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Ab-initio materials modeling based on the Density Functional Theory is
used to investigate the structural and electronic properties of a novel ox-
ide material obtained by doping zirconium oxide (ZrO2 - zirconia) with Ta
atoms. The material may have interesting applications in medical and elec-
tronic technologies. The work is motivated and driven by X-Ray Diffraction
experiments (XRD), which measure the lattice parameters, atomic positions
and space groups of these zirconia-based materials. The actual composi-
tion and structure of the powders are not known precisely. The Rietveld fit
applied to the XRD data, taken at room temperature and pressure, shows
that, by increasing the Ta doping from 0 to 12 %, the main structures found
in the powder are Monoclinic (P21/c), Orthorhombic (Pca21), and Mono-
clinic(C2/c) at higher Ta concentration. The calculations are focused on
the orthorhombic and monoclinic phases. It is experimentally demonstrated
that at high doping percentage, Ta-doped orthorhombic zirconia is stable
in a wide range of temperatures, after a synthesis that involve a thermal
treatment in vacuum. Calculations provide insight into the thermodynamic
and structural stability of the pure and Ta-doped oxides and predict the
minimum-energy crystal structure of the orthorhombic phase. Moreover the
results allow for the characterization of the electronic band structure of the
material and on the effects of the point defects on the electronic properties.
In particular, when Ta substitute for a Zr ion forming a point defect, there
is the appearance of gap states, which may be of interest for technological
electronic applications. The stabilization process might occur as the ion-ion
substitution induces the generation of oxygen vacancies for charge compen-
sation. The phase transition should be related to the amount of tantalum in-
troduced and so to the amount of vacancies generated. The computed results
will be useful for interpreting the existing measurements and for prompting
new experiments that, on the basis of this new fundamental understanding,
may better exploit the most interesting features of this new material.
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Chapter 1

Introduction

1.1 Zirconium Dioxide

In the plethora of advanced ceramic materials, zirconium dioxide (Zirco-
nia) covers one of the most important roles. It is one of the best refrac-
tive and corrosion-resistant materials used in metallurgy and as a thermal
barrier coating in engines and high temperature fuel cells[1]. Further it
shows excellent intrinsic physical and chemical properties, which include
high melting temperature (2715°C), wear resistance, toughness, strength and
hardness[2]−[6]. Thanks to its uniquely properties it is nowadays applied in
a wide range of industrial and medical fields. Pristine zirconia exhibits three
crystal polymorphs, depending on temperature treatment. The most stable
phase is the monoclinic, space group P21/c. It exists until temperature is
less than 1170°C. In this configuration, Zr is in a distorted sevenfold coor-
dination while O atoms are either in fourfold or threefold coordination. At
higher temperatures the crystal phase changes and becomes tetragonal with
a space group P42/nmc. Zirconium atoms are surrounded by eight anions,
but with two slightly different Zr-O distances. This phase is stable until a
new upper temperature value is reached, exactly 2370°C. Further, the struc-
ture changes into a cubic phase, space group Fm-3m. Here Zr presents a
perfect eightfold coordination. Oxygen atoms in the tetragonal and cubic
phases are fourfold coordinated. Zirconia phase diagram is shown in Fig-
ure 1.1, and it displays the temperature values for which occur the phases
transitions, as stated above[7].
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Figure 1.1: Phase diagram of zirconia

The fourth phase which is not listed in Figure 1.1 is the orthorhombic.
This phase is frequently obtained applying high temperatures and pressures,
which induce the distortion of the cubic crystal phase into an orthorhom-
bic[8]−[12] one. Kudos et al.[13] have observed a such kind of structure on
the basis of in situ single-crystal X-ray diffraction under pressure ranging
from 3.9 to 5.1 GPa (39 and 51 kbar). In alternative an orthorhombic phase
has been reported to form from the monoclinic phase under pressures greater
than 3 GPa[14][15]. Furthermore, an orthorhombic phase can be freely pro-
duced in commercially high-toughness magnesia-partially stabilized zirconia
(Mg-PSZ) by cooling to cryogenic temperatures[10][12][16]. It follows that
the orthorhombic space group is not uniquely determined, but it can change
as a function of pressure applied to zirconia powder or dopants introduced.

1.1.1 The Stabilization Problem

Obtaining stable sintered Zirconia samples is very difficult. The t→m trans-
formation has been the subject of most careful attention, because it usually
occurs during the sintering and on both heating and cooling. The lattice
change is accompanied by a large shear strain and a large volume expansion,
of about 9%. Together, these effects create large internal stresses on cooling,
inducing sample cracking and disintegration[17].
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1.1. Zirconium Dioxide

Lattice transformations are martensitic: (1) being diffusionless, i.e. involv-
ing only coordinated shifts in lattice positions versus transport of atoms,
(2) occurring athermally, implying the need for a temperature change over a
range rather than at a specifics temperature and, (3) involving a shape de-
formation. Volume change on cooling associated with these transformations
are substantial enough to make pristine material unsuitable for applications
requiring intact solid structure[18].
Over the past 30 years many attempts were made to arrest the degrada-
tion processes correlated to ionic/vacancies diffusivity or volume expan-
sion/decrease. The intent to dope zirconia with aliovalent cations or dopants
is done with the aim to enhance some zirconia peculiar features. These might
give rise to new materials able to evolve into new and more performant tech-
nologies. Different kinds of fully and partially stabilized zirconia materials
were planned and used for a wide range of application until now, and the
general classification is the following:

- for partial stabilized zirconia:

• PSZ- Partially Stabilized Zirconia;

• TSZ-Tetragonal Stabilized Zirconia;

• 4YSZ-Partially Stabilized with 4 mol-% of Y2O3

- for fully stabilized zirconia:

• FCZ-Fully Stabilized Zirconia;

• CSZ-Cubic Stabilized Zirconia;

• 8YSZ-Fully Stabilized with 8 mol-% of Y2O3

The difference between partial and fully stabilized zirconia depends upon
the quantity of doping oxides used. Usually in fully stabilized zirconia the
amount of dopant required is about 8 mol%, in the case of dopant Y2O3

with one oxygen vacancy created for every two yttrium ions [19]. The partial
stabilization of tetragonal zirconia can occur at dopant concentrations of 2-5
mol% depending on grain size.
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1.1.2 The Stabilization Mechanism

In the 70’s, the ceramic engineering community was discovering that mixing
zirconia with lower valence oxides, such as CaO, MgO, La2O3 and Y2O3, dis-
favored the strained monoclinic phase at room temperature and favored more
symmetric metastable lattice structures, with * indicating metastability[21].
Cubic* and tetragonal* phases are analogous to those in pristine zirconia,
but have dopant ions substituted on Zr4+ sites and have a fraction of oxygens
sites vacant to retain charge[22]. Oxygen vacancies originate as a consequence
to the introduction of cations or dopants, in order to maintain global charge
neutrality. But these kind of defects can have a significant role in defining the
functional and structural properties of ZrO2 ceramics. Their concentration
and spatial distribution are decisive factors in environmental stability and
ionic diffusivity[19]. The real mechanism of zirconia stabilization is not fully
understood, but some hypothesis have been proposed in recent years[19][20].
The recent theory distinguishes the phenomenon in two main areas as a func-
tion of oxygen hole concentration. In particular, when the concentration of
vacancies is low, a relatively large volume of crystal is left into the fluorite
structure and it undergoes to tetragonal distortion. The distortion not only
involves all the oxygens, but also the atoms in defects proximity[20]. These
take part to the distortion of the oxygen sublattice. On the other hand,
when the defect concentration is high, the original cubic crystallographic
shape is not maintained. Each oxygen site is either itself a neighbor of the
vacancy site. It follows that there is no local regions which could undergoes
to tetragonal distortion, because it has already taken place. The cubic shape
arises only averaging over a wide number of atoms ≈ 100. Thus the stabiliza-
tion process of t* and c* should be correlated just to the oxygen vacancies
concentration and to the internal disorder which these create, rather than
the dopants introduced[20]. Nevertheless dopants are needed to introduce
the correct amount of oxygen and so vacancies into the bulk structure, and
it depends upon metal ions valence state.
Yttria-doped zirconia is one of most studied compound and currently used
material based on the zirconia doping process[23][24]. The yttrium oxide for-
mula is Y2O3. So, replacing one Zr4+ lead to the generation of oxygen holes
which, as explained above, should stabilize the bulk structure. In the same
way, the introduction of the tantalia, Ta2O5, creates for each atomic unit
the generation of one oxygen vacancy. In principle, as previously stated, it
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1.1. Zirconium Dioxide

should work the same stabilization mechanism. Nevertheless, it is unknown
as which secondary effects could bring the tantalum in the zirconia matrix,
and which kind of crystal structure could arise with doping and if they might
be suitable in sintering technology.

1.1.3 Outlook

The focus of this work is the stabilization of orthorhombic zirconia phase
by doping with di -tantalum pentoxide (Ta2O5). The thesis is organized as
follow:

• In Chapter 2 we describe the idea which brought to dope zirconia with
Ta2O5. The synthesis process used to obtain the new material and
experimental results are presented. These data are the driven force
of the Density Functional Theory investigation, as it will be explained
later;

• In Chapter 3 we present the main theoretical aspects of the Density
Functional Theory, ranging from the Thomas-Fermi model to Kohn-
Sham equations to the definition of the Density of States and Bands
Structure. It is a fundamental task to understand which are the basis
of the algorithm used to simulate the doped structures and which are
the advantages and limits of that;

• In Chapter 4 convergence tests are described with abundance of in-
formation. They represent a necessary step in the setting of the opti-
mal parameters and approximations, implemented in pseudopotentials,
used for simulating the crystal structures. The main aim of this part
is to achieve the best compromise between speed of calculations and
accuracy;

• Chapter 5 is dedicated to the reproduction of the main bulk structures
under investigation. We compare the results with literature in order
to verify the application of a method which has to be reproducible and
reliable;

• In Chapter 6 the Atomistic ab initio Themodynamics theoretical ap-
proach is presented. It is the principal means that, on the basis of DFT
calculations, predicts the Ta-doped zirconia thermodynamical behavior

5



with respect to pristine zirconia. We summarize all the main aspect of
this work, results and predictions. Moreover we declared how work will
prosecute and which might be the future developments and objectives.
We evaluate the thermodynamical properties of Ta-doped zirconia and
we use them to predict how the doping process could influence the bulk
structure.
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Chapter 2

Tantalia-Doped Zirconia

2.1 Motivations

While there is exhaustive literature[25]−[27] dedicated to describe the effects
of divalent, e.g. Ca2+ or Mg2+, trivalent, e.g. Y3+ or La3+, and tetravalent,
e.g. Hf 4+, ions in the zirconia matrix, on the other hand a few pentavalent
ions are analyzed, Niobium and Vanadium[28][29]. Usually, the doping effect
correlated to the introduction of pentavalent atoms like Nb5+, Ta5+ and V5+
are thought to be unfavorable for stabilization of metastable polymorphs
of ZrO2 because of their charge and size[30]. Nevertheless tantalum(V)-
doped nanocrystal of pure t-ZrO2 from a chemical synthesis method have
been already reported[31]. The synthesis of this material is pondered in the
light of the fact that oxygen vacancy carrier properties of zirconia should be
enhanced by the doping with Ta5+, but it also might induce the formation
of particular crystal shapes with unexpected properties.

2.2 Synthesis

The method used in the synthesis process is the co-precipitation. It is an
easy and reliable method. It enables us to control the right size of particles
dimensions, which are in the around of ≈ 100-600 nm. This is a fundamental
aspect in Material Science and Engineering if the material has to be process
after, e.g. sintering. Different steps have to be followed for obtaining Ta-
doped zirconia, and virtually, every kind of compound we want to do with
this process. These are referred to this particular material.
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In a glass flask a solution of zirconium chloride 0.1 M, in EtOH:H2O mix-
ture 9:1, is added to a solution of tantalum chloride 0.0125 M in EtOH.
1.037 ml of NH3 28% wt are dripped into the flask containing the solution
above. Ammonia should be stoichiometrically in excess with respect to the
zirconium chloride concentration. The pH should be in the around of 10 for
all the reaction duration. This will guarantee the efficient precipitation of
the oxide during the stirring process, that has to go ahead for 30 minutes.
This ensures that the majority of Ta-doped zirconia powder precipitates.
The powder obtained needs to be accurately washed with EtOH and dis-
tilled water for removing all the NH3 remains. The risk is the possibility to
have secondary reactions which can give rise to unwanted products. Finally
the powder has to be dried. This is performed in two times: the first one
is the removal of the large amount of water and it is usually done into a
conventional oven at the temperature of 100°C. The second sequence is the
true thermal treatment. It is carried out in vacuum into a high tempera-
ture oven, able to reach temperatures of about 1000°C. This is fundamental
because it ensures that no solvent remains wedged into the powder struc-
ture, into pores or else. In this work different samples are synthesized. The
amount of tantalum is made varying in the range between 1% to 12%. The
different number of samples with different doping percentage are planned to
be helpful in identifying particular phases which might raise thanks to dop-
ing effect. In the following table are listed the reagents used in the synthesis
process.

Table 2.1: Reagents used and their purity. wt% refers to the percentage of com-
pound which is dissolved into a water solution. Purity instead refers to the per-
centage amount of spurious elements which are present in the chemical solution.
S.-A. means Sigma-Aldrich.

Reagent Chemical wt% Purity Retailer
Name Formula in H2O %

Yttrium-chloride⋅(6H2O) YCl3 ⋅ 6H2O *** 99.99 S.-A.
Tantalum-chloride TaCl5 *** 99.8 S.-A.

