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Introduction

1.1

Purpose and motivation

The  objective  of  this  study  consists  in  investigating  whether  a

particular machine learning technique, known as Artificial Neural Network,

is able to predict with some degree of confidence the failure of Medium to

Small  Enterprises (SMEs) by trying to reproduce the results  obtained in

literature in a large set of Italian companies. Also, a new technique that can

improve the obtained results will be discussed.

The hunt for a system that could model the bankruptcies of firms, or more

in general the insolvency of borrowers, is a very old field in finance and

economics. The utility of such a tool is hard to overestimate: 

First of all, among all the sources of risk, credit is the one that can have the

largest impact on a corporate level, if we exclude natural disasters. Being

able to reduce it by having a reliable tool that can predict exactly which

borrowers must  be  trusted and which should be avoided could raise  the

profitability of a firm dramatically and liberate large capitals set aside to

cover for insolvent borrowers. 

Secondly, all the businesses and financial institutions whose business model

depends strictly on the outcome of a loan (primarily banks, that profit from

loans to firms and customers, but also insurance companies or any other

related  activity)  have  of  course  a  high  interest  in  being  able  to  predict

insolvencies. Both the ability to avoid bad borrowers and the losses that

they create and especially the possibility to individuate good customers that
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other competitors would have rated as bad can significantly improve the

odds  of  these  firms  to  outrank  the  competition  and  have  a  higher

profitability.

Thirdly, a tool that can analyze the account sheets of a firm and assess its

financial stability would be of huge help to that firm itself. By performing

some auto-analysis firms can become aware of risky situations before the

outcome is too certain to be avoided. It is a well proven fact that humans are

in  general  over-confident  in  their  ability  to  succeed  and  consistently

underestimate  risk1,  and  entrepreneurs  are  no  exception  from  this

phenomenon. An external judgment, provided by an objective instrument,

could provide a strong counterweight to one’s own self-judgment and this

way could save some enterprises that would otherwise be unsuccessful.

Of course,  rating agencies  and other  external  auditors  already provide a

service which is aimed at doing exactly this, but their work has often being

criticized  for  being  too  discretionary  and  expensive.  An  automatic  tool

derived  from  a  machine  learning  approach  would  not  only  help  those

agencies  in  making  better  and  more  objective  decision,  but  would  also

provide anyone with the ability to do its own preliminary rating evaluations

in  an  inexpensive  way.  This  would  be  massively  beneficial  to  a  world

economy which recently suffered from the consequences of a terrible crisis

that originated from a credit bubble caused by excessive lending, and which

is  still  recovering  from the  subsequent  credit  crunch due  in  part  to  the

general aversion of agents towards credit risk.

When  dealing  with  a  modelization  of  credit  risk,  the  most  fundamental

question  that  must  be  addressed  is  whether  the  agent  taken  into

consideration is a consumer, who applies for a loan issued by a bank or any

other agency, or a firm, whose general financial stability and risk of failure

1Moore, D. A., & Healy, P. J. (2008). The trouble with overconfidence. Psychological Review, 
115(2), 502-517.
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has to be assessed. In this work, the choice to focus mainly on firms was

made, for the following reason:

The  study  of  machine  learning  tools  that  can  predict  the  insolvency  of

customers  has  seen  a  huge  rise  in  the  last  years,  with  tens  of  papers

published  every  year,  often  with  very  good  results  (for  a  detailed  and

exhaustive review, see Louzada et al. 2016), while the study of the same

phenomenon in firms did not see a comparable interest. This, however, is in

contrast with the fact that corporate failures have an economic impact that is

perhaps much higher than that of personal credit.

It  is  also important to highlight the fact that  some of the most common

machine learning algorithms are most suited to deal with the sequential and

time-based  data  that  only  corporate  accounts  can  provide,  as  will  be

discussed in the following chapters.

In this study the focus will be on Small and Medium sized Enterprises, as

defined by the European Commission2. This choice was made as these firms

are the ones that would benefit the most from an automated and inexpensive

credit rating mechanisms. In fact, those enterprises are often the ones that

lack any external judgment on their  financial  stability both because it  is

much harder to collect reliable data on them and because they can rarely

sustain the cost of such procedures. Many traditional models of credit risk

rely on the possibility to gather additional data that is not present in the

account sheets of these firms, and so they are precluded from the use of

such tools.

1.2

Structure of this work

In Chapter 1, a brief review on the history and main principles of

Artificial Neural Networks will be provided. In particular, the two Neural

2 http://ec.europa.eu/growth/smes/business-friendly-environment/sme-definition_it

4



Network architectures used in this study will be presented: the Multi Layer

Perceptron, and the Recurrent Neural Network.

In Chapter 2, the current state of the research in this field will be

discussed. Some examples of studies that provided useful insights on the

problem that constitutes the motivation of this study will be summarized.

Chapter  3  is  dedicated  to  the  discussion  of  the  collection  and

cleaning of the data used for the experiment that constitutes the core of this

research. The choice of the database, and the selected firms and variables

will be motivated by comparing them against a set of guiding principles.

Some useful statistics on those data will be provided, and the procedure that

led to the “cleaning” of the data will be explained in detail.

Finally, Chapter 4 will present the procedure and the results of the

experiments  that,  using  two  architectures  of  Artificial  Neural  Networks,

tried to predict the failures of Italian SMEs.
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Chapter 1

Artificial Neural Networks

2.1

Machine learning and Perceptrons

“Machine Learning” is a very broad concept that encompasses many

very different  techniques.  The main difference between the  definition of

Artificial Intelligence and its subset ML is that while AI studies in general

any automatic decision making procedure, even those where a human has to

list  all  the possible actions the machine needs to performs based on the

inputs it receives (“imperative AI”), the latter comprehends any algorithm

that gives a computer the ability to solve a problem without being explicitly

trained  for  that  particular  application.  In  this  sense,  a  ML model  is  a

particular structure that has the ability to be applied to a variety of problems

just  by  changing  the  input  data  on  which  it  will  perform  a  “learning”

process.

In this context, models like Ordinary Least Squares or properly coded non-

linear regressors are also subsets of ML. However, the advent of machines

that  had  significant  computing power  sparked a  frantic  research of  new

methods that could best exploit this new tool, and new ways to improve

“old” standard statistical models. Among the most famous of those: Binary

Search Trees, Support Vector Machines, and, of course, Artificial Neural

Networks.

Artificial  Neural  Networks  (ANNs)  were  first  developed  as  a  result  of

biomimicry: the intention was to find a new way of teaching machines how

to solve problems by imitating the way neurons in animal brains work. The
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first  result  produced by this  search was  the  invention  of  the  Perceptron

[Rosenblatt 1957], which is a structure that performs a binary classification

by simulating a simple model of how a neuron works (Figure 1).

A perceptron is described by the formula:

f (X )=θ(∑ (wi x i+b))

where

x i are the components of the input vector X ,

w i and b are parameters respectively called “weights” and “bias”,

θ(z ) is the “activation function”.

The activation function has the purpose to output a value which will be used

to decide whether  or  not  the  perceptron is  active,  thus  giving its  binary

classification property. A common choice for the activation function is the

sigmoid function, which outputs values from -1 to 1, that can be interpreted

as “if positive, the perceptron is active, otherwise it is dormient”. 

Just  like  neurons  take multiple  inputs,  process  them,  and communicates

whether it is “active” or “dormient”, a perceptron  artificially performs the

same function. This is why perceptrons are most commonly referred to as

“artificial neurons”, or simply “neurons”, which will be the term used in

this work too.
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Schematic representation of the structure of a Perceptron with two inputs: inputs X are multiplied
by weights W, summed up and passed through an activation function θ. 



2.2

Networks of perceptrons

In the same manner as evolution, which combined the power of a

multitude of neurons all interconnected with each other to produce such a

powerful  tool  as  our  brains,  connecting  multiple  perceptrons  together

produces an Artificial Neural Network, a structure that when properly set

can encode very complex phenomena. A wide variety of ANN architectures

have been successfully tested, but the most popular and perhaps the best to

explain the general idea of ANNs is called “Multi Layer Perceptron”.

As  the  name  suggests,  a  MLP is  constituted  by  a  series  of  perceptrons

organized in consecutive layers (Figure 2). In this configuration, the first

layers represents the input data, and has one node per feature. Each of these

nodes sends a “signal” to the first layer of neurons, those neurons perform

the computation described in the previous paragraph and send a copy of the

results  to  each  neuron  in  the  following  layer  (the  number  of  which  is

arbitrary). This operation is repeated a number of times equal to the chosen

number of hidden layers (which is two in the example shown in Figure 2).

Finally,  the signals of the last hidden layer are combined to produce the

output,  which,  depending on the  task that  must  be  performed,  can be a

single neuron or any other number.  The main idea behind this structure is

that  every  time  a  signal  is  passed  from  one  layer  to  the  next,  the

informations  contained  in  it  are  analyzed  and  summarized  to  a  higher

degree of abstraction. 

A key result that supports the use of the use of the MLP machine is the

“Universal  Approximation  Theorem”,  which  states  that  an  appropriately

tuned one-layered MLP network is able to approximate any function (whose

domain  is  a  compact  subset  of  ℝn).  The  exact  formulation  given  by

Cybenko [1989] is as follows:
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Let θ be any continuous discriminatory function3, then finite sums of the

form:

f (X )=∑α j θ(W j X+b j)

are dense in C( I n) .

In other words, given any G  ∈ C( I n) and ϵ>0 , there is a sum f (X )

of the above form for which:

|G( X)−f ( X)|<ϵ for all X∈ I n

where

X , θ(z ) and b are defined as in paragraph 2.1,

I n is the n-dimensional unit cube [0,1]
n ,

C( I n) is the space of the continuous functions on I n .

This has subsequently been proved to hold true even when considering  ℝn

in  place  of  the  n-dimensional  unit  cube.  Such  a  result  has  boosted  the

confidence in the use of neural networks for a wide variety of tasks, leading

to the late 2000s when the incredible fast growth of machine’s computing

power  (thanks  also  to  the  perfection  of  GPU computing)  met  with  the

3 A “discriminatory  function”  is  a  function  that  divides  its  inputs  in  two  categories.  For
example,  tan-1  (x) can be used for this purpose by classifying in a first category inputs that
produce an output smaller than zero, and in the second category the ones that output values
greater than or equal to zero.
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Figure 2

Representation of a Multi Layer Perceptron with two hidden layers and two output nodes.



availability  of  enormous  databases,  exploding  the  range  of  possible

applications of this technology. Nowadays, neural networks are well tested

tool that is used in many tasks, such as: face and object recognition from

images,  translation,  voice  recordings  transcription,  self  driving  vehicles,

personalized marketing, and many more. 

Of course, those networks would be useless if there was no technique to

“train” them to solve a particular problem. As with many other aspects in

this  field,  there  exists  a  wide  variety  of  possible  ways  to  handle  this,

however those can be divided in three main categories:

• Supervised Learning

This  method consists  in  presenting  the  network  with  two lists  of

data: the inputs and the labels. Every value in the in input space is

associated with one label, and the network is trained to on this data

in a way that makes it possible, after the  completion of the training

phase, to correctly identify never seen before inputs and associate the

proper label to them.

• Unsupervised Learning

In  this  case,  a  network  is  presented  with  data  whose  label  and

classification is unknown, only a specified set of features of the data

is available. The Network is then trained to autonomously find some

similarities  in  the  inputs,  and  return  a  rule  that  divides  them  in

different classes.

• Reinforcement Learning

Just  like  humans  and  animals  can  learn  by  trial  and  error,  by

repeating  actions  that  produced  wanted  outcomes  and  avoiding

actions  that  led  to  undesired  consequences,  machines  can  be

programmed  to  do  the  same.  In  this  case,  instead  of  feeding  a

network some values that it must learn to replicate, the algorithm is

given the possibility to explore the space of possible actions it can

10



take, and it is provided with a way to change its behavior depending

on the feedback it receives.

In  this  work,  a  supervised  approach  will  be  used.  The  networks

architectures that were used (discussed in Chapter 4) was fed with a set of

inputs constituted by the accounting balance sheets of Italian firms, and a

set of labels that indicate whether or not any particular firm failed.

The way Supervised Learning is usually implemented is via a technique

called  “Backpropagation  through  Gradient Descent”  (for  a  history  of

Gradient  Descent  use  in  ANNs,  and  a  detailed  discussion  of  ANNs  in

general, see [Schmidhuber 2014]). The idea behind it is simple: the gradient

of a function represents the direction of maximum growth of that function,

while its  opposite is  the direction of maximum descent.  In an analytical

representation:

f (x) is the function that must be minimized,

x i is an estimate of the best solution,

∇ f (x ) is the gradient of f (x) ,

λ is a positive (sufficiently small) constant called “learning rate”.

Gradient Descent finds the next best solution by this iteration:

x i+1=xi−λ∇ f (x i)

In practical  applications,  this  procedure  is  implemented in the  following

way: first,  the weights  and biases in a network are initialized randomly.

Then, inputs are fed through the network and the result is compared to the

desired  feature.  The  difference  between  the  desired  feature  and  the

produced input is calculated by a properly specified loss function (the exact

formulation of which must be chosen depending on the specific problem

considered), and the gradient of this function with respect to the weights

and biases of the last layer is computed. The process is repeated for every

layer until the input, and then the weights and biases are updated based on
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overall direction of the gradient through all the layers, computed through

the chain rule.

This  process  is  not  granted  to  find  the  best  possible  solution,  but  will

instead converge to the local optimum in the space of the ANN parameters.

For this reason, optimal tuning of the hyper-parameters4 of both the network

and the GD algorithm is required to achieve good results. More details on

how this  procedure  was  implemented  in  this  study will  be  discussed  in

Chapater 5.

2.3

Types of Artificial Neural Networks

The Multi Layer Perceptron is just the simplest form of an ANN, and

through the years hundreds of different architectures have been developed,

each one of them perfected to perform the best in a particular problem. Two

of the most popular, and among the first to emerge, are the Convolutional

Neural Network and the Recurrent Neural Network.

The  Convolutional  Neural  Network  (CNN)  was  invented  to  deal  in

particular  with  the  classification  of  images  [LeCun  et  al.  1989].  The

problem of images as inputs in a problem is that the data they represent is

characterized by a very high dimensionality: each pixel of an image, in fact,

can be considered as one variable in the problem. While it is possible to

process an image with a standard MLP, this would not only require a huge

computational power, but has also been proven to be highly inefficient with

respect to more modern techniques such as CNNs.

4 Usually, in Machine Learning research the word “parameters” is used to refer to the values in a
network to be optimized during learning, which are the weights and the biases, while “hyper-
parameters” refer to the values that define the network structure and algorithm, such as: the
number of nodes per layer, the number of hidden layers, the learning rate, etc.
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CNNs  solve  this  problem  by  performing  two  operations  on  the  data:

convolutions, that highlight the most meaningful features of an image while

removing  noise,  and  pooling,  which  reduces  the  dimensionality  of  the

images. Both those operation are done by moving a “filter” of an arbitrary

size  around  the  image  that  must  be  processed.  This  operation  can  be

repeated any number of time, and then a standard MLP can be applied to its

results. Then, both the MLP and the filters parameters are updated using

GD.

Neither  MLPs  or  CNNs,  however,  have  an  intrinsic  ability  to  correctly

represent ordered data,  in both those architectures the input  [x1 , x2 , x3]

does not carry any different meaning than the input [x3 , x2 , x1] .  This can

be a huge problem when a problem has an inherently sequential nature, like

it is the case when dealing with written and spoken language processing, or

time  series  data.  Imagine  the  objective  of  a  research  is  to  predict  the

unemployment level in an economy, based on growth in the previous three

years, and that ANNs are used to find the correct prediction. It is easy to

understand the feeding the network with the values  [4% ,  1% ,  −5% ] is

very different from feeding [−5% ,  1 % ,  4% ] as an input.

This is the issue that Recurrent Neural Networks (RNNs) were invented to

solve [Lipton et al. 2015]. The idea behind a RNN is to make each of the

neurons that compose it “recurrent”, meaning that its input is made both of

the input data that the network must learn to represent and model, and of the

previous  value of  the  neuron itself  (Figure 3).  Using as  an example the

unemployment  prediction  framework  described  above,  an  RNN  would

function this way:

• The first input, “4%”, is fed through the network in  t=0. A neuron

with a weight on the input equal to -0,5; a bias equal to 3, and a

linear  activation  function  takes  this  input  and  computes  the

unemployment prediction (−0.5×4)+3=1 % .
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• In t=1, the value of 1% is fed through the same neuron, but this time

the output of the previous time step is also included. Let us say that

the weight on the recurrent gate (which is the weight on the value

coming from t-1) is 0.5, and the bias is 0. Then, this time the neuron

outputs a value of (−0.5×1+3)+(0.5×1)=3% .

• In t=2, we proceed with the same computation of the previous step,

to get a value of (−0.5×−5+3)+(0.5×3)=7 % .

We can see that the network is able to predict that a decrease in growth

leads to an increase in unemployment.  But will  the results  be consistent

with this model when the network is fed the data coming in the opposite

order?

• In t=0, the output is (−0.5×−5+3)=5.5% .

• In t=1, (−0.5×1+3)+(0.5×5.5)=5.25 % .

• In t=2, (−0.5×4+3)+(0.5×5.25)≈3.6% .

Yes, the simple RNN in this example is already able to model a relation

very  similar  to  Okun’s  law5 even  if  it  only  is  constituted  of  a  single

recurrent neuron. Because of the great properties of RNNs when dealing

with time series, this model was used in this study (together with an MLP

network) to try to predict the failures of Italian SMEs. The results of this

experiment will be discussed in Chapter 4.

5 The macroeconomic formula that relates unemployment and GDP, see [Okun 1962].
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A Recurrent Neural Network in its looped and “unrolled” representation. Xt are the inputs at time
t, that are transferred to  A (a neuron or, more commonly, a layer of neurons). For every t, A

produces an output ht and also sends it as an input to the network in t+1.  



Chapter 2

ANNs for Credit Scoring

3.1

Comparability of the results

Most of the works in the field of machine learning applications to

credit  risk  actually  deal  with  a  different  environment  than  the  one  that

constitutes the objective of this work, as they concentrate on consumers’

risk of insolvency, rather than corporate risk. This is a similar problem, but

still different enough that results in those two settings are hard to compare,

especially as in general accuracy scores in this field are heavily reliant on

the chosen dataset [Louzada et al. 2016]. Also, among the studies that were

carried  out  on  corporate  credit  risk  datasets,  only  very  few  of  those

considered here  actually  present  the  breakdown of  their  results  between

Type 1 and Type 2 error (where Type 1 error is the share of failed firms

among those that are predicted to fail, and Type 2 is the share of non-failed

among those predicted not to fail). This makes it very hard to tell whether

the accuracy scores reported actually carry any meaning, as for example a

dataset containing 90% of “healthy” cases and 10% of bankruptcies would

get an overall accuracy of 0.9 just by adopting the trivial strategy of always

predicting firms to be non-failed.

Even when different studies use the same dataset for their analysis (which is

very common as there are two consumer credit risk  datasets in particular

that have become sort  of a standard for research in this field, called the

“Australian” and the “German” datasets [Bache,  Lichman 2013]) it may be

hard to compare them as, for example, one study may use some criteria to
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exclude outliers from the data, thus making it “easier” to train an efficient

model on it, or it could decide to use a different set of explanatory variables.

3.2

Examples from previous studies

In this paragraph some examples taken from the research in this field

will  be  discussed,  while  in  Chapters  3  and  4  the  details  of  the  new

experiment run for this study will be presented.

• Angelini et al. 2008

This study uses a dataset of 76 firms provided by and Italian bank. The

criterion for the selection of these firms is not specified, but from the nature

of  the  fields  collected  it  can  be  inferred  that  only  firms  whose  credit

application was accepted by the bank are included. This could be a cause of

bias in the results.

The features of the data consist in 11 fields, 8 of which are balance sheet

indexes and the three remaining are related to the quality of the repayment

ability of the firms. This makes this dataset very specific to the situation it is

studying: the predictions are not based only on the informations coming

directly from the accounts, but fields that already indicate a state of distress

are included. This could be a cause of endogeneity in the data. Every one of

the 11 fields is collected in three consecutive years.

Two ANN architectures are trained: the first one is a standard MLP, that

takes 33 inputs and has a single output neuron. The second one performs a

kind of convolution on the input data, by grouping the three years of data

for every feature together and connecting them to one single neuron, the 11

convolutional neurons are then used as an input for a fully connected MLP.
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In  the  standard  network  the  Type  1  error  is  as  low as  12,25%,  Type  2

10,27%. In the “convolutional” network the errors are respectively 6,13%

and 9,15%.

• Yu et al. 2008

In  this  study,  a  procedure  called  “ensemble  learning”  is  used.  The  idea

behind  it  is  to  train  a  number  of  different  networks  (that  can  be

differentiated  both  by  their  architecture  and parameters  or  on the  initial

location of weights and biases and the selection of the training set), select

among all  of  the  trained networks  the  ones  that  give the  most  different

predictions (based on a correlation matrix), and use a rule that summarizes

their results.

