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Abstract

Mission detection aims to identify the sets of queries that users submit to a Web search

engine in order to satisfy common information needs. Moreover, it is generally easier

to figure out the actual search topic a user is interested in by leveraging signals com-

ing from several queries (i.e., mission) instead of looking at each query separately.

In this work, we present a system that automatically labels the search missions pre-

viously discovered from a search engine log using a set of predefined semantic cate-

gories, as provided by Wikipedia. Those are well-known categories, which have been

already proposed in previous work since they cover almost every topic underneath

search missions. Our solution consists of the following steps. First, we extract the set

of Wikipedia articles (i.e., entities) from each single search mission using a state-of-

the-art entity linking technique. This is achieved by representing a search mission as

a virtual text document; such document is made of the queries composing the mission

as well as the text included in the web page, which the user possibly clicked on in

response to each query. Second, we retrieve the set of candidate Wikipedia categories

that correspond to the set of entities extracted during the previous step. Finally, we

rank the predefined set of target categories with respect to the candidates above using

an unsupervised approach, and we therefore assign the highest ranked target category

to each search mission. In our experiments, we use a dataset of 8,800 queries sam-

pled from a real-world search engine log. Furthermore, such queries were already

vii
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manually grouped into individual search missions, which in turn we use as input to

our system. To evaluate the quality of our proposed solution, we conduct a user study

where users are asked to manually evaluate the correctness of the labels assigned to

the missions. This way it is possible to judge the goodness of our approach.
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Introduction

Nowadays users are exploiting web search engines (WSE) to complete any kind of

task and to satisfy any kind of information need. Whether a user is looking for knowl-

edge, to plan a trip, or to buy something, a web search engine can help him achieve

his objective. Because of this, WSE query logs, became more and more important to

help understand how users search the web, what behaviour patterns they follow, and

how it is possible to exploit these information.

Users though are not usually able to satisfy their information need with a single

query, and often perform further queries in order to either refine, or to analyse different

aspects of the same objective they want to achieve.

A search mission is then a chain of queries, either interrupted or not, submitted

by a single user, with the aim of reaching the accomplishment of the same general

task. As a simple example, the queries, ”car rental new york” ”Hotel new York”

and ”flight for ny” all belong to the same mission, that has the task of finding the

necessary informations for a travel to New York.

The Mission detection task then is the job of identifying a missions by analysing

web search engine query logs and grouping together queries that a single user submits

1
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to a WSE (web search engine) in order to satisfy a single information need.

Once the queries belonging to a Mission have been identified, we need to under-

stand what the information need of the mission is about. Mission labelling aims at

categorizing search missions by assigning them a label from a predefined and limited

set. By using the preceding example again, we can see that the 3 queries ”car rental

new york” ”Hotel new York” and ”flights for ny”, belong to the same mission, but we

still need to understand what the mission is about. By using a predefined limited set

of labels, we can assign to the mission the label ”Travel”. Once the appropriate label

is assigned it might be possible for a WSE designed for the purpose, to exploit it to

further refine our research, and to direct the queries to the most appropriate vertical

search engine, in this case one addressing travels.

Moreover, in mission labelling it is generally easier, compared to query labelling

(the process of categorizing single WSE queries), to figure out the actual search topic

a user is interested in. In fact while trying to label search missions, we can leverage

information extracted from several queries instead of having to look at each query

separately. Therefore all the queries belonging to a single mission help us contex-

tualize what the mission is actually about. As an example, the preceding query ”car

rental new york”, is clearly aimed at finding a rental car in New York, but it gives

no information on whether it is because his car broke down (and therefore we might

refine the search by looking for cheap mechanics) or if he needs the car for a trip. By

exploiting the combined information of the three queries it is possible to understand

that his searches were aimed at looking for travel informations, and therefore we can

refine the searches accordingly.

Mission labels, if correctly assigned, can then be used to automatically refine

future searches that fall within the same search mission of other past queries and,
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as a consequence, it might be useful tu subdivide the queries to different vertical web

search engines, each specialized in a particular field.

Recent works though focused mainly on query labelling instead of mission la-

belling, but the obtained results did not reach sufficient precision levels to allow us

to use those categories for query refinement. This is caused by the nature of the web

search query, which are very short, and therefore it is very hard for an automatic

categorization tool to properly understand the real information need behind it. This

difficulty in understanding the information need is caused mainly by words ambiguity

and by the fact that, without any additional information on the actual meaning of the

query, disambiguation is extremely hard.

Exploiting different data sources, such as in web search missions, is therefore a

useful and sometimes necessary step in order to understand the real information need.

Mission labelling then gives the chance to exploit a set of queries with the aim to

correctly understand what the user is really looking for.

Mission labelling though is not at all perfect and still suffers from many issues:

• Queries are short, often misspelled or plain wrong (users often make mistakes,

even repeatedly).

• Even if the queries are not wrong, they can often present ambiguities that might

be hard to solve even with the help of additional data (what is clear and unam-

biguous in a user mind, might be impossible to understand for someone else).

• The users might not know precisely what they are looking for, making the

search and navigation behaviour erratic, hence including possible wrong in-

formation in the navigation log.
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• A category database that can properly represent all of the possible subjects that

might be the aim of a search mission is needed in order to properly label the

missions with meaningful categories, while avoiding being too general or too

specific.

In this work, we present a system that automatically labels web search missions

occurring in a web query log composed of both queries and navigation data. The data-

set consists of of 8,800 queries manually grouped into individual search missions. We

then use a set of 99 predefined semantic categories, extracted from the Wikipedia

Category Graph in order to label the missions. Those are well-known categories,

which have been already proposed in previous works. This 99 category set is used

since it covers almost every topic underneath search missions, while trying to avoid

being too general.

The choice of implementing a tool for search mission labelling was due to two

main reasons.

• Mission labelling is a subject of which has not been talked about extensively in

scientific researches.

• Mission labelling, compared to query labelling, gives us the chance of exploit-

ing a higher quantity of data and information. It also gives us the chance of

properly making our labelling choices based also on the context, which is nearly

impossible when handling single, and probably short, queries.

Our solution for mission labelling consists of the following general steps, that will

be further explained in the thesis.

As a first step, we build the text base from which we will link the Wikipedia arti-

cles (i.e., entities)in order to give semantics to the missions by associating with their
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search topic. This is done by not only using the queries associated with a single mis-

sion, but also leveraging the other information we might have, which is the homepage

of the website visited by the user during the mission (we don’t have any information

regarding the specific web-page though). We therefore proceed by extracting text and

information from the web-pages, and by exploiting it while searching for entities to

extract from the mission data. To our knowledge, this type of approach to mission

labelling has never been attempted.

Entity identification and linking in these mission text is implemented by using a

state-of-the-art entity linking technique developed by Ceccarelli et al. [15]. This step

returns a set of disambiguated entities from the Wikipedia database. Those entities

though, might still be wrong, because of a possibly wrong query or of an extracted

mission text which contains other entities that do not represent the mission properly.

Other steps are then needed. In order to choose only the meaningful entities, we

devised an evaluation algorithm aimed to assign a score to each entity based on a

measure that defines the importance of a spot as a mention of an entity in the text.

This first measure is used as a baseline and is then refined through a set of operations

that aim to emphasize not only the entities with the highest link probability, but also

the entities found in the web-pages that are more likely to be talking about the same

subject as those in the queries.

In the following step we proceed to extract from these entities the corresponding

Wikipedia categories to which they belong. Again we try to discover if different enti-

ties identified in a mission belong to the same categories, in order to exploit possible

underlying subject relationships, and we then assign new scores to these categories

based on both the entity they derive from, the co-occurrence of identical entities in

other parts of the mission text, and from the presence of other identical categories.

Once we have a category set with the relative scoring, from which to start the explo-
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ration of the Wikipedia Category Graph, we search for the closest “Goal Category”

for each category in this set. in the Wikipedia Category Graph, though we exclude

from the starting set of categories, those that do not meet a certain score threshold, in

order to eliminate those categories.

Finally, we obtain a set of goal categories, ordered by the number of steps it took

to get from the starting category to the goal one. Because of the high density of

the Wikipedia category graph, even a couple of steps can change almost entirely the

category subject, the task is not as trivial as it may seem at first glance.

Once we obtain the final categories for our mission, we evaluate the correctness

of our choices with the help of an interesting internet tool, called Crowdflower, and a

separate small skilled user set. Through this two evaluation sources, we try to judge

the correctness of our category/labels choices for the missions, and we consider even-

tual refinements.
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1.1 Structure of the Thesis:

The rest of the Thesis is organized as follows:

Chapter 2 describes the Related Works. Here we will talk about preceding at-

tempts at mission detection, entity linking and query/mission labelling, in order to

give a basic background on what the attempts to tackle these problems have been.

Chapter 3 describes the problem we aim to face, the approach we choose to use,

the explanation of our algorithm and of our work. We will show in detail all the phases

that constitute our work, and explain them in detail.

In chapter 4 we will explain how we tested our software. We will give details on

the data-sets used, we will show the results obtained with the chosen parameters, and

we will give information on the measure of evaluation and make a comparison with

other existing approaches.

Chapter 5 is dedicated to the conclusions to our work. We will analyse the out-

come of our work, and identify the reasons why it did or it didn’t succeed. Further

development ideas for our work will be given in the light of the obtained results.



Chapter 2

Related Works

In the following, we present preceding research activities concerning Search Mission

Detection, Entity Linking, and Query and Cluster labelling. With these, we hope to

give the reader a simple overview of the different techniques and of the older and more

recent methodologies that have been presented in order to face these issues, which are

at the center of our thesis.

2.1 Search mission detection

Query logs are widely considered a very rich source of knowledge and the inter-

est around them is rapidly increasing within the Web mining research community.

Briefly, query logs are collections of information about users’ search activities and

therefore they are a significant source of information that can be used to understand

the way people search the Web and the actual intent behind the queries [62]. Query

logs can be exploited for statistical analysis in order to obtain measures such as: query

popularity, term popularity, average query length, etc.. With more complex analysis,

it is also possible to obtain some “structured” data, such as search sessions, that is,

8
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temporal sequences of queries issued by users.

In digital library search systems, “sessions” are easy to identify: users log in,

perform a single task and log out again, so login IDs can be used to identify them.

Historically then, a session was simultaneously: (I) a set of queries aimed at satisfying

a single information need. (II) a series of subsequent uninterrupted queries. (III)

a period of contiguous time of navigation that could be spent submitting queries or

examining results. On the Internet though, users almost never log in and out for each

task. In addition, there’s the chance that an identifier such as an IP addresses or a

cookie might be shared by more than one user, such as in a shared computer. Thus

the term “session” has been split between these various meanings. In web search

analysis, there have been a certain number of conflicting attempts to segment and

define sessions, that rely either on a notion of similar context, topic, or temporal

characteristics to perform the session separation.[35] Segmenting the query stream

into sets of related information-seeking queries, i.e. logical sessions, has multiple

applications: other than query recommendation, it can be used to help understand the

relationship between queries, given the user intent, since logical sessions carry useful

data for user profiling and personalization.

The earliest methods for session detection used a simple time-based approach.

This was based on the intuition that two consecutive queries by the same user are

likely to belong to the same session whenever the time gap between the two queries

is smaller than some predefined limit. Different time gaps have been tried but it is

not hard to understand that, because of the multitasking nature of the user interaction

with web search engines, which means that the user switches between different search

needs within a single user session, a single physical session will most likely include

some query aimed at a different need. It has been seen in fact, that while searching the
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web, users don’t usually follow a single search goal from beginning to end at a time,

but instead they handle multiple search goals concurrently. This causes time-based

approaches for session detection to be imprecise, or very hard to implement.[45]

Many works deal with identification of user search sessions boundaries. Previous

papers on this topic, can be classified in 3 main groups based on the technique used: (I)

Time-based, (II) Content-based, and (III) Mixed techniques, which usually combine

(I) and (II).

2.1.1 Time-Based

Many time-based techniques have been proposed in the literature to detect significant

search sessions. The strong point of these algorithms is their utter simplicity and

ease of implementation. Indeed, these approaches are based on the (basically wrong)

assumption that the time interval between two queries issued by a single user is the

main factor determining a possible topic shift in a search activity.

We shall now see some examples of techniques exploiting this approach:

Silverstein et al. [61] first define the concept of session as a series of queries

where each query is issued withing a 5 minute time window from the last one.

He and Göker do something similar in [31], where they study different possible

time limits, ranging from 1 to 50 minutes, used to split user sessions.

Radlinski and Joachims [55] observe that users often perform chains of queries,

which are sequences of queries based on a similar information needs. Their work

consists in the presentation of a simple method to automatically detect query chains

in query and click-through logs. The result of their studies shows that a 30-minute
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time-out is accurate over 90% of the times when they attempt to determine whether

two consecutive queries belong to the same search session or not.

Jansen and Spink [33] make a comparison between nine search engine transac-

tion logs based on session length, query length, query complexity, and content viewed.

They also provide a new definition of session, that they call search episode, and de-

scribe it as the period of time between the first and the last recorded time stamp on

the search engine server from a particular user on a single day. The session length

may then vary from less than a minute to several hours, according to how the session

is defined.