Zirconyl-chloride⋅(8H2O) ZrOCl2 ⋅ 8H2O *** 98 S.-A.
Ammonia NH3 28 *** S.-A.
Ethanol C2H6O 99.8 *** S.-A.

The list of the samples synthesized in this process can be seen in Table 2.2.
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2.2. Synthesis

Each row in the table reports the moles per element used and the corre-
sponding solution volume used.

Table 2.2: Ta-doped zirconia samples. It is shown the moles and volumes correlated
to the doping performed. The oxygen moles are estimated on the basis of Eq. (2.1).

Samples Zr Volume Ta Volume O
[mol] [ml] [mol] [ml] [mol]

ZT-1% 0.990 49.5 0.010 4 1.995
ZT-3% 0.970 48.5 0.030 12 1.985
ZT-4% 0.960 48 0.040 16 1.980

ZT-4.5% 0.955 47.8 0.045 18 1.978
ZT-5% 0.950 47.5 0.050 20 1.975
ZT-8% 0.920 46 0.080 32 1.960
ZT-12% 0.880 44 0.120 48 1.940

The generalized chemical formula which is supposed to correlate the dif-
ferent amount of elements is:

Zr(1−x)TaxO(2−x
2
)

It currently does not describe correctly the real chemical structure of the Ta-
doped zirconia because of the increasing in oxygen vacancy concentration as
a function of increasing doping percentage.
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2.3 XRD and Rietveld Refinement

X-Ray Powder Diffraction (XRD) is one of the most important characteriza-
tion techniques in Material Science (MS). It is used for phase identification
of crystalline material and it can provide information on unit cell dimen-
sions. Max von Laue, in 1912, discovered that crystalline substances act as
3D diffraction gratings. It is a common technique for the study of crystal
structures. XRD is based on constructive interference of monochromatic
X-Rays with crystal lattices. X-Rays are generated by a cathode ray tube,
conveniently filtered to produce monochromatic radiation. The radiation is
collimated, concentrated and directed towards the sample under investiga-
tion. Constructive interference is produced when incident rays and sample
atomic structure satisfy Bragg’s Law:

n� = 2d sin ✓ (2.1)

This law relates the wavelength of electromagnetic radiation to the diffraction
angle and lattice spacing in a crystalline sample. The diffracted X-Rays are
then detected, processed by a computer and counted.
By scanning the sample through a range of 2✓ angles, all possible diffraction
directions of the lattice should be considered due to the random orientation of
the powdered material. The conversion of the diffraction peaks to d -spacings
allows identification of the crystallographic group and so the mineral to which
the sample belongs to. This is possible because each mineral has a set of
unique d -spacings. Generally, this is achieved by direct comparison with a
reference pattern.

2.3.1 Experimental Synchrotron XRD Spectra

The Synchrotron Radiation Facility in Trieste is a very useful place to carry
out experiments in MS. The whole machine depends on a physical phe-
nomenon: when electrons change direction, they emit radiation.
The energy of each electron is inversely scaled with electron wavelength.
It means that as electron energy grows up, the wavelength associated to be-
come shorter, and the emitted energy due to fast direction change become
higher. So, the Synchrotron Facility is a great machine able to accelerate
electrons to very high energetic trends and produce extremely collimated X-
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2.3. XRD and Rietveld Refinement

Rays beams in the different beam lines, where scientists work. Each beam
line is technologically organized in order to carry out a particular experi-
ment and to take advantage of a fraction of the light source. Bragg’s Law is
valid in this context. There are two main differences from common X-Rays
machines: the extremely high intensity and the elevated monochromaticity
of radiation. In this context, in situ temperature Wide Angle X-ray Scat-
tering (WAXS) experiments are done. The different samples synthesized are
irradiated by synchrotron radiation in a temperature ramp. The aim of this
particular experiment is to recognize the presence of an uncommon crystal
phase or if the present phase in the sample has a variation at different tem-
perature values.
Something unexpected it was found. The particular phase identified by Ri-
etveld refinement is stable at every T values investigated. The following
images not mince words:

(a) Tantalia-doped Zirconia:

doping at 3%

(b) Tantalia-doped Zirconia:

doping at 5%

(c) Tantalia-doped Zirconia:

doping at 8%

Figure 2.1: Different samples analysed at Synchrotron Radiation Facility in Trieste
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In Figure 2.1 a,b and c, it can be seen the three different samples ana-
lyzed and their behavior in the temperature range up to 1200°C. The analysis
of these particular samples with those particular Ta-doping percentage is a
pondered choice: they are representative of the behavior of tantalum incor-
porated into the zirconia matrix and give an overview on how it modifies the
crystal shapes as a function of T.

2.3.2 Thesis Goal

Differently from the others samples, Figure 2.1 c (labelled ZT8), shows that
the spectra taken do not change during the thermal treatment, neither heat-
ing nor cooling. It means that the crystal structure is very stable, and it
might be a suitable candidate in practical applications and devices. These
data are the driving force which brought to the computational approach
based on the DFT, in the attempt to clarify and to justify the stabilization
mechanism of the orthorhombic phase. Insight into these fundamental is-
sues can be provided by accurate material modeling. In the following work
we investigate pure and Ta-doped zirconia materials and fully characterize
their atomistic and electronic properties. We consider two main defects mod-
els. The resulting crystalline structure are forced to be electronically neutral.

Model 1): we substitute two zirconium atoms with two tantalum atoms.,
and generate one oxygen vacancy. In the Kröger-Vink notation is

2Ta●Zr + 1V ●●O + 4e− = 0 (2.2)

where TaZr states for the zirconium replacement with a corresponding tan-
talum atom, VO represent the oxygen vacancy, e− states for the electron nega-
tive charge, and black dots (●), representthepositivechargesthatensuefromthedoping.
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2.3. XRD and Rietveld Refinement

Model 2): we take into account the localization of electrons in the tan-
talum atoms proximity. In Kröger-Vink notation we can write

2Ta● + 2e− ≈ 2Ta4+ (2.3)

because tantalum atoms behave like pseudo-zirconiums, being their effective
+5 valence charge shielded by the presence of the localized electron. These
two models are considered and adapted to the crystalline Ta-doped zirconia
structure investigated.
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Chapter 3

Density Functional Theory:

Basis

Density Functional Theory (DFT) provides the best compromise between
accuracy and system size to simulate the properties of matter from first prin-
ciples. It is a quantum-mechanical method used in physics, material science
and chemistry to investigate the electronic structure of atoms, molecules and
solids. The DFT method is based on functionals. A functional is a mapping
of an entire function f to a resulting number F[f ]; whereas a common func-
tion is defined to be a mapping of a variable x to a result (a number) f(x).
In DFT, the functional depends on the electron density. In 1964 Hohenberg
and Kohn published a ground-breaking article[33], which lead to the develop-
ment of (DFT). Hohenberg and Kohn showed that there exists a functional
F[n] such that the ground state energy can be expressed as the minimum of
the functional:

EV [n] = F [n] +� d�r V (�r) n(�r) (3.1)

where n(�r) is the charge-density, and F[n] does not depend on the system.
This fact makes it possible to describe, at least in principle, the ground
state properties of the system of interacting electrons in terms of the charge-
density only, rather than on the far more complicated many-particle wave-
function.
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3.1 Thomas-Fermi Model

The original DFT method was developed by Thomas and Fermi in 1927. In
spite of the fact that approximations used at that time were not so accurate
as nowadays, the approach used in Thomas-Fermi model shows how DFT
operate. The conventional approaches use the wavefunction  as the central
quantity, since  contains the full information of the system. Nevertheless,
 is a very complex quantity that cannot be probed experimentally and
that depends on 3N degrees of freedom, where N is the number of electrons.
In Thomas-Fermi approach the kinetic energy of the system of electrons is
approximated as an explicit functional of the density. Electrons are supposed
to be in an ideal system, where they do not interact with each others, and
they belong to an homogeneous gas with density equal to the local density
at any given point. The kinetic energy functional proposed is:

TTF [⇢(�r)] = 3
10
(3⇡2) 2

3 � ⇢
5
3 (�r)d�r (3.2)

The energy of an atom is finally calculated using the classical expression for
the nuclear-nuclear potential and the electron-electron potential:

TTF [⇢(�r)] = 3
10
(3⇡2) 2

3 � ⇢
5
3 (�r)d�r−Z � ⇢(�r)

r
d�r+ 1

2 � �
⇢(�r1)⇢(�r2)

r12
d�r1d�r2

(3.3)
The energy is completely given in terms of electron density. In order to
determine the correct density to be included in Eq. 3.3, Thomas and Fermi
made use of a Variational Principle. They assumed that the ground-state of
the system is connected to ⇢(�r) for which the energy is minimized under the
constraint of

� ⇢(�r)d�r = N (3.4)

3.1.1 Variational Principle in Ground State Configuration

If a system is in the state  , the expectation value of the energy is given by

E [ ] = � �Ĥ � �� � � (3.5)
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3.2. The Hohenberg-Kohn Theorems

where
� �Ĥ � � = �  ∗Ĥ d�x (3.6)

The V.P. states that the energy computed from a guessed  is an upper
bound to the true ground-state energy E[32]

0 . Full minimization of the func-
tional E [ ] with respect to all allowed N -electrons wavefunctions will give
the true ground state  0 and energy E [ 0] = E0; so,

E0 =min →NE [ ] =min →N � �T̂ + V̂Ne + V̂ee� � (3.7)

For a system of N electrons and given nuclear potential Vext, the V.P. defines
a procedure to determine the ground-state wave function  0, the ground-
state energy E0 [N,Vext], and other properties of interest[32]. In conclusion,
the ground-state energy is a functional of the number of electrons N and the
nuclear potential Vext:

E0 = E [N,Vext] (3.8)

3.2 The Hohenberg-Kohn Theorems

3.2.1 Theorem I

The first Hohenberg-Kohn theorem[33] demonstrates that the electron den-
sity uniquely determines the Hamiltonian operator and thus all the properties
of the system.
It states as follow[32]:
“the external potential Vext(�r) is, to within a constant, a unique functional
of ⇢(�r); since, in turn Vext(�r) fixes Ĥ, we see that the full many particle
ground states is a unique functional of ⇢(�r)”

Corollary I

Being the Hamiltonian fully determined, except for a constant shift of the
energy, it follows that the many-body wavefunctions for all states, ground
and excited, are determined. Therefore all properties of the system are com-
pletely determined given only the ground state density n0(�r).
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Proof

Let us assume the presence of two external potentials,V (1)ext(�r) and V (2)ext(�r),
differing by more than a constant, each giving the same ⇢(�r) for its ground
state. We would have two Hamiltonians, Ĥ(1) and Ĥ(2), whose ground-state
densities are the same, although the normalized wavefunctions  (1) and  (2)
would be different. Since  (2) is not the ground state of Ĥ(1), it follows that:

E1 = � (1) �Ĥ(1)� (1)� < � (2) �Ĥ(1)� (2)� (3.9)

The rigorous inequality arises if the ground state is non-degenerate, that is
taken into account here, following the Hohemberg and Kohn arguments. The
last term in (3.9) can be written as follow:

� (2) �Ĥ(1)� (2)� = � (2) �Ĥ(2)� (2)� + � (2) �Ĥ(1) −H(2)� (2)�
= E(2) +� d3r �V (1)ext (�r) − V (2)ext (�r)�n0(�r) (3.10)

so that
E(1) < E(2) +� d3r �V (1)ext (�r) − V (2)ext (�r)�n0(�r) (3.11)

Nevertheless, considering E(2) exactly in the same way, it will be found the
same equations as above, with superscripts (1) and (2) interchanged:

E(2) < E(1) +� d3r �V (2)ext (�r) − V (1)ext (�r)�n0(�r) (3.12)

At this time, if we add together equations (3.11) and (3.12), we arrive at a
contradictory inequality:

E(1) +E(2) < E(1) +E(2) (3.13)

This brings us to the desired conclusion:
“there cannot be two different external potentials differing by more than a con-
stant which give rise to the same non-degenerate ground-state charge density.
The density uniquely determines the external potential to within a constant”

Since the Hamiltonian is uniquely determined, from the Corollary it fol-
lows that in principle, the wavefunctions of any state is determined by solving
the Schrd̈inger equation with this Hamiltonian. Among all the solutions con-
sistent with the given density, the unique ground-state wavefunction is the
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3.2. The Hohenberg-Kohn Theorems

one that has the lowest energy.

3.2.2 Theorem II

The second Hohenberg-Kohn theorem ensures that a certain density is the
ground-state density that we are looking for.
It states as follow[32]: “FHK [⇢], the functional that delivers the ground-state
energy of the system, delivers the lowest energy if and only if the input density
is the true ground-state density.”
In other words, this is the variational principle:

E0 ≤ E [⇢̃] = T [⇢̃] +ENe [⇢̃] +Eee [⇢̃] (3.14)

Corollary II

It states that the only functional E [n] is sufficient to determine the exact
ground state energy and density.

