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Abstract 

The thesis is focused on the practice of Financial  Stress Testing  

analysis as a specific risk management instrument that may be employed 

by credit  institutions to monitor the levels of selected key performance 

indicators.  These statistics may support management in decision making 

when performing assessments to evaluate banks’ current and expected 

economic healthiness conditions,  which could be influenced by factors 

either internal to the firm or belonging to the external macroeconomic 

environment.  Then, with regard to the financial context,  such analyses  

may be useful to serve regulatory compliance purposes,  other than being 

of guidance for the implementation of crisis-prevention actions,  as well as  

for the execution of resource planning and control activities.  With the aim 

to adequately respond to the needs of credit institutions in performing 

risk management tasks,  the present work proposes a methodology which 

is grounded on the use of Bayesian Networks  as specific data analysis 

tools that may be utilized in the conduction of Financial Stress Testing 

practices.  Indeed,  Bayesian Networks are instruments deemed to be 

capable of providing accurate indications on dependencies between and 

among business-specific factors.  The assessment of such relations,  via 

simulation procedures,  may allow the identification of criticalities 

relative to the single banking institution, which could consequently be 

able to decide where to focus efforts and, in case necessary,  evaluate the 

execution of corrective actions.  Therefore,  in this sense,  Bayesian 

Networks may be considered useful and adequate tools in supporting 

Financial Stress Testing practices.  To this end, the present work provides 

a case study analysis,  based on real-world data,  on the application of the 

previously-mentioned risk monitoring activities.
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Introduction 

The aim of this work is to answer the needs of executing a Financial  

Stress Testing  analysis by applying a statistical approach grounded on the 

use of Bayesian Networks .  In particular,  an introduction to the Stress 

Testing concepts and theory of Bayesian Networks would be provided, as 

well as a practical example relative to the application of such statistical  

tool  in the bank-related environment.  

 

Financial Stress Testing analyses may be identified as part of the risk 

management practices and deemed to be especially useful for credit  

institutions,  provided that such analyses are often focused on a wide 

array of financial indicators,  hence they may provide insights relative to 

key aspects of a  bank’s business.  Moreover,  other than assessing and 

providing forecasts on the level of several statistics under different 

market conditions,  a rigorous Stress Testing analysis would demand 

further investigations on the factors that contribute to the definition of 

key performance indicators and critical thresholds.  Indeed, one may wish 

to identify their root and common dependencies,  so that to gain more 

informative analysis’  outputs to be exploited when making business-

related decisions.  For this particular instance,  among the selection of 

statistical instruments that a credit institution may employ, it  would be 

appropriate to choose a tool which allows to account for interactions 

between and among the variables selected for the analysis.  

A Bayesian Network is a statistical  model which combines the 

properties of graphical and probabilistic theories to derive joint 

probability distributions on the variables of a system under study.  

Moreover,  such tool would be of use in assessing the strength of 

dependencies that may persist  throughout a specific network of elements.  

This is a fundamental feature which allows to perform analyses on as is  

conditions and to provide estimates for potential future scenarios.  With 

this in mind, concerning the financial and economic environments,  
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entities operating in the industry would need to adequately address their 

needs of managing risks,  as well as operating monitoring activities to 

ensure business solidity,  even in case of crisis-like events.  Therefore,  

given the significant amount and variety of market and firm-related data 

tracked by financial institutions,  Bayesian Networks may support the 

aforementioned analyses and controlling activities,  provided that they are  

flexible enough tools which could handle the complexity of data at  

disposal and may allow to grasp those critical relations that persist  

between and among the elements object of the analysis.  Thus,  Bayesian 

Networks are deemed to be adequate statistical models and represent a 

valid solution to employ when performing activities related to Financial  

Stress Testing.  

 

The present work is structured in a broad-to-specific  fashion. To be 

clear,  the thesis starts from providing notions for a general understanding 

of the financial context of application relative to Stress Testing.  Then, the 

focus is narrowed toward the statistical instruments utilized to carry out 

business-specific analyses,  hence providing a dedicated theoretical  

description on Bayesian Networks.  Lastly,  elements converge to display 

the results of a specific analysis performed utilizing real-world data for a  

credit  institution.  

 

In particular,  the thesis is structured as follows.  

Chapter 1 deals with presenting an overview relative to the specific  

financial risk management context.  In particular,  since financial  

institutions necessitate to thoroughly analyze their own creditworthiness,  

either for self-control needs or to comply with regulations into force,  the 

practice of Financial Stress Testing  may be employed to serve these 

purposes.  Indeed, the aim would be to test via simulation the solidity of  

credit  institutions,  both under normal and downturn market conditions.  

To this end, Bayesian Networks would allow to take into consideration 

those dependence relations persisting throughout and between the 

macroeconomic and firm-specific contexts.  Hence,  such statistical tool  
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may convey information on the possible short-term trends relative to 

selected key performance indicators; in turn, by assessing both the status 

quo  and forecasts for such measures,  financial entities may be able to take 

the necessary actions in face of potential future adverse economic 

conditions.  

Chapter 2 provides an overview of the main concepts and 

functionalities relative to Bayesian Networks as statistical and data 

analysis tools.  In particular,  they are characterized by graphical and 

probabilistic properties,  as mentioned already,  and one of their key 

features is that they are backed up by selected learning algorithms, which 

allow the definition of networks’ structure and parameters based on data 

at hand. Notice in particular that,  for the purposes of the present work, 

the focus will  be on the use of a  specific  type of instrument,  namely the 

Gaussian Bayesian Network.  

In chapter 3 a specific Financial Stress Testing simulation is  carried 

out with the aid of Bayesian Networks.  To be more specific,  a case study 

analysis would be executed relative to actual data concerning a credit  

institution operating in the European context.  The main purpose of the 

application would be to assess the probability of default for such financial 

institution, as well  as providing an assessment on the level of selected 

firm-specific key performance indicators.  To this end, the analysis would 

consist in defining historical trends and simulating potential future ones,  

either in a context of normal or critical market-wide economic conditions.  

At last,  some conclusions and closing remarks are provided.  
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1 Financial Stress Testing 

The present chapter will  be dedicated to analyzing and reviewing the 

core elements and principles which relate to the conduction of a Financial  

Stress Testing  analysis,  with particular focus toward those aspects that 

concern the case study presented in the third chapter.  This will  help 

clarify and put stress on those key concepts which are a prerequisite for 

the understanding and application of Bayesian Networks to the empirical 

analysis context.  

 

1.1 Definition and Macroeconomic Regulatory Context 

In the first  place,  Financial Stress Testing is often defined as being a 

supervisory and monitoring instrument utilized to verify the resistance of 

credit institutions to potential future economic downturns.  In other 

words,  from a regulatory standpoint,  the test mainly consists in a 

simulation study assessing the bank’s ability to bear losses and evaluating 

its resilience capabilities,  on the basis of predefined critical  thresholds.    

 

In the aftermath of the 2008 Crisis,  regulators and practitioners casted 

doubt on the appropriateness of previously-utilized Quantitative Risk 

Management  instruments and felt the need to define tools to provide a 

more realistic picture on the solvency state of credit  institutions.  One of 

the pre-Crisis tools mostly in use for the assessment of risks related to 

the banking sector was Value at Risk (VaR).  However,  as it  turned out,  

VaR revealed itself  as being not an adequate instrument to evaluate tail  

scenarios (Gao, Mishra and Ramazzotti ,  2017).  Therefore,  as already-

mentioned, the need for a more adequate risk management tool led to the 

creation and rise of Stress Testing analyses on financial  institutions.   

Notice that,  such risk assessment practice may be characterized by 

aspects that are tailored and relevant to the bank object of the analysis,  

hence defining a micro-level  dimension focus.  Sti ll ,  it  is also important not 
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to lose sight of the broader picture in which a credit institution may be 

operating,  that is to say the relative macroeconomic context.  In fact,  

shocks and imbalances at the macro-level  dimension could generate 

significant downside effects (like for instance liquidity or credit-related 

troubles) on each single banking institution (Dees,  Henry and Martin,  

2017).  

Other than the interaction with the real economy and the 

interconnections between and across banks,  Stress Testing analyses 

should take into account the dynamicity in bank’s economic and financial  

cycles,  in a way that reflects the most closely its solvency situation and 

accounts for its actions in response to external systemic events (Dees,  

Henry and Martin,  2017).  For instance,  a credit institution may decide to 

adopt corrective/strategic actions like deleveraging or capital raises,  

hence changing its  balance sheet composition to counter the effects of 

macroeconomic stresses.  Then, in order to take adequate decisions,  a  

Stress Test may be structured in a way that ensures the appropriate 

granularity in data and time instants,  so that to output proper 

information on the bank’s financial situation.  

 

The principles intrinsic to the practice of Stress Testing and the 

obtained financial indicators are often demanded by authorities (like the 

European Central Bank (ECB),  the European Banking Authority (EBA) or 

the Basel Committee on Banking Supervision) in order to oversight and 

monitor over the broader macroeconomic and financial  context.  Sti ll ,  the 

simulated measures help the financial institution in assessing its own 

economic state and possibly may indicate the need for corrective actions.  

Indeed the simulation output may be utilized, say,  for resource 

planning/control,  compliance and risk monitoring purposes.  Therefore,  

provided that the quality and quantity of data would be sufficient and 

adequate to carry out analyses,  the Stress Testing analysis could also be 

exploited to effectively implement continuous improvement activities on 

the credit institutions (Basel Committee,  2017).  
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With reference to the macro-prudential regulatory frameworks topic,  

the ECB puts into place the so called Single Supervisory Mechanism (SSM):  

the ECB is in charge of a supervisory role in monitoring the financial  

stability relative to the countries within the Eurozone. Notice,  in 

particular,  that Financial Stress Testing is actually part of the SSM. In this 

regard, it  is worth providing a quick overview on a specific model utilized 

by the ECB to conduct analysis for the assessment of credit institutions’  

solvency.  To provide a summary of such model,  it  is enough to report its  

four core pil lars (Dees,  Henry and Martin,  2017): 

 

� Identify the elements and scenarios belonging to the 

macroeconomic environment which are relevant to the credit  

institution object of  the analysis;  

� Generate variables describing the previously-identified elements  

to evaluate the bank’s projected loss absorption capacity;  

� Starting from the estimated future losses obtained in the 

previous step,  calculate the overall impacts on the financial  

institution’s solvency position; 

� Evaluate the effects generated by the bank’s own initial solvency 

state toward the broader financial and economic environment.   

 

Hence,  in general,  the Stress Testing analysis would be focused on 

forecasting future values of a chosen set of financial ratios,  under 

baseline and adverse scenarios,  in order to assess the financial  

healthiness of the credit institution, conditional on some critical  

thresholds set  for those same ratios (Dees,  Henry and Martin,  2017).  

 

1.2 Approaches to Stress Testing 

Keeping in mind that the main objective of the simulation would be to 

assess the frequency and impacts with which adverse events would affect  

financial institutions,  specific and different approaches may be applied to 
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the Stress Testing analysis,  based on the analyst’s choice.  Hence,  it  is  

worth reviewing some of the most relevant methods to be implemented,  

reported and briefly described next (Rebonato,  2017): 

 

� The Extreme-Tail  Approach  essentially gives more importance 

and weight to tail  events,  selecting those data which reflect the  

most adverse conditions mapped in the past.   

The reliability of such method may be questioned in that it  is  

heavily reliant on past data and actually excludes some possible  

scenarios from the overall  picture,  somehow outputting less  

informative conclusions;  

 

� The Vulnerability-Driven Approach ,  in the first place,  focuses on 

identifying vulnerabilities that are present in the credit  

institutions’ activities.  In order to accomplish that,  for instance,  

one may perform a comparison between the actual values of 

chosen financial performance indicators and their relative 

institutional/regulatory threshold values.  Secondly,  on the basis 

of the former step,  the perimeter for potential adverse scenarios 

should be defined.  

Notice that one difficulty with such approach rests in the fact  

that quantitative measures of events’ probabilities are often 

difficult to obtain; 

 

� The Coherent-Stress-Testing Approach  (a) is designed to identify 

the so called root causes  of effects influencing other variables of 

the analysis;  (b) aims at defining connections between and 

among variables,  often expressed through (conditional)  

probabilities.  Then,  the ultimate aim of the analysis would be to 

evaluate the variables’ effects jointly,  usually in order to draw 

conclusions on a specific financial  performance indicator,  

depending on the specific objective for which the Stress Testing 

was designed and implemented.  
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The main challenge relative to this method would be to 

accurately assign events’ and variables’  probabilities,  which 

often are derived from other models or assigned subjectively.    

 

In practice,  a number of quantitative methodologies may be employed 

to support the conduction of analyses within the boundaries of the afore-

mentioned methods.  Then, for instance,  financial institutions may rely on 

the following statistical instruments for Financial Stress Testing 

purposes: VAR  and ARIMA  models are rather common tools to uti lize when 

assessing as is  and to be  conditions of selected variables,  while Markov 

Switching1 models are seldom employed.  However,  as better exposed later,  

the choice for the present work is to focus on the use of Bayesian 

Networks,  aiming to investigate for the presence of dependencies among 

the variables under study, aspect which may not be grasped by other 

types of modeling methodologies.  

Notice that,  with reference to all  the possible approaches which could 

be adopted in the context of Stress Testing and, more in general,  to Risk 

Management,  a  certain degree of subjectivity must be accepted and 

adequately uti lized in these kind of analyses.  Such qualitative component 

would serve to complement the quantitative side of outputs generated by 

statistical models,  in order to obtain a more informative picture on the 

state of the credit  institution under study. 

 

The above-mentioned Financial  Stress Testing methodologies may be 

implemented by regulators and authorities to monitor the financial  sector 

at large.  Sti ll ,  as explained in the following section, such approaches may 

be applied by single banking institutions either for regulatory or risk 

monitoring purposes.  

 

                                                        

1 For more informa tion on Mar kov Swit ching  models  appl ied to F inancial  Stress  

Test ing  s ee  Jacobs  Jr .  a nd Sens enbrenner (2018) .  
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1.3 Key Indicators and Specific Regulatory Context 

Other than being useful to regulators for macro-prudential purposes,  

the Stress Testing analysis is also demanded by supervisory authorities in 

order to oversight the single credit institutions,  primarily on liquidity and 

capital  adequacy matters.  Furthermore, in order to perform the necessary 

assessments,  analyses are often focused on the evaluation of the bank’s 

risks relating to credit,  market,  interest rates and liquidity indicators.  In 

this respect,  it  would be key to dispose of sufficiently accurate data,  with 

particular attention to the proper mapping of exposure-related 

information (Basel Committee,  2017).  

A more thorough explanation of the elements that may be part of a 

Stress Testing analysis will  be provided in the current section, together 

with some considerations relative to regulatory topics on single banking 

entities.  Moreover,  what comes next will  also be of use with regard to the 

understanding of the empirical case study presented in the third chapter.   

 

Starting from the regulatory context,  it  must be stressed that some 

indicators uti lized in the analysis may also be interpreted as measures to 

evaluate a credit institution on its level of compliance with the rules and 

regulations into force.  Therefore,  it  is of interest to report some key 

concepts from the Basel III  framework,  which directly apply to credit  

institutions at international level and recall some features of the Stress 

Testing analysis practice.  

The core idea behind the Basel III  framework is that exposures should 

be “backed by a high quality capital base”  (Basel Committee,  2011).  Banks 

should possess enough capital reserves to serve as a buffer against 

potential losses associated to the creditworthiness deterioration of other 

financial players,  as well as against possible future adverse market-wide 

cycles.  Furthermore, other than enhancing the quality and quantity of 

capital reserves,  the framework demands that banks hold a so called 

capital buffer  accumulated during good times and exploited during 
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recessions,  hence countering the effects of economic/financial cycles 

(Bologna and Segura,  2016).  

For these reasons,  banks should carry out analyses keeping into 

consideration the simulation of adverse scenarios to better define the 

amount of capital reserves to allocate.  The key measures imposed by the 

Basel III  framework for capital requirements follow (Basel Committee,  

2011): 

 
� The Common Equity Tier 1  (CET1) Ratio  must always be at least  

at a level of 4.5%. The next formula i llustrates how this 

indicator is calculated: 

 

 

 ��	1	�"��� = ��	1�$�% (1.1) 

 

Where �$�% stands for Risk-Weighted Assets2.   

  

� The Capital Adequacy Ratio  must always be at least equal to  

8.0%. The following formula shows its  composition: 

 

 

 �"���"�	�&'(")*	�"��� = 	�'�	1	�"���"� + 	�'�	2	�"���"��$�%  (1.2) 

 

Notice that,  although being a key requirement,  the creation of  

adequate capital buffers is not enough for an appropriate management of 

credit-related risks.  Indeed, this must be supported by internationally 

harmonized rules concerning liquidity and leverage requirements.  To this 

end, a financial institution should dispose of sufficient short-term liquid 

assets to survive sudden severe adverse events,  along with more stable 

resources to ensure resilience over the long term (Basel Committee,  

                                                        

2 Usual ly  def ined as  ba nk ’s  ass ets  or exposu res weigh ted acc ording to th e relat iv e  

risk ,  whic h may be ass ess ed eith er th rough the St a ndar dized  or  th e  Inter na l  Rat ings -

Bas ed  ( IRB)  a pproach es.  F or more on th is  topic ,  s ee  Bas el  C ommittee (2011) .  



 

11 

 

2011).  In this regard, the Basel III  framework proposes the use of 

measures like: 

 
� The Net Stable Funding Ratio ,  which in principle should be grater 

or equal to 100%, calculated utilizing the following formula: 

 

 

 �'�	��"��'	��&��-	�"��� = �."��"��'	��&��-	���	�ℎ'	/'&�/	�'�/	��"�	"/��	��	%�"��'	��&��-  (1.3) 

 
� The Leverage Ratio ,  which should be grater or equal than 3%, 

computed in the following way: 

 

 

 �'.'�"-'	�"��� = 	�'�	1	�"���"�	��"�	�0��%�'% (1.4) 

 

One may assert  that the indicators and thresholds reported above are 

the main principles a banking institution must comply with in order to be 

in line with the Basel III  framework key requirements.  Sti l l ,  performing an 

effective control on potential financial risks would also imply monitoring 

and assessing counterparty credit risk (by keeping track of all  exposures) 

and market-wide risk factors (for instance interest rates,  exchange rates 

and equities).   

Other than the Basel III  framework’s requirements,  an adequate 

supervision on risk would be supplemented by the use of the 

aforementioned Stress Testing analysis,  which may be performed via 

simulation to obtain estimates (through forecasting models) of the 

potential impacts and vulnerabilit ies affecting the bank.  Such estimated 

conditions would be interpreted through different elements (financial  

indicators),  each providing a specific evaluation on the state in which the 

bank is expected to be in future times3.  Therefore,  the overall assessment 

is performed by considering different indicators’ values across the 

                                                        

3 I t  is  usual l y  th e cas e that  indicators  are es t ima ted to obtain forec asts  u p unti l  

one y ear ah ea d with res pect  to pres ent t ime in wh ich th e Stress  Tes ting analy sis  is  

performed.  
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financial institution, which may be affected by the realization of 

exogenous and/or endogenous plausible scenarios.  To put it  another way,  

macroeconomic and bank-specific variables contribute to the definition of 

the aforementioned financial indicators and the relative forecasts,  also 

through interactions among them. Notice that such interconnections are  

mostly based on the relative time series values,  hence being characterized 

by a specific time trend as well as random components to allow for 

uncertainty in future times.  