Two main techniques are used to perform this “ensemble” summarization:

majority voting, which simply ranks an entry as insolvent or not whether

the  majority  of  the  networks  that  participated  in  the  vote  agree  on  that

prediction; and reliability-based voting, in which the vote of each network

is assigned a weight based on a metric that measures mainly how accurate

those networks are, and then proceeds to sum up these votes.

The  analysis  is  performed  on  two  datasets,  one  dealing  with  consumer

credit  risk  evaluation  and  one  dedicated  to  corporate  credit  risk.  The

corporate  risk  dataset  covers  60  firms,  half  failed  and  half  healthy,  the

training set is made of 30 firms in total. In this case too, the sample size is

extremely small, and this has of course an influence on the results.

Type 1 and Type 2 errors of the corporate risk case in the majority voting

environment  are  respectively  19,85%  and  17,94%.  The  reliability-based

voting procedure produces 17,83% and 14,37% error rates.
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• Kashman 2010

This work is mostly concerned with finding the best hyper-parameters that

allow a standard Multi Layer Perceptron to achieve the best performance on

a credit risk dataset.

It  is  the  first,  among  the  examples  discussed  here,  to  use  the  famous

“German dataset”.  It  consists  of 1000 entries of  people who applied for

credit grants, 300 of which are classified as “bad” (insolvent) and 700 as

“good”.  The  features  consist  of  24  numerical  and  categorical  fields,

representing  various  demographic  and  financial  informations  on  the

applicants (credit history, job, social status, family details, informations on

the requested credit, etc).

Three MLP architectures are tried out: they all have 24 input neurons and

one output neuron (whose value is interpreted as “good” if greater than 0,5,

“bad” otherwise), but they vary in the dimension of the single hidden layer,

which  can  be  formed  by  either  18,  23,  or  27  neurons.  Each  of  these

architectures is trained with nine different ratios between training and test

data, starting from 1/9 and going up to 9/1.

The best  results  are provided by the  network that  has 23 neurons in its

hidden layer and splits the data in 400 cases for the training set and 600 for

the test set. The validation error of this network is 26,83%; no information

is provided on the contribution of Type 1 and Type 2 errors to this total.

• Kim 2011

The author of this paper analyses the bankruptcies in a very specific sector:

Korean hotels in the years ranging from 1995 to 2002. This is interesting as

it  can  provide  an  insight  on  whether  it  can  be  easier  for  model  that  is

focused on a specific industry to produce better results. The data collection

procedure is also very interesting: first, the data from the accounts of 33

bankrupted  hotels  was  collected;  then  more  hotels  are  selected  to  be
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included  in  the  dataset,  by  choosing  33  more  whose  total  assets  sizes

matched those of the bankrupted hotels.

The variables chosen to represent the financial situation of the considered

hotels  fall  in  five  categories:  liquidity  (current  ratio,  quick  ratio,  and

account receivable turnover), stability (debt to equity ratio and fixed assets

to  long-term  capital  ratio),  profitability  (profit  margin  ratio,  ordinary

income margin, return on equity (ROE), ordinary income to owners’ equity

ratio), activity (asset turnover, inventory turnover, and fixed asset turnover),

and  growth  (growth  in  revenue,  growth  in  assets,  growth  in  ordinary

income, growth in net income, and growth in owners’ equity).

A Multi Layer Perceptron is used on this data, and the results show a 4,8%

Type 1 error and 12,1% Type 2 error. This is consistent with the intuition

that a gain in accuracy can be expected when studying firms in a single

economic sector, as they usually “behave” in a similar way.

• Pacelli and Azzolini 2010

Pacelli and Azzolini used data consisting of 273 Italian firms which had a

total turnover of less than 50 million euros  and a workforce of less than

500 employees. This means that this dataset, just like the one that will be

used in this study (discussed in Chapter 3), focuses on Small and Medium

Enterprises. The chosen network is an MLP with 24 financial ratios as the

input layer, then two hidden layer of 10 and 3 neurons respectively. The

output is constituted by a single node.

This study presents an interesting peculiarity: instead of dividing the firms

in two classes, “failed” and “healthy”, like most studies do, they decided to

rank them as either “safe”, “vulnerable” or “at risk”. This makes it harder to

compare the results with other ones, but is an interesting methodology that,

depending on the specific needs of who needs to use this kind of technique

in real world applications, could be very useful. The results show an error of

65,2% for the “at risk” class and 15,8% for the “safe” class.
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• Lee and Choi 2013

In this study the objective is to investigate whether the application of ANNs

for the prediction of corporate failures yields different results when applied

in different industries.  For this  reason, the authors collect three different

datasets  consisting  of  firms  coming  from  three  economic  sectors:

construction, retail, and manufacturing.

The  total  amount  of  firms  in  the  three  datasets  amounts  to  229  (75  in

construction, 67 in retail, 88 in manufacturing), of which 91 are bankrupt. A

total of 100 financial ratios are available for every firm, but the authors

decide  to  use  only  a  small  amount  of  those  (6  for  construction  and

manufacturing, 4 for retail) by selecting the ones that based on t-tests and

correlation analysis prove to be the best predictors of bankruptcies.

As expected, the results differ significantly between the three sectors: for

construction, Type 1 error is 12% and Type 2 6%, for retail 21% and 7%

respectively, and for manufacturing 7,9% and 10,5%.

• Zhao et al. 2015

There are three main aspects this study explores: proposing a procedure for

the shuffling of the input data; finding the best size for the training, test, and

validations sets; and exploring the change in accuracy obtained by varying

the number of neurons in an ANN. 

For  the  shuffling  of  the  data  (which  come  from the  already  mentioned

German dataset) the authors propose a procedure that guarantees that each

time a set is sampled from the database the percentage of failed and non-

failed firms remains constant. This is particularly useful in the case of a

relatively  small  dataset  where  pure  and  unaccounted  randomness  could

cause huge variations in the share of failed firms in the test, validation and

training sets. The proposed procedure guarantees that any good accuracy

scores obtained is not due just to the fact that a “lucky” training set was

used.
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Every experiment is repeated three times, every time varying the sizes of

the three sets. The three compositions tried were: 80% training set, 10% test

and 10% validation; 90%, 5% and 5% respectively; 60%, 20% and 20%.

The authors discuss the fact that the their networks seem to have the best

performance when used with the 80% and 10% combination. 

The ANN architecture used is an MLP with one hidden layer. The number

of units in the hidden layer is varied from 6 to 39. For each size of the

hidden layer twenty training sessions were run. The authors do not find any

substantial  difference  in  performance  among  the  various  sizes  when

comparing accuracies on the validation set, however the accuracy on the

test set (which is the value used to determine when to stop the training of

the network) seems to decrease with the increase in the size of the hidden

layer.
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Chapter 3

The Dataset

4.1

Guidelines for choosing a good dataset

Based  on  the  observations  made  in  the  previous  sections,  some

requirements must be laid out for the dataset we will choose. The choice of

the dataset is in fact one of the most important when building a predictive

model [Wenzelburger et al. 2013]. It is obvious that no model can predict

relations and behaviors if those are not present in at least one case of the

dataset, but this is not the only reason a good choice of the data is crucial in

giving predictive power to a model: first of all, any bias or distortion of the

phenomena  that  is  present  in  the  data  will  also  be  reflected  in  the

predictions, thus lowering the overall accuracy; secondly, when attempting

to  train  models  such  as  Artificial  Neural  Networks,  that  rely  on  the

identification  of  a  local  optimum to  solve  a  problem (because  the  high

dimensionality of their parameters and their complex interactions makes it

impossible to compute the global solution), any fluctuation in the shape of

the dataset is able to drastically change the shape of the space of possible

solutions, which means that the final prediction could be much different.

For  these  reason,  the  dataset  that  will  be  used  should  ideally  have  the

following characteristics:

• Abundancy

The dataset needs to contain as many examples as possible. As stated

in  the  previous  chapters,  the  rise  of  Artificial  Neural  Networks

techniques is also due to the availability of very large collections of

data,  in  the  order  of  magnitude  of  hundred of  thousands or  even
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millions of example cases. This is necessary not only to reduce the

noise-to-information  ratio,  allowing  faster  and  convergence  to  a

better local solution [Wong and Sherrington 1993], but also to reduce

the chances of overfitting the features. If a dataset does not contain at

the very least some tens of thousands of entries, it  can be better to

use  classic  approaches  such as  regression  that  in  these  cases  can

often produce more consistent results.

• Quality

The  data  must,  of  course,  represent  the  real  values  as  close  as

possible,  and thus  it  must  be  collected  in  a  careful  manner  by  a

trusted agent. Every field should be accompanied by an explanation

of  its  meaning and the  collecting procedure.  Also,  the  amount  of

missing values in the fields should not be too big, as these can have

destructive  effects  on  the  learning  algorithm  [Lopes  and  Ribeiro

2011] and their handling is in general not an easy task. If  data is

missing, reasons for that should be provided.

• Generality

Unless the researcher intentionally aims at identifying a phenomenon

in  a  confined  and  peculiar  set  of  conditions,  the  dataset  should

contain  cases  that  are  not  specific  to  any  particular  context  or

collecting method. The set of conditions presented should be broad

enough that no hidden dataset-specific fixed effects are present, so

that when the findings are applied to data coming from other sources,

the accuracy can be close to the value computed on the training data. 

In many cases in credit risk research, the dataset comes from firms or

people whose credit applications were accepted by the issuer (such is

the case in the cited “German dataset”). This clearly creates a bias

towards a model that instead of identifying the general indicator of

the likelihood of a debtor to fail,  identifies the features of debtors

that looked good initially but then failed.
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• Conciseness

The features that form the data should represent the phenomenon in a

concise way, avoiding to be either too generic or too specific. If the

features are too generic it is unlikely that they represent meaningful

informations, if they are too specific  the training could be too slow

or could get stuck too easily in local  optima [Tuckova and Bores

1996].

Also, if the model is required to output predictions rather than just a

classification, great care must be taken in choosing which features to

use so as to avoid introducing data that represents a consequence of

the outcome rather than one of its determinants.

When choosing the right dataset there is another criterion that must be taken

into consideration, at it is of course the objective of the research. The main

reason behind this work is to investigate the possibility to build a tool that is

useful to rate the credit risk of those firms, particularly medium to small

sized ones, for which other traditional methods prove not to be so effective.

This happens mainly because data on share prices or independent rating

agencies is not available or difficult to obtain, making it impossible to apply

popular  models  such  as  Merton’s  [1974]  and  Vasicek’s  [1977].  A data

source that focuses on this kind of firms is then necessary.

The criteria outlined in this paragraph will be used throughout this chapter

as a reference point to evaluate the choice of the dataset that was made for

this study.

4.2

The chosen data source and its structure

The  dataset  that  was  chosen  for  the  experiment  comes  from  the

AIDA database6.  AIDA is a database which collects financial, commercial

6 www.bvdinfo.com/en-gb/our-products/data/national/aida
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and anagraphic informations of Italian companies; in particular, it holds the

digitalized balance sheets of more than one million firms and their legal

status (whether they are still active, bankrupted, or else).

The database query used to extract the data was organized as follows:

• At least five years of available accounts

Only firms that had at least five years of available accounts were

selected.  This  grants  the  possibility  to  feed  our  algorithm with  a

dynamic view of each firm and not just a static picture of it, and will

be essential for the training of the Recurrent Neural Network model

that will be discussed in chapter 4. 

• Max total assets = 43.000.000€ _OR_ max revenues from sales and

services = 50.000.000€ and max employees = 250

This criterion was defined so that every firm in the dataset falls in

the  definition  of  Small  and  medium-sized  enterprises  (SMEs)  as

provided by the European Commission. This is useful to focus our

research  on  those  firms  that  would  benefit  the  most  from a  non

conventional  model  of  credit  risk  assessment,  as  stated  in  the

previous paragraph. The criterion had to be met in every year.

The total number of entries resulting from this query amounts to 872.558. A

link to the file containing extracted firms in  .csv format can be found in

Appendix 1. Even though this list of firms will be refined and reduced in

the following steps, it is already possible to see that the amount of accounts

being worked on is  pretty  large,  and this  is  in  line  with the  abundancy

principle defined above. This is, to the knowledge of the author, by far the

largest  dataset  used in  this  kind of  research.  As discussed in Chapter 1,

studies on Machine Learning applications to credit risk rarely use more than

a couple of thousand firms as the input for their models, and many of them

are actually limited to some hundreds or less. 

25



The AIDA database allows to choose among dozens of different categories

of data (the columns of the database, if we consider each firm to represent a

row). A choice has to be made with respect to which among these categories

will  be  downloaded:  not  only  this  choice  is  necessary  to  follow  the

conciseness principle and this way produce a dataset that will yield better

results when applied to our training algorithm, but is also necessary from a

practical point of view. In fact, the downloaded files with 52 columns in

.csv format occupy 3,4GB of space in total and had to be downloaded in

211 batches of 4.400 entries each, which constitutes the maximum file size

that the database script can handle (also, all the data processing was made

on  a  computer  with  4GB  of  RAM  memory,  and  even  though  many

computations  were  done  in  batches,  this  would  have  been  highly

impractical if the data size had been too large).

For this reason, instead of downloading data for every single account sheet

section (the database provides entries for every category that the Italian law

requires firms to fill), only the major indicators computed on the base of the

balance sheet and the profit and loss account and already provided within

the  AIDA  framework  were  selected.  This  should  conserve  most  of  the

information contained in the database while also reducing its size and the

noise in the data. Only two balance sheet fields are kept: 'Profit (loss) EUR'

and 'Total assets EUR', these are kept in the data in hope that they will help

the network to have a sense of “scale” while comparing firms: by checking

those two values the network may be able to estimate the total size of the

profit and loss account and the balance sheet respectively (being able to tell

a “very small firm” from a “medium firm”), and it is reasonable to suppose

that  the  economic size  of  a  firm is  important  in  estimating its  financial

stability. 

Besides these strictly economic features, some anagraphic and descriptive

variables  are  also  considered,  those  are:  'Number  of  employees',

'Accounting  closing  date  Last  avail.  Yr',  'Tax  code  number',  'Trading
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address  –  Region',  'Legal  status',  'Incorporation  year',  'Last  accounting

closing date',  'Procedure/cessazione',  'Date of open procedure/cessazione',

'NACE Rev. 2'.

A complete rundown and description of every feature will be given in the

next paragraph. It is however worth mentioning that while some of these

variables are kept just for database cleaning and data analysis reasons, some

others will become explanatory variables in the final model. From now on

the first  group of  them will  be  referred  to  as  “anagraphics”,  while  the

latter,  together  with  the  previously  mentioned  account  indexes,  will  be

called “controls”. Finally, 'Legal status' and 'Procedure/cessazione' will be

used to compute the dependent variable of the model, which will be referred

to also as “label” (Paragraph 4.4 will provide the details of this step).

4.3

Statistical overview of the data

In Table 1 the complete list of the fields that were downloaded from

the database is presented, together with some basic statistical informations

(the names are reported exactly as they are in the database,  most are in

English, some in Italian and some are mixed, for more informations check

the AIDA website). Account indexes are calculated on the basis of the fields

described in the Italian accounting law, a descriptive table of the formulas

used to calculate this fields is available in the link provided in Appendix 1.

The data for each of the categories indicated in Table 1 is collected over a

period of five years, so the statistics presented are computed considering the

data for every year and every firm. 
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Table 1

Name Median Mean Standard

Deviation

Maximum Minimum

'Tax code number' - - - - -

'Legal status' - - - - -

'Incorporation year' - - - 2017 1845

'Last accounting closing date' - - - 2017 1994

'Procedure/cessazione' - - - - -

'Date of open 

procedure/cessazione'
- - - - -

'NACE Rev. 2' - - - - -

'Profit (loss) EUR' 1032.0 -6339.14 2946444.9 2.5512e9 -1.1846e9

'Total assets EUR' 523053.0 2707407.8 3.6923e7 2.1024e10 0

'Total shareholder's funds EUR' 65698.0 849603.9 1.8413e7 1.0108e10 -9.0713e8

'Return on sales (ROS) %' 3.34 2.53 12.40 30.0 -50.0

'Return on asset (ROA) %' 1.78 -1.67 39.53 996.36 -999.95

'Return on equity (ROE) %' 2.64 2.44 32.40 150 -150

'Banks/turnover %' 0.99 13.17 20.93 100 0

'Liquidity ratio' 0.92 1.34 1.53 10 0

'Current ratio' 1.2 1.69 1.62 10 0

'Current liabilities/Tot ass. %' 0.97 0.78 0.31 4.99 0

'Long/med term liab/Tot ass. %' 0.03 0.22 0.31 1 0

'Tang. fixed ass./Share funds %' 0.22 0.98 2.20 15 -10

'Depr./Tang. fixed assets %' 0.87 1.72 2.08 10.0 0

'Leverage' 3.49 15.60 160.87 9991.3 -1999.9

'Coverage of fixed assets %' 1.3 16.4 72.4 999.9 -49.9

'Banks/Turnover (%) %' 0.99 13.17 20.92 100 0

'Cost of debt (%) %' 5.41 6.36 4.52 20 0

'Interest/Operating profit %' 6.49 31.82 64.24 400 0

'Interest/Turnover %' 0.86 4.13 10.28 100 0

'Share funds/Liabilities %' 0.26 2.14 10.51 199.99 -19.96

'Net Financial Position EUR' 255 488191.1 5975234.1 2.2311e9 -3.3734e9

'Debt/Equity ratio %' 0.04 2.95 30.83 997.43 -998.98

'Debt/EBITDA ratio %' 0 0.58 50.00 999.73 -999.92

'Total assets turnover (times)' 0.59 0.81 0.88 5 0

'Incidenza circolante operativo %' 16.8 39.63 137.52 999.99 -999.98

'Stocks/Turnover (days)' 0 22.34 62.67 499.98 0
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'Durata media dei crediti al lordo 

IVA (days)'
88.71 150.48 231.47 1999.99 0

'Durata media dei debiti al lordo 

IVA (days)'
95.52 121.79 108.46 500 0

'Durata Ciclo Commerciale 

(days)'
35.44 64.98 181.79 2296.88 -499.9

'EBITDA EUR' 17173.0 86895.84 745337.98 3.5718e8 -3.6346e8

'EBITDA/Sales %' 6.86 1.06 82.29 999.89 -999.99

'Return on investment (ROI) %' 3.02 4.03 10.59 30.0 -30.0

'Number of employees' 1 7.11 43.71 44695 0

'Added value per employee' 35540.0 44993.30 48094.83 499970.0 -50000.0

'Staff Costs per employee' 26170.0 27233.06 16746.59 100000 0

'Turnover/Staff Costs' 4.83 9.12 12.77 100 0

'Net working capital EUR' 36452.0 277643.3 7255399.2 4.0647e9 -5.1363e9

'Gross profit EUR' 134977.0 704869.7 2359459.5 5.8944e8 -5.9986e8

'Net short term assets EUR' -22074.0 -465315.6 1.4976e7 3.335e9 -9.828e9

'Share funds - Fixed assets EUR' 7011.0 -288787.1 1.2546e7 1.8628e9 -9.3463e9

'Revenues from sales and services 

th EUR'
144.0 1401.29 5176.87 165114.0 -1274.0

'Cash Flow EUR' 8659.0 50993.4 2919754.5 2.5534e9 -1.184e9

As appears to be evident from  Table 1, the most extreme values of some

fields were clipped in the original dataset. This means that when the original

data was collected, any value that surpassed some threshold X was replaced

with the value X. As an example, 'Staff Costs per employee' does not have

any values greater than 100.000€, so clearly any firm that had 120.000€ as a

value for that variable had its account modified and that value substituted

with 100.000€. This is also clear in its histogram (Graph 1) as it can be seen

that the right tail of the distribution is suddenly truncated at that value.

Other  categories  that  may  have  suffered  clipping  of  their  data  include:

'Added  value  per  employee',  'Return  on  investment  (ROI)  %',

'EBITDA/Vendite  %',  'Durata  media  dei  debiti  al  lordo  IVA  (days)',

'Debt/Equity  ratio  %',  'Debt/EBITDA  ratio  %',  'Total  assets  turnover

(times)',  'Incidenza  circolante  operativo  %',  'Stocks/Turnover  (days)',

29



'Leverage',  'Coverage  of  fixed  assets  %',  'Return  on  equity  (ROE)  %',

'Return on asset (ROA) %'. The histograms for some of these variables are

presented in  Graph 2. In the case of  'Return on investment (ROI) %' and

'Cost of debt (%)'  the distortion caused by data clipping is evident in the

graphs, while in the other cases it seems to be limited to just a few outliers,

and so hopefully the information carried by those variables is likely not to

be distorted too much by this clipping.

In the link available in Appendix 1, the complete set of histograms for every

feature can be found, each histogram is divided in 40 bars and has a total

number of cases equal to:

(number of firms)×(account years collected)−(missing values of category )

The  list  of  indexes  and  categories  included  in  the  dataset  that  was

downloaded is surely broad and varied, but this makes sense if considered

in light of three considerations: 

First, it must be recalled that the objective of this work is to build a model

which takes as few assumptions as possible on the nature of the studied

phenomenon.  The  modelling  of  the  phenomenon,  needed  to  make

predictions,  will  be  self-built  by  the  algorithm and not  provided by the

researcher. Making decisions on which variables to exclude by stating that

they  are  not  useful  predictors  is  just  as  strong  an  assumption  on  the

phenomenon as any other,  and even if  something has to be excluded in

order to avoid introducing too much noise and making computations too

hard, it is a good idea in general to keep the features that will be fed to the

network as numerous as possible.