Spink et al. [63] investigate multitasking behaviours for user interactions with

a search engine. The results, as we have stated earlier, show that multitasking is a

common characteristic of Web searching. This result made it clear that it was not

possible to rely only on time sessions in order to identify series of related queries.

2.1.2 Content-Based

Previous works regarding session detection, suggested to exploit the lexical content of

queries in order to determine session boundaries. Those should correspond to possible

topic shifts in the stream of issued queries, and, therefore, they should define a session

boundary. Several search patterns have been proposed by means of lexical comparison

based on different string similarity metrics (e.g., Levenshtein, Jaccard, etc.). However,

approaches relying only on content features similarity, suffer the vocabulary mismatch

problem, namely the existence of topically-related queries without any shared terms

[45].

Shen et al. [60] tried to overcome this issue by comparing augmented representa-
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tions of queries instead of the queries themselves. Each individual augmented query is

built by concatenating the titles and the Web snippets for the 50 top results provided

by a search engine for that specific query. The relatedness between query pairs is

then computed by using the cosine similarity between the corresponding augmented

queries.

Ozmutlu and Cavdur [51] define a mechanism aimed at identifying topic changes

in the user’s search behaviour thanks to a combination of time intervals and query con-

tent features. The validity of their approach is then tested using a genetic algorithm in

order to learn the parameters of the topic identification task.

Gayo-Avello [24] Introduces a new technique for session boundary detection work-

ing on the basis of a geometric interpretation of both time gap and query content sim-

ilarity, between consecutive query pairs. However, lexical features can’t determine

semantic relatedness, so this approach suffers the previously described vocabulary-

mismatch problem.

For such cases multiple semantic features have been examined. A proposed idea

similar to the one proposed by Shen et al. is to enrich the short query strings in order

to get a longer, richer representation of the actual information need. In a very recent

method [44] the well-known ESA framework [22] is used to check semantic similarity

between query representations in a given collection (i.e., Wikipedia articles).

2.1.3 Mixed Heuristics

Boldi et al. [11] introduce the query-flow graph (QFG), a model to represent the data

collected in WSE query logs. Intuitively, in the QFG, a directed edge from query qi

to a query q j means that the two queries probably refer to the same information need.
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Any path over the QFG may be seen as a searching behaviour, whose probability is

given by the strength of the edges constituting the path. Boldi et al. then prove the

correctness and the usefulness of their model in both session boundary detection and

query recommendation.

Jones and Klinkner [35] present the first high-level, task-by-task analysis of user

search behavior, by introducing the concept of “hierarchical search”. They argue that

it’s possible to identify specific hierarchical units within a user’s query stream. The

units are in fact, search missions, that they subdivide into separate search goals. Jones

and Klinkner define a search goal as an atomic information need resulting from one

or more queries. On the other hand, they define a search mission as a set of topically-

related information needs, that can result in one or more goals. The authors then focus

on investigating how to learn a suitable binary classifier, which is aimed at detecting

whether two queries belong to the same task or not.

Donato et al. [18] develop SearchPad, a novel Yahoo! Application [44]. This

application adopts the same hierarchical structure of user search behavior, by intro-

ducing the concept of hierarchical search. Also, it is able to automatically identify

search missions “on-the-fly”, as the user interacts with a Web search engine. The

software aims to help users keep track of the results they have already consulted. The

novelty of this approach however is that it is automatically triggered only when the

system decides, with a discrete level of confidence, that the user is actually undertak-

ing a search mission.

Wen et al. [66] describe a query clustering method that exploits user logs in

order to identify those web documents that users have selected when searching for a

certain query. The similarity between queries is centred around four notions of query

distance: the first notion is based on the keywords or phrases present in the query;
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the second is based on string matching of keywords; the third is based on the clicked

URLs; and the fourth on the distance that the clicked documents have, according to

some pre-defined hierarchy.

Kotov et al. [39] discuss about methods to model and analyse user search be-

haviour that spans over multiple search sessions. The authors focus on two main

problems:

• Given a user query, identify all related queries from previous sessions that the

user has issued.

• Given a multi-query task for a user, predict whether the user will return to this

task in the future.

Both problems are modelled within a classification framework using features of

long-term user search behaviour and individual queries at different granularity.

Guo et al. [27] introduce the concept of intent-aware query similarity, that can

be described as an approach for computing query pair similarity, taking into account

the potential search intents behind user queries and then measuring query similarity

for different intents using intent-aware representations. The authors then apply their

approach to query recommendation, thereby suggesting diverse queries in a structured

way to search users.

Hagen et al.[28] presents a new method for logical session detection, which fol-

lows the stepwise paradigm of the recent cascading method [29]. By improving each

single step of the cascading method, and adding a new one that employs Linked Open

Data analysis to detect possible semantic relatedness between queries, the new ap-

proach achieves a better efficiency and effectiveness in extensive experiments.
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Lucchese et al.[46] try to understand how people search the web exploiting a

novel task-by-task perspective, in contrast with the query-by-query fashion commonly

used. They study how such an high-level view of users’ search behaviours help realize

a new task recommender system. The authors create the Task Relation Graph (TRG),

which is a task-by-task search representation extracted from a query log. Briefly, the

TRG can be described as a directed graph, whose nodes are the tasks performed by

users, and the weights on the edges define the likelihood that, given a task performed

by that user, it will also perform another directly connected task. They then proceed

to show how a TRG may be exploited in order to generate novel task recommenda-

tions,which might be used to help the user achieve long-term missions.
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2.2 Entity Linking

Entity linking is the task of linking a textual entity mention, possibly identified by a

named entity recognizer in an unstructured text, and associated with the corresponding

real world entity in the existing knowledge base. Note that an entity can be referred

to by multiple mentions and a mention can refer to multiple entities.[59]

The typical information retrieval approach to indexing, clustering, classification

and retrieval, is that based on the bag-of-words paradigm. The basic idea of the bag of

words model is that of identifying a sequence of terms (also called spots) in the input

text and to annotate them with unambiguous entities drawn from a catalogue. The

choice of the catalogue is therefore a crucial element for the success of the approach.

Recently, a good deal of works attempted to go beyond this paradigm with the goal of

improving the search experience on structured, unstructured or semi-structured textual

data. [21]

Bagga and Baldwin [8] use the bag of words model in order to represent the con-

text of the entity mention. They tackle the problem of cross-document co-reference

by comparing, the word vectors built from all the sentences containing mentions of

the targeted entities for any pair of entities in two documents.

Ravin and Kazi [57] further refine the method of solving co-reference by mea-

suring context similarity and by integrating it into Nominator [65], which was one of

the first successful systems for named entity recognition and co-reference resolution.

Mann and Yarowsky [47] develop a method that clusters web search results for

a set of ambiguous personal names by employing a rich collection of biographic in-

formation obtained via bootstrapped extraction patterns.

Raghavan et al. [56] explore the use of entity language models for tasks such as
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clustering people by profession and classifying politicians as liberal or conservative.

In order to build the models, they identify the named entities in the TREC-8 corpus

(a specific corpus developed for the Text Retrieval Conference in 1999 ) and compute

the probability distributions over the words occurring within a certain distance of any

instance labelled as person of the canonical surface form of 162 famous people.

Bunescu and Pasca [13] exploit a set of useful features derived from Wikipedia

for entity detection and disambiguation. In their system they leverage the bag of

words model to measure the cosine similarity between the context of the mention and

the text of the Wikipedia article. In order to overcome the usual bag of words model

deficiencies, they use a disambiguation SVM (Support Vector Machine) kernel which

models the magnitude of each word-category correlation based on the Wikipedia tax-

onomy.

Generally speaking, the one essential step of entity linking is to define a similarity

measure between the text surrounding the mention and the document associated with

the entity. The methods using the bag-of-words model are fundamentally based on

the feature of context similarity which clearly depends on the similarity measured by

the co-occurrence statistics of terms between the text around the entity mention and

the document associated with the entity. Because of this, they ignore the semantic

relationship existing between concepts and cannot capture many existing semantic

relations. The entity mention will then be mapped to the corresponding entity in the

chosen knowledge base only if the compared texts contain some identical contextual

terms.

The purpose of semantic relatedness measures is then to allow computers to reason

about written text.

The main difference between the various techniques used in order to discover
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semantic relations is their knowledge base. This can be obtained from a manually

created thesauri, even though most thesaurus based techniques are limited in the vo-

cabulary for which they can provide a relatedness measure, since the structures they

rely on must be manually built. In alternative, the knowledge base can be obtained

from corpus-based approaches, obtaining background knowledge by performing sta-

tistical analysis of large untagged collections of documents.

The most successful and well known of these techniques is Latent Semantic Anal-

ysis (LSA)[42], which relies on the tendency of related words to appear in similar

contexts. LSA offers the same vocabulary as the corpus upon which it is built, there-

fore it can only provide accurate judgements as long as the corpus is very large but,

because of the corpus dimensions, the preprocessing effort required is significant.

Hence Wikipedia is now being used as a knowledge base thanks to its ever-

expanding database and to the fact that it offers the best trade-off between a catalogue

with a rigorous structure but with low coverage, and a large text collection with wide

coverage but unstructured and noisy content.

Strube and Ponzetto [53] made a first attempt to compute measures of seman-

tic relatedness using Wikipedia. Their approach, WikiRelate, takes some familiar

techniques that had previously been applied to WordNet [2] and modify them to suit

Wikipedia. Their most accurate approach is based on Leacock & Chodorow’s [43]

path-length measure, which takes into account the depth at which the concepts are

found within WordNet. WikiRelate’s implementation does pretty much the same, but

uses Wikipedia’s category graph instead. For any pair of words, WikiRelate attempts

to find a pair of articles whose titles contain those words. Once they have been found

it computes their relatedness based on the word-based similarity of the articles and on

the distance between the articles’ categories in Wikipedia’s category graph. While the
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results are similar, in terms of accuracy, to thesaurus based techniques, the nature of

Wikipedia, based on user collaboration, offers a much larger and constantly evolving

vocabulary.

Cucerzan, in his work [16], proposes the first system able to recognize the global

document-level topical coherence of the entities. The system tackles the entity linking

problem by maximizing the agreement between the text of the mention document and

the context of the Wikipedia entity, as well as the agreement among the categories

associated in Wikipedia with the candidate entities. Cucerzan assumes that all entity

mentions have a corresponding entity in the knowledge base. This assumption though

clearly fails for a huge amount of mentions in practice.

Gabrilovich and Markovitch [23] achieve extremely accurate results with their

newly developed technique, called Explicit Semantic Analysis (ESA). This technique

is somewhat reminiscent of the vector space model that has been widely used in in-

formation retrieval, though, instead of comparing vectors of term weights in order to

evaluate the similarity between queries and documents, their method estimates a re-

latedness score for any two documents by using the inverted index to build a vector

for each document over Wikipedia articles, and by computing the cosine similarity

between the two vectors. The name Explicit Semantic Analysis derives from the way

these vectors are comprised of manually defined concepts, as opposed to the mathe-

matically derived contexts used by Latent Semantic Analysis (LSA). The result of the

process is a measure which can even approach the accuracy of humans. Additionally,

this method also provides relatedness measures for any length of text because, unlike

WikiRelate, there is no restriction for the input to be matched to article titles.

Mihalcea and Csomai [49] propose the Wikify system. This works in two sep-

arates stages: (I) Detection, which involves identifying the terms and phrases from
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which links are supposed to be made. Their most accurate approach to this stage of

the process is based on link probabilities extracted from Wikipedia’s articles. The

detection approach is then to gather all n-grams found within a document and to keep

those whose link probability exceeds a predefined threshold. (II) Disambiguation, in

which the system ensures that the previously detected phrases link to the most appro-

priate article. In order to choose the most appropriate destination, Wikify’s extracts

features from the analysed sentence and from its surrounding words (the terms them-

selves and their parts of speech), and then compares these to the training examples

obtained from the entire Wikipedia.

Milne and Witten, in their works [50][67] propose an approach that yields con-

siderable improvements by exploiting three main ingredients:

1. The identification in the given text of a set C of context pages, namely pages

that are exclusively linked by spots that are not ambiguous (therefore they only

link to a single page/sense).

2. A relatedness measure between two pages p1, p2 based on the overlap between

the in-linking pages of p1 and p2 in Wikipedia.

3. A notion of coherence of a page p with the other context pages in C.

In [67], Milne and Witten show that the ESA approach we talked about earlier,

has performances quite similar to that of their approach, with the latter being way

cheaper to be computed since it doesn’t require the whole Wikipedia textual content

to be indexed.

Medelyan et al., in their work [48] re-use the Wikify approach for detecting sig-

nificant terms, though their method differs in how it disambiguates terms. They are
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able to obtain results similar to the ones of Wikify, but much more cheaply, by balanc-

ing (I) the commonness of each sense and (II) how that sense relates to its surrounding

context.

Chakrabarti et al. [40] further improves [67] by introducing two main novelties.

The first one is the choice of scoring an annotation with two terms, one of which

is local to the occurrence of the spot and the other one which is global to the text

fragment. The second novelty of their approach is that they choose to model the

annotation process as a search for the mapping that maximizes the sum of the (local

+ global) scores of the selected annotations, through the resolution of a quadratic

assignment problem. They performed experiments over a manually annotated dataset,

whose results showed that their approach yields a precision similar to that of Milne

and Witten’s approach but with a higher recall.