It  is usually the case that the key indicators chosen for the analysis fal l  

in the following four broad categories:  

 

� Risk-Adjusted Framework (RAF),  including indicators which 

values are adjusted for the relative risk.  For instance,  one may 

consider all  those indicators calculated with the contribution of 

Risk-Weighted Assets or exposures adjusted for risk.  In general,  

financial indicators of this type may be CET1 Ratio ,  Return on 

Equity ,  Non-Performing Loans Ratio  and Cost of Risk Ratio ;    

� Liquidity ,  which measures the quantity of liquid assets at  

disposal of the bank. This category includes indicators like Self-

Funding Ratio  and Net Stable Funding Ratio ;   

� Credit ,  measuring the level of indebtedness of the credit  

institution. Indicators relative to this category may be Leverage 

Ratio ,  Non-Performing Loans Ratio  and Probabil ity of Default ;  

� Rates ,  that mainly include those measures related to Interest  and 

Exchange Rates Risks .  

 

Notice that,  baseline values for the financial indicators are directly 

estimated through modeling and forecasting procedures.  The reference 

(threshold) values are either set by regulatory bodies or self-imposed by 

the credit institution itself.  In turn, depending on each indicator’s value 

(and whether it  crosses a predefined threshold) the bank may decide to 

implement corrective actions,  in case necessary.  
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More in depth explanations and definitions relative to financial  

indicators will  be provided in the chapter dedicated to the case study 

analysis,  in particular,  focusing on those that will  effectively be utilized to 

carry out the empirical project.  

Nonetheless,  it  is necessary to expand more on a specific element that 

reveals itself being a central factor in the third chapter: the Probability of  

Default .  The following sub-section provides further concepts relative to 

such measure and its components.  

 

1.3.1 Probability of Default 

One of the key elements which would be estimated in a Stress Testing 

analysis is the Probability of Default  (PD) connected to the analyzed credit  

institution. Intuitively,  this measure may be interpreted as being a  

summary indicator for the overall riskiness connected to such banking 

institution. Indeed,  many factors,  which may be either bank-specific 

and/or macroeconomic,  contribute to the definition of the PD value 

relative to that credit institution.  

Depending on whether the bank is a public or private company,  

computations to obtain the relative PD may differ,  indeed, data at disposal 

also would differ.  In general,  one may exploit historical data (if available) 

obtained from market-related sources or from previously performed 

Stress Tests in order to assess the present state of PD. In particular,  

concerning a credit  institution which shares are traded on the market,  i t  

would be possible to obtain proxies for PD values estimation mainly from 

(Dees,  Henry and Martin,  2017): 

 

a)  Bank default rates realized in past times .  In such case the 

historical information uti lized may not be totally adequate,  given 

these kind of rates are obtained from data reflecting company-

specific characteristics.  Consequently,  there may be no 

correspondence between such features and the ones possessed 

by the bank which PD has to be estimated; 
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b)  Default rates obtained from Non-Performing Loans  (NPL) 

statistics .  This approach is often preferred to the former,  

provided that NPL data do not necessarily imply that a company 

would be insolvent.  Moreover,  NPL data better reflect the 

composition of a credit institution’s portfolio,  hence 

characterizing its  own PD; 

c)  Default rates derived from market data of financial companies .  PD 

would be estimated via inputs like leverage (derived from the 

long-term and short-term liabilities of the bank) and asset 

volati lities (obtained from the bank equities’  volatility).  

Notice that a distinction has to be made between two types of 

estimated PDs: actual PDs  and risk-neutral PDs  (Dees,  Henry and Martin,  

2017).  In the former case PD would be obtained from financial expected 

default rates based on the relative time series of financial institutions.  In 

the latter case PDs may be implied by market instruments like Credit 

Default Swaps (CDS) which also reflect market-related risks; hence,  PD 

values would be partly biased and not uniquely reflecting a bank’s core 

features and risks.   

 

There exist cases in which the bank object of the analysis may not be a 

publicly traded company; as a consequence,  it  would not be possible to 

exploit market-related data on such financial institution. The way to 

estimate the relative PD would be to utilize a model which exploits the 

bank’s balance sheet data among its inputs.  One proposed solution to the 

derivation of PD values would be to utilize the method proposed by the 

Basel Committee for Banking Supervision, that is the  Internal-Ratings 

Based  (IRB) approach for PD estimation, which main passages will  be 

reviewed next.  

 

Key elements to consider when assessing the probability of a credit  

institution to default are the relative future projected losses and the 

regulatory capital buffer against unexpected adverse trends.  These factors 
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are also reflected on the IRB  approach which, in particular,  is based on 

the following assumptions for PD calculation (Gómez,  Parrado and Partal,  

2018): 
 

a)  Basel III  assertions on credit  risks are correct;   

b)  The single credit institutions’ risks are in line with the Basel III 

framework measures; 

c)  All risks relative to a bank may be interpreted in terms of credit  

risks.   

 

In particular,  the inputs to calculate �� estimate relative to a credit  

institution are reported next (Hurliny,  Leymariez and Patinx,  2017): 

 

� The amount of regulatory capital as defined by the Basel II I  

framework (that would be the Capital Adequacy measure for 

capital,  ��,  in this case),  which corresponds to the sum of all  

capital  requirements for each exposure; 

 

� The Exposure At Default  (���),  that is the total value of 

outstanding debt (exposures) in case the bank defaults on its  

loans; 

 

� The Loss Given Default  (���),  which is a portion of EAD that is  

effectively lost in case the relative debtors default on their 

loans; 

 

� The Maturity Adjustment  term, expressed by  

 

 

 1(�) = (1 + (� − 2.5)	�(��))1 − 1.5	�(��)  

 

(1.5) 

with a smoothing factor �(��) = (0.11856	 − 	0.05478 ln(��))=  and 

� as the maturity measure.  
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� A term >(��) relating to probability defined as 

 

 

 >(��) = ? @?AB(��) + CD(��)?AB(99.9%)C1 − D(��) G − �� (1.6) 

 
where ?(. ) denotes the cumulative distribution function of a  

standard normal distribution and D(��) would be identified as 

the default correlation  of probability which utilized formula 

would be 

 

 

 D(��) = 0.12 @	1 − 'AHI	JK1 − 'AHI 	G + 0.24	 L1 − @	1 − 'AHI	JK1 − 'AHI 	GM (1.7) 

 
Given all the components and bank’s balance sheet data,  i t  is possible 

to derive a value for the Probability of Default in a given moment in time 

(� = 0, 1, 2, …	, 		) by solving formula (1.8) for ��,  which would be contained 

within both 1(�) and >(��),  as shown in the formulas above:  

 

 

 
(���P ∙ ���P ∙ >(��)P ∙ 1(�)P) − ��P = 0. (1.8) 

 

Then, by computing the PD in different time instants,  for which data 

are updated, it  may be possible to construct a time series in order to 

observe its  evolution and possibly perform forecasts on such indicator.  

Moreover,  changes in PD may be useful in that they could stimulate the 

credit institution’s effort to execute further and deeper analyses on other 

key financial indicators,  with the aim to identify potential issues and 

possibly take corrective actions where necessary.  

 

1.4 Assessing Causation in Stress Testing 

In general,  the output of a Stress Testing analysis should be suggesting 

whether corrective actions may be taken by the bank as to either comply 

with regulations or improve stability and solidity concerning specific 
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indicators.  Hence,  to properly act on the basis of the results provided by 

the analysis,  the utilized tools (models) should be informative on which 

causal relations would link the considered variables.  Then, one may be 

able to understand on which indicators to intervene and which corrective 

measures would be most adequate to implement.   

In this sense,  with reference to the PD estimation case,  it  may be 

possible to grasp which relations persist among macroeconomic or firm-

specific factors contributing to the definition of the PD value.  In 

particular,  notice that links dictated by correlations may not be really 

informative for corrective action implementation. Indeed, what would 

actually be useful  is the knowledge of links between and among variables 

generated by causal  relations.  Hence,  an important aspect of a Stress 

Testing analysis would be to avoid evaluating the effects of the 

considered variables separately and, instead, study each relative 

contribution in conjunction with all  the others jointly.   

To this end, in order to better represent and visually display causal  

relations among variables,  it  may be possible to utilize statistical and 

probabilistic models.  In particular,  the present work focuses on the use of 

Bayesian Networks ,  grounded on the concept that there exist reasons for 

which such modeling technique may be exploited to perform Stress  

Testing on banking institutions.  

 

Bayesian Networks are deemed to be especially useful since,  through 

the use of specific  learning algorithms, they may be able to describe 

which variables are causing the value of,  say,  a bank’s PD. Moreover,  to 

possibly increase the precision of such an instrument,  one may exploit  

expert knowledge (if available) to obtain more accurate results.  

Therefore,  by providing a straightforward and intuitive output,  

Bayesian Networks may be adequate in supporting the Stress Testing 

practice for the following reasons: 
 

� They allow the description of causal relations in terms of 

probability and temporal ordering (Gao, Mishra and Ramazzotti ,  
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2017),  hence permitting the estimation of causal  structures at  

different time instants for specific  financial  indicators;  

� It may be possible to forecast via simulation the most probable 

values,  expressed through confidence intervals,  that a specific  

indicator may take in the foreseeable future; 

� Bayesian Networks mirror in several aspects the aforementioned 

Coherent-Stress-Testing Approach ,  by  allowing the identification 

of root and intermediate causes for a specific indicator;  

� They include some features of previously-mentioned ECB method 

utilized for assessing the healthiness of a credit institution, in 

that Bayesian Networks allow the selection of the most relevant 

macroeconomic and firm-specific variables affecting a specific  

financial indicator,  as well as evaluating the effects of changes in 

such model’s  variables.  

 

Although Bayesian Networks seem to be useful  and accurate tools,  it  is  

always important to keep in mind that they may only provide an 

approximate description of reality,  given they concentrate uniquely on a 

rather specific selection of risk factors.  Indeed, by considering the 

realization of exceptional events l ike crises,  market and financial  

conditions would likely be altered and chances are that,  depending on the 

severity and nature of the downturn, predictive models may fail  to 

account for certain aspects and events (Rebonato,  2017).  Therefore,  one 

may be wary and careful in interpreting the model’s output by itself.  It  

would be more adequate,  instead, to contextualize those results and 

complement them with insightful expert knowledge on the phenomena 

surrounding a specific  financial indicator.   

 

In general,  despite a few limitations that Bayesian Networks possess 

(like any other model would),  they probably are a rather useful  and 

somewhat flexible tool to be exploited in the description of various 

phenomena: their most important feature is the possibility to identify key 
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links connecting variables,  possibly on different layers of causal relations,  

which ultimately affect a  specific target financial indicator.  

Notice that Bayesian Networks may not be exploited uniquely as a tool  

to support Stress Testing analyses.  Indeed, it  is worth mentioning that 

they possess a much wider application across different fields of 

knowledge,  among which Biology,  Computer Science and Medicine,  for 

instance (Neapolitan,  2004).  

 

Anyway, for the specific purposes of the present thesis,  the next 

chapter will  display those features of Bayesian Networks that are relevant 

to the implementation of a  financial Stress Testing analysis relative to a 

credit institution,  as demonstrated also in the empirical project 

application presented in the third chapter.  
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2 Bayesian Networks 

This section will be dedicated to a brief review of the fundamental  

elements relating to Bayesian Networks (simply BN).  Exposing the key 

notions on BNs is deemed to be a necessary prerequisite to the 

understanding of the analysis carried out in the following chapter.  

 

A BN is composed of two core elements,  one of qualitative and the 

other of quantitative nature.  The former is the structure of the network 

(the so called Directed Acyclic Graph ,  as explained below), while the latter 

represents the probabilistic side of the net,  relative to the nodes of the 

BN: in case of discrete data,  this element translates into the use of 

Conditional Probability Tables  (CPTs),  meanwhile for continuous data,  

Gaussian probabil ity distributions  are assumed for each node in the 

network. Hence,  a  BN is deemed to be included within the class of 

Probabil istic Graphical Models .   

It  is also important to stress that the nodes (or vertices) of the 

network actually correspond to the variables that are meant to be part of  

the model.  Moreover,  the lines (edges) connecting the nodes may indicate 

the presence of specific dependence relations between variables,  which,  

in some cases,  may also be interpreted in causal terms.  

 

Essentially,  a BN can be exploited to define probability distributions in 

a compact manner,  distributions which may otherwise be potentially 

complex to display.  It  is possible to achieve such representation since the 

characteristics of BNs allow for the specification of relations between and 

among variables via the definition of the relative probabilistic conditional 

dependencies and independencies (Darwiche, 2010).  Moreover,  the main 

purpose of a BN would generally be to model beliefs expressed in 

probabilistic terms and, by analyzing its output,  take appropriate 

decisions on a specific  matter.  
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After providing the general idea and key elements of a BN, it  is  

necessary to analyze in further detail and with more thorough 

specifications the core matter.  In order to accomplish that,  the next 

subsections will  be dedicated to the following topics:  

� Analysis on the graphical features of BNs; 

� Bayes Theorem and some Probability notions; 

� The link between graphical and probabilistic properties of BNs 

and further details  on the related key concepts;  

� Bayesian Networks and their characteristics;  

� Continuous Bayesian Networks.  

 

2.1 Graphical Properties 

As already mentioned, BNs belong to a specific class of Graphical  

Models,  more specifically Probabilistic Graphical Models ,  which allow to 

clearly display conditional and joint probabilities of a dataset composed 

by multiple variables,  which often are identified as random variables 

R	 = (SB, S=, . . ., ST).  To be clear,  the overall distribution defined by R is  the 

global distribution  (also known as the joint probability distribution of the  

variables),  while each single SU ∈ R (with � = 1, 2, … , �) may be defined as 

being the distribution of each random variable linked to the data,  in other 

words,  a local distribution (Scutari and Denis,  2015).  Notice that,  in the 

construction of the BN, such local distributions relative to a variable 

correspond to the so called Conditional  Probabil ity Table  of that node, for 

discrete data,  and Gaussian probability distributions ,  in the continuous 

data instance.  

 

Before further exploring the properties of BNs, a brief recap on Graph 

Theory is needed.  

A fundamental concept which must be explained is the one of a  

Directed Acyclic Graph  (DAG),  which may be denoted by � = (W, �) notation.  
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In this context the nodes of the graph are connected to the single 

variables SUs of the model; therefore,  they are identified as .U ∈ W (with 

� = 1, 2, … , �) .  To be more specific,  a DAG is a peculiar graphical structure 

concept which may be understood by simply expanding on the words 

Directed and Acyclic :  the first,  is linked to the fact  that the arcs (or edges) 

may be given a direction pointing to one of the nodes which they connect,  

in order to identify potential causal relations; the second one, concerns 

the fact that there is no cyclicality in the graphical structure,  meaning 

that edges “departing” from a node are not allowed to create a directed 

path through other vertices that leads back to that same original  node. As 

a consequence,  there exist nodes which are the origin of the graph having 

no incoming arcs (known as root nodes) and others that terminate the 

graph with no outgoing arcs (known as leaf nodes).  For instance,  in Figure 

1,  the root node is .B,  while the leaf node is .X and this same concept can 

be applied to more complex networks.   

 

In a more formal way, by considering an arc " ∈ � which connects two 

vertices .U 	and .Y  (with � = 1, 2, … , � − 1 and Z = 2, 3, … , �) denoted by 

" = (.U , .Y),  in the event that .U  is the tail ,  and .Y  is the head ,  it  is  possible 

to assert  that the arc is directed  (.U → .Y).  Furthermore, if  the 

interpretation of causality is deemed to be valid,  .U  would be seen as the 

cause,  while .Y  would be the effect,  otherwise,  only a dependence 

relationship would persist.  In case there is no directionality,  the edge 

(a)  (b)  (c)  

.= 

 

.X 

 

.B 

 

.] 

 

.B 

.= 

 

.] 

 

.X 

 

.B 

 

.= 

 

.] 

 

.X 

 

Figure 1:  (a)  Th e gra ph on th e left  repres ents  a  dir ect ed DAG ,  (b)  the one in  

th e c enter a n undirected  one a nd (c)  th e DAG  on th e r ight  is  of  a  mixed  ty pe.  

 



 

23 

 

would be defined as undirected  (.U − .Y).  In the former instance,  the  edges 

of the graphical  model which connect the various nodes,  denoted by  " ∈ �,  

serve as a way to identify the dependence or independence relationships 

between the vertices and, hence,  the variables.  In the latter case,  instead,  

edges would be denoted by ' ∈ � and the corresponding DAG notation 

would be � = (W, �) and corresponding to an undirected graph .  For the sake 

of completeness,  it  is worth mentioning the existence of another type of  

graph, which would be the mixed  one: � = (W, �, �).   
Moreover,  direct dependence relations between variables are put in 

evidence by the directionality of the arcs.  Notice that indirect  

dependencies are not depicted in graphs,  however,  they may be grasped 

by looking at the sequences of arcs (paths) that connect non-adjacent 

nodes.  Therefore,  an indirect dependence exists in the event that between 

a couple of variables (nodes) there exist intermediate variables (nodes).   

To better understand the above-mentioned concepts,  Figure 1 displays 

graphical  examples of the different DAGs. 

 

The way arcs are defined on a graph, determines the so called 

structure  of the graph, which depends on the presence of arcs and their 

relative directionality (if any).  In turn, the structure of the graph defines  

its own properties (which later will  be analyzed in further detail).  

Recalling the concepts of root  and leaf  nodes,  it  is key to define other 

notions relative to each single node in the network.  For instance,  

Figure 2:  G raphical  display of  th e rela tions forming  th e s ets  of  A nces tors ,  

Parents ,  N eigh bors ,  Ch ildren and Desc enda nts  [sourc e:  Naga ra jan,  Scu tari  a nd 

Lebre (2013)] .  

.B 
.= 

.] 

.X 

.H 

.^ 

._ 

.` 

.a 

.BI 
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considering what is  depicted in Figure 1(a),  on the one hand, vertex .B can 

be defined as being the ancestor  of .=,  .] and .X,  in other words,  the node 

that precedes the others in the ordered sequence of arcs.  On the other 

hand, .=,  .] and .X are defined as descendants  of  .B.  Furthermore,  .= and .] 

are the parents  of  node .X,  l ike .B is the parent of both .= and .].  

Moreover,  .= and .] are the children of .B,  l ike .X is  the child of both .= and 

.].  Therefore,  the concepts of parents  and children are related to nodes 

which are located in the graph close to each other (neighbors).  At this  

point it  is clear that the parents are a subset of the ancestors and the 

children are a subset of the descendants.  These concepts are made clearer 

by the graph reported in Figure 2.  