Secondly, even though feeding hundreds of categories to the network would

be  impractical  and counter-productive,  there  is  actually  no  reason to  be

excessively shy in the parameters selection: neural networks are regularly

used with input  sized that  go up to hundreds of  nodes,  especially when

working with video or image processing (see for example [Qiao et al. 
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2017]).  Of  course,  the  nature  of  image  recognition  problems  is  very

different from a financial analysis, but it is still indicative of some degrees

of  freedom  when  dealing  with  this  particular  issue.  Also,  contrary  to

techniques  like  Least  Squares  or  other  traditional  estimators,  neural

networks are not so sensitive to high values of correlation in the explanatory

variables  [Wendemuth  et  al.  1993].  So  there  is  no  need  to  check  the

covariance matrix and prune inputs that present high covariance with each

other.

Thirdly, the reasons and the paths that lead to the failure of a company are

them too very broad, complex, varied, and interconnected. If the artificial

neural network has to learn complex mechanisms, be able to make good 
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Graph 1

Histogram showin the distribution of the values of the variable 'Staff Costs per employee' in the
complete dataset, before the removal of any row.



abstractions, and learn underlying relations in the data that are presented to

it, the only way is to give a representation of the agents it has to analyze

that is as comprehensive as possible. 

4.4

Data cleaning procedure

As it is now, the dataset can not be fed directly into a neural network,

and some work is necessary to refine the data and transform it in a format

that is more suitable to be processed. Two main steps are required before

the work can proceed any further:

• The general quality of the data must be assessed, and entries and

variables with too many missing values must be dropped to avoid
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Graph 2

Histogram showin the distribution of the values of some of the mostsignificant variables in the
complete dataset, before the removal of any row.



any  problems  that  could  hamper  the  training  and  the  abstraction

ability of the network.

• The data must be transformed in a format that allows it to be fed

correctly to the network. This step also includes the definition of the

labels  variable,  which  must  be  created  from  the  available

informations.

In this section, the details on how these procedures were implemented will

be provided. Also, the complete Python code that was used for this purpose

can be found in Appendix 4.

First,  every  entry  that  had  a  missing  value  in  'NACE  Rev.  2'  or

'Incorporation year' was deleted. This is mainly due to the fact that the web

script that downloaded the database created  .csv files in which sometimes

multiple rows were created for the same firm, as a consequence of some

extra  information  contained  in  anagraphic  variables  that  could  not  be

contained in a single row. Deleting rows with those missing values grants

the certainty that every row in the dataset corresponds to one and just one

firm. A total of 600 rows were dropped this way, thus reducing the total

amount to 871.958.

Then, the problem of missing values (also referred to as “NaNs”, which

stands for “Not a Number”) was tackled. Many different approaches exist

on how to handle missing values in a dataset [Kaiser 2014, Louzada et al.

2016], and there is no “one size fits all” solution. The method used in this

study follows a four-folded approach: 1) columns with too many missing

values are dropped, 2) rows with too many missing values are dropped too,

3) missing values are replaced with their means, 4) dummy variables are

built to signal missing values. The details of each of these steps will now be

discussed:
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1) The number of missing values for every variable of those listed in

Table 1 is  checked (this  count is available in Appendix 2).  In this case,

NaNs are counted year by year. For example, this means that the interest is

not on how many values are missing in the variable  'Leverage', but rather

how many missing values are in 'Leverage last available year', how many

in  'Leverage  last  available  year  minus  1',  and  so  on.  After  those  are

counted, columns that present more than 40% of missing values in at least

one year are dropped. Also, if a variable has more than one year with 20%

or more missing values, it is also dropped. Fifteen features were deleted,

and  they  are:  'Return  on  sales  (ROS)  %',  'Banks/Turnover  (%)  %',

'Depr./Tang.  fixed  assets  %',  'Cost  of  debt  (%)  %',  'Banks/turnover  %',

'Interest/Operating  profit  %',  'Incidenza  circolante  operativo  %',

'Stocks/Turnover  (days)',  'Durata media  dei  crediti  al  lordo IVA (days)',

'Durata media dei debiti al lordo IVA (days)', 'Durata Ciclo Commerciale

(days)', 'Return on investment (ROI) %', 'Added value per employee', 'Staff

Costs per employee', 'Turnover/Staff Costs'. Clearly, some of the values that

were dropped are actually important indicators of the financial status of a

firm (such as Return On Sales, Return On Investment, Cost of Debt, etc)

and  the  model  that  will  be  tested  will  probably  have  a  harder  time  in

predicting failures if it cannot access these values. However if the results

will prove to be good anyway, this will only pose in favor of the reliability

of the resulting algorithm.

2) This time missing values are checked row by row. If  in a row

every single year of a variable is missing, and this happens for more than

one variable, then that row is deleted. Also, if more than two years of a

variable are missing, and this happens in more than five variables, then that

row  is  deleted  too.  A total  of  149.798  rows  are  deleted  following  this

criterion. This step is especially important in prospect of the application of

the Recurrent Neural Network model, which relies heavily on the temporal
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structure of the data making it especially important to have consistent time-

series values for as many variables as possible.

3) As neural networks can only be fed numerical values, any NaN

that remains in the dataset must be replaced by a numerical placeholder. In

this case, the placeholder used is simply the mean of the values of that field

among all the other firms. Other more sophisticated values could have been

computed, but respecting the principle that the least amount of assumptions

should  be  made  by  the  researcher  when  building  an  ANN  model,  the

preferred choice was to use a simple placeholder,  the mean,  and instead

build dummy variables.

4) It can be a good idea to let the ANN that will analyze this data

have the possibility to “know” which values were missing in the original

dataset  and were substituted by their  mean as explained in  the previous

point. For this reason, a set of dummy variables is created, each one of them

corresponding to one of the fields of the dataset and taking value “1” if the

corresponding field is blank, or “0” if it has a number. This means that the

total  number  of  features  that  will  constitute the  input  of  the  network  is

doubled in size. This could cause the network to overfit the data, if there is

correlation  between  having  some  missing  values  and  being  at  risk  of

bankruptcy  (this  issue will  be  discussed further  in  the  next  paragraphs).

However, this tradeoff is considered worthy as great care has already been

taken in deleting rows and columns that presented too many missing values,

and replacing NaNs with “fictional” values without giving our model a way

to identify them, could be a cause of even greater distortions in the resulting

predictions.

Now that the problem of assessing the quality of the data has been tackled,

this data must be prepared for its processing:
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The variable 'NACE Rev. 2' is a four figures code that divides the firms by

the economic sector in which they operate7. The first figure represents the

most general economic activity, and every subsequent one specifies it more

in detail. This variable is kept in our model as it is reasonable to assume that

the economic sector has an impact on the chance of failure of a firm. In

particular, only the first two figures are kept, as being too specific would

probably not benefit the model. As this is a categorical value, it must be

converted to a numerical form. One popular way to do this consists in the

use of One Hot Encoding, which is a method that is from a practical and

also  theoretical  point  of  view  equivalent  to  building  a  set  of  dummy

variables for every possible state of  'NACE Rev. 2'.  However,  the set of

possible values of the first two figures of this variable contains 73 elements,

and so such a choice would add a level of complexity to the features that

could be unnecessary. Instead, these values were kept as they are, as integer

numbers, exploiting the fact that NACE codes are organized in such a way

that  keeps  similar  economic  sectors  grouped  in  numbers  close  to  each

other8, and so it may me reasonable to use a numerical representation that

keeps into account this measure of “distance” and does not erase it from the

data.

The variables 'Tax code number', 'Incorporation year', and 'Last accounting

closing date' were not used as inputs for the model. 'Tax code number' was

helpful anyway as a unique identifier of each firm.

Now the dependent variable of the model must be built. To do that, all the

possible  values  of  'Legal  status'  and  'Procedure/cessazione'  must  be

7 http://ec.europa.eu/eurostat/documents/3859598/5902521/KS-RA-07-015-EN.PDF
8 For example, “Extraction of crude petroleum and natural gas” has the NACE code “06”, and

the similar sector “Mining of metal ores” has the code “07”. A totally different sector instead,
like “Repair of computers and personal and household goods” has the very distant number
“95” as its code.
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considered.  In  Table  2 all  the possible values of  'Legal status'  and their

frequencies are listed.

Table 2

Legal Status Occurrences

'Active' 654065

'In liquidation' 81186

'Bankruptcy' 47071

'Dissolved' 37866

'Dissolved (liquidation)' 32376

'Dissolved (merger)' 14249

'Active (default of payments)' 4278

'Dissolved (bankruptcy)' 404

'Dissolved (demerger)' 251

'Active (receivership)' 212

A new binary variable is built,  'failure', which indicates with “1” the firms

that are considered to be failed. Every firm whose value in the 'Legal status'

variable  is  either  'Bankruptcy', 'Dissolved  (bankruptcy)', 'Active

(receivership)',  or 'Active (default of payments)'  is marked as failed, while

the classification of the other firms will be decided based on the value of

'Procedure/cessazione' which better specifies whether the legal status of the

firm can be considered a failure or not. The set of possible unique values of

'Procedure/cessazione'  contains 60 elements, and a conversion table (that

can be found in Appendix 3) is built to decide whether any single value

among those sixty indicates a failure or not.

It  is  important  to  stress  the  importance  of  this  step:  the  results  of  the

analysis carried out in this work will of course be highly dependent on the

chosen procedure used to create the variable 'failure', which will be used to

store the labels for our model.  The main consequences of poorly chosen

labels  could  either  be  a  bias  in  the  predictions,  if  a  systematic  error  is
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present  in  the  labels,  or  a  slower  rate  of  convergence  to  a  worse  local

optimum if the noise is centered on the real values [Sukhbaatar and Fergus

2014]. In the case studied here, the presence of a class of firms classified as

'In liquidation'  means that it is hard to be confident in their classification

either way, as it is hard to tell whether those should be considered as failed

by the model  or  not.  The fact  that  the  column  'Procedure/cessazione'  is

checked  before  making  this  decision  helps  in  partially  reducing  this

problem,  but  a  potential  source  of  debate  remains  as  to  whether  the

presented procedure can be considered the best, or if better solutions exist.

By this criterion, the number of failures in the dataset amounts to 137.938,

which constitutes 19,1% of the total.

The  last  transformation  that  was  performed  on  the  dataset  is  the

normalization of the values, which is particularly useful to speed up the

learning process of a neural network. The values of every year of every

variable  were  collected  and  normalized  to  have  zero  mean  and  unit

variance. The values of 'NACE Rev. 2' were simply divided by 100 so that

they all lie in the 0 to 1 interval.

4.5

Final analysis of the dataset

It could be interesting to know whether the probability of failing is

the same between the firms that we excluded from the data and the initial

dataset we had. In practical terms, this means exploring the possibility that

there  might  be  correlation  between  the  number  of  NaN  values  in  the

account of a firm and its  probability of failure.  To do that,  we set up a

Welch t-test to check the null hypothesis that the average number of failures

in the complete dataset is the same as the average number of failures in the

set of firms that were excluded. The Welch t-test [Welch 1947] was chosen
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as it provides the best estimates when the two distributions have different

numerosities and different variances (and, in a binomial setting like the one

this experiment is based on, having different expected values also means

having  different  variances,  as  the  variance  of  a  binomial  distribution  is

p(1−p) where p is the expected value). The formula for the Welch t-test

is the following:

t=
Fc−Fd

√ sc
2

nc

+
sd

2

nd

Where

Fc=
186852
871958

≈0,214 is the share of failures in the complete dataset

Fd=
48914

149798
≈0,327 is the share of failures in the deleted rows

The test outputs a result of t=−87,09 corresponding to a p-value so small

that the statistical package used (Scipy, a Python library) outputs a value of

zero, leaving no doubt as to whether those two values are different at any

level of statistical significance.

This  results  supports  the  choice  of  deleting  those  rows,  as  clearly  the

number of NaNs in a row can be a predictor of the likelihood of that firm to

fail.  Deleting  this  data  means  making  it  harder  for  the  model  to  find

informations  to  base  its  predictions  upon,  which  will  in  turn  make  the

results obtained even stronger if those will be considered satisfactory.

This can be considered a measure to remove outliers in the data, at least if

we only consider  outliers  in the  “missing values”  dimension.  It  is  often

suggested  that  removing  outliers  is  a  good  approach  when  preparing  a

neural  network,  and  it  makes  sense  that  removing  the  cases  that  are

“harder”  to  fit  would  result  in  a  performance  increase,  but  overdoing it

might also remove important features that are present in the data, depending

on  the  chosen  cutoff,  and  would  also  introduce  the  risk  of  artificially
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increasing accuracy only because most of the variance in the features has

been eliminated.

Something that  is  worth  discussing,  now that  the  final  dataset  has  been

selected, is whether the variables that are left in the final  version of the

dataset  are  similar  to  those  chosen  in  other  studies  on  the  subject  of

corporate financial risk. This is the reason why the comparative graph in

Table 3 was created. It shows the variables taken into consideration in four

different  studies  on this  subject  (one of  which,  [Corazza,  Funari,  Gusso

2016],  actually  deals  with  a  creditworthiness  problem  in  a  MURAME

environment, a different problem than the one studied in this research, but it

is still an interesting comparison as it was run by extracting data from the

same database used here,  AIDA) and whether the same variables, or ones

that are similar, are also included in this analysis. As the table highlights,

there is only partial overlap among the features used in the various studies.

Table 3

Variables used Corresponding or similar variables in the following work

Altman, Sabato 2007

Short term debt/equity book value
Cash/total assets

EBITDA/total assets
Retained earnings/total assets

EBITDA/interest expenses

'Debt/Equity ratio %' and 'Current liabilities/Tot ass. %'
'Cash Flow EUR' and 'Total assets EUR'
'EBITDA EUR' and 'Total assets EUR'

'Return on asset (ROA) %'
'Interest/Operating profit %'

Corazza, Funari, Gusso 2016

Cost of debt: Financial costs/bank debts
(Current assets – inventories)/current liabilities

Return on equity (ROE): Net profit before tax/total equity
Return on sales (ROS): Net profit before tax/sales

EBITDA
Total assets turnover: Sales/total assets

R&D costs/total asset
Income tax/profit before taxes

Equity – equipment
Rate of increase of revenues from sales and services

Liabilities/total assets
Cash/total assets

Working capital/total assets
Intangible/total assets

EBIT/sales
EBITDA/total assets

Retained earnings/total assets
Net income/sales

Short term debt/equity

'Cost of debt (%) %'
'Liquidity ratio'

'Return on equity (ROE) %'
'Return on sales (ROS) %'

'EBITDA EUR'
'Total assets turnover (times)'

-
-
-
-

'Current liabilities/Tot ass. %'
'Cash Flow EUR' and 'Total assets EUR'

'Net working capital EUR' and 'Total assets EUR'
-

'EBITDA/Sales %'
'EBITDA EUR' and 'Total assets EUR'

-
'EBITDA/Sales %'

'Debt/Equity ratio %'
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EBITDA/interest expenses
Account payable/sales

Account receivable/liabilities
Sales/personnel costs

'Interest/Operating profit %'
-
-

'Turnover/Staff Costs'

Angelini et al. 2008

Cash flow/total debt
Turnover/inventory

Current liability/turnover
Equity/total assets

Financial costs/total debts
Net working capital/total assets

Trade accounts receivables/turnover
Value added/total assets

Utilized credit line/accorded credit line
Unsolved effects/under usual reserve effects
Unsolved effects/under usual reserve effects
Transpassing short-term/accorded credit line

Transpassing medium-long term/accorded credit line
Utilized credit line short-term/accorded credit line

Utilized credit line medium-long term/accorded credit line

'Cash Flow EUR'  and ''Long/med term liab/Tot ass. %'
-

'Current liabilities/Tot ass.', 'Revenues from sales and serv.'
'Leverage'

'Cost of debt (%) %'
'Net working capital EUR' and 'Total assets EUR'

-
'Added value per employee'

-
-
-
-
-
-
-

Yu et al. 2008

Sales
Profit before tax/capital employed

(earnings before tax and depreciation)/total liabilities
(current liabilities + long-term debt)/total assets

Current liabilities/total assets
Current assets/current liabilities

(current assets - stock)/current liabilities
(current assets - current liabilities)/total assets

Days from account year end to the failing of annual report
Number of years the company has been operating

1 if changed auditor in previous three years, 0 otherwise
1 if company auditor is a Big6 auditor, 0 otherwise

'Revenues from sales and services th EUR'
'Return on investment (ROI) %'

'EBITDA EUR' and 'Total assets EUR'
'Current liabilities/Tot ass.', 'Long/med term liab/Tot ass.'

'Current liabilities/Tot ass.'
'Current ratio'

-
-
-
-
-
- 

It is now time to come back to the four principles that were laid out at the

beginning of this chapter to try to see whether each one of those has been

fulfilled, and if they were not, try to understand why. Let us go through

each one of them one by one:

Abundancy: with 722.160 data points in this selection, there is little

doubt as to whether the collected dataset constitutes a large enough sample.

Actually, this is probably, to the knowledge of the author, by far the largest

dataset ever used in a research on machine learning and credit scoring (for a

very detailed and complete summary and meta-analysis on the topic, which

includes a section on database selection, see [Louzada et al. 2016]). This is

especially important as it allowed a high level of freedom in the process of

data  cleaning,  by  granting  the  opportunity  to  drop  a  lot  of  “dirty”  data
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points, and because it will help in having a higher degree of flexibility when

the neural networks will be trained, as will be discussed in Chapter 4.

Quality:  the  AIDA  database is  maintained by Bureau Van Dijk,  a

company  that  is  part  of  the  Moody’s  network  and provides  trustworthy

informations  used  in  many  studies.  The  fields  that  are  collected  in  the

database are prepared according to EU directives and the Italian law on

accounting,  so  they  are  easily  comparable  between  sources  and  clearly

defined.  However,  on  the  quality  of  the  data  one  important  issue  was

encountered: many fields presented a very large amount of missing data.

Many fields actually had the majority of their data missing, and this made it

necessary to drop fifteen of them from this analysis, as was discussed in

paragraph 4.4. Luckily, the huge amount of firms in the dataset has reduced

the impact of this problem, but still this led to the necessity to drop some

variables, like 'Return on sales (ROS) %' and 'Cost of debt (%) %', that at a

first glance could have been considered very important for this model to

work well.

Generality: this criterion has to be evaluated in conjunction with the

general purpose of this study, which aims at giving a tool that is useful in

particular  for  those firms that  the European Commission calls  “Small  to

Medium Enterprises”. The chosen database has the advantage of being free

from at least two sources of selection bias: it collects, in fact, every firm

that meets the SME criterion regardless of whether they were granted some

form of credit by a bank or an agency or if they applied for it (a problem

that  is  present  in  all  of  the  other  studies  on  this  subject).  It,  however,

collects only Italian firms (a choice that was made for ease of access to the

data  and  to  avoid  an  over-complex  data  cleaning phase),  and  this  is  of

course a potential source of bias that may be generated if the results if this

study are applied to foreign firms. One more potential source of bias could

be the selected time frame: in this case, the whole period ranging from 1989

to the present day was considered (the database collects firms whose last
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account closing dates goes back to at most 1994 (Table 1), and as the last 5

years of available accounts were used for this analysis, this makes the data

go back to 1989), anyway, someone could argue that because of shifts in the

Italian macroeconomic environment, or any other cultural or legal change,

the reasons why firms go bankrupt today are different from twenty or more

years ago. In this case, the choice to not introduce macroeconomic variables

in the model and prioritize abundancy over generality was made, but for

sure this is an aspect that must be investigated in the future.

Conciseness:  this is probably the hardest criteria to evaluate in an

objective  way,  but  some  things  can  still  be  said  about  it.  As  discussed

earlier,  the variables chosen for this model are computed directly on the

accounts of the firms and contain some the most widely used indicator of

the financial and economic situation of an enterprise. However, the fact that

following the quality criterion many of these indexes had to be excluded

hampers the representativeness of the ones that remain in a significant way.

In this case, the researcher has to decide on where to position the dataset in

a  trade-off  between  conciseness  and  quality  that  could  lead  to  a  bad

predictive ability of the model if the decision to go too far in any of the two

directions is taken. This is a very delicate choice, and even just by looking

at the informations of TABLE X (the comparative analysis of the variables)

it can be easily understood that a consensus on how to tackle this issue is

hard to find.

