
Ca’ Foscari University of Venice

Department of Environmental Sciences, Informatics and Statistics

Master’s Degree programme

Computer Science, Software Dependability and Cyber Security
Second Cycle (D.M. 270/2004)

Master Thesis

Efficient Black-box JTAG Discovery

Supervisor: Graduand:
Prof. Riccardo Focardi Riccardo Francescato

Matriculation Number 857609
Assistant supervisor:
Dott. Francesco Palmarini

Academic Year
2016 - 2017

Riccardo Francescato
Matriculation Number 857609
Efficient Black-box JTAG Discovery, Master Thesis
c©February 2018.

Abstract

Embedded devices represent the most widespread form of computing device in the
world. Almost every consumer product manufactured in the last decades contains an
embedded system, e.g., refrigerators, smart bulbs, activity trackers, smart watches
and washing machines. These computing devices are also used in safety and security-
critical systems, e.g., autonomous driving cars, cryptographic tokens, avionics, alarm
systems. Often, manufacturers do not take much into consideration the attack
surface offered by low-level interfaces such as JTAG. In the last decade, JTAG
port has been used by the research community as an entry point for a number of
attacks and reverse engineering techniques. Therefore, finding and identifying the
JTAG port of a device or a de-soldered integrated circuit (IC) can be the first step
required for performing a successful attack. In this work, we analyse the design
of JTAG port and develop methods and algorithms aimed at searching the JTAG
port. More specifically we will provide an introduction to the problem and the
related attacks already documented in the literature. Moreover, we will provide to
the reader the basics necessary to understand this work (background on JTAG and
basic electronic terminology). Successively we provide the analysis of the problem
and a naive solution. After having ascertained the poor performance of the basic
solution, we will introduce an efficient set of algorithms that exploit the electronic
properties of the components. Moreover, we will present a randomized approach to
the problem that exploits the electronic properties to further reduce the search time.
We will also provide suggestions end techniques to discover JTAG port directly on
printed circuit boards. For concluding we will provide to the reader some suggestions
for a proficient use of the technique presented in this work.

i

Acknowledgements

Foremost, I would like to express my sincere gratitude to my thesis advisor Professor
Riccardo Focardi for the continuous support during my studies and the writing of
this work. I would also like to thank Dr. Francesco Palmarini for his invaluable aid
during the research and the writing of this work, for his patience, for the detailed ex-
planations, the supplied solutions, the competence and the kindness, without whom
this work would not have been possible. I would also like to thank all the profes-
sors met during the Bachelor and Master degrees for their passionate and inspiring
influence.
Last but not least, I must express my very profound gratitude to my parents for
providing me with unfailing support and continuous encouragement throughout my
years of study. This accomplishment would not have been possible without them.
Thank you.

Riccardo Francescato

ii

List of Figures

1.1 Examples of hidden or undocumented IC 2

2.1 Hardware and software components of logic analyser used in this work 7
2.2 On the left Iso-tech digital multimeter, On the right Owon DS7102V

digital storage oscilloscope . 7
2.3 ST Nucleo-F446ZE board used as AttackerIC 8
2.4 Typical logic block diagram of an embedded system 9
2.5 Typical reduced internal logic block diagram of a microcontroller.

Are shown the main components such as CPU, memory, buses, GPIO
ports, JTAG port, etc. 10

2.6 TAP interconnection sachems . 12
2.7 TAP state machine schema . 13

3.1 Test configuration, on the right the Nucleo board; on the top left the
target IC soldered on the adapter board; on the bottom left custom
adapter to match the Nucleo and target adapter. 18

4.1 Schematic of a GPIO output drive circuitry. On the left the output
transistors, at the centre the internal pull-up/down logic and on the
right two protection diodes. 22

4.2 Interaction between the AttackerIC pull-up mode and the two logic
levels of a TargetIC pin in output mode 23

4.3 Interaction between the AttackerIC pull-up mode and the two logic
levels of a TargetIC pin in output mode 24

4.4 Test configuration with nucleo board connected to STM32F103 pow-
ered through two diodes for lowering the power voltage level. 27

4.5 Test configuration with TargetIC stacked onto the custom adapter
and nucleo. 27

4.6 Screen-shot from logic analyzer showing square wave deformation,
effect of the increase in frequency for TCK signals generated with
GPIO operating in pull-up/down output mode 28

4.7 Screen-shots from Owon DS7102 oscilloscope showing wave deforma-
tion and wave parameters . 29

5.1 Comparison of execution times between the improved algorithms and
the random solution . 34

6.1 Photos of populated and unpopulated ports and test pads on PCBs . 37
6.2 TAP interconnection with common TMS and TCK signals 40

iii

Contents

Abstract i

Acknowledgements ii

1 Introduction 1

1.1 Structure of the thesis . 2

1.2 Contributions . 3

2 Background 4

2.1 Acronyms and Definitions . 4

2.1.1 Hardware Terminology . 4

2.1.2 Software Terminology . 6

2.2 Equipment . 6

2.3 Embedded Architectures . 8

2.3.1 Microcontrollers Architecture 8

2.4 JTAG Standard . 9

2.4.1 Test Access Port (TAP) . 10

2.4.2 TAP Controller . 11

2.4.3 The instruction register . 12

2.4.4 Test data registers . 14

3 Analysis of the problem and naive solution 15

3.1 Problem definition . 15

3.2 Naive solution O(n5) . 15

3.3 Exploiting the directions O(n4) . 17

3.4 Tests and RESET Problem . 17

4 Efficient algorithms based on 4-state GPIO 21

4.1 Problem definition and base idea . 21

4.2 Electronic background . 22

4.2.1 Real case application . 22

4.3 Base implementation O(n3) . 25

4.4 Further optimization O(n2) . 25

4.5 Real test case . 26

4.5.1 Clock deformation problem 27

4.6 Randomized algorithms . 28

5 Comparison 33

iv

CONTENTS v

6 Performing attacks on PCBs 36
6.1 Introduction . 36

6.1.1 IC package types . 37
6.2 Finding the JTAG pins . 38

6.2.1 More than one JTAG enabled chip 39

7 Conclusions 41
7.1 Identifying the IC model (if possible) 41
7.2 Security drawbacks . 42
7.3 Some attempts of securing JTAG . 42

v

Chapter 1

Introduction

Embedded electronic systems probably represent the most widespread form of com-
puting device in the world. Embedded devices are contained in almost every con-
sumer product manufactured in the last decades, e.g., refrigerators, smart bulbs,
activity trackers, smart watches and washing machines. These computing devices
are also used in safety and security-critical systems such as autonomous driving
cars, cryptographic tokens, avionics, alarm systems, etc.. Typically, the core of an
embedded system is an integrated circuit (IC) or microcontroller. Joint Test Action
Group (JTAG) is an IEEE 1149.1 standard [1] for in-circuit test. This interface
is designed to aid engineers and manufactures during the design and production
phases. They need tools to test PCBs1 and to program and debug the integrated
circuits. The JTAG standard illustrates a basic set of features that allows boundary
scan2 for ICs, and also leave space for additional features for programming and de-
bugging purposes. The research interest on JTAG port is given by the countless and
valuable information that it can expose. It can disclose manufacturer’s name, IC
model and revision, data contained in RAM, the flash memory content and the in-
ternal processor registers. For instance, when dealing with an unknown, unlabelled
or undocumented IC (see Figure 1.1a), this information can be extremely useful for
finding the datasheets or other kinds of information. In particular, there are count-
less scenarios where manufacturers scrape off the label of electronic components to
prevent their identification or to hamper the reverse engineering process. Moreover,
a microcontroller can be stacked3 under another IC (typically memory) in such a
way that is not possible to clearly identify it (see Figure 1.1b).
JTAG standard lays down an interesting feature, the ability to share a single port
on the PCB and share it with several chained JTAG compliant ICs. This feature
allows for reverse engineer the whole PCB by identifying the ICs mounted on the
board and, through boundary scan functions, determining all the interconnections
from a single access point. A JTAG port can also expose, either due to a misconfig-
uration or an attack, the firmware contained in the flash memory of the device. An
attacker that manages to gain access to the firmware can identify and exploit soft-
ware vulnerabilities or infringe the intellectual property. JTAG port, once identified,
constitute a main entry point for several attacks. In the last two decades, several

1PCB, or printed circuit board, consists of a non-conductive board laminated with copper that
both offers mechanical support and electrical connection to all the mounted electronic components.

2Boundary scan is a method for testing interconnections between components soldered onto a
PCBs.

3Also known as package on package (PoP)

1

2 CHAPTER 1. INTRODUCTION

(a) Typical case of chip on board (b) Package onaiven Package [8]

Figure 1.1: Examples of hidden or undocumented IC

attacks have been published. The first one is [3], the authors showed how to obtain a
one-to-one dump of the system memory using the JTAG interface. Another related
research is represented by the work carried out by Rosenfeld and Karri [26] where
they describe several attack patterns (e.g., sniff and modify the TDI/TDO signals)
and countermeasures. In [18] Moein, Gebali and Traore described the covert JTAG
port attack that allows for sniff secret data from the JTAG port. The authors of
[15] presented a privilege escalation attack over JTAG; they exploited this low-level
interface for modifying addresses of kernel system calls. A widely known and used
attack in the world of video-games console is the JTAG hack on Xbox 360 [10]. It
breaks DRM system on Xbox console, allowing users to play non-original contents.
In [11] Domke presented a black-box fuzzing attack of the JTAG registers that can
lead to the discovery of undocumented features of the target IC.

1.1 Structure of the thesis

In this work, we will provide the fundamental concepts of JTAG, a set of automatic
procedure, methods, and tools that aim to find the pins related with the JTAG port
in the case of an unknown or undocumented IC or PCB.

Background (Chapter 2) provides the reader a list of definitions and acronyms
about software and hardware terminology. Successively it introduces the ba-
sic description about the hardware architecture, embedded systems, and mi-
crocontrollers. Finally, it describes the fundamental concepts of the JTAG
standard useful to fully understand this work.

Analysis of the problem and naive solution (Chapter 3) is divided in four sec-
tions. The first part of the chapter is dedicated to the introduction of the
problem addressed by this work. In the second and third part, are presented
the two brute force solutions and evaluated the performances of the two pro-
posed algorithms. Finally, will be presented the hardware problem derived by
a non standard implementation of JTAG and it’s solution.

An efficient algorithm based on 4-state GPIO (Chapter 4) is divided in six
sections. The first part of the chapter is intended to give the basic electronic
background necessary to understand the electrical properties exploited by the
new algorithms presented in the successive sections. The third and fourth part
describe the two new algorithms that exploit the electrical properties in order

2

CHAPTER 1. INTRODUCTION 3

to reduce the time required to accomplish the task; will be also discussed the
performance, problems, and limitations of these solutions. Finally, the last
part describes the randomized algorithm that exploits the electrical properties
described in the first section.