Proof

The Hohenberg-Kohn original demonstration is restricted to densities n(�r)
that are electrons ground state densities of the hamiltonian with the presence
of the external potential V ext. Since all properties are uniquely determined
if n(�r) is specified, then each property can be viewed as a functional of n(�r).
The total energy functional is included:

EHK[n] = T [n] +Eint[n] +� d3rVext(�r)n(�r) +EII (3.15)

where EII is the nuclei energy interaction.
Equation 3.15 can be rewritten as

FHK[n] +� d3rVext(�r)n(�r) +EII (3.16)

where FHK is the functional which includes all the internal energies, potential
and kinetic, of the interacting electron system

FHK[n] = T [n] +Eint[n] (3.17)
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Now consider a system with ground state density equal to n(1)(�r) which
correspond to the external potential V (1)ext (�r). It follows that the Hohernberg-
Kohn functional is equal to the expectation value of the hamiltonian in the
unique ground state, to whom belongs the wavefunction  (1)

E(1) = EHK[n(1)] = � (1) �Ĥ(1)� (1)� (3.18)

If a different density is now considered, labelled as n(2)(�r), which corresponds
to a different wavefunction  (2), it follows immediately that E(2) of the last
state examined is greater than E(1), and so

E(1) = � (1) �Ĥ(1)� (1)� < � (2) �Ĥ(2)� (2)� = E(2) (3.19)

The meaning is the following: the Hohenberg-Kohn functional evaluated for
the correct ground state density n0(�r) is lower than the value of the previous
expression for any other density n(�r).
Indeed Corollary II establishes that by minimizing the total energy of the
system, with respect to variations in the density function n(�r), it could be
found the exact ground state density and energy.
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3.3. The Kohn-Sham Approach

3.3 The Kohn-Sham Approach

In 1965 Kohn and Sham[34] proposed the revolutionary idea that made avail-
able the use of computational approach in condensed matter physics. The
idea is the following: the substitution of the difficult interacting many-body
system obeying the hamiltonian

Ĥ = − �h2

2me
�
i

∇2
i −�

i,I

ZIe
2

��ri − �RI � +
1
2�i≠j

e2

��ri − �rj �
−�

i

�h2

2MI
∇2

I + 1
2 �I≠J

ZIZJe2

� �RI − �RJ �
(3.20)

where electrons are labelled by lower case subscript and nuclei, with charge
ZI and mass MI , denoted by upper case subscripts, with a different auxiliary
system. Such system can be solved because it is formed of a set of inde-
pendent non-interacting systems. The Kohn-Sham ansatz assumes that the
ground state density of the original interacting system is equal to that of the
non-interacting systems. The KS ansatz is built upon two main assumptions:

1. the exact ground state can be described by the ground state density of
the auxiliary system of non-interacting particles;

2. the auxiliary hamiltonian is chosen in order to have the usual kinetic
operator and an effective local potential V �

eff(�r) acting on an electron
of spin � at point �(r). The local form is not essential, but it is a
useful simplification which is considered as one of the KS equation
main features.

The KS ansatz can be summarized in the following scheme[16]

Vext(�r) HK⇐ n0(�r) KS⇔ n0(�r) HK0⇒ VKS(�r)
⇓ ⇑ ⇑ ⇓

 i(�r) ⇒  0(�r)  i=1,Ne(�r)⇐  i(�r)
where HK0 represents the Hohenberg-Kohn theorem applied to the non-
interacting problem.
The double arrow labeled with KS provides the connection in both direction
between the many-body system and the non-interacting particle system; so
that the arrows connect any point to any other point.
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3.3.1 Kohn-Sham Equations

How the fundamental physical quantities of a real system are taken into con-
sideration? The ground-state density of the interacting system is assumed to
be equal to the ground-state of the non-interacting particle system. Instead
the kinetic energy of the complex system is approximated by the kinetic en-
ergy of the auxiliary system. All the difficult many-body terms of T [n] are
incorporated into the exchange-correlation term, Exc. From the HK theo-
rems comparison, the expression of the total energy that enters in Eq. (3.16)
is evaluated, according to KS approach, by the functional F [n]

F [n] = TKS[n] + e2

2 �
n(�r)n(�r′)
��r − �r′ � drdr

′ +Exc[n] (3.21)

where T [n] represents the kinetic energy of the auxiliary system, that is a
functional of the ground-state density n(�r). The second term, instead, is the
well-known expression for the Hartree energy in terms of the Hartree density
and potential

EHartree[n(�r)] = 1
2 � drvH(�r)n(�r) = e2

2 �
n(�r)n(�r′)
��r − �r′ � drdr

′
(3.22)

All the many-body effects of exchange and correlation are grouped into the
exchange-correlation energy Exc[n].
Exc[n][32] can be written in terms of the HK functional, Eq. (3.17), as

Exc[n] = FHK[n] − (Ts[n] +EHartree[n]) (3.23)

or in a more rigorous form

Exc[n] = �T̂ � − Ts[n] + �V̂ � −EHartree[n] (3.24)

In Eq. (3.23) and Eq. (3.24) [n] denotes a functional of density n(�r,�),
which depends upon both position in space �r and spin �. Equation 3.24
explicitly shows that the functional Exc is the difference of the kinetic and
the internal interaction energies of the true interacting many-body system
from those of the fictitious independent-particle system, the auxiliary system,
with electron-electron interactions replaced by the Hartree energy.
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3.3. The Kohn-Sham Approach

Note

If the functional Exc[n] was known, solving the KS equations could lead
to the exact ground-state density and energy of the many-body electron
system. It practice the KS approach is a feasible method able to calculate
the ground-state properties of the electron system.

3.3.2 Kohn-Sham in Plane Waves

The Bloch’s theorem for a periodic lattice is efficiently exploited in order to
express the one-electron wavefunction in terms of a Fourier expansion. This
is possible thanks to the use of plane waves basis sets. Plane waves are not
the only possible basis set that can be used, but it has several advantages for
condensed matter. The use of plane waves has also the advantage of being
mathematically simple and, in principle, complete. It completely spans the
Hilbert space. Plane waves basis set have also the advantage of covering all
space equally. The last thing is extremely important if one does not know a
priori the form of the electronic wavefunction. Not only advantages brings
the plane wave basis set. It might occur that some regions present the elec-
tron density equally distributed, while in others it is highly concentrated.
Many efforts at achieving methods that linearly scale with system have con-
centrated upon localized basis set[37]−[39]. The Fourier expansion needs to
be truncated in order to be used in practice. Plane waves coefficients have a
kinetic energy EK = �h2

2m ��k + �G�2 where �k represents the wave vector and �G is
the reciprocal lattice vector. In order to achieve a finite basis set, a kinetic
energy cutoff is introduced

Ecutoff = �h2

2m
��k + �G�2 (3.25)

The choice of the Ecutoff determines the truncation of the plane waves ex-
pansion at a particular �G. The KS equations assume a particular from in
term of plane waves expansions

�
G′
�1
2
��k + �G�2� �G �G′ + Vion( �G − �G′) + VH( �G − �G′)� ci,�k+ �G′ = ✏ici,�k+ �G (3.26)

The reciprocal space representation of kinetic energy is diagonal, where po-
tentials are described in terms of Fourier components. In principle, secular
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Eq.(3.26) could be solved diagonalizing the Hamiltonian matrix H�k+ �G,�k+ �G′ .
The matrix elements are given in brackets in Eq.(3.26). The size of the
matrix is defined by the Ecutoff term. The energy value depends on the
pseudopotential chosen in order to describe the atomic species, as it will
discuss in Section 3.4.
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3.4 Pseudopotentials

The Pseudopotential is a mathematical effective potential that mimics the
effect of ionic nucleus and core electrons. It ensues that the Schrödinger
equation contains a modified effective core potential term instead of the
Coulombic potential term. In this way the core states are practically elimi-
nated, and the valence electrons are described by pseudo-wavefunctions with
significant fewer nodes. Thus, it allows to the pseudopotential to be accu-
rately described by fewer Fourier coefficients, and so making the plane-wave
basis set usable in practice. Smoothness and transferability are main prop-
erties which define if a pseudopotential is efficient for a particular atomic
species or not. Pseudopotentials should be as smooth as possible in order
to have a convenient plane waves expansion (small kinetic cutoff values).
While the transferable (thus accuracy) property is correlated with the abil-
ity of the pseudopotential to produce pseudo-orbitals that are as close as
possible to true orbitals outside the core region, for all systems containing a
given atom[40], as illustrated in Figure 3.1:

Figure 3.1: All-electrons and pseudo-orbitals functions for Si put in comparison.

Pseudopotential can be “shared” into two main categories, which will be
described in Sections 3.4.1 and 3.4.2.

3.4.1 Norm-Conserving

The first point for defining the Norm-conserving pseudopotentials is the list
of requirements for a good ab initio pseudopotential, as state in the paper
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of D. R. Hamann, Schlüter and Chiang[41]:
1. Real and pseudo valence eigenvalues agree for a chosen “prototype”

atomic configuration;

2. Real and pseudo atomic wave function agree beyond a chosen “core
radius” r c;

3. Integrals from 0 to r of the real and pseudo charge densities agree for
r > r c for each valence state (norm-conservation);

4. The logarithmic derivates of the real and pseudo wave function and
their first energy derivatives agree for r>r c.

As a consequence of Point 1 and Point 2, it follows that the NCPP equals the
atomic potential outside the “core regione” of radius r c

[32]. The potential
is uniquely determined by the wavefunction and the energy ✏, that does not
need to be an eigenenergy. Point 3 requires that the integrated charge

Ql = � Rc

0
drr2� l(r)�2 = � Rc

0
dr�l(r)2 (3.27)

is the same for  PS
l , radial pseudo-potential, as for the all-electron radial

orbital  l, for a valence state. Ql conservation ensures that:

• core regione total charge is correct;

• normalized pseudo-potential is equal to the true orbital outside of r c;

Point 4 states that wavefunction  l(r) and its radial derivative  ′ l(r) are
continuos at Rc, for any smooth potential. This last point contemplates a
crucial step toward the aim of construct a “good” NCPP: it can be gener-
ated in a spherical atom, and then applied in a more complex system. It
guarantees that the pseudopotential adapts as a function of the system to
reproduce.

3.4.2 Ultrasoft

Ultrasoft pseudopotentials were first introduced by Vanderbilt[42] in 1990.
As the name suggest, the idea of UPP is to relax the norm-conserving con-
dition in order to generate much softer potentials. It follows that it can be
used considerably fewer plane-waves for calculations of the same accuracy

26



3.4. Pseudopotentials

as for NCPP. However, it is correlated to a little loss of transferability. In
this scheme the pseudo-wave-functions are allowed to be as soft as possible
within the core region, so that the cutoff energy can be reduced dramati-
cally. Technically, this is achieved by introducing a generalized orthonor-
mality condition. The electron density given by the squared moduli of the
wave functions has to be augmented in the core region in order to recover
the full electronic charge. The electron density is thus subdivided into:

• a) a smooth part that extends throughout the unit cell;

• b) a hard part localized in the core regions.

The augmented part appears in the density only, not in the wavefunctions.
Ultrasoft PP have another advantage besides being much softer than the
norm-conserving potentials. The USPP generation algorithm guarantees
good scattering properties over a pre-specified energy range, which results
in much better transferability and accuracy of pseudopotentials. USPP usu-
ally also treats "shallow" core states as valence by including multiple sets of
occupied states in each angular momentum channel.
This also brings to high accuracy and transferability of the potentials, al-
though at a price of computational efficiency.

Pseudopotentials Used in This Work

There are many sources of pseudopotential available on the web, for many
different codes. In general these pseudopotentials are reliable, but they need
to be tested for their performance in the system that will be simulated. In
this work the pseudopotentials used are taken from the Quantum Espresso[43]
web database. In particular here we describe each pseudopotential used, with
an insight into its main features.
Zirconium ultrasoft pseudopotential, Zr.pbe-nsp-van.UPF, is generated with
a scalar-relativistic calculation, using the Vanderbilt code, version 7.3.5. Be-
ing a transition metal, the pseudopotential is created from a (slightly) oxi-
dized reference configuration to have improved transferability.

27



Table 3.1: Zirconium pseudopotential principal informations.

Pseudopotential Info

Functional PBE

Valence Configuration 4S 4P 4D 5S 5P
Occupation 2.00 6.00 2.00 2.00 0.00

Z valence 12
Tot. Energy [Ry] -98.616311498

Number of Wavefunction 5
Number of Projectors 6

As it can be seen in Table 3.1 only the last five electronic valence state
are taken into consideration in the pseudopotential generation. The Z va-
lence is the difference between the number of protons and core electrons and
it is equal to 12. The exchange-correlation functional implemented is the
PBE (Perdew-Burke-Ernzerhof)[44], which is a generalized gradient approx-
imation, also known as GGA.
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Figure 3.2: Convergence test for zirconium pseudopotential.

The convergence test depicts the trend which this pseudopotential has
with respect to kinetic energy cutoff. Reaching a plateau at 25 Ry it means
that this pseudopotential is well-performing for relative low energy cutoff
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3.4. Pseudopotentials

values. The transferability needs to be tested as it is used to reproduce
crystal structures and compare the results with literature.
The necessity to use the same exchange-correlation functional implemented
into zirconium pseudopotential, is extended also to tantalum and oxygen
pseudos. Table 3.2 lists the main feature which describe the tantalum pseudo,
following the same approach of the previous one. Valence states electronic
configurations are listed, with the relative occupations.

Table 3.2: Tantalum pseudopotential principal informations.

Pseudopotential Info

Functional PBE

Valence Configuration 5S 5P 5D 6S 6P
Occupation 2.00 6.00 3.00 2.00 0.00

Z valence 13
Tot. Energy [Ry] -141.34524077818

Number of Wavefunction 5
Number of Projectors 6

Differently from zirconium, tantalum Z valence, the difference between
protons and electrons, is equal to 13.
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Figure 3.3: All-electrons and pseudo-orbitals functions for Si put in comparison.

Figure 3.3 shows instead the convergence trend which the tantalum pseu-
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dopotential has. It can be seen that, differently from the zirconium pseu-
dopotential, the trend tends to rapidly decade, but only at values above 30
Ry. It means that if the cutoff is wrongly set, the calculation will reach
convergency with difficulty.