To expand a litt le more on the way a BN may be constructed, other 

than its elements,  it  must be said that there exist  approaches in the 

building of the network. In fact,  it  is usually the case that the BN reflects 

the knowledge or beliefs of some experts on the matter object of the 

analysis.  In such case,  the aim would be to try capturing the relations 

between variables,  relations which may be established by causality,  and 

the network would be a so called expert network .   

Another way to determine a BN would be to define it  according to 

stricter rules with the purpose,  for instance,  of determining a network to 

monitor the functioning of an information system (Darwiche, 2010).  

Another popular method worth mentioning is  to build up the network by 

learning  its structure from the data (as explained in section 2.5.1).   

In particular,  an expert network and structures learnt  from data will  

be the instruments utilized to carry out the case study analysis in the 

following chapter.  

2.2 Probability Concepts 

One of the core elements relating to BNs surely is Bayesian 

Probability,  therefore,  a brief review is deemed necessary in order to  

recap the key concepts.  
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It  is important to stress the difference that stands between frequentist  

and subjective approaches in the way probability is defined. Relative to 

the former case,  in essence,  the frequency (meaning the number of times 

out of the number of trials) of an event happening determines the 

probability to be assigned to that specific event.  In the latter approach 

instead, with particular reference to the use of conditional probabilities,  a  

set of subjective assumptions and knowledge apply to the way the desired 

probability is obtained.  

Focusing on the subjective approach, which is relevant to BNs, it  may 

be inferred that initial assignments of probability to a specific event   

actually imply the definition of a conditional probability statements like 

�( |$) (or more simply �( )),  where $ identifies the knowledge on the 

context of that specific event (Fenton and Neil,  2013).  Consequently,  this 

kind of probability is determined by way of personal or expert beliefs ,  

which may be informative in a setting where no events are yet to be 

observed. Such principle is reflected on the notation �( ) which may be 

corresponding to the notion of prior belief  about an event  .  Moreover,  by 

utilizing evidence c on the actual event   it  may be possible to update the 

prior belief and obtain a posterior belief  on   denoted by �( |c).  In order 

to compute this probability in terms of �( ) it  would be necessary to 

utilize the joint probability �( ∩ c),  which often is unknown. What is 

usually known, instead, is the l ikel ihood  of  c,  that  is �(c| ).  The aim is to 

update beliefs in order to compute the following conditional probability:  

 

 �( |c) = �( ∩ c)�(c) . (2.1) 

 

In order to solve the issue concerning the joint probability in formula 

(2.1),  the Bayes’ Rule comes to the rescue by allowing the computation of 

�( |c) uti lizing the l ikelihood:  

 

 �( |c) = �(c| )	�( )�(c) . (2.2) 
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The principle built  in the Bayes’ Rule is not directly visible in BNs, 

however,  it  is applied for the quantitative side of networks and may be 

used to calculate conditional probabilities relative to nodes where 

necessary.  This is connected to the afore-mentioned concept of CPTs and 

Gaussian probability distributions,  each relating to a specific vertex and 

carrying the probability distribution of a specific node which is  

conditioned upon the node’s parents’  probabilities,  made exception for 

the case in which the node in question would be a root node. In this sense,  

the CPT or the Gaussian probability distributions for a specific  vertex 

aims at capturing the strength of the relationship between the vertex and 

its parents (Fenton and Neil,  2013).  

Concerning the probability distribution linked to a specific node, it  is  

useful to define the so called marginalization  of variables (which in turn 

will be linked to the chain rule  topic as reported in section 2.4),  in case 

one wishes to extract marginal probability values from a joint probability 

distribution. In brief,  by considering for instance two variables SB and S=,  

marginalization on SB may be performed by applying the following 

principle:  

 

 �(SB) =e�(SB|S=)	�(S=)
fg

 (2.3) 

Furthermore, notice that 

 

 e�(SB|S=) = 1
h

 (2.4) 

Hence,  given formulas (2.3) and (2.4),  the marginalization principle 

may be similarly applied on joint distributions with more than two 

variables.  

 

2.3 Graphical Structure and Probability 

In order to investigate whether dependence relations are present 

between nodes,  it  is important to distinguish between the notions of 

graphical  (⊥j) and probabil ist ic  (⊥J) independence.  In the former case,  it  
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is possible to observe independence,  for instance,  between two nodes that 

are separated by no arc (also defined as conditional  independence  in 

probabilistic terms).  In the latter case,  instead, independence is  rooted in 

the probabilistic relation between variables.  As it  turns out,  these two 

types of independencies are actually linked in a way that the structure of  

the BN may influence their determination (Scutari and Denis,  2015).  

In a more formal way,  suppose � to be the structure defining 

dependencies in the probability distribution �	of the variables in R.  Define 

also k,l, m to be disjoint subsets of R.  It is possible to infer that a graph � 

is a dependency map  of � in case there is perfect correspondence between 

R and the vertices in W,  so that  

 

 
k ⊥J l|m ⇒ o ⊥j l|m (2.5) 

In case �	would be and independency map  of  �,  then 

 

 
k ⊥J l|m ⇐ o ⊥j l|m.  (2.6) 

The graph � may be defined as a perfect map of � in case it  is both a  

dependency  and an independency map ,  meaning that there is independence 

under both a structural and a probabilistic point of view. Then 

 

 
k ⊥q l|m ⇔ k ⊥s l|m	 (2.7) 

and,  for this specific  instance,  � would be faithful  to � (defining the 

faithfulness  condition).   

Notice that in the first two cases the mapping of independence is not 

necessarily the same between the structure of the graph and the 

probability distribution underlying the variables.  However,  it  is important 

.B	
.B	

.=	
.]	

.B	
 

.=	
 

.]	
 

(a) (b) (c) 

Figure 3:  (a )  Serial  connec tion;  ( b)  div ergent connec tion;  (c )  conv ergent 

connec tion (or  t-structu re in such  cas e) .  

.=	 .]	



 

28 

 

to stress that in the case in which � is  faithful to �,  separation in the 

graphical network and conditional independence relative to the variables 

perfectly correspond (Scutari and Denis,  2015).  

 

2.3.1 d-separation 

With reference to the concept of graphical separation, the key 

principle that stands behind it is d-separation  (directed separation).   

 

As before,  by considering k,l, m to be disjoint subsets of R for a DAG �,  

then, the subset m d-separates k and l.  As previously seen above, the 

relative notation is  o ⊥j l|m.  The condition of d-separation  is satisfied 

only if  in between any path that leads from the vertices in k to the ones in  

l there exist nodes like .,  having the following properties:  

� Arcs converge to . and such node and its relative descendants do 

not belong to m;  

� . belongs to m but converging arcs pointing at  it  do not exist.  

 

In support of the definition relating to d-separation ,  it  is  necessary to 

describe the possible configurations which may apply to three vertices 

and two edges,  known as fundamental connections ,  which are uti lized 

when constructing a BN.  

Consider for example the existence of the three vertices .B,  .= and .].  

Then: 

� A serial connection  is a structure so that .B → .= → .];  

� A divergent connection  would be .B ← .= → .];  

� A convergent connection  is  identified by .B → .= ← .].  Moreover,  

in case the parents (.B and .]) are not liked by an edge,  the 

connection would be a .-structure .  

To better appreciate the various definitions relating to the different types 

of connections,  Figure 3 displays the three instances described above.  
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2.4 Defining Bayesian Networks 

By knowing how to define and classify connections between vertices,  

keeping into consideration the probability distributions of the underlying 

variables,  it  may be possible to provide a definition for a BN: 

 

Provided there is  a probability distribution � relative to a set of  

variables R,  we may define a DAG � = (R, �),  where � identifies the 

set of arcs connecting the nodes of the network, to be a BN denoted 

by v = (�, R) if  and only i f the graph � is a minimal independency 

map, in the sense that,  in case any arc is removed, the network 

would not be an independency map anymore (Scutari and Denis,  

2015).  Therefore,  it  is clear that graphical separation entails 

probabilistic independence; sti ll ,  not all  conditional independencies  

from a probabilistic standpoint are depicted on the network 

graphically.  

  

From the definition of BN it is necessary to expand and provide further 

details  on the properties of these types of networks.  

Firstly,  by knowing that a BN is also an independency map, it  follows 

that the decomposition of the joint probability distribution ��(R) is 

applicable and defined as follows: 

 

 ��(R) =w��	(SU|∏fy)
z

U{B
 (2.8) 

where ∏fy  is identified as being the set of parents of SU.  Another way to 

express the joint probability would be through the chain rule :  

 

 ��(R) =w��	(SU|SU|B, … , Sz)
z

U{B
 (2.9) 

which allows to simplify the decomposition of the variables in the event 

that the graph would be acyclic.  In general,  however,  formula (2.8) is to 

be preferred as first choice.  
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Secondly,  BNs do possess the so called Markov Property  (an application 

of the chain rule in formula (2.9)) which allows to represent a joint  

probability distribution of the variables as a product of conditional 

probability distributions (Nagarajan, Scutari and Lebre,  2013).  

Recalling the previously defined fundamental connections  and blending 

those concepts with the ones of the Markov Property ,  it  is possible to 

provide an exemplification of the chain rule formula.  In order to  

accomplish that,  knowing there is a direct correspondence between nodes 

.U ∈ } and the underlying variables SU ∈ R (.B ↔ SB; 	.= ↔ S=; .] ↔ S]; 	…):  

� For the serial connection  in Figure 3(a) and the divergent 

connection  in Figure 3(b),  the DAGs may be defined as 

independency maps  and, hence,  the following formulas apply 

respectively:   

�(SB, S=, S]) = �(S]|S=)�(S=|SB)�(SB)		
�(SB, S=, S]) = �(SB|S=)�(S]|S=)�(S=)	

� Relating to the convergent connection  (.-structure) in Figure 

3(c),  node .= violates the conditions for d-separation ,  therefore,  

vertices .B and .] are not independent from .=:  

�(SB, S=, S]) = �(S=|SB, S])�(SB)�(S])	
 

From the example just presented, follows that serial and divergent 

connections do have the same factorizations in terms of conditional 

probabilities,  then, they are deemed to be Markov Equivalent Structures,  

which together form a so called equivalence class:  DAGs with the same 

underlying structure and .-structures are said to be equivalent.  From 

what asserted so far,  it  is evident that .-structures differ from the other 

types of connections,  in particular,  under graphical and probabilistic  

independence standpoints (Scutari and Denis,  2015).  

 



 

31 

 

2.4.1 Markov Blankets 

In connection to the d-separation  topic,  a Markov Blanket  is defined to 

be a set of vertices d-separating a given vertex from the remaining part of 

the network (Nagarajan, Scutari and Lebre,  2013).  Therefore,  given a 

specific node, the Markov Blanket  is composed by the node’s parents,  

children and the nodes with which there are children in common. 

In a formal way: the Markov Blanket of a node .U ∈ W (with underlying 

variables SU ∈ R) is that minimal subset � in  W so that  

 

 
SU ⊥j W − � − SU|� (2.10) 

and in case the faithfulness assumption is valid,  then 

 

 
SU ⊥J W − � − SU|�. (2.11) 

It is also possible to assert that a Markov Blanket  includes all  those 

nodes (�) that make all  the other ones not necessary when inference is 

performed on a given vertex,  say .U .  In this regard, it  is usually the case 

that parent nodes values are the ones majorly affecting .U ’s value,  

especially when causal relations are valid.   

 

2.5 Bayesian Networks with Continuous Data 

On the basis of the empirical case study in the next chapter,  it  is useful 

to focus on defining the elements to adopt when building a Gaussian 

Bayesian Network  (GBN). A GBN is a BN built to model continuous data 

assuming the relative underlying joint probability distribution would be a 

multivariate Gaussian one. Hence,  it  follows naturally that,  instead of 

CPTs ,  each node’s values would be associated to a Normal distribution 

conditioned on the parent’s values.  In turn,  this translates into defining a 

series of multivariate regressions,  one for each node present in the 

network. In fact,  every vertex would have an associated value (the 

response variable of the regression, which explanatory variables are the 

parent’s values) and variance (the error term of the regression),  that  
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together are respectively the first and the second moment of the relative 

Gaussian distribution for that specific  node.  

 

More formally,  GBNs may be defined by the following key features 

(Scutari and Denis,  2015): 

� Each vertex follows a Gaussian distribution; 

� Root nodes are defined by the relative marginal distributions; 

� The intercept term and explanatory variables in the regression 

for each node define the conditioning effect on that particular 

node and, moreover,  these elements do not affect  the variance 

that is indeed specific  of the node considered; 

� Nodes’ local distributions are defined by Gaussian linear 

regressions,  with no interaction terms for the explanatory 

variables;  

� The global distribution of all  the nodes in the network 

corresponds to a multivariate Gaussian and, as already-

mentioned in previous sections,  such joint distribution is the 

product of all  the single local distributions.  

Furthermore, by considering data � and the BN v = (�, R) and denoting 

the parameters associated with R by �,  it  is possible to define the 

parametric distributions used to describe data � and the relative BN as 

v = (�, �) (Scutari and Denis,  2015).  Then, the entire learning process for 

structure and parameters would be summarized by �(v|�) = �(�,�|�),  
which also corresponds to:    

 

 
�(�,�|�) = �(�|�)	�(�|�, �) (2.12) 

where the right-hand side first element represents the process of 

structure learning from data,  while the second one is the subsequent step 

dedicated to parameter estimation.  

 

In the following, the key steps of Structure  Learning  ( inferring the 

structure for a DAG, that is,  setting the arcs and their relative direction) 

and Parameter Learning  (estimate local distributions on the basis of  the 
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previously-learned structure) will  be described, as they represent  

important steps in the definition of a Network. The focus will  be on the 

notions connected to GBNs; however the following underlying principles 

will  be also valid for all  other types of BNs.  

 

2.5.1 Structure Learning  

This is  the first and probably most crucial step in the definition of a  

BN, given it defines whether relations between nodes should really exist  

and which direction the estimated arcs should have,  not to mention that it  

will  set the basis for the parameter estimation step. 

In particular,  structure learning may be performed by utilizing the 

Bayes’ theorem to define the components of the posterior probability 

relative to the graph, that is  

 

 
�(�|�) ∝ �(�)�(�|�) (2.13) 

where �(�) represents the prior distribution carrying information on 

dependence between nodes,  while �(�|�) is the probability of the data 

given the graph (Scutari and Denis,  2015).  

It  is  usually the case that �(�) is  chosen to allocate the same 

probability to all  the DAGs it represents (non-informative prior),  including 

information on the conditional dependencies of the network’s variables R.  

Concerning �(�|�),  instead, by decomposing the function as 

 

�(�|�) = ��(�|�,�)�(�|�)&� 

 

(2.14) 

it  may be proven that a further equivalent representation of equation 

(2.14) is the following: 

 

�(�|�) =w��fy[�(SU|∏fy)]
z

U{B
 

 

(2.15) 

where � represents the number of nodes,  and therefore variables,  present 

in the network. For a more detailed derivation of equation (2.15),  see 

Scutari and Denis (2015).  
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As it  turns out,  in case all  the expected values in equation (2.15) may 

be computable in closed form, it  would be possible to get a measure of 

�(�|�) in relatively short computational time. This principle is  valid for 

the already-mentioned multivariate Normal distribution characterizing 

GBNs and �(�|�) may be computed through the relative conjugate 4 Inverse 

Wishart Distribution5.  Moreover,  the relative posterior distribution may 

be defined as the so called Bayesian Gaussian equivalent uniform  (BGeu or 

BGe),  which is also to be seen as a type of Network Score 6.  Notice that the 

assumptions on BGe include a non-informative prior on both DAGs 

[�(�) ∝ 1] and parameters of each vertex [�(�fy|∏fy) = �UY = �/|�fy|].  

Moreover,  the parameter belonging to the BGe is  the imaginary sample 

size � which is connected to the prior and the higher its value,  the more 

weight is  assigned to such prior (Scutari and Denis,  2015).  

Alternative ways of computing �(�|�) reside in the use of Conditional 

Independence Tests7 or other Network Scores,  to approximate its  value.  

For the sake of the analysis carried out in the following chapter,  where 

BGe score will  be utilized, it  would be more appropriate to spend a few 

more words on the latter method, just to review the definition of the 

Bayesian Information Criterion  (BIC),  as an alternative approximate 

Network Score methodology (Scutari and Denis,  2015): 

 v��(�, �) → log	[v�'(�, �)]       as sample size � → ∞. 	
 

(2.16) 

                                                        

4 Th e c onc ept l ink ed to th e term conjugat e  distr ibut ion  comes from Bay es ia n 

Sta tis t ics  and,  in general ,  a ppl ies  in cas e th e p oster ior  dist r ibut ion  belongs to th e 

same proba bil i ty  dis tribu tion fa mily  of  th e  pr ior  distr ibut ion .   
5  An I nvers e Wisha rt  Dist r ibut ion  is  th e multivaria te extens ion to th e Inverse  

Gamma  D ist ribut ion a nd has th e fol l owing  general  form $AB(�, .):   

�  � > 0 a nd repres ents  a  �	0	� sca le  matrix ,  that  is ,  a  su m of  s quares  ma trix  

belonging to  a  mult iva riate  Gaus sia n distr ibu tion;   

�  th e . pa rameter corresponds  to  . > � − 1 degrees  of  freedom.  

For  more on this  topic ,  s ee Sc huu rma n,  G ras man and Ha mak er (2016) .  
6 Sc ore wh ich  ma y be c ompa red to th e ones  of  oth er  est imated s truc tu res  to  s et  a  

ra nking of  th e  dif ferent potent ial  DA Gs tha t  may cha rac teriz e  data .  
7 Just  to mention,  in  case of  c ont inuous  data ,  a n appropriate Conditional  

Independenc e Tes t  would be to ut i l iz e p art ia l  corre lat ions  to  v eri fy  wh eth er th e nul l  

hypoth esis  of  conditional  independenc e between two va ria bl es ,  g iv en th e valu e of  th e  

relat iv e  parents ,  i s  to  be  acc epted or rejected.    
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Moreover,  i t  is  possible to perform a decomposition of the BIC as 

 v��(�, �) = ∑ {log	[�(SU|∏fy)] − (|�fy|/2	)}zU{B . 	
 

(2.17) 

In addition, i f  causal  BNs are the tool utilized for the analysis,  it  is  

important to provide and review some further specific  notions.   

Firstly,  in case expert knowledge is available on a determinate  

phenomenon, there would be no issues in setting causal connections 

between variables (nodes).  

Secondly,  i f  instead the causal  BN structure is to be learnt from data,  

additional assumptions are needed (Nagarajan, Scutari  and Lebre,  2013): 

� Causal Markov Assumption ,  that is,  each variable SU ∈ R is  

conditionally independent of its direct and indirect  non-

effects,  given the relative direct  causes.  Also,  notice that,  the 

relations expressed by the directionality of edges in the BN 

indicate causal connections between variables,  where,  in 

general,  parents (or in some cases root nodes) are identified as 

the causes of their neighboring descendants.  

