an abstract value representation, the constraint are resolved using the
worklist algorithm and producing an acceptable estimate for the initial program.

Finally we analyze the estimate and we show the permission that an attacker can
escalate if it infect a content script.

45

Table 4.1 Compositional Verbose part 1

[CV-Val] CV
cv,ρs (v)α iff {v̂} v CV Ĉ(α)
[CV-Lambda] CV
cv,ρs (λx.e0

α0)α iff
{λx.e0

α0} v CV Ĉ(α)∧
CV
cv,ρs e0

α0

[CV-Let] CV
cv,ρs (let x = e1
α1 in e′α

′
)
α

iff

CV
cv,ρs e′
α′
∧

CV P̂ (α′) v CV P̂ (α)∧
CV Ĉ(α′) v CV Ĉ(α)∧
CV
cv,ρs e1

α1∧
CV Ĉ(α1) v CV Γ̂(x1)∧
CV P̂ (α1) v CV P̂ (α)

[CV-App] CV
cv,ρs (e1
α1 e2

α2)α iff
CV
cv,ρs e1

α1 ∧ CV
cv,ρs e2
α2∧

CV P̂ (α1) v CV P̂ (α) ∧ CV P̂ (α2) v CV P̂ (α)
∀(λx.e0

α0) ∈ CV Ĉ(α1) :
CV Ĉ(α2) v CV Γ̂(x) ∧ CV Ĉ(α0) v CV Ĉ(α)∧
CV P̂ (α0) v CV P̂ (α)

[CV-Seq] CV
cv,ρs (e1
α1 ; e2

α2)α iff
CV
cv,ρs e1

α1 ∧ CV P̂ (α1) v CV P̂ (α)∧
CV
cv,ρs e2

α2 ∧ CV P̂ (α2) v CV P̂ (α)∧
CV Ĉ(α0) v CV Ĉ(α)

[CV-Op] CV
cv,ρs (op(
−→
ei
αi))

α
iff

ôp(CV Ĉ(αi)) v CV Ĉ(α)∧
∀i : CV
cv,ρs eiαi ∧ CV P̂ (αi) v CV P̂ (α)

[CV-Cond] CV
cv,ρs (if (e0
α0) { e1

α1 } else { e2
α2 })α iff

CV
cv,ρs e0
α0∧

CV P̂ (α0) v CV P̂ (α)∧
t̂rue ∈ CV Ĉ(α0)⇒
CV
cv,ρs e1

α1 ∧ CV Ĉ(α1) v CV Ĉ(α)∧
CV P̂ (α1) v CV P̂ (α)∧

f̂alse ∈ CV Ĉ(α0)⇒
CV
cv,ρs e2

α2 ∧ CV Ĉ(α2) v CV Ĉ(α)∧
CV P̂ (α2) v CV P̂ (α)

[CV-While] CV
cv,ρs (while (e1
α1) { e2

α2 })α iff
CV
cv,ρs e1

α1 ∧ CV P̂ (α1) v CV P̂ (α)∧
t̂rue ∈ CV Ĉ(α1)⇒
CV
cv,ρs e2

α2 ∧ CV P̂ (α2) v CV P̂ (α)∧
f̂alse ∈ CV Ĉ(α1)⇒ ̂undefined v CV Ĉ(α)

46

Table 4.2 Compositional Verbose part 2

[CV-GetField] CV
cv,ρs (e1
α1 [e2

α2])α iff
CV
cv,ρs e1

α1 ∧ CV P̂ (α1) v CV P̂ (α)∧
CV
cv,ρs e2

α2 ∧ CV P̂ (α2) v CV P̂ (α)∧
ĝet(CV Ĉ(α1), CV Ĉ(α2)) v CV Ĉ(α)