Comparison (Chapter 5), this chapter aims to discuss and compare the perfor-
mances of the algorithms in terms of time of the various algorithms presented
in Chapter 3 and Chapter 4

Performing attacks on PCBs (Chapter 6) will introduce the technique used to
find the possible JTAG port on a PCB and the problems that an attacker can
encounter during this process.

1.2 Contributions

• IEEE 1149.1 standard [1] may not be easy to understand and can require a
good amount of time for a complete comprehension. In this work we provide a
summary of the fundamental features and technological background of JTAG
standard, evicting the specific electronic design implementation that is not
useful for JTAG users.

• In order to solve the problem of automatically find a JTAG port on an unla-
beled or undocumented integrated circuit or printed circuit board, we provide
a detailed analysis of the problem by studying the IEEE 1149.1 standard and
the possible methods of attack. Moreover is developed a brute-force naive so-
lution that exploits the standard features of the JTAG port add guarantee the
maximum compatibility with all integrated circuits that implement the JTAG
standard.

• In order to reduce the time complexity of the naive algorithm, we provide an
analysis of the electrical properties that can be exploited to reduce the attack
time. Moreover, we propose an algorithm that exploits the aforementioned
properties to automatically find the JTAG port on a desoldered integrated
circuit. Furthermore, we provide a Monte Carlo randomized algorithm which
exploits the new electrical properties and solves the problem with a quasi-linear
time complexity.

• We provide a set of software, electronic principles and best practices to find
out the JTAG port directly on printed circuit boards. In particular, we in-
troduce the most common scenarios and problems that an attacker can face
when performing the attacks on PCBs. Specifically, we analyze the limitations
caused by the components present on the board, we provide suggestions to re-
duce the number of pins to test and analyze the case in which on the board is
soldered more than one JTAG enabled integrated circuit.

3

Chapter 2

Background

In this chapter, we introduce the basic concepts necessary to fully understand the
work presented in this thesis. In Section 2.1 we give a list of acronyms and definitions
related to hardware and software terminology. Following Section 2.2 will provide
an overview of the equipment used during development and test phases. Finally,
Section 2.3 will present a brief overview about embedded systems.
Topics treated in this work are broad fields of studies, thus we have identified a list
of prerequisites necessary to fully understand this work.

• Basic concepts of digital and analog electronics.

• Minimal knowledge of signal theory.

• Minimal knowledge of embedded systems internal design.

2.1 Acronyms and Definitions

2.1.1 Hardware Terminology

This section aims to present the meaning and description of hardware-related terms
and acronyms used in this thesis:

Embedded system: also known as embedded device is a computing system de-
signed to accomplish specific functions or tasks (e.g., ADSL modem/router,
calculator, satellite receiver, etc.). These devices are designed to meet physi-
cal constraints where general-purpose systems are not suitable (e.g., low power
consumption, real-time computing, low per-unit cost).

PCB: Printed Circuit Board consists of a non-conductive board laminated with
copper that both offers mechanical support and electrical connection to all the
mounted electronic components. PCBs can be single sided (one copper layer),
double-sided (copper layers on both faces of dielectric board) or multilayer
(copper layers alternated with non-conductive substrate).

Integrated Circuit also abbreviated with IC, is usually the core component of
embedded system, a chip or a microchip. Is a set of electronic circuits built on
a layer of semiconductor material, commonly silicon. The integrated circuit
definition includes a large range of components e.g., memory chip, micropro-
cessors, logic gates etc..

4

CHAPTER 2. BACKGROUND 5

PoP: is an integrated circuit package method that allows manufacturers to ver-
tically combine two or more ICs. Packages are stacked one over the other
allowing a higher density of components in devices such as smartphones.

GPIO: General-Purpose Input/Output, as the name suggests, is a generic type of
pin that is built into most ICs or single board computers. The behavior of
this component is controllable by the programmer via software. Program-
mers can customize the direction (input/output), also switching from input to
output (and vice versa) during the execution of the program. The pull up /
down resistors can be set and changed at software level. Also, the signal type
analogical or digital can be selected.

Pin: Most integrated circuits are enclosed in a plastic (or ceramic) enclosure called
package which, in turn, exposes the electrical connections called pins. Pins
are thin pieces of metal that connect the die1 to the external environment.

Microcontroller: or commonly abbreviated MCU, consists of a single integrated
circuit on which are built a CPU (i.e., central processing unit), memory such
as flash or ROM, usually a small amount of RAM and programmable in-
put/output peripherals.

Clock: is a particular type of signal that oscillates between to two voltage levels
and is utilized for synchronizing the actions of digital circuits. Usually, the
signal used for clock is in the form of a square wave with a duty cycle of 50%
and a fixed constant frequency. Usually, this kind of signal is generated by a
crystal oscillator (or resonator) or by a circuit that generates a clock signal.

RAM: Random Access Memory is a volatile (when power is disconnected all data
are cleared) form of computer data memory that temporarily stores data and
instructions.

ROM: is a non-volatile, read-only memory type; commonly used for storing basic
programs like bootloaders.

EEPROM: Electrically Erasable Programmable Read-Only Memory is a non-
volatile kind of memory, used to store small amounts of data (e.g., device
configuration, calibration tables) that must be saved when power is removed.

Flash memory: is a non-volatile read and write memory, that can be electrically
erased and reprogrammed. Commonly used for storing from few kilo-bytes to
some gigabytes of data and programs.

Logic level: logic levels represent the two state that a bit can assume 0 or 1, which
corresponds to the low and high logic level. This two logical states, in digital
electronic, are represented by two different voltage levels. Two thresholds are
designed to distinguish the low and high level. Usually, these thresholds are
calculated via some mathematical formulas on the voltage provided by the
power supply. Usually, the logic low or 0 is represented by the ground or 0V,
while the high or 1 is represented by 1.8V, 3.3V, 5V and 12V depending on
the power supply voltage.

1DIE, is the small block of semiconductor material on which the IC circuitry is fabricated.

5

6 CHAPTER 2. BACKGROUND

JTAG: Joint Test Action Group is an IEEE 1149.1 standard [1] for in-circuit test. Is
designed to aid engineers and manufactures during the design and production
phases. They need tools to test PCBs and to program and debug the integrated
circuits.

BSDL: Boundary Scan Description Language is a hardware description language,
part of the IEEE 1149.1 standard [1]. It describes the public instructions and
design implemented in a particular IC.

Datasheet: is a document provided by the manufacturer of electronic devices that
summarized the features and characteristics of a specific electronic component.
These documents contain information such as the pin mapping, supply voltage,
functional diagrams, etc..

2.1.2 Software Terminology

This section aims to present the meaning and description of software-related terms
used in this thesis:

Firmware: is the combination of data and program code stored in the persistent
memory of an IC. In embedded devices firmware is the main program running
on the device and usually is self-contained and does not require any external
software component. Usually, on embedded devices, it is stored in the non-
volatile memory such as flash or EEPROM or others.

Boot-loader: is the first piece of software that is loaded when an embedded com-
ponent starts up. It provides a minimum set of functionalities such as firmware
update and is in charge to load the firmware on start-up. It is usually stored
in a virtually separated area of the flash or in a ROM.

Debugging: is the set of methodical process that in software engineering is per-
formed with the purpose of finding and reducing the number of errors (bugs).
While in reverse engineering context denominates the set of instruments and
methods used in order to help reverse engineering processes.

2.2 Equipment

Logic Analyser: is electronic equipment that allows capture and register multiple
signals (digital and analog) from digital systems. Is usually a combination
of hardware Figure 2.1a and computer software Figure 2.1b, to record, dis-
play and analyse digital traces. It can decode communication protocols, state
machine traces that can correlate software events to digital signals. Usually
the limit of these devices is the maximum signal frequency (from 3MHz to
100MHz), the sampling rates (from 6MS/s to 500MS/s) and the input volt-
age range that goes from 0V to a maximum of 5V (in some devices such as
Saleae Logic Pro that implements analog traces voltage range is extended from
−10V to 10V).

6

CHAPTER 2. BACKGROUND 7

(a) 24MHz 8 signal logic analysers with ca-
bles connected

(b) Saleae Logic software with traces and
decoding of JTAG protocol

Figure 2.1: Hardware and software components of logic analyser used in this work

Digital Multimeter: is a electronic appliance that combines several measurement
functions. Typically, multimeters include voltage, current and resistance mea-
surement functions. This instrument is useful to identify power sully voltages
on PCBs. Moreover, the resistance measurement function can be used to
identify PCB traces that connects ICs to test pads or to connectors.

Figure 2.2: On the left Iso-tech digital multimeter, On the right Owon DS7102V
digital storage oscilloscope

Power supply: is the electronic device that supplies electric current to all other
electronic components. This device has been used in this work to supply power
to the TargetIC with specific voltages.

ST Nucleo-F446ZE: is a development board produced by ST semiconductors,
it integrates an MCU with a 32-bit ARM processor core, 6 GPIO (see Sec-
tion 2.1.1) ports with 16 pins each. In this work the Nucleo board is used
as AttackerIC . It provides 99 free GPIO pins that can be connected to the
TargetIC and used by the algorithms, that will be described below, to find the
JTAG port on the TargetIC .

Digital Storage Oscilloscope: is a electronic test instrument that allows obser-
vation of analogue an digital signals in the domain of voltage and time. Digital
storage oscilloscope allows sample and record signals for a live or offline anal-
ysis. In this work these devices is used to analyse the characteristics of the
JTAG clock signal, such as max. and min. voltage, rising time, falling time,
etc.. Differently from logic analyser this device has a more wide range of
voltage input and a higher sampling frequency (1GS/s).

7

8 CHAPTER 2. BACKGROUND

Figure 2.3: ST Nucleo-F446ZE board used as AttackerIC

2.3 Embedded Architectures

Embedded devices or embedded systems are computer systems i.e., a combination
of hardware and software built on top of a printed circuit board to achieve specific
tasks. They differs from general-purpose computer for lower power consumption,
small size, low costs, real time operations, etc.. Typically, embedded systems can be
represented schematically as in Figure 2.4. Usually embedded systems core device is
the microcontroller unit (MCU see 2.3.1), this component is directly connected with
volatile and non-volatile memory that supports the MCU operations. Frequently,
embedded systems are equipped with external flash or EEPROMmemory that allows
storing bigger amount of data with respect to MCU internal non-volatile memory.