� A network must exist so that it  is faithful  to the probability 

distribution of R,  in order to obtain probabilistic causal  

dependencies which are generated by d-separations  in the DAG; 

� Unobserved variables that may influence those variables that 

are actually present in the BN must not exist,  otherwise the 

faithfulness  condition and Causal Markov Assumption  may be 

violated.  

Still ,  in real-world settings there may be a considerable number of 

connections and correlations between and among variables,  relations 

which if not captured by the model would correspond to unobserved 

(latent) variables.  Hence,  rather than assuming that causal relationships 

described by the network correspond to the real world connections,  it  is  

more appropriate to keep in mind that ,  given a context of application, the 

variables considered in the BN would identify causal relations specific to  

that particular instance and only approximate reality (Neapolitan,  2004).  
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To perform the process of structure learning in the context of BNs, a  

number of a lgorithms  are available,  each tailored to the problem that 

needs to be addressed and specific to the type of data at disposal.  

Broadly speaking,  it  is possible to distinguish among three learning 

algorithms types: Constraint-based ,  Score-based  and Hybrid .  Notice that,  

all  of these are subject to some assumptions (Scutari and Denis,  2015): 

� A one-to-one correspondence between vertices of the network 

and variables in R must exist;  

� Conditional independencies must exist between variables in R;  

� The DAG structure must reflect actual dependencies between all  

possible combinations of variables in order to ensure the 

uniqueness of Markov Blankets and, in turn, of the BN structure; 

� The observed values are regarded as being independent 

realizations for variables coded by network vertices.  

For the purposes of the analysis carried out in chapter 3,  among all  

possibilities,  the focus will  be on the Hill  Cl imbing  (HC) Algorithm .  

In general,  HC belongs to the class of greedy search algorithms ,  which 

perform structure search by starting from a set of  nodes and gradually 

adding,  erasing or reversing arcs in the network. This process continues 

until  it  is no more possible to improve the network’s score; notice that 

such element allows HC to be classified also as a Score-based algorithm, 

which performs structure optimization via heuristics l ike BGe or BIC for 

instance.  The pseudo-code relative to the HC algorithm follows 

(Nagarajan, Scutari  and Lebre,  2013): 

Hill-Climbing Algorithm  

1.  Choose an empty DAG � (with no arcs) over the set of  variables R  

2.  Calculate the score of  � according to a  defined scoring criteria  and 

denoted by �)��'j  

3.  Set the maximum score as /"0%)��' = �)��'j 

4.  Loop the fol lowing as /"0%)��'  

a)  For every possible addition,  erasure or  reversal of  arcs that do not 

make the DAG a cyclic  network:  

i .  compute the score of  the modified DAG �∗,  that is  �)��'j∗   
i i .  i f  �)��'j∗ > �)��'j ,  set  � = �∗ and �)��'j = �)��'j∗ 

b)  update /"0%)��' with the obtained value for �)��'j  

5.  Return the DAG structure � 
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The way in which the HC algorithm operates,  dependent on the specific  

problem and the relative data at hand, may result in a DAG with excessive 

and non-coherent directed arcs.  Moreover,  in case no information is  

present on the underlying data structure,  the estimated DAG may not be 

able to reveal clear relationships between and among variables,  hence,  

being uninformative.  

A solution to the above-mentioned problem may be to utilize other 

types of learning algorithms (like for instance Grow-Shrink  or PC) and/or 

different scoring criteria to estimate the DAGs. Subsequently,  it  may be 

possible to compare all of them to identify the arcs that are most 

recurring across the structures,  so that one may infer the presence of  

relationships between specific nodes.  Indeed, this approach may be 

identified as a kind of model  averaging  procedure.   

A similar but alternative approach may be to perform multiple 

simulations by uti lizing a single type of algorithm and eventually  

“average” the entirety of the obtained structures.  

In case the underlying data structure and relationships are not totally 

obscure to the analyst,  it  may be possible to exploit expert information to 

compel the algorithm to either set  determinate arcs (white l ist) or 

prohibit the presence of specific relations (black list).  In such a way the 

algorithm may output more informative DAGs, relative to data considered 

in the analysis.  By utilizing this approach the algorithm may be classified 

under the Constraint-based  class of algorithms.  

As it  turns out,  depending on the specific  features (scores and 

constraints) that one may utilize to characterize an algorithm, the output 

may significantly vary.  The choice is of course based on the purposes of 

the analysis and the type/quantity of data available.  

Furthermore, notice that in some instances,  as performed in the case  

study analysis,  it  could be appropriate to exploit Hybrid  algorithms, which 

are characterized by both constraints and scoring criteria features.  
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It  is worth only mentioning that in presence of data observed across 

time, one approach may be to estimate a Dynamic Bayesian Network  

structure in order to account not only for relations among variables in a 

precise temporal moment,  but also for those relationships that exist  

between variables over time. Notice that such method has not been 

implemented in the case study analysis.  For more on Dynamic Bayesian 

Networks ,  see Nagarajan, Scutari and Lebre (2013).  

 

A different approach may be to set up a learning procedure aiming at  

discovering the underlying (causal) structure linking data and persisting 

through time. To accomplish this,  a possible technique could be similar to 

the one described below: 

 

Step (1):  Perform repeated s imulations on each moment in time 

(�I, �B, �=, … , 	)  and obtain a  representative network structure 

for each of  those moments.  

Step (2):  Average all  the obtained structures (���P� , ���Pg , …	 , ����) to  

estimate a guiding underlying structure (���∗) that may be 

valid and invariant across time.   

 

Once the structure of the underlying network has been either learnt or 

defined through expert knowledge, the following step would be to 

perform inference on the parameters of the network. 

  

2.5.2 Parameter Estimation 

The last step in the learning process consists in implementing 

inferential procedures to estimate the joint probabilistic distribution of 

the BN. In order to do that,  it  would be appropriate to estimate the 

distributions associated to each node of the network obtained in the 

previous step. Then, by obtaining the statistics relative to each node, it  

would be possible to assess the strength of the dependence relationships 

(possibly causal) between that node and its parents (Scutari and Denis,  

2015).  Hence,  by simply looking at the estimated parameters of the BN,  
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one may be able to infer which (causal) links connecting nodes are the 

most relevant.   

Given GBNs are the designated models for the analysis,  nodes’  local  

distributions would be defined by Gaussian l inear regression models: the 

response variable would be identified by the node itself and the 

regressors would correspond to its parents (Scutari and Denis,  2015).  

Notice that,  in practice,  one approach to parameter inference is Maximum 

Likelihood Estimation (MLE)8.  In general,  Bayesian estimation of 

parameters would only be employed in case new evidence (data) becomes 

available.  For this reason, the initial estimation of parameters is usually 

performed via MLE. 

It  would also be useful to define the Confidence Intervals (CIs) relative 

to each estimated coefficient,  in order to define a range over which the 

value of the actual parameter may fall  in.  Furthermore, in predictive 

terms, it  may be appropriate to obtain prediction CIs through the use of 

standard error measures like the Mean Squared Error or the Mean 

Absolute Error.  Alternatively,  one may perform multiple simulations on 

the prediction range to obtain a different indication of the area over 

which series’ values are most likely to be observed in the future.  

Lastly,  when estimating parameters,  it  is important to remember that 

the results of inferential procedures are highly dependent on the data at  

hand and especially on the relative sample size (Scutari  and Denis,  2015).    

It  is worth mentioning that other topics relative to parameter 

estimation do exist and apply to various different settings9.  However,  with 

regard to the empirical analysis that will  follow in the next chapter,  the 

                                                        

8 I n general ,  MLE  is  a  tech niqu e whic h a ims a t  f inding  pa rameter va lues  � so  tha t  

th e l ik el ihood funct ion �(�; 0) is  maximiz ed.  Notic e  tha t  oftent imes th e na tu ral  

loga ri th m of  the  ma ximu m l ik el ihood fu nc tion ��[�(�; 0)] is  ut i l iz ed  for  convenienc e.  

Th en,  th e  res ult ing  ML E para meter  es tima te would  be �� ∈ "�-max�(�; 0).  
9 For ins ta nc e,  in  pres enc e of  evidenc e,  one may be abl e  to impl ement inferential  

qu eries  to inv est iga te di fferenc es in th e obta ined pa rameter  es timat ions .  Such  

proc edu re is  a l so  k nown as  Bel ief  Up da ting  ( whic h may  be eith er exa ct  or  

approximat e) .  Notic e  that  evidenc e ma y be of  two ty pes :  har d ,  in ca se it  is  poss ibl e to  

dis pos e of  new obs erva tions for va ria bl es  ins ta nt iat ion ,  or s oft ,  in cas e new 

dis tribu tions  for th e  network ’s  va ria bl es  a re a vaila bl e.   

For  more detai l s  on th is  topic  s ee  Sc uta ri  a nd Denis  (2015) .         
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notions provided in the current section are sufficient for an early 

overview and understanding of the concepts that will  be applied on the 

data in the case study analysis.   

 

This concludes the overview on the properties,  learning procedures 

and inference that relate to BNs, with a particular focus on approaches 

used when continuous data are analyzed. Such notions serve as a 

preliminary step necessary to the understanding of computational 

methods applied in the following chapter concerning the empirical 

analysis.  

For more in depth notions and further topics on the use of BNs, see  

Neapolitan (2004),  Scutari and Denis (2015) and Nagarajan, Scutari and 

Lebre (2013).  
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3 Estimating a Bank’s Probability of Default 

The present chapter is focused on explaining and reporting the 

methodology and the results obtained from the use of a  Bayesian Network 

to address the needs of a Stress Testing analysis application, based on 

actual data relative to a specific credit institution (identified by the 

expression The  Bank  in the following paragraphs and sections).   

Aim of the analysis would be to provide an indication on The Bank ’s  

Probability of Default (��) up to 1 year ahead from the last  observations 

available in the database.  Furthermore, a 1-year-ahead assessment will  

also be provided for the variables deemed to be closely related and 

directly affecting ��.  Therefore,  differently from a wide-scope Financial  

Stress Testing (including the assessment of various elements as described 

in the first chapter),  the following analysis will  be rather focused on the 

�� component and the elements related to it .  

All the computations were performed by uti lizing specific packages of  

the R Software Environment (www.r-project.org).  APPENDIX B  provides 

more information relative to R  and the packages utilized in the analysis.  

 

3.1 Data Description 

In the first place,  data utilized to develop the Financial  Stress Testing 

analysis and further descriptions concerning the variables employed are 

presented. Notice that raw data for the whole database have been directly 

extracted/defined by The Bank ;  furthermore, variables employed in the 

analysis have been determined by elaborating data,  in line with the aim to 

perform an assessment on The Bank ’s ��.  To this end,  among the 

indicators and data provided by The Bank ,  Table 1 and Table 2 show an 

overview of the specific components deemed to be useful  for the purposes 

of the analysis.  

Notice that,  concerning the Firm-specific Variables  for this particular 

instance,  RWAs would include measures of risk-weighted elements owned 
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and calculated by The Bank  concerning non-corporate retail  assets10 and 

corporate retail  assets11.  More specifically,  the two aforementioned 

categories form the RWAs relative to credit activities,  which combined 

with the RWAs generated through operations executed by The Bank  form 

the overall  uti lized measure for RWAs.  

 

Concerning the time dimension of data,  the available observations 

span between April the 1s t ,  2015 and January the 1s t ,  2018. Notice 

however that,  some of these measures were observed monthly (���,  ���,  

����,  ����,  ���. �ℎ,  ��� and ������) while others were observed quarterly 

(��	1,  �����,  ��,  ��,   � and ���).  

                                                        

10 Such el ements  would relate to c entral  gov ernments/ ba nk s,  regional  

gov ernments  a nd l oca l  authorit ies ,  pu bl ic  sec tor ent it ies ,  c redit  ins ti tu tions and 

connec ted f ina nc ial  ins truments  ( ei th er  high  or l ow r isk) .  
11 Such el ements  woul d  relate to f i rms a nd corporat ions .  On this  measu re th e 

Credit  Valua tion Adjus tment had been a ppl ied:  i t  repres ents  th e dis crepancy between 

risk- free a nd r isky  assets ’  val u e,  taking into acc ou nt th e possibi l i ty  for  

cou nterpa rt ies ’  defa ult ,  h enc e def ining  th e val ue for  counter part y cr edit  r is k .  

Variabl e Name Alias  Descrip tion 

Unemployment  UN  
Av era ge u nempl oy ment  perc entage l ev el  for th e EU  

cou ntries  

Inf lat ion Rat e  Infl  
Th e mea su re for  inflat ion is  express ed v ia  th e 

Consu mer Pric e  Index  for  th e EU  c ou ntries  

Gross  D omest ic  
Product  

GDP  Change in  av erage G DP for  th e E U cou ntries  

Mar ket  Shar e of  
Compa ny Ass ets  

Mkt.Sh  

Th is  meas ure indicates  th e perc enta ge proportion 

of  ass ets  bel onging  to  The  Ba nk c onc erning  th e 

relat iv e  mark et  

Oil  Pr ice  Oil  Change in  mea n pric e  of  oi l  ac ross  th e E U c ou ntries  

Eur ibor  3 -months  Euribor  Th e Eu ribor  3- months  interes t  ra te  

 Tabl e 1:  Th e M acr oeconomic  Var ia bles  u ti l iz ed in  th e ass ess ment  of  The Ba nk ’s  PD

togeth er  with th e rel ativ e  al ias  (c ode of  the  el ement u ti l iz ed in th e anal ysis  on R 

Softwa re)  a nd desc ript ion.  
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In a preliminary phase,  the analysis had been performed uti lizing 

quarterly data relative to all  the variables.  Nevertheless,  results actually 

turned out to be uninformative and this fact is probably due to the 

scarcity of data at  disposal (12 observations per variable) over a time 

period of almost 3 years.  Therefore,  the decision was to apply 

interpolation (more specifically the spline  method) in order to extract  

synthetic  observations from those time series possessing quarterly data.  

In such a way it had been possible to obtain monthly observations on all  

the considered variables,  hence getting series of 34 time points length.  

Variabl e Name Alias  Descrip tion 

Common Equit y  T ier  1  
Rat io  

CET1  
As  def ined in  formula  ( 1.1)  i t  i s  th e  rat io  of  C ET1 

capital  amou nt  ov er  R WA s  

Ret ur n O n Ris k-
Adjusted C ap ita l  

RORAC  

Change in  Operat ing  Income N et Ta xes whic h has 

been a djus ted for r isk  by  expl oi t ing th e 

contribut ion of  R WAs  measu re 

Non-Per forming Loa ns 
Rat io  

NPL  

Th e rat io  of  dou btful  exposu res  val u e ( in  oth er 

words  Non- Performing  Loans)  ov er  th e total  v alue 

of  a l l  expos u res  

Cost  o f  R is k  Rat io  CoR  

Th e rat io  of  loss es  a nd costs  (as soc iated  with 

assets  expos ed to  a  c ertain  degree of  risk )  ov er th e 

avera ge valu e of  expos ures  

Net Sta ble  F unding 
Rat io  

NSF R  

As  def ined in  formula  ( 1.3)  i t  i s  th e  rat io  of  

mediu m-term res ou rc es ( mediu m-term fina nc ing  

and T he  Ba nk ’s  valu e of  equity)  ov er  th e total  valu e 

of  stabl e  fu nding  resou rc es  ( net  val u e of  exposures  

and res erv es  for  bad debts)  

Levera ge  Rat io  LR  
As  def ined in  formula  ( 1.4)  i t  i s  th e  rat io  of  total  

exposu res ’  valu e ov er the a mount  of  Tier 1 ca pital  

Interest  Rate  Risk  IR  

I t  is  th e ra tio  of  net  expos u res ( in  th is  cas e  

compu ted by  ass essing th e disc repa nc ies  between 

changes  in  interes t  ra tes  for a ss ets  a nd l ia bil i t ies  

of  d if ferent  matu rit ies)  ov er  total  ca pital  a mount  

 
Tabl e 2:  Th e Fir m-speci f ic  Var ia bles  uti l iz ed  in th e a ss ess ment of  The Ba nk ’s  PD

togeth er with th e rel ativ e al ias  (c ode of  the el ement  ut i l iz ed in th e a nalys is  on R 

Soft war e)  and desc ription.  
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Moreover,  recalling that the aim of the Stress Testing analysis would 

be to provide an indication of future values on �� and firm-specific 

variables affecting it ,  monthly predictions would relate to the time span 

between February the 1s t ,  2018 and January the 1s t ,  2019 (prediction 

period).  

Notice that no raw time series of �� is  at disposal of  The Bank  to be  

utilized for the starting observations of the analysis’  target variable.  

Hence,  in order to generate a monthly time series relative to the baseline 

implied unconditional ��,  as explained in section 1.3.1,  the IRB approach 

Variabl es  Mean 
Standard  

Deviation 
Skewness  Kurtosis  Minimu m Maximu m 

   FIRM-S PEC IFIC VARIABLES  

CET1 0.1156 0.0041 -0.5348 3.0899 0.1062 0.1242 

RORAC  0.4754 0.5952 -0.4696 2.3649 -0.7191 1.3031 

NPL  0.0160 0.0025 0.3242 1.8869 0.0122 0.0213 

CoR  0.0016 0.0011 0.5978 3.1796 -0.0001 0.0044 

NSFR  1.1130 0.0233 -0.9009 3.8568 1.0510 1.1540 

LR 0.0950 0.0033 0.2126 2.6262 0.0887 0.1017 

IR 0.0007 0.0005 0.5973 2.8635 -0.0001 0.0019 

   MAC ROE CONOMIC  VARIABLE S  

UN 0.0853 0.0081 0.0223 2.1934 0.0728 0.1020 

Infl  0 .0065 0.0072 0.4504 1.5858 -0.0022 0.0198 

GDP 0.0081 0.0252 -0.6397 2.6323 -0.0546 0.0429 

Mkt.Sh  0.0747 0.0073 0.2772 2.6056 0.0606 0.0916 

Oil  0 .0003 0.0264 -0.5736 3.3793 -0.0766 0.0416 

Euribor  -0.0022 0.0013 0.7367 1.8580 -0.0033 0.0003 

   RES PONS E VARIABLE  

PD 0.0283 0.0045 0.6595 3.9142 0.0207 0.0417 

 Tabl e 3:  Summa ry sta t ist ics  for th e va ria bl es  deemed to be influ encing ,  e ith er direc tly  

or  indirec tly ,  th e  valu e of  PD  a nd s umma ry  s ta tis t ics  for  th e bas el ine valu e of  PD .  
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had been exploited.  Other than the previously-mentioned assumptions 

and conditions imposed by such methodology, data on time series of firm-

specific variables (spanning between April the 1s t ,  2015 and January the 

1s t ,  2018) relative to Capital  Adequacy  and Total  Exposures  measures had 

been used: the former identifies the amount of Regulatory Capital  needed,  

while the latter represents the Exposure at Default  value.  Furthermore, in 

The Bank ’s specific  instance,  assumptions of the IRB methodology allow 

the use of constant values over time for the Loss Given Default  and the 

Maturity  measures,  which would respectively be fixed at  0.45 and 2.50.  