[CV-SetField] CV
cv,ρs (e0
α0 [e1

α1] = e2
α2)α iff

CV
cv,ρs e0
α0 ∧ CV P̂ (α0) v CV P̂ (α)∧

CV
cv,ρs e1
α1 ∧ CV P̂ (α1) v CV P̂ (α)∧

CV
cv,ρs e2
α2 ∧ CV P̂ (α2) v CV P̂ (α)∧

ŝet(CV Ĉ(α0), CV Ĉ(α1), CV Ĉ(α2)) v CV Ĉ(α)
[CV-DelField] CV
cv,ρs (delete e1

α1 [e2
α2])α iff

CV
cv,ρs e1
α1 ∧ CV P̂ (α1) v CV P̂ (α)∧

CV
cv,ρs e2
α2 ∧ CV P̂ (α2) v CV P̂ (α)∧

d̂el(CV Ĉ(α1), CV Ĉ(α2)) v CV Ĉ(α)
[CV-Ref] CV
cv,ρs (ref ` e1

α1)α iff
CV
cv,ρs e1

α1 ∧ CV P̂ (α1) v CV P̂ (α)∧
` ∈ CV Ĉ(α) ∧ CV Ĉ(α1) v CV µ̂(`, ρs)

[CV-DeRef] CV
cv,ρs (deref e1
α1)α iff

CV
cv,ρs e1
α1 ∧ CV P̂ (α1) v CV P̂ (α)∧

∀` ∈ CV Ĉ(α1) : CV µ̂(`, ρs) v CV Ĉ(α)
[CV-SetRef] CV
cv,ρs (e1

α1 = e2
α2)α iff

CV
cv,ρs e1
α1 ∧ CV P̂ (α1) v CV P̂ (α)∧

CV
cv,ρs e2
α2 ∧ CV P̂ (α2) v CV P̂ (α)∧

CV Ĉ(α2) v CV Ĉ(α)∧
∀` ∈ CV Ĉ(α1) : CV Ĉ(α2) v CV µ̂(`, ρs)

[CV-Send] CV
cv,ρs (e1〈e2 . ρ〉)α iff
CV
cv,ρs e1 ∧ CV P̂ (α1) v CV P̂ (α)∧
CV
cv,ρs e2 ∧ CV P̂ (α2) v CV P̂ (α)∧
∀m ∈ CV Ĉ(α1) : ∀ρm w CV P̂ (α) :
CV Υ̂(m, ρm) = (ρr, ρe)∧
ρr v ρs ⇒ ρe v CV P̂ (α)∧
CV Ĉ(α2) v CV Φ̂(m, ρm)∧

unit ∈ CV Ĉ(α)
[CV-Exercise] CV
cv,ρs (exercise(ρ))α iff

ρ v ρs ⇒ ρ v CV P̂ (α)∧
unit ∈ CV Ĉ(α)

47

Table 4.3 Constraint generation part 1

[CG-Val] C∗ρsJ(v)αK = v̂ v C(α)
[CG-Var] C∗ρsJ(x)αK = Γ(x) v C(α)
[CG-Lambda] C∗ρsJ(λx.e0

α0)αK =
{{λx.e0

α0} v C(α)}∪
C∗ρsJ(e0

α0)K
[CG-Let] C∗ρsJ(let x1 = e1

α1 in e′α
′
)αK =

C∗ρsJ(e1
α1)K ∪ C∗ρsJ(e′

α′
)K∪

{C(α1) v Γ(x1)} ∪ {P(α1) v P(α)})∪
{P(α′) v P(α)} ∪ {C(α′) v C(α)}

[CG-App] C∗ρsJ(e1
α1 e2

α2)αK =
C∗ρsJ(e1

α1)K ∪ C∗ρsJ(e2
α2)K∪

{P(α1) v P(α)} ∪ {P(α2) v P(α)}∪
{{t} v C(α1)⇒ C(α2) v Γ(x)
|t = (λx.e0

α0) ∈ lambda∗}∪
{{t} v C(α1)⇒ C(α0) v C(α)
|t = (λx.e0

α0) ∈ lambda∗}∪
{{t} v C(α1)⇒ P(α0) v P(α)
|t = (λx.e0

α0) ∈ lambda∗}∪
[CG-Op] C∗ρsJ(op(

−→
ei
αi))αK =⋃

i(C∗ρsJ(eiαi)K ∪ {P(αi) v P(α)})∪
{ôp(C(αi)) v C(α)}

[CG-Cond] C∗ρsJ(if (e0
α0) { e1

α1 } else { e2
α2 })αK =

C∗ρsJ(e0
α0)K ∪ C∗ρsJ(e1

α1)K ∪ C∗ρsJ(e2
α2)K∪

{CV P̂ (α0) v CV P̂ (α)}∪
{t̂rue ∈ C(α0)⇒ C(α1) v C(α)}∪
{t̂rue ∈ C(α0)⇒ P(α1) v P(α)}∪
{f̂alse ∈ C(α0)⇒ C(α2) v C(α)}∪
{f̂alse ∈ C(α0)⇒ P(α2) v P(α)}