Before the discussion of the actual experiment begins in the next chapter, it

is important to remark that a lot of arbitrary choices must be made when

working  on  this  kind  of  a  problem.  Many  of  those  were  made  in  the

selection of the dataset, and many more will be made in the construction of

the neural networks that will analyze the data. Of course, the result of the

experiment will be dependent on the set of choices and assumptions that

were made, and even if it would be outside the scope of this work to explore
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all  the  possible  alternatives,  it  is  important to  read the  rest  of  the  work

keeping in mind these considerations.
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Chapter 4

The Experiments

5.1

Fine tuning ANNs by trial and error

It is now time to test all of the assumptions and ideas laid out in the

previous chapters and see how they fare against the available data. In this

chapter,  two main  categories  of  model  will  be  tried  out:  a  Multi  Layer

Perceptron  (MLP),  one  of  the  oldest  and  most  straightforward  neural

network architectures available; and a Recurrent Neural Network (RNN), a

more recent development of the ANN technology that is particularly suited

to deal with time-based problems.

The application of a neural network to a problem is inherently a trial and

error  procedure.  A neural  network  is,  as  discussed  in  Chapter  1,  just  a

complex system that empirically finds the best solution in a neighborhood

of the location it finds itself in (the initial value of the weights and biases),

and this location is determined by random chance. But this is not the only

profile  of  randomness in an ANN that makes it  so important  to explore

many different alternatives when training such a model. For this reason it is

a good idea,  before analyzing the results  of the experiments,  to list  and

discuss  the  most important  among the so called “hyper-parameters”  that

must be empirically optimized by the researcher:

• Network structure

Artificial  Neural  Networks  come  in  many  shapes  and  sizes,  and

while sometimes they can be used interchangeably, more often than

not the choice of the right architecture is crucial to get good results
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from the experiment [Mitchell 1997]. A choice has to be made on a

double level: first, a general family of architectures must be chosen.

Popular choices are MLPs,  RNNs, Convolutional Networks,  Deep

Belief  Networks,  all  used  depending  on  the  task.  Secondly,  the

architecture-specific  parameters  must  be  analyzed.  In  the  case  of

MLPs, this means choosing the appropriate number of hidden layers

and neurons per layers, in an RNN the number of steps the network

must be unrolled on also needs to be defined, and so on as every

architecture has its own quirks.

• Initial location of weights and biases

At the core of the principles that regulate ANNs training, there is the

update of  the weights  and biases that  connect the neurons to one

another. Obviously to have the possibility to update those parameters

it  is  necessary  to  have  them initialized with some kind of  value.

These  values  are  generally  extracted  from a  random distribution,

bearing in mind that different initial parameters can lead to different

final solutions [Hertz et al. 1991]. This holds true unless the gradient

on the parameters space is monotonic, which for every application

except  the  most  trivial  (like  the  case  of  linearly  separable  data)

would be an incredibly strong and unlikely assumption.

• Activation function

The activation function is what gives ANNs their incredible qualities

in the analysis of non-linear data. A neural network which does not

use  an activation function is  just  an unnecessarily  complex linear

model. The three most popular choices in this regard are: sigmoid,

hyperbolic tangent, and ReLU [Nair and Hinton 2010]. The latter is

the one that research seems to have proven to be the best in almost

the totality of cases [Schmidt-Hieber 2017] and so it is the only one

used in this study.
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• Output shape

The output shape can be essentially one of two options: either you

have one single output neuron, and base your predictions on its final

value (particularly useful for regressions, but can be used in some

cases for classification too), or you have one neuron per class you

want to divide your data in, and use softmax to get the final result.

• Loss function

A neural  network  would  be  totally  blind  to  the  objective  of  the

research if it did not have a loss function: the loss function represents

an analytical way to compute a value that estimates how close the

network is to reaching its goal. The gradients that the optimizer uses

to determine how to train the model are computed directly from the

loss function.

• Regularization and Dropout

Artificial Neural Networks, like every statistical tool, can suffer from

overfitting. This is especially dangerous in ANNs as the high number

of parameters used can often reduce the training process to the mere

compiling  of  “lookup tables”.  Two techniques  have  proven to  be

especially useful in reducing overfit: L2 regularization which aims at

reducing the probability that any single parameter is too decisive for

the final prediction by appropriately modifying the loss function; and

Dropout  [Srivastava  2014],  a  technique that  randomly “turns  off”

neurons during the training phase, de facto training multiple ANNs at

the same time and recombining them in the test phase.

• Optimizer and learning rate

There  are  many  options  to  chose  from  when  deciding  which

optimizing algorithm to use. The very first algorithm used for this

purpose was Stochastic Gradient Descent, but this has been proven

to get stuck in saddle points and in general to have slow rates of

convergence  [Ruder  2016].  Other  techniques  have  then  been
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proposed,  and one  very  common choice  nowadays  is  the  ADAM

optimizer [Ba and Kingma 2015]. Once the optimizer is chosen, an

appropriate learning rate (which represents the length of the step the

optimizer takes at each epoch), must be identified.

• Number of epochs, test and validation size

At some point, the training phase must be concluded and the results

analyzed against an independent dataset. Obviously, a choice must be

made on when to stop training (the total number of epochs to run),

being careful that if this choice depends on the test set (for example,

if  the  training  is  stopped when the  error  on  the  test  set  starts  to

increase) this may lead to a bias in the estimated accuracy, creating

the  necessity  to  have  another  independent  series  of  data  called

“validation  set”  to  compute  the  network’s  accuracy  on.  An

appropriate  size  for  the  training,  test  and validation  sets  must  be

chosen.

Of course, this takes for granted that all the alternatives in the shape and

collection of the input data have already been discussed, as was already

done in Chapter 3 where the high amount of alternatives that arise in that

problem too has been discussed.

Let us discuss in more detail how each one of those dimensions has been

dealt with in this study:

Network structure:  two main types of architecture were tried out, a

Multi Layer Perceptron and a Recurrent Neural Network. The first one was

used as a benchmark on the problem, a way to see how the most common

architecture could fare against the collected data, and more in general as a

first experiment to see whether ANNs could actually extract any meaningful

informations from this problem. The input data for the MLP model only

consists of the last available account year of every firms, as a consequence

of the fact that MLPs are not very good at modelling time-series, and the
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fact that it could actually be interesting to see how good a model that only

sees a static image of a firm can get. The RNN architecture was chosen

because of the time-based nature of the problem that this study deals with.

RNNs are in fact inherently able to model very well data that has an ordered

structure (which means data that has a clear beginning and an end, which

cannot be reversed),  such as text or time-series,  and for this reason it  is

surprising to find that, to the knowledge of the author, among all the studies

that dealt with the analysis of financial risk, none of them ever used this

architecture.

In the MLP case, two hidden layers were used, and various numerosities of

the neurons in each layers were tried out. In the RNN case, one hidden layer

was used, varying the number of recurrent units that compose it.

Initial location of weights and biases: in both experiments, the initial

value of the weights and biases was chosen by extracting values from a

normal distribution with zero mean and unit variance. This choice helps in

making the dimension of the parameters of the network the same as that of

the input data (which,  as  stated in Chapter  3,  were normalized with the

same moments), in hope that this can help with the efficency of the training

phase [LeCun et al. 1998].

Activation function: as stated above, there is wide consensus among

researchers  on  the  fact  that  “Rectified  Linear  Unit”  (ReLU)  function

provides in general better results than the sigmoid or hyperbolic tangent.

This is the reason why the only activation function used in this study is

ReLU. Alternatives and improvements of ReLU such as Leaky Relu9 [Maas

et al. 2013] exist, but it was decided for simplicity not to try them.

Output  shape:  as  this  study  is  concerned  with  a  classification

problem (each firm is either classified as “failed” or “not failed”) the most

appropriate output shape consists of two neurons, one for the “failed” class

9 An alternative version of  ReLU that  has a  very small  slope for  values smaller  than zero,
instead of being constant. This means that the gradient of the function is never zero, a property
that can be useful in certain situations.
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and one for the “non-failed” class. When the neural network is applied to

the data of a certain firm, if the output neuron associated to the “failed”

class outputs a value higher than the one given by the other output neuron,

than that firm is predicted to be failed (the opposite is true if the values are

inverted). The alternative model in which just one node is used as an output

is better suited for “regression” models, which means that they are required

to produce a value rather than a classification.

Loss function: many kinds of loss functions can be defined for such a

problem, but one of the most used is the so called “cross entropy” function,

whose formulation is:

L=−
1
n
∑
i=0

n

[ y i ln( pi)+(1− yi) ln(1−p i)]

where

n is the number of firms in the training set,

y i  is the label of the ith firm as extracted from the column 'failure' of the

dataset,

pi is the first of the two values from the softmax output computed by the

network on the account of the ith firm.

This choice was made as this function grants faster learning in the initial

stages of training (a property discussed in [Mitchell 1997], together with

the fact that this kind of function is in most cases the best choice when

trying to estimate probability distributions), with respect to the also very

popular Quadratic Loss, which computes the euclidean distance between the

output of the network and the desired prediction.

Regularization  and Dropout:  Dropout  was  introduced in  both  the

models, as it is a highly suggested practice and pretty much every study

dealing with neural  networks  uses  it  to  prevent  overfitting.  The dropout

probability was set to 0,5; a common choice as typical values range from

0,5 to 0,6.  L2 regularization was also introduced in the loss function of

every model, as a strong problem of overfitting, even when Dropout was
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applied, was encountered. This will be evident in the results that will be

presented in the next sections. The  β value used for regularization (which

represents the “strength” of the effect) was set to 0,01 in every model.

Optimizer and learning rate:  in this case too is possible to find a

consensus in the literature as to which optimizer is best for general purpose

tasks, and it is ADAM optimizer. This is indeed the optimizer that is always

used in this study. Even if at the base of the functioning of ADAM there is

the auto-updating of the learning rate, it still needs a value to begin with. In

this  study  the  value  of  0,00001  was  used  for  the  MLP  network  (as

preliminary trials showed that a very small value was needed to give some

stability to the accuracy) while for the RNN model every experiment was

conducted  with  four  different  learning  rate  values  (0,1;  0,01;  0,001;

0,00001).

Number  of  epochs,  test  and  validation  size:  given  the  large

dimension of the dataset, there is little concern on the risks that usually arise

when deciding the size of the training set. Usually, the size of the training

set must be decided considering that if it is too small the risk is that it does

not contain enough meaningful examples and so the final accuracy may be

not satisfactory, while on the other hand if the training set contains most of

the data this could cause the test and validations sets to be biased for the

very same reason. Also, if  the test and validation sets are too small,  the

variance of the accuracy computed on the could bee very high, and so the

results may be not so meaningful. In this study, however, the size of the test

set and that of the validation set is chosen to be 10% of the total number of

cases in the dataset. This means that when the complete dataset is used,

72.216 firms are present both in the test and in the validation set, granting

some degree of consistency in the measurements. With “number of epochs”

is  indicated the  number  of  times  a  backpropagation  phase  (“step”)  is

completed on the whole of the training set. If the data has to be split in

batches because it can not fit entirely into memory (in both the experiments
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a batch size of 5000 was used),  then in each epoch the number of steps

completed is:

 numerosity of the training set
                batch size

The number of epochs to train the networks for is set to 2000 for the MLP

model,  as  preliminary  experiments  showed  that  results  stabilized

themselves around 1000 or 1500 epochs (this issue will be discussed more

in depth in the next section). It is set to 500 epochs for the RNN as results

for this model are more stable and the training of this network took longer.

In Table 4 the choices made for this experiment are summarized in a table

that can be used as a guide to navigate the results presented in the next

section.

Table 4

MLP RNN

network structure

2 hidden layers, in three
configurations:

50, 50
100, 25
100, 100

1 hidden layer, four different
numbers of hidden neurons:

20
50
100
200

initial weights and biases ~ N(0, 1) ~ N(0, 1)

activation function ReLU ReLU

output shape 2 softmax nodes 2 softmax nodes

loss function cross entropy cross entropy

regularization L2 L2

dropout 50% 50%

optimizer ADAM ADAM

learning rate 0.00001

0.1
0.01
0.001
0.0001

number of epochs 2000 500

batch size 5000 5000

test and validation sets 10%, 10% 10%, 10%
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5.2

Software and hardware details

All  the  code used in  this  study was written  in  Python,  a  popular

programming  language  used  in  particular  for  its  applications  in  data

analysis. The code used to produce the results of the following paragraphs is

available in Appendix 5, while the code used for the operations described in

Chapter 3 is available in Appendix 4. The Python version used is 3.5.2, 64

bit.

The neural networks were built and trained using  TensorFlow, a machine

learning package developed by  Google,  which offers bindings to  Python

and other languages and has lately become the standard choice in the field

of  neural  networks  research.  This  package  was  particularly  useful  as  it

provided an easy way to train the models on a GPU, rather than on the

CPU,  through  the  use  of  NVIDIA  CUDA toolkit,  which  sped  up  the

computations significantly. 

In Table 5 the details of the PC architecture on which the networks were run

are presented.

Table 5

CPU Intel Core i7-4710HQ, 2.50GHz

RAM 4 GB

GPU GeForce GTX 850M

GPU-RAM 2 GB

5.3

Experiment 1: Multi Layer Perceptron

In  the  first  experiment  an  MLP architecture  was  used.  MLP is

perhaps  the  most  widespread  architecture  that  implements  the  neural
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networks paradigm, and will be used as a benchmark to see what kind of

results can be expected from the dataset that is used in this study.

Also,  as  the  structure  of  Multi-Layer  Perceptrons  is  not  very  good  at

modelling time series data, the input for this network will be constituted

only of the last available year of account for each firm. This will also be

useful to highlight the improvement in accuracy that can be gained when

introducing a time dimension to this problem.

Three different MLP configurations were tried out: 50 neurons on the first

and second hidden layer, 100 neurons on the first and 25 on the second (in

hope that the second could serve as a “convolution” over the features of the

problem), and 100 neurons on both layers. It is important to try different

dimensions for the hidden layers as there is a trade-off between wider layers

that can learn many features and build complex decision rules, and smaller

layers that are less prone to overfitting as they have less parameters to build

lookup tables with.

Each of these configurations was trained four different times, every time

with a new shuffling of the datasets and a new extraction of weights and

biases.  2000 epochs were  run,  and for  every  session the  result  with the

highest accuracy on the training set was picked to be shown in  Table 6,

together with the corresponding value in the training and validation sets.

Each  training  session  took  around  two  hours,  the  best  result  on  the

validation set for every configuration is highlighted.

From the results of Table 6, it is clear that the network with 100 neurons on

the first hidden layer and 25 on the second outperformed the others, both in

terms of the mean accuracy and the best overall result. 

It  must be noted that this result is not due to a reduced overfitting with

respect to the 100-100 network, as in both cases the difference between the

training set accuracy and that of the test set ranges from 0,1% to 0,2%. This
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supports the hypothesis that a second hidden layer smaller than the first one

helps the network in making convolution that could represent some high-

level abstractions useful in making its predictions.

Table 6

Hidden layers
structure

Training set
accuracy

%

Test set
accuracy

%

Validation set
accuracy

%

Mean
validation
accuracy

%

50, 50

84,5 84,7 84,6

84,53
84,8 84,8 84,8

83,9 83,8 83,7

85,1 85,1 85,0

100, 25

85,1 85,2 85,2

85,27
85,2 85,2 85,2

85,3 85,5 85,4

85,2 85,1 85,3

100, 100

85,0 84,9 84,9

85,05
85,2 85,4 85,1

85,1 84,9 84,9

85,3 85,2 85,3

In general, in this model the problem of overfitting is almost non existent,

and sometimes the error computed on the test and validation sets is even

smaller than the error on the training set. This is even more clear in Graph

3, where some examples were picked from the training of the networks,

showing  how  the  accuracy  increased  with  the  number  of  epochs:  the

separation between the line representing the training and test accuracy is

visible, barely, only in some cases.

In Graph 3 is also evident how the performance of the network is unstable

during training, especially in the first thousand of epochs. In particular, the

wildest behaviour comes from the 100-25 structure. It would be interesting

to know the exact reason of this phenomenon, as it could provide useful
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insights on how the network is operating, but this study could not find any

useful explanation.

Before any assessment can be made on the quality of the results presented

in Table 6, some more informations must be provided. The dataset used, in

fact, is highly unbalanced: of the 722.160 firms in it, only 19,1% are failed.

This means that an algorithm that simply predicts every firm to be not failed

would get an accuracy score of 80.9%. 

Under this light, the best overall result obtained by the MLP model (85,4%),

while  being  for  sure  an  improvement,  does  not  seem very  far  from the

results of a simple strategy like the one described above. To have a better

understanding of this issue,  Table 7 presents the error values of the best

result of each structure and breaks them down into Type 1 and Type 2 error.

Here, Type 1 error is the share of firms incorrectly classified among all the

firms that failed, while Type 2 error is the is the number of “healthy” firms

that were misclassified.

Table 7

Validation accuracy
%

Type 1 error
%

Type 2 error 
%

50, 50 85,0 68,4 2,4

100, 25 85,4 64,8 2,7

100, 100 85,3 64,0 3,2

Table  7 highlights  the  fact  that  the  MLP adopts  a  strategy that  is  very

similar to “always guess not-failed”. Indeed, the error rate on the healthy

firms  is  very  low as  generally  the  networks  predicts  everything as  not-

failed, while the error on the failed is around two thirds of the total. Even

though such a result is a sizeable improvement over the 100% error rate

expected from that simple strategy, this is still a very poor performance 
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especially in the field of credit risk, where any single Type 1 error has an

economic impact that is generally much larger than errors committed in the

Type 2 category.

In the next section a strategy to deal with this issue, that will produce better

results, will be discussed.
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Some examples from the training of different types of MLPs. On the horizontal axis the number of
epochs the training was run for. On the vertical axis the value of the Train set and Test set

accuracy.



5.4

Experiment 2: Recurrent Neural Network

For  the  second  experiment,  a  RNN  architecture  was  chosen.  As

discussed above, Recurrent Neural Networks are particularly suited to solve

problems that are presented in a sequential way, like data that is collected

on various subsequent years.  In this case, the input is constituted of the

whole dataset collected, with five different years of accounts for every firm.

The input for the features is then a tensor (multi  dimensional matrix) of

shape  722160×5×55 , while the input labels are stored in a vector with

722.160 elements in it.

This experiment is divided in two phases: in the first one, the same exact

dataset used for the MLP experiment will be used, and the differences in the

results will be discussed; in the second a strategy to deal with the high Type

1 error will be implemented.

For the first phase, two recurrent architectures were tried out: one with 50

recurrent nodes in the hidden layer, another with 100 recurrent nodes in it.

Both of them were trained a total of four times, two time with 0.01 learning

rate and two times with a 0.001 learning rate. The best of the two results per

each combination is reported in Table 8. Training took about forty minutes

per  network.  The dataset  was shuffled at  the beginning of  each training

session in the same way as the previous experiment.

These results show a decisive improvement over the MLP model, both in

the overall accuracy, which was increased by up to 2,7 percentage points,

and in the Type 1 error, reduced by more than 20 percentage points. The

accuracy on the healthy firms slightly worsened, but this should not cast a

shadow  on  the  fact  that  the  overall  result  is  much  better,  and  most

importantly now the majority of failed firms are classified correctly.
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Table 8

Neurons Learning rate Validation
accuracy

%

Type 1 error

%

Type 2 error

%

50
0.01 87,9 42,8 4,9

0.001 88,1 42,8 4,7

100
0.01 87,9 42,1 4,9

0.001 88,0 41,5 5,0

This is not yet a result that is satisfactory enough to be used in any real

world  decision  making,  but  it  highlights  one  very  important  point:  the

Recurrent  Neural  Network  with  5  years  of  accounting  as  input  has  a

predictive ability that is much higher than that of the MLP model. This was

expected, as it is a more complex structure to which more data were fed, but

it suggests that future research should begin to investigate the possibilities

of this model and its possible applications, as to the current date no study on

this has been published.

Table 9

Train accuracy
%

Test accuracy
%

Overfitting
(Train minus Test)

50 neurons
0,01 learn. rate

89,3 88,0 1,3

50 neurons
0,001 learn. rate

88,8 88,1 0,7

100 neurons
0,01 learn. rate

88,8 88,2 0,6

100 neurons
0,001 learn. rate

88,9 88,0 0,9

One  important  fact  that  emerged  from  this  first  exploration  of  the

application of the RNN model is that in this case the problem of overfitting,

which was practically non-existent in the MLP case, is clearly noticeable, as
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Table 9 summarizes. It would be interesting to perform a careful analytical

enquiry  on  the  reasons  of  this  phenomenon,  but  for  now  it  can  be

hypothesized  that  the  fact  that  the  RNN  network  has  a  more  complex

structure, with more parameters to optimize, makes it easier to adapt the

shape of its parameters to every single feature of the dataset, rather than

having  a  more  smooth  surface  that  has  an  harder  time  accommodating

outliers.

From  Graph  4,  which  depicts  the  training  results  of  one  of  the  RNN

networks with 100 neurons, the phenomenon of overfitting is even more

evident: the training and test accuracy rise together up until about epoch 25,

from that point the accuracy of the training set increases linearly, while that

of the train set slows down, reaching its maximum around epoch 50 and

then declining.  This  is  a  clear  indicator  of  the  fact  that  from epoch 50

onwards, the network is not learning anything useful anymore on the actual

indicators of the possibility of a firm to fail, and it is instead just building a

lookup table of the train set.

It  is  now  time  to  present  the  result  of  the  second  phase  of  the  RNN

experiment. The objective of this phase is two-folded. First, try a method

that reduces the imbalance between Type 1 and Type 2 error. Secondly, fine

tune the network in detail, by exploring the space of the hyper-parameters

as much as possible.