Dredze et al., in [19] proposes a solution that focuses on the classification frame-

work to resolve entity linking. Their approach first develops a rich set of features

which are based on the entity mention, on the source document and on the knowledge

base entry, and then it uses a SVM ranker to obtain a score for each candidate entity.

Because the preceding works of Chakrabarti [40] and Milne-Witten[67] are un-

suitable in a short text context, Ferragina and Scaiella design and implement Tagme

[21], an annotation framework that, on-the-fly and with fairly high precision/recall,

annotates short fragments of text with relevant hyper-links to Wikipedia articles. In

Tagme, Ferragina and Scaiella use Wikipedia anchor texts as spots and the pages

linked to them as their possible meanings. The Tagme framework solves ambiguity

and polysemy in the many available anchor-page mappings by finding the collective

agreement among them via newly developed scoring functions. Their tool obtains

this by explicitly taking into account the sparseness of the anchors in the short in-
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put text. This is done exploiting the proper combination of the relatedness function

among concepts proposed in [67] and several other statistics drawn from Wikipedia.

Shen et al. in their work [59] propose LINDEN, a framework aimed at linking

named entities in a text with a unified knowledge base, constituted by Wikipedia and

WordNet, by leveraging the semantic knowledge that can be derived from Wikipedia

and the taxonomy of the knowledge base. It is assumed that the named entity recog-

nition process has already been completed, and therefore the focus of their frame-

work is only on the task of linking the detected named entity mention with the given

knowledge base. To this aim they collect a dictionary about the surface forms of

entities from four different sources in Wikipedia (i.e., entity pages, redirect pages,

disambiguation pages and hyper-links in Wikipedia article), and record the count in-

formation for each of the target entities in the dictionary. Using this dictionary, they

then generate a candidate entity list for each entity mention and try to include all the

possible corresponding entities of that mention in the generated list. In the process

they also leverage the count information in order to define the link probability for each

candidate entity. Subsequently, they identify all the Wikipedia concepts present in the

document where the entity mention appears.
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2.3 Query labelling and Cluster labelling

2.3.1 Query labelling

Query labelling is the process of Natural Language Processing (NLP) which aims to

identify a label, within a predetermined set, that best represents the domain of interest

related to the information need behind a user-written query.

Nowadays a number of vertical search engines provide a specialized kind of in-

formation service whose aim is to satisfy a user’s need based on a particular intent. In

practice however, a user needs to identify his intent in advance so that he can decide

which vertical search engine he has to choose in order to satisfy his intention. It would

be convenient though, if a query intent identifier could be provided within a general

search engine, so that it would be possible to accurately predict whether a query need

concerns a particular type of vertical search engine, handling a certain domain. Also,

since a user’s query may not be limited to a single intent, it would be extremely help-

ful for the user to have a general search engine detect all the query intents, and then

distribute the query to the appropriate vertical search engines and, finally, effectively

organize the obtained results from the different vertical search engines to satisfy a

user’s information need.[7]

Past researches on query labelling can be divided (with some overlap) into two

general categories: (I) Manual classification, which involves using human editors or

very simple heuristics to obtain a set of static classification decisions. (II) Auto-

matic classification which usually aims at using complex algorithmic methods, such

as supervised machine learning, to cluster similar queries or to perform direct task or

topic-based classification. [10]
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Manual Query Classification

Many studies have attempted to Manually classify queries in terms of the infor-

mational actions of users, though we are only going to present a couple, because they

are not of particular interest for us.

Broder, in his work [12] manually classifies a small set of queries into 3 separate

task categories: transactional, navigational, and informational. To do it, he exploited

a pop-up survey of AltaVista users followed by a manual inspection.

Beitzel et al. [9] use exact lookup of queries from AOL’s Web search engine in

a large database of semi-automatically categorized queries with the aim of analysing

query behavior over time. In this approach they chose to use a set of 16 categories.

Automatic Query Classification

Other works on query classification are less focused on understanding large-scale

properties of query logs and more focused on improving system effectiveness on each

individual query. Unluckily, a lot of this work is proprietary and unpublished, though

academic literature is growing constantly.

Kang and Kim [36] use query term distribution, mutual information, usage rate

in anchor text, part-of-speech info, and also a combinations of the above, with the aim

of automatically classify user queries into Broder’s [12] taxonomy. This classification

is then used to decide which of the query processing algorithms should be used for re-

trieval. Their system though achieves at best modest improvements in retrieval effec-

tiveness.
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Kang’s and Kim’s studies [36] in fact exhibit a substantial problem common to all

query classification studies: achieving accurate classification, and in particular high

recall, is extremely difficult for those queries that are inevitably short.

Gravano et al. approach the problem of query classification in [26] by using ma-

chine learning techniques in an automatic classifier in order to categorize queries ac-

cording to geographical locality. In their work they sample small training, tuning, and

testing sets of a few hundred queries each from a very large 2.4 million-query Excite

log from December 1999. Following the analysis they discovered that data sparse-

ness is a significant problem for their classifier. In particular they noticed that most

queries are very short, and, specific to their geographical task. Also, it was observed

that queries rarely contain key trigger words that are likely to identify whether or not

a query is either “local” or “global” in geographical scope. They finally conclude

that successful automatic classification has to necessarily draw on external sources of

information to compensate for the small number of features that are usually present

within a single query.

Shen et al. [58] use synonym-based classifiers to map the category hierarchies

used by search engines to the ones proposed at the KDD Cup 2005 [5]. In particular,

this mapping function is constructed by matching keywords between each category

hierarchy. Shen et al. extend the keyword matching process so that it includes various

grammatical forms. In their work they build three synonym-based classifiers by using

the category hierarchies from Google, Looksmart, and an internal search engine based

on Lemur [4], searching a crawl of the ODP[3] hierarchy (Open Directory Project).

Also, they build a statistical classifier using SVM light [34]. The training data is

collected by using the mappings that have been found for the synonym classifiers

in order to find pages in the relevant ODP categories for each query. The terms from
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these pages, their snippets, titles, and category names are then stemmed and processed

to remove all the stop-words and to be used to train the SVM classifier. They also use

two ensemble classifiers, one using the 111-query training set to learn weights for

each component classifier, and the other one giving equal weight to each component

classifier.

Kardkovacs et al. [37] propose an approach called the Ferrety Algorithm for the

KDDCUP 2005. Their approach is quite similar to that by Shen et al. [58] we have

seen earlier. Kardkovacs et al. however, use the Looksmart and Zeal search engines

to build their taxonomy mapping, an they continue by enriching the mapping process

with stemming, stop-word removal, and the application of WordNet. These data is

then used to train their own learning software and make classification decisions. In

their work they also experiment with several different methods of feature selection.

Vogel et al. [64] took part at the KDDCUP 2005 too. Their approach relies on

a Web directory to drive part of their classification. They build their category map-

ping by searching ODP with Google, and collecting the categories found in the top

100 retrieved documents. They also make use of spelling corrections and of alternate

queries automatically suggested by Google, which help mitigate some of the most

noisy queries in the KDD Cup query set. They then manually inspect all of the cat-

egories returned by Google, and map each directory node to up to three KDD Cup

categories. Finally, they combine all available information and generate probability

scores for each category via a logistic regression.

Hu et al. [32] develop a system that starts by recognizing a set of seed concepts.

It then retrieves all those Wikipedia articles and categories that are supposed to be

relevant to these concepts. The Markov random walk algorithm is then used to itera-

tively propagate intent from the seed examples into the Wikipedia graph and to assign
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an intent score to each Wikipedia concept. What they obtain after this process is an

intent probability for each concept in Wikipedia, which clearly identifies the semantic

boundary of the intent domain. They then continue by mapping each query into a

Wikipedia representation. If the input query can be exactly mapped to a Wikipedia

entity, they predict its intent based on its associated intent probability. Otherwise,

they map the query to the most related Wikipedia concepts by using Explicit Seman-

tic Analysis (ESA) [23], and then make the judgment based on the intent probabilities

of mapped Wikipedia concepts, which overcome the semantic disambiguation issue.

Even though the system shows good premises, the implementation remains extremely

small-scale and limited to just three basic domains: travel; personal name; job.

Khoury et al. [38]. Implemented a system that exploits Wikipedia’s encyclopae-

dia structure to classify queries step-by-step, using query words to identify titles, then

choosing the articles based on these titles, and finally extracting the categories from

the articles. At each step, the weights of the selected elements are computed based on

those elements that have been found to be relevant in the previous step: a title weight

will then depend on the words that caused the system to choose it, an article weight

will depend on the titles ones, and a category weight will therefore depend on the

articles ones. Unlike the work of Hu et al. [32], this system was a general classifier

that could handle queries from any domain.

AlemZadeh et al. [6], which is also one of the co-authors of the preceding work,

built a general classifier, but its fundamental principles differ from [38]. Instead of

using titles and articles to pinpoint the categories in which to classify a query as was

done in [38], the classifier shown in [6] used titles only to create a set of inexact initial

categories for the query. Those categories are then used as starting points for the

exploration of the Wikipedia’s category graph. This exploration will then lead to the
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discovery of the best goal categories from a set of predetermined valid classification

goals.

2.3.2 Cluster labelling

As we have seen before when we talked about query clustering a lot of research is

being done on clustering algorithms and their applications in information retrieval.

However, in comparison, very little work has been done on cluster labelling. A classic

approach for cluster labelling is to apply statistical techniques for feature selection.

This is done by identifying important terms in the text that should best represent the

cluster topic. However, a list of significant keywords, or even phrases, are very likely

to fail to provide a meaningful label for a set of documents and queries. In many cases,

the suggested terms, even if related to each other, tend to represent different aspects

of the topic underlying the cluster. In other cases, a good label may just not occur

in the text.[14] User intervention is therefore required if we want to extract a proper

label from the suggested terms so that we can successfully describe the cluster’s topic.

However, these human chosen labels are rarely indicated as “significant” by feature

selection methods. For example, the JSD(Jensen-Shannon Divergence) method for

feature selection identifies human labels as significant (appearing in the top five most

important terms) for only 15% of the categories [14]. This result implies that human

labels are not necessarily significant from a statistical perspective. There is therefore

the need for a cluster labelling method that uses external resources.

One of the first systems that dealt with cluster labelling is the Scatter/Gather ap-

plication developed by Cutting et al. [17]. In this system, in addition to the cluster’s

important terms, the titles of the documents that are closest to the cluster centroid are

also considered for labelling, since usually titles are much more readable than a list
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of terms. On the web, the anchor text associated with the in-links to the cluster web

pages can be considered as candidate labels since often anchors successfully describe

the pages to which they link.

Radev et al. [54] generate a summary of multiple documents using cluster cen-

troids produced by topic detection and tracking.

However, multi-document summaries are usually too long to be utilized as short

comprehensive labels. Several labelling approaches attempt to enrich content-only

terms by exploiting external resources for labelling.

Geraci et al. [25] use a modified version of the Kullback Leibler Divergence [41]

to identify words that best represent the cluster’s contents and are least representative

of the contents of other clusters.

Carmel et al. [14] show us a cluster labelling solution that leverages the labelling

task by Wikipedia. In their approach, candidate labels are extracted from Wikipedia

pages in addition to the important terms that are extracted directly from the cluster

content. Thus, selected Wikipedia categories “compete” with inner terms for serving

as the cluster labels. In general, Wikipedia is a very successful resource for labelling,

however inner terms should be considered for the cases when Wikipedia fails to cover

the cluster content even though, thanks to its ever expanding nature, Wikipedia covers

more subjects every second.
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Problem Statement and Algorithms

In this chapter we aim to show precisely how we deal with the mission labeling task,

explaining in details all the definitions and algorithms necessary to describe our tool.

First we will formally state the problem including some definitions, and the vari-

ous knowledge bases necessary in order to understand how our tool works. Next, we

will describe in depth the actual implementation of the program.

3.1 Definitions

We shall start with some definitions that a reader might find useful in order to under-

stand properly the different constituent parts of our project.

For search session, search goal and search mission, we adopted the definitions

given by Rosie Jones and Kristina Klinkner in [35], which are:

DEFINITION 1. A search session is all of a single user activity within a fixed time

window.

30
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A session then, is defined by a chosen amount of time, during which a user per-

forms one or more searches. No relevance is given to information needs or goals that

the user might be trying to achieve.

DEFINITION 2. A search goal is an atomic information need, resulting in one or

more queries.

A goal can be thought of as a set of related queries from the same user, all aimed

at achieving the same specific task. It is not necessary for the queries to be contiguous

in order to be considered part of the same search goal. Queries belonging to the same

search goal might be interleaved with other queries having a different goal.

DEFINITION 3. A search mission is a related set of information needs, resulting in

one or more related goals.

A mission can be considered an extended information need. Looking for different

Hotels to stay while in Seville and looking for a guide for the city might belong to the

same mission though not to the same goal, because while they have both the general

aim of visiting the city of Seville, the goals are respectively to find an hotel and to

find a guide for the city.

The resulting hierarchy is: a sessions may contain one or more different missions.

Each mission might contain one or more goals. A goal may consist of multiple queries

aimed at achieving the same specific task. Different missions, queries and goals can

all be temporally interleaved.