2.3.1 Microcontrollers Architecture

As written in 2.3, the core component of an embedded system is the microcon-
troller. This section will give an overview of the main components (see Figure 2.5)
and functionalities of a microcontroller (also called IC). Microcontroller (or MCU)
is not only the central processing unit of the embedded system but a full computer
on a single integrated chip (is similar, but less sophisticated than a SoC or sys-
tem on chip). Generally, a microcontroller contains a CPU (processing core) that
can range from 4-bit architecture to a 32-bit or 64-bit architecture on high power
devices. The CPU is responsible for running the firmware code and operating all
other peripherals. Alongside with the CPU is provided an integrated memory, both
volatile and non-volatile, such as CPU RAM, flash and an optionally EEPROM.
Typically, flash and RAM memories are directly mapped to the CPU address space,
while EEPROM is accessed from the peripherals data bus. Microcontroller also in-
tegrates peripherals such as timers, analog to digital converters (A/D converters)
communications devices such as USB, UART, SPI, I2C, etc.. GPIO ports are raw
digital I/O controllers which are used to control every single pin programmatically.
Microcontroller also usually integrate debug ports such as JTAG, this interface is the
core of this thesis work, it allows complete low-level access on almost all components
being part of the microcontroller.

8

CHAPTER 2. BACKGROUND 9

FLASH

RAM

EEPROM

POWER
SUPPLY

ONBOARD
PERIPHERALS

E
X
T
E
R
N
A
L

P
E
R
IP

H
E
R
A
L
S

BEBUG INTERFACE

USB

CPU

I2C

Figure 2.4: Typical logic block diagram of an embedded system

2.4 JTAG Standard

With high-density PCBs, standard debug methods such as bed of nails2 are becoming
challenging and expensive due to the concentration of components in the PCB or
due to the high number of test pads. To solve this problem in the early 90s a group
of industries developed JTAG and after few years IEEE standardized this debug
port with IEEE 1149.1 standard. The IEEE 1149.1 standard illustrates the Test
Access Port (TAP) and its operations along with a mechanism to provide additional
features. JTAG is designed to achieve three main tasks:

1. testing the interconnections between the various integrated circuits that are
already assembled on the board;

2. testing the integrated circuit itself;

3. examine or alter the behavior of the circuits during normal functioning.

Test access port is the core of JTAG; it can be subdivided in the more electric and
physical part, the TAP, and a more abstract part that is in charge to assist the
hardware operations, the TAP controller.

2The bed of nails is a classical tool for testing PCBs. It is composed of many pins that establish
an electrical connection with the test pads on the PCB. This tool is an automatic and reliable
testing procedure during manufacturing.

9

10 CHAPTER 2. BACKGROUND

JTAG

RAM

ROM

CPU

INTERRUPT
CONTROLLER

USB

TPU

A/D Converter

UART

DMAC

DATA BUS

ADDRESS BUS

GPIO FGPIO G

G
P
IO

A
G
P
IO

B

G
P
IO

C
G
P
IO

D
G
P
IO

E

B
u
s
C
on

tr
ol
le
r

Figure 2.5: Typical reduced internal logic block diagram of a microcontroller. Are
shown the main components such as CPU, memory, buses, GPIO ports, JTAG port,
etc.

2.4.1 Test Access Port (TAP)

TAP is the more physical and electric part, it is integrated into the silicon and
provides the hardware support to the TAP controller. TAP includes the support
for several test functions, including the test logic delineated by JTAG standard.
It is composed by the electrical connections (pins) that are necessary for the com-
munication with the driver. There is a minimum of three inputs, one output and
one optional input for asynchronous reset of the TAP. The characteristics and the
functions of each signal are described below.

TCK provides the clock for the test access port. This independent clock allows
JTAG to operate the tests independently from the main system clock. These
features grant that test data can be shifted in and out from the test logic
independently from the system logic and also when the core logic is in its

10

CHAPTER 2. BACKGROUND 11

normal operation (useful for debugging). Change of state and read/write op-
erations are performed during the rising / falling edge of the TCK signal and
these operations must be performed in a precise time interval. The timing is
independent of the clock and set out by the manufacturer.

TMS is a control pin that allows navigating through the TAP state machine, se-
lecting the data or instruction registers (IR). Signals on TMS must be shifted
on the rising edge of TCK.

TDI is a data pin for the serial communication, in particular, it is used to shift
data into the JTAG registers. By standard, the data shifted in from TDI must
appear, unchanged, as output on TDO after a number of clock cycles.3 Data
on TDI is shifted into the chosen register on the rising edge of the clock signal.

TDO is the serial output pin of the TAP controller. The content of the selected
register is shifted out in TDO every falling edge of the TCK signal.

TRST is an optional control signal that provides an asynchronous reset / initial-
ization of the TAP state machine, i.e., it brings the state machine to the
Test-Logic-Reset when TRST is put at logic level one (if TRST is negated,
the state machine is moved to Test-Logic-Reset when TRST is put at logic
level zero). In this work we assume that TRST is active high namely, while
the TRST signal is driven to logic level high the TAP controller is forced in
Test-Logic-Reset state.

On the same PCB can be mounted several components that are compliant with the
JTAG standard autoeg processor, flash memory, FPGA or ASIC and special-purpose
hardware such as image DSP or even deep learning accelerators [5, 6]. To optimize
the PCB layout and minimize the number of traces and exposed test connectors,
all the TAP controllers on a PCB can be connected in series or in parallel. In the
serial configuration Figure 2.6a TCK and TMS are common to all ICs, while each
output pin (TDO) is connected to the input data pin (TDI) of the subsequent IC of
the chain. This setting allows conducting a set of tests aimed at verifying that all
the interconnections between ICs are correct. The parallel chain Figure 2.6b allows
partitioning the test domain: two or more chains of ICs are controlled via a common
TCK signal and a dedicated TMS lines.

2.4.2 TAP Controller

The TAP controller constitutes the more abstract part of the JTAG port. Its core
component is the state machine (see Figure 2.7) that responds to the TMS, TCK
signals and supervise the sequence of operations in the JTAG circuitry. For the sake
of brevity, in the section below are described only the set of actions performed in
the states (of the JTAG state machine) that are relevant for this work:

Test-Logic-Reset In this state, the test logic disabled and the operation of the
on-chip system logic can be executed regularly. The instruction register is ini-
tialized with the IDCODE instruction, or if it is not set out by the manufacturer

3This allows for daisy-chaining of multiple devices on the same JTAG bus

11

12 CHAPTER 2. BACKGROUND

TDITDITDITDI TDOTDO TDOTDO

TMSTMSTMS

TMS

TCKTCKTCK

TCK

(a) TAP serial connection

TDITDI

TDITDITDI

TDOTDO

TDO

TDO

TDO

TMSTMS

TMSTMS

TMS1

TMS2

TCKTCK

TCKTCK

TCK

(b) TAP parallel connection two chains

Figure 2.6: TAP interconnection sachems

of the chip, (IDCODE is an optional instruction see Section 2.4.3) it is initial-
ized with the BYPASS instruction (see Section 2.4.3). The state machine will
be brought in this state when the TMS pin is held high for five rising edges of
TCK. If the optional asynchronous reset pin TRST is implemented, the state
machine, the controller can be brought to this state by applying a high logic
level (or low logic level if TRST).

Shift-DR In this state the data register selected by the instruction shifted into the
IR is selected and connected between TDI and TDO. When TMS is held low
and at TCK is applied a rising edge a bit is shifted into the DR and when the
falling edge of the clock occur a bit from the DR is shifted out and can be
read on TDO.

Shift-IR In this state, the shift-register that is responsible for containing the in-
structions is connected between TDI and TDO. When TMS is held low and
at TCK is applied a rising edge a bit is shifted into the IR.

2.4.3 The instruction register

The instruction register allows shifting an instruction into the design. Each instruc-
tion is used to identify a particular test to be performed or the test data register to
be accessed or both. There are a number of mandatory instruction that every de-
sign must implement to be compliant with the IEEE 1149.1 standard. JTAG allows
also the possibility to implement additional instructions to control design specific
properties. JTAG instructions are divided into two classes, public and private. Pub-
lic instructions should be available to the end-user instead, private instructions are
intended solely for the component manufacturer use. The mandatory instructions
that are part of the public domain are: BYPASS, SAMPLE, PRELOAD and EXTEST. In
the section below are described only the instructions that are relevant to this work:

Public

The instruction that is public must be available to the end user of the component.
Test features illustrated by each instruction must be independent of the variant of
the component, except variant specific instructions like IDCODE.

12

CHAPTER 2. BACKGROUND 13

Test-Logic-Reset

Run-Test/Idle Select-DR-Scan Select-IR-Scan

Capture-DR

Shift-DR

Exit1-DR

Pause-DR

Exit2-DR

Capture-IR

Shift-IR

Exit1-IR

Pause-IR

Exit2-IR

Update-DR Update-IR

TMS=0

TMS=1 TMS=1

TMS=0

TMS=0

TMS=1

TMS=1

TMS=0

TMS=0

TMS=1

TMS=0

TMS=1

TMS=1 TMS=1

TMS=1

TMS=1

TMS=0

TMS=1

TMS=0

TMS=1

TMS=1

TMS=1

TMS=1

TMS=0

TMS=0

TMS=0 TMS=0

TMS=0

TMS=0

TMS=0

TMS=0TMS=1

Figure 2.7: TAP state machine schema

BYPASS The BYPASS instruction, once shifted into the instruction register, allows se-
lecting the BYPASS register as data register. The standard binary code for this
instruction should be all ones 111...1 This instruction does not interfere with
the normal operation of the on-chip system logic and operations. The BYPASS
instruction may have additional binary codes that must be documented. If
no IDCODE instruction is available this register is selected by default in the
Test-Logic-Reset state and connected to TDI and TDO.

IDCODE The IDCODE instruction, once shifted into the instruction register, allows
selecting the device identification register as data register. When the man-
ufacturer decides to implement the identification register in the design, the
component must provide a IDCODE instruction. When the microchip is pro-
vided with the identification register, the default instruction loaded in the
JTAG instruction register in the Test-Logic-Reset state is the IDCODE. This
allows the user to perform a blind interrogation of the components soldered
on a board. The IDCODE when selected, does not affect the normal operation
of the on-chip system logic.

USERCODE Where the identification register is provided and the component is user
programmable, the manufacturer should provide a USERCODE instruction if
the firmware version cannot be determined in other ways by use of public

13

14 CHAPTER 2. BACKGROUND

instructions. The USERCODE instruction when selected, do not affect the normal
operation of the on-chip system logic.