There are various strategies that could be adopted to solve the problems

arising from an unbalanced dataset, in this case a very simple approach was

adopted: the dataset was divided in two groups, the failed firms and the

healty firms. The group containing the healthy firms was shuffled before

each training session, and a number of entries that is equal to the number of

failed firms in the dataset was extracted. Then, those were appended to the
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list of failed firms and this new rebalanced dataset was shuffled again. The

training, test and validation sets were then extracted from this new selection

of  data.  This  procedure  granted  the  elimination  of  the  problem of  class

imbalance, and made each set of data be composed exactly of 50% failed

and 50% not-failed firms.

Then, four different RNN structures were trained, with 20, 50, 100 and 200

neurons in the hidden layer. Each structure was trained with four different

values for the learning rate: 0.1, 0.01, 0.001, 0.0001. Each combination of

number of neurons and learning rate was trained for a total of ten times,

which results in a total of 160 networks trained. Training took about forty

minutes for the RNN with 20 neurons, and about a hour and a half for the

RNN with 200 neurons. 

For each network, the best result on the train set among the 200 epochs was

picked,  and  the  corresponding  validation  error  was  computed.  Table  10
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Graph 4

Graph of the training phase of the RNN with 100 neurons and 0,001 learning rate. On the
horizontal axis the number of epochs, on the vertical axis the accuracy.



presents  a  summary  of  those  results.  The  mean  validation  error  is  the

average value of the ten networks for each combination, while the “best

validation error” and the Type 1 and Type 2 errors are computed on the

network with the lowest validation error among those ten.

Table 10

Hidden
neurons

Learning
rate

Mean
validation
accuracy

%

Best
validation
accuracy

%

Type 1 error
in the best
network

%

Type 2 error
in the best
network

%

20

0.1 80,9 81,1 18,9 18,9

0.01 81,7 82,0 18,1 17,8

0.001 81,9 82,2 17,2 18,4

0.0001 81,1 81,3 20,0 17,3

50

0.1 81,1 81,5 18,9 18,1

0.01 82,0 82,3 18,1 17,4

0.001 82,1 82,4 17,4 17,7

0.0001 81,7 82,1 18,3 17,5

100

0.1 81,0 81,4 18,1 19,1

0.01 81,9 82,1 18,2 17,6

0.001 81,8 82,2 18,6 16,9

0.0001 81,9 82,4 18,9 16,2

200

0.1 80,8 81,1 21,6 16,2

0.01 81,9 82,1 16,4 19,5

0.001 82,0 82,2 18,8 16,9

0.0001 81,6 81,6 19,7 17,3

The conclusion that can be drawn from the data presented in Table 10 is that

the RNN network with the rebalanced dataset sacrifices Type 2 accuracy

(from  a  best  error  of  4,7% to  a  best  result  of  16,2%)  to  have  a  large

improvement on Type 1 error (from 41,5% to 16,4%). This is exactly the

target that  this experiment was aiming for:  as the economic impact of a

company that fails when it was granted credit is much larger than the impact

of not granting credit to a company that would have repaid it, in a credit risk
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model the preference is strong for a better accuracy on the former kind of

mistakes. 

In these experiments, the ratio between Type 1 and Type 2 seems to depend

strongly on the ratio between failed and healthy entries in the dataset, and

this is very important as it means that it is possible to fine-tune the type of

error based on the profile of the final user of the network predictions: if the

user has a strong aversion towards the risk of granting credit he/she can use

a network trained on a high percentage of failed firms, while other users

with different needs can adjust this percentage accordingly.

One  more  important  result  of  this  last  set  of  experiments  is  a  better

understanding  of  dependence  of  the  achieved  accuracies  on  the  hyper-

parameters.  Graph 5 depicts the relation between the parameters that were

used and the accuracy obtained. Some trends can be identified:

For every configuration of the hidden layer except the one with 100

neurons, the 0,01 and 0,001 learning rates performed much better, with the

0,001  rate  being  the  best  in  terms  of  accuracy  achieved  on  the  overall

dataset.  The  only  exception  is  the  100  neurons  networks,  in  which  the

0,0001 rate was the best, showing a kind of monotonic relation between the

learning rate and the error.

The hidden layer configuration that seems to work better in almost

every instance is the one with 50 neurons. This configuration is the absolute

best on every learning rate except the 0,0001, in which the network with

100 hidden neuron outperforms it. The worst performance is the one of the

20 neurons architecture. These result highlight the fact that a right balance

must be found between simpler networks with a lower number of neurons

that can be trained in an easier way but may not be large enough to model

complex  relations,  and  larger  networks  that  can  accommodate  complex

“ideas” but are much harder to train and way more likely to overfitt.
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Graph 5

In the top graph: the results of the RNN experiments with the rebalanced dataset. On the
horizontal axis the learning rate, on the vertical axis the best error for each learning rate and

number of neurons.
In the bottom graph: the same data and variables in a 3D representation.



The overall best result on the validation set (82,4% error) is shared between

the network with 50 hidden neurons and 0,001 learning rate and the one

with  100  hidden  neurons  and  0,0001  learning  rate.  This  is  not  much

different than the result on the unbalanced dataset (85,4% validation error), 

but the two should not actually be compared as they come from input data

that have a very different nature. As discussed multiple times in this work,

in a credit risk setting the share between Type 1 and Type 2 error is way

more important than the overall error rate. It is worth mentioning that while

the 50 neurons network achieves its 82,4% result with 17,4% Type 1 error

and 17,7% Type 2 error (pretty much identical values) the one with 100

hidden neurons has a higher Type 1 error (18,9%) both compared to the

same quantity of the smaller network and to its own Type 2 error (16,2%).

5.5

Quality of the results

When comparing the accuracies scores obtained in this chapter to the

ones  found  in  literature,  it  may  be  worth  considering  that the  previous

chapter  laid  out  very  strict  rules  for  the  processing  of  the  dataset,  for

example by reducing the overall features to the bare minimum and deciding

not to proceed with the elimination of outliers from the data. The hope is

that these tighter constraint give more “robustness” to the results obtained

here,  which means that  even if  the accuracy obtained is  not the best  in

literature, the “value” carried by the result is nonetheless very high.

With this said, in Louzada et al. [2016] it is possible to find a summary of

the best results obtained on the two most popular datasets in the field of

credit  risk,  called  the  “Australian”  and  the  “German”  datasets  [Bache,

Lichman 2013].  Both of  them collect  data  from people  who applied for
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loans, the former containing 1000 instances while the latter 690 (about three

hundred times less instances than the ones used in the RNN model studied

in this chapter). On the Australian dataset, performances range from 81% to

98%, proving to be an easier dataset to train on compared to the German

dataset where performances range from 72% to 85%. The model presented

in this study then seems to align with the highest results of the models for

the German dataset and the lowest among those of the Australian dataset.

Among the studies that used corporate failures as their dependent variable,

Angelini et al. [2008] uses an extremely small dataset with 76 firms in it,

and produces an overall error of 8,6%, with 0% Type 1 error and 13,3%

Type 2 error. The small sample size and the 0% Type 1 error however cast a

doubt  on  their  reliability,  as  they  could  be  the  result  of  the  reporting

procedure that was used. Quoting the paper: “a large number of tests has

been performed”, and the best of those test was reported. With such a small

sample size those tests those error rates could have been achieved just as a

result of random chance.

Pacelli and Azzolini [2010], on the other hand, used data consisting of 273

firms, but instead of classifying them in two classes, those were classified

either  as  “Safe”,  “Vulnerable”,  or  “At  Risk”.  The  confusion  matrix  that

results from this approach shows an error of 65,2% for the “At Risk” class

and  15,8%  for  the  “Safe”  class,  presenting  the  same  problem  of  class

imbalance encountered in the first stages of the experiments discussed in

this chapter. 
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Conclusions

The field of machine learning applied to credit risk evaluations has seen a

flourishing production of results that demonstrate its utility and in general

the ability to predict insolvencies in a consistent and reliable way. However,

it looks like there are still large margins of improvement, especially as we

now live in a period of great discoveries in artificial intelligence and its

applications. The implementation of the new paradigms and models that AI

researchers all around the world are creating will boost the research in this

field too. The hope is that this work has shed a light on the current status of

the research and given some insights on possible new directions it could

take. 

The  huge  size  of  the  dataset  used  is  a  unique  feature  among published

researches in this field, which is often constrained to used at most some

hundreds of data points. Notwithstanding this, the results that were obtained

are consistent with those found in literature. This robustness in the results

adds  confidence  in  the  fact  that  this  kind  of  studies  produces  useful

information when applied in real world scenarios.

The first architecture that was experimented (Multi Layer Perceptron) did

not prove to be very effective, as it adopted a decision rule that was very

similar to the trivial strategy of always guessing firms to be “healthy”. This

made it necessary to adapt the model and the dataset to the problem at hand,

and  this  was  done  in  two  ways:  first,  a  different  and  more  complex
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architecture  was  used  as  the  learning  model;  secondly,  the  dataset  was

rebalanced through a random process. 

The  first  of  these  two  methods  consisted  in  the  implementation  of  a

Recurrent Neural Network, a structure that is best suited to analyze time-

series data, to which the last five years of accounts available for each firms

were fed. This model, which is a novelty in the field of neural networks for

credit  risk  evaluation,  proved  to  be  very  effective  and  increased  the

accuracy score significantly.

The second method involved the reduction of the number of healthy firms

in  the  dataset  to  eliminate  class  imbalance.  The  large  number  of  data

collected granted the possibility to operate this reduction without sacrificing

the explanatory  power of  the  model.  This  technique  produced the  exact

results that were expected, making the network almost equally sensitive to

Type 1 and Type 2 errors.

The  final  accuracy  values  that  were  obtained  can  be  considered

satisfactory, especially in light of the strict limitations that were imposed on

the dataset: the fact that the study focused on SMEs, the deletion of many

features and data based on missing values, and the fact that the choice to

keep  outliers  in  the  collection  was  made,  all  contributed  to  impose

conditions that likely made it much harder for the networks to make good

predictions. Notwithstanding this, the final accuracy scores are in line with

those found in literature, and this suggests that the use of new techniques

like the ones tried out in this study could produce even better results in the

future.
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Appendix 1

Links to the dataset

At the  following  address  the  data  and the  code  used  for  this  study  are

available:

https://drive.google.com/open?

id=1VejrDXJ6AUIe1P13g5LFJfIBVd1tSNfH

The folder is organized as follows:

• Dissertation (main folder)

• Dataset

• cleaned_downloads

• cleaned_revenues

• graphs_images

cleaner.py

downloads_converter.py

numpify_dataset.py

reader.py

indexes definition.odt

• Model: RNN

RNNtrain_and_use.py

original_numpyfied_database.pickle

• Model: standard MLP

Network Use 0.2.py

NetworkTraining.py

numpyfied_database_year_0.pickle
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Dataset contains the Python files used to convert the  .csv  files to Python

compatible formats,   and to perform all the transformations described in

Chapter 3.

cleaned_download and  cleaned_revenues contain the  .csv files with every

data downloaded from the AIDA database.

graphs_images contains the graphs in image format of the distribution of

the values for every column of the downloaded database. The graphs whose

filename ends in “_c” are those extracted from the complete dataset, before

the deletion of any row. The graphs whose filename ends in “_d” are the

ones computed after the rows were deleted as described in Chapter 3.

Model: RNN and Model: standard MLP contain the files necessary to run

the experiments of Chapter 4, and their results.

indexes definition.odt contains the definition of the formulas used by the

AIDA database to compute all of the balance sheet indexes that were used in

this study as the explanatory variables.
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Appendix 2

Missing values distribution

The following table presents the number of missing values for every year of

every variable of those that were kept in the final version of the dataset.

Name
Missing values

Last Year Last year -1 Last year -2 Last year -3 Last year -4

'Profit (loss) 

EUR'
67 120 746 820 1665

'Total assets 

EUR'
0 0 0 2 1

'Total 

shareholder's 

funds EUR'

1219 1409 1458 1485 1543

'Return on 

asset (ROA) 

%'

4158 1639 1023 792 778

'Return on 

equity (ROE) 

%'

166015 136699 121977 112239 103100

'Liquidity 

ratio'
62948 57516 55173 54019 56253

'Current ratio' 81155 76234 73250 70962 72253

'Current 

liabilities/Tot 

ass. %'

7817 6468 6783 7228 9109

'Long/med 

term liab/Tot 

ass. %'

7984 6719 7235 8092 9961

'Tang. fixed 

ass./Share 

funds %'

31192 33763 35886 37830 39136
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'Leverage' 2203 2364 2391 2438 2583

'Coverage of 

fixed assets %'
130099 103569 87199 75451 67664

'Interest/Turno

ver %'
121762 117778 110249 105492 114289

'Share 

funds/Liabiliti

es %'

183726 163201 153753 150575 159095

'Net Financial

Position EUR'
309917 167777 161329 115836 107037

'Debt/Equity 

ratio %'
310569 168620 162095 116785 108113

'Debt/EBITDA

ratio %'
317668 175423 167984 122069 115068

'Total assets 

turnover 

(times)'

11423 9998 10988 12780 13161

'EBITDA 

EUR'
1232 1421 1493 1601 1798

'EBITDA/Sale

s %'
127677 117568 108455 103002 111457

'Number of 

employees'
18252 19293 23461 38318 50767

'Net working 

capital EUR'
1234 1448 1728 1502 1549

'Gross profit 

EUR'
6659 7839 11956 18354 18806

'Net short 

term assets 

EUR'

285232 157864 152345 11277 94749

'Share funds - 

Fixed assets 

EUR'

144509 113479 96109 84383 73954

'Revenues 

from sales and

services th 

EUR'

12592 125198 125701 125953 126739

'Cash Flow 

EUR'
1260 1452 1727 1628 1804
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Appendix 3

Definition of the dependent variable

As explained in Chapter 3, to define the dependent variable the values of

the column 'Procedure/cessazione'  had to be checked when the value of

'Legal  status' was  not  enough  to  determine  whether  a  firm  could  be

considered failed or healthy.

In the following table all the possible values of  'Procedure/cessazione'  are

listed, together with the corresponding classification performed on the firms

that presented that value.

Value Classification

'Transfer to another province' not-failed

'Reasons provided for in the articles of association' not-failed

'Winding up without liquidation' failed

'Closure due to liquidation' failed

'Closure due to bankruptcy or liquidatione' failed

'Removal ex officio' not-failed

'Winding up' failed

'Initiation of cancellation procedure' not-failed

'Composition with creditors' failed

'Winding up and liquidation' failed

'Voluntary liquidation' not-failed

'Winding up in advance without liquidation' failed

'Winding up and placing into liquidation' failed

'Extraordinary administration' failed

'Cancellation ex officio following creation of Chamber of Commerce,
Industry, Craft Trade and Agriculture for Fermo'

not-failed

'Court order of cancellation' failed

'Debt restructuring agreements' failed

'Conclusion of liquidation' failed

'Approved by all partners' not-failed
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'Cancellation ex officio following creation of Chamber of Commerce,
Industry, Craft Trade and Agriculture for Monza'

not-failed

'Court ordered seizure' failed

'Cancellation due to communication of allocation plan' failed

'Lease of company' not-failed

'Demerger' not-failed

'Contribution' failed

'Cancellation ex officio of registration with register of companies' failed

'Removed ex officio because already included in the register of firms and not
transferred to the register of companies'

not-failed

'Failure to re-establish multiple partners' failed

'Fulfilment of company object' not-failed

'Transformation of legal status' not-failed

'Cancelled ex officio pursuant to Italian Presidential Decree no. 247 of 23
July 2004'

failed

'Reason not specified' failed

'Conclusion of bankruptcy procedures' failed

'Cancellation from the register of companies' failed

'Cancelled ex officio pursuant to Article 2490 of the Italian Civil Code' failed

'Court ordered liquidation' failed

'Duplication' not-failed

'Bankruptcy' failed

'Removal ex officio following report by register of companies for the
registered office'

failed

'Other reasons' failed

'Closure due to bankruptcy' failed

'Merger by incorporation into another company' not-failed

'Supervening failure to meet the prerequisites for a company' failed

'Court ordered administration' failed

'Impossibility of fulfilment of the company object' failed

'Precautionary seizure of shares' failed

'Closure of local branch' not-failed

'Cessation of any business' failed

'Following expiry of time limits' not-failed

'Post-bankruptcy composition with creditors' failed

'Transformation into a registered office' not-failed

'Winding up by official order' failed

'State of insolvency' failed

'Removal ex officio, lack of tax code (Article 21 of Italian Presidential Decree
no. 605 of 29 September 1973, as amended)'

failed
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'Transfer of firma' not-failed

'Merger by incorporation of new company' not-failed

'Compulsory administrative liquidation' failed

'Cessation of business within the province' not-failed

'Liquidation' failed

'Controlled administration' failed
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Appendix 4

Data processing code

In  this  section  the  complete  Python  code  used  to  process  the  data  is

presented.  Every  source-file  is  introduced  by  a  brief  explanation  of  its

purpose.

downloads_converter.py

This  code converts  the  raw downloads as  produced by the  script  of  the

AIDA database into .csv files.

import operator
folder = 'revenues_downloads'
files = os.listdir(folder)
def names():
    print(files[:10])
    split_names = [operator.itemgetter(1, 3)(name.replace('.', 
'_').split('_')) for name in files]
    split_names = [[int(x[0]), int(x[1])] for x in split_names]
    split_names = sorted(split_names, key=lambda x: x[0])
    print(split_names[:10])
    for i in range(1, len(split_names)):
        if split_names[i-1][1] + 1 != split_names[i][0]:
            print(i, split_names[i-1][1])
def convert1():
    for serial in range(len(files)):
        selected_file = folder + '/' + files[serial]
        output = []
        with open(selected_file, 'r') as f:
            for i, line in enumerate(f):
                if i == 0:
                    labels = line[2:]
                elif i % 2 == 0:
                    output.append(line)
        output_name = str(serial) + '.csv'
        with open(output_name, 'w', encoding='utf8') as out:
            for i, line in enumerate(output):
                out.write(line)
        print('serial', serial, 'done')
def convert2():
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    for serial in range(len(files)):
        selected_file = folder + '/' + files[serial]
        with open(selected_file, 'rb') as source_file:
            with open(str(serial), 'w+b') as dest_file:
                contents = source_file.read()
                dest_file.write(contents.decode('utf-16').encode('utf-8'))
        print(serial, 'done')
convert2()

reader.py

Used to transform the files from .csv to Pandas dataframes.

import pickle
import csv
# df = pd.concat([pd.read_csv(str(i), dtype={'Tax code number': str, 
'NACE Rev. 2': str}) for i in range(212)],
#                ignore_index=True, verify_integrity=True)
with open('cleaned_revenues/0', 'r') as f:
    reader = csv.reader(f)
    i = next(reader)
data_types = {key: str for key in i[:14]}
for key in i[14:]:
    data_types[key] = float
data_types_revenues = {key: str for key in i[:1]}
for key in i[14:-1]:
    data_types_revenues[key] = float
data_types_revenues[i[-1]] = str
deleting = []
for label in i:
    if 'Solvency' in label:
        deleting.append(label)
        print(deleting)
for i in range(212):
    filename = str(i)
    df = pd.read_csv('cleaned_downloads/{}'.format(filename),
                     dtype=data_types, na_values=['', ' ', 'n.a.', 'n.s.'], 
thousands='.', decimal=',')
    with open('dataframes/{}.pickle'.format(i), 'wb') as out:
        pickle.dump(df, out)
    print(i, 'done')
for i in range(6):
    filename = str(i)
    df = pd.read_csv('cleaned_revenues/{}'.format(filename),
                     dtype=data_types_revenues, na_values=['', ' ', 
'n.a.', 'n.s.'], thousands='.', decimal=',')
    with open('{}.pickle'.format(i), 'wb') as out:
        pickle.dump(df, out)
    print(i, 'done')
# joins the original dataframes with the new revenues
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revenues_df = pd.concat([pd.read_csv('cleaned_revenues/{}'.format(j), 
dtype=data_types_revenues,
                                     na_values=['', ' ', 'n.a.', 'n.s.'], 
thousands='.', decimal=',')
                         for j in range(6)], ignore_index=True, 
verify_integrity=True)
revenues_df.drop(labels=['Mark', 'Company name'], axis=1, inplace=True)

cleaner.py

This performs all the actions described in Chapter 3, except for the deletion

of rows and columns.