Then, by solving formula (1.8) for the unknown variable,  baseline time 

series for �� had been obtained, from April the 1s t ,  2015 until  January the 

1s t ,  2018. 

 

To summarize,  the �� assessment analysis had been based on the use 

of 6 macroeconomic and 9 firm-specific time series,  of which 2 where 

exploited for calculating the baseline values for ��,  as previously-

explained. Each time series has 34 monthly observations and predictions 

would be performed up until 12 months ahead. Summary statistics for the 

time series relating to ��,  and the variables which are deemed to be 

 
      ( a )     ( b)  

 
Figure 4:  (a)  Time s eries  for th e bas el ine PD ,  obtained th rough  th e I RB 

Appr oach ,  which shows an ini t ia l  decreas e fol lowed by a  relat iv el y  s ignif ica nt  

inc reas e in PD ’ s  valu e;  ( b)  compa ris on of  th e PD  dens ity  with the one of  a  

Normal  d is tr ibu tion.  
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causing it ,  are shown in Table 3.  Notice in particular that the mean 

baseline value for �� is around 2.83% over the time period considered; 

the minimum value observed is 2.07% while the maximum value is 4.17%; 

moreover,  the distribution for �� is slightly heavy-tailed and positively 

skewed. Lastly,  Figure 4 provides a visual representation of the time 

series and density relating to the baseline �� computed via the IRB 

Approach .  

 

3.2 Assessing Causal Relations 

As a first step into exploring causal relations between variables,  it  may 

be possible to infer either the presence or the absence of such 

connections by applying the principles of Granger Causality (GC): this 

approach allows to assess causal relations between couples of variables 

by util izing a specific type of test performed on a Vector Auto-Regressive  

(VAR) process  (see APPENDIX A  for a brief review on this topic).   

 

On the basis of the assumptions for the application of GC principles,  

one would start by assessing the stationarity of the time series 

considered. Then, one may obtain it  via differencing or adjusting for 

seasonality: transformations which are applied on the basis of additional  

graphical analyses and formal testing procedures,  like the Augmented 

Dickey Fuller (ADF) test,  aimed at either supporting or rejecting the 

application of these transformations.  Once completed such preliminary 

phase,  the order of integration associated to each series may be defined. 

Notice that a GC test12,  performed on a specific VAR process composed 

by elements belonging to two distinct stationary time series,  may be 

applied by exploiting previously-obtained transformed stationary time 

                                                        

12 Th e G ra nger Ca usal i ty  test  is  ess ent ial ly  bas ed on th e us e  of  a n F -ty pe  tes t  a imed 

at  v eri fy ing th e s igni f icanc e of  th e causal  rel ation between th e c onsidered va ria bl es .  

Not ic e  tha t  th e  nul l  hy poth es is  (�I)  would  tra nslate  into  th e a bs enc e of  GC ,  whil e  th e  

al terna tiv e h ypoth es is  (�B)  would  c orres pond to th e inferred pres enc e of  GC between 

th e va ria bl es  incl uded in  th e rela tiv e VAR  model .  
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series.  However,  the use of such modified series would imply the 

inevitable loss of their original features.  As a consequence,  test results 

may provide an unfeasible interpretation of the causal  relations linking 

variables.   

Therefore,  a possible solution to the problem would be to uti lize the 

original time series to build the relative VAR process,  on condition that 

the cointegration property is verified (see APPENDIX A).  This 

methodology has the advantage of preserving the information carried by 

each time series in its original form; hence,  test results may potentially be  

more accurate on the assessment of causality between variables.  However,  

such approach has a drawback: the cointegration principle is only 

applicable to those couple of series which possess the same order of 

integration; then, some interactions between variables will  likely not be 

tested a priori.  Nevertheless,  at the expense of potentially missing out on 

part of the actual causal relations,  it  is probably sti ll  a better choice to 

perform the analysis by utilizing untransformed time series,  to hopefully 

grasp those that are deemed to be the most relevant causal  relations.  

To clarify what said so far and contextualize it  in relation to The 

Bank ’s Stress Testing case,  the first step would be to assess the order of  

integration associated to each time series for the variables considered, 

   FIRM-S PEC IFIC  VARIABLES  

Varia bl e  CET1  RORAC  NPL  CoR  NSFR  LR  IR  

Order  o f  
Integrat ion 

�(1)	 �(0)	 �(1)	 �(2)	 �(2)	 �(1)	 �(1)	
   MAC ROEC ONOMIC  VARIABLE S  

Varia bl e  UN  Infl  GDP  Mkt.Sh  Oil  Euribor   

Order  o f  
Integrat ion 

�(0)	 �(2)	 �(1)	 �(2)	 �(1)	 �(2)	  

   RES PONS E VARIABLE  

Varia bl e  PD       

Order  o f  
Integrat ion 

�(1)       

 Tabl e 4:  Orders of  integrat ion rela tiv e to  the t ime series  of  f i rm- spec if ic  and 

mac roec onomic  va ria bl es ,  as  wel l  as  th e one c onc erning  th e res pons e va ria bl e .  
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either firm-specific  or macroeconomic.  Graphical  analyses and ADF tests 

had been uti lized to assess the relative orders of integration; the key 

results of the analysis are shown in Table 4.   

In accordance with the cointegration principle,  i t  would make sense to  

set up VAR models each utilizing,  on the explanatory side,  one among the 

series possessing the same order of integration as �� (the response 

variable).  Similarly,  the same would apply for relations between 

macroeconomic and firm-specific variables (response variables for these 

instances).  In the Stress Testing analysis,  the selection process of the 

necessary lagged values to be included in such VAR models had been 

based on a function which automatically selects the lags to consider,  on 

the basis of the relative BIC scores for the series’ past values.  Then, it  had 

been possible to create VAR models to perform a GC test on each of them. 

 

The core assumption utilized to define the high-level causal relations 

applied throughout the whole Stress Testing analysis is the 

 

Structural Assumption :  The �� variable may directly be affected by 

either f irm-specific or macroeconomic variables.  Firm-specific variables  

may be affected by macroeconomic variables.  

 

On the basis of  such assertion, in consideration of the GC approach and 

provided that �� is  �(1),  the following would hold: 

� The firm-specific  variables which may directly affect  �� would 

be ��	1,  ���,  �� and ��;  

� The macroeconomic variables which may directly affect �� 

would be ��� and ���;  

� The macroeconomic variables which may directly affect  firm-

specific variables (those which in turn may Granger cause ��) 

would be ��� and ���.  
Notice that,  by adopting this approach, one would directly exclude to  

perform any GC test on �����,  ���,  ����,   �,  ����,  ���. �ℎ and ������.  

Such classification would define the perimeter over which to perform GC 

tests.  To this end, Table 5 clarifies the concept and displays the �-values 
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together with their related practical interpretation,  obtained from 

performing the GC tests on the variables included in the perimeter.  As the 

analysis’  output demonstrates,  �-values below 0.05 are associated to the 

rejection of the null  hypothesis �I at a 5% significance level.   Then: 

� ��	1 and �� are the firm-specific  variables deemed to be 

Granger causing ��;   

� ��� is the macroeconomic variable deemed to be Granger 

causing ��;  

� ��� and ��� are the macroeconomic variables deemed to be 

Granger causing both ��	1 and ��.  

The aforementioned conclusions are also reflected in a straightforward 

way in Figure 5,  which graph puts into evidence those that are believed to 

Variabl e  GC Test �-valu e Presence of  G C ? 

   F ir m-s peci f ic  var ia bles  which  ma y G ra nger  ca us e �� 

CET1 0.0275 Yes  

NPL  0.7201 No 

LR 0.0479 Yes  

IR 0.0937 No 

   M acr oeconomic  var ia bles  which  may Gr a nger  ca us e �� 

GDP 0.0073 Yes  

Oil  0 .5659 No 

   M acr oeconomic  var ia bles  which  may Gr a nger  ca us e ��	1 

GDP 0.0011 Yes  

Oil  0 .0134 Yes  

   M acr oeconomic  var ia bles  which  may Gr a nger  ca us e �� 

GDP 0.0058 Yes  

Oil  0 .0083 Yes  

 
Tabl e 5:  Dis play of  p-v alues  for th e execu ted GC Tests  a nd rela ted  interpreta tion of  

Gra nger  cau sal i ty  between va ria bl es .  
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be the relations between variables for the Stress Testing analysis,  

according to the GC methodology.   

As the graphical representation in Figure 5 shows,  The Bank ’s  

probability of default is believed to be directly caused by the level of  

leverage relative to The Bank ’s  exposures,  the amount of regulatory CET1 

capital  set  aside and the average European GDP level.  Indirect effects on 

the probability of default are deemed to be provided by both the ��� 

variable and the mean level for oil prices across European countries.   

Nevertheless,  as previously mentioned, the application of GC 

principles could exclude a priori variables which may instead turn out to 

be relevant for explaining causality on ��.  As a consequence,  chances are 

that GC methodology will not convey a thorough coverage for analyzing 

the variables at hand.  

Therefore,  it  is advisable to perform further analyses with the use of 

other more adequate and flexible tools.  

Figure 5:  G ra ph ical  repres entat ion of  G ra nger Ca usal  relat ions  l ink ing  

varia bl es  a nd f l owing  towa rds  PD .  
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3.3 Bayesian Networks Structures 

An alternative approach to identify causal relations linking variables 

and explaining the effects on ��,  is the estimation of BNs relative to the 

Stress Testing case.  In particular,  given data’s characteristics,  the 

structure and the parameters of a  GBN model would be inferred.  

Moreover,  to allow for results comparisons,  an Expert Network  will  be 

developed. 

 

3.3.1 Expert Network 

A first way of defining the GBN structure may be to exploit expert 

knowledge in order to describe causal relations between and among 

variables,  keeping the focus on assessing ��’s values.  Figure 6 displays 

the expert network deemed to be best describing such causal links,  as for 

the data and variables available in The Bank ’s Stress Testing analysis.  

 

Explanations are given next on the way the Expert Network  had been 

constructed; furthermore, reasons for the inclusion of the variables 

deemed to be causing PD  are also provided.  

In the first  place,  concerning the layout of the expert network and the 

relative categories of variables (Firm-specific ,  Macroeconomic  and 

Response) involved,  it  suffices to say that the guiding principle defining 

the overall structure of the system actually is the one previously exposed 

in the Structural Assumption .  

On the macroeconomic side,  in general ,  a number of phenomena at the 

European level are believed to potentially generate impacts for The Bank ’s 

business activities.  To this end, the following variables are deemed to 

indirectly cause ��:  

 

� Oil :  in consideration of The Bank ’s business-specific  

characteristics,  oi l  price movements (which are often 
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associated with high volati lity) may determine significant 

causal effects on ���,  ��� and ��	1;  

� UN :  depending on its level,  it  may have important effects on 

both ��� and CoR  for credit-related reasons.  Relative to the 

former,  an increase in unemployment would probably 

correspond to an increase in NPLs.  As for the latter,  an 

increase in  � may lead to the creation of riskier exposures 

for The Bank ,  hence raising the level of  ���;  

� Mkt.Sh :  performances of The Bank ’s stock on the market may 

reflect changes in funding and regulatory capital levels.  In 

this sense,  there may me an effect on the level  of ��	1;  

� Infl :  its  f luctuations may have weak effects on ��� and ���,  

given that abnormal levels of inflation may indirectly cause 

increases in the number of Non-Performing Loans as well  as 

more costs to firms for potentially increased risks.  

 

Figure 6:  Struc tu re defined by expert  k nowl edge to  ult imately  ident ify  th e 

direct  a nd indirect  cau sal  l inks  influ enc ing  PD .  
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On the firm-specific side,  instead, the following variables are deemed 

to directly affect the value of ��:  

 

� NPL :  given the features of The Bank ’s business,  it  probably is  

the variable which influences the most ��’s level.  In other 

words,  the Non-Performing Loans ratio is believed to be 

critical in terms of causal  effects toward the target variable of 

the analysis.  Indeed, a rise in NPLs would directly affect  The 

Bank ’s exposures,  which really are a central  factor for the 

business’  performances; 

� CoR :  it  also possesses a strong causal  link towards ��.  Indeed,  

a raising Cost of Risk may be associated with downward 

effects on the business income, which in turn will likely have 

consequences on The Bank ’s ��;  

� CET1 :  compared to the other firm-specific variables,  it  has a 

weaker causal  effect on ��.  Stil l ,  scarce capital buffers may 

correspond to the incapacity of the business to put aside 

capital  amounts to counter future potential crises.  This would 

consequently raise the probability that ,  in correspondence of 

a downturn, the credit institution may actually default.  

 

For the purposes of the present Stress Testing analysis ,  the expert 

network would represent the reference structure for this specific  

instance.  

Notice that,  according to the results obtained in Table 5,  the 

previously uti lized GC approach does have shortcomings in comparison 

with the expert network: the only correspondence between the two 

methodologies is provided by the path ��� → ��	1 → �� and an important 

deficiency of the GC method implies that it  fai ls  to recognize ��� among 

the variables that directly affect  ��.   

 

The following section will i llustrate a GBN methodology that may be 

adopted for those cases in which expert knowledge is not available.  
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3.3.2 GBN Structure Learning 

Suppose expert knowledge on specific variables’ features was absent 

and the only information on the network layout would be provided by the 

intuitive concept exposed in the Structural Assumption .  Then, it  would be 

necessary to define the structure of causal relations linking variables by 

elaborating on the raw data available.  To this end, a  GBN may be 

estimated. 

 

The first step in the definition of a GBN would be to implement a 

procedure in order to learn its  structure and causal relations from data.  

To accomplish that,  it  would be necessary to dispose of probability 

distributions for each variable in every time instant.  In the Stress Testing 

case a Monte Carlo (MC) simulation had been executed and performed on 

all  variables,  from baseline �� to macroeconomic and firm-specific  

variables.  More specifically,  the procedure consisted in the following two 

simple phases: 

1. Fitting ARIMA models on each time series13;  

2. Perform a simulation of 1000 steps14 on each time series,  

exploiting the data available and the ARIMA models defined in  

the previous phase.  

Hence,  the use of MC procedure allowed to obtain enough simulated 

observations to define the needed probability distributions associated 

with each variable for all  the 34 time instants.  

 

                                                        

13 Each series  had been est imated via  th e us e  of  an au toma tic  proc edu re which  

sel ec ted th e bes t  pa ra meters  acc ording to c erta in cr iter ia .  F or more deta i ls  on th e 

fu nct ion a ppl ying such  principl es  refer to th e R  docu mentat ion on forecast  packa ge,  

wh ich  is  a ls o mentioned in APPENDI X B .  
14 Th e nu mber of  s teps  chos en for th e M C simula tion was a rbi tra ry.  Howev er,  

notic e that  suc h ch oic e was  dicta ted by  previously  performed tria l  s imula tions with  

di fferent nu mber of  steps employ ed.  Wha t tu rned out  from this  prel imina ry analys is  

was  tha t  1000 s teps woul d proba bly  be a n adequa te c ompromis e,  provided that  i t  

a l lows a  balanc e in  compu tat ional  s peed and a ccu racy of  s imula ted resul t ing 

proba bil ity  d istribut ions .  
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To infer the structure of the GBN the HC algorithm is exploited; its  

core features are described in section 2.5.1.  It  is  important to mention 

some aspects on the way such instrument was uti lized. In particular,  for 

each moment in time ��,  with � = 1, 2, … , 34,  the following holds:   

� The structure optimization procedure is based on boostrap 

resampling ,  which the HC algorithm applies in this case; 

� Input data for the HC algorithm correspond to the previously-

simulated variables’ probability distributions; 

� The HC algorithm utilizes the BGe heuristic as the scoring 

criteria for estimating the network’s structure.  

Hence,  by applying this procedure,  the output would correspond to 34 

estimated GBNs (graphs are not shown in this paper),  one for each ��.   

 

The following step would be to keep trace of the arcs set by the HC 

algorithm across the 34 estimated GBNs. In this way, it  would be possible 

to evaluate the strength of the causal relations between and among 

variables,  by observing the most recurring causal links in correspondence 

of different time instants.  Table 6 displays the estimated links in all  34 

GBNs and provides an indication of which relations may be the strongest.  

By assessing the frequency with which arcs are estimated via HC 

algorithms, for each time step, it  would be possible to define a guiding 

structure for the learned GBN. Such approach may be interpreted as a 

type of model averaging  procedure: the aim would be to obtain a network 

valid throughout all  time steps,  reflecting those causal relations that are 

expected to be persisting over time. In particular,  this may be 

accomplished by setting thresholds on the arcs’ percentage of appearance 

over all  ��s.  Notice that choosing high threshold levels would results into 

the definition of more robust GBNs, at the expense of losing trace of some 

weaker relations that may be present.  In order to represent the GBN 

layout for this specific instance,  50% and 85% threshold values on the 

arcs’ percentage of appearance over all  �� had been chosen.   
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Arcs  l inking V ariables  Arcs ’  F requ ency 

of  Appearance 

over all  �� 

Arcs ’  Percentage 

of  Appearance 

over all  �� From  To 

CET1 → PD 34 100.00% 

CoR → PD 23 67.65% 

Euribor → CET1 14 41.18% 

Euribor → CoR 4 11.76% 

Euribor → IR 7 20.59% 

Euribor → LR 33 97.06% 

Euribor → NSFR 31 91.18% 

Euribor → RORAC 6 17.65% 

GDP → CET1 12 35.29% 

GDP → CoR 33 97.06% 

GDP → IR 10 29.41% 

GDP → NSFR 5 14.71% 

GDP → PD 9 26.47% 

GDP → RORAC 34 100.00% 

Infl → CET1 25 73.53% 

Infl → CoR 2 5.88% 

Infl → IR 2 5.88% 

Infl → LR 34 100.00% 

Infl → NPL 24 70.59% 

Infl → NSFR 34 100.00% 

Infl → RORAC 1 2.94% 

IR → PD 34 100.00% 

Mkt.Sh → CoR 1 2.94% 

Mkt.Sh → IR 2 5.88% 

Mkt.Sh → NPL 2 5.88% 

Mkt.Sh → NSFR 34 100.00% 

Mkt.Sh → PD 26 76.47% 

Mkt.Sh → RORAC 10 29.41% 

NPL → PD 34 100.00% 

NSFR → PD 34 100.00% 

Oil → IR 1 2.94% 

Oil → NPL 33 97.06% 

Oil → PD 1 2.94% 

Oil → RORAC 2 5.88% 

RORAC → PD 4 11.76% 

UN → CET1 3 8.82% 

UN → IR 3 8.82% 

UN → LR 22 64.71% 

UN → NSFR 4 11.76% 

UN → PD 14 41.18% 

UN → RORAC 6 17.65% 

 Tabl e 6:  A rcs es tima ted via  HC algori th ms ’  bootst rap r esa mp ling proc edu re a nd 

relat iv e  F requ ency  a nd Perc entage of  appea ra nc e for s uch  a rcs  ov er  a l l  ��s .  
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Then, on the basis of results shown in Table 6,  the GBN defined via the 

50% threshold would include all  those arcs that are present more than 

half the times over all  ��s,  in accordance with the output of the HC 

 
(a)  

 

 
(b)  

 

Figure 7:  N etworks obtained from model  a ver aging  proc edu res based on    

(a)  th e  50% thres hol d  principl e  a nd ( b)  th e 85% th res hol d  one.  
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algorithm estimation procedure.  A similar principle would hold when 

applying the 85% threshold,  keeping into consideration all those arcs that 

are estimated with a percentage frequency above such level.  The output 

from the application of the two thresholds is reported in the GBNs 

depicted in Figure 7.  