Private

This instruction set is intended solely for the component manufacturer use. Instruc-
tions which are part of this set may be not documented on the data-sheet or in the
BSLD (see Section 2.1.1). This instruction set allows gaining access to test features
embedded in the design such like: design verification or fault diagnosis. Private
instructions may be hazardous since are not documented and can cause damages to
the component and the vendor need to identify the instruction binary codes that
can cause hazardous operations.

2.4.4 Test data registers

JTAG standard prescribes a minimum set of mandatory data registers, below we
will describe the two register useful for our purposes, the bypass and the boundary-
scan registers. In addition to the two just mentioned registers, the standard allows
manufacturer to implement also non mandatory or non standard registers, a optional
test data register important for our purposes is the device identification register.
The standard permit the extension of the base architecture with other registers to
allow access to test particular functions of the IC. Additional registers may not be
publicly documented by the manufacturer since they are restricted to public use.
Each register has a fixed length and can be concatenated with other registers that
are implemented in the design.

Bypass register The bypass register contains a single bit shift-register, providing
a minimum length path from TDI to TDO. This register is generally used
when the tester needs to perform tests in a chain of JTAG, allowing speeds
access to test data registers in other components.

Boundary-scan register This register allows testing of the circuitry external to
a component. Is used to test interconnections with other components that are
not compliant with the standard or to test board connections. This registers
also allows performing tests on the on-chip system logic simulating connections
with external components.

Device identification register This optional device identification register can be
selected by shifting into the JTAG instruction register the IDCODE instruction.
This register, if implemented, contains the manufacturer, part number, and
version of the IC allow determining through JTAG this information. One
interesting application of this register is to identify the components mounted
on a board via a single interface. The manufacturer identity is codified with 11
bits, the part number is codified with 16 bits and the version code is codified
with 4 bits.

14

Chapter 3

Analysis of the problem and naive
solution

In this chapter we will introduce the naive solutions of problem addressed by this
work and the analysis of the two solutions. In Section 3.1 we give the problem
definition. Following in Section 3.2 we give the brute-force naive solution and discuss
the performance problems. The Section 3.3 will give an enhanced version of the
previous algorithm and discuss the performance of the new version. Finally, in
Section 3.4 we will present some hardware problems and their solution.

3.1 Problem definition

As introduced in Chapter 1, the objective of this work is to find, in an automatic
manner, the set of pins associated with the JTAG signals (TCK, TMS, TDI, TDO
and the optional TRST) in an unknown, unlabelled or undocumented IC. To address
this problem we have identified two scenarios: in the first, the IC to analyze is
de-soldered from the board, while in the latter we need to find the traces of the
JTAG interface directly from a functional PCB. The first scenario generally allows
the attacker to obtain better result since all nuisance factors of the PCB case are
taken apart. As a matter of fact, the second scenario, several other components
are soldered onto the board; the electrical characteristics of these components can
disturb the search process. Furthermore, in the PCB case, the JTAG interface
could not be exposed or directly accessible in the form of a connector. On PCBs,
manufacturers, in order to limit the possibilities of reverse engineering attempts,
they are used to removing plugs and other components (e.g., resistors, jumpers,
solder bridges, etc.) from the production mask of the PCB, thus also reducing
production costs. The hardware configuration required for this attack consists of a
TargetIC that is the IC on which we must find the port and an AttackerIC that is
the one who leads the attack.

3.2 Naive solution O(n5)

To address the problem already presented and allow a complete black-box approach,
the objective can be achieved by exploiting the standard features of the JTAG port.
The BYPASS instruction is a well-standardized instruction that, as the standard

15

16 CHAPTER 3. ANALYSIS OF THE PROBLEM AND NAIVE SOLUTION

prescribes, must be implemented, along with the bypass register, in every JTAG
compliant device. JTAG standard defines the mandatory instruction code for the
BYPASS instruction as all ones (11...11), and it defines also the length of the regis-
ter selected by the BYPASS instruction. Bypass register provides a single bit shift
register, this means that every bit shifted into this register is shifted out with a
delay of one clock cycle. The fact just presented allows us to identify the JTAG
port by selecting the bypass register and trying to shift into it a known sequence
of bits. Since every bit shifted into this register will appear as output with a de-
lay of one clock cycle, JTAG port can be found by shifting a sequence of bits into
the TDI pin and if the same sequence is read on the output pin with a delay, this
means that the pins used for the communication compose the JTAG port. To re-
duce the possibility of false positives, the sequence of bits shifted into TDI must
be a random sequence. The randomness allows a certain grade of precision in the
case in which the bits shown on the candidate TDO pin are not the bits shifted
into TDI. For instance sequences like all ones, all zeros or alternated can lead to
false positives when the TargetIC is running some code or sequences like all 1 or
0 are typical when the alleged set of candidate pins is wrong. The first and more
trivial approach is a complete brute-force on all the five JTAG pins. Defining n as
the number of pins of the TargetIC , the brute-force attack comprises all the com-
binations of five different pins. More formally the solution space of the naive prob-
lem is given by:(TCK, TMS, TDI, TDO, TRST) ∀ TCK, TMS, TDI, TDO, TRST
∈ PINS | TCK 6= TMS 6= TDI 6= TDO 6= TRST where PINS is the set of all
the pins of the TargetIC . The number of different solutions to the problem is given
by n(n − 1)(n − 2)(n − 3)(n − 4) This can be translated into an algorithm (Al-
gorithm 1) with O(n5) time complexity. The total time required to complete the
brute-force attack can be derived by calculating the time required to test a single
candidate solution, that is, the time required to perform the following operations:

1. Reset the TAP controller: 5 TCK cycles, TDI sequence 11111;

2. Put the state machine in Shift-IR state: 5 TCK cycles, TDI sequence 00110;

3. Shift into the instruction register the correct (see below) number of ones for
selecting the BYPASS register: x TCK cycles where x is the number of shifted
bits;

4. Put the state machine in Shift-DR state: 6 TCK cycles, TDI sequence 001011;

5. Shift into the instruction register the correct (see below) number of random
bits for checking the response: y TCK cycles where y is the number of shifted
bits.

The resulting formula to calculate the number of clock cycles is: 5+ 5+x+6+ y =
16+x+y where x is given by the alleged length of the IR (typically less than 64 bits)
and y is given by the alleged length of the TAPs chain (ICs can have an internal
TAP chain which usually does not exceed the three units). When performing the
search over PCBs we can estimate the number of TAP by counting the number
of ICs additionally, the y value should be appropriate to ensure test precision and
interference rejection. Suppose that we set x = y = 32, then the required number
of clock cycles (K) is 80. With a TCK clock frequency (F) of 300KHz the time T

required to test a candidate solution is T = K×
1

F
= 80×

1

300KHz
= 2.6× 10−4 s =

16

CHAPTER 3. ANALYSIS OF THE PROBLEM AND NAIVE SOLUTION 17

0.26ms As an example, we can estimate the total time (Ttot) for testing an IC
with 200 pins: the brute-force time required is Ttot = T × n5 = 0.26ms × 2005 =
83 200 000 s ≈ 963 days. Clearly, this solution is close to unfeasible even for devices
with low pin count.

3.3 Exploiting the directions O(n4)

As shown before, a time complexity of O(n5) is close to unfeasible. In order to
lower the time complexity, we can take advantage of the pins directions. The
TDO pin is the only JTAG output, it can be exploited in order to reduce the
solution space. TDO pin can be excluded by simultaneously read all the unused
pins, reducing the solution space to (TCK, TMS, TDI, TRST). This improve-
ment can be achieved by setting all the GPIOs of the AttackerIC , that are not
testing any other JTAG signal, in input mode. This allows attacker to simulta-
neously (i.e., in a single TCK cycle) read the value of all the unused pins in or-
der to spot any data output from TDO. By evicting the TDO pin, the resulting
solution space is given by:(TCK, TMS, TDI, TRST) ∀ TCK, TMS, TDI, TRST
∈ PINS | TCK 6= TMS 6= TDI 6= TRST where PINS is the set of all the
pins of the TargetIC . The number of possible combinations is reduced and given by
n(n− 1)(n− 2)(n− 3). This method brings the time complexity of the brute-force
algorithm (see Algorithm 2) to O(n4) and, consequently, the time required to brute-
force all the JTAG signals combinations is considerably decreased. The total time
required for a 200 pin brute-force attack can be estimated by the following formula:
Ttot = T × n4 = 0.26ms× 2004 = 416 000 s ≈ 4.8 days. This improvement enables a
feasible, yet slow, attack on medium-small devices while it is still not applicable to
larger ICs.

3.4 Tests and RESET Problem

To prove the correctness of the algorithms presented, we have performed a set of
tests using the hardware in Figure 4.4. The test has been conducted on three main
scenarios: an empty IC with JTAG and a programmed IC that sends as output
on all the GPIO, except the JTAG pins, random signals in order to disturb the
search process and a programmed IC with all the pins used as output with random
signals. With the first test case has proven that the basic search works correctly
and return the JTAG port pins. The second test has proven that the technique
already presented is not biased by random signals coming from the TargetIC . The
third test has proven that in some cases manufacturers do not design the JTAG port
in full compliance with the standard. Standard prescribes that all the JTAG signal
must have a dedicated pin on the package. Most manufacturers violate this rule and
in order to save pins, they tend to share JTAG pins with other general purposes
I/O functions. These design choices can raise the difficulty of automatically finding
the JTAG pins, for instance requiring the IC to be put in reset state in order to
halt the core and expose the JTAG port. Halting the core or bringing the IC into
reset state, is required when the manufacturer re-targeted the JTAG pins to other
purposes. This implies that only when the core is in halt or reset state the JTAG
port is accessible.

17

18 CHAPTER 3. ANALYSIS OF THE PROBLEM AND NAIVE SOLUTION

Figure 3.1: Test configuration, on the right the Nucleo board; on the top left the
target IC soldered on the adapter board; on the bottom left custom adapter to
match the Nucleo and target adapter.

Solution This problem can be solved with a simple shrewdness, without adding
the RESET signal to the solution space and consequently rise the time complexity.
Usually ICs, during the power on, bring the core in reset state for a small amount of
time (typically 1 or 2 milliseconds), before loading the bootloader and subsequently
the firmware. This short time window can be exploited in order to test a single
possible solution. By powering on and off and on the IC before every test, the time
complexity remains unchanged and only a small delay is added.