Chapter 3. Problem Statement and Algorithms 32

Figure 3.1: Scheme Representing the division between Session, Mission and Goal

Let us now define some basic elements and notation we will use to explain our

work:

Let QNL be a query-navigation log containing all the data of our dataset, divided

according to unique MissionIDs. Let Qi ∈QNL be the list of Queries with MissionID

i, and Ni ∈QNL the list of Navigation data associated to the same MissionID i. Navi-

gation information can be described as the text extracted from the homepage relative

to the website visited by the user during the search mission. Let qi be a query belong-

ing to the list Qi of all queries with MissionID i. Also, let ni be a single navigation

data belonging to Ni.

We will now present some new fundamental concepts needed to understand our

algorithm.

DEFINITION 4. A Goal Category is a Category that is part of the set of Goal Cate-

gories that will be used by our tool as labels for the missions.

In our project, as anticipated in the introduction, we chose to use Wikipedia cate-

gories to label the mission, and in particular, we used the set of 99 categories devel-
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oped by AlemZadeh et Al. in [7]. The details about this set will be given in chapter

4, as they are of no interest to us for the algorithm description part.

Let’s now explain what we mean by Wikipedia entity: when we talk about an en-

tity, we are talking about a single specific Article Page, identified by an unambiguous

PageID. An article has multiple properties, but the one we are interested in is that it

belongs to one or more Wikipedia categories.

When talking about entities, we will refer only to article pages, and not to Wikipedia

Categories, that will be referred to simply as Categories.
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First Stage
Input: Qi (list of queries belonging to mission i), Ni(Navigation
data belonging to mission i).

1. NEi ← The list of entities extracted with Dexter from the
Mission Navigation data.

2. QEi ← The list of entities extracted with Dexter from the
Mission Queries.

3. ELi ← The complete list of entities extracted from both the
queries and navigation data, with the scores assigned
according to different factors, including whether they are
entities extracted from Qi or Ni. We also eliminate
duplicate entities, after adjusting the score in order to
consider the fact that the entity was found multiple times
in the text.

Second Stage
Input: ELi, Wikipedia Database Dump(WDD)

1. CLi ← we get the Scored Category list constituted by the
categories extracted from our ELi. This Category List
includes the Scores that each category will inherit from the
entity it was extracted from.

2. CLi ← We do a further step into refining our scoring by
searching the category set for duplicates of categories, and
use this information to adjust the scores accordingly. Also
we eliminate duplicate categories.

3. SCSi ← After all the steps previously taken in order to
obtain a final scoring, we prune all the categories that do
not meet a certain score threshold, defined according to the
highest category score for that particular mission.

Third Stage
Input: SCSi, WCG(Wikipedia Category Graph), GC (Goal Categories)

1. DIST (SCSi,GC) ← We compute the distance between each of the
Categories in SCSi and their closest Goal Category, by
exploiting the Breadth First Search algorithm on the WCG
extracted from the WDD we used.

2. FCSi ← We now have the List of Goal Categories that were
reached from the categories in SCSi. We take the Goal
Categories with the path length equal to that of the
shortest path found. If there is more than one, we consider
as a higher ranked Category those that were reached the
highest number of times by the categories of the SCSi.

3. We return the Final Category Set and use it as label for our
mission.

Table 3.1: Structure of the three stages of our labeling algorithm



Chapter 3. Problem Statement and Algorithms 35

3.2 Algorithm

Mission log creation

Being our Algorithm aimed at Search Mission labelling, it is necessary to have as in-

put a search Mission log. There exist multiple methods to develop a Mission log such

as the one we take as input for our labelling tool. As we have shown in the Related

Works chapter, this process can be done both via supervised as well as unsupervised

techniques. In both cases the objective is to identify and group all those queries sub-

mitted by the same user that aim at a similar information need. Once all the related

queries have been identified through a manual process or by exploiting some simi-

larity measure, we can consider them all as part of the same mission. We therefore

give them the same MissionID. In the mission log we will consider, if a web-page has

been visited as result of a query, the homepage of the website to which the visited

web-page belongs, is recorded in the Mission log too.

3.2.1 General Algorithm Description

We will now describe the algorithm developed to classify the search missions con-

tained in a QNL as the one we defined earlier.

• The First Stage of the process aims to extract the entities from the queries and

from the navigation data of a given mission. Following it performs the first

score computing step.

• The Second Stage extracts the starting set of categories from the obtained en-

tities, then further refines the scores in order to give the final scoring of our

categories. A pruning process eliminates the categories with the lowest scores

before the graph exploration.
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• The Third Stage begins with the set of Starting Categories, and computes the

distances from each one to the closest objective category. After a further rank-

ing, the best categories are chosen as mission labels.

In 3.1 we can see the general summary of our algorithm.

3.2.2 First Stage

We begin the first stage by taking in input the two starting data structures fundamental

for our labelling goal: the structure containing all the queries belonging to the mission

we are analysing (Qi), and the structure containing all the navigation data related to

the same mission (Ni).

Entity extraction

Now, our process starts by extracting Wikipedia entities from these two data struc-

tures. If there is no navigation data available for a mission, the navigation data part

analysis will be ignored and every correlated process will be skipped. As database we

used the freely available Wikipedia dump from October 2013. These dumps are made

available by the Wikimedia Foundation Project.

Extracting entities from a text, and solving possible ambiguities, is an exten-

sively documented job often referred to as Entity Linking, with multiple different

approaches attempted in the last 10 years, as shown in Chapter 2 of this thesis. Un-

luckily most of these approaches are not publicly available.

We chose to rely on a new entity linking tool called Dexter [15], developed by

Ceccarelli et al. at the university of Pisa, in collaboration with Ca’ Foscari. We shall

now explain how entity linking generally works and how Dexter works.
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Dexter

Given a plain text, the Entity Linking task consists in identifying small fragments

of text (also called spots or mentions) referring to any entity that is listed in a given

knowledge base. Usually the task is performed in three steps:

1. Spotting: a set of candidate mentions is detected in the input document, and

for each mention a list of candidate entities is retrieved.

2. Disambiguation: for each spot associated with more than one candidate entity,

a single one is chosen to be linked to the spot.

3. Ranking: the list of detected entities is ranked according to some score or

policy.

The framework developed by Ceccarelli, called Dexter, is a standalone program

developed in JAVA, designed to work through a set of Rest APIs or through a web

interface.

The main components of the software are depicted in Figure 3.2. The spot reposi-

tory contains all the anchors used in Wikipedia for intra-linking the articles. For each

spot, the spot index contains the link probability.

DEFINITION 5. Link Probability is the probability for a spot to be a link, estimated

as the occurrences of the text as anchor in the Knowledge Base, divided the occur-

rences as pure text.
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Figure 3.2: Scheme Representing how Dexter Works

The article index is a multi-field index of the article, built by using Lucene [1],

while the entity graph stores the connections among the entities.

Dexter begins by using the Shingle Extractor to produce a list of possible men-

tions in the given text. The shingle extractor produces all the possible n-grams of

terms, where n ranges from 1 to 6.

It should also be remembered that each entity can be referred to by more than

one name. This property is called name variation, and it means that an entity

can be mentioned in different ways such as full name, aliases, acronyms and mis-

spellings. As an Example, there are multiple ways to search for John Fitzgerald

Kennedy in Wikipedia. You can either look for ”John F. Kennedy”,”John Fitzgerald
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Kennedy”, ”JFK”, ”John Kennedy”, or ”Jack Kennedy”, and Wikipedia will always

redirect you to the page of the famous president of the United States of America.

Figure 3.3: The disambiguation Page for Tree

The spotter has now the job of iden-

tifying all the entities in the text, by

searching for any fragment of text that

matches any mention. A name men-

tion is a set of 1 or more words identi-

fying a possible Wikipedia entity.

The Tagger then takes as input the

list of spot matches produced by the

spotter and selects the best entity for

each spot, performing the necessary

disambiguations.[15]

Disambiguation

Disambiguation of mentions is always

a problematic step if we consider that

when a single mention is identified, it

might link to multiple Wikipedia enti-

ties that might be referred by the same

name. Tree for example, has many possible meanings and, amongst others, it can refer

to the plant, to the graph construct or it might be an acronym for Trends in Ecology

and Evolution (see Figure 3.3).

In the Dexter implementation we used, the disambiguation phase was based on

TAGME [21]We will now briefly describe how Tagme works, in order to give the
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necessary background on Dexter’s disambiguation phase works.

Lets give some definition first: a Wikipedia page is denoted as p. Because of

polysemy and variant names, we denote by Pg(a) the set of all Wikipedia pages linked

by a (a text anchor).

DEFINITION 6. f req(a) is the number of times the text a occurs in Wikipedia (as

an anchor or not).

DEFINITION 7. link(a) denotes the number of times the text a occurs as an anchor

in Wikipedia (so link(a)≤ f req(a)).

DEFINITION 8. Pr(p|a) denotes the prior-probability (a.k.a. commonness) that an

occurrence of an anchor a points to p ∈ Pg(a).

Less formally, the commonness of a sense is defined as the number of times that

the page describing that sense of the word is used as a destination in Wikipedia.

The annotation of an anchor a with some page p ∈ Pg(a) is denoted by a 7→ p.

Often a has multiple senses, thus |Pg(a)|> 1, so the disambiguation process consist in

selecting one of the possible senses of a from Pg(a). Obviously not all occurrences of

the spot a should be considered as text anchors, so Ferragina and Scaiella introduce

a fake page NA that is used in the annotation a 7→ NA in order to denote that an

occurrence of anchor a has been pruned.

Let AT be the set of all anchors occurring in an input text T , Tagme tries to dis-

ambiguate each anchor a ∈ AT by computing a score for each possible sense pa of a
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(hence pa ∈ Pg(a)) via a new notion of ”collective agreement” between pa and the

possible senses of all other anchors detected in T .

To this aim, Tagme deploys a new voting scheme that computes for each other

anchor b ∈ AT\{a} its vote to the annotation a 7→ pa . Given that b may have more

than one sense (i.e. |Pg(b)| > 1) we compute this vote as the average relatedness

between each sense pb of the anchor b and the sense pa we wish to associate to the

anchor a.[21]

Relatedness has been previously defined by Milne and Witten in [50] as a measure

rel(p1, p2) between two pages p1, p2 based on the overlap between their in-linking

pages in Wikipedia;

Formally, the relatedness measure is:

DEFINITION 9. relatedness(a,b)= log(max(|A|,|B|))−log(|A|
⋂
|B|)

log(|W |)−log(min(|A|,|B|))

Where a and b are the two articles of interest, A and B are the sets of all articles

that link to a and b respectively, and W is the set of all articles in Wikipedia. The

relatedness of a candidate sense is the weighted average of its relatedness to each

context article.[50]

Since not all possible senses of b have the same (statistical) significance, we

weight the contribution of pb by means of its commonness Pr(pb|b).

Hence the formula is:

DEFINITION 10. voteb(pa)=
∑pb∈Pg(b) rel(pb,pa)·Pr(Pb|b)

|Pg(b)|
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We notice that if b is un-ambiguous, Pr(pb|b) = 1 and |Pg(b)| = 1, so we have

voteb(pa) = rel(pb, pa) and therefore we fully deploy the unique senses of the un-

ambiguous anchors. If b is polysemous though, only the senses pb related to pa will

mainly affect voteb(pa) because of the use of the relatedness score rel(pb, pa). The

total score rela(pa) for the ”goodness” of the annotation a 7→ pa is computed as the

sum of the votes given to it by all other anchors b detected in the input text.

Figure 3.4: An Example of how disambiguation works, using Milne and Witten relatedness

and prior-probability(commonness) measures

To disambiguate a, and therefore select its best annotation a 7→ pa, Ferragina and

Scaiella choose to use a newly developed method called Disambiguation by Threshold

(DT ). Disambiguation by Threshold recognizes a roughness in the value of rela(pa)

among all pa ∈ Pg(a), so it computes the top-ε best senses p′ in Pg(a) according

to their rela(p′), and then annotates a with the sense that obtains the highest com-

monness among them. DT discard from the above computation all senses p ∈ Pg(a)

whose prior probability Pr(p|a)< τ, where τ is set as explained in [21].

After the disambiguation phase, Dexter’s Tagger outputs an entity match list, with
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the position in the original text of each annotated entity and a confidence score.

First Scoring Step

Once we have our Entity list, still divided according to whether they were extracted

from Ni or from Qi, we proceed by assigning to each entity their score.

We will call QEi and NEi the entity lists extracted from Qi and Ni respectively by

Dexter.

In the first step of the scoring process we take the link probability (given by Dex-

ter) from each entity identified in the given text, and we use it as a base score for our

entities.

We chose Link Probability as base score for the entities, because it is a good mea-

sure of how likely it is that the particular entity we found, was written because it was

significant for the mission. As an example, ”the” has an extremely low link-probability,

because even though it is present a huge amount of times in Wikipedia pages, it is al-

most never used as an anchor for its Wikipedia article page, and it is obviously almost

never significant in a sentence.

After assigning the base score, we proceed to increase that score, based on whether

the mission entities are present in both queries and navigation data.