Finally, the last pseudopotential used is the that referred to oxygen. Oxy-
gen is quite delicate to be treated in the DFT approach, due to its triplet
electronic state. What follows is that if not correctly set and monitored, the
calculation could not reproduce the correct electronic configuration. This
task will be carefully taken into account in the atomistic ab initio thermody-
namic calculations, where the total energy of oxygen atom and molecule are
needed. Oxygen pseudopotential is in the PBE approximation. The number
of electrons in valence considered (Z valence) are six.

Table 3.3: Oxygen pseudopotential principal informations.

Pseudopotential Info

Functional PBE

Valence Configuration 2S 2P
Occupation 2.00 4.00

Z valence 6
Tot. Energy [Ry] -31.58339463984

Number of Wavefunction 2
Number of Projectors 4

Figure 3.4 is of particular interest because it shows that the pseudo tends
to reach convergence quite slowly; the plateau is not well defined as for those
of zirconium or tantalum.
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3.4. Pseudopotentials

Nevertheless the cutoff at 30 Ry is sufficient to have a good compromise
between accuracy and calculations speed.
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Figure 3.4: All-electrons and pseudo-orbitals functions for Si put in comparison.

As previously declared, it is essential to have the same kind of functional
implemented in the pseudopotential used, otherwise it could lead to errors in
the calculations, due to the different kind of approximations implemented.
The GGA approximation depends upon the local density and its local gradi-
ent [40] �∇n(�r)� ,

Exc = � n(�r)✏GGA (n(�r), �∇n(�r)�)dr (3.28)

In general the GGA functional class tends to correct the over-binding of LDA
(“Local Density Approximation”).
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3.5 DFT in Pseudopotential
Plane-Waves Framework

3.5.1 Basis Set

In a periodic system the potential presents the following property

V (�r + n�a) = V (�r) (3.29)

where �r and �a are lattice vectors and n is an integer. The Bloch’s theorem,
implies that the wavefunctions can be written as a product of a periodic cell
part and a wavelike part

 i(�r) = ei�k�rfi(�r) (3.30)

f i(�r) can be expanded as a set of plane waves

fi(�r) =��G ci, �Gei �G�r (3.31)

where �G represent the reciprocal lattice vectors. So, the electronic wavefunc-
tion can be rewritten as

 i(�r) =��G ci, �Gei(�k+ �G)�r (3.32)

Theoretically, an infinite number of basis function would be needed to ex-
actly rebuilt the real wavefunction. Unfortunately it is not possible, and the
expansion needs to be truncated. This is equivalent to impose a cutoff to
the kinetic energy, being the kinetic energy of an electron define as

E�k = �h
2��k�2
2m

(3.33)

The kinetic energy cutoff brings an error in the total energy of the system,
but in principle it can be controlled and reduced by increasing the size of
the basis set. It is pursued incrementing the energy cutoff value. It finally
permits to apply the KS equation as defined in Eq. (3.26), in Section 3.3.2 .
Moreover, plane waves basis sets present other advantages with respect to
Slater or Gaussian functions, and these include:
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3.5. DFT in Pseudopotential
Plane-Waves Framework

• the same basis set can be applied to different atomic species;

• plane waves do not depend on nuclear positions. It follows that cor-
rection terms are not needed for the forces calculation;

• the convergence vs. completeness can easily be tested.

3.5.2 Brillouin Zone Integration

Looking at the transition from non-periodic to periodic systems, one can
realize that some important quantity become integrals of the Brillouin zone.
For example, the sum of occupied eigenvalues

�
n
�

BZ
d3k �fn,�k ⋅ ✏n,�k� (3.34)

which contains the kinetic energy Ts[n], or the density

n0(�r) =
���������
∑i fi� i(�r)2� (non-periodic)
∑n ∫BZ d3�k �fn,�k ⋅ ��n,�k(�r)�2� (periodic) (3.35)

i defines the states of a non-periodic system, f i and f n,�k denote the occu-
pations numbers in a non-periodic and periodic systems, respectively. To
obtain the density and total energy, it is necessary to solve continuos inte-
gral at, theoretically, infinitely many �k-points. These are localized in a single
unit cell of the reciprocal space.
It needs to introduce another approximation: to solve the resulting inte-
grals, discretizing �k-space to a few �k-points only, and to rewrite the integrals
approximately as a weighted sum

�
n
�

BZ
d3k F (�k)→��k �!(

�k) ⋅ F (�k)� (3.36)

The evaluation of this expression is related to Brillouin zone sampling of a
“few” �k-points, finding their integration weights, and then evaluating the KS
equations only at these chosen �k-points. The simplest manner to achieve this
purpose is an even-spaced integration grid of �k-points along the directions of
the reciprocal lattice vectors. Figure 3.5 shows a two-dimensional example
for the reciprocal-space unit cell of a hexagonal lattice.
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Figure 3.5: Reciprocal-space unit cell of a 2D hexagonal lattice. Large blue dots
are the reciprocal lattice vectors, while the small define an even-spaced k -point
integration grid that covers the unit cell.

In this example it is chosen the following �k-point integration grid (small
blue dots)

�k(s1, s2, s3) = � s1

n1
� ⋅ �G1 + � s2

n2
� ⋅ �G2 + � s3

n3
� ⋅ �G3 (3.37)

where �Gl represents the reciprocal lattice vectors, while si are integers in
the limit 0 ≤ si ≤ ni. What is needed to do in practice, in a common DFT
calculation, is to choose the integers n1, n2, n3. This mathematical scheme
yields an even-spaced �k-point grid, with uniform weights !(�k) and a sum of
n1, n2, n3 points.
The �k-point mesh needs however to be tested, depending on the system under
investigation, in order to achieve the best compromise between calculation
speed and accuracy.
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3.5. DFT in Pseudopotential
Plane-Waves Framework

3.5.3 Density Calculation

One of the most important quantities calculated in DFT is the calculation
of electrons density, n. The general form used to describe it is

n(�r) = 1
N�k ��k,i

f(✏i,�k)ni,�k(�r) (3.38)

where ni,�k(�r) = � i,�k(�r)�2. Eq.(3.38) is an average over �k-points, where i
indicates the bands at each �k-point, and f (✏i,�k), which defines the occupa-
tions of the electron states. In a plane wave basis set, thanks to the Bloch
functions, it can be written

ni,�k(�r) = 1
⌦ �

m,m′
c∗i,m(�r)ci,m′ (�r)ei( �G

m
′− �Gm)⋅�r (3.39)

and
ni,�k( �G) = 1

⌦�m c∗i,m(�k)ci,m′′ (�k) (3.40)

where m
′′ denotes the �G vector for which �Gm′′ ≡ �Gm + �G. To find all the

Fourier coefficient requires a double sum, i.e. a convolution in Fourier space
that requires N2

G operations, where N G is the number of �G vectors needed to
describe the density. For large systems it becomes extremely expensive. The
expedient is to use a fast Fourier transform (FFT). It allows one to transform
from one space to the other in N logN operations, where N = N R = N G. The
advantage is that n(�r) is needed to find ✏xc(�r) and Vxc(�r). It is relevant to
notice that the density n requires Fourier components, that extend twice as
far in each direction as those needed for the wavefunction  because n∝ � �2.
FFT needs a regular mesh in the form of a parallelepiped, in contrast with
the fact that wavefunction cutoff is a sphere with �12� ��k+ �G�2 < Ecutoff . The
FFT approach is much more efficient for large systems since the number of
operations scales as N logN.

3.5.4 Density of States

The Density of States (DOS) of a system describes the number of states,
at each energetic level, which are available to the electrons. The DOS of a
energetic level E is the number of energetic levels, between E and E+dE.
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Per unit of energy the DOS is defined as follow:

DOS(E) = 1
N�k �i,�k �(✏i,�k −E) (3.41)

while the DOS per unit of volume ⌦ in extended systems

DOS(E) = ⌦cell(2⇡)d �BZ
dk �(✏i,�k −E) (3.42)

In the independent-particle states, the equations above represent the number
of independent-particle states per unit energy, where ✏i,�k denotes the energy
of an electron. The density of states can be easily obtained once the molec-
ular orbitals or, in a periodic system, the crystalline orbitals, are calculated.
This is a powerful means which lets graphically visualize if the material under
investigation is an insulator, rather than a conductor or semi-conductor.

3.5.5 Band Structure

The Schrödinger equation is:

H1e�n(�r) = � �p2

2m
+ V (�r)��n(�r) = En�n(�r) (3.43)

where H1e, �n(�r) and En are, respectively, the one-electron Hamiltonian,
the wavefunction and the energy of an electron in an eigenstate labeled n.
Each eigenstate can be occupied at least by two electrons with opposite spin,
(Pauli’s exclusion principle).

When a particle moves in a periodic potential its wavefunctions can be
expressed through the already cited Bloch Functions.

An eigenfunction �(�x) of H1e can be expressed as a sum of Bloch func-
tions:

�(�x) =��k A�k��k(�x) =��k A�ke(i�k�x)u�k(�x) (3.44)

where A�k are constants. The one-electron wavefunctions can be labelled
by constant �k, which are the wave vectors of the plane waves forming the
“skeleton” of the Bloch function. In conclusion, a plot of the electron energies
versus �k is known as Electronic Band Structure. Bands structure plot in
which �k is allowed to vary over all possible values is known as the extended
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zone scheme. Another way of choosing �k, which is more convenient and
preferably used, is the so called reduced zone scheme. Thanks to translation
property, �k can be replaced by �k′ = �k−(2n⇡�R), where n is an integer chosen
to limit �k′ to the interval [−⇡�R,⇡�R].
This “enclosed” place is called IBZ.

Another fundamental means which help in terms of definition of the
Bands Structure is the Group Theory. The approach of the GT will no
longer be discussed here in its entirely mathematical aspects, but it is going
to be explained “conversationally” just as an overview.
Group Theory is a mathematical branch which studies the so called Groups,
where a group is an algebraic structure characterized by an associative bi-
nary operation, equipped with a neutral element, for which every element
belonging to the structure owns an invert element. Various physical sys-
tems, such as crystals and the hydrogen atom, can be modeled by symmetry
groups. Band structure diagrams are like maps and the group theory nota-
tions are like symbols on the map. Understanding symbols means exploring
the electronic properties of the material under investigation.

Wavevectors take on any value inside the BZ, which is a polyhedron in
wavevector space that is related to the crystal lattice. Wavevectors outside
the BZ simply correspond to states that are physically identical to those
states within the BZ. Special high symmetry points in the BZ are labelled
like �, �, ⌃. In scientific literature it is common to see bands structure plots
which show the values of En(�k) versus different values of �k along straight
lines connecting symmetry points.
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Energy band gaps are classified using the wave vectors of the states sur-
rounding the band gap:

• Direct Band Gap: the lowest-energy state above the band gap has
the same �k as the highest-energy state below the band gap;

• Indirect Band Gap: the closest states above and below the band
gap do not have the same �k value.

Figure 3.6: Direct and Indirect band gap scheme.
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Chapter 4

Accuracy and Convergency

Tests

4.1 Convergence Tests

The aim of the convergence tests is to study the best setting of the funda-
mental parameters useful to obtain a correct compromise between accuracy
and speed of calculations. Moreover, the pseudopotentials for the different
atomic species are checked in order to have a good representation of the bulk
structure which will be investigated.
In the very first part of this work, the convergence achieved by an FCC zir-
conia system is tested. The software which performs the calculation is the
Quantum Espresso[45]. The QE code is an integrated suite of Open-Source
computer codes for electronic structure calculations and materials modeling
at the nanoscale. The QE distribution consists of a “historical” core set of
components, and a set of plug-ins that perform more advance tasks. It uses
the Density Functional Theory approach, in plane-wave basis set.

4.1.1 Face-Centered-Cubic (FCC) Zirconia

At the beginning the system investigated should be as much simple as pos-
sible in order to easily evaluate the goodness of parameters in comparison
with literature[46]. The atomic species and positions of the FCC zirconia
structure are listed in the Table 4.1.

39



Table 4.1: Experimental atomic coordinates of cubic FCC zirconia structure.

Atomic Coordinate Coordinate Coordinate
Label (x) (y) (z)

Zr 0 0 0
O 0.25 0.25 0.25
O 0.75 0.75 0.75

The data have been extrapolated from a Rietveld fit refinement from
X-Ray Powder Diffraction. A 3D model of the FCC Zirconia, Figure 4.1,
is shown here. This structure is used as principal instrument for the self-
consistency testing, thanks to its ease geometry.

Figure 4.1: Zirconia FCC model: green spheres refers to the Zirconium while the
red ones to the Oxygen.

The unit cell contains four zirconia (ZrO2) units. Zr4+ and O2− ions occupy
the octahedral sites, as shown above, but, due to Zr:O ratio, half of the
tetrahedral sites are filled by O2−.

4.1.2 Work Plan

The first series of calculation is performed in order to establish which are
the best lattice parameters values to be used in future calculations.
The tests are planned as follow:

• 1) on the basis of the experimental measure of the lattice parameters,
a series of values, very close to the experimental one, are chosen. This
is done for sampling the not so different structures that could be in the
around of the experimental one;

• 2) the choice of the pseudopotential plays a fundamental role in the
accuracy and performance of the calculations, as stated in Section 3.4;

40



4.1. Convergence Tests

• 3) in a simple script (see Appendix A.2 ), two variables, lattice param-
eters and �k-point sampling, are made varying at the same time: this
ensures to obtain all the possible combinations and to optimise time
and resources. It is fundamental to adequately organize the work in
order to maximize the analysis of a huge amount of data that arises
from these type of calculation;

• 4) once the output files are obtained, plotting on the same graph the
total energy variation for the same �k-point sampling for different lattice
parameters with respect to the variation of the lattice parameters let
us visualize which is the range in atomic units around which it has to
be perform a more punctual analysis. It can be seen in Figure 4.2 an
example of the plot described.