18

CHAPTER 3. ANALYSIS OF THE PROBLEM AND NAIVE SOLUTION 19

Let PINS [0 . . . n− 1] the array of all pins;
Let Sequence [0 . . . y − 1] the sequence of bit to shift into DR;
foreach TCK ∈ PINS do

foreach TMS ∈ PINS ∧ TMS 6= TCK do

foreach TDI ∈ PINS ∧ TDI 6= TMS 6= TCK do

foreach TDO ∈ PINS ∧ TDO 6= TMS 6= TCK 6= TDI do

foreach TRST ∈ PINS ∧ TRST 6= TCK 6= TMS 6= TDI 6= TDO

do

Set TCK,TMS, TDI and TRST as output;
Set TDO as input;
Set TRST low or high ; // low if TRST is active high,

high if TRST is active low

Set TMS high ; // Start reset the JTAG state machine

for i = 0; i < 5; i++ do

Set TCK to high;
Set TCK to low;

end

Set TMS low ; // End reset the JTAG state machine

Move the JTAG state machine to Shift-IR;
Set TDI high ; // Start shifting ones in IR

for i = 0; i < x; i++ do

Set TCK to high;
Set TCK to low;

end

Set TDI low; // End shifting ones in IR

Move the JTAG state machine to Shift-DR;
/* Start shifting DR */

foreach bit ∈ Sequence do

Set TDI to the level of bit ;
Set TCK to high;
Set TCK to low;
Read TDO, compare the value with prevbit, TDO if TDO

read equal to prevbit mark as TDO else mark as non TDO;
prevbit = bit;

end

/* End shifting DR */

end

end

end

end

end

Algorithm 1: Pseudo-code of the naive O(n5) JTAG brute-force algorithm

19

20 CHAPTER 3. ANALYSIS OF THE PROBLEM AND NAIVE SOLUTION

Let PINS [0 . . . n− 1] the array of all pins;
Let Sequence [0 . . . y − 1] the sequence of bit to shift into DR;
foreach TCK ∈ PINS do

foreach TMS ∈ PINS ∧ TMS 6= TCK do

foreach TDI ∈ PINS ∧ TDI 6= TMS 6= TCK do

foreach TRST ∈ PINS ∧ TRST 6= TCK 6= TMS 6= TDI do

Set all pin ∈ PINS as input with pull-down;
Set TCK,TMS, TDI and TRST as output;
Set TRST low or high ; // low if TRST is active high, high

if TRST is active low

Set TMS high ; // Start reset the JTAG state machine

for i = 0; i < 5; i++ do

Set TCK to high;
Set TCK to low;

end

Set TMS low ; // End reset the JTAG state machine

Move the JTAG state machine to Shift-IR;
Set TDI high ; // Start shifting ones in IR

for i = 0; i < x; i++ do

Set TCK to high;
Set TCK to low;

end

Set TDI low; // End shifting ones in IR

Move the JTAG state machine to Shift-DR;
/* Start shifting DR */

foreach bit ∈ Sequence do

Set TDI to the level of bit ;
Set TCK to high;
Set TCK to low;
Read TDO, compare the value with prevbit, mark pin as
candidate TDO if TDO read equal to prevbit;

prevbit = bit;

end

/* End shifting DR */

end

end

end

end

Algorithm 2: Pseudo-code of the naive O(n4) JTAG brute-force algorithm

20

Chapter 4

Efficient algorithms based on
4-state GPIO

In this chapter, we will present three new algorithms that exploit electrical properties
to reduce the time complexity. In Section 4.2 we give the basic electronic background
necessary to understand the electrical properties exploited by the new algorithms.
Following in Section 4.3 is present the new algorithm that exploits the electrical
properties in order to reduce the time required to accomplish the task. In Section 4.4
we give an enhanced version of the previous algorithm and discussed performances,
problems and limitations of these solutions. Finally in Section 4.6 is presented a
randomized algorithm that exploits the electrical properties described in Section 4.2.

4.1 Problem definition and base idea

In the previous section (Chapter 3), has been described and tested two algorithms
that solve the problem. Nevertheless, the naive algorithms already presented, have a
high time complexity. In this section will be presented a novel and efficient algorithm
for the automated discovery of a mapping between JTAG signals and the matching
pins of an unknown IC package. In order to accomplish the result, in this section
will be presented a set of algorithms that exploit the physical nature of the problem
by augmenting the number of states that an output pin can assume. In digital
electronics, bits are represented by voltage levels. Usually, the bit 0 is represented
by the logic level low that is typically GND; the bit one is represented by the logic
level high that is VDD (e.g., 1.8V,3.3V,5V). Usually, IC pins can be set only as input
or output and a pin set as input cannot be used as output and vice versa. The new
solution will exploit electrical properties by varying the electric impedance of a pin
we can simultaneously “set” and “read” its value. This implies that a pin can drive
the line with a weak high / low and at the same time read the same logic level or a
different one. The use of this configuration in the AttackerIC enables us to collect
more information about the pins of the device under test, reducing the solution
space. On AttackerIC the configuration presented above can be achieved by using
the pull-up/down resistors built into every GPIO pin. In the next section will be
briefly described the electronic principle on which the method already introduced is
based.

21

22 CHAPTER 4. EFFICIENT ALGORITHMS BASED ON 4-STATE GPIO

V DD

V DD

V DD

V SS

V SS

V SS

Q1

Q2

Rup

Rdown

Qup

Qdown

D2

D1

OutputLogic I/OPin

Figure 4.1: Schematic of a GPIO output drive circuitry. On the left the output tran-
sistors, at the centre the internal pull-up/down logic and on the right two protection
diodes.

4.2 Electronic background

In order to fully understand the novel technique, in this chapter, we will present the
basic electronic background. Firstly it is described the internal design of a GPIO
port. In Figure 4.1 is depicted the schematic of the output stage of a GPIO pin. In
particular, we are interested in:

Output logic: this is responsible for controlling the two transistors Q1, Q2 that
control output mode and direction of the GPIO. Driving only Q1 puts the pin
in open-drain configuration while driving both enables the push-pull output
mode (cf. [12]). When Q1 and Q2 are non-conducting the pin is floating (input
mode).

Rup: when the GPIO is in floating state and Qup is conducting, Rup can weakly
drive the line logic level one (VDD).

Rdown: on the contrary, when Qdown is conducting, Rdown can weakly drive the line
logic level zero (VSS that is typically GND).

Thus, the impedance of a GPIO pin is software (firmware) controllable in three
steps based on the output drive configuration: very low in open-drain or push-pull
output mode, very high in floating input mode and a midrange value when the pin
is in input mode and either Rup or Rdown are enabled. The third mode can also be
achieved, e.g., using a similar configuration of external resistors but it would require
a complementary external control logic, raising the circuit complexity. The value
of the integrated pull-up/down resistors can be found in the component datasheet.
We can safely assume that it varies from few kΩ to thousands kΩ as in the case of
our AttackerIC where it is about 50 kΩ (cf. [29]).

4.2.1 Real case application

The basic principle of the method that we will describe is based on big difference of
impedance between output pins and input pins. Usually, input pins have a bigger
impedance than the output ones, and we can exploit this difference to reduce the
number of solutions to our problem. For better understanding, this principle we can
simplify the real environment in two main cases: target IC pin output mode and

22

CHAPTER 4. EFFICIENT ALGORITHMS BASED ON 4-STATE GPIO 23

[input_logic]

[vdd]

[vss]

[testing_ic] [target_ic]

[output]

[r1]

[r2]

(a) AttackerIC pin with pull-up resistor en-
abled, TargetIC pin in output mode at logic
level low

[input_logic]

[vdd]

[vdd]

[testing_ic] [target_ic]

[output][r1]

[r2]

(b) AttackerIC pin with pull-up resistor en-
abled, TargetIC pin in output mode at logic
level high

[input_logic]

[vss]

[vss]

[testing_ic] [target_ic]

[output]

[r1]

[r2]

TDO

(c) Test with pull-down resistor and output
low

[input_logic]

[vss]

[vdd]

[testing_ic] [target_ic]

[output]

[r1]

[r2]

(d) Test with pull-down resistor and output
high

Figure 4.2: Interaction between the AttackerIC pull-up mode and the two logic
levels of a TargetIC pin in output mode

target IC pin input mode. Each case can be subdivided in sub case as can be seen
from Figure 4.2 and Figure 4.3.

Target IC pin output mode

Now, each case where TargetIC pin is in output mode can be discussed. Starting
from case A, supposing a real scenario where the weak internal pull up resistor R1

is setted. A typical value for R1 is 40KΩ (STM32F446). The target output pin
in this case can be modelled with a resistor (R2); a typical value of impedance for
an output pin is R2 = 100Ω. The normal operating voltage of IC is 3.3V . Having
all the necessary parameters, the voltage that the Inpultlogic see on the line can
be calculated. As the first step must be calculated the equivalent resistance for
the series of resistors, given by the sum of all impedances. RTOT = R1 + R2 =
40KΩ + 100Ω = 40100Ω; having the total resistance can be calculated the current
flowing through the two resistors that is given by the Ohms law. ∆V = R × I

this implies that I =
∆V

R
=

3.3V

40100Ω
= 82µA. Having the current can now be

calculated the voltage drop given by R2 and the value that Inputlogic can read
∆V = R× I = 82µA× 100Ω = 8.23mV .
For the case B as can be seen from the Figure 4.2b both pins are connected to the
3.3V line so there is no voltage difference and no current flows between the two pins.
Since there is no current, resistors do not affect the voltage level and the inputlogic
read a stable value of 3.3V . The case C is similar to case B, as can be seen from
the Figure 4.2c both pins are connected to VSS (or GND) line so there is no voltage
difference and no current flows between the two pins. Since there is no current,
resistors do not affect the voltage level and the inputlogic read a stable value of 0V .

23

24 CHAPTER 4. EFFICIENT ALGORITHMS BASED ON 4-STATE GPIO

[input_logic]

[vdd]

[input_logic]

[testing_ic] [target_ic]

[input]

[r1]

[r2]

(a) AttackerIC pin with pull-up resistor en-
abled, TargetIC pin in output mode at logic
level low

[input_logic]

[vss]

[input_logic]

[testing_ic] [target_ic]

[input]

[r1]

[r2]

(b) AttackerIC pin with pull-up resistor en-
abled, TargetIC pin in output mode at logic
level high

Figure 4.3: Interaction between the AttackerIC pull-up mode and the two logic
levels of a TargetIC pin in output mode

For case D, where the weak internal pull down resistor R1 is setted and as in case A, a
typical value for R1 is 40KΩ. The target output pin ir represented by the resistor R2;
a typical value of impedance for an output pin is R2 = 100Ω. The normal operating
voltage of IC is 3.3V . Having all the necessary parameters, the voltage that the
Inpultlogic see on the line can be calculated. Vline =

Rdown

Rdown+Rout
· VDD = 3.29V.