For each qei (a single query entity), in QEi, we check if an identical entity nei (a

single navigation data entity), is present in NEi too. Two entities are said to be iden-

tical if they have the same unique PageID defined in the Wikipedia database. When

two identical entities are found, the navigation data entity score will be multiplied by

a factor f , which depends on the total number of entities present in NEi. This will be

done for each entity qei in QEi. This means that if there are k identical qei entities in

QEi, the score of the entity nei identical to qei, will be:
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DEFINITION 11. score(nei) = linkprobability(nei)+(linkprobability(qei) · f · k)

The resulting entities in NEi with the newly computed scores, are then added to a

new entity list we will denote with ELi.

This scoring choice is performed because while websites are dispersive, even

though they might contain meaningful information, the queries should represent what

the user is actually looking for. Therefore, if an entity is present in both the Query and

in the Navigation data, it will probably mean that the entity is highly significant for

the user’s search mission, while if it is only present in the query, it might mean that

the entity found in QEi was a simple mistake done by the user or by Dexter, which

could have disambiguated a mention incorrectly because of the limited context given

by the queries.

This might not be the case though, so if no entity in NEi is equal to an entity

qei, qei will be added to ELi, and it will have a score equal to it’s linkprobability

multiplied by a factor v. The factor v depends on the total number of entities in

NEi. This score increase is performed so that, in case NEi contains a large amount of

entities, these do not completely overwhelm all those entities in QEi that are not also

present in NEi.

This query score multiplication is made on the base that the supplied queries are

supposed to be meaningful. If no other identical entity is found in QEi, the entity will

probably obtain a final score lower than the ones of other entities found in both QEi

or NEi. On the other hand, if the entity is present multiple times in QEi, it should

mean that the entity has an a high relevance for the mission, and the performed score

multiplication will contribute to make it relevant in the mission labelling process.
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Second Scoring Step and First Pruning

In the last part of this stage, we check ELi for occurrences of entities with PageIDs

identical to each other. We then choose one instance of the identical entities, eli, and

after adding the values of all the other duplicates to eli, the other identical entities

are removed. The resulting ELi will then be a set with no duplicates. From this set,

we chose to only take the highest score entities in order to keep computation time

reasonable and to avoid analysing low score entities, because they would most likely

be misleading for the mission labelling process, and would anyway end up being

pruned in the next stage.

3.2.3 Second Stage

Category Extraction and Third Scoring step

In the Second Stage of our tool, we start by extracting the Categories to which the enti-

ties in ELi belong. We do this by exploiting the JWPL APIs, a set of APIs developed

by the Wikimedia foundation to allow programmers to interact with the Wikipedia

Database Dumps. We now have a list of categories relative to the mission i that we

will call CLi. Each of the categories in CLi will inherit the score from the entity it was

extracted from. We identify with cli a single category of the Category List CLi so:

DEFINITION 12. basescore(cli) = score(eli)

Where eli is the entity from which cli is extracted, and score(eli) is the score that

each entity in ELi has at the end of the first stage. We then proceed to a further scoring

step.



Chapter 3. Problem Statement and Algorithms 46

First of all let’s consider two separate, but not necessarily different, categories clai

and clbi in CLi, then the score of each category clai will be:

DEFINITION 13. score(clai) = ∑
∀clai=clbi

basescore(clbi) · j

where j is the number of times a category clbi identical to clai appears in CLi.

This step is performed to increase the score of those identical categories extracted

from multiple different entities.

This can help us reveal underlying relationships between entities that would have

otherwise passed unnoticed. In fact it might probably be that a category extracted

from multiple different entities is relevant for the search mission need. Considering

that the English Wikipedia has more than 400.000 categories, it is not common to find

multiple identical categories casually within a 30 or less categories list. For this rea-

son, the score of a category is equal to the sum of the score of its identical categories

in CLi, multiplied by the number of the identical categories instances in CLi which

we called j. Also, the set of the categories of an entity often include some category

that might be considered irrelevant, because only marginally connected to the topic

that the entity handles. As an example, the entity ”Harford County” belongs to the

categories ”Maryland counties; Harford County - Maryland; 1773 establishments in

Maryland; Populated places established in 1773”. It is clear that the most signifi-

cant categories for this entity can be considered ”Maryland Counties” and ”Harford

County-Maryland”, while the other two categories are probably less significant for

that entity. If we also have, in the same mission, the entity ”Harford County Sheriff’s

Office”, from it we will extract the categories ” Harford County, Maryland; Sheriffs’

offices of Maryland; 1774 establishments in Maryland”. Having ”Harford County,

Maryland” in common, this category value will be increased, giving it a higher rele-

vance in the labelling process.
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At the end of this step we obtain a further refined Category List, that will be passed

on to the following stage.

Low scores Pruning

With the Category List obtained from the preceding step (CLi), we proceed to perform

a further pruning. It can happen that some categories have a score that is too low

compared to that of the ”best” categories. Because after this step we will only take

the categories with the highest score and then stop using the scores to rank them, we

need to do a final pruning, and eliminate all those that might be considered irrelevant.

We remove from our CLi all those categories that have a Score which is less than

1/k that of the highest score category in CLi, where k is a factor that can be changed

according to whether we want or not to consider lower score categories into our set.

This step is necessary to eliminate those categories that have score too low to prove

significant for the mission. Our Category Set is now ready.

3.2.4 Third Stage

Wikipedia Category Graph Exploration

The Category set we now have, will be called Starting Category Set, or SCSi. The

categories contained in it are all the categories we will use as starting points in the

Category Graph in order to reach our Goal Categories.

To do this we need to exploit the Wikipedia Category Graph (WCG). The WCG

represents the pseudo Taxonomy of the Category Graph. It is not a taxonomy or

a tree, because its structure contains short-cuts, isolated leaves with no parents and

cycles. Also a category might be linked by more than a single other category. We can
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see an example of a small part of the graph in Figure 3.5. Nonetheless the Category

Graph gives us the chance to explore it in order to find our Goal Categories. The Goal

Category Set is a Set of predefined Categories, built to cover most if not any possible

subject that might be the goal of a web search mission. Obviously, these categories

will be quite general in order to cover all of the possible subjects of a search mission,

otherwise it would require a huge amount of more specific categories to cover them.

Our Algorithm travels this graph exclusively from a category to its parents. We

only explore the graph ”upwards” because the goal categories are general enough

to make it almost if not completely impossible(judging by all our tests) for an en-

tity to belong to a category on an upper level of the graph, i.e. the goal category

”Science” has as parent categories only ”Main topic classifications” and ”Academic

disciplines”, which are obviously two ”container” categories. Our objective now is to

explore the WCG, searching, for each Starting Category in SCSi, for the Goal Cate-

gory that can be reached in the minimum number of steps. The algorithm starts the

exploration of the graph from a Starting Category taken from our SCSi, and it con-

tinues travelling the graph until the closest Goal Category is found. The closeness of

a Goal Category is determined by the number of Children→ Parent steps it takes to

reach it starting from our Starting Category. At that point we can suppose that we

have found the Goal Category that best represents our starting category.

DFS

Two methods have been tried for graph exploration while developing the tool. Depth

First Search and Breadth First Search. In our DFS algorithm, we recursively explore

the graph in his depth, starting from the categories in our SCSi. Once any of the Goal

Categories is found, the number of steps to reach it is recorded, and the algorithm

proceeds recursively to explore the graph, looking for any Goal Category requiring
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less steps to be reached. We should always consider that there are a huge number of

paths that can lead to any of the Goal Categories, so we need to examine all the avail-

able paths from our starting category to find the shortest one. To improve efficiency,

a technique to avoid visiting a category if it has already been visited in a preceding

step has been implemented. This also helps avoiding cyclic category repetitions that

are sometimes present in the WCG.

Because of the complex structure of the graph though, some visits can take a great

number of Children→ Parent steps. This can happen because there are exploration

paths that do not lead to a Goal Category, and so the graph visiting process keeps on

travelling the WCG, visiting Categories that are used to group other categories, and

that have no real meaning for us, such as ”Main Topic Classification” or ”Articles”.

Though, because there is not a clear way to define the depth of a category in the WCG,

because of cycles, short-cuts and non-linked categories, it was impossible to define a

depth at which the recursion had to stop. As general limit, we chose 20 as maximum

number of Children→ Parent steps before stopping the exploration. It is safe to say

that no category will need more then 20 steps to reach the closest Goal Category. In

fact, categories require an average of 3.05 steps to reach the closest Goal Categories.

The DFS will eventually come to an end when the closest Goal Category is reached

and no category is left to be visited. Considering that each entity has an average of

2.68 categories each, and that each category usually has even more parent categories,

it is easy to see that a DFS execution would most likely require a huge amount of

time. Exploring the WCG might in fact require |SCSi| ·2.68nsteps where |SCSi| is the

cardinality of the Starting Category Set, 2.68 is a low estimate of the average number

of parent for each category and nsteps is the average number of steps that the DFS

algorithm takes to reach a Goal Category during the whole execution. Because of the

limit we set, nsteps will be less or equal to 20.
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BFS

Because of the complications found in the DFS we chose to use the Breadth First

Search for our tool. With a BFS algorithm, we can obtain quick results. By visiting all

the categories present at each step before proceeding to the next Children→ Parent

step, we have a way faster exploration. That is because, as said before, the goal

categories can be reached in an average of 3.05 steps, giving us an estimated required

number of steps of: |SCSi| · 2.683.05. This way we avoid exploring uselessly a large

part of the WCG with the chance of not finding any relevant or close enough Goal

Category like it can happen with the DFS. The main advantage of this approach over

the DFS is then the greatly reduced computation time, and for this reason we chose it

over DFS. Also, in case of a future use of these tool for jobs that require a quick/real-

time execution, it is obvious that DFS would be unusable.

Final Pruning and end of the Process

Now, after finding the set of Goal Categories reached by the categories in our SCSi, we

create a new set by pruning all those categories that took more steps than the shortest

path found to reach. We chose not to consider any Goal Category reached through a

path longer than the shortest one because, as we can see in Figure 3.5, a single step

can change the subject radically. In the graph of Figure 3.5 it only takes 3 steps from

Computing, to reach ”Historical eras”, and then ”History” (on the right side of the

picture), which is a completely different topic, even if, by exploring the connection

that binds them, it can be seen that there is a logical link. At the same time though,

with 3 steps on the left, the subject doesn’t change that drastically with categories such

as ”Technology Systems” or ”Technology”. This ”Quick Subject Change” property

that the Wikipedia Category Graph has, is one of the biggest problems our tool has to
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face.

We will now have a Final Category Set containing all those categories that required

a number of steps equal to the shortest path found.

From this Category Set, we take the 3 categories, or less if we don’t have enough

categories, with the path length equal to the shortest path. If two categories have the

same path length, the goal category with the most number of duplicates in SCSi after

the BFS will be chosen. Eventual duplicates in this group of 3 categories will not

be substituted by the next closest goal category in order to avoid including irrelevant

categories.

We now have our Mission Labels.
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Figure 3.5: Upward Exploration of Computing category in WCG



Chapter 4

Content of the project

After explaining the algorithm we developed for our Automatic Labelling tool, we

will show the implementation choices, the actual dataset we used, the structure of the

Wikipedia Category Graph, and the chosen test parameters and evaluation method-

ologies.

4.1 Implementation Choices and Data

4.1.1 Mission Dataset

Being the objective of our thesis the labelling of a set of user search missions, we first

had to choose a search mission log. To our knowledge there is no other very large

search mission log, other than the one developed by Hagen et al. at the university of

Weimar [28]. Their log is based on the Gayo-Avello’s query log corpus [24], which

consist of 11484 queries from 215 users sampled from the 2006 AOL query log [52]

with respect to representativeness of typical querying behaviour (ratio of repeated

queries, click through rate, etc.). In Gayo-Avello’s corpus, a single human annotator

53
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subdivided the sample into 4040 sessions.

There are however some clear problems with Gayo-Avello’s corupus:

• The notion that he gives of session, focuses only on series of consecutive queries

aimed at the same information need, without taking into account the chance that

different sessions with the same information need might be related.

• The query submission time and the relative clicks are not given within the cor-

pus, and therefore it might be necessary to reconstruct them from the AOL log.

• Almost half of users submitted less then 4 queries at different times, making

session detection not really useful in those cases. With that fer queries we

don’t have enough information to judge whether the queries belong to the same

mission or not.

• From time to time, the ordering of queries in the Gayo-Avello’s corpus is not

coherent to the one of the AOL query log (and it is not possible to understand

the order without timestamps).

• Some queries are just left out of the corpus for no apparent logical reason.

Because of all the issues we described, Hagen et al. couldn’t use the corpus for

session detection as it was, therefore they took the Gayo-Avello’s data-set as basis,

removed the few empty queries and those that only contained a URL (probably be-

cause the user mistakenly inserted the URL in the search space instead of inserting it

in the address bar), and also removed the users that submitted less then 4 queries in

total as it would be hard to obtain a correct or significant mission. The query sample

obtained, has 8840 queries from 127 different users.
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The next step was for two human annotators to divide this sample of queries into

2881 logical sessions and 1378 missions. When in doubt, there was a discussion in

order to reach a consensus on which query belonged to which mission. The corpus

they obtained is the one, slightly altered, we used in order to develop and test our

tool. The official name of Hagen’s corpus is Websis Search Mission Corpus 2012

(Websis-SMC-12). The statistical data for the obtained corpus are:

• Each user conducts an average of 10.85 missions of 6.42 queries each.