import pickle
import csv
import collections
import numpy as np
class OrderedSet(collections.MutableSet):
    def __init__(self, iterable=None):
        self.end = end = []
        end += [None, end, end]         # sentinel node for doubly linked 
list
        self.map = {}                   # key --> [key, prev, next]
        if iterable is not None:
            self |= iterable
    def __len__(self):
        return len(self.map)
    def __contains__(self, key):
        return key in self.map
    def add(self, key):
        if key not in self.map:
            end = self.end
            curr = end[1]
            curr[2] = end[1] = self.map[key] = [key, curr, end]
    def discard(self, key):
        if key in self.map:
            key, prev, next = self.map.pop(key)
            prev[2] = next
            next[1] = prev
    def __iter__(self):
        end = self.end
        curr = end[2]
        while curr is not end:
            yield curr[0]
            curr = curr[2]
    def __reversed__(self):
        end = self.end
        curr = end[1]
        while curr is not end:
            yield curr[0]
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            curr = curr[1]
    def pop(self, last=True):
        if not self:
            raise KeyError('set is empty')
        key = self.end[1][0] if last else self.end[2][0]
        self.discard(key)
        return key
    def __repr__(self):
        if not self:
            return '%s()' % (self.__class__.__name__,)
        return '%s(%r)' % (self.__class__.__name__, list(self))
    def __eq__(self, other):
        if isinstance(other, OrderedSet):
            return len(self) == len(other) and list(self) == list(other)
        return set(self) == set(other)
# saves a variable containing all of the column names
with open('cleaned_downloads/0', 'r') as f:
    reader = csv.reader(f)
    columns = next(reader)
with open('cleaned_revenues/0', 'r') as f:
    reader = csv.reader(f)
    columns.extend(next(reader))
dropped_labels = ['Solvency ratio (%) %  Last avail. yr', 'Solvency ratio (%)
%  Year - 1',
                  'Solvency ratio (%) %  Year - 2', 'Solvency ratio (%) %  
Year - 3', 'Mark',
                  'Solvency ratio (%) %  Year - 4', 'Previous company 
name', 'Company name']
columns = list(OrderedSet([x for x in columns if x not in 
dropped_labels]))
labels_to_drop = dropped_labels
categories = ['Accounting closing date Last avail. yr',
'Tax code number',
'Trading address - Region',
'Legal status',
'Incorporation year',
'No of available years',
'Last accounting closing date',
'Procedure/cessazione',
'Date of open procedure/cessazione',
'NACE Rev. 2',
'Profit (loss) EUR',
'Total assets EUR',
"Total shareholder's funds EUR",
'Return on sales (ROS) %',
'Return on asset (ROA) %',
'Return on equity (ROE) %',
'Banks/turnover %',
'Liquidity ratio',
'Current ratio',
'Current liabilities/Tot ass. %',
'Long/med term liab/Tot ass. %',
'Tang. fixed ass./Share funds %',
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'Depr./Tang. fixed assets %',
'Leverage',
'Coverage of fixed assets %',
'Banks/Turnover (%) %',
'Cost of debit (%) %',
'Interest/Operating profit %',
'Interest/Turnover (%) %',
'Share funds/Liabilities %',
'Net Financial Position EUR',
'Debt/Equity ratio %',
'Debt/EBITDA ratio %',
'Total assets turnover (times)',
'Incidenza circolante operativo (%) %',
'Stocks/Turnover (days)',
'Durata media dei crediti al lordo IVA (days)',
'Durata media dei debiti al lordo IVA (days)',
'Durata Ciclo Commerciale (days)',
'EBITDA EUR',
'EBITDA/Vendite (%) %',
'Return on investment (ROI) (%) %',
'Number of employees',
'Added value per employee',
'Staff Costs per employee',
'Turnover/Staff Costs',
'Net working capital EUR',
'Gross profit EUR',
'Net short term assets EUR',
'Share funds - Fixed assets EUR',
'Cash Flow EUR',
'Revenues from sales and services']
is_bankrupt_by_status = [['Dissolved (demerger)', 0], ['Bankruptcy', 1], 
['Dissolved (liquidation)', 0],
                         ['Dissolved (bankruptcy)', 1], ['Dissolved 
(merger)', 0], ['In liquidation', 0],
                         ['Dissolved', 0], ['Active (receivership)', 1], 
['Active', 0],
                         ['Active (default of payments)', 1]]
is_bankrupt_by_procedure = [['Transfer to another province', 0],
['Reasons provided for in the articles of association', 0],
['Winding up without liquidation', 1],
['Closure due to liquidation', 1],
['Closure due to bankruptcy or liquidatione', 1],
['Removal ex officio', 0],
['Winding up', 1],
['Initiation of cancellation procedure', 0],
['Composition with creditors', 1],
['Winding up and liquidation', 1],
['Voluntary liquidation', 0],
['Winding up in advance without liquidation', 1],
['Winding up and placing into liquidation', 1],
['Extraordinary administration', 1],
['Cancellation ex officio following creation of Chamber of Commerce, 
Industry, Craft Trade and Agriculture for Fermo', 0],
['Court order of cancellation', 1],
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['Debt restructuring agreements', 1],
['Conclusion of liquidation', 1],
['Approved by all partners', 0],
['Cancellation ex officio following creation of Chamber of Commerce, 
Industry, Craft Trade and Agriculture for Monza', 0],
['Court ordered seizure', 1],
['Cancellation due to communication of allocation plan', 1],
['Lease of company', 0],
['Demerger', 0],
['Contribution', 1],
['Cancellation ex officio of registration with register of companies', 1],
['Removed ex officio because already included in the register of firms and 
not transferred to the register of companies', 0],
['Failure to re-establish multiple partners', 1],
['Fulfilment of company object', 0],
['Transformation of legal status', 0],
['Cancelled ex officio pursuant to Italian Presidential Decree no. 247 of 23 
July 2004', 1],
['Reason not specified', 1],
['Conclusion of bankruptcy procedures', 1],
['Cancellation from the register of companies', 1],
['Cancelled ex officio pursuant to Article 2490 of the Italian Civil Code', 1],
['Court ordered liquidation', 1],
['Duplication', 0],
['Bankruptcy', 1],
['Removal ex officio following report by register of companies for the 
registered office', 1],
['Other reasons', 1],
['Closure due to bankruptcy', 1],
['Merger by incorporation into another company', 0],
['Supervening failure to meet the prerequisites for a company', 1],
['Court ordered administration', 1],
['Impossibility of fulfilment of the company object', 1],
['Precautionary seizure of shares', 1],
['Closure of local branch', 0],
['Cessation of any business', 1],
['Following expiry of time limits', 0],
['Post-bankruptcy composition with creditors', 1],
['Transformation into a registered office', 0],
['Winding up by official order', 1],
['State of insolvency', 1],
['Removal ex officio, lack of tax code (Article 21 of Italian Presidential 
Decree no. 605 of 29 September 1973, as amended)', 1],
['Transfer of firma', 0],
['Merger by incorporation of new company', 0],
['Compulsory administrative liquidation', 1],
['Cessation of business within the province', 0],
['Liquidation', 1],
['Controlled administration', 1]]
# 
--------------------------------------------------------------------------------------------------------
--
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# 
--------------------------------------------------------------------------------------------------------
--
# views the dataframe
with open('dataframes/{}.pickle'.format(91), 'rb') as inp:
    df = pickle.load(inp)
    print(df.iloc[0])
# 
--------------------------------------------------------------------------------------------------------
--
# 
--------------------------------------------------------------------------------------------------------
--
# drops rows where "Mark", "Nace" or "Incorporation" is NaN
for i in range(212):
    with open('dataframes/{}.pickle'.format(i), 'rb') as inp:
        df = pickle.load(inp)
        # df.drop(df[pd.isnull(df.Mark)].index, inplace=True)
        df.drop(df[pd.isnull(df['NACE Rev. 2'])].index, inplace=True)
        df.drop(df[pd.isnull(df['Incorporation year'])].index, inplace=True)
    with open('dataframes/{}.pickle'.format(i), 'wb') as inp:
        pickle.dump(df, inp)
    print(i, 'done')
# 
--------------------------------------------------------------------------------------------------------
--
# 
--------------------------------------------------------------------------------------------------------
--
# deletes columns marked in the variable labels_to_drop
for i in range(212):
    with open('dataframes/{}.pickle'.format(i), 'rb') as inp:
        df = pickle.load(inp)
        df.drop(labels=labels_to_drop, axis=1, inplace=True)
    with open('dataframes/{}.pickle'.format(i), 'wb') as inp:
        pickle.dump(df, inp)
    print(i, 'done')
# 
--------------------------------------------------------------------------------------------------------
--
# 
--------------------------------------------------------------------------------------------------------
--
# counts the number of firms in the dataframe
number_of_firms = 0
for i in range(212):
    with open('dataframes/{}.pickle'.format(i), 'rb') as inp:
        df = pickle.load(inp)
        for firm in df['Tax code number']:
            number_of_firms += 1
    print('counting firms:', i, 'done')
print(number_of_firms)
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# 
--------------------------------------------------------------------------------------------------------
--
# 
--------------------------------------------------------------------------------------------------------
--
# counts the number of NaN in every column of the database
missing_by_column = {key: 0 for key in columns}
for i in range(212):
    with open('dataframes/{}.pickle'.format(i), 'rb') as inp:
        df = pickle.load(inp)
        for key in columns:
            for value in df[key]:
                if pd.isnull(value):
                    missing_by_column[key] += 1
    print('counting NaNs:', i, 'done')
missing_list = []
for key in missing_by_column:
    percentage = round((missing_by_column[key] / 
number_of_firms)*100)
    missing_list.append([key, missing_by_column[key], percentage])
missing_list = sorted(missing_list, key=lambda x: x[1], reverse=True)
with open('missing_list.pickle', 'wb') as f:
    pickle.dump(missing_list, f)
# 
--------------------------------------------------------------------------------------------------------
--
# 
--------------------------------------------------------------------------------------------------------
--
# finds the categories in which for every year the percentage of NaN is 
less than fallback_nan, or if in at
# most one year it is less than fallback_nan but higher than maximum_nan
def keep_category(category_to_check):
    maximum_nan = 20
    fallback_nan = 40
    years_to_check = category_to_check[1]
    keep = True
    dangerous_years = 0
    for year in years_to_check:
        if year[2] > fallback_nan:
            keep = False
        elif year[2] > maximum_nan:
            dangerous_years += 1
    if dangerous_years > 1:
        keep = False
    if 'rocedure/cessazione' in category_to_check[0]:
        keep = True
    return keep
nan_count_by_categories = [(x, []) for x in categories]
with open('missing_list.pickle', 'rb') as f:
    nan_count_by_columns = pickle.load(f)
for i in nan_count_by_columns:
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    column = i[0]
    for j in nan_count_by_categories:
        category = j[0]
        if category in column:
            j[1].append(i)
# for x in missing_list_by_categories:
#     print(x)
print(len(nan_count_by_categories))
nan_count_by_categories_reduced = [x for x in nan_count_by_categories 
if keep_category(x)]
print(len(nan_count_by_categories_reduced))
excluded = [x for x in nan_count_by_categories if x not in 
nan_count_by_categories_reduced]
categories_to_exclude = [x[0] for x in excluded]
remaining_categories = [x[0] for x in nan_count_by_categories_reduced]
with open('categories_to_exclude.pickle', 'wb') as out:
    pickle.dump(categories_to_exclude, out)
# for x in excluded:
#     print(x)
for x in nan_count_by_categories_reduced:
    print(x)
print(remaining_categories)
# 
--------------------------------------------------------------------------------------------------------
--
# 
--------------------------------------------------------------------------------------------------------
--
# finds rows with more than 2 missing data per category in more than 5 
categories and rows
# with more than 1 empty category
def delete_row(row):
    delete = False
    dangerous_categories = 0
    empty_categories = 0
    dangerous_categories_limit = 5
    empty_categories_limit = 1
    for category in remaining_categories:
        columns_to_check = [x for x in columns if category in x]
        nans = sum([1 for x in columns_to_check if pd.isnull(row[x])])
        if nans > 2:
            dangerous_categories += 1
        if nans > 4:
            empty_categories += 1
    if dangerous_categories > dangerous_categories_limit:
        delete = True
    if empty_categories > empty_categories_limit:
        delete = True
    return delete
rows_to_delete = []
for i in range(212):
    with open('dataframes/{}.pickle'.format(i), 'rb') as inp:
        df = pickle.load(inp)
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        for index, row in df.iterrows():
            if delete_row(row) is True:
                rows_to_delete.append(row['Tax code number'])
    print('calculating rows to delete: {} done'.format(i))
with open('rows_to_delete.pickle', 'wb') as out:
    pickle.dump(rows_to_delete, out)
with open('rows_to_delete.pickle', 'rb') as inp:
    rows_to_delete = pickle.load(inp)
print('number of rows to delete:', len(rows_to_delete))
# 
--------------------------------------------------------------------------------------------------------
--
# 
--------------------------------------------------------------------------------------------------------
--
# changes NACE to keep only the first 2 letters
for i in range(212):
    with open('dataframes/{}.pickle'.format(i), 'rb') as inp:
        df = pickle.load(inp)
        df['NACE_first_2'] = df['NACE Rev. 2'].map(lambda x: str(x)[:2])
    with open('dataframes/{}.pickle'.format(i), 'wb') as out:
        pickle.dump(df, out)
    print(i, 'done')
# 
--------------------------------------------------------------------------------------------------------
--
# 
--------------------------------------------------------------------------------------------------------
--
# converts all dates to years
def convert_to_year(date):
    date_as_string = str(date)
    year_as_string = date_as_string[-4:]
    return year_as_string
for i in range(212):
    with open('dataframes/{}.pickle'.format(i), 'rb') as inp:
        df = pickle.load(inp)
        for column in ['Accounting closing date Last avail. yr', 
'Incorporation year',
                       'Last accounting closing date', 'Date of open 
procedure/cessazione']:
            df[column] = df[column].apply(convert_to_year)
    with open('dataframes/{}.pickle'.format(i), 'wb') as out:
        pickle.dump(df, out)
    print('converting dates {} done'.format(i))
# 
--------------------------------------------------------------------------------------------------------
--
# 
--------------------------------------------------------------------------------------------------------
--
# counts the number of NACE codes
naces = []
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for i in range(212):
    with open('dataframes/{}.pickle'.format(i), 'rb') as inp:
        df = pickle.load(inp)
        new_naces = set(list(df['NACE_first_2']))
        naces = list(naces)
        naces.extend(new_naces)
        naces = set(naces)
    print(i)
print()
print(len(list(naces)))
print(list(naces)[:20])
# 
--------------------------------------------------------------------------------------------------------
--
# 
--------------------------------------------------------------------------------------------------------
--
# finds the possible values of 'Legal status' and 'Procedure/cessazione'
status = set([])
for i in range(212):
    with open('dataframes/{}.pickle'.format(i), 'rb') as inp:
        df = pickle.load(inp)
        new_status = set(list(df['Legal status']))
        status.update(new_status)
    print(i)
status_specific = set([])
for i in range(212):
    with open('dataframes/{}.pickle'.format(i), 'rb') as inp:
        df = pickle.load(inp)
        new_status = set(list(df['Procedure/cessazione'].dropna(axis=0, 
how='all')))
        status_specific.update(new_status)
    print(i)
with open('procedures_cessazioni.pickle', 'wb') as inp:
    pickle.dump(status_specific, inp)
with open('procedures_cessazioni.pickle', 'rb') as inp:
    status_specific = pickle.load(inp)
print()
print(len(list(status)))
print(list(status))
print()
print(len(list(status_specific)))
print(list(status_specific))
# 
--------------------------------------------------------------------------------------------------------
--
# 
--------------------------------------------------------------------------------------------------------
--
# assigns to each firm either 0 (not failed) or 1 (failed) in the column 
['failed']
failures_by_category = {status[0]: 0 for status in is_bankrupt_by_status}
def is_failed(row):
    failed_ = 0
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    firm_status = row['Legal status']
    firm_procedure = row['Procedure/cessazione']
    for status in is_bankrupt_by_status:
        if status[0] == firm_status:
            failed_ = status[1]
    # checks if the variable 'Legal status' is already enough to say that 
the firm is failed, if not checks the
    # value of row['Procedure/cessazione']
    if failed_ != 1:
        # if there is no procedure then the firm did not fail, otherwise 
checks which kind of procedure
        # the firm underwent
        if not pd.isnull(row['Procedure/cessazione']):
            for procedure in is_bankrupt_by_procedure:
                if procedure[0] == firm_procedure:
                    failed_ = procedure[1]
    failures_by_category[firm_status] += failed_
    return failed_
number_of_failures = 0
number_of_failures_deleted_rows = 0
for i in range(212):
    with open('dataframes/{}.pickle'.format(i), 'rb') as inp:
        df = pickle.load(inp)
        df['failed'] = 0
        for index, row in df.iterrows():
            failed = is_failed(row)
            if row['Tax code number'] in rows_to_delete:
                number_of_failures_deleted_rows += failed
            df.at[index, 'failed'] = failed
    with open('dataframes/{}.pickle'.format(i), 'wb') as out:
        pickle.dump(df, out)
    print(i, 'done')
    number_of_failures += sum(list(df['failed']))
print()
print(number_of_failures)
print(number_of_failures_deleted_rows)
print(failures_by_category)
# 
--------------------------------------------------------------------------------------------------------
--
# 
--------------------------------------------------------------------------------------------------------
--
# extracts the necessary information to graph the data (both for the 
complete dataset and the reduced one)
numerical_categories = [category for category in categories[10:]]
non_numerical_categories = ['Accounting closing date Last avail. yr', 
'Trading address - Region',
                            'Legal status', 'Incorporation year', 
'NACE_first_2']
columns.append('NACE_first_2')
for graphing_category in numerical_categories:
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    # _c refers to the complete dataset, while _d to the dataset with the 
deleted rows
    values_c = []
    values_d = []
    for i in range(212):
        with open('dataframes/{}.pickle'.format(i), 'rb') as inp:
            df = pickle.load(inp)
            df_d = df[df['Tax code number'].isin(rows_to_delete)]
            for column in columns:
                if graphing_category in column:
                    values_c.extend(list(df[column].dropna(axis=0, 
how='all')))
                    values_d.extend(list(df_d[column].dropna(axis=0, 
how='all')))
        print('extracting graph of {}:'.format(graphing_category), i, 
'done')
    values_c = np.array(values_c)
    values_d = np.array(values_d)
    mean_c = np.mean(values_c)
    mean_d = np.mean(values_d)
    median_c = np.median(values_c)
    median_d = np.median(values_d)
    std_c = np.std(values_c)
    std_d = np.std(values_d)
    max_c = np.max(values_c)
    max_d = np.max(values_d)
    min_c = np.min(values_c)
    min_d = np.min(values_d)
    graph_c = {'mean': mean_c,
               'median': median_c,
               'min': min_c,
               'max': max_c,
               'std': std_c,
               'values': values_c}
    graph_d = {'mean': mean_d,
               'median': median_d,
               'min': min_d,
               'max': max_d,
               'std': std_d,
               'values': values_d}
    with open('columns_graph/
{}_c.pickle'.format(graphing_category.replace('/', '-')), 'wb') as out:
        pickle.dump(graph_c, out)
    with open('columns_graph/
{}_d.pickle'.format(graphing_category.replace('/', '-')), 'wb') as out:
        pickle.dump(graph_d, out)
    print()
    print('graph_c of {}:'.format(graphing_category))
    for key in graph_c:
        if key != 'values':
            print('{0}: {1}'.format(key, graph_c[key]))
    print()
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    print('graph_d of {}:'.format(graphing_category))
    for key in graph_d:
        if key != 'values':
            print('{0}: {1}'.format(key, graph_d[key]))
    print()
    print()
for graphing_category in non_numerical_categories:
    if 'Accounting' in graphing_category:
        # _c refers to the complete dataset, while _d to the dataset with 
the deleted rows
        values_c = []
        values_d = []
        for i in range(212):
            with open('dataframes/{}.pickle'.format(i), 'rb') as inp:
                df = pickle.load(inp)
                df_d = df[df['Tax code number'].isin(rows_to_delete)]
                for column in columns:
                    if graphing_category in column:
                        values_c.extend(list(df[column].dropna(axis=0,
how='all')))
                        
values_d.extend(list(df_d[column].dropna(axis=0, how='all')))
            print('extracting graph of {}:'.format(graphing_category), i, 
'done')
        values_c_set = list(set(values_c))
        values_d_set = list(set(values_d))
        graph_c = {value: values_c.count(value) for value in 
values_c_set}
        graph_d = {value: values_d.count(value) for value in 
values_d_set}
        with open('columns_graph/
{}_c.pickle'.format(graphing_category), 'wb') as out:
            pickle.dump(graph_c, out)
        with open('columns_graph/
{}_d.pickle'.format(graphing_category), 'wb') as out:
            pickle.dump(graph_d, out)
        # print()
        # print('graph_c of {}:'.format(graphing_category))
        # print(graph_c)
        # print('graph_d of {}:'.format(graphing_category))
        # print(graph_d)
        # print()
        years = []
        for key in graph_c:
            years.append(key)
        years = sorted(years)
        print(years)
# 
--------------------------------------------------------------------------------------------------------
--
# 
--------------------------------------------------------------------------------------------------------
--
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# finds rows marked as failed whose date of open procedure is equal or 
minor than the date
# of last account available
with open('rows_to_delete.pickle', 'rb') as inp:
    rows_to_delete = pickle.load(inp)
rows_to_delete_by_closing_date = []
def delete_row(row):
    delete = False
    if row['failed'] == 1:
        if pd.notnull(row['Date of open procedure/cessazione']):
            if row['Date of open procedure/cessazione'] < row['Last 
accounting closing date']:
                if row['Tax code number'] not in rows_to_delete:
                    delete = True
    return delete
for i in range(212):
    with open('dataframes/{}.pickle'.format(i), 'rb') as inp:
        df = pickle.load(inp)
        for index, row in df.iterrows():
            if delete_row(row) is True:
                rows_to_delete_by_closing_date.append(row['Tax code 
number'])
    print('calculating rows to delete: {} done'.format(i))
print('number of rows to delete based on the closing date: 
{}'.format(len(rows_to_delete_by_closing_date)))
with open('rows_to_delete_by_closing_date', 'wb') as f:
    pickle.dump(rows_to_delete_by_closing_date, f)
print()
print('all done')

numpify_dataset.py

This code deletes the rows and columns as described in Chapter 3, and then

converts the Pandas dataframe to a Numpy array, which is the data format

used as input by the neural networks.