Target IC pin input mode

Now we can discuss each case for TargetIC pin in input mode. Starting from case
A, supposing a real scenario where the weak internal pull up resistor R1 is set. A
typical value for R1 is 40KΩ (STM32F446). The input resistance is not specified
in data-sheet and can be modeled by an infinite impedance resistor (R2 = ∞Ω).
The normal operating voltage of IC is 3.3V . We can now calculate the voltage that
the Inpultlogic see on the line, first we calculate the equivalent impedance for the
series of resistors that is given by the sum of all impedances. RTOT = R1 + R2 =
40KΩ+∞Ω = ∞Ω; having the total resistance we can calculate the current flowing
through the two resistors that is given by the Ohms law. ∆V = R× I this implies

that I =
∆V

R
=

3.3V

∞Ω
= 0A. Since there is no current flowing in the circuit there is

no voltage drop on the resistors.
The other three cases B, C and D are similar to the case A that we have just seen.
After seeing that there is no current flowing from the TargetIC to the TestingIC,
we can conclude that the voltage seen by the two Inpultlogic units is the voltage
set by the pull-up/down resistor of the TestingIC. As can be noticed from the
examples, there are cases in which the AttackerIC can read a value different from
the one set by the pull-up/down resistors. This fact derives from the conversion
of the voltage level of a signal when they are converted to logic levels 0 or 1. The
hardware component that performs the conversions from voltage to logic level works
with voltage thresholds that for 3.3V IC are:

• For the logic level 0 is 0V → 0.8V ;

• For the logic level 1 is 2V → 3.3V .

For the output case A we can notice that the Inputlogic is reading a logic low
(8.23mV < 0.8V) while the pull-up resistor is enabled. We can notice the same

24

CHAPTER 4. EFFICIENT ALGORITHMS BASED ON 4-STATE GPIO 25

thing in case C where the pull-down resistor is set to low and Inputlogic is reading
a logic high. This property can now be exploited by the algorithms presented below
in order to reduce the solution space and/or the time complexity. In the sections
below will be presented algorithmic improvements for the naive algorithm and also
randomized algorithms that exploit the just described properties.

4.3 Base implementation O(n3)

The internal weak-pull mechanism of a GPIO pin can be exploited to achieve the
aforementioned four-states configuration. Setting a GPIO pin of the AttackerIC to
input mode with pull-up/down resistors enabled simultaneously, allows the attacker
to (weakly) set the logic level of the line and to read back its actual value. Indeed, the
moderately high resistance of the internal pull-up/down resistors sets the logic level
of the line only when connected to an input pin on the TargetIC . On the contrary,
when a weak-pull AttackerIC pin is connected to a strong push-pull output TargetIC
pin, the former has almost no influence on the line voltage as seen in Section 4.2.
With this premise, in this improved solution, we generate all the signals by enabling
and disabling the pull-up/down resistors while operating every AttackerIC pin in
input mode. As a result, we can remove TCK from the solution space entirely.
Once selected a 3-tuple solution (TDI, TMS, TRST), all the remaining AttackerIC
GPIOs are driven (and acts) as if they were all TCK clock signals. Within the same
clock cycle, a TDO signal is searched among all the clock-acting pins. A difference
between the set and read value of a pin is caused by the corresponding pin of the
TargetIC that is transmitting data out, altering the logic level of the line. The
pseudocode for this technique is presented in Algorithm 3. Being limited to TDI,
TMS, and TRST, the time complexity of our improved solution is O(n3), that is at
least one order of magnitude lower than the trivial brute-force attack.

4.4 Further optimization O(n2)

Under the assumption that the TargetIC does not expose the JTAG TRST line,
this algorithm can be further optimized. In fact, we noticed that several ICs do not
include the optional TRST pin. This design choice could either be driven by cost
and space reduction as we found in low-end microcontrollers or, as in the case of
high-performance and high pin-count ICs such as FPGAs and Cortex-A ARM cores,
since the JTAG state machine can also be reset using other mechanisms (cf. [1]).
Thus, if TRST is evicted from the solution space the time complexity of the attack is
as low as O(n2) or two to three orders of magnitude lower than the trivial brute-force
of Chapter 3. For example, when attacking a 200 pins IC the total time required
for scanning all the possible combinations is Ttot = T × n2 = 1.9ms × 2002 = 76 s.
Interestingly, since the time required to complete this reduced attack is negligible an
attacker can always perform it first. If no solutions are found, then the full attack
(with TRST) can be carried out.

25

26 CHAPTER 4. EFFICIENT ALGORITHMS BASED ON 4-STATE GPIO

Let PINS [0 . . . n− 1] the array of all pins;
Let Sequence [0 . . . y − 1] the sequence of bit to shift into DR;
Set all pin ∈ PINS as input with pull-down;
foreach TMS ∈ PINS do

foreach TDI ∈ PINS ∧ TDI 6= TMS do

foreach TRST ∈ PINS ∧ TRST 6= TMS ∧ TRST 6= TDI do

Set TMS, TRST and TDI as output;
Set TRST low or high ; // low if TRST is active high, high if

TRST is active low

Set TMS high ; // Start reset the JTAG state machine

for i = 0; i < 5; i++ do

Set all pin ∈ PINS to pull-up;
Set all pin ∈ PINS to pull-down;

end

Set TMS low ; // End reset the JTAG state machine

Move the JTAG state machine to Shift-IR;
Set TDI high ; // Start shifting ones in IR

for i = 0; i < x; i++ do

Set all pin ∈ PINS to pull-up;
Set all pin ∈ PINS to pull-down;

end

Set TDI low; // End shifting ones in IR

Move the JTAG state machine to Shift-DR;
/* Start shifting DR */

foreach bit ∈ Sequence do

Set TDI to the level of bit ;
Set all pin ∈ PINS to pull-up;
Set all pin ∈ PINS to pull-down;
Read all PINS, compare the value with bit, mark pin as candidate
TDO if it differs;

end

/* End shifting DR */

end

end

end

Algorithm 3: Pseudo-code of the improved JTAG brute-force algorithm O(n3)

4.5 Real test case

Our novel technique reduces the solutions space to (TDI, TMS, TRST) and reduces
the time complexity to O(n3) or O(n2). Although, we performed a set of tests using
the hardware in Figure 4.4, Figure 4.5, and we have identified minor drawbacks
and limitations of this technique. In particular, we faced a problem related to the
GPIO input stage voltage thresholds. Since the voltage is continuous and logic
levels are discrete, the GPIO has two threshold voltage that sets the lower/upper
bounds for low/high logic levels. The value of the integrated pull-up/down resistors
in AttackerIC does not allow voltage to reach the higher bound. Since the threshold
is dependent on the power supply voltage, we circumvent this issue by lowering VDD

to about 2V.

26

CHAPTER 4. EFFICIENT ALGORITHMS BASED ON 4-STATE GPIO 27

Figure 4.4: Test configuration with nucleo board connected to STM32F103 powered
through two diodes for lowering the power voltage level.

Con

Figure 4.5: Test configuration with TargetIC stacked onto the custom adapter and
nucleo.

4.5.1 Clock deformation problem

An additional problem caused by the integrated pull-up/down resistor values is
related to the shape of the generated square wave. In particular, we noticed that
increasing the TCK clock speed can significantly alter the shape of the signal. In
fact, fast digital signals require a low impedance output stage in order to keep the
rise and fall times of the square wave within an acceptable range. In Figure 4.6a
and Figure 4.6b we can see the effect of raising the TCK frequency from 50 kHz to
200 kHz to the edges of the square wave. In Figure 4.7 can be seen a more detailed
representation of the TCK waveform used during tests at 50MHz. We can notice
the high rise time caused by the increased impedance.

27

28 CHAPTER 4. EFFICIENT ALGORITHMS BASED ON 4-STATE GPIO

(a) 50 kHz TCK waveform

V

(b) 200 kHz TCK waveform

Controller

(c) 400 kHz TCK waveform

Figure 4.6: Screen-shot from logic analyzer showing square wave deformation, effect
of the increase in frequency for TCK signals generated with GPIO operating in
pull-up/down output mode

4.6 Randomized algorithms

In some occasions, especially with ICs with a high number of pins, e.g., 2000, the
brute force technique with all the optimization described hitherto, can be too ex-
pensive in terms of time. Randomized algorithms combined with the properties
described in Section 4.1, can be used in order to reduce the time complexity par-
tially releasing it from the number of pins. The most suitable class of randomized
algorithms that allows the attacker to solve the problem with an improvement in
time complexity is Monte Carlo algorithms. This class of algorithms, always guar-
antee an answer to the problem (the answer is correct with a probability p), run in a
specified time and is the most advisable in the case in which there is no certainty that
the TargetIC has a JTAG port. The problem requires finding five pins associated
to signals (TCK, TMS, TDI, TDO, TRST). By exploiting the 4-state technique
the set of pins can be divided into four subsets, one for each signal excluded TDO
that can be found by reading all the GPIO simultaneously as described before. The
randomized algorithm will generate four random subset A,B,C,D from the set of all
the TargetIC pins PINS such as A∪B∪C∪D = PINS∧A∩B∩C∩D = ∅. Each
set will be associated to a signal (e.g., set A will transmit the TCK signal, set B
will transmit the TDI signal, etc.) and each signal will be transmitted over all the
pins that belong to the set. The algorithm will succeed when the TargetIC pins that
belong to the JTAG ports are each one in a different set, in all the other cases the
JTAG port would not respond. This can be translated into a problem where there
are 4 boxes and 4 elements that must be distributed among the five boxes. There
are no constraints on the number of elements in each box meaning that a box can

28

CHAPTER 4. EFFICIENT ALGORITHMS BASED ON 4-STATE GPIO 29

SS

(a) Oscilloscope wave parameters screen-
shot

(b) Detailed waveform deformation seen
from oscilloscope

Figure 4.7: Screen-shots from Owon DS7102 oscilloscope showing wave deformation
and wave parameters

contain all the 5 elements or no elements or the other combinations. This problem
can be seen as a combinatorial problem where the total number of possible combina-

tions is given by
(

n+k−1

n−1

)

=
(

n+k−1

k

)

=
(n+ k − 1)!

(n− 1)!k!
where n = k = 4 is the number

of different signals (i.e., TCK, TMS, TDI, TRST), the resulting number of combina-
tions is 35. Having the total number of possible combinations and knowing that the
favorable case is the one in which the four signals are each one in a different set. The
probability of the event already described is given by Pr[allindifferentsets] = 1

35
.