• Each mission contains on average 2.09 logical sessions.

• Missions and sessions that are interrupted by a different session or mission at

some point, are picked up again later in 1505 cases by 93 users.

• 76.3% of missions are ended within one day.

• The longest non-trivial mission runs for 88 days.

The Websis-SMC-12 corpus is structured like this: there is a line for each interac-

tion with the user; the interactions are ordered by time (something that wasn’t always

true in Gayo-Avello’s corpus); each line contains a user ID, a query string, a time-

stamp and the rank and the homepage of the clicked result in case there is a click

interaction. As a result of the logical session and mission identification work they

did, to the basic data were added a mission ID for each interaction, and, even if not

always, there is a manual annotation that aims to describe the intent of the mission.

In Table 4.1 we show an example of the dataset entries. Because the table is

too large to fit in a single page, we reduced it by eliminating the rank of the clicked

domain, the mission id and the manual annotation. The missions are still identifiable
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because each mission of the same user is separated by an empty row, while different

users, and consequently also different missions, are separated by a line between the

UserIDs.

UserID Query QueryTime ClickURL
——
38534 maryland state police 2006-03-01 23:48:15 http://www.mdsp.org
38534 harford county sheriff 2006-03-01 23:55:13 http://www.harfordsheriff.org
38534 aberdeen police

department in
maryland

2006-03-01 23:59:35 http://www.aberdeen-md.org

38534 aberdeen police
department in
maryland

2006-03-01 23:59:35 http://www.aberdeen-md.org

38534 goody 2006-03-20 16:19:46
38534 goody 2006-03-20 16:19:47
38534 goody 2006-03-20 16:20:08
38534 goody 2006-03-20 16:20:09

38534 google 2006-03-20 16:26:54
——
932882 accountsummary 2006-03-07 06:23:01
932882 americanexpress

accountsummary
2006-03-07 06:23:31

932882 americanexpress
accountsummary

2006-03-07 06:23:36

932882 americanexpress
account summary

2006-03-07 06:23:52 http://apply-credit-card.us

932882 americanexpress 2006-03-07 06:24:51

932882 american greetomgs 2006-03-13 11:49:39
——

Table 4.1: Hagen’s dataset Example

In order to make our tool for automatic mission labelling work, we didn’t need

some of the elements that Hagen et al. included in their corpus. The time-stamp, the
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number of the clicked URL in the search result page, and the eventual annotation they

gave to the mission were removed because not useful to our intent. An identifier made

by a combination of user and mission id, the query text and the general domain of the

clicked URL were all that we needed. In order to unequivocally identify each mission,

we marginally modified the corpus. The user and mission IDs in the Hagen’s corpus

have been combined in order to obtain a single mission ID that can identify the set

of interactions that are part of a single mission, regardless of which user submitted it

(even if it is easy to understand by looking only at the first part of the mission id). For

each line, after the mission ID, there is the query submitted by the user during that

particular interaction with the web search engine, and finally, there is the URL clicked

by the user within that same interaction. There can be different interactions within the

same mission ids, that will be shown as different lines with the same Mission ID. An

example of our modified query-log can be seen in Table 4.2

4.1.2 Goal Category Set and WCG Structure

After Building our starting data-set, we reasoned about the kind of categories we

could use for the labelling task. Looking at different preceding attempts at labelling

queries or sessions, we saw that recently almost all of the focus is on Wikipedia. Us-

ing Wikipedia does seem logic, because there is no other publicly available source of

universal knowledge that is so vast, detailed and linked as Wikipedia is. Wikipedia

gives free access to it’s database dumps, and also there are different groups that are

developing APIs that give the necessary tools to handle these databases. In particular,

because we chose to develop our tool in JAVA language, we relied on JWPL (Java

Wikipedia Library), a set of APIs that allow for handling Wikipedia dumps through

methods interacting with not only the single data, but also with the underlying struc-
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USER MISSION ID QUERY CLICK URL
38534 1 maryland state police http://www.mdsp.org
38534 1 harford county sheriff http://www.harfordsheriff.org
38534 1 aberdeen police department

in maryland
http://www.aberdeen-md.org
http://www.aberdeen-md.org

38534 2 goody
38534 2 goody
38534 2 goody
38534 2 goody
38534 3 google
932882 1 accountsummary
932882 1 americanexpress

accountsummary
932882 1 americanexpress

accountsummary
932882 1 americanexpress account

summary
http://apply-credit-card.us

932882 1 americanexpress
932882 2 american greetomgs

Table 4.2: Modified Hagen Dataset Example

ture of the Wikipedia database [68].

After researching previous uses of the Wikipedia database for labelling or catego-

rization, we understood that to use Wikipedia categories as labels for our missions, we

had to choose a limited set of categories in order to restrict their number to a reason-

able amount, such that it is large enough to comprehend all of the possible subjects

that a user might touch while using a web search engine while not being too general.

Also, we didn’t want a set of extremely specific categories because that would render

the labelling task useless, considering that what would come out of the process would

have probably been so specific, that every mission would have had a different mission

label (something that is not that unlikely if we consider that in the English Wikipedia

there are now more than 400.000 categories).

We have gone looking for preceding attempts at developing a set of Wikipedia
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categories as the one we were looking for, and found a set of categories chosen by

AlemZadeh et al. that fitted perfectly our scope. In their work, AlemZadeh et al.[7]

developed a set of 99 Wikipedia categories they used to classify single queries. The 99

categories set is an adaptation of the 67 categories that were given to all participants

during the KDDCUP 2005 [5] about which we talked about in the related works when

describing the preceding labelling attempts. What AlemZadeh et al. did, is finding

in Wikipedia the categories corresponding to those of the KDDCUP. They did it not

only because the KDDCUP categories was in fact a well developed set of categories

that well represented most if not any of the possible subject that a user search mission

can touch, but also because that gave them a way to compare their results to those of

the groups who competed in the KDDCUP 2005.

In Tables 4.3, 4.4 and 4.5 we can see the 67 KDDCUP categories and the corre-

sponding 99 Wikipedia category set built by Hagen et al.
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KDDCUP Categories Kharray’s Wikipedia Category
Computers\Hardware Computer Hardware

Computers\Internet and Intranet
Internet
Computer Networks

Computers\Mobile Computing Mobile Computers
Computers\Multimedia Multimedia

Computers\Networks&Telecommunication
Networks
Telecommunications

Computers\Security Computer security
Computers\Software Software
Computers\Others Computing
Entertainment\Celebrities Celebrities

Entertainment\Games & Toys
Games
Toys

Entertainment\Humor & Fun Humor
Entertainment\Movies Film
Entertainment\Music Music
Entertainment\Pictures & Photos Photographs
Entertainment\Radio Radio
Entertainment\TV Television
Entertainment\Other Entertainmnet

Information\Arts & Humanities
Arts
Humanities

Information\Companies & Industries
Companies
Industries

Information\Science & Technology
Science
Technology

Information\Education Education

Information\Law & Politics
Law
Politics

Information\Local & Regional
Regions
Municipalities
Local Government

Information\References & Libraries
Reference
Libraries

Information\Other Information

Table 4.3: Alemzadeh 99 Categories With The 67 KDDCUP2005 Categories, Part 1
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KDDCUP Categories Kharray’s Wikipedia Category

Living\Book & Magazine
Books
Magazines

Living\Car & Garage
Automobiles
Garages

Living\Career & Jobs Employment

Living\Dating & Relationships
Dating
Intimate Relationships

Living\Family & Kids
Family
Children

Living\Fashion & Apparel
Fashion
Clothing

Living\Finance & Investment
Finance
Investment

Living\Food & Cooking
Food and Drink
Cooking

Living\Furnishing & Houseware
Decorative Arts
Furnishing
Home Appliances

Living\Gifts & Collectables
Giving
Collecting

Living\Health & Fitness
Health
Exercise

Living\Landscaping & Gardening
Landscape
Gardening

Living\Pets & Animals
Pets
Animals

Living\Real Estate Real Estate

Living\Religion & Belief
Religion
Belief

Living\Tools & Hardware
Tools
Hardware

Living\Travel & Vacation
Travel
Holidays

Living\Other Personal Life

Online Community\Chat & Instant Messaging
On-line chat
Instant messaging

Table 4.4: Alemzadeh 99 Categories With The 67 KDDCUP2005 Categories, Part 2
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KDDCUP Categories Kharray’s Wikipedia Category
Online Community\Forums & Groups Internet Forums
Online Community\ Homepages Websites
Online Community\ People Search Internet Personalities
Online Community\ Personal Services Online social networking

Online Community\Other
Virtual communities
Internet culture

Shopping\ Auctions & Bids Auctions and Trading

Shopping\Stores & Products
Retail
Product Management

Shopping\Buying Guides & Researching
Consumer Behaviour
Consumer Protection

Shopping\ Lease & Rent Renting

Shopping\Bargains & Discount
Sales promotion
Bargaining theory

Shopping\ Other Distribution, retailing, and wholesale
Sports\ American Football American football
Sports\ Auto Racing Auto racing
Sports\ Baseball Baseball
Sports\ Hockey Hockey
Sports\ News & Scores Sports media

Sports\Schedules & Tickets
Sport events
Seasons

Sports\ Soccer Football (soccer)
Sports\ Tennis Tennis
Sports\ Olympic Games Olympics
Sports\ Outdoor Recreations Outdoor recreation
Sports\ Other Sports

Table 4.5: Alemzadeh 99 Categories With The 67 KDDCUP2005 Categories, Part 3

We can see that while the KDDCUP categories are divided into 2 levels, the

Wikipedia ones do not give any information about the level to which they belong.

This is not casual, but it is caused by the particular way the Wikipedia Category

Graph (WCG) is built.

In Wikipedia, the categories are organized in a structure that slightly resembles a
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taxonomy, though it does have cycles and shortcuts as we can see in Figure 3.5, there-

fore it doesn’t comply with all the requirements of a taxonomy graph, as explained

in chapter 3, which makes it harder for us to properly analyse it. Each category can

have any number of subcategories, which includes the possibility that it has none (this

usually happens for specific categories which will be the leaves of the graph). A cat-

egory C usually belongs to another category S (so C is a subcategory of S) when C

handles some subject that is a specification of the more general subject handled in S.

As an example, the category Automobiles has many subcategories, amongst which

there is Automotive industry, which can be easily identified as a specification of the

Automobiles subject.

Each article in Wikipedia has at least 1 category to which it belongs, while there

is no restriction to the maximum number of categories the article belongs to. As in

2010, the average number of categories per page was 2,68. Also, the average distance

between any 2 categories was 5.5568 steps, which can give an idea of how much

connected the graph is, considering that there are more than 400.000 categories. [20]

As an example of the degree to which a category expands in just a few steps,

we can see a graphical representation of the first 2 steps from the parent category

”Mathematics” to its descendants and their subsequent descendants in Figure 4.1 [30].

Talking about the single categories, a category C contains a list of its subcate-

gories, of the pages that belong to the category C and of the categories to which C

belongs to (we call them parent categories). Sometimes, but not always, a really short

description of the subject of the category is present in the page of the category. An

example can be seen in Figure 4.2
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Figure 4.1: A ”Clusterball” representing 2 steps of Mathematics descendants

In each category is also present a list of the Hidden Categories to which the cat-

egory belongs to. Hidden categories are categories that are used by editors or ad-

ministrators for maintenance reasons, i.e. to group pages that need to be modified,
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or categories that describe a very particular property, like ”Commons category with

page title same as on Wikidata”.

Each article must belong to at least one category that is not an hidden category.

During our study of the Wikipedia category graph, we saw that from time to time,

there are inconsistencies.

Figure 4.2: Excerpt of the Data Mining Category page

For example the category ”Chrysler”

doesn’t belong to any category, while it

would seem obvious that it should be-

long to some automotive related cate-

gory. At the same time ”Fiat”, an-

other car company that can be consid-

ered similar at an encyclopedic level,

belongs to different categories: ”Mo-

tor vehicle manufacturers of Italy; De-

funct aircraft manufacturers of Italy;

Multinational companies; headquar-

tered in Italy; Conglomerate compa-

nies of Italy”. We came to wonder why

is there such a discrepancy between two categories that look so similar, and the only

possible answer is that Wikipedia, because of its collaborative and social nature, is

subject to mistakes. What is even more strange is that in the 4 months it passed since

we discovered this mistake, no correction was made. Unluckily for us, these mistakes

influence our tool. For example, in a very well studied mission labelling task, we had

to label different queries talking about some Chrysler models, and it is obvious that if

we had the chance to start our task by analysing the Chrysler category, we could have

had a big advantage and obviously better precision. These cases though are quite rare
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and also don’t compromise completely the effectiveness of the tool, as you have seen

in the section dedicated to the explanation of our algorithm.

4.1.3 Query data and Navigation data

In order to perform our algorithm, we need the entities extracted from the queries

and the entities extracted from the navigation data. While extracting entities from a

specific mission query is trivial, as we just need to group the text of the queries in a

single data structure, it is not as easy with the navigation data.