Figure 4.2: Total Energy vs. Lattice parameters variation. The origin grid offset
for this series of calculation is at the origin 0 0 0.

• 5) being just an indicative perception of the best settings, the data
gained from the previous calculation should be fitted with an Equation
Of State. The chosen equation, for this work, is the Murnaghan EOS.
In this way it can be compared not just the trend variation of the lattice
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parameter but also the Bulk Modulus, Volume Energy and Enthalpy
(see Appendix A.1 ).

The Murnaghan’s EOS has the following form:

E(V ) = E0 +K0V0

������
1

K
′
0(K ′

0 − 1)
�
�

V

V0

1−K′0�
� +

1
K
′
0

V

V0
− 1

K
′
0 − 1

������ (4.1)

where K0 is the modulus of incompressibility, K
′
0 is the first derivative of

K0 with respect to the pressure, V is the final volume, V0 is the volume
not compressed, and P is the pressure as a function of the volume. If the
reduction of volume under compression is low, i.e. for V

V0
greater than about

90%, the Murnaghan equation can model experimental data with satisfac-
tory accuracy.

An example of a fitted curve is the following:

Figure 4.3: The fitting process is extremely supportive with the calculated data.
The red line represents the calculated total energy in Rydberg with respect to the
lattice parameter in atomic units. The green line is, instead, the Murnaghan’s EOS
fit. They are overlapped.
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4.1.3 Setting the �K-Point Grid and Plane Wave Cutoff

In order to set the optimal values for the computational parameters, control-
ling the representation of the wavefunctions and the integrals in the Brillouin
zone, we have used the following approach. First we set the kinetic energy
cutoff (ecutwfc) to a large value, 40 Ry (≈ 544.2 eV), and we explore the
convergence of the structural parameters as a function of the �k-point grid.
The results are listed in Table 4.2.

Table 4.2: Results data fitted for a different K-Points sampling

�K-Points Lat. Par. fit Bulk Modulus Volume Emin

sampling [a.u.] [GPa] [a.u.]3 [Ry]

2x2x2 9.673 231.3 229.860 -163.66780
3x3x3 9.672 229.7 226.207 -163.70723
4x4x4 9.674 231.3 226.369 -163.70757
5x5x5 9.674 231.5 226.349 -163.70764
6x6x6 9.674 231.4 226.348 -163.70764
7x7x7 9.674 231.3 226.367 -163.70761
8x8x8 9.673 231.1 226.316 -163.70760
9x9x9 9.673 231.1 226.307 -163.70761

10x10x10 9.673 231.3 226.328 -163.70762

The fit carried out with the Murnaghan EOS allowed for the extrapola-
tion of the bulk modulus, volume and energy minimum. The sampling of
the Brillouin Zone is done with a grid offset centered in the origin. In order
to be as precise as possible we focus on the rigid around of the minimum
gained from the previous fitting, Table 4.3.
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Thus a new cycle of calculations are performed in order to precisely find
out not only the minimum-energy lattice parameters, but also to increase
the precision of the bulk modulus.

Table 4.3: Data comparison for the calculation of the Lattice Parameters refinement
at the origin.

�K-Points Lat. Par. fit Bulk Modulus Volume Emin

sampling [a.u.] [GPa] [a.u.]3 [Ry]

2x2x2 9.707 213.5 228.717 -163.66781
3x3x3 9.667 208.3 225.886 -163.70734
4x4x4 9.673 234.4 226.296 -163.70772
5x5x5 9.671 237.9 226.180 -163.70771
6x6x6 9.673 255.1 226.318 -163.70775
7x7x7 9.671 242.2 226.176 -163.70773
8x8x8 9.671 231.5 226.187 -163.70772
9x9x9 9.671 228.4 226.153 -163.70769

10x10x10 9.671 231.1 226.166 -163.70770

We also considered shifted grids, which gave similar results, as it can
be seen in Table 4.4. It is important to have under control the maximum
number of variables, but also to minimize their degrees of freedom.

Table 4.4: Data comparison for the calculation of the Lattice Parameters shifted
from the origin

�K-Points Lat. Par. fit Bulk Modulus Volume Emin

[a.u.] [GPa] [a.u.]3 [Ry]

2x2x2 9.667 231.8 225.860 -163.71285
3x3x3 9.673 231.5 226.331 -163.70798
4x4x4 9.673 231.1 226.294 -163.70763
5x5x5 9.674 231.2 226.336 -163.70762
6x6x6 9.673 231.3 226.325 -163.70763
7x7x7 9.674 231.4 226.336 -163.70763
8x8x8 9.673 231.4 226.327 -163.70763
9x9x9 9.673 231.4 226.335 -163.70763

10x10x10 9.673 231.4 226.331 -163.70763

The sampling of the Brillouin Zone is shifted from the origin. In exact
terms, the grid offset is displaced by half a grid step in each direction.
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Having established that the 4x4x4 �k-point mesh is sufficient to converge
the lattice parameters to 99.4%, the bulk modulus to 91.4% and the total
energy to 99.9%, we now fix this grid ad explore the variation of these data
with respect to the basis set cutoff. For doubt’s sake we also considered a
6x6x6 mesh. The data are reported in Table 4.5.

Table 4.5: Comparison between two different BZ sampling

Cutoff Lat.Par. fit Bulk Modulus Volume
[Ry] [a.u.] [GPa] [a.u.]3

4x4x4 6x6x6 4x4x4 6x6x6 4x4x4 6x6x6

20 9.3539 9.7166 149.1 227.7 204.605 229.341
25 9.6439 9.6416 178.9 166.4 224.230 224.070
30 9.6746 9.6746 239.7 231.0 226.380 226.377
35 9.6718 9.6731 234.1 233.7 226.183 226.277
40 9.6734 9.6737 234.4 255.1 226.296 226.318
45 9.6749 9.6712 234.8 235.2 226.405 226.143
50 9.6698 9.6719 221.9 237.8 226.046 226.193
55 9.6692 9.6696 240.8 238.4 226.004 226.030
60 9.6698 9.6706 238.9 236.4 226.045 226.101

It can be seen that the best converged value is for a kinetic energy cutoff
of 30 Ry. In conclusion, being the results for the two type of mesh equal, it
is meaningless to weigh down the calculations with a 6x6x6 grid.

4.1.4 Energy Cutoff Convergence

The Kinetic Energy Cutoff is defined as

Ecut = �h2

2m
� �G�2 (4.2)

where �G represents the reciprocal lattice vectors. Ecut includes only plane-
waves with energies less than this cutoff. It always has to ensure that the
cutoff energy is high enough to give accurate results. The calculations are
repeated, increasing the cutoff energies, until convergence is reached. In
Figure 4.4 is shown, for different kinetic energy cutoff ( 30 Ry, 35 Ry and 40
Ry), the trends with respect to the number of �k-points.

It can be seen that, despite the fluctuation that arises at 35 Ry and 40
Ry, the 30 Ry graph presents a stable trend, already for 10 �k-points. This
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Figure 4.4: �k-points sampling trends compared at different energy cutoff.

is sufficient for our purpose to justify the use of a kinetic energy cutoff of 30
Ry. So, the 4x4x4 mesh and the kinetic energy cutoff of 30 Ry will be used
for all the calculations reported in the following.

4.1.5 Reference

Literature comparison is necessary for gaining confidence in the calculated
data. Our reference is the paper of Stapper and Parrinello[46].
In this work, authors compare the structural parameters of monoclinic,
tetragonal, cubic and orthorhombic zirconia, calculated by and LDA func-
tional. In particular, the attention is focused on the third one.
Their results are compared with the experimental data and with previous
Hartree-Fock (HF) and density-functional-based (DFT) ab initio calcula-
tions. In this context, for our pourpose, it is necessary to evaluate just the
cubic structure.
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In Table 4.6 it is added the Bulk Modulus and the Volume/Atom ratio,
got from the convergence tests, in comparison with the previous cited work
and other papers.

Table 4.6: Data comparison between References and the present work

Phase V/Atom Bulk Modulus
[Å] [GPa]

Cubic
This work PBE 11.18 234.4

Paper[46] 10.91 268
Exp. 10.99 [47] 194-220[48]

Theor. HF[49] 11.41 ***
Theor. DFT[50] 11.24 267

Theor. FLAPW[51] 10.76 221

It can be seen that data obtained in this work are very close to the
reference[46] and to the experimental one. It means that �k-point grids have
been set so as to solve numerically with sufficient precision the KS equations.
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Chapter 5

Zirconia and Tantalia

Polymorphs

Before focusing on the point defects of the novel orthorhombic Ta-doped
zirconia system, we start assessing the properties and relative energies of
the pure ZrO2 and Ta2O5 polymorphs, and compare the results with the
literature[46]. We address our attention to the monoclinic (P21/c) and or-
thorhombic (Pca21). Moreover we also considered the Tantalia orthorhom-
bic phase (Pccm), structurally similar to doped zirconia crystal. In the next
three sections we characterize the structural and electronic properties of these
systems, corroborating results we DOS and band structure plots and crystal
models used.
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5.1 Monoclinic Zirconia (P21/c)

Monoclinic zirconia is the most stable zirconium oxide phase at temperature
below 1170°C. The crystal structure is modeled on the basis of X-Ray Pow-
der Diffraction data experimentally extrapolated. The monoclinic crystal is
described by three unequal vectors and the � angle, different from 90°.
The two possible monoclinic crystals in the Bravais Lattices classification
are:

• the primitive, (see Figure 5.1);

• the centered, (see Figure 5.2).

Figure 5.1: Primitive Unit Cell Figure 5.2: Centered Unit Cell

We have modeled the bulk monoclinic ZrO2 by means of the primitive
monoclinic system. Figure 5.3 shows the unit cell obtained from experi-
mental data. Green and red spheres denote zirconium and oxygen atoms,
respectively.

b

c

a

Figure 5.3: Primitive monoclinic Zirconia rebuilt on the basis of X-Ray Powder
Diffraction data.

In the monoclinic structure the zirconium atoms are in a distorted sev-
enfold coordination, while the oxygen atoms are present both in a threefold
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5.1. Monoclinic Zirconia (P21/c)

and fourfold coordination.

5.1.1 Structural Properties

The study and the characterization of monoclinic zirconia phase starts from
considering crystallographic experimental data. The atomic positions, unit
cell sides and internal coordinates are extrapolated by means of Rietveld fit
refinement. Once these main crystal features are obtained, we use them for
modeling the virtual monoclinic unit cell.
Thus we use the QE tool for relaxing the internal coordinates. Applying
the Hellman-Feynman theorem[52], the charge density obtained from a DFT
calculation can be used to obtain the forces acting on the nuclei and hence,
by relaxing the forces to zero, a stable configuration is obtained.
Table 5.1 summarizes the atomic positions used for the rebuilding of the
unit cell, in comparison with those used by Stapper et al.[46] in their work.
Moreover, the experimental values which have been used as reference in the
paper are compared with those extrapolated by Rietveld fit from XRD. Both
simulated and experimental data are in very good agreement.
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5.1. Monoclinic Zirconia (P21/c)

Table 5.2 compares lattice parameters of Stapper ’s work with those used
in this work, relaxed and unrelaxed. The discrepancy between literature’s
values and those used here occurs mainly in the b/a ratio. The values ob-
tained by cell relaxation are in good approximation with literature’s.

Table 5.2: Lattice Parameters Comparison

a b/a c/a �

Ref. [46] 5.1505 1.1012 1.0234 99.230
This work [unrelaxed] 5.1428 1.0119 1.0325 99.166
This work [relaxed] 5.1780 1.0154 1.0345 99.525

The little difference can be considered negligible for the purpose of the results
described in the next Section and for thermodynamical stability.
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5.1.2 Electronic Properties

DOS and band structure of the equilibrated monoclinic zirconia are shown in
here. The HOMO-LUMO gap is about 3.6 eV. It is known that GGA func-
tional implemented in the pseudopotentials underestimates the real band
gap. In Figure 5.4 we can see the different contributions to the electronic
configuration of the monoclinic zirconia. The peak at -25 eV is due core
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Figure 5.4: Monoclinic Zirconia Density of States

electrons belonging to the zirconium 4p orbitals. The double peak at ≈ -16
eV is the sum of two different contribution of core electrons, zirconium 5s
orbitals and oxygen 2s orbitals, respectively.
Finally, valence band, immediately before the HOMO limit, is mainly made
up of 2p oxygen orbitals and zirconium 4s; while the conduction band, im-
mediately after the LUMO limit, is practically composed of zirconium d
orbitals only. The band gap value agrees with literature[53], which report a
corresponding value of 3.16 eV . The region of interest is in the surrounding
of the band gap, where the main doping effects occur.

The calculated band structure is displayed in Figure 5.5. We can observe
the information reported by the DOS graph from another point of view.
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5.1. Monoclinic Zirconia (P21/c)
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Figure 5.5: Bands Structure of Monoclinic Zirconia.