The resulting Monte Carlo algorithm, that can be seen in Algorithm 4, has a prob-
ability of success that is dependent by the number k of iterations, the probability
of finding the JTAG port is given by Pr[findJTAG] = 1− (34

35
)k. Time complexity

depends not only from the parameter k but also on the number n of pins of the
TargetIC . To amortize the time complexity O(n) given by the generation of the
four random sets, sets A,B,C,D can be assigned in turn to all the different signals,
permit reducing the number of iterations k. The resulting time complexity is supe-
riorly limited by O((4! + n) × k). The algorithm presented above, does not return
the precise pins of the JTAG port but four sets associated to the four signals. A
further step is required in order to find the exact combination of pins. To identify
the pins associated with each signal can be used a binary search over each set. The
key idea (Algorithm 5) is to select one set at a time and recursively split it into two
subsets and drive the associated signal on only on one subset a time. By checking
the response on the output the algorithm can decide which subset must be further
split until the subsets are composed of only one element. This second part of the
algorithm has a time complexity of O(4 log2 n) that joined with the first part brings
the total time complexity of this solution to O(((4! + n)× k) + 4 log2 n)

Estimation of k The Monte Carlo algorithm already described, will always give
an answer for the problem, but not always the correct one. The precision is based
on the probability of correctness, the algorithm is p-correct when it gives a correct
answer with probability p. In order to obtain a sufficient grade of reliability and
simultaneously keep the time complexity as low as possible, the parameter k must be

29

30 CHAPTER 4. EFFICIENT ALGORITHMS BASED ON 4-STATE GPIO

Let PINS [0 . . . n− 1] the array of all pins;
Let Sequence [0 . . . y − 1] the sequence of bit to shift into DR;
Set all pin ∈ PINS as input with pull-down;
Set k = 200 ; // 250 cycles allow ≈99.9% propability of finding JTAG

port if exists

while k >0 and JTAG not found do

Random Generate sets A, B, C, D from PINS;
foreach TCK ∈ A,B, C,D do

foreach TMS ∈ A,B, C,D | TDI 6= TMS 6= TCK do

foreach TDI ∈ A,B, C,D | TDO 6= TMS 6= TCK 6= TDI do

foreach TRST ∈ A,B, C,D | TRST 6= TCK 6= TMS 6= TDI do

Set all pin ∈ T RST low or high ; // low if TRST is active

high, high if TRST is active low

Set all pin ∈ T MS high ; // Start reset the JTAG state

machine

for i = 0; i < 5; i ++ do

Set all pin ∈ T CK to pull-up;
Set all pin ∈ T CK to pull-down;

end

Set all pin ∈ T MS to pull-up ; // End reset the JTAG state

machine

Move the JTAG state machine to Shift-IR;
Set all pin ∈ T DI high ; // Start shifting ones in IR

for i = 0; i < x; i++ do

Set all pin ∈ T CK to pull-up;
Set all pin ∈ T CK to pull-down;

end

Set all pin ∈ T DI to pull-down; // End shifting ones in IR

Move the JTAG state machine to Shift-DR;
/* Start shifting DR */

foreach bit ∈ Sequence do

Set all pin ∈ T DI to the level of bit ;
Set all pin ∈ T CK to pull-up;
Set all pin ∈ T CK to pull-down;
Read all PINS, compare the value with bit, mark pin as
candidate TDO if it differs;

end

/* End shifting DR */

end

end

end

end

end

Algorithm 4: Pseudo-code of the Monte Carlo JTAG algorithm

estimated. The mathematical function that correlates the accuracy of the algorithm
with k is the Pr[findJTAG] = 1 − (34

35
)k. As can be evicted from the plot in

Figure 4.8a, for low values of k (from 0 to 150) the precision is low; although for
higher values of k the precision reaches almost one. To keep time complexity low,
a trade-off between precision and the value k must be evaluated. Since from values

30

CHAPTER 4. EFFICIENT ALGORITHMS BASED ON 4-STATE GPIO 31

0 200 400

0

0.5

1

k

f
(k
)
=

1
−

(3
4

3
5
)k

(a) Graph of the probability of finding
JTAG port in function ok k

0
1,000

2,0000
1,000

2,0000

2

4

·106

n k

(b) Time complexity graph of randomized
algorithm in function of k and n

of k higher than 200 the increase of precision is negligible, the maximum number of
tests can be fixed to 200.

Performance evaluation The performance of the algorithm presented hitherto
given by the parameters k and n and described by O(((4! + n)× k) + 4 log2 n) (see
Figure 4.8b). After setting the parameter k, the time required to find the JTAG
port on an IC can be calculated. The first part of the algorithm has a total time
complexity of O((4! + n) × k). Nevertheless, the factor n can be omitted since
do not increase the number of tests and it derives only from the generation of the
sets that require a negligible time with respect to the time required to perform a
single test. Supposing a clock frequency of 50KHz, the required number of clock
cycles (K) is 80, the time T required to test a candidate solution is T = 1.9ms.
The total time Tfst required to run the first part is given by Tfst = T ∗ (4! ∗ k) =
0.0019 × 4800 = 9.12 s. The time complexity of the second part of the algorithms
is given by O(4 log2 n), this also the number of tests required to find the four input
pins among the four sets. As the first part, with clock frequency of 50KHz and a
TargetIC with 200 pins, the total time Tsnd required to run the second part is given
by Tsnd = T ∗ (4 ∗ log2n) ≈ 0.0019 × 30 ≈ 0.057 s. The total time required to find
the JTAG port Ttot = Tfst + Tsnd = 9.12 + 0.057 = 9.177 s.

31

32 CHAPTER 4. EFFICIENT ALGORITHMS BASED ON 4-STATE GPIO

Let TRST, TCK,TMS, TDI the subsets of PINS associated with the respective
signals;

Let TDO the output pin of JTAG port;
Let Sequence [0 . . . y − 1] the sequence of bit to shift into DR;
Set all pin ∈ PINS as input with pull-down;
foreach (set, signal) ∈ T RST ,T CK,T MS,T DI do

FindRecursive(set, signal, TDO);
end

Function FindRecursive (set, signal, TDO)
Split set in setL and setH;
Set signal set as setL;
return = PerformTest(TRST, TCK,TMS, TDI);
if |setL| == 1 and return then

return setL;
end

if return then

FindRecursive(setL, signal, TDO);
end

else

FindRecursive(setH, signal, TDO);
end

Function PerformTest (TRST, TCK,TMS, TDI, TDO)
Set all pin ∈ T RST low or high ; // low if TRST is active high, high if

TRST is active low

Set all pin ∈ T MS high ; // Start reset the JTAG state machine

for i = 0; i < 5; i++ do

Set all pin ∈ T CK to pull-up;
Set all pin ∈ T CK to pull-down;

end

Set all pin ∈ T MS to pull-up ; // End reset the JTAG state machine

Move the JTAG state machine to Shift-IR;
Set all pin ∈ T DI high ; // Start shifting ones in IR

for i = 0; i < x; i++ do

Set all pin ∈ T CK to pull-up;
Set all pin ∈ T CK to pull-down;

end

Set all pin ∈ T DI to pull-down; // End shifting ones in IR

Move the JTAG state machine to Shift-DR;
/* Start shifting DR */

foreach bit ∈ Sequence do

Set all pin ∈ TDI to the level of bit ;
Set all pin ∈ T CK to pull-up;
Set all pin ∈ T CK to pull-down;
Read TDO, compare the value with bit, if it differs mark solution as
working;

end

/* End shifting DR */

if solution marked as working then

return true;
end

else

return false;
end

Algorithm 5: Pseudo-code used to identify the specific pins in the subsets
32

Chapter 5

Comparison

In chapters Chapter 3 and Chapter 4 are described a series of algorithms that solve
the problem of finding a JTAG port. Every algorithm has his pros and cons, in this
chapter, we will compare the reliability and the performance in terms of time needed
to find the JTAG port. In Table 5.1, are shown the execution times of the various
algorithms related to the number of pins of the TargetIC . The clock frequencies used
for calculating the times are: 100KHz for the naive versions and 50KHz for all other
versions. The values of clock frequencies are carefully chosen to obtain the maximum
speed, simultaneously maintain the maximum compatibility with all JTAG ports
and to reduce the clock deformation. Naive version with time complexity O(n5)
must be considered only as a reference to estimate the performance improvements
of the various algorithms. The algorithm that guarantees the better compatibility
for searching the JTAG port on both PCBs and desoldered ICs is the naive O(n4).
This version is the only usable technique when the search process must be performed
directly on PCBs; in order to reduce the time required to find the JTAG port, in
Chapter 6 will be described some techniques to reduce the number of pins on which
is performed the brute force. The major improvements in terms of execution time
are better appreciable with the algorithms that exploit the 4-states GPIO. These
algorithms in spite of the reduction of the clock frequency run much faster than the
naive versions. The Figure 5.1 shows the execution times of the algorithms. As can
be noticed the randomized solution implemented using the Monte Carlo algorithm
described in Section 4.6, is not always the best solution. For TargetIC with low
pin count is preferable to use the algorithms described in Section 4.3 or Section 4.4.
The trade-off between the brute force algorithms that exploit the 4-state GPIO and
the randomized algorithm can be calculated using the intersection between the time
complexity functions. To obtain the maximum efficiency with O(n2) and randomized
algorithm, for TargetIC that ave less than 70 pins is convenient to use the O(n2)
algorithm, with a higher number of pins is recommended to use the randomized
algorithm. Moreover, the threshold between O(n3) and the randomized algorithm
is lowered to 17 pins. From the threshold just calculated, we can conclude by giving
a guideline to obtain the maximum performance and precision. Since the TRST
signal is optional and not all the manufacturers implements it, our suggestion is
to try with the pull-up/down algorithm that is the fastest one and only in the
case that this method fails to proceed with the normal brute force. The random
algorithm has a semi-constant execution time, this can be used as the first trial
but the correctness of the result is related to k. If is needed 100% accuracy firstly

33

34 CHAPTER 5. COMPARISON

−10 0 10 20 30 40 50 60 70 80 90 100 110
−2

0

2

4

6

8

10

12

14

16

18

20

22

n

se
c

Figure 5.1: Comparison of execution times between the improved algorithms and
the random solution

can be executed the O(n2) algorithm, that does not use include the TRST signal,
and if it does not succeed the tester can use the more complete test O(n3), that
include the TRST signal, to obtain the maximum accuracy and performance. This
allows us to save time in the case where TRST is not implemented. Otherwise, if
TRST is implemented in the design, the time spent for running the O(n2) algorithm
is negligible in comparison to the time that we will spend on the O(n3) algorithm
or on the basic brute force solution. From the discussion above can be wrongly
deducted that the O(n4) algorithm describe in Chapter 3 is not usable in practice.
Although the base brute force solution is useful when the tests must be performed
directly on a PCB. In this case, the 4-state GPIO technique is not guaranteed to
work, since the PCB includes other components along with the TargetIC that can
modify the electrical properties of the pins.