As we have shown earlier, the starting dataset contains the queries and the web

address of the domain relative to the visited web page. Obviously the address of the

domain is not much use to us, because no significant information can be extracted

from it considering that it is extremely unlikely for a web address to correspond to a

Wikipedia entity.

We then tried to extract some content from the websites that the user visited during

the mission. In order to do that, we downloaded the web-page from the indicated

domain, and extracts all the text contained in the paragraphs, denoted with < p > in

HTML. As User agent information given during the download of the html, we chose

Mozilla 5.0 (X11; Ubuntu; Linux x86-64; rv:25.0), in order to ensure compatibility

with most websites.

Despite this, different issues surfaced while trying to download the web-pages.

Sometimes the web page had been removed, other times it was inaccessible or re-

quired credential. Other websites were either down for maintenance or had been

moved to another domain. It should in fact be considered that the AOL Query-log

from which the dataset is extracted, was built in 2006, so it is to be expected that

some Websites do not exist any more. It also happened that some websites built with
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Microsoft Frontpage for some reason could not be analysed and ended up returning

no text. Common exceptions were SSLException, IOException, ConnectException,

SocketTimeoutException and others too.

Initially, we considered extracting the whole text of the web-page, including links

and menus, but that resulted in a huge amount of non significant and misleading text,

mostly menus, links, headers and footers or sidebars. Those mostly contained non

relevant or generic words, and in many cases they also contained links to Twitter,

Facebook or other social networks, that are normally used to share the content of

the page. The actual significant text was then drowned in a huge amount of non-

significant text. After trying to extract different parts of the HTML such as < meta >,

< body >, and other parts that we thought could have been relevant, we chose to

extract the only part of text that seemed to be relevant or related to the content of the

website most of the times. The content of paragraphs in the HTML was therefore

extracted from all the visited domains of the mission. The only problem with this

solution was that Dexter only accepts strings of a limited length, so we made the

choice to split the text extracted from a single website if it was longer than 3000

characters. Those text parts were later ”annotated” (annotation is the process of entity

linking performed by Dexter) separately.

By looking at the text extracted from the HTML paragraphs, we have a majority

of good text, but many times there are parts of it that still refer to copyrights, contacts,

social networks and other parts of a common website that have no connection with

its content. This is due to the non-consistent nature of websites, that don’t have strict

structure rules that web designers need to follow. This makes the extraction of only

the significant text from an HTML by means of an automatic system to be very hard

if not impossible. Also, having the actual visited web pages would have helped our

efforts immensely, because most home-pages contain images, menus, lists of content,
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but no large amount of real written content describing the subject of the web page.

For a possible future use of this tool we would advice exploiting a dataset containing

the actual visited pages, and not the corresponding homepage. Also, it would be

advisable to explicitly state the keywords describing the content of the website inside

the meta-tag keywords in the HTML, which is something that, by our experience, is

almost never done.

4.2 Testing and Evaluation

4.2.1 Evaluation Tools

For the evaluation of our project, we chose to adopt a user study approach, by using

two different sources of evaluation.

The first source of evaluation, is Crowdflower. Crowdflower is a company that

uses crowdsourcing techniques to provide solutions that aim at processing large amounts

of data. In practice, Crowdflower gives the tools and resources necessary to perform

evaluation tasks that are usually performed by a single individual or by a small group.

To do this, they exploit a network of evaluators that are paid per single evaluation.

The amount of money is set by the client designing the task between 0.01 dollars and

1 dollar per single evaluation. The cost should be set according to the evaluation task

complexity, so that there is a fair trade-off between time required for the evaluation,

and the given pay.

The job design can either be done through a graphical interface, or by writing the

necessary code in CML (a proprietary version of HTML) and javascript/CSS. Because

the graphical interface did not provide us with the necessary tools we needed to build

our job, we provided our personalized CML with the related javascript necessary to
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make the Job work.

We asked the contributors to evaluate which of the categories assigned by our

automatic labelling tool to a single mission were deemed appropriate.

In order to give the evaluators the necessary information, we provide the queries

and the URLs of the visited websites. Providing the user with text extracted from the

mission URLs has been considered, though it proved impossible because of the length

of the extracted text.

Figure 4.3: An example of the Crowdflower Evaluation Form

The evaluators also had the possibility of consulting the list of the 99 goal cate-

gories in case of doubts. Each unit of our test was evaluated by 5 separate evaluators

in order to give a decent amount of fairness in the obtained results.
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The second source of evaluation is a small set of four skilled users. They were

properly trained and instructed to analyse carefully the search mission and the 99

Goal Categories before giving a judgement on the mission labels.

The aim of this small skilled users set, is to give us the chance of checking if

Crowdflower contributors are careful with their decisions, or if they don’t pay much

attention and don’t put any effort in trying to understand what the mission is about.

4.2.2 Testing

For the proper tests, we explored different combination of values, changing in particu-

lar the factor f defined in Definition 11, and the factor v described as the multiplication

factor of an entity qei not found in NEi. As said in Chapter 3, those factors depend on

the number of entities found in NEi. In particular we chose v equals to k·|NEi|
10 , and f

equals to j·|NEi|
10 .

In the testing process we won’t refer to f and v because the number of entities

in NEi changes at each mission, but instead we will change the values of j and k.

j will also be called ”Navigation enhancement Value”. and k will be called ”Query

enhancement value”. This last value can be described as the factor for which the score

of an entity will be multiplied, for every 10 entities in NEi.

Another parameter that will be changed in the tests, is the score limit we chose in

order to prune the categories with a score lower then a certain level compared to the

highest score category. This will be simply referred to as ”score limit”.

As a last setting, we chose to change the number of entities that Dexter returns

from the text we pass. We doubled the standard number of entities so that it now is

10 entities for each piece of text of a maximum of 3000 characters. This allowed us

to consider more entities at each time and to reach a better precision. Higher values
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were tried, but the computation time required increased accordingly, while this choice

did not always return an improvement. Therefore we preferred to keep computation

times reasonable, while not compromising precision.

We first ran a base test to be used as reference for the improvements brought by

our software, and then we performed different tests with different values to check

whether a certain factor combination increases precision or not.

In the base test, we run our software without performing any operation other than

the extraction of the entities, the extraction of the categories and the breadth first

search. No factor f or v, no increase in score according to the presence of multiple

identical instances of an entity, and no check on whether two or more identical cat-

egories were extracted from different entities has been performed. Only in the last

part, the choice between two Goal Categories reached in the same number of steps,

was made based on whether one of the two categories was found the most number of

times by the set of categories in SCSi while exploring the graph.

Because Mission Labelling has not been attempted much until now, we don’t have

a reference score or a precise definition of whether our classification is right or wrong

and as a consequence, our judgement is focused only on the obtained precision.

The test dataset was a 100 subsequent set. These were chosen randomly, only

eliminating those missions that were either non understandable even for us, or simply

wrong, such as users writing the website address in the search field.

Baseline results evaluation

We start by evaluating the base tests we talked about earlier. No improvement has

been made, and the results given by this test are given strictly by Dexter and, as told
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earlier, by the final choice of one shortest path Goal Category over another, based on

which category was found the most number of times by the set of categories in SCSi

while exploring the graph.

It must be noted though, that even in this case, the Entity Linking part of the pro-

cess can exploit the context of the mission while entity linking the text, and therefore

obtain a more precise disambiguation over the same process performed on a single

query.

As we can see from the test, the 34.4% of our labels was found to be correct, by

the Crowdflower evaluators, while our skilled testers found the 34.74% of the labels

to be correct.

It should also be noted that The Crowdflower agreement level was only 70.8%.

Other data is that the average number of Categories belonging to the starting category

sets of each mission is 28.75, while the average number of labels assigned to each

mission is 1.52, with an average path length of 1.49 steps.

In these tests therefore, eve though we will present both the results of the Crowd-

flower evaluators and the skilled evaluators test, we will tend to give a higher rele-

vance on the skilled evaluators. This was decided also by an in-depth analysis of the

Crowdflower votes. By looking at what is probably the most clear mission of our

dataset which is nothing more then the query ”internet” repeated 9 times, we can see

that even though 4 out of 5 people deemed the label ”Internet” given by our tool, to

be correct, 1 evaluator found it to be wrong. Considering that we can safely say that

the label ”Internet” is the most appropriate label for the mission, we can evince that

Crowdflower evaluators sometimes just click at random. This is probably due to the

fact that they get paid per-answer, and therefore speed is the main factor determin-

ing income (even if we think that it probably required more work not to click on the

Internet label check-box rather than clicking on it).
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The labels in this base example are derived from just those categories with the

highest score which, because there is no other improvement applied, are the categories

derived from the entity with the highest Link Probability. Also, in case there were two

Goal Categories being reached with the same path length by two Starting categories

in SCSi, it was chosen the Goal Category that was found the most number of times

by all the categories in SCSi. With only these refinements, it was clear that the results

wouldn’t be very accurate.

Correct labels come mostly from really clear and unambiguous mission such

as the one presented before, consisting in the query ”internet”, repeated 9 times,

with no website address visited by the user as a result of the query. Other mis-

sions that are found to be correctly labelled are composed by queries that are ex-

tremely clear, unambiguous and correctly structured, with few visited websites, such

as the mission including the queries ”accountsummary; americanexpress accountsum-

mary;americanexpress account summary ;americanexpress”, and with a single vis-

ited website ”http://apply-credit-card.us”. It is clear that achieving a correct labelling

when the queries are correct, consistent, and the visited websites represent the actual

subject of the query, is not hard. While clear and unambiguous queries are easy to

label even without exploiting our tool completely, the problems start to arise when we

start to handle ”harder” missions.

Even when trying to label a mission that have very clear queries such as ”camaro;

history of the camaro; 1966 camaro; 1967 camaro photos”, that clearly refer to the

famous American muscle car, the tool has problems identifying the correct label. In

fact the labels that were assigned to this mission were ”Science; Technology”. This

happens because in this base example, we don’t exploit the steps of the tool that are

used to emphasize the importance of concepts that are present both in the queries and

in the webpage text. Because of this, the tool is not able to understand that the term
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”camaro”, is more important than all the terms found in the many clicked websites.

In fact, the six clicked web pages, even if most of them handle the ”Car” subject, in

this case they only contribute by adding many non relevant entities. Also, we can see

that one of the visited web-page is Wikipedia, but because in the mission log they

chose to only record the home-pages relative to the actual web-page clicked by the

user, we can’t exploit all the precious information that the ”Camaro” Wikipedia page

would have held. This, as anticipated, is one of the main problems we found when

implementing our software.

Obviously there are some missions that are very ambiguous or have a large set

of visited websites that do not handle the query subject directly. Those missions will

always be hard, or even almost impossible to label properly with our tool (as we will

see later on), but we aim to have a great increase in precision over our base example,

which is not too much different from a basic query labelling tool.

Multiple Tests with different parameters

After defining a baseline for our labelling evaluation tool, we tried exploiting all the

techniques implemented in the software, in order to reach the best precision possible

in the tests. To do this we started by trying different combinations of parameters,

adjusting them according to the results given.

We tried multiple different combinations, in order to understand which directions

to undertake when fine tuning the parameters, and we then adjusted our parameters

step by step, until satisfactory results were reached.
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First Test

First we started by analysing how our tool performed with a basic ”Navigation en-

hancement Value” of 1 and a ”Query enhancement value” of 2. The score limit was

set at 1, restricting the categories in the Starting Category Set to those with a score

equal to the highest score in SCSi. This way we exploit our tool functionalities but

without giving a very high relevance to the entities found only in the queries. This was

a good way to understand how our process would behave even with no optimization.

The results of the Crowdflower evaluators showed a precision of 62.8% with a

level of agreement of 73.61%. We should promptly point out that these data is not

to be taken in consideration. The results given by the Crowdflower evaluators were

analysed and were found to be quite random. This is probably due to the evaluators

used, which change every time an evaluation is done. This causes the results to oscil-

late according to the evaluators’ skills. This is easy to see when we analyse the data

returned by our skilled user set, giving us a precision of 47.625%. There is too much

of a difference from the skilled evaluators and the Crowdflower evaluators, therefore

we will consider the Crowdflower data to be wrong, this choice is is later confirmed

by all the other tests. We will anyway keep it in consideration when analysing the

whole Crowdflower data, but we mark them as unreliable. The 47.625% of precision

that our skilled evaluators found in this execution of our tool though is a clear sign

that the processes put in act by our software increased the precision from the baseline

by a great measure, showing how our tool is useful for labelling. More data extracted

from this test show that the average number of Categories belonging to the starting

category sets is 3.96, while the average number of labels assigned to each mission is

1.16, with an average path length of 3.53 steps, which shows an increase of almost 2

steps on the average path length, while at the same time increasing precision.
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Second test

Because the enhancement parameters in the last example were very low and did not

affect the scores of the categories radically, we tried to increase them slightly, by

setting ”Navigation enhancement Value” as 3 and ”Query enhancement value” as 7.

We kept the score limit as 1.

The results proved what we said about the preceding results given by Crowd-

flower because the returned precision was 58.2% with an agreement level of 74.4%.

This data by themselves don’t say much, but once we see that the Skilled evaluators

found the precision to be 52.125%, we understand that some of the data returned by

Crowdflower have to be wrong. We obviously trust our skilled evaluators more, con-

sidering that they spend much more time analysing the mission in order to give the

most precise judgements possible. Also, the results given by our skilled evaluators

are quite consistent and all of them follow a precise evolution pattern, linked to the

changes that we apply to the parameters.