In proximity of the HOMO-LUMO gap, band structure shows if a mate-
rial can be a suitable candidate to be a electron carrier or not. Monoclinic
zirconia turns out to be an insulator[53]. What is clear from the analysis of
the band plot is that we are dealing with an indirect band gap. It means that
a contingent excited electron, in the attempt to jump from valence to the
conduction band, will go through a longer path. Longer path means more
possible energy profligacy.
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5.2 Orthorhombic Zirconia (Pca21)

The second zirconia polymorph investigated is the orthorhombic one. The
orthorhombic lattices result from cubic lattices stretching along two of the
three orthogonal corners. The result is the formation of a rectangular prism
with a rectangular base, with a and b, and height c, their dimensions. The

Figure 5.6: Orthorhombic Crystallographic Configurations

principal orthorhombic configurations, distinguishable in four classes, are
reported in Figure 5.6: Primitive(P), Body-Centered(I), Base-Centered(A,
B or C), and Face-Centered(F).
In this work we describe the orthorhombic phase, space group Pca21, in
terms of the primitive cell, following the experimental observations.
Usually, orthorhombic zirconia could not be obtained by chemical synthesis,
but it is produced by applying very high pressures and temperatures to the
already existing cubic, tetragonal or monoclinic zirconia. It follows that
orthorhombic zirconia is not defined by a unique space group.
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5.2. Orthorhombic Zirconia (Pca21)

5.2.1 Structural Properties

As for monoclinic zirconia, also in the study and characterization of the or-
thorhombic we have considered the experimental atomic positions, lattice pa-
rameters and internal coordinates, obtained by Rietveld refinement of XRD
data. We consider the crystal unit cell, and also in this case, we have re-
laxed all structure parameters and atomic positions applying the Hellmann-
Feyman theorem. Table 5.3 shows the equilibrated lattice parameters.

Table 5.3: Lattice Parameters Comparison

a b/a c/a

This work [unrelaxed] 5.260 0.963 0.965
This work [relaxed] 5.308 0.959 0.964

Ref. [54] 5.220 0.961 0.966
Exp. 5.260 0.964 0.966

The values obtained are in good approximation with the reference[54]. In
side a, there is a length increasing of about 0.91%.
b/a ratio presents a discrepancy with the experimental one of about 0.5%.
So, data are valid and in good approximation. Table 5.4 shows experimental
atomic positions used, and the same after the relaxation.

Table 5.4: Atomic Position Comparison

This Work Exp.
[relaxed]

Zr (0.531, 0.266, 0.249) (0.530, 0.267, 0.250)
O1 (0.865, 0.067, 0.106) (0.861, 0.068, 0.106)
O2 (0.228, 0.464, 0.001) (0.229, 0.463, 0.000)

Unfortunately, the reference[54] does not report the atomic positions used
and optimized, so a direct comparison cannot be done. This implies that it
is necessary to rely on data extrapolated for this particular crystal structure.
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Figure 5.7 and 5.8 represent the virtual reconstruction of the unit cell
before and after relaxation.

Figure 5.7: Unit Cell Unrelaxed Figure 5.8: Unit Cell Relaxed

5.2.2 Electronic Properties

In orthorhombic zirconia DOS, it can be seen that the HOMO-LUMO gap
is around 3.8 eV. The HOMO-LUMO gap underestimation should not be
forgotten, as a consequence of the approximation implemented into the pseu-
dopotential used. We can observe that orthorhombic DOS is quite similar
to the monoclinic one.
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Figure 5.9: Orthorhombic Density of States

Peaks at ≈ -16 eV are very similar to those in the monoclinic DOS; also
valence and conduction bands are very close to the monoclinic’s. It follows
that the morphological change does not have important effects on electronic
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5.2. Orthorhombic Zirconia (Pca21)

structure. As for monoclinic, the difference peaks have the same contribu-
tions from the same zirconium and oxygen orbitals. Orthorhombic zirconia
band structure, Figure 5.10, is not so far from the monoclinic one. The gap
between HOMO and LUMO levels are very close, and it follows that also
orthorhombic zirconia is an insulator. Moreover, the same mechanism of
electronic transfer, as for monoclinic zirconia, is present here, because we
are dealing with an indirect band gap.
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Figure 5.10: Orthorhombic Zirconia Crystallographic Configurations

In the act of planning a new semiconductor, it has to be considered
which kind of path electrons will prefer to follow in operating conditions.
Differently from the monoclinic zirconia, it should be take orthorhombic
electronic properties with a grain of salt, because of the very little literature
reference.
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5.3 Orthorhombic Tantalia (Pccm)

5.3.1 Convergence Test and Lattice Parameters Selection

The ground states analysis concludes with the investigation and re-evaluation
of one of the tantalum oxides polymorphs, the Orthorhombic Pccm. The aim
is not just to reproduce literature[55], but also to test the pseudopotential
used for Tantalum atomic species. It needs to satisfy the convergence criteria,
like zirconium and oxygen pseudopotential in the cubic structure, describe
in preceding Sections. The pseudopotential used is a GGA Vanderbilt ul-
trasoft, Ta.pbe-nsp-van.UPF. As in the previous cases, we use an automatic
script in which we make varying at the same time the kinetic energy cutoff
and the lattice parameter a. The other two sides are fixed.

Table 5.5: Lattice Parameters Comparison

a b/a c/a

Ref. [55] 11.748 0.591 1.25
This work [converged] 12.00 0.584 1.214

Table 5.5 reports values after convergence. They are correlated to the mini-
mum of the parabolic curve, fitted with the Murnaghan EOS. In Figure 5.11
is shown the kind of curves that are fitted. The data gained by simulation of
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Figure 5.11: Convergence Curves
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5.3. Orthorhombic Tantalia (Pccm)

the orthorhombic tantalia are valid and in a very good approximation with
Sahu et al..[55] The �kpoint mesh used for every calculation was 4 8 3. Table
5.6 summarizes the bulk modulus calculated with the EOS:

Table 5.6: Bulk Modulus Comparison

Energy Cutoff [Ry] Volume [a.u.]3 Bulk Modulus [GPa] Emin [Ry]

20 1249.25 218.7 -888.54
25 1249.37 226.7 -889.73
30 1249.85 231.2 -889.89
35 1249.49 229.7 -889.90
40 1249.30 231.0 -889.93
45 1248.11 228.1 -889.98
50 1247.77 229.8 -890.02
55 1247.76 229.7 -890.05
60 1247.35 229.7 -890.06

The bulk modulus obtained at 30 Ry is very close to one obtained by the
paper authors, equal to 231.47 GPa.

5.3.2 Electronic Properties

The orthorhombic tantalia DOS is not uniquely determined, but it depends
upon the functional adopted in the calculations. The experimental Ta2O5
band gap is about 4.1 eV[56].
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We calculate a band gap of about 0.3 eV. This discrepancy can be filled
by applying a hybrid functional like B3LYP, which involves Hartree-Fock
exchange energy. We instead use the GGA pseudopotential.

In Table 5.7 we summarize the values in literature concerning the band
gap of tantalia.

Table 5.7: Bulk Modulus Comparison

Structure Eg [eV]

�-Ta2O5
This work 0.3

Ref. [56] 4.1
Ref. [57] 0.2
Ref. [58] 0.1
Ref. [59] 5.06
Ref. [60] 2.43
Ref. [61] 2.0-2.2
exp. [62] 4.0-4.2

Such a small band gap suggests that the orthorhombic �-tantalia is a
semiconductor, but unfortunately it is just a great underestimation due to
the functional used to simulate the tantalum atom. This error is present also
in the band structure plot, Figure 5.13. What is wrong is the gap between
HOMO and LUMO levels, but not how the bands are reported.

Figure 5.13: Orthorhombic Bands Structure
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5.3. Orthorhombic Tantalia (Pccm)

Nevertheless, Figure 5.13, is extremely faithful to the one reported in
reference [55]. Figure 5.14 shows the orthorhombic tantalia unit cell investi-
gated. It is made of four Ta2O5 molecular units.

b

c

a

Figure 5.14: Orthorhombic Tantalia Unit Cell

The aim of testing the quality of the pseudopotential, and then the elec-
tronic properties correlated to Ta2O5 is reached. Results are in confidence
with those of other authors. The question concerning the gap is, at this time,
negligible.
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5.4 Summary

The aim of accurately to reproduce literature[38][46] and structures is achieved.
We started from the experimental data concerning the structural parameters
of the main bulk structure, which we used for modeling the crystal unit cell.
Then we applied an optimization algorithm to find the equilibrated atomic
position of each atom contained in the unit cell. Finally, we calculated the
total energy of each model and tested the quality of each pseudopotential
used. As reported in Figure 5.15, the total energy versus the lattice param-
eter variation reproduces the correct energetic trend of zirconia phases.

Figure 5.15: Computed energy versus lattice parameter data fitted by a Murnaghan
EOS for monoclinic zirconia (red line), orthorhombic zirconia (green line), and cubic
zirconia (blue line).

We can see that, as experimentally observed, that monoclinic phase is the
most stable while the others two phases considered are at higher energy val-
ues. This is a very important step. The pseudopotentials are tested with
satisfactory results and they correctly reproduce what are the experimental
observations.
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Chapter 6

Defect Chemistry of Ta-doped

Zirconia

6.1 Atomistic ab initio Thermodynamic

We started from the structural parameters values extrapolated by XRD
diffraction experiments, concerning the two main Ta-doped zirconia phases,
monoclinic and orthorhombic. The measurement alone cannot determine
which are the compensating defects from Ta doping. These can be electronic
or crystalline (vacancies, interstitials, etc.). To provide this complementary
information we took into consideration two probable defects that can con-
tribute to the stabilization of the phases. In this work we considered the
following mechanism: 1) we replace zirconium atoms with tantalum atoms
and contemplate the presence of oxygen vacancies (i.e. crystalline defects),
and 2) we replace zirconium atoms with tantalum atoms but without the
generation of oxygen holes, (i.e. electronic defects). In both the models the
supercells considered are neutral. Thus, we modeled the crystal unit cells
of each principal component of the Ta-doped zirconia, starting from their
molecular units, ZrO2 and Ta2O5, and testing the pseudopotentials used to
simulate each atomic species. The test were satisfactory, and we were able
to correctly estimate the total energy versus lattice parameter variation of
zirconia polymorphs. The aim of this work is to explore and describe the
stabilization mechanism which occurs in the Ta-doped zirconia, and establish
if it is correlated to crystalline or electronic defects. This has not yet been
studied in literature. Some works[63]−[65] on the Ta-doped zirconia system

65



have been already published. Unfortunately, in these papers authors limit
their investigation just on the possible electronic effects that a zirconium
atom replaced with a tantalum one can produce, only in the monoclinic
phase. The three works simply assume that the electronic defect is the most
stable and do not explore structures containing other possible defects that
can form when Ta is included in the ZrO2 lattice.
On the contrary, in this work we go beyond this limitation and we consider
different stoichiometries and defects, in order to define which is the most
probable defect that occurs in realistic conditions of temperature and pres-
sure. To make possible this in depth analysis, we need to use a method
capable to calculate from first principles the free energy of a material: one
possibility is the atomistic ab initio thermodynamics approach. In recent
years[66]−[70] ab initio calculations combined with thermodynamic concepts
have become an important strategy in structures stability analysis of com-
plex materials that can involve intrinsic nonstoichiometries of the chemical
compositions. Ab initio computations yield first-principles solutions of the
Schrödinger equation without depending on empirical input.

Figure 6.1: Schematic representation of the time and length scales for the micro-,
meso- and macro- scopic system. It shows the methods developed in order to face
problems correlated to a certain system under inverstigation.

In order to explore macroscopic phenomena on the basis of a microscopic
understanding, a huge range of time and length scales need to be covered.
The link between micro-, meso- and macroscopic systems is referred as mul-
tiscale approach. It allows for connecting total energy electronic calculations
with the thermodynamics. Figure 6.1 summarizes this fundamental concept.

66



6.2. The Formalism for the Bulk Free Energy of Formation

The computation covers a wide range of problems in surface structures[71],
defect stability[72][73], doping[74] of semiconductors, oxide surfaces[75]−[78]
and metal/oxyde interfaces[79][80]. In the typical electronic structure calcu-
lations, the temperature and the pressure effects are not included, i.e. all
evaluated physical quantities are strictly only valid at T = 0 K and P = 0
atm.