[CG-While] C∗ρsJ(while (e1
α1) { e2

α2 })αK =
C∗ρsJ(e1

α1)K ∪ C∗ρsJ(e2
α2)K∪

{P(α1) v P(α)}∪
{true ∈ C(α1)⇒ P(α2) v P(α)}∪
{false ∈ C(α1)⇒ ̂undefined v C(α)}

48

Table 4.4 Constraint generation part 2

[CG-GetField] C∗ρsJ(e1
α1 [e2

α2])αK =
C∗ρsJ(e1

α1)K ∪ C∗ρsJ(e2
α2)K∪

{P(α1) v P(α)} ∪ {P(α2) v P(α)}∪
ĝet(C(α1),C(α2)) v C(α)

[CG-SetField] C∗ρsJ(e0
α0 [e1

α1] = e2
α2)K =

C∗ρsJ(e0
α0)K ∪ C∗ρsJ(e1

α1)αK ∪ C∗ρsJ(e2
α2)K∪

{P(α1) v P(α)} ∪ {P(α2) v P(α)} ∪ {P(α3) v P(α)}∪
ŝet(C(α1),C(α2),C(α2)) v C(α)

[CG-DelField] C∗ρsJ(delete e1
α1 [e2

α2])αK =
C∗ρsJ(e1

α1)K ∪ C∗ρsJ(e2
α2)K∪

{P(α1) v P(α)} ∪ {P(α2) v P(α)}∪
d̂el(C(α1),C(α2)) v C(α)

[CG-Ref] C∗ρsJ(ref ` e1
α1)αK =

C∗ρsJ(e1
α1)K ∪ {P(α1) v P(α)}∪

{C(α1) v M(`, ρs)} ∪ {{`} v C(α)}
[CG-DeRef] C∗ρsJ(deref e1

α1)αK =
C∗ρsJ(e1

α1)K ∪ {P(α1) v P(α)}∪
{` ∈ C(α1)⇒ M(`, ρs) v C(α)
| ` ∈ Ref∗}

[CG-SetRef] C∗ρsJ(e1
α1 = e2

α2)αK =
C∗ρsJ(e1

α1)K ∪ C∗ρsJ(e2
α2)K∪

{P(α1) v P(α)} ∪ {P(α2) v P(α)}∪
{` ∈ C(α1)⇒ C(α2) v M(`, ρs)
| ` ∈ Ref∗}∪
{C(α2) v C(α)}

[CG-Send] C∗ρsJ(e1〈e2 . ρ〉)αK =
C∗ρsJ(e1

α1)K ∪ C∗ρsJ(e2
α2)K∪

{P(α1) v P(α)} ∪ {P(α2) v P(α)}∪
{{unit} v C(α)}∪
{{m} ∈ C(α1)⇒ P(α) v ρm ⇒ Υ(m, ρm) = (ρr, ρe)
|m ∈ Names∗, ρm ∈ NamePerms∗}∪
{{m} ∈ C(α1)⇒ P(α) v ρm ⇒ ρr v ρs ⇒ ρe v P(α)
|m ∈ Names∗, ρm ∈ NamePerms∗}∪
{{m} ∈ C(α1)⇒ P(α) v ρm ⇒ ρr v ρs ⇒ C(α2) v Φ(m, ρm)
|m ∈ Names∗, ρm ∈ NamePerms∗}

[CG-Exercise] C∗ρsJ(exercise(ρ))αK
{ρ v ρs ⇒ ρ v P(α)}∪
unit ∈ C(α)

49

Table 4.5 Worklist Algorithm part 1.