It  is useful  to compare the estimated networks with the one 

previously-defined via expert knowledge.  

Firstly,  considering Figure 7(a),  the arcs and paths present in both the 

50% threshold network and the expert network are the following: 

���� → ��� → ��;  

��� → ��� → ��;  

��� → ��;  

��	1 → ��.  

Notice that the variables deemed to be not relevant,  according to expert 

knowledge,  but stil l  estimated in the 50% threshold network are ���,  

������,  �� and ����.  

Secondly,  with reference to Figure 7(b),  the arcs and paths present in  

both the 85% threshold network and the expert network are: 

� ��� → ��� → ��;  

� ��	1 → ��.  

The estimated variables irrelevant i f compared with the expert network 

are ������,  �� and ����.  

Both the estimated GBNs include most of the variables defined through 

the expert network.  Comparatively,  the 50% threshold network grasps all  

the relations between firm-specific variables and ��,  while the 85% 

threshold network fails to get the ��� → �� arc.  Notice that,  concerning 

the macroeconomic variables,   � is never present in the estimated 

networks.  Moreover,  paths and links between variables often do not 

correspond to the ones identified via expert knowledge. Nevertheless,  it  is  

important to notice that both the 50% and 85% threshold networks are 

able to grasp the most relevant causal path linking macroeconomic,  firm-

specific and response variable elements,  that is  ��� → ��� → ��.  Indeed,  
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the causal effects generated by ��� and ��� on �� are deemed to be the 

most crucial ones.  

Therefore,  one may assert that the implementation of HC algorithms 

and model averaging principles for estimating GBNs provides rather 

decent approximations of those causal links which are expected to persist 

on ��.  

3.4 Inference on Bayesian Networks’ Parameters 

On the basis of the previously-defined causal structures (estimated 

and expert networks) the following phase would imply to conduct  

inference on the relative GBN parameters.  This would translate into 

assessing the value of explanatory variables’ coefficients associated with 

Resp onse 

Variabl e  

Expl anatory 

Side 

Coeff ic ients’  

Estimates  

Confidence Interval  

Lower Bou nd  
( 2 . 5 % )  

Upper Bou nd  

( 9 7 . 5 % )  

NPL  

Interc ept  -0.0038 -0.0095 0.0019 

Infl  -0 .0771 -0.1475 -0.0067 

Oil  -0 .0136 -0.0260 -0.0012 

UN 0.2383 0.1757 0.3010 

CoR  

Interc ept  0 .0118 0.0060 0.0175 

Infl  -0 .1354 -0.2059 -0.0649 

Oil  0 .0010 -0.0114 0.0134 

UN -0.1085 -0.1712 -0.0457 

CET1 

Interc ept  0 .1265 0.1111 0.1419 

Mkt.Sh  -0.1462 -0.3515 0.0591 

Oil  0 .0161 -0.0403 0.0726 

Mkt.Sh  Interc ept  0 .0747 0.0722 0.0772 

Infl  Interc ept  0 .0065 0.0040 0.0090 

Oil  Interc ept  0 .0003 -0.0089 0.0095 

UN Interc ept  0 .0853 0.0825 0.0882 

PD 

Interc ept  -0.0836 -0.1056 -0.0615 

NPL  -0.0677 -0.3678 0.2324 

CoR  0.0590 -0.6680 0.7859 

CET1 0.9763 0.7849 1.1678 

 Tabl e 7:  Maximu m Likel ihood c oef f ic ient  estimates  and rela tiv e  confidenc e 

intervals  conc erning  th e expert  network.  
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each node of the network. For these specific instances,  MLE (in 

accordance with the assertions provided in section 2.5.2) had been 

employed for inferring key networks’ parameters,  based on data available 

for all  the time instants.  Table 7,  Table 8 and Table 9 report the output on 

significant coefficients’ estimates and confidence intervals relative to the 

expert network and the estimated networks.   

With reference to results shown in Table 7,  in relation to the explanatory 

variables and the relative confidence intervals,  notice that the most 

precise estimates are provided by ��� coefficients,  relative either to ��	1,  

Resp onse 

Variabl e  

Expl anatory 

Side 

Coeff ic ients’  

Estimates  

Confidence Interval  

Lower Bou nd  
( 2 . 5 % )  

Upper Bou nd  

( 9 7 . 5 % )  

CET1 
Interc ept  0 .1151 0.1131 0.1170 

Infl  0 .0788 -0.1256 0.2833 

CoR  
Interc ept  0 .0015 0.0011 0.0018 

GDP 0.0195 0.0060 0.0331 

Euribor  Interc ept  -0.0022 -0.0027 -0.0017 

GDP Interc ept  0 .0080 -0.0007 0.0168 

Infl  Interc ept  0 .0065 0.0040 0.0090 

IR Interc ept  0 .0008 0.0006 0.0010 

Mkt.Sh  Interc ept  0 .0747 0.0722 0.0772 

NPL  

Interc ept  0 .0179 0.0172 0.0186 

Infl  -0 .2847 -0.3606 -0.2089 

Oil  -0 .0051 -0.0259 0.0156 

NSFR  

Interc ept  1 .1856 1.1240 1.2473 

Euribor  -7.6628 -14.1443 -1.1814 

Infl  -2 .8031 -3.9416 -1.6645 

Mkt.Sh  -0.9605 -1.8204 -0.1006 

Oil  Interc ept  0 .0003 -0.0089 0.0095 

PD 

Interc ept  -0.0221 -0.0976 0.0534 

CET1 0.7995 0.5602 1.0389 

CoR  -0.2461 -1.0246 0.5324 

IR -2.6676 -4.6998 -0.6354 

Mkt.Sh  -0.0664 -0.1980 0.0652 

NPL  -0.3117 -0.6647 0.0412 

NSFR  -0.0266 -0.0728 0.0196 

Tabl e 8:  Ma ximu m L ikel ihood c oef f ic ient  estimates  a nd rela t iv e  conf idenc e  

intervals  conc erning  th e l earnt  50% th res hol d  network .  
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��� or ��� as response variables; while the least accurate ones mostly 

concern ���,  ��� and ��	1 relative to �� as response variable.  

In a similar way, the output displayed in Table 8 and Table 9,  shows that,  

in general,  the least accuracy in estimates is associated with coefficients 

regarding both �� and ���� as response variables.  In particular,  for 

instance,  one may interpret with caution ������’s coefficient (relative to 

����) provided that its confidence interval  suggests there may be 

imprecision in the estimate.   

Then, one may assert that coefficient estimates associated with the 

relative intermediate and leaf nodes (each possessing layers of parent 

nodes) of the expert or learned networks are increasingly less accurate.  

This observation may be supported by the values associated to the 

respective coefficients’ confidence intervals; indeed, this may be plausible 

given the following: the deeper a node is located in the network, the more 

Resp onse 

Variabl e  

Expl anatory 

Side 

Coeff ic ients’  

Estimates  

Confidence Interval  

Lower Bou nd  
( 2 . 5 % )  

Upper Bou nd  

( 9 7 . 5 % )  

CET1 Interc ept  0 .1156 -0.0089 0.0095 

Euribor  Interc ept  -0.0022 0.1141 0.1170 

Infl  Interc ept  0 .0065 -0.0027 -0.0017 

IR Interc ept  0 .0008 0.0040 0.0090 

Mkt.Sh  Interc ept  0 .0747 0.0006 0.0010 

NPL  
Interc ept  0 .0160 0.0151 0.0169 

Oil  -0 .0113 -0.0459 0.0233 

NSFR  

Interc ept  1 .1856 1.1240 1.2473 

Euribor  -7.6628 -14.1443 -1.1814 

Infl  -2 .8031 -3.9416 -1.6645 

Mkt.Sh  -0.9605 -1.8204 -0.1006 

Oil  Interc ept  0 .0003 0.0722 0.0772 

PD 

Interc ept  -0.0380 -0.1031 0.0272 

CET1 0.8472 0.6307 1.0638 

IR -2.9457 -4.8552 -1.0363 

NPL  -0.3272 -0.6618 0.0074 

NSFR  -0.0217 -0.0631 0.0197 

 Tabl e 9:  Maximum Likel ihood c oef f ic ient  estimates  and relat iv e  confidenc e 

intervals  conc erning  th e l earnt  85% th res hol d  network .  
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it  could be influenced by other nodes’ interactions,  hence generating 

increased uncertainty relative to its coefficients’ estimates.  Such 

phenomenon may also be explained by the fact that,  starting from root 

nodes,  the causal flows propagate down the network and,  consequently,  

may generate slight gradual increases in noise associated to the 

coefficients’ estimates.  

Anyway, it  is worth stressing that,  for these specific  instances,  estimated 

errors associated to networks’  nodes are often small  in magnitude.  

 As the next section will explain,  the obtained coefficients’ estimates 

actually become useful  when applied to forecasting future variables ’  

values relative to the considered GBNs.  

 

3.5 Variables Prediction and Analysis Output 

The previously-performed procedures aimed at the definition of 

structures and parameters of the expert and learnt GBNs, allow to dispose 

of instruments which may be util ized for predictive purposes in 

accordance with The Bank ’s specific objectives.  More specifically,  this 

section deals with the use of the expert network and the 85% threshold 

GBN as tools to assess the level  that �� and the relevant firm-specific  

variables may take relative to the period ranging from February 1s t ,  2018 

until January 1s t ,  2019, namely the prediction period (a 12 months period 

ahead with respect to the last observation available in the baseline 

dataset,  as previously defined).   

Notice that given the 85% threshold GBN is a more conservative structure 

compared to the 50% threshold one, it  is  possible to assert  that their 

predictive performances would be rather similar,  moreover,  the former is  

composed only by the more robust variables and stronger arcs learnt.  For 

these reasons,  the predictive analysis will  be carried out comparing the 

results obtained via the expert network and the 85% threshold GBN only.  

The 50% threshold system will not be included since it  would not add 
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significant predictive information other than the ones already provided 

by the other estimated network. 

The advantage of utilizing systems of variables for predictive purposes 

is that by providing forecasted measures on the root nodes of the GBNs 

one may observe the effects of such input data on all other descendants.  

Indeed, thanks to causal edges linking variables,  it  is possible to 

propagate  the effects of input data at  the root-nodes level through the 

firm-specific variables and, in turn,  down towards the end node ��.  To 

this end, the first  step into forecasting had been to define predictive 

estimates based on the relative historical values of each time series,  for 

all  the variables involved in the analysis.  As already mentioned, such 

preliminary step is necessary to define networks’ input data,  which 

actually find correspondence with the point predictions relative to each 

macroeconomic variable.  In particular,  forecasted values for ����,   �,  ���,  
���. �ℎ and ������ would be utilized.  Remember that each descendant 

node is associated with a specific Gaussian linear regression model,  

hence,  forecasts on �� and firm-specific  variables (���,  ���,  ��	1,  ����,  

��) had been used for the definition of the relative random shocks 

Figure 8:  Predic ted va lues  for PD ,  s ta ndard error bou ndaries  a nd predic tio n 

interval  for th e pos sible ra nge of  pa ths/ valu es PD  may tak e bas ed on th e 85% 

th resh old  GBN .  
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associated to each regression’s error term.  Then, it  should be clear that by 

inputting macroeconomic forecasted values into children nodes,  one 

would obtain predicted measures for each relative linear model of the 

firm-specific variables.  In turn, these latter forecasted estimates would 

become input to the linear model associated with the end node ��.   

By following the above-mentioned forecasting procedure it  had been 

possible to infer which values The Bank ’s �� is likely to take in the 

prediction period.  Figure 8 and Figure 9,  respectively referring to the 

estimated and the expert networks,  show the predicted path,  the relative 

standard errors and the prediction intervals concerning ��.   

As one may notice,  there is a marked similarity between the two 

prediction outputs:  both forecasted paths suggest that The Bank ’s  �� is 

likely to oscillate around 2% and 4% relative to the prediction period; the 

resemblance is also supported by the relative standard error and 

prediction intervals ranges of values.  Moreover,  according to data 

available,  notice that generated forecasts do not suggest the presence of 

any marked future trend; overall ,  �� level  is expected to slightly decrease 

over the prediction period.  
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Figure 9:  Predicted va lues  for PD ,  s ta nda rd error bou nda ries  and predic tion 

interval  for  th e poss ibl e ra nge of  pa ths/ valu es PD  ma y tak e bas ed on th e expert  

GBN.  
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To better evaluate whether any significant discrepancies between such 

forecasted �� values exist,  Figure 10 displays the two predicted paths in  

the same graph, while Figure 11 provides a view on the shape of the two 

relative distributions in a way that facilitates comparisons.  

Figure 10:  Predic ted v alues for PD  obta ined via  th e 85% th resh old GBN and 

th e expert  network  rel ativ e  to  th e predic tion period .  
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Figure 11: Compa ris on of  th e distribut ions relativ e to PD  forecasts  obtained 

via  th e 85% th resh old GBN and th e expert  network .  Dash ed l ines  are  depic ted in  

corres pondenc e of  th e  relat iv e  mea n val u es .  
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Following, some statistics relative to the two predicted distributions: 

85% threshold GBN: 

�  Mean: 0.0296 

�  Standard Deviation: 0.0065 

�  Skewness:  0.1433 

�  Kurtosis:  1.7639 

Expert  Network:  

�  Mean: 0.0304 

�  Standard Deviation: 0.0073 

�  Skewness:  0.1628 

�  Kurtosis:  1.7733 

 

Then, from the analysis’ output it  appears evident that the expert and 

learnt GBNs provide similar estimates of The Bank ’s ��,  despite 

presenting some discrepancies with regard to the variables and arcs 

composing such networks.  

 

 For the purposes of the Stress Testing analysis,  other than assessing 

��’s future path,  it  is of interest to provide an indication of potential  

trends concerning some relevant firm-specific variables.  In particular,  the 

focus will  be on those that are believed to directly affect  ��,  as defined by 

the previously estimated 85% threshold GBN and the expert network. In 

the first  place,  prediction outputs relative to firm-specific variables in 

common between the two networks (��� and ��	1) will  be exposed and 

compared. Following that,  the remaining firm-specific variables’ outputs 

of the GBNs would be presented.  

 

By looking at Figure 12 one may notice a difference in the forecasted 

output obtained through the learnt network and the expert one.  More 

specifically,  in relation to the 85% threshold GBN, the predicted output 

and relative prediction intervals are somewhat close to the mean value,  as 

shown in Figure 12(c),  and do not suggest the presence of any upward or 

downward trends in ��� values,  as depicted in Figure 12(a).  Concerning 

the expert network prediction output,  ���	values appear comparatively 

more spread out; this may be due to the fact that the expert GBN 

estimated the presence of a l ikely future downward trend, as may be 

deduced from Figure 12(b).  In turn, one may assert the presence of more 

variability in ��� estimated values.  
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Figure 13,  instead, shows the results obtained relative to ��	1 

variable.  By simply looking at the graphs one may conclude that there is  

no significant difference in the predicted values for ��	1,  either they be 

obtained through the 85% threshold network or via the expert network.  

Notice that,  in both cases,  forecasted values appear to be concentrated 

around the mean of the distribution and variability in values seems to be 

rather limited.   

Notice that in Figure 12(c) and (d),  as well as in Figure 13(c) and (d),  

some of the dash-dotted vertical lines stand to indicate particular 

  
(a)  (b)  

 
(c)  (d)  

 

Figure 12: Predicted v alues for NPL ,  rela tiv e sta nda rd error bou nda ries  a nd 

predict ion intervals  ba sed on th e u s e of  (a)  the 85% th resh old G BN  and ( b)  th e 

expert  network.  Simulated forecasted dis tr ibu tions for N PL generated by  

uti l iz ing ( c)  th e 85% th resh old  GBN  and (d)  th e expert  network;  dash- dotted  

vertical  l ines  ma rk c r it ical  th resh olds a nd val ues  relat iv e  to  The  Ba nk .  
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thresholds set  by The Bank .  More specifically such limits may stand for:  

� Target :  level  which The Bank  aims to either reach or maintain; 

� Flag:  level which alerts The Bank  and advised for a close monitoring 

of the specific measure;  

� Corrective Action :  level which requires The Bank  to implement 

actions in order to adjust the specific measure; 

� Regulatory Requirement :  level imposed by regulatory authorities.  

 

Both the learnt GBN and the expert network outputs,  relative to ��� and 

��	1,  suggest these measures are expected to remain close to The Bank ’s  

 
(a)  (b)  

 
(c)  (d)  

 
Figure 13: Predic ted valu es for CET 1 ,  relat iv e sta nda rd error bounda ries  

and predic tion interval s  ba s ed on th e us e of  ( a)  th e 85% th res hol d GBN a nd ( b)  

th e expert  network.  Simula ted forecasted distr ibu tions for  C ET1  generated by  

uti l iz ing ( c)  th e 85% th resh old  GBN  and (d)  th e expert  network ;  dash- dotted  

vertical  l ines  ma rk c r it ical  th resh olds a nd val ues  relat iv e  to  The  Ba nk .  
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target level.  Therefore,  on its part,  The Bank  may only continue 

monitoring the level of  these two measures; no corrective actions are 

deemed to be required concerning the forthcoming period.  

To better appreciate what said so far concerning ��� and ��	1 predicted 

values,  in a more formal way, Table 10 displays summary statistics for all  

firm-specific variables included in the learnt and expert GBNs.  

 

The previously performed learning procedure generated the 85% 

threshold GBN which, as already stressed, differs from the expert one in 

some aspects.  In any case,  it  is sti ll  deemed valuable for The Bank  to 

account for the most relevant results relative to those firm-specific 

variables which only find correspondence in one of the two networks15.  

Indeed, such type of discrepancies probably are of secondary importance,  

stil l ,  they should not be seen as totally wrongful estimates/forecasts 

because they may actually be revealing of non-obvious connections 

between variables.  