import numpy as np
import collections
import pickle
import csv
class OrderedSet(collections.MutableSet):
    def __init__(self, iterable=None):
        self.end = end = []
        end += [None, end, end]         # sentinel node for doubly linked 
list
        self.map = {}                   # key --> [key, prev, next]
        if iterable is not None:
            self |= iterable
    def __len__(self):

92



        return len(self.map)
    def __contains__(self, key):
        return key in self.map
    def add(self, key):
        if key not in self.map:
            end = self.end
            curr = end[1]
            curr[2] = end[1] = self.map[key] = [key, curr, end]
    def discard(self, key):
        if key in self.map:
            key, prev, next = self.map.pop(key)
            prev[2] = next
            next[1] = prev
    def __iter__(self):
        end = self.end
        curr = end[2]
        while curr is not end:
            yield curr[0]
            curr = curr[2]
    def __reversed__(self):
        end = self.end
        curr = end[1]
        while curr is not end:
            yield curr[0]
            curr = curr[1]
    def pop(self, last=True):
        if not self:
            raise KeyError('set is empty')
        key = self.end[1][0] if last else self.end[2][0]
        self.discard(key)
        return key
    def __repr__(self):
        if not self:
            return '%s()' % (self.__class__.__name__,)
        return '%s(%r)' % (self.__class__.__name__, list(self))
    def __eq__(self, other):
        if isinstance(other, OrderedSet):
            return len(self) == len(other) and list(self) == list(other)
        return set(self) == set(other)
# saves a variable containing all of the column names
with open('cleaned_downloads/0', 'r') as f:
    reader = csv.reader(f)
    columns = next(reader)
manual_labels_to_drop = ['Accounting closing date Last avail. yr', 'Tax 
code number', 'Trading address - Region',
                         'Legal status', 'Incorporation year', 'No of 
available years',
                         'Last accounting closing date', 
'Procedure/cessazione',
                         'Date of open procedure/cessazione', 'NACE 
Rev. 2']
columns = list(OrderedSet([x for x in columns if x not in 
manual_labels_to_drop]))
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columns.append('NACE_first_2')
columns.append('failed')
categories = ['Accounting closing date Last avail. yr',
'Tax code number',
'Trading address - Region',
'Legal status',
'Incorporation year',
'No of available years',
'Last accounting closing date',
'Procedure/cessazione',
'Date of open procedure/cessazione',
'NACE Rev. 2',
'Profit (loss) EUR',
'Total assets EUR',
"Total shareholder's funds EUR",
'Return on sales (ROS) %',
'Return on asset (ROA) %',
'Return on equity (ROE) %',
'Banks/turnover %',
'Liquidity ratio',
'Current ratio',
'Current liabilities/Tot ass. %',
'Long/med term liab/Tot ass. %',
'Tang. fixed ass./Share funds %',
'Depr./Tang. fixed assets %',
'Leverage',
'Coverage of fixed assets %',
'Banks/Turnover (%) %',
'Cost of debit (%) %',
'Interest/Operating profit %',
'Interest/Turnover (%) %',
'Share funds/Liabilities %',
'Net Financial Position EUR',
'Debt/Equity ratio %',
'Debt/EBITDA ratio %',
'Total assets turnover (times)',
'Incidenza circolante operativo (%) %',
'Stocks/Turnover (days)',
'Durata media dei crediti al lordo IVA (days)',
'Durata media dei debiti al lordo IVA (days)',
'Durata Ciclo Commerciale (days)',
'EBITDA EUR',
'EBITDA/Vendite (%) %',
'Return on investment (ROI) (%) %',
'Number of employees',
'Added value per employee',
'Staff Costs per employee',
'Turnover/Staff Costs',
'Net working capital EUR',
'Gross profit EUR',
'Net short term assets EUR',
'Share funds - Fixed assets EUR',
'Cash Flow EUR',
'Revenues from sales and services']
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# copy data from dataframes/
for i in range(212):
    with open('dataframes/{}.pickle'.format(i), 'rb') as inp:
        df = pickle.load(inp)
    with open('dataframes_to_numpy/{}.pickle'.format(i), 'wb') as out:
        pickle.dump(df, out)
    print('copying: {} done'.format(i))
# views the dataframe
with open('dataframes_to_numpy/{}.pickle'.format(91), 'rb') as inp:
    df = pickle.load(inp)
    print(df.iloc[0])
# 
--------------------------------------------------------------------------------------------------------
--
# 
--------------------------------------------------------------------------------------------------------
--
with open('rows_to_delete.pickle', 'rb') as inp:
    rows_to_delete = pickle.load(inp)
print('number of rows to delete:', len(rows_to_delete))
with open('rows_to_delete_by_closing_date', 'rb') as f:
    rows_to_delete_by_closing_date = pickle.load(f)
# deletes rows
for i in range(212):
    with open('dataframes_to_numpy/{}.pickle'.format(i), 'rb') as inp:
        df = pickle.load(inp)
        df = df[~df['Tax code number'].isin(rows_to_delete)]
    with open('dataframes_to_numpy/{}.pickle'.format(i), 'wb') as inp:
        pickle.dump(df, inp)
    print('deleting rows: {} done'.format(i))
# counts the number of firms in the dataframe
number_of_firms = 0
for i in range(212):
    with open('dataframes_to_numpy/{}.pickle'.format(i), 'rb') as inp:
        df = pickle.load(inp)
        for firm in df['Tax code number']:
            number_of_firms += 1
    print('counting firms:', i, 'done')
print(number_of_firms)
# 
--------------------------------------------------------------------------------------------------------
--
# 
--------------------------------------------------------------------------------------------------------
--
# calculates columns to drop
with open('categories_to_exclude.pickle', 'rb') as out:
    categories_to_exclude = pickle.load(out)
print(categories_to_exclude)
labels_to_drop = manual_labels_to_drop
for column in columns:
    for category in categories_to_exclude:
        if category in column:
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            labels_to_drop.append(column)
labels_to_drop = list(set(labels_to_drop))
# deletes columns marked in the variable labels_to_drop
for i in range(212):
    with open('dataframes_to_numpy/{}.pickle'.format(i), 'rb') as inp:
        df = pickle.load(inp)
        df.drop(labels=labels_to_drop, axis=1, inplace=True)
    with open('dataframes_to_numpy/{}.pickle'.format(i), 'wb') as inp:
        pickle.dump(df, inp)
    print('dropping columns: {} done'.format(i))
# 
--------------------------------------------------------------------------------------------------------
--
# 
--------------------------------------------------------------------------------------------------------
--
# divides NACE by 100
for i in range(212):
    with open('dataframes_to_numpy/{}.pickle'.format(i), 'rb') as inp:
        df = pickle.load(inp)
        df['NACE_first_2'] = df['NACE_first_2'].apply(lambda x: 
int(x)/100)
    with open('dataframes_to_numpy/{}.pickle'.format(i), 'wb') as out:
        pickle.dump(df, out)
    print('converting NACE: {} done'.format(i))
# views the dataframe
with open('dataframes_to_numpy/{}.pickle'.format(89), 'rb') as inp:
    df = pickle.load(inp)
    print(df.iloc[0])
# 
--------------------------------------------------------------------------------------------------------
--
# 
--------------------------------------------------------------------------------------------------------
--
# gets column names
with open('dataframes_to_numpy/{}.pickle'.format(89), 'rb') as inp:
    df = pickle.load(inp)
    columns = list(df.columns.values)
# for column in columns:
#     print(column)
# groups column names by year
year0_names = ['Year - 1', 'Year - 2', 'Year - 3', 'Year - 4']
year1_names = ['Last avail. yr', 'Year - 2', 'Year - 3', 'Year - 4']
year2_names = ['Last avail. yr', 'Year - 1', 'Year - 3', 'Year - 4']
year3_names = ['Last avail. yr', 'Year - 1', 'Year - 2', 'Year - 4']
year4_names = ['Last avail. yr', 'Year - 1', 'Year - 2', 'Year - 3']
year_names = [year0_names, year1_names, year2_names, year3_names, 
year4_names]
year_columns = [[] for _ in range(5)]
for i in range(5):
    for column_name in columns:
        keep = True
        for name in year_names[i]:
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            if name in column_name:
                keep = False
        if keep is True:
            year_columns[i].append(column_name)
# for i in range(5):
#     print(year_columns[i])
#     print(len(year_columns[i]))
# groups column names by category
removing_words = ['Last avail. yr', 'Year - 1', 'Year - 2', 'Year - 3', 'Year - 4']
categories = []
for column in columns:
    category = column
    for word in removing_words:
        category = category.replace(' ' + word, '')
    categories.append(category)
categories = list(OrderedSet(categories))
print()
print(categories)
print(len(categories))
# 
--------------------------------------------------------------------------------------------------------
--
# 
--------------------------------------------------------------------------------------------------------
--
# gives all the columns in a category
def columns_of_category(cat):
    removing_words = ['Last avail. yr', 'Year - 1', 'Year - 2', 'Year - 3', 'Year 
- 4']
    result = [cat + ' ' + word for word in removing_words]
    return result
# normalizes the values of the dataframe
for i in range(212):
    for category in categories:
        if category not in ['NACE_first_2', 'failed']:
            converting_category = columns_of_category(category)
            with open('dataframes_to_numpy/{}.pickle'.format(i), 'rb') 
as inp:
                df = pickle.load(inp)
                df_section = df[converting_category]
            a = np.array(df_section)
            column_lenght = len(a)
            # print(column_lenght)
            # print(a[18])
            a = np.ma.array(a, mask=np.isnan(a))  # Use a mask to 
mark the NaNs
            a_norm = a - np.mean(a)  # The sum function ignores the 
masked values.
            a_norm2 = a_norm / np.std(a)  # The std function ignores the
masked values.
            dtype = [(column, 'float64') for column in 
converting_category]
            values = a_norm2
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            index = ['Row' + str(i) for i in range(1, len(values) + 1)]
            # print(df.iloc[0])
            df_section = pd.DataFrame(values, index=index, 
columns=converting_category, dtype='float64')
            df[columns_of_category(category)] = 
df_section[columns_of_category(category)].values
            # print(df.iloc[0])
            with open('dataframes_to_numpy/{}.pickle'.format(i), 'wb') 
as out:
                pickle.dump(df, out)
    print('normalizing values: {} done'.format(i))
# 
--------------------------------------------------------------------------------------------------------
--
# 
--------------------------------------------------------------------------------------------------------
--
# gives all the columns for one year
def columns_of_year(year):
    year_suffix = ['Last avail. yr', 'Year - 1', 'Year - 2', 'Year - 3', 'Year - 4']
    yearly_columns = [category + ' ' + year_suffix[year] for category in 
categories
                      if category not in ['NACE_first_2', 'failed']]
    result = ['failed', 'NACE_first_2']
    result.extend(yearly_columns)
    return result
# saves the database in a giant numpy array
firms = []
for file_num in range(1):
    with open('dataframes_to_numpy/{}.pickle'.format(file_num), 'rb') as
inp:
        df = pickle.load(inp)
        for index, row in df.iterrows():
            this_firm = []
            for year in range(5):
                this_year = []
                this_year_dummies = [0 for _ in range(27)]
                for i, cell_value in 
enumerate(row[columns_of_year(year)]):
                    if pd.isnull(cell_value):
                        this_year_dummies[i - 2] = 1
                        this_year.append(0)
                    else:
                        this_year.append(cell_value)
                this_year.extend(this_year_dummies)
                this_year = np.array(this_year, dtype=np.float32)
                this_firm.append(this_year)
            this_firm = np.array(this_firm)
            firms.append(this_firm)
    print('numpyfying database: {} done'.format(file_num))
numpy_database = np.array(firms)
firms = []
for file_num in range(1, 212):

98



    with open('dataframes_to_numpy/{}.pickle'.format(file_num), 'rb') as
inp:
        df = pickle.load(inp)
        for index, row in df.iterrows():
            this_firm = []
            for year in range(5):
                this_year = []
                this_year_dummies = [0 for _ in range(27)]
                for i, cell_value in 
enumerate(row[columns_of_year(year)]):
                    if pd.isnull(cell_value):
                        this_year_dummies[i - 2] = 1
                        this_year.append(0)
                    else:
                        this_year.append(cell_value)
                this_year.extend(this_year_dummies)
                this_year = np.array(this_year, dtype=np.float32)
                this_firm.append(this_year)
            this_firm = np.array(this_firm)
            firms.append(this_firm)
    print('numpyfying database: {} done'.format(file_num))
firms = np.array(firms)
numpy_database = np.append(numpy_database, firms, axis=0)
print('length of the numpy array: {}'.format(len(numpy_database)))
with open('original_numpyfied_database.pickle', 'wb') as out:
    pickle.dump(numpy_database, out)
# 
--------------------------------------------------------------------------------------------------------
--
# 
--------------------------------------------------------------------------------------------------------
--
with open('numpyfied_database.pickle', 'rb') as inp:
    numpy_database = pickle.load(inp)
print()
print('database loaded!!!')
print()
with open('numpyfied_database.pickle', 'wb') as out:
    pickle.dump(numpy_database, out)
print()
print('database shape:', numpy_database.shape)
print(numpy_database[0])
database_transposed = np.transpose(numpy_database, (1, 0, 2))
numpyfied_database_year_0 = database_transposed[0]
with open('numpyfied_database_year_0.pickle', 'wb') as out:
    pickle.dump(numpyfied_database_year_0, out)
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Appendix 5

ANNs code

This section will present the source code of the programs used to run the

experiments described in Chapter 4.

NetworkTraining.py

This is the code use for the training phase of the MLP model.

from time import localtime, strftime
import tensorflow as tf
import numpy as np
import os
dataset = 'numpyfied_database_year_0.pickle'
print('loading dataset...')
with open(dataset, 'rb') as f:
    data = pickle.load(f)
# here I am using a label like: [1, 0] is 'non failed' and [0, 1] is 'failed', so 
the output
# of the network will consist in two neurons, one for each class. But does it
make sense?
# wouldn't it be better to use just one neuron and if it is > 0.5 the firm 
failed?
def calc_label(firm):
    if int(firm[0]) == 0:
        label = [1, 0]
    else:
        label = [0, 1]
    return label
print('composing fetatures and labels...')
features_and_labels = [[x[1:], calc_label(x)] for x in data]
print('shuffling data...')
np.random.shuffle(features_and_labels)
print('dividing features from labels...')
features = np.array([x[0] for x in features_and_labels])
labels = np.array([x[1] for x in features_and_labels])
del data
del features_and_labels
tf_log = 'tf.log'
try:
    epoch = int(open(tf_log, 'r').read().split('\n')[-2]) + 1
    print('Starting epoch:', epoch)
except:
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    epoch = 1
if epoch == 1:
    print('dividing train, test and validation sets...')
    train_size = int(len(labels) * 0.8)
    validate_size = int(len(labels) * 0.9)
    train_y = np.array(labels[:train_size])
    train_x = np.array(features[:train_size])
    test_y = np.array(labels[train_size:validate_size])
    test_x = np.array(features[train_size:validate_size])
    validation_y = np.array(labels[validate_size:])
    validation_x = np.array(features[validate_size:])
    test_set = list(zip(test_x, test_y))
    with open('test_set.pickle', 'wb') as f:
        pickle.dump(test_set, f)
    validation_set = list(zip(validation_x, validation_y))
    with open('validation_set.pickle', 'wb') as f:
        pickle.dump(validation_set, f)
    train_set = [train_x, train_y]
    with open('train_set.pickle', 'wb') as f:
        pickle.dump(train_set, f)
try:
    classes_n = len(labels[0])
except TypeError:
    classes_n = 1
nodes_per_layer = [100, 100]
hidden_layers_n = len(nodes_per_layer)
batch_size = 5000  # with 4GB of RAM don't go higher than 10000
epochs = 2000
print_step = 5
saving_step = 5
learn_r = 0.00001
network_structure = [classes_n, nodes_per_layer, hidden_layers_n, 
len(features[0])]
with open('network_structure.pickle', 'wb') as f:
    pickle.dump(network_structure, f)
x = tf.placeholder('float', [None, len(features[0])])
y = tf.placeholder('float', [None, classes_n])
failures = tf.placeholder('float')
keep_prob = tf.placeholder(tf.float32)
current_epoch = tf.Variable(1)
layers = [{'weights': tf.Variable(tf.random_normal([len(features[0]), 
nodes_per_layer[0]])),
           'biases': tf.Variable(tf.random_normal([nodes_per_layer[0]]))}]
for i in range(1, hidden_layers_n):
    layers.append({'weights': 
tf.Variable(tf.random_normal([nodes_per_layer[i - 1], nodes_per_layer[i]])),
                   'biases': 
tf.Variable(tf.random_normal([nodes_per_layer[i]]))})
output_layer = {'weights': tf.Variable(tf.random_normal([nodes_per_layer[-
1], classes_n])),
                'biases': tf.Variable(tf.random_normal([classes_n]))}
def neural_network_model(data):
    l = []
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    l.append(tf.add(tf.matmul(x, layers[0]['weights']), layers[0]['biases']))
    l[0] = tf.nn.relu(l[0])
    l[0] = tf.nn.dropout(l[0], keep_prob)
    for i in range(1, hidden_layers_n):
        l.append(tf.add(tf.matmul(l[i - 1], layers[i]['weights']), layers[i]
['biases']))
        l[i] = tf.nn.relu(l[i])
        l[i] = tf.nn.dropout(l[i], keep_prob)
    output = tf.add(tf.matmul(l[hidden_layers_n - 1], 
output_layer['weights']), output_layer['biases'])
    return output
saver = tf.train.Saver()
# normal cost function
def train_neural_network(x, learn_rate, keep_probability):
    global train_x
    global train_y
    global test_x
    global test_y
    global train_set
    global test_set
    global validation_x
    global validation_y
    learning_rate = learn_rate
    keep = keep_probability
    prediction = neural_network_model(x)
    # this is the cost function that can be used when we know the label of
the data, so when we already knok the
    # rating class of the firms
    cost = 
tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(logits=prediction, 
labels=y))
    # # based on (Likas 2000) a log loss is better to predict probabilities 
when I have binary labels
    # cost = tf.losses.log_loss(predictions=prediction, labels=y, 
epsilon=1e-8)
    # 0.0001 is usually a good value for the learning rate
    optimizer = tf.train.AdamOptimizer(learning_rate=learning_rate, 
epsilon=1e-8).minimize(cost)
    with tf.Session() as sess:
        sess.run(tf.global_variables_initializer())
        try:
            epoch = int(open(tf_log, 'r').read().split('\n')[-2]) + 1
            print('Starting epoch:', epoch)
        except:
            epoch = 1
        if epoch != 1:
            with open('datetime.pickle', 'rb') as f:
                folder_name = pickle.load(f)
            with open(os.path.join(folder_name, 'graph.pickle'), 'rb') as 
f:
                graph = pickle.load(f)
            with open('train_set.pickle', 'rb') as f:
                train_set = pickle.load(f)
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                train_x = np.array(train_set[0])
                train_y = np.array(train_set[1])
                print('training set loaded')
            with open('test_set.pickle', 'rb') as f:
                test_set = pickle.load(f)
                test_x = np.array([x[0] for x in test_set])
                test_y = np.array([x[1] for x in test_set])
                print('test set loaded')
            saver.restore(sess, "model.ckpt")
        else:
            folder_name = strftime("%d-%m-%Y_%H:%M:%S", 
localtime())
            graph = []
            if not os.path.exists(folder_name):
                os.makedirs(folder_name)
            with open('datetime.pickle', 'wb') as f:
                pickle.dump(folder_name, f)
            with open(os.path.join(folder_name, 'datetime.pickle'), 'wb') 
as f:
                pickle.dump(folder_name, f)
            with open(os.path.join(folder_name, 'test_set.pickle'), 'wb') 
as f:
                pickle.dump(test_set, f)
            with open(os.path.join(folder_name, 'validation_set.pickle'), 
'wb') as f:
                pickle.dump(validation_set, f)
            with open(os.path.join(folder_name, 'train_set.pickle'), 'wb') 
as f:
                pickle.dump(train_set, f)
            with open(os.path.join(folder_name, 
'network_structure.pickle'), 'wb') as f:
                pickle.dump(network_structure, f)
        print('Starting training...')
        while epoch <= epochs:
            epoch_loss = 1
            i = 0
            while i < len(train_x):
                start = i
                end = i + batch_size
                batch_x = np.array(train_x[start:end])
                batch_y = np.array(train_y[start:end])
                _, c = sess.run([optimizer, cost], feed_dict={x: batch_x, 
y: batch_y, keep_prob: keep})
                epoch_loss += c
                i += batch_size
            if (epoch + 1) % print_step == 0:
                print('Epoch', epoch, 'out of',
                      '{} completed,'.format(epochs), 'loss:', 
epoch_loss)
                correct = tf.equal(tf.argmax(prediction, 1), tf.argmax(y, 
1))
                accuracy = tf.reduce_mean(tf.cast(correct, 'float'))
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                accuracy_number = accuracy.eval({x: test_x, y: test_y, 
keep_prob: 1})
                accuracy_number_training_set = accuracy.eval({x: 
train_x, y: train_y, keep_prob: 1})
                accuracy_number_validate_set = accuracy.eval({x: 
validation_x, y: validation_y, keep_prob: 1})
                print('Train accuracy:', accuracy_number_training_set)
                print('Test accuracy:', accuracy_number)
                graph.append([epoch, accuracy_number_training_set, 
accuracy_number, epoch_loss, accuracy_number_validate_set])
            with open(os.path.join(folder_name, 'graph.pickle'), 'wb') as 
f:
                pickle.dump(graph, f)
            # 'folder' is the folder in which the program is running, 
folder_name is the additional
            # folder in which the log and checkpoint files are saved
            if epoch == 1:
                folder = os.path.dirname(os.path.realpath(__file__))
                saver.save(sess, folder + "/model.ckpt")
            if (epoch + 1) % saving_step == 0:
                folder = os.path.dirname(os.path.realpath(__file__))
                epoch_folder = 'epoch_{}'.format(epoch)
                epoch_folder_name = os.path.join(folder_name, 
epoch_folder)
                saver.save(sess, folder + "/model.ckpt")
                saver.save(sess, epoch_folder_name + "/model.ckpt")
                # print('Epoch', epoch, 'completed out of', epochs, 
'loss:', epoch_loss)
                with open(tf_log, 'a') as f:
                    f.write(str(epoch) + '\n')
                with open(os.path.join(epoch_folder_name, tf_log), 'a') 
as f:
                    f.write(str(epoch) + '\n')
            epoch += 1
if __name__ == '__main__':
    train_neural_network(x, learn_r, 0.5)
    tf.reset_default_graph()