INPUT: C∗ρsJ(e∗)αK
OUTPUT: (C, Γ,M)
METHOD: Step 1: Initialization

W := [] : Queue(CElem)

D := [] : Map(CElem -> V̂)

E := [] : Map(CElem -> Constraint)

for a in cache do

Add (C a, ⊥) D

Add (C a, []) E

for x in vars do

Add (R x, ⊥) D

Add (R x, []) E

for r in refs do

Add (Mu (⊥, `), ⊥) D

Add (Mu (⊥, `), []) E

Step 2: Building the graph
for cc in lst do

case cc of

| {t} v p ->

propagate p {t}

| p1 v p2 ->

Add cc E[p1]

| {t} v p ⇒ p1 v p2 ->

Add cc E[p]

Add cc E[p1]

| {t} v p ⇒ {t1} v p2 ->

Add cc E[p]

| ôp(−→ps) v p1 ->

for p in ps do

Add cc E[p]

| Ĝet(p1 , p2) v p3 ->

Add cc E[p1]

Add cc E[p2]

| D̂el(p1 , p2) v p3 ->

Add cc E[p1]

Add cc E[p2]

| Ŝet(p1 , p2 , p3) v p4 ->

Add cc E[p1]

Add cc E[p2]

Add cc E[p3]

50

Table 4.6 Worklist Algorithm part 2.

Step 3: Iteration
while W 6= [] do

q = dequeue W

for cc in E[q] do

case cc of

| p1 v p2 ->

propagate p2 D[p1]

| {t} v p ⇒ p1 v p2 ->

if t ∈ D[p] then

propagate p2 D[p1]

| {t} v p ⇒ {t1} v p2 ->

if t ∈ D[p] then

propagate p2 {t1}

| ôp(−→ps) v p1 ->

args = [D[p] | p ∈ −→ps]
res = ôp args

propagate p1 res

| Ĝet(p1 , p2) v p3 ->

propagate p3

[D[C α] | α ∈ Ĝet (D[p1], D[p2])]

| D̂el(p1 , p2) v p3 ->

propagate p3 D̂el (D[p1], D[p2])

| Ŝet(p1 , p2 , p3) v p4 ->

propagate p4 Ŝet (D[p1], D[p2]. D[p3])

Step 4: Recording the solution
for ` in Ref∗ do µ̂(`) = D[Mu `]

for x in V ar∗ do Γ̂(x) = D[R x]

for α in Cache∗ do Ĉ(α) = D[C α]
USING:

propagate q d =

if d 6v D[q] then

D[q] = D[q] t d

Enqueue q W

51

52

Chapter 5

Experiments

5.1 Findings

Unfortunately the tool is not yet ready to perform an whole analysis. Instead we can
approximate a program using the approach of chapter 4.

The performance are critical since for one analysis (a desugared JavaScript file of 100
rows of code correspond to 10000 λJS rows) takes from 6 to 8 hours. We plan to enhance
performance using lazy approach stated in [19, 18].

53

54

Chapter 6

Conclusion

6.1 Analysis results

We proposed a sound flow logic based analysis technique targeted at the static de-
tection of privilege escalations attacks on Google Chrome extension, and we developed a
prototype of a tool that implements our analysis.

The analysis proposed is sound and can validate real Chrome extension against privi-
lege escalation. Indeed it gives an upper bound of the privilege that an extension leak to
an attacker according to the power of such attacker. Since the analysis is sound we can
truly predict if a permission is not leaked at all.

The tool that has been developed is not yet ready, but the main goal of it are almost
ready. Indeed it can analyze an extension determining all possible values of each node,
and from this analysis it is able to extract all possible messages sent by any content
script and by the background. With this information we can perform the analysis on
systems, finding the pairs privileges of the attacker, privileges leaked to it. The program
unfortunately is very slow since the nature of a desugared λJS code. It takes about
six or eight hours to perform an analysis, but we are going to enhance its performance.
This enhancement will be done starting from [19, 18] and modifying our constraint solver
algorithm using a faster approach like the lazy one.

6.2 Future works

As part of our future work, we would like to enhance the performances of our actual
tool and to expand its functionality in order to obtain a full implementation of the
analysis.

We also want to expand this work in order to be able not only to check bundled
extensions, but also to automatically unbundle bundled extensions inserting in their code
stronger security checks.

55

56

References

[1] Banshee constraint solver
http://banshee.sourceforge.net/, May 2014.

[2] Chrome extension match pattern specification
https://developer.chrome.com/extensions/match patterns, May 2014.

[3] Chrome extension overview
https://developer.chrome.com/extensions/overview, May 2014.

[4] Chrome extension runtime specification
https://developer.chrome.com/extensions/runtime, May 2014.