6.2 The Formalism for the Bulk Free Energy of For-
mation

To investigate the relative stability of bulk Zirconia (ZrO2) under thermody-
namical conditions, we have exploited an approximate scheme to calculate
the bulk Gibbs free energy within a thermodynamic model, as suggested by
Reuter et al.[68] and Bollinger et al.[81].
The Gibbs free energy is a thermodynamic potential state function defined
as

G = U − TS + pV (6.1)

where U is the internal energy, T is the temperature, S is the entropy, p is
the pressure and V is the volume. For a general crystal of zirconia, the Gibbs
free energy depends on the number of zirconium atoms (NZr) and oxygen
atoms (NO) present in the sample under investigation. The most favorable
thermodynamical systems at a given T and p are those that minimize the
Gibbs free energy of the bulk crystalline oxide. It is possible to use total
energies from DFT calculations to approximate the free energy of a system.
Since we are dealing with bulk crystal solids, the pV contribution in Gibbs
free energy is negligible, because the pressure value considered in standard
conditions is too low to induce modifications. Thus we have

G ≈ U − TS (6.2)

If we consider the zirconia system, it follows

G(T,V,NZr,NO) ≈ U tot(V,NZr,NO) − TSvib.(T,V,NZr,NO) (6.3)

where U tot(V,NZr,NO) is the internal energy of the bulk zirconia; from now
we rename it as Etot(V,NZr,NO) for convenience.
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The term Svib.(T,V,NZr,NO) states for the entropic contributions. They
include vibrational and configurational terms, both of them depends on the
crystal configurations. In principle, the vibrational contribution can be es-
timated from the phonon density of states. However, given the melting
temperature of ZrO2 (2953 K), we do not consider this term. The configura-
tional contribution due to different dopants arrangement are also neglected
here. Following similar literature, in the present work the Gibbs free energy
can be approximated as

G(T,P,NZr,NO) ≈ Etot
DFT (T0K , Vcost.,NZr,NO) (6.4)

where in this case the Etot
DFT (T0K , Vcost.,NZr,NO) states for the total energy

value estimated by DFT calculation.
While the capital G(T,P) denotes the Gibbs free energy of formation of the
crystalline supercell, we define lowercase g(T,P) as the Gibbs free energy
of the stable ZrO2 polymorphs per molecular unit. In this thesis we focus
on the thermodynamic analysis of the free energy of formation of different
phases of pure and Ta-doped zirconia. In particular, for the case of zirconia,
the respective Gibbs free energy of formation is

Gform(T,P ) ≈ n ⋅ gform
ZrO2

= n ⋅ µZrO2 (6.5)

where µZrO2 represent the chemical potential of zirconia per molecular unit,
and n the number of unit per supercell. The corresponding Gibbs free energy
of formation per zirconia molecular units us defined as

gform
ZrO2
(T,P ) = EDFT

tot − µZr − 2µO(T,P ) (6.6)

where µZr is the chemical potential of zirconium and µO(T,P) is the chemical
potential of oxygen. If we consider Eq.(6.5), we can rewrite it in the form of
Eq.(6.6) and generalized it as

Gform(T,P ) = EDFT
tot −NZrµZr −NOµO(T,P ) (6.7)

Notice that the only term which depends upon temperature and pressure is
the oxygen chemical potential.
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6.2. The Formalism for the Bulk Free Energy of Formation

6.2.1 Oxygen Chemical Potential

It is now necessary to establish the dependence of µO from T and P, in a gas
of molecular O2. Assuming that the gas is ideal, the dependence of oxygen
chemical potential with pressure and temperature is

µO(T,P ) = µO(T,P0) + 1
2
kT ln

P

P0
(6.8)

where P0 is the reference pressure in standard conditions (P0 = 0.1 MPa)[82].
So, µO(T,P0) can be decomposed into two terms

µO(T,P0) = 1
2
gref
O2
(T,P ) + 1

2
�gO2(T,P0) (6.9)

where the first term, gref
O2
(T,P ), is the Gibbs free energy of oxygen molecule

calculated in three different ways, as we will describe later. The second
term, �gO2(T,P0), is the entropy contribution in O2 gas. This term has an
important role in the correct evaluation of the oxygen chemical potential.
It correspond to the difference in the Gibbs free energy per O2 molecule
between 0 K and T, at constant pressure P0. It is related to the enthalpy h
and entropy s as

�gO2(T,P0) = h(T,P0) − h(0K,P0) − Ts(T,P0) (6.10)

The values of h and s are tabulated in the thermochemical tables[82], for
different values of T and P. Although these terms could be calculated with
statistical mechanic approaches, in this work we will use the tabulated ex-
perimental values. For standard conditions, these are: METTERE VALORI
TABELLE NIST So, �gO(T0,P0) per oxygen atom is

�gO(T0, P0) = 1
2 [0 − 298.15 ⋅ 205.147] = −30.5823 kJ

mol = −0.3169 eV

This term is added to the oxygen chemical potential formula, as it will shown
in next Sections. The entropy calculation should takes into account also vi-
brational and rotational contributions, but here they are omitted.

In oder to be able to apply equations referred to Gform(T,P), we have to
define and describe gO2(T,P). The literature[68] reports different approaches
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that we will explore in the following Sections. Summarizing, gO2(T,P) can
be calculated starting from the total energy of an isolated oxygen molecule,
as anticipated in Eq.(6.9). Otherwise it can be estimated starting from the
total energy of an isolated oxygen atom, Section 6.3.2. Finally, we can cal-
culate the oxygen chemical potential as a function of the Gibbs free energy
of formation of any oxide for which the �Gform is already experimentally
known, Section 6.3.3.
In order to establish which is the most accurate choice to apply to ZrO2, we
will calculate with the three methods explain above the Gibbs free energy of
formation of bulk zirconia.

6.2.2 Limits Allowed in Oxygen Chemical Potential

Pressure and temperature are variables in experimental procedures. It is con-
venient to consider the dependence of the atomic free energy with respect to
µO(T,P), which carriers the only explicit dependency of the thermodynamics
on T and P. If µO(T,P) becomes too low, all oxygen would leave the sample.
It means that the oxide will decompose into solid Zr and oxygen gas. It
follows that

max [µzr(P = 0)] ≡ gZr (6.11)

where gZr is the Gibbs free energy of metallic zirconium, which is approxi-
mated to the total energy calculated with the DFT approach.
Eq. (6.6), in the limit of T = 0 K and P = 0 atm conditions, will employ
that

min [µO(T,P )] ≡ 1
2
[gZrO2(0,0) − gZr] (6.12)

marking the Oxygen-poor limit, or equivalently Zr-rich limit. It is a theoret-
ically well-defined reference point on the µO axis. On the other hand, the
Oxygen-rich limit can be defined as the point beyond which O atom from
the gas phase would start to condense on the sample[69].
As defined for Zr-rich condition, Oxygen-rich limit can be defined the as
follow

max [µO(T,P )] ≡ 1
2
Etotal

O2
(T,P ) (6.13)

where Etotal
O2

is the total energy of a free, isolated O2 molecule at T = 0
K. So, the Gibbs free energy of formation of the oxide, �Gf (T,P), can be
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6.3. Calculating the Reference of Oxygen Chemical Potential

defined as follow

�Gform(T,P ) = gZrO2 − gZr − gO2(T,P ) (6.14)

where ggas
O2
(T,P ) is the Gibbs free energy of an oxygen molecule.

6.3 Calculating the Reference of Oxygen Chemical
Potential

The next three Sections will deal with the methods used to correctly ex-
trapolate the Gibbs energy of formation for monoclinic bulk zirconia, by
using different approximations for the reference gref

O (T,P ) of Eq.(6.9) of the
oxygen chemical potential. Once tested for a particular phase, it can be ex-
tended to the others polymorphs. In Sections 6.3.1 and 6.3.2 respectively, we
calculate �Gform

ZrO2
, with an oxygen chemical potential calculated from the O2

molecule or O atom. While in the third approach, Section 6.3.3, we evaluate
the oxygen chemical potential, on the basis of the experimental enthalpy of
formation of bulk zirconia.
Before going into the details of defining gref

O2
(T,P), we explain how the

�Gform
ZrO2

(T,P) is calculated. In the prospective to be as much precise as
possible, the evaluation of the gform

ZrO2
(T,P ) ≈ µZrO2 − µZr − µO(T,P) is car-

ried out for two different kinetic energy cutoff. This is done in order to
highlight how the choice of the cutoff can influence the results. The total
energy is calculated for the oxygen molecule O2, the oxygen atom, the bulk
zirconium, and the bulk zirconia ZrO2. The chosen zirconia phase is the
most stable in standard conditions, i.e. the monoclinic. Zirconia unit cell
contains four unit formula, so the total energy calculate will be divided by 4
as to refer it to a unit formula. Zirconium metallic bulk is evaluated with the
usual convergence criteria, being in a hexagonal close-packed configuration.
The unit cell contains two atoms, so the total energy have to divided by half
of its value. Atomic oxygen and the oxygen molecule total energy are eval-
uated, paying particular attention to the electronic configuration. Table 6.1
shows the values obtained for the different calculations performed as stated
previously.
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Table 6.1: Total energy calculations. The symbol *** means that the value do not
need to be divided, and so it has no values in the Fraction columns

Atomic Ratio 30 Fraction 50 Fraction
Species Factor [Ry] [Ry] [Ry] [Ry]

Etot
o *** -31.6604 *** -31.6765 ***

Etot
o2

1/2 -63.8080 -31.9040 -63.8338 -31.9169
Etot

Zr 1/2 -207.6281 -103.8141 -207.6341 -103.8171
Etot

ZrO2
1/4 -673.4116 -168.3529 -673.5241 -168.3810

DFT method is known to bad estimate the total energy of oxygen due to
the overbinding effect introduced. So, some test on that are carried out with
the aim to correctly assess its electronic configuration, in atom and molecule.

6.3.1 gref
O in Terms of EO2

The fundamental equation used for calculating �Gform
ZrO2

is

�Gform
ZrO2
(T,P ) = µZrO2 − µZr − 2 ⋅ µO(T,P ) (6.15)

where the term µZrO2 refers to the total energy of bulk zirconia estimated
by DFT calculation, and µZr is the total energy of bulk zirconium estimated
in the same way.
The oxygen chemical potential, µO(T,P ), is calculated as

µO(T,P ) = gref
O +�gO2(T,P ) (6.16)

where gref
O is estimated in terms of the total energy of the O2 molecule

gref
O = 1

2
EO2(T = 0K)

The study of the oxygen chemical potential is carried out for two different
kinetic energy cutoff, in order to visualize how they can possibly influence
the oxygen binding energy estimation and the zirconia Gibbs free energy of
formation. Table 6.2 shows for the two different cutoff values the respective
calculated µO(T,P ) and the estimated �Gform

ZrO2
, with respect to the exper-

imental value, evaluated in standard conditions, T = 298.15 K and P = 1
Atm.
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6.3. Calculating the Reference of Oxygen Chemical Potential

Table 6.2: Oxygen chemical potentials and Gibbs free energy of formations com-
pared. The respective �Gform (T0, P0) for zirconia are quite far from the experi-
mental value. They are referred to the standard conditions.

at cutoff 30 (Ry) at cutoff 50 (Ry) Ref.[82]
[Ry] [Ry] [Ry]

µO(T = 0) -31.927315 -31.940226 ***
�Gform

ZrO2
(T0, P0) -0.684208 -0.683519 ***

exp. (T0, P0) *** *** -0.836

The O2 binding energy is calculated as

BEO2 = Etot
O2
− 2 ⋅Etot

O (6.18)

where EO2 is the total energy of the oxygen molecule, while Etot
O is the total

energy of the oxygen atom. The calculated values are listed in Table 6.3.

Table 6.3: Oxygen molecule binding energy calculated from total energy DFT put
in comparison with the experimental value.

BEO2 [Ry] [eV]

at 30 Ry -0.4872 -6.6285
at 50 Ry -0.4808 -6.5421

exp. -0.3822 -5.2

We can see, both in Table 6.2 and Table 6.3, that there is a great discrep-
ancy between experimental and calculated oxygen molecule binding energy.
The reason is the overbinding that the DFT introduces in the O2 ground
state calculation. It is known to be a problem that affects the DFT ap-
proach. Thus, we can conclude that this is not a good approach to be used
in atomistic ab initio thermodynamics calculations.
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6.3.2 gref
O in Terms of EO

As in the previous Section, here we calculated the Gibbs free energy of
formation of monoclinic zirconia. The formula used is the same as before,
Eq.(6.15). In this case the estimation of the oxygen chemical potential is
made starting from the total energy of the oxygen atom.
µO(T,P ) is calculated is the following way

µO(T,P ) = gref
O + 1

2
BEO2 +�gO(T,P ) (6.19)

where gref
O represents the reference of free energy calculated by DFT. In order

to correct oxygen energy contribution, we have to add half of the binding
energy value, 1

2BEO2 . This is estimated experimentally and theoretically, see
Table 6.3. Finally, �gO(T,P ), as earlier defined, is the entropic contribution
of oxygen molecule, which has to be taken into account.

Table 6.4: Comparison between Gibbs free energy of formation for bulk zirconia,
calculated for two different kinetic energies cutoff. It is also reported the exper-
imental value of �Gform (T0, P0)from the thermodynamical tables[82]. All the
values are referred to the standard conditions.

at cutoff at cutoff
30 (Ry) 50 (Ry)

[Ry] [Ry] [Ry]

�Gform
ZrO2

(T0, P0) (calc.BEO2) -0.684 -0.683 ***
�Gform

ZrO2
(T0, P0) (exp.BEO2) -0.789 -0.782 ***
Exp.(T0, P0) *** *** -0.836

We use both the BE values for evaluating the best �Gform
ZrO

. The data are
reported in Table 6.4.
The experimental value for the �Gform

ZrO2

[82](T0, P0) is highlighted. We can
see that the use of the experimental oxygen binding energy brings to a better
approximation of the Gibbs free energy of formation.
Thus it follows that the introduction of the experimental BEO2 favors better
zirconia Gibbs free energy of formation results.
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6.3. Calculating the Reference of Oxygen Chemical Potential

6.3.3 gref
O in Terms of �Gexp.

ZrO2

Finally, in this Section we calculate the gO reference in terms of the ex-
perimental value of Gibbs free energy of formation of zirconia, �Gform

ZrO2
. It

helps to define precisely which is the error introduced with the DFT ap-
proach. Moreover, on the basis of that, we calculate again what is the value
of the BEO2 , leading to the choice of the best parameter to be used in the
thermodynamical calculations. The experimental �Gform

ZrO2
is equal to -0.836

Rydberg. Thus, rewriting Eq.(6.15) in order to obtain µO(T,P) as a function
of experimental �Gform

ZrO2
, we obtain

µO(T,P ) = 1
2
�µZrO2 −�Gform

ZrO2−exp. − µZr� (6.20)

All the terms in Eq.(6.20) are already known. It is as usual calculated for
different kinetic energy cutoff at 30 and 50 Rydberg. The data are listed in
Table 6.5.

Table 6.5: Oxygen chemical potentials and binding energies calculated for two
different energy cutoff. The blue is the BEO2 value closer to the experimental one,
in red.

at cutoff 30 (Ry) at cutoff 50 (Ry) exp.
[Ry] [Ry] [Ry]

µO(T,P) -31.8514 -31.8639 ***
BEO2 -0.3819 -0.3749 -0.3822

The two oxygen chemical potentials in Table above differ by 0.0126 Ry, which
correspond to ≈ 0.17 eV. On the basis of those data, we estimate the BEO2 ,
calculated as follow

BEO2 = 2 ⋅ �µO(T,P ) − gref
O � (6.21)

where µO(T,P) is the oxygen chemical potential evaluated as described above,
while gref

O is the reference for total energy of atomic oxygen calculated by
DFT.