Network Use 0.2.py

Code used for the testing of the MLP networks.

import numpy as np
import multiprocessing as multip
import pickle
import time
dataset = 'numpyfied_database_year_0.pickle'
with open(dataset, 'rb') as f:
    data = pickle.load(f)
def convert_label(data):
    ranks = ['not failed', 'failed']
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    for i, value in enumerate(data):
        if value == 1:
            return ranks[i]
with open('test_set.pickle', 'rb') as f:
    test_set = pickle.load(f)
test_x = [x[0] for x in test_set]
test_y = [convert_label(x[1]) for x in test_set]
with open('validation_set.pickle', 'rb') as f:
    validation_set = pickle.load(f)
validation_x = [x[0] for x in validation_set]
validation_y = [convert_label(x[1]) for x in validation_set]
with open('network_structure.pickle', 'rb') as f:
    network_structure = pickle.load(f)
classes_n = network_structure[0]
nodes_per_layer = network_structure[1]
hidden_layers_n = network_structure[2]
features_len = network_structure[3]
x = tf.placeholder('float', [None, features_len])
y = tf.placeholder('float', [None, classes_n])
current_epoch = tf.Variable(1)
layers = [{'weights': tf.Variable(tf.random_normal([features_len, 
nodes_per_layer[0]])),
           'biases': tf.Variable(tf.random_normal([nodes_per_layer[0]]))}]
for i in range(1, hidden_layers_n):
    layers.append({'weights': 
tf.Variable(tf.random_normal([nodes_per_layer[i - 1], nodes_per_layer[i]])),
                   'biases': 
tf.Variable(tf.random_normal([nodes_per_layer[i]]))})
output_layer = {'weights': tf.Variable(tf.random_normal([nodes_per_layer[-
1], classes_n])),
                'biases': tf.Variable(tf.random_normal([classes_n]))}
def neural_network_model(data):
    l = []
    l.append(tf.add(tf.matmul(x, layers[0]['weights']), layers[0]['biases']))
    l[0] = tf.nn.relu(l[0])
    for i in range(1, hidden_layers_n):
        l.append(tf.add(tf.matmul(l[i - 1], layers[i]['weights']), layers[i]
['biases']))
        l[i] = tf.nn.relu(l[i])
    output = tf.add(tf.matmul(l[hidden_layers_n - 1], 
output_layer['weights']), output_layer['biases'])
    return output
saver = tf.train.Saver()
tf_log = 'tf.log'
def convert_prediction(value):
    predict = ''
    if value == 1:
        predict = 'failed'
    elif value == 0:
        predict = 'not failed'
    return predict
def use_neural_network(test_or_validation):
    if test_or_validation == 'test':
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        set_x = test_x
        set_y = test_y
    elif test_or_validation == 'validation':
        set_x = validation_x
        set_y = validation_y
    prediction = neural_network_model(x)
    with tf.Session() as sess:
        for word in ['weights', 'biases']:
            output_layer[word].initializer.run()
            for variable in layers:
                variable[word].initializer.run()
        saver.restore(sess, "model.ckpt")
        predictions = sess.run(tf.argmax(prediction.eval(feed_dict={x: 
set_x}), 1))
        predictions = np.array([convert_prediction(value) for value in 
predictions])
        result = list(zip(set_y, predictions))
        return result
def is_correct(x):
    if x[0] == x[1]:
        return 1
    else:
        return 0
def test_set_errors():
    prediction = use_neural_network('test')
    print('\nCalculating errors in test set...')
    predictions_dict_type1 = {'not failed': [],
                              'failed': []}
    predictions_dict_type2 = {'not failed': [],
                              'failed': []}
    for elem in prediction:
        predictions_dict_type1[elem[0]].append(elem)
    for elem in prediction:
        predictions_dict_type2[elem[1]].append(elem)
    correct_guesses = sum(is_correct(x) for x in prediction)
    correct_ratio = correct_guesses / len(prediction)
    print('correct:', correct_ratio)
    stats_dict = {'not failed': {}, 'failed': {}}
    for key in stats_dict:
        # 'type1 err' is the number of elements belonging to that class 
that are mis-classifies. 'type2 err' is the
        # number of elements classified in that class among all those 
that were classifies wrong. 'type1 mistakes'
        # tells how many times an element belonging to that class is 
incorrectly assigned to other classes.
        # 'type2 mistakes' measures which classes are most likely to be 
misclassified with that one.
        stats_dict[key] = {'type1 err': 0, 'type1 mistakes': [], 'type2 err': 
0, 'type2 mistakes': []}
        wrong_1 = sum(abs(is_correct(x) - 1) for x in 
predictions_dict_type1[key])
        wrong_2 = sum(abs(is_correct(x) - 1) for x in 
predictions_dict_type2[key])
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        wrong_1_ratio = wrong_1 / len(predictions_dict_type1[key])
        wrong_2_ratio = wrong_2 / len(predictions_dict_type2[key])
        stats_dict[key]['type1 err'] = wrong_1_ratio
        stats_dict[key]['type2 err'] = wrong_2_ratio
    for key in stats_dict:
        print()
        print('CLASS {}:'.format(key))
        print('type 1 elements', len(predictions_dict_type1[key]))
        print('type 1 error:', stats_dict[key]['type1 err'])
        print('type 2 elements', len(predictions_dict_type2[key]))
        print('type 2 error:', stats_dict[key]['type2 err'])
def validation_set_errors():
    prediction = use_neural_network('validation')
    print()
    print('\nCalculating errors in validation set...')
    predictions_dict_type1 = {'not failed': [],
                              'failed': []}
    predictions_dict_type2 = {'A': [],
                              'B': [],
                              'C': [],
                              'D': [],
                              'E': [],
                              'F': [],
                              'Def': []}
    predictions_dict_type2 = {'not failed': [],
                              'failed': []}
    for elem in prediction:
        predictions_dict_type1[elem[0]].append(elem)
    for elem in prediction:
        predictions_dict_type2[elem[1]].append(elem)
    correct_guesses = sum(is_correct(x) for x in prediction)
    correct_ratio = correct_guesses / len(prediction)
    print('correct:', correct_ratio)
    # stats_dict = {'A': {}, 'B': {}, 'C': {}, 'D': {}, 'E': {}, 'F': {}, 'Def': 
{}}
    stats_dict = {'not failed': {}, 'failed': {}}
    for key in stats_dict:
        # 'type1 err' is the number of elements belonging to that class 
that are mis-classifies. 'type2 err' is the
        # number of elements classified in that class among all those 
that were classifies wrong. 'type1 mistakes'
        # tells how many times an element belonging to that class is 
incorrectly assigned to other classes.
        # 'type2 mistakes' measures which classes are most likely to be 
misclassified with that one.
        stats_dict[key] = {'type1 err': 0, 'type1 mistakes': [], 'type2 err': 
0, 'type2 mistakes': []}
        wrong_1 = sum(abs(is_correct(x) - 1) for x in 
predictions_dict_type1[key])
        wrong_2 = sum(abs(is_correct(x) - 1) for x in 
predictions_dict_type2[key])
        wrong_1_ratio = wrong_1 / len(predictions_dict_type1[key])
        wrong_2_ratio = wrong_2 / len(predictions_dict_type2[key])
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        stats_dict[key]['type1 err'] = wrong_1_ratio
        stats_dict[key]['type2 err'] = wrong_2_ratio
    for key in stats_dict:
        print()
        print('CLASS {}:'.format(key))
        print('type 1 elements', len(predictions_dict_type1[key]))
        print('type 1 error:', stats_dict[key]['type1 err'])
        print('type 2 elements', len(predictions_dict_type2[key]))
        print('type 2 error:', stats_dict[key]['type2 err'])
if __name__ == '__main__':
    # print(prediction)
    test_set_errors()
    validation_set_errors()

RNNtrain_and_use.py

This code is used for both the training and the test phase of the RNN model.

# this code is a modified version of: http://monik.in/a-noobs-guide-to-
implementing-rnn-lstm-using-tensorflow/
from time import localtime, strftime
import pickle
import tensorflow as tf
import numpy as np
import os
def remove_old_files():
    files_to_remove = ['checkpoint', 'datetime.pickle', 'model.ckpt.data-
00000-of-00001',
                       'model.ckpt.index', 'model.ckpt.meta', 'tf.log', 
'network_structure.pickle',
                       'test_set.pickle', 'train_set.pickle', 
'validation_set.pickle']
    for file in files_to_remove:
        try:
            os.remove(file)
        except FileNotFoundError:
            print('file "{}" not found'.format(file))
# here I am using a label like: [1, 0] is 'non failed' and [0, 1] is 'failed', so 
the output
# of the network will consist in two neurons, one for each class. But does it
make sense?
# wouldn't it be better to use just one neuron and if it is > 0.5 the firm 
failed?
def calc_label(firm):
    if int(firm) == 0:
        label = [1, 0]
    else:
        label = [0, 1]
    return label
# this converts labels from data so that a data containing [1, 0, 0, 0, 0, 0, 
0] becomes 'A',
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# [0, 1, 0, 0, 0, 0, 0] becomes 'B' and so on. It is the inverse of 
calc_label(x)
def convert_label(data):
    ranks = ['not failed', 'failed']
    for i, value in enumerate(data):
        if value == 1:
            return ranks[i]
def convert_prediction(value):
    predict = ''
    if int(value) == 1:
        predict = 'failed'
    elif int(value) == 0:
        predict = 'not failed'
    return predict
def is_correct(x):
    if x[0] == x[1]:
        return 1
    else:
        return 0
def set_errors(test_or_validation_or_train):
    set_prediction = use_neural_network(test_or_validation_or_train)
    # element os set_predictions are like: [array([1, 0]), 'non failed']
    # type_1 error is the share of failed classified as 'non failed'
    # type_2 error is the share of non failed classified as 'failed'
    # error_share is the number of elements in type_1 over the number of
elements in type_2.
    non_failed = [x[1] for x in set_prediction if x[0][0]==1]
    failed = [x[1] for x in set_prediction if x[0][0]==0]
    type_1 = [x for x in failed if x=='not failed']
    type_2 = [x for x in non_failed if x=='failed']
    if len(non_failed) == 0:
        type_1_ratio = 0
    else:
        type_1_ratio = len(type_1) / len(failed)
    if len(failed) == 0:
        type_2_ratio = 0
    else:
        type_2_ratio = len(type_2) / len(non_failed)
    if len(type_2) == 0:
        error_share = 1
    else:
        error_share = len(type_1) / (len(type_2) + len(type_1))
    return type_1_ratio, type_2_ratio, error_share
def use_neural_network(test_or_validation_or_train):
    global prediction, sess
    if test_or_validation_or_train == 'test':
        set_x = test_x
        set_y = test_y
    elif test_or_validation_or_train == 'validation':
        set_x = validation_x
        set_y = validation_y
    else:
        set_x = train_x
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        set_y = train_y
    set_prediction = prediction.eval(session=sess, feed_dict={data: 
set_x, dropout: 0})
    set_prediction = tf.argmax(set_prediction, 1)
    set_prediction = np.array(set_prediction.eval(session=sess))
    predictions = [convert_prediction(x) for x in set_prediction]
    result = list(zip(set_y, predictions))
    return result
def create_RNN_model():
    global cell, val, state, last, weight, bias, prediction
    global cross_entropy, optimizer, minimize, mistakes, error
    if num_layers == 1:
        cell = tf.nn.rnn_cell.LSTMCell(num_hidden, state_is_tuple=True)
        cell = tf.contrib.rnn.DropoutWrapper(cell, output_keep_prob=1.0 -
dropout)
    elif num_layers == 2:
        # cell = tf.nn.rnn_cell.LSTMCell(num_hidden, state_is_tuple=True)
        cell = tf.nn.rnn_cell.MultiRNNCell([cell] * num_layers, 
state_is_tuple=True)
        cell = tf.contrib.rnn.DropoutWrapper(cell, output_keep_prob=1.0 -
dropout)
    val, state = tf.nn.dynamic_rnn(cell, data, dtype=tf.float32)
    val = tf.transpose(val, [1, 0, 2])
    last = tf.gather(val, int(val.get_shape()[0]) - 1)
    prediction = tf.nn.softmax(tf.matmul(last, weight) + bias)
    regularizer = tf.nn.l2_loss(weight)  # L2 regularization
    cross_entropy = -tf.reduce_sum(target * 
tf.log(tf.clip_by_value(prediction, 1e-10, 1.0)))
    cross_entropy = tf.reduce_mean(cross_entropy + 0.01 * regularizer)  
# L2 regularization
    optimizer = tf.train.AdamOptimizer(learn_rate)
    minimize = optimizer.minimize(cross_entropy)
    mistakes = tf.not_equal(tf.argmax(target, 1), tf.argmax(prediction, 1))
    error = tf.reduce_mean(tf.cast(mistakes, tf.float32))
def training_and_using():
    global cell, val, state, last, weight, bias, prediction, sess
    global cross_entropy, optimizer, minimize, mistakes, error
    sess = tf.Session()
    sess.run(tf.global_variables_initializer())
    graph = []
    num_of_batches = int(len(train_x) / batch_size)
    for epoch in range(epochs):
        ptr = 0
        cost = 0
        for j in range(num_of_batches):
            batch_x, batch_y = train_x[ptr:ptr + batch_size], 
train_y[ptr:ptr + batch_size]
            ptr += batch_size
            sess.run(minimize, {data: batch_x, target: batch_y, dropout: 
0.5, learn_rate: learning_rate})
            cost += cross_entropy.eval(session=sess, feed_dict={data: 
batch_x, target: batch_y, dropout: 0.5})
            if j == num_of_batches - 1:
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                batch_train_error = error.eval(session=sess, 
feed_dict={data: batch_x, target: batch_y, dropout: 0})
        print("Epoch:", str(epoch))
        if (epoch+1) % save_step == 0:
            incorrect = error.eval(session=sess, feed_dict={data: test_x,
target: test_y, dropout: 0})
            incorrect_validate = error.eval(session=sess, 
feed_dict={data: validation_x, target: validation_y, dropout: 0})
            accuracy = 100 * (1 - incorrect)
            accuracy_validation = 100 * (1 - incorrect_validate)
            training_set_accuracy = (1 - np.mean(batch_train_error)) * 
100
            print('Epoch {:2d} loss {:4.2f}'.format(epoch, cost))
            print('Epoch {:2d} train accuracy {:4.2f}%'.format(epoch, 
training_set_accuracy))
            print('Epoch {:2d} test accuracy {:4.2f}%'.format(epoch, 
accuracy))
            type_1_ratio, type_2_ratio, error_share = 
set_errors('validation')
            print('type 1 error: {}%'.format(round(type_1_ratio*100, 1)))
            print('type 2 error: {}%'.format(round(type_2_ratio*100, 1)))
            print('type 1 over type 2: {}
%'.format(round(error_share*100, 1)))
            graph.append([epoch, training_set_accuracy, accuracy, cost, 
type_1_ratio, type_2_ratio, error_share, accuracy_validation])
            # folder = os.path.dirname(os.path.realpath(__file__))
            # epoch_folder = 'epoch_{}'.format(i)
            # epoch_folder_name = os.path.join(folder_name, 
epoch_folder)
            # saver.save(sess, epoch_folder_name + "/model.ckpt")
    with open(os.path.join(folder_name, 'graph.pickle'), 'wb') as f:
        pickle.dump(graph, f)
    # accuracy_list = use_neural_network('test')
    # print(accuracy_list[:100])
    # for i in accuracy_list[:100]:
    #     if i[1] == 'failed':
    #         print(i)
    sess.close()
def set_variables():
    global train_x, train_y, test_x, test_y, validation_y, validation_x
    global test_set, train_set, validation_set, folder_name, 
network_structure
    dataset = 'original_numpyfied_database.pickle'
    print('loading dataset...')
    with open(dataset, 'rb') as f:
        input_data = pickle.load(f)
    input_data = np.array(input_data)
    np.random.shuffle(input_data)
    input_data = np.transpose(input_data, (1, 0, 2))
    input_data = input_data[:years_n]
    input_data = np.transpose(input_data, (1, 0, 2))
    input_data = np.transpose(input_data, (2, 1, 0))
    print('creating features and labels...')
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    labels = input_data[0][0]
    labels = np.array([calc_label(x) for x in labels])
    features = input_data[1:]
    features = np.transpose(features, (2, 1, 0))
    del input_data
    print('rebalancing dataset...')
    features_and_labels = list(zip(features, labels))
    failed = np.array([x for x in features_and_labels if x[1][0]==0])
    non_failed = np.array([x for x in features_and_labels if x[1][0]==1])
    np.random.shuffle(non_failed)
    if rebalance_dataset:
        non_failed = non_failed[:len(failed)]
    features_and_labels = np.concatenate((non_failed, failed), axis=0)
    np.random.shuffle(features_and_labels)
    features = np.array([x[0] for x in features_and_labels])
    labels = np.array([x[1] for x in features_and_labels])
    del features_and_labels
    print('dividing test and validation sets...')
    train_size = int(len(labels) * 0.8)
    validate_size = int(len(labels) * 0.9)
    train_y = np.array(labels[:train_size])
    test_y = np.array(labels[train_size:validate_size])
    validation_y = np.array(labels[validate_size:])
    del labels
    train_x = np.array(features[:train_size]) 
    test_x = np.array(features[train_size:validate_size])
    validation_x = np.array(features[validate_size:])
    del features
    print(train_x.shape)
    print(train_y.shape)
    print(test_x.shape)
    print(test_y.shape)
    print(validation_x.shape)
    print(validation_y.shape)
    
    folder_name = strftime("%d-%m-%Y_%H:%M:%S", localtime())
    if not os.path.exists(folder_name):
        os.makedirs(folder_name)
    network_structure = [num_hidden, num_layers, batch_size, epochs, 
save_step, rebalance_dataset]
    with open(os.path.join(folder_name, 'network_structure.pickle'), 'wb') 
as f:
        pickle.dump(network_structure, f)
    test_set = list(zip(test_x, test_y))
    validation_set = list(zip(validation_x, validation_y))
    train_set = [train_x, train_y]
if __name__ == '__main__':
    for _ in range(10):
        num_hidden = 50  # number of hidden neurons per layer
        num_layers = 1  # number of hidden layers, either 1 or 2
        batch_size = 5000
        epochs = 200
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        save_step = 1
        years_n = 5  # numbers of years in the balance to use
        rebalance_dataset = True
        learning_rate = 0.001
        weight = tf.Variable(tf.truncated_normal([num_hidden, 2]))
        bias = tf.Variable(tf.constant(0.1, shape=[2]))
        data = tf.placeholder(tf.float32, [None, years_n, 27])
        target = tf.placeholder(tf.float32, [None, 2])
        learn_rate = tf.placeholder(tf.float32)
        dropout = tf.placeholder(tf.float32)
        saver = tf.train.Saver()
        remove_old_files()
        set_variables()
        create_RNN_model()
        training_and_using()
        tf.reset_default_graph()
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