[5] Share me not extension
http://sharemenot.cs.washington.edu/, May 2014.

[6] Devdatta Akhawe, Prateek Saxena, and Dawn Song. Privilege separation in html5
applications. In Proceedings of the 21st USENIX Conference on Security Symposium,
Security’12, pages 23–23, Berkeley, CA, USA, 2012. USENIX Association.

[7] Adam Barth, Adrienne Porter Felt, Prateek Saxena, and Aaron Boodman. Protect-
ing browsers from extension vulnerabilities. Technical Report UCB/EECS-2009-185,
EECS Department, University of California, Berkeley, Dec 2009.

[8] Michele Bugliesi, Stefano Calzavara, and Alvise Spanò. Lintent: Towards security
type-checking of android applications. In Dirk Beyer and Michele Boreale, editors,
Formal Techniques for Distributed Systems, volume 7892 of Lecture Notes in Com-
puter Science, pages 289–304. Springer Berlin Heidelberg, 2013.

[9] Nicholas Carlini, Adrienne Porter Felt, and David Wagner. An evaluation of the
google chrome extension security architecture. In Proceedings of the 21st USENIX
Conference on Security Symposium, Security’12, pages 7–7, Berkeley, CA, USA,
2012. USENIX Association.

[10] Giulia Costantini, Pietro Ferrara, and Agostino Cortesi. Static analysis of string
values. In Proceedings of the 13th International Conference on Formal Methods and
Software Engineering, ICFEM’11, pages 505–521, Berlin, Heidelberg, 2011. Springer-
Verlag.

57

[11] Lucas Davi, Alexandra Dmitrienko, Ahmad-Reza Sadeghi, and Marcel Winandy.
Privilege escalation attacks on android. In Proceedings of the 13th International Con-
ference on Information Security, ISC’10, pages 346–360, Berlin, Heidelberg, 2011.
Springer-Verlag.

[12] Kirsten Lackner Solberg Gasser, Flemming Nielson, and Hanne Riis Nielson. Sys-
tematic realisation of control flow analyses for cml. In ICFP, pages 38–51, 1997.

[13] Arjun Guha, Claudiu Saftoiu, and Shriram Krishnamurthi. The essence of javascript.
In Proceedings of the 24th European Conference on Object-oriented Programming,
ECOOP’10, pages 126–150, Berlin, Heidelberg, 2010. Springer-Verlag.

[14] Arjun Guha, Claudiu Saftoiu, and Shriram Krishnamurthi. Typing local control
and state using flow analysis. In Proceedings of the 20th European Conference on
Programming Languages and Systems: Part of the Joint European Conferences on
Theory and Practice of Software, ESOP’11/ETAPS’11, pages 256–275, Berlin, Hei-
delberg, 2011. Springer-Verlag.

[15] René Rydhof Hansen. Flow logic for carmel. Technical report, Citeseer, 2002.

[16] René Rydhof Hansen. Implementing the flow logic for carmel. Technical report,
SECSAFE-IMM-004-1.0, 2002.

[17] David Van Horn and Matthew Might. An analytic framework for javascript. CoRR,
abs/1109.4467, 2011.

[18] Simon Holm Jensen, Magnus Madsen, and Anders Møller. Modeling the html dom
and browser api in static analysis of javascript web applications. In SIGSOFT FSE,
pages 59–69, 2011.

[19] Simon Holm Jensen, Anders Møller, and Peter Thiemann. Type analysis for
javascript. In Proceedings of the 16th International Symposium on Static Analysis,
SAS ’09, pages 238–255, Berlin, Heidelberg, 2009. Springer-Verlag.

[20] Flemming Nielson, Hanne R. Nielson, and Chris Hankin. Principles of Program
Analysis. Springer-Verlag New York, Inc., Secaucus, NJ, USA, 1999.

[21] Flemming Nielson, Hanne Riis Nielson, Hongyan Sun, Mikael Buchholtz, René Ry-
dhof Hansen, Henrik Pilegaard, and Helmut Seidl. The succinct solver suite. In
TACAS, pages 251–265, 2004.

[22] Hanne Riis Nielson and Flemming Nielson. Flow logic: A multi-paradigmatic ap-
proach to static analysis. In The Essence of Computation, pages 223–244, 2002.

58