So, comparing gref
O calculated in terms of EO2 , EO and �Gexp.

ZrO2
, we can es-

tablish which is the most accurate oxygen chemical potential to be used into
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the thermodynamical calculations. We can exclude the values of gref
O calcu-

lated starting from EO2 . They are heavily influenced by the O2 overbinding.
On the other hand, both gref

O data obtained starting from EO and �Gexp.
ZrO2

well approximate what are the experimental values of µO(T,P) and O2 bind-
ing energy. The difference that occurs between the �Gform

ZrO2
estimated in

Section 6.3.2 and �Gexp.
ZrO2

used in Section 6.3.3 are about ≈ 5.6%, so they
are very closed each other. We conclude that µO(T,P) at 30 Ry is a very
good reference and we will apply it to our thermodynamical calculations.
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6.4. Gibbs Free Energy of Formation of
Ta-Doped Zirconia

6.4 Gibbs Free Energy of Formation of
Ta-Doped Zirconia

The crystallographic phases considered in this work are the monoclinic and
orthorhombic zirconia, doped with different amount of Ta2O5, as discussed
in preceding Sections. The work is planned so that to evaluate the total
energy from DFT calculation. Atomic positions of each crystal structure
are relaxed[52] in order to minimize forces between atoms, thanks to the
Hellmann-Feynman theorem. The crystal structures investigated are six,
other than the pristine zirconia polymorphs, three for monoclinic phase and
three for orthorhombic phase. The doping corresponds to the replacement
of zirconium atoms with tantalum atoms. The generation of defects are
taken into account as described in preceding Sections. All the crystals are
considered to be neutral in order to avoid the complication of the charge to
be considered into the thermodynamical equations. The doping percentage
is calculated as the ratio between the number of tantalum atoms introduced
and the number of zirconium atoms residual, as

%Ta2O5 = NTa
intr.

NZr
res.
⋅ 100 (6.22)

The monoclinic and orthorhombic structures considered are reported in Fig-

(a) 0% (b) 3.2% (c) 6.6%

Figure 6.2: The three pictures shows the doping used in DFT calculations. Figure
7.1a is the original monoclinic supercell. Figure 7.1b is the monoclinic zirconia
supercell doped with 1 tantalum atom. It is equivalent to the 3.2% of doping.
Figure 7.1c is the monoclinic supercell doped with 2 tantalum atoms. Coherently
to the stoichiometry one oxygen atom is removed. The doping is 6.6%. The crystals
are turned in order to exhibit the doping atoms.
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ure 6.2 and Figure 6.3, with respect to the ZrO2 and ta2O5 stoichiometries,
the resulting Ta-doped zirconia may include oxygen vacancies. To describe
the thermodynamics of these solid solutions from their references we employ
the following description of the composition:

ZrnTa2mO2n+5m+x (6.23)

where n represents the number of zirconium atoms, 2m is the number of
tantalum atoms and 2n+5m+x states for the number of oxygens of the crys-
tal which can take into account the oxygen vacancies formation, x. Every

(a) 0% (b) 3.2% (c) 6.6%

Figure 6.3: The three orthorhombic crystals are shown here. In particular Figure
7.2a is the pristine orthorhombic zirconia, while Figure 7.2b and Figure 7.2c are the
respective doped crystals with one atom of Ta and two atoms of Ta. The crystals
are turned in order to exhibit the doping atoms.

given composition of the solid solution can be expressed using this definition,
which emphasize whether it is a solid solution of stoichiometric ZrO2 and
Ta2O5, or if it requires an excess (or lack) of oxygen atoms (x ) to compen-
sate for the electrostatics. We have worked with a 2x2x2 fluoritic supercell
containing 32 cation sites. With respect to this supercell, the compositions

Table 6.6: Stoichiometry used in the Ta-doped zirconia supercells.

# of Zr # of Ta # of O excess of # of vacancies in
n 2m 2n + 5m + x O(x) fluorite ZrO2

2x2x2 supercell

A 31 1 64 -0.5 0.5
B 30 2 63 -2 2
C 30 2 64 -1 1
D 30 2 65 0 0

considered in this work are listed in Table 6.6. Both the monoclinic and
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orthorhombic structures were considered for all the stoichiometries listed in
Table 6.6. Each stoichiometry is labelled with a capital letter, A,B,C and D.

6.5 Thermodynamical Investigation

If we apply Eq.(6.15), it is possible to adapt it to the stoichiometry formu-
lation of each bulk structure analyzed (see Figures 6.2-6.3). By substitution
of the chemical potentials of each element with those per each molecule for-
mula units, we can correctly describe how the doping affects the energies of
crystals and which is the most favored to be form. The general formula to
be used is

�Gform(T,P ) = �Etot
ZrnTa2mO2n+5m+x

− n ⋅ µZrO2 −m ⋅ µTa2O5� − x ⋅ µO(T,P )
(6.24)

where EDFT
ZrnTa2mO2n+5m+x

is the total energy of each structure analyzed as in
the output of the DFT calculation; n ⋅µZrO2 and m ⋅µTa2O5 are the number
of molecular units contained into the supercells multiplied by their relative
total energies per molecular unit. Finally the term x ⋅ µO(T,P ) takes into
account the eventual excess of oxygen atoms in the solid solution, multiplied
by the oxygen chemical potential; it is made varying in a range of values, as
described in Section 6.2.2.

A simplified form of the Eq.(6.24) is

�Gform(T,P ) =K − x ⋅ µO(T,P ) (6.25)

where K is the quantity that is calculated from the first principles. In this
form, it is clear that free energy depends linearly on the chemical potential
of oxygen, which in turn depend linearly on the temperature and as the
logarithm of the pressure. The explicit formula for the cases A, B and C ,
both orthorhombic and monoclinic ( we use the nomenclature Am to express
the composition A in the monoclinic structure ) are:

�G+1Ta
form(T,P ) = N ��EDFT

Zr31Ta1O62+2.5−0.5
− 31 ⋅ µm

ZrO2
− 0.5 ⋅ µTa2O5� + 0.5 ⋅ µO(T,P )�

(6.26)
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�G+2Ta
form(T,P ) = N

′ ��EDFT
Zr30Ta2O60+5−2 − 30 ⋅ µm

ZrO2
− 1 ⋅ µTa2O5� + 2 ⋅ µO(T,P )�

(6.27)

�G+2Ta
form(T,P ) = N

′ ��EDFT
Zr30Ta2O60+5−1 − 30 ⋅ µm

ZrO2
− 1 ⋅ µTa2O5� + 1 ⋅ µO(T,P )�

(6.28)
where N and N

′ are the normalization coefficients, defined as the number
of tantalum atoms divided by the number of zirconium atoms. µm

ZrO2
is the

zirconia chemical potential referred to the most stable phase of zirconia, the
monoclinic. The total energies values referred to each structure investigated
are listed in the Table 6.7.

Table 6.7: Ta-doped polymorphs total energies.

Em
tot Eo

tot

[Ry] [Ry]

Pristine ZrO2 -5387.633 -5387.465
A -5425.682 -5425.502
B -5431.405 -5431.243
C -5463.729 -5463.542

The total energy which belongs to the pure monoclinic zirconia, divided
by the total number of ZrO2 molecules units (32) is the reference used in
equations above. It is equal to -168.364 Ry.

Table 6.8: Gibbs free energies of formation normalized, referred to monoclinic su-
percell.

�Gm
form �Go

form �Gm
form −�Go

form =��Gform

[Ry] [Ry] [Ry]

Pristine ZrO2 0 0.0053 -0.0053
A 0.5181 0.5239 -0.0058
B 4.2965 4.3073 -0.0108
C 2.1415 2.1540 -0.0125

The values of ��Gform, i.e. the difference between the monoclinic and
orthorhombic phases free energy of formation, are also plotted as a function
of the Ta concentration in Figure 6.4. Negative values indicate the stability
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6.5. Thermodynamical Investigation

of the monoclinic phase. It can be seen that, in the range of concentrations
considered here, the monoclinic phase is always preferred. The energetic
preference, ��Gform is not affected from the pure ZrO2 case, by adding
≈ 6.7% of Ta2O5. For this concentration, the presence of oxygen vacan-
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Figure 6.4: ��Gform as a function of the doping content. The doping percentage
and the number of Ta atoms introduced in the zirconia matrix are reported in the
x-axes.

cies seems to favor the orthorhombic phase. However, in order to predict
which stoichiometry, and hence which defects, is thermodynamically stable
at working conditions, it is necessary to plot the phase diagram. The data
reported in Table 6.8 allow for plotting a partial phase diagram only for the
composition 6.7%. This is displayed in Figure 6.5 and clearly show that the
system with two oxygen vacancies, despite minimizing ��Gform, is never
more stable than the system including one oxygen vacancy. One data is
running to complete this phase diagram, namely the horizontal lines cor-
responding to the orthorhombic and monoclinic phases for system D, that
include no oxygen vacancies. The simulations are in program and will be
reported in the manuscript under preparation.
This is the first complete computational study which takes into account all
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Figure 6.5: Free energy �Gform(T,P) for Ta-doped zirconia in monoclinic and
orthorhombic phases as a function of the oxygen chemical potential �µO. Con-
version to oxygen partial pressure P (upper axes) has been carried out at constant
temperatures of T = 700, 800 and 900 K.

the main defects and their respective role in the stabilization mechanism of
the Ta-doped zirconia crystal structures. The main result is that in the con-
centration considered in this study (3.2% and 6.7%) the most stable phases
always include the presence of oxygen vacancies. Moreover, we cannot yet
conclude that these are at the origin of the stabilization of the orthorhombic
phase in the Ta-doped zirconia, because all our systems are predicted to be
monoclinic. The systems currently under analysis, namely those including
no oxygen vacancies, will complete the study and modify the preliminary
conclusions indicated above.
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Chapter 7

Conclusions

We started from the experimental synthesis of tantalia-doped zirconia, using
the co-precipitation method, well-known and reliable. The powders obtained
were thermally treated at about 1000 K in vacuum. It followed an in-depth
analysis by X-Ray Powder Diffraction technique, in order to establish the
crystalline phases in the samples synthesized. Then we analyzed the same
samples at the Synchrotron Radiation Facility in Trieste by Wide Angle
X-ray Scattering, in a temperature ramp. This was carried out so that
to highlight the morphological changes that might occur as a function of
temperature. In perspective to justify the stabilization mechanism which
occurs into the orthorhombic Ta-doped zirconia, we used the atomistic ab
initio thermodynamics approach, on the basis of the DFT calculations.
The main result is that in the concentration considered in this study (3.2%
and 6.7%), the most stable phases always include the presence of oxygen
vacancies. Moreover, we cannot yet conclude that these are at the origin of
the stabilization of the orthorhombic phase in the Ta-doped zirconia, because
all our systems are predicted to be monoclinic. The systems currently under
analysis, namely those including no oxygen vacancies, will complete the study
and modify the preliminary conclusions indicated above.
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Appendix A

Definitions and Technical

Details

A.1 Bulk Modulus Definition

The Equation of State is a formidable means to extrapolate physical quanti-
ties by fitting data. It depends upon pressure and temperature. The stable
structure at a given T and P determines all the other properties. The funda-
mental quantities are the energy E, pressure P and bulk modulus B, defined
as

E = E(⌦) ≡ Etotal(⌦) (A.1)

P = −dE

d⌦
(A.2)

B = −⌦dP

d⌦
= ⌦d2E

d⌦2
(A.3)

and higher derivatives of the energy. All quantities are for a fixed number of
particles and E is the energy per cell of volume ⌦.
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A.2 Script Used

This is an example of the script used, in which is made varying at the same
time the cell sides and the k-point sampling:

#!/bin/tcsh
foreach k ( 2 3 4 5 6 7 8 9 10 )
foreach a (9.07 9.25 9.45 9.64 9.83 10.02 10.20)

cat > file.in � EOF

&CONTROL

calculation = “scf”,

prefix = “filename”,

pseudodir = “�pseudo�”,

outdir = “.�tmp�”,

⋮
ATOMIC_POSITIONS alat

Zr 0.00 0.00 0.00
O 0.25 0.25 0.25
O 0.75 0.75 0.75
K_POINTS automatic

$k $k $k 0 0 0
EOF .�pw.x < file.in > file.out

end end exit0
It follows a fit made with an Equation of State, which lets to extrapolate

physical properties like the bulk modulus, in order to compare them with
literature references.
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A.3. Cineca Eurora

A.3 Cineca Eurora

Funded by PRACE 2IP, the project Eurora aimed at evaluating new ar-
chitectures for the next generation Tier 0 systems. Eurora is the result of
the collaboration between Eurotech and Cineca and the prototype, currently
equipped with NVIDIA accelerators, is available to the members of PRACE
and to the major Italian research entities. Eurora enables scientists to ad-
vance research and discovery across a range of scientific disciplines, including
QCD, material science, astrophysics, life science, earth science and weather
forecast.

Technical References:

• Architecture: 1 rack

• Model: Eurora prototype

• Processor Type: Xeon SandyBridge

• Compunting Cores: 1024

• Compunting Nodes: 64

• RAM: 16GByte DDR3 1600MHz per node

• Internal Network:1 FPGA (Altera Stratix V) per node, IB QDR inter-
connect, 3D Torus interconnect

• Disk Space: 160GByte SSD per node

• Sustained Performance: 3.150MFlop/w
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