                                                        

15 N ot ic e  that  �� is  deemed not  to  be  a  real ly  s igni f ica nt  va ria bl e  for  th e  pu rpos es  

of  th e  Stress  Test ing a nalys is .  I ndeed,  no  s pecif ic  th resh olds  or  ta rgets  ha d been s et  

by T he Bank  in rela tion to s uch measu re.  Henc e,  th e graphical  dis play  of  i ts  forecas ted  

trend and dis tr ibu tional  fea tu res  a re not  shown in th e pres ent th es is  s ince th ey woul d 

not  add a ny signi f ica nt  ins ight  to th e anal ysis ,  for this  s pec if ic  insta nc e.  Th e onl y key  

informa tion on ��’s  predicted  distr ibu tion a re reported  in Ta bl e  10.  N ot ic e,  moreover ,  

that  th e  ma gnitu de of  ��’ s  mean a nd s ta nda rd dev iat ion is  quite modes t .  

GBN Variabl es  Mean 
Standard  

Deviation 
Skewness  Kurtosis  

Exper t  

NPL  0.0114 0.0017 0.6994 2.4218 

CoR  0.0026 0.0004 -0.1201 1.2824 

CET1 0.1165 0.0039 0.1783 1.7818 

85 % 
thres hold  

NPL  0.0163 0.0010 0.1803 1.7804 

CET1 0.1164 0.0039 0.1785 1.7796 

NSFR  1.1030 0.0048 0.2651 1.8732 

IR 0.0009 0.0001 0.5864 1.7640 

 Tabl e 10: Su mmary statis t ics  for f i rm-s pec if ic  varia bl es ’  foreca sted valu es relat iv e  

to  th e 85% th res hol d G BN a nd th e expert  network .  
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In relation to the variable ��� of the expert network, it  is  necessary to 

stress a couple of aspects: first,  by analyzing Figure 14(a),  one may assert  

that the predictive model misses out on grasping the periodicity of the 

measure.  Indeed, at the beginning of the prediction period one would 

probably expect a drop in ��� instead of an increase in its  value 16.  

Nevertheless,  despite predicted values are likely to suffer from a slight 

upward bias,  the forecasts seem to be capturing ���’s trend correctly.  

Furthermore, in relation to Figure 14(b),  ���’s predicted values are,  in 

any case,  likely to be off-target with regard to The Bank ’s objectives; sti ll ,  

this would probably be not a matter of particular concern provided that 

the flag  threshold is  even farther than The Bank ’s  target for such measure.  

Lastly,  notice that deviations in values for ��� appear to be,  in general,  of 

small magnitude. In turn, one may infer that ���’s causal effects on �� are 

likely to be small.   

                                                        

16 Th is  ph enomenon may  be expla ined by th e fa ct  that  u ti l iz ed  inpu t s eries ’  valu es  

rema ined u ntouch ed before being  su bject  to data  analysis  proc edu res;  this  is  in  l ine  

with th e monitoring proc ess  impl emented by The Ba nk  s o fa r .  Therefore,  or ig inal  

valu es hav e been pres erv ed and direc tly  fed  into l ea rning al gori th ms/ proc edu res to  

deriv e GBNs s truc tu res  and pa rameters  for th e pres ent Stres s  Testing a nalys is .  Of  

cou rs e,  with  this  in  mind,  ��� measu re may  be interpreted careful l y .  

  
(a)  (b)  

 

Figure 14: (a)  Predic ted valu es for C oR,  rela tiv e s ta nda rd error bounda ries  

and predic tion interva ls  bas ed on th e u se of  th e expert  network.  ( b)  S imulated 

forecas ted distribut ions for CoR  generated by uti l iz ing th e expert  network ;  das h-

dotted v ert ical  l ines  mark  cr it ical  thres hol ds  and val u es  rela tiv e to The  Ba nk .  
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Then, on the one hand, expert knowledge is suggesting  ��� could be one 

of the relevant variables in the determination of ��’s value.  On the other 

hand, it  is interesting to notice that,  in the 85% threshold version, the 

learnt GBN excludes ��� from being among the most important firm-

specific  variables causing ��.  Therefore,  one may conclude that ��� 

probably is a measure to be considered when carrying out the Stress 

Testing analysis; however,  chances are that it  would not be particularly 

impacting on ��’s value,  given the identified magnitude in its values and 

deviations.  

 

Concerning the NSFR  variable included in the 85% threshold GBN, Figure 

15(a) shows that predicted values are likely to be characterized by a 

slight downward trend for the prediction period. Moreover,  Figure 15 

evidences that variability in ���� may be somewhat significant.  

Nevertheless,  the major concentration of values for the distribution of 

forecasts appears to be closer to The Banks target level than to the flag  

one; therefore,  chances are that corrective actions may not be 

immediately necessary for the foreseeable future.  

 

  
(a)  (b)  

 

Figure 15: (a)  Predicted valu es for NSF R ,  rel ativ e s ta nda rd error bou nda ries  

and predict ion interv als  bas ed on th e us e of  th e 85% threshol d GBN.  ( b)  

Simula ted forecas ted dis tribu tions for NSF R  generated by u ti l iz ing th e 85% 

th resh old GBN;  das h-dotted v ert ical  l ines  mark c ri t ical  threshol ds  and val u es  

relat iv e  to  The Bank .  
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Overall ,  structural discrepancies existing between the 85% threshold 

GBN and the expert network do not seem to significantly impact the 

forecasted value of The Bank ’s ��.  Firm-specific variables’ should be 

analyzed carefully,  given they are believed to be causing ��.  Moreover,  

differences between the learnt and the expert GBN could result into 

opportunities to gain insight and get a more thorough picture on 

variables’  interactions and importance.  

Notice that,  the performed predictions were obtained assuming normal 

market conditions,  as reflected by historical data available.  The following 

subsection, instead,  will  show an application of the GBNs to a different 

economic scenario that could take place in the future.   

 

3.5.1 Scenario Analysis 

The present subsection focuses on performing a Scenario Analysis  

which,  in particular,  is aimed at feeding into the estimated and expert 

GBNs crisis-like data assumed for the prediction period. Such simulation 

study is useful to analyze the outputs provided by such networks and to 

assess The Bank ’s �� value,  together with the firm-specific variables,  in a 

possible future downturn scenario.  Moreover,  this type of analysis would 

also provide insight concerning The Bank ’s own sensitivity and solidity in 

face of significant downward market pressures,  hence effectively stress 

testing the credit institution.  

A few considerations are necessary on the way data utilized for the 

scenario analysis had been created: 

� In order to simulate a crisis-like scenario for the prediction period, 

changes in monthly data relative to the crisis period17,  ranging from 

April 2008 until  March 2009, had been uti lized as reference values.  

These were useful  to generate simulated observations for a 12 

month period starting from January 2018. Where real data were 

                                                        

17 Period  in wh ich th e 2008 C ris is ’  c ons equ enc es a nd tu rmoil  were proba bl y fel t  

th e  most  by  th e economic  env ironment  su rrounding T he  Ba nk .  
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absent,  as to simulate adverse conditions for The Bank ,  arbitrarily 

set changes to data had been employed; 

� All simulated macroeconomic variables’ data are based on actual  

changes registered during the crisis  period, made exception for 

���. �ℎ’s which had been generated assuming a decreasing trend 

over the prediction period; 

� All simulated firm-specific data,  relevant to the 85% threshold and 

the expert GBNs, had been created arbitrarily in a way that reflects 

worsening economic conditions for The Bank .  The only variable 

which data are available for the crisis period is NPL ;  hence,  its 

relative simulated values are based on actual  changes registered 

during past times.  

Notice that synthetic input data,  relating to firm-specific variables,  would 

be uti lized to simulate the error terms of the linear models underlying 

firm-specific nodes.  Macroeconomic simulated input data,  instead, would 

be critical  in defining descendants’  values,  thanks to the propagation of 

causal effects throughout the considered networks.  

 

It  is of interest to observe the output of the crisis simulation analysis 

relative to The Bank ’s �� and subsequently backtrack to the firm-specific  

elements which influenced its  relative value.  As before,  both the 85% 

threshold network and the expert network had been exploited to obtain 

the relative predictions.  

Concerning the 85% threshold GBN, Figure 16 displays a comparison of 

��’s prediction obtained in the previous section with the one generated 

via the application of the simulated crisis scenario; Figure 17 shows 

similar graphs relative to the use of the expert network. In general,  for 

either case,  one may conclude that crisis-l ike macroeconomic data caused 

�� predictions to take more extreme values and, in turn, to possess an 

increased variability in forecasts.  This is actually in line with 

expectations,  provided that market turmoil often generates uncertainty in 

the macroeconomic environment and such modified external conditions 

may also be reflected onto the The Bank  itself.   
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To better appreciate differences between ��’s  forecasts,  Table 11 reports 

the summary statistics of such predictions for either the baseline and the 

crisis scenario data: standard deviation measures for crisis-related 

predictions are of higher magnitude than their baseline counterparts;  

moreover,  ��’s level  is believed to be,  on average,  higher during an 

economic downturn. Indeed, in such a scenario,  ��’s predicted values are 

estimated to potentially reach values up to almost 7%. 

 
(a)  

 
(b)  

 
Figure 16: C ompa rison of  PD  forecas ted val ues  obtained throu gh th e 85%  

th resh old GBN for both  nor ma l  and cr is is  market  condit ions :  (a)  t ime s eries  pl ot  

and forecas ted pa ths ;  (b)  h is togram ba rs  corres pond to s imu lated c ris is  

predict ions ,  wh il e  k ernels  approxima te th e s h ape of  th e  relat iv e  distribut ions .   



 

75 

 

To better compare the crisis scenario forecasts obtained through the 85% 

threshold and the expert GBNs, the relative predicted paths had been 

 
(a)  

 
(b)  

 
Figure 17: Comparis on of  PD  foreca sted val ues  obtained throu gh the expert  

network for both nor mal  and cr is is  ma rk et  conditions:  (a)  t ime s eries  plot  and 

forecas ted pa ths ;  ( b)  h istogra m ba rs  c orrespond to s imulated c r is is  predict ions ,  

wh il e k ernels  approximate th e sha pe of  th e  rela tiv e  dis tribu tions.  

GBN Scenario Mean 
Standard  

Deviation 
Skewness  Kurtosis  

Exper t  
Basel ine 0.0304 0.0073 0.1628 1.7733 

Crisis  0 .0364 0.0203 0.0941 1.7939 

85 % 
thres hold  

Basel ine 0.0298 0.0061 0.1787 1.7796 

Crisis  0 .0313 0.0168 0.2293 1.8026 

 Tabl e 11: Su mma ry statis t ics  for l ea rnt  a nd expert  GBNs relat iv e to bas el ine’s  and  

cris is  sc ena rio ’s  PD  es t ima tes .  
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plotted in the same graph, as depicted in Figure 18.  

In addition to what said so far,  it  may be interesting to notice that the 

expert network tends to return higher �� prediction values in comparison 

with the ones forecasted by the learnt network. In this sense,  despite the 

modest discrepancies between the two, it  may be possible to assert that 

the former provides more conservative estimates/forecasts than the 

latter.   

 

As conducted before relative to the baseline scenario forecasts,  it  

would be interesting to provide an assessment concerning firm-specific 

variables for the crisis scenario at hand, in order to identify the most 

critical firm-specific indicators that may influence The Bank ’s �� level.  

In particular,  results would be provided only relative to those firm-

specific elements that are causally related to macroeconomic variables,  as 

defined by the 85% threshold and the expert GBNs. Indeed, such elements 

would be the ones affected by the changed market conditions set by the 

simulated crisis scenario.   

Figure 18: Compa ris on of  predic ted v alu es ,  relat iv e to th e cr is is  scena rio  

analys is ,  obtained via  the 85% threshol d GBN and th e expert  network.  Th e mea n 

PD 	predic ted  ba s el ine path  wa s  c reated by  a vera ging  th e bas el ine forecas ts  of  

th e  two networks.  
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(a)  (b)  

 
(c)  (d)  

 
Figure 19: Cris is  sc enario predic ted val u es for N PL ,  relat iv e s tanda rd error  

bou nda ries  and predic tion intervals  bas ed on th e us e of  (a)  th e 85% threshol d  

GBN and ( b)  th e expert  network .  C ris is  scena rio s imulated forecas ted 

dis tribu tions for N PL  genera ted by ut i l iz ing  (c)  th e 85% th resh ol d GBN a nd  

(d)  th e expert  network;  das h-dotted v ert ical  l ines  ma rk cr it ical  th resh olds  a nd 

valu es rela tiv e to  T he  Ba nk .  

Consider first the ��� variable,  which graphical output is  displayed in  

Figure 19. The crisis-related trend predicted by the 85% threshold GBN 

resembles the case in which market conditions are normal,  with the only 

difference being that variability of forecasts is comparatively increased 

and the mean is slightly shifted to the right,  with reference to Figure 

19(c).  Similar considerations are valid for the crisis-related predictions 

obtained via the expert network,  however,  notice: in comparison with the 

learnt network, variability in forecasts is somewhat higher and the mean 

(Figure 19(d)) is farther apart from the average value,  referred to the 
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case in which normal market conditions are assumed. Moreover,  Figure 

19(b) clearly shows that the expert network identifies an increasing trend 

in presence of crisis-like conditions,  which is opposite to what it  suggests  

for the normal market scenario.  This is  interesting because such 

information could be critical in assessing The Bank ’s �� value,  given ��� 

is deemed to be the most influencing variable on the credit institution’s 

probability of default.  Furthermore, one may infer that the previously 

forecasted upward shift in ��’s average value (Figure 18) could be partly 

 
(a)  (b)  

 
(c)  

 Figure 20: Simulated valu es  for CoR  a nd generated v ia  th e expert  network;  

dash ed v ert ical  l ines  indica te th e rela tiv e  mea n val u es .  (a )  Crisis  sc ena rio  

predicted val u es ,  rela t iv e s ta nda rd error bounda ries  a nd predict ion intervals .  

(b)  C ompa rison of  the c ris is  a nd norma l  scena rios  s imula ted forecasted 

dis tribu tions.  (c)  C ris is  sc ena rio s imulated forecas ted distr ibut ion and T he 

Ba nk ’s  cr it ical  th res hol ds ma rk ed by  dash- dotted  v ert ical  l ines .   
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due to the increase in ��� level  predicted by the expert network. Lastly,  

despite the shifts ��� would be subject  to in a downturn period,  notice 

that the flag  level (set at  around 0.025 by The Bank) is  unlikely to be 

reached even during and economic crisis.  This may be explained by the 

fact  that the last  value observed for ��� was rather low in magnitude,  

hence,  setting a good margin which may serve as a buffer against potential  

adverse conditions relative to the prediction period.  

 

Turning now to analyzing the firm-specific variables which are present 

in only either of the learnt or the expert network, consider first the 

variables ��� and ��	1 which are contemplated in the latter network.  

Figure 20 relates to ��� and,  as one may notice,  its  distribution’s 

average values are rather close to each other; instead, variability in the 

crisis scenario forecasts is  quite evident compared to the other instance,  

in which predicted values are rather concentrated around the mean value.  

Also,  Figure 20(a) suggests that no particular trend is expected to be 

present in a market downturn situation. Lastly,  as Figure 20(c) displays,  

��� could potentially reach the flag level set by The Bank .  Then, the credit 

institution should monitor ���’s values closely in correspondence of 

events similar to the simulated ones.   

Concerning the ��	1 variable and its forecasted values for the crisis-

like scenario,  there appears to be no predicted trend in forecasts (Figure 

21(a)) and mean values of the distributions seem to be somewhat similar 

(Figure 21(b)).  Most importantly,  though, as Figure 21(c) depicts,  the 

simulated downturn conditions may cause the variability in ��	1 to 

increase significantly and this could erode The Bank ’s capital buffers up 

to the point in which the credit  institution may need to take corrective 

actions: it  may necessitate to put in place measures in order to increase 

the capital  base,  for instance by searching further possible funding 

solutions.  Then, such simulated scenario is in line with the expectation 

that a crisis is likely to generate difficulties for many businesses and 

credit  institutions.  Consequently,  even the ��	1 variable may be regarded 

as a contributor to the forecasted increased level in The Bank ’s ��.  
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Concerning the 85% threshold GBN, the focus would be on the ���� 

variable,  which graphical analysis is reported in Figure 22. As also noted 

in other cases,  ���� suffers from an increased variability in forecasts 

when severe adverse market changes do take place.  For this particular 

instance,  predictions suggest the presence of an upward trend in ���� 

forecasted values.  Such behavior may be plausible in the event that,  after 

a reduction in sources of funding due to immediate crisis ’  adverse effects,  

The Bank  succeeds in finding alternative funding solutions.  However,  this 

really is an optimistic view of countering the effects of adverse economic 

 
(a)  (b)  

 
(c)  

Figure 21: Simulated v alues for C ET1  a nd generated v ia  th e expert  network;  

dash ed v ert ical  l ines  indica te th e rela tiv e  mea n val u es .  (a )  Crisis  sc ena rio  

predicted val u es ,  rela t iv e s ta nda rd error bounda ries  a nd predict ion intervals .  

(b)  C ompa rison of  the c ris is  a nd norma l  scena rios  s imula ted forecasted 

dis tribu tions.  (c)  C ris is  sc ena rio s imulated forecas ted distr ibut ion and T he 

Ba nk ’s  cr it ical  th res hol ds ma rk ed by  dash- dotted  v ert ical  l ines .  
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conditions.  Indeed,  due to the fact that market turmoil often negatively 

affects several businesses and other credit institutions,  what would 

probably happen in reality is that sources of funding for The Bank  would 

be very limited in the short term. This interpretation is in line with the 

output shown in Figure 22(c),  which puts in evidence that the increased 

uncertainty of a  crisis scenario would likely require The Bank  to take 

corrective actions to ensure the survival of the credit institution.  

Notice that the interpretation provided on ���� may actually be in line 

 
(a)  (b)  

 
(c)  

Figure 22: Simulated valu es  for NSF R  a nd generated via  th e 85% th resh old  

GBN; dash ed v ert ical  l ines  indicate th e relat ive mea n val u es .  (a)  C risis  sc ena rio  

predicted val u es ,  rela t iv e s ta nda rd error bounda ries  a nd predict ion intervals .  

(b)  C ompa rison of  the c ris is  a nd norma l  scena rios  s imula ted forecasted 

dis tribu tions.  (c)  C ris is  sc ena rio s imulated forecas ted distr ibut ion and T he 

Ba nk ’s  cr it ical  th res hol ds ma rk ed by  dash- dotted  v ert ical  l ines .  
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with some aspects of the CET1  variable previously analyzed: difficulties in 

maintaining The Bank ’s capital buffers,  in a crisis-like situation, may be 

worsened by contemporaneous reduced funding opportunities.   

 

In general,  one may infer that,  despite elements/variables be included in 

different GBNs (either learnt or expert ones),  sometimes it  could be 

helpful to combine different instruments/tools and blend their outputs in 

order to obtain a synergic effect,  to possibly end up with a more informed 

opinion relative to the specific matter object of the analysis .  