What can be evinced by the data given by our skilled evaluators is that precision

increased with the increase of the enhancement values of both queries and naviga-

tion data. This is most likely caused by the already underlined fact that the queries,

when properly written, should indicate he real information need of the mission. The

Navigation data should then be an aid to understand what the query is about.

We also found the average number of categories in each mission Starting category

set to be 4.05, almost identical to the preceding test. This is probably due to the

score limit not changing in the two tests. Also the average number of Labels for

each mission was of 1.15, and the average number of steps to reach the closest goal

category for each mission was 3.5.
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Third Test

With some in depth analysis of our tool processes, we easily saw that limiting the

starting categories in SCSi to the ones with a score equal to the Highest score amongst

all categories, was too restrictive, in particular considering that there might be some

other categories with a score very close to the highest score, that should be considered

relevant. Therefore we tried to keep the same enhancement values as the Second Test,

but changing the score limit to 1.2 times that of the highest score category.

The results given by the Crowdflower evaluators, shows a labelling precision of

the 39.99%, with an 82.8% of agreement, while the skilled evaluators reported a pre-

cision of 54.25%. Considering that, because of clear inconsistencies, we can’t say

anything about the changes in precision highlighted by the Crowdflower evaluators,

we will limit to analyse the evolution of the precision found by our skilled evaluators.

With an increase of 2.125% over the second test, we can see that the choice of

increasing the score limit gave some good results, confirming our hypothesis of some

relevant categories not being considered because having a score slightly lower then

the highest one.

For this test, the average number of Categories in each mission Starting category

set was 5.84, with an increase of 1.79 categories per mission. This is obviously cause

by the increase in the score limit, which allows for more categories to be accepted in

the Starting Category Set. The average Labels per mission was almost identical to the

preceding test with 1.14 labels each. The average number of steps necessary to reach

the goal categories from the starting categories was of 3.23.
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Fourth Test

In our Fourth test we chose to further increase the enhancement values, setting the

Navigation Enhancement value to 25 and the Query enhancement value to 35. Also,

we slightly increased the score limit to 1.4 times that of the highest score. This de-

cision was taken following some further testing with the parameters of the preceding

test but with an increase score limit. We also tried to increase the score limit even

further, but increasing it past 1.4-1.5 resulted in a decrease in precision. The Crowd-

flower evaluators returned a precision of 63.2%, with an agreement level of 74%. Our

skilled evaluators though showed a precision level of 56.125%, increased of 1.875%

over the last test. Increasing the score limit and the enhancement values has then al-

lowed us to further increase precision, even though, as pointed out earlier, increasing

the score limit further worsens precision, as too many non relevant categories would

be taken in consideration.

Also, the Average number of categories in each Starting Category Set was of 6.48.

As we have seen in the preceding test, this is due to the score limit increase. At the

same time though, the average length of the path to reach the closest goal category for

each mission has decreased from 3.23 to 3.06, while the average number of labels for

each mission is stable at 1.14 each.

Fifth Test

In our fifth test we chose to increase even more the enhancement values, setting them

to 35 and 50 for the Navigation data and the Queries respectively. The score limit

was kept at a value of 1.4 times that of the highest value. We chose to increase

the enhancement values because it is clear that we couldn’t increase the score limit

too much, as we would then consider categories that are not relevant enough for our
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mission (something that was also proved by some further Tests that won’t be reported

here). At the same time, we don’t know exactly how our tool will behave by increasing

the enhancement values. Obviously one clear effect of this choice is that the query

entities will have very high relevance.

The results showed a precision of 60.8% as result of the Crowdflower evaluation,

with an agreement level of 73.6%, while the more reliable skilled evaluators showed

a precision of 57.37%. We can then see that the choice of increasing the enhancement

values brought an increase in precision, even if limited to 1.25%, of the precision.

This proved that the queries represent correctly what the user is looking for most of

the times. While at first we thought that a small enhancement value would be enough

to obtain optimal results, from this test we can see that, even if not by a great amount,

by increasing the enhancement values even more, we increase the precision as well.

The average number of categories in the Starting Category Set of each mission

was 6.21, very similar to the last test, which was expected considering that the score

limit was unchanged. The average number of steps to reach the closest goal category

stayed exactly the same at 3.06 steps, while the average number of labels per mission

changed only slightly from 1.14 to 1.15 labels per mission.

Sixth Test

In the sixth test we tried setting the enhancement values very high, in order to un-

derstand the level of precision increase that could be obtained this way. We tested

the tool by choosing higher values each time, until we found that once we get past a

Navigation Enhancement value of 75 and a Query enhancement value of 35, precision

almost stops increasing. Also we saw that increasing it too much we have a slight de-

crease in precision, indicating that we are starting to ignore all those entities that are
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not present in the query, but of which there are many instances in the Navigation data.

In this case we also chose to give a higher relevance to Navigation data that was

also found in the Query, instead of giving an higher enhancement value to the Queries.

The results do not change much once we get past enhancement values of 60, or even

less, though. In another test we set both enhancement values at 60, and obtained

almost the same results. By setting the values so high, we choose to give relevance

almost only to entities that are present in the queries, and only consider those present

in the Navigation data if the same entity is present in huge quantities.

The results given by the Crowdflower evaluators showed a precision of 70.4%,

whit an agreement level of 82.8%. Our skilled evaluators on the other hand have re-

ported a precision level of 61.999%. The increase over the preceding test is of 3.625%,

showing therefore an appreciable increase, although obtained by a huge increase in

the enhancement values.

At the same time, the number of average categories in the Starting Category Set

of each category changed only very slightly from 6.21 to 6.31. The average shortest

path length for each mission stayed exactly the same at 3.06 steps, while the average

number of labels per mission increased from 1.15 to 1.17.

We can see the various results in Figure 4.4 and 4.5.

Strict Evaluation

During the test evaluation, we also chose to analyse the results of a single evaluator,

which proved to be the more consistent in the choices made, and the one that was more

strict while evaluating labels. His choices were mostly limited to specific categories

that properly represented the mission, while he ignored most general categories that

were deemed correct by most of the other skilled evaluators.

The results are shown in Figure 4.6.



Chapter 4. Content of the project 81

Figure 4.4: The Crowdflower and the Skilled users precision results

Figure 4.5: The precision results given by the 4 skilled evaluators
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Figure 4.6: The average skilled evaluators’ and the strict evaluator’s precision results

Analysis of the Tests

Our results highlight a growth in precision which is very pronounced between the

baseline and the first 3 test, while the growth decreases in the following Tests, until it

almost stops once we reach the last Test.

With a thorough Analysis of the preceding test results we saw that we can obtain

a good precision, even though there is a lot of space for improvement. In particular 3

main problems arise from the results.
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The given web-pages, which are the home-pages relative to the actual visited web-

page, contain mostly non relevant data, because home-pages are normally filled with

pictures, flash animations, menus, links, but not an actual extended description of

what a website is about. Also, many visited web-pages are Wikipedia web-pages, or

yahoo answers pages, or virtual communities, which means that by giving us only the

Home-page address, they actually give us information that creates confusion.

Although this point only explains some of the mistakes done by our tool. Other

mistakes are due to the structure of the WCG. As a clear example, in our test dataset,

there is a mission that have, amongst others similar, the queries ”palate pressure; soft

palate pressure; tooth starting to abscess”, obviously talking about health problems

related to the mouth. The visited websites were all concerning health and medicine

too. Therefore the only category in the Starting Category set was Palate, which seems

correct. But, the closest Goal category to Palate for some reason it’s Art. Health,

Animals, Science, or any other category we might think of that seems more related to

Palate, is further away. The connection between Palate and art exploits the relation

between palate and the human body, and then the representation of the human body

in Art. But for a human reading the category Palate, the connection is obviously

very faint, which is something that it is not possible to understand from the WCG.

Some attempts have been made by other authors to define a weight measure, though

without appreciable results. This is obviously caused by the fact that the WCG doesn’t

have predefined levels, it has short-cuts, and it is made by the users, which clearly

have multiple opinions on how categories should be linked. This is particularly valid

considering that they need to handle a 400.000 categories set.

Another reason for mistakes in the labelling process are caused by wrong enti-

ties extracted from the text by Dexter. From time to time, a query is either too short

for Dexter to understand the correct context and therefore correctly disambiguate the
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Entity. As an example, the mission having as query ”chonda pierce”, and the site

”http://www.chonda.org”, which is about an American Comedian and Singer. Dexter

identifies the entity Chonda, a Chinese engine, and therefore it makes it hard to under-

stand that the mission actually is about a Singer. Without many other entities talking

about comedy or music though it will be impossible to label the mission correctly.

If we add together the mistakes caused by the WCG structure, by non relevant

content in the Web-pages, and by mistakes caused by Dexter, we can explain a vast

portion of mistakes, although other mistakes are due to how the queries are written.

If a Query is not clear, or if it doesn’t contain the most significant terms for the mis-

sion, or also if there are misspells, the tool has a very hard job understanding what

the mission is on about. The web pages should have the objective of helping us to

understand the actual mission of the queries, but that does not always happen because

of the problems we showed before.

The obtained results are interesting nonetheless, and they show in particular how

much precision has risen from the baseline approach, but also from the basic approach

shown in the first test up to the optimal values we found.



Chapter 5

Conclusions and Future Work

In this thesis, we presented a new approach for mission labelling, by exploiting the

Wikipedia Category Graph. After adapting the dataset, extracting the necessary data

and developing the tool, we tested it with a very large mission log, developed by

Hagen et al. at the university of Weimar. For the evaluation, we relied on two distinct

groups: a skilled set of evaluators, and the Crowdflower, a crowdsourcing company

offering human workforce to perform repetitive tasks that can’t be done by a machine.

To develop the algorithm we analysed each step necessary to get from the ex-

tracted entities, to the goal categories, and tried to exploit co-occurrence, multiple

instances, and score of both entities and categories.

Three main problems arose from the analysis of the results: web pages in the

mission logs should be the actual visited pages. Also, they should be built following

a precise structure, so that the meaningful parts of the web-page are held in a single

HTML tag, in alternative a much easier possibility is that of starting to actually use the

meta tags in HTML to indicate keywords. The second main problem is the sometime

chaotic WCG structure. While asking the administrators of Wikipedia to change the
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structure is not feasible, we can try to develop a weight determining how much a

category is related to its parent category. The final problem is that, from time to time,

Dexter, or any entity linking software, will link a spot to the wrong entity, because of

the lack of context. This matter needs further researches to understand how it should

be handled.

We believe that this work will be of interested for anyone handling Mission la-

belling, but also query labelling, because of the analysis of the problems related to the

Wikipedia Category Graph, which is being widely used for categorization nowadays.

Also the use of Dexter in our project showcased the potential of this and of similar

application, that might find extensive use in future labelling tools.

Future works include the development of a weight measure for WCG edges, giv-

ing us a chance to differentiate between relevant and less relevant links between two

categories. Alternatives to the formulas we employed in our tool can be developed

too and other parameters can be tested, in order to try to obtain a better precision. A

possible idea is also that of employing a tool for word stemming, or to auto correct

words in the queries that do not return any result when searched for alone. This way

we could avoid problems caused by search misspells. Also, a new mission log, or

an adaptation of the one we used, should be developed with the actual clicked web-

pages, in order to better evaluate the precision of similar tools. A ground truth for

the evaluation of future tools using this Mission log should also be defined, otherwise

every evaluation will be given based on subjective opinions.
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[31] D. He e A. Göker. Detecting Session Boundaries from Web User Logs. In

Proceedings of the BCS-IRSG 22nd annual colloquium on information retrieval

research, pp. 57–66. Cambridge, UK, 2000.

[32] J. Hu, G. Wang, F. Lochovsky, J. tao Sun e Z. Chen. Understanding user’s query

intent with wikipedia. In WWW ’09: Proceedings of the 18th international

conference on World wide web, pp. 471–480. ACM, New York, NY, USA, 2009.

ISBN 978-1-60558-487-4.

[33] B. Jansen e A. Spink. How are we searching the World Wide Web? A compar-

ison of nine search engine transaction logs. Information Processing and Man-

agement, vol. 42(1):pp. 248–263, 2006.

[34] T. Joachims. Making Large-Scale SVM Learning Practical. In B. Schölkopf,

C. J. Burges e A. Smola, cur., Advances in Kernel Methods - Support Vector

Learning. MIT Press, Cambridge, MA, USA, 1999.

[35] R. Jones e K. L. Klinkner. Beyond the session timeout: automatic hierarchical

segmentation of search topics in query logs. In CIKM ’08: Proceeding of the

17th ACM conference on Information and knowledge management, pp. 699–708.

ACM, New York, NY, USA, 2008. ISBN 978-1-59593-991-3.

[36] I.-H. Kang e G. Kim. Query type classification for web document retrieval. In

SIGIR ’03: Proceedings of the 26th annual international ACM SIGIR conference

on Research and development in informaion retrieval, pp. 64–71. ACM, New

York, NY, USA, 2003. ISBN 1-58113-646-3.



Bibliography 93
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