Lastly,  firm-specific variables’ summary statistics are reported in 

Table 12, which allows for comparisons between the baseline and the 

economic downturn scenarios.  As a general consideration for such Stress 

Testing analysis,  in line with expectations,  it  is evident that adverse 

market movements generate uncertainty,  which in turn affects variability 

in performance indicators and,  ultimately,  tends to raise either the 

magnitude and the variability relative to The Bank ’s ��.   

 

Therefore,  what emerges from the performed Scenario Analysis  is that 

a rise in the level  of �� in correspondence of crisis-like scenarios is to be 

expected.  In any case,  the important concept to remember is  that,  under 

GBN Variabl e  Scenario Mean 
Standard  

Deviation 
Skewness  Kurtosis  

Exper t  

NPL  
Basel ine 0.0114 0.0017 0.6994 2.4218 

Crisis  0 .0136 0.0024 -0.3107 1.7846 

CoR  
Basel ine 0.0026 0.0004 -0.1201 1.2824 

Crisis  0 .0025 0.0019 0.2602 1.6450 

CET1 
Basel ine 0.1165 0.0039 0.1783 1.7818 

Crisis  0 .1229 0.0171 0.0619 1.7963 

85 % 
thres hold  

NPL  
Basel ine 0.0163 0.0010 0.1803 1.7804 

Crisis  0 .0166 0.0019 0.0375 1.5044 

NSFR  
Basel ine 1.1030 0.0048 0.2651 1.8732 

Crisis  1 .1450 0.0469 -0.3247 1.9552 

 Tabl e 12: Su mma ry s tatis t ics  for l ea rnt  and expert  GBNs rela tive  to bas el ine’s  

and c ris is  sc ena rio ’s  f i rm- spec if ic  est imates .  
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any market scenario,  it  is  crucial to try to predict and monitor the 

movements in key performance indicators.  This may allow an appropriate 

assessment on the credit institution’s economic situation,  which in turn 

may provide to management the opportunity to anticipate adverse trends 

and implement adequate timely corrective actions,  when necessary.  
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Conclusions and Closing Remarks 

Before any closing remark and consideration, some key takeaways are  

to be mentioned relative to the case study analysis’  results.  

First,  the generated output suggests that The Bank  is expected to be 

relatively stable and healthy,  as well as compliant with regulatory 

requirements (relative to capital buffers),  either under baseline or crisis-

like scenarios for the prediction period. Hence,  on the basis of  the results 

and scope of the Stress Testing analysis ,  the credit institution may choose 

to focus its efforts on the conduction of risk monitoring activities,  

resource allocation planning and business as usual tasks.  Indeed, no 

corrective actions are expected to be needed in the short-run.  

Second, concerning the specific outcomes of the learnt and expert 

networks,  the most noticeable discrepancies between the two have been 

observed relative to the ��� variable,  for any of the two scenarios  

considered. As already-mentioned, such factor is deemed to be the most 

relevant in terms of dependence relations toward The Bank ’s �� and may 

actually be the major reason for the difference in ��’s estimates,  however 

modest.  

Third,  notice that the specific results obtained via the performed 

Stress Testing analysis are heavily dependent on the type and availability 

of input data.  In fact,  such inputs contribute to determining both the 

structure and parameters of networks,  on condition that learning 

procedures are applied.  In this sense,  ensuring to dispose of sufficient and 

reliable data is always fundamental  when performing these types of 

analyses.  

 

Overall ,  the focus of this work has been to build a statistical Bayesian 

Network approach to support the conduction of Financial Stress Testing 

tasks for credit institutions.  In particular,  compared to other modeling 

methodologies,  BNs turn out to be rather flexible instruments,  which may 

be utilized on an ongoing basis.  Indeed, once set up in a sufficiently 



 

85 

 

adaptable way, a  credit  institution would only need to input data as they 

become available to subsequently dispose of updated stats and prediction 

outputs on the relative indicators of interest.  Moreover,  thanks to the 

learning features of BNs, if  utilized continuously over time, their 

estimated structures may adapt to reflect changes concerning the 

underlying features and dependence relations jointly characterizing data.  

Therefore,  such tool may provide opportunities to grasp non-trivial 

information hidden in between variables.  

Most often,  on the practical side,  BNs could be uti lized to identify 

potential weaknesses in business and, in this sense,  they may be included 

among the array of risk management tools.  In fact,  practices like Financial  

Stress Testing analysis serve as ways to control and monitor risks,  with 

the aim of implementing actions to ensure business solidity as well as 

continuous improvement for the firm.  

Anyway, aside from the specific context of financial  institutions,  

remember that BNs do have a wider application relative to other fields of 

knowledge, as noted in an earlier section. In most instances,  they are 

deemed to perform well in case one disposes of large datasets of 

numerous variables,  which could potentially be intertwined by several 

different relations.  

In general,  it  is usually the case that utilizing BNs implies possessing 

knowledge of theoretical notions relative to the model and its properties,  

as well as an understanding of the specific context under study. Used in 

isolation, they would likely only provide unstructured information or 

outputs of difficult  interpretation.  Therefore,  one would always accept a 

certain degree of subjectivity or interpretation when carrying out data 

analysis activities,  especially when trying to produce predictive 

estimates.  The purpose is not to limit  BNs data exploration capabilities,  

on the contrary,  uncommon or non-trivial  insights extracted by such 

instruments from data would be welcomed,  and posed to more thorough 

analysis i f needed. However,  it  is important to always define the 

perimeter over which the underlying algorithms may work, in order to 

avoid nonsense outputs a priori.  Moreover,  a  critical  aspect for a correct  
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interpretation and understanding of the output produced by BNs would be 

to always count on critical thinking when analyzing results .  

In light of what asserted so far,  as the Financial Stress Testing output 

demonstrated, both expert networks and estimated networks are deemed 

to be useful and should be utilized jointly to support analytical activities,  

provided that they may actually work in synergy by way of 

complementarities,  if  applicable.   

 

In conclusion, Bayesian Networks may be considered as a valid tool  

among the array of risk management instruments that credit institutions 

could employ when performing Financial Stress Testing analyses.  

Moreover,  to summarize the general  idea behind the use of Bayesian 

Networks,  one may wish to keep in mind a rather simple,  still  valuable 

concept:  

 

What is truly interesting is not how well  the output produced by 

analytical tools matches expectations,  but rather how discrepancies 

between expert knowledge and the estimated results may allow for 

opportunities to gain further insights and knowledge.
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APPENDIX A: Overview on Granger Causality  

This section will  be dedicated to an overview of the most important 

notions relating to Granger Causality ,  which aim is to identify the causal 

inter-dependences between the observed variables.  The application of 

such methodology, in its  original form, is based on the following simple 

assertion: 

 

By letting SP and �P be two time series,  SP is said to Granger-cause �P if ,  

by exploiting the lagged elements of both SP and �P,  the prediction on �P 
would be improved compared to the case in which one may utilize �P past  

elements only .  

 

More formally,  applying the Granger Causality principle on two time 

series,  firstly involves the definition of �P as a Vector Auto-Regressive  

(VAR) process :  

  �(�)*P = �P	  

(A.1) 

  

where �(�) = (1 − �B� − �=�= −⋯− �z�z),  �z indicates the lag order � of �P 
and �P is  a White Noise process �P~$�(0, ¢£=).   

Secondly,  the inclusion of SP series would imply a VAR(p,q)  model with 

the addition of exogenous lagged variables such that:  

  �(�)	*P = ¤(�)	0P +	�P	  

(A.2) 

  

where ¤(�) = (¤I + ¤B� + ¤=�= +⋯+ ¤¥�¥),  �¥ indicates the lag order ( of  

SP and �P is a White Noise,  as before.  

 

Notice that,  in accordance with the definition provided above, the 

lagged variables of SP would be kept i f and only if they provide meaningful  

explanatory power to the prediction of the response variable 18 *P in 

                                                        

18 To id e nt i f y  w hic h la gg e d  va ria ble s  a re  to  ke e p  in  t he  mod e l ,  i t  ma y  be  p oss ib le  t o  

p e rf or m t - tes ts  f o r  s ing l e  p a ra me te r  s igni f i ca nce  a nd  F -t es ts  f or  jo in t  s i g ni f ica n ce  ( K ip koe ch ,  

Orwa  a nd  M un g’ a t u ,  2 0 1 3 ) .  
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equation (A.2).  Therefore,  in case SP variables are to be included in the 

VAR process,  SP is said to Granger-cause �P.   
 

When assessing the presence (or absence) of Granger Causality 

relationships,  as a prerequisite,  it  is important to ensure that the 

considered time series SP and �P actually are stationary (Kipkoech, Orwa 

and Mung’atu,  2013).  To this end, notice that an important feature of VAR 

processes is  stability,  expressed via the use of stationary time series.   

 In case processes turn out being non-stationary,  procedures like  

differencing or correcting for seasonality may be applied in order to 

recover stationarity.  However,  such measures may actually imply the loss 

of some information that would otherwise be conveyed via the original  

form of the process.  Hence,  an alternative that may allow the avoidance of 

time series transformation is the application of Cointegration  (where 

appropriate): in case two non-stationary processes have the same trend in 

common it would still  be possible to get OLS estimates of coefficients by 

regressing �P on SP (Verbeek, 2005).  

 

To be clear,  for instance,  consider the case in which both �P and SP are  

non-stationary processes first-order integrated (�(1)) and either process 

is extended up until  the first  lag,  reflected in a }��(1,1) model as follows: 

  �(�)	*P + ¤(�)	0P =	�P  

(A.3) 

  
where �(�) = (1 − �B�),  ¤(�) = (¤I − ¤B�) and ε¨~WN(0, σ¬=);  notice that 

formula (A.3) is a simple rearrangement of equation (A.2).  Then,  in case ε¨ 
results being a stationary process,  it  is evident from equation (A.3) that 

also �P and SP together would be stationary.  Hence,  regardless of �P and SP 
being �(1) processes,  the cointegration condition would be verified and 

procedures to assess Granger Causality may be performed.  
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In general,  one may follow the so called Engle-Granger two-step 

procedure  in order to verify the presence of cointegration between time 

series:   

� In the first place,  one may wish to assess the degree of 

integration relative to each time series (which in the majority of 

circumstances may either be �(0),  �(1) or �(2)) via statistical  

methodologies like the Augmented Dickey Fuller (ADF) test .  This,  

in turn, would define the model specification on which the OLS 

estimation procedure would be performed; 

� Secondly,  given the model specification in the previous step,  it  

may be possible to obtain the relative OLS estimates.  Thereafter,  

it  would be necessary to verify that model’s residuals (�P̂) 

actually are stationary; this phase may be performed once again 

via an ADF test.  

 

As previously stated, cointegration would be verified when �P and SP 
share a common trend: in order to reach this “equilibrium”, the variables 

of each time series would converge to such condition at a certain rate,  

which behavior is  modeled by the so called Error Correction Model  (ECM) 

(Kipkoech, Orwa and Mung’atu,  2013).  

With an il lustrative purpose,  to grasp the meaning of the ECM, it  is  

sufficient to briefly display its formula relative to a }��(1,1) model 

(equivalent to the one in formula (A.3)) in its extended version. The VAR 

process would be 

  *P − �B*PAB = ¤I0P + ¤B0PAB + �P.   

(A.4) 

  
While its relative ECM form would correspond to 

  *P − *PAB = ¤I(0P + 0PAB) + (� − 1)[*PAB − �0PAB] + �P 
= ¤I(0P + 0PAB) + (� − 1)PAB + �P 

 

(A.5) 

where �P would stil l  be a White Noise process,  (� − 1) is the correction 

coefficient of the error PAB and � = (¤I + ¤B)/(1 − �) is the so called long-
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run coefficient,  which de facto  expresses the effect on *P of a one-unit  

variation in 0P.   
 

To conclude this brief review on the core concepts related to Granger 

Causality (tailored to the topics of the present paper),  notice that such 

methodology is usually deemed adequate when a significant number of 

observations is available for the time series considered in the analysis.  

Moreover,  in case data length at disposal is deemed to be short,  one may 

assert that Bayesian Networks would be a more adequate tool to be 

utilized in such circumstance (Zou and Feng, 2009).  Lastly,  keep in mind 

that the notions presented above only relate to pairwise Granger-causal  

relations,  hence applying uniquely to bivariate time series19.  

 

                                                        

19 Notice  t ha t  e xte n sio ns  t o  the  cl as s ic  G ra nge r  Ca usa l i ty  me t hod o log y  p re se nte d  in  t his  

se c t ion  d o  e x is t .  F or  i ns ta nce ,  ( Zo u a nd  Fe n g,  2 0 0 9 )  p re se n te d  a n  a p p r oa ch  to  a d d re s s  t he  

iss ue  of  a s se ssin g  ca u sa l i ty  in  mu l t iva r ia te  con t e xt s  v ia  the  C on di t i on al  Gr a ng er  C aus al i t y  

me t hod .  S t i l l ,  too l s  l i ke  Ba ye sia n  Ne tw or ks  ( a nd  ot he rs)  co uld  be  mo re  a d e qua te  in  a s se s sin g  

ca u sa l  a nd  d e p e nd e n ce  r e la t i ons hip s  in  mu l t iva r i a te  e nviro nme n t s .   
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APPENDIX B: R  Software Environment 

The present section’s purposes are,  first,  to provide a brief definition 

of the R  Software Environment and, second, to acknowledge the authors of 

packages utilized for the development of this work.  

 

R  is to be intended as an integrated and structured software 

environment grounded on the underlying S  programming language, first  

created and developed at Bell  Laboratories  by Rick Becker,  John Chambers 

and Allan Wilks.  Such software suite is  primarily meant for data handling 

and data analysis activities.  Indeed, R may perform data manipulation,  

computational tasks and display graphical outputs,  features which are  

often of use for statistical applications and analyses purposes.  

For a more thorough description on R  and relative introductory 

notions,  see Venables and Smith (2018).  

 

It  must be mentioned that R  software is extended by several packages ,  

which development is to be acknowledge either to the R  Core Team or to 

users and contributors.  

Following, a  list of  the packages uti lized to elaborate and produce the 

outputs of the present work, together with relative brief descriptions and 

references: 

 

bnlearn Provides functions and algorithms to perform Bayesian 

network structure and parameter learning,  as well as 

parameter inference.  

 Reference :  Scutari  Marco (2018),  “Bayesian network 

structure learning,  parameter learning and inference”, 

Version: 4.4  
 

fakeR  Allows the creation of simulated data based on random 

draws from a multivariate normal distribution. It  also 

applies on the datasets of time series’ observations.  

 Reference :  Zhang Lily and Tingley Dustin (2016),  “Simulates 

Data from a Data Frame of Different Variable Types”,  

Version: 1.0  
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forecast Provides instruments to perform analyses on univariate 

time series predictions,  including the use of automatic 

functions relative to ARIMA models.  

 Reference :  Hyndman Rob,  O'Hara-Wild Mitchell ,  Bergmeir 

Christoph,  Razbash Slava and Wang Earo (2017),  

“Forecasting Functions for Time Series and Linear Models” ,  

Version: 8.2  
 

gmodels Includes instruments related to model fitting tasks.  

 Reference :  Warnes Gregory R. ,  Bolker Ben,  Lumley Thomas 

and Johnson Randall  C.  (2018),  “Various R Programming 

Tools for Model Fitting”,  SAIC-Frederick Inc. ,  Version: 2.18.1 
 

graph Dedicated to the handling of data structures for the 

provision of a graphical  output.  

 Reference :  Gentleman Robert ,  Whalen Elizabeth,  Huber 

Wolfgang and Falcon Seth (2016),  “graph: A package to 

handle graph data structures” ,  Version: 1.52.0 
 

Hmisc Mainly contains several functions relative to data 

manipulation and handling,  data analysis and plotting 

features.  Notice that it  depends on the package lattice .  

 Reference :  Harrel l  Jr .  Frank E.  (2018),  “Harrel l  

Miscellaneous”,  Version:  4.1-1 
 

igraph Dedicated to the creation of graphical outputs,  in 

particular,  relative to network analysis topics.  

 Reference :  Csardi  Gabor,  Nepusz Tamas and Authors* (2018),  

“Network Analysis and Visualization”,  Version: 1 .2.1  

*https://cran.r-project.org/web/packages/igraph/AUTHORS 
  

lattice It allows the creation of graphical outputs,  with particular 

focus on multivariate data.  

 Referenece :  Sarkar Deepayan (2017),  “Trellis  Graphics for R”, 

Version: 0.20-35 
 

lmtest  Includes a series of statistical  test functions for 

diagnostics and inference on linear regression models.  

 Reference :  Hothorn Torsten,  Zeileis  Achim, Farebrother 

Richard W. and Cummins Clint (2018),  “Testing Linear 

Regression Models” ,  Version: 0.9-36 
 

moments Includes functionalities to compute and execute tests 

concerning distributions’ moments.  

 Reference :  Komsta Lukasz and Novomestky Frederick (2015),  

“Moments,  cumulants,  skewness,  kurtosis and related tests” ,  

Version: 0.14 
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pracma  Provides specific  functions for numerical analysis,  

especially focused on optimization and time series 

matters.  

 Reference :  Borchers Hans Werner (2017),  “Practical  

Numerical  Math Routines”,  Version: 2.1.4  
 

Rgraphviz Connects R  with AT  and T  graphviz  packages in order to 

produce graphical outputs via the specific  graph  l ibrary.  

 Reference :  Hansen Kasper Daniel ,  Gentry Jeff ,  Long Li ,  

Gentleman Robert,  Falcon Seth,  Hahne Florian and Sarkar 

Deepayan (2016),  “Provides plotting capabilities for R 

graph”,  Version:  2.18.0 
 

stringr Provides functions to manipulate strings.  It  is usually 

exploited for data cleaning and preparation purposes.  

 Reference :  Wickham Hadley (2018),  “Simple,  Consistent 

Wrappers for Common String Operations”,  Version: 1.3.1  
 

tseries Includes statistical tests and functionalities mainly 

tailored to computational f inance topics.  

 Reference :  Trapletti  Adrian,  Hornik Kurt and LeBaron Blake 

(2018),  “Time Series Analysis and Computational  Finance”,  

Version: 0.10-44 
 

vars Dedicated to diagnostics tests,  predictive and causal 

analyses for VAR type models.  

 Reference :  Pfaff  Bernhard (2018),  “VAR Modelling” ,            

Version: 1.5-3 
 

xlsx  Among its functionalities,  i t  al lows to either read or write 

Microsoft Excel  fi les,  as well  as manage other types of 

interactions between the Excel  suite and R .  

 Reference :  Dragulescu Adrian A.  (2014),  “Read,  write,  format 

Excel 2007 and Excel 97/2000/XP/2003 fi les” ,  Apache POI  

project  for  Microsoft Excel format,  Version: 0.5.7  
 

xts  Function which allows to generate extensible time-series  

objects from an input dataset.  Notice that such package is 

linked to the zoo  l ibrary.  

 Reference :  Ryan Jeffrey A.  and Ulrich Joshua M. (2018),  

“Create Or Test For An xts Time-Series Object” ,                   

Version: 0.11-2 

 