34

CHAPTER 5. COMPARISON 35

Table 5.1: Comparison of the algorithms execution times; 100MHz TCK frequency
for Naive, 50MHz TCK frequency for Improved and Random

of pins Naive O(n5) Naive O(n4)

Y D H M S Y D H M S
8 0 0 0 0 5 0 0 0 0 1
16 0 0 0 6 59 0 0 0 0 34
44 0 1 4 57 36 0 0 0 43 26
64 0 8 11 19 13 0 0 3 23 19
80 0 26 17 4 1 0 0 8 26 6
100 0 83 15 40 1 0 0 20 54 47
144 1 169 10 53 38 0 3 19 37 14
200 7 262 9 20 3 0 14 8 59 11
300 59 223 17 0 5 0 73 12 13 10
500 777 0 5 0 9 1 206 18 49 57
700 4202 353 3 40 13 6 14 3 25 8
900 14813 240 21 0 17 16 194 13 58 43
1000 25115 15 6 40 19 25 78 19 19 55
2000 807718 335 13 20 38 404 244 2 39 50

of pins Improved O(n3) Improved O(n2) Random

D H M S MS M S MS S MS
8 0 0 0 0 638 0 0 106 9 143
16 0 0 0 6 384 0 0 456 9 150
44 0 0 2 30 982 0 3 595 9 160
64 0 0 7 54 970 0 7 661 9 166
80 0 0 15 36 624 0 12 8 9 168
100 0 0 30 43 380 0 18 810 9 169
144 0 1 32 35 722 0 39 125 9 173
200 0 4 9 32 760 1 15 620 9 177
300 0 14 6 28 140 2 50 430 9 181
500 2 17 34 36 900 7 54 50 9 187
700 7 12 15 9 660 15 29 670 9 190
900 15 23 28 6 420 25 37 290 9 194
1000 21 22 11 43 800 31 38 100 9 194
2000 175 15 53 27 600 6 36 200 9 202

35

Chapter 6

Performing attacks on PCBs

In this chapter, we will present the techniques and problems of finding the JTAG
port on PCBs. In Section 6.1 are presented the main problems of searching JTAG
ports on PCBs. Following in Section 6.2 are described the techniques used to find
the possible JTAG pins on a PCB and the problems that an attacker can encounter
during this process.

6.1 Introduction

In the real world, there are some cases where the TargetIC cannot be desoldered
from the PCB for various reasons such as: chained JTAG components, other devices
connected to the TargetIC or the necessity to not power off the target to preserve
volatile memory. PCBs usually have more than one IC and commonly there are
interconnected (e.g., a micro-controller connected to an external flash memory or
an FPGA connected to an audio processor); in this case, once the attacker gained
the JTAG port control, can access the flash or the other components by using the
boundary scan functions. Performing the attack directly on the PCB is useful also
in the case in which the objective is the reverse engineer the entire board exploiting
the chains of JTAG components. After this premise, we can now focus on how to
find the JTAG port on PCBs. In order to achieve this goal, we must have a fully
working PCB and an appropriate power source. PCBs offers many possibilities for
connecting the AttackerIC to the target board, the most common are:

Populated connectors this is the easiest case if the PCB is equipped with pop-
ulated connectors or ports as in Figure 6.1a the AttackerIC can be easily
connected to the port using jumper wires.

Unpopulated connectors in this case, the manufacturer has removed the connec-
tor as in Figure 6.1d; usually is sufficient to solder pins or wires to the port in
order to connect the AttackerIC . Sometimes manufacturer, to prevent unau-
thorized uses of the port, disconnects it from the rest of the PCB by removing
resistors as can be seen in Figure 6.1c.

Test pads in this case test pads can be exploited by directly soldering on each one
a wire that successively is connected to the AttackerIC , this method requires
more time than the others, especially in the case in which the PCB has a high
number of test pads.

36

CHAPTER 6. PERFORMING ATTACKS ON PCBS 37

(a) Typical case of populated port (b) Typical case of test pads (silver circles)

GPIO

(c) Typical case of unpopulated and discon-
nected connector, manufacturer has inten-
tionally removed resistors from the PCB

(d) Typical case of unpopulated port, pins
has been removed by manufacturer after pro-
duction

Figure 6.1: Photos of populated and unpopulated ports and test pads on PCBs

Direct soldering on pins when there are no connectors or test pad the only
method to connect the AttackerIC to the PCB consists of directly solder-
ing wires to the ICs. This is also the most accurate method since all the pins
of the TargetIC can be connected to the AttackerIC . Soldering wires directly
on the IC can be difficult when pins are small or impossible when the IC has
BGA (see Section 6.1.1) pins.

6.1.1 IC package types

In some cases PCBs have no connectors or test pads. In this particular case the
easiest solution for connecting AttackerIC to the target PCB, consists of soldering
wires to the pins of the TargetIC . On the market there are several types of IC
packages, each one with different characteristics and pin size. ICs packages can be
subdivided in tree main categories:

• Through-hole packages that use holes drilled through the PCB for mounting
the components;

• Surface mount that uses soldering pads on the surface of the PCB;

• Sockets that uses plastic or ceramic frames with electric connections to hold
the IC (e.g. chip carrier or sockets for PGA/LGA chips).

37

38 CHAPTER 6. PERFORMING ATTACKS ON PCBS

After this brief introduction on packages, we can discuss the problems of each pack-
age type. The through-hole package is the most simple to treat, the pins are big
and offer a good soldering surface. AttackerIC can be connected directly to the
TargetIC by soldering wires on the pins and proceed like an unsoldered IC with
some additional adroitness that will be described in the next sections. The socket
for ICs usually makes use of through-hole technology. Differently, from through-hole
ICs, the socket plastic frame exposes the pins from the bottom of the PCB. Wires
that connect the TargetIC to the AttackerIC can be soldered on the socket pins
that are exposed under the PCB. The main difficulties of this kind of ICs are the
high number of pins and soldering required to fully connect the TargetIC to the At-
tackerIC . Nowadays the most common packages are the surface mount ones, there
are different kinds of packages for SMT ICs.

Quad Flat Package (QFP) this package has pins around the four edges of the
IC, pins are small leads and gaps between pins (pitch) usually vary from 1mm
to 0.4mm. In this case, soldering wires directly on pins is more difficult but
feasible also for small pitch. In this case, if soldering is not possible or it
will require to much time, special clamps can be used in order to connect the
TargetIC to the AttackerIC

Quad Flat No-leads (QFN) this package is similar to QFP, the QFM has no
leads and soldering points are all around the corners. Wires can be soldered
directly on the pads along the corners.

Small Outline Integrated Circuit (SOIC) this package is similar to the QFP
but usually pins are only on two sides of the IC, has longer leads and the space
between pins is bigger. In this case, we can use the same methods described
for the QFP with the advantage of having longer and bigger leads.

Ball grid array (BGA) this package do not allow attacker to directly solder wires
on the pins since it has contact points on the bottom of the IC, solder ball is
applied on the pads of the IC than melted onto the pads of the PCB. In this
case is impossible to directly solder wires on the IC pins and manufacturers
usually provide test pads or connectors that exposes test features.

6.2 Finding the JTAG pins

After the brief introduction, in this section will be described the methods and the
algorithms used to discover the JTAG port directly on PCBs. PCBs have other
components along with the ICs that can alter the electrical properties of the pins
since the 4-state GPIO technique is based on strict electrical properties that can
not be guaranteed on PCBs, the most suitable algorithm for this application is the
naive O(n4) algorithm described in Section 3.3. Having an algorithm with a high
time complexity, there is the necessity of reducing the number of pins in order to
keep the time, required to search the JTAG port, as low as possible. In order to
reduce the number of possible pin combinations, the attacker can take advantage of
some heuristics. Usually, on PCB pins or test pads that are part of the same debug
port are grouped in a single connector/port or group of test pads. Taking advantage

38

CHAPTER 6. PERFORMING ATTACKS ON PCBS 39

of this property the number of combinations can be reduced by testing each PCB
port or group of test pads separately.

In some cases, ports and test pads are disabled by the manufacturer. Usually,
to prevent unauthorized use. During the production process JTAG IC pins are
disconnected from test pads or ports (e.g., example some solder bridges are left
open or resistors are missing or removed). Another method that engineers use to
lock JTAG ports, consists of strongly setting the voltage levels on the JTAG pins by
adding some resistors in a way that if the attacker tries to connect a JTAG interface
it is unable to communicate with the target. Moreover, in some cases manufacturers
set the logic value of TRST pins, to set the JTAG state machine in the reset state. To
spot these problems the attacker has to prior analyze the board and try to reverse
engineer it in order to identify possible problems before executing the algorithm.
The process of removing manufacturers locks varies case by case and there is no
unique method to re-enable the ports. It may require some electronic background
and soldering practices in the case that some connections are interrupted or some
resistors need to be unsoldered. Before proceeding with the tests the attacker must
take care of compatibility between AttackerIC and TargetIC . The most significant
electrical characteristics are the voltage level, AttackerIC and TargetIC have to have
the same voltage level (e.g. both use 3.3V or 5V). If the voltage level of the target
board differs from the level of the TargetIC a level shifter can be used in order to
make them compatible without the risk of damaging the equipment and target.

6.2.1 More than one JTAG enabled chip

As stated in the introduction, JTAG offers a good entry point for PCBs reverse
engineering. The JTAG standard is built to allow a complete analysis of all com-
patible IC soldered on a board. On one PCB can be more than one JTAG enabled
chip and usually, they are chained together to reduce the number of pins required
for connecting the board to the test equipment and the test time. By standard defi-
nition there are three ways to chain JTAG enabled ICs we can see it in Figure 2.6a,
Figure 2.6b and Figure 6.2. All the algorithms described in the previous chapters
are compatible with the three configurations, nevertheless, some modifications must
be taken into consideration.

Serial connection using one TMS signal

The most common configuration is composed by: common TCK and TMS; the TDO
pin from the first TAP is connected directly to the TDI of the subsequent TAP as
can be seen in Figure 2.6a. This configuration uses the smallest number of pins
on a port or test pads and the algorithm has to find only the for or five standard
signals. The algorithms described in Chapter 3 are able to detect this configuration
but requires some small modifications. The algorithm that will be used to find
this particular configuration must take into consideration the length of the TAP
chain. Usually, when trying to discover the JTAG port on desoldered ICs using the
BYPASS method, the JTAG chain has length one and each bit shifted into TDI is
shifted out in TDO with a delay of one clock cycle. The algorithm must be adapted
to detect delay greater than one clock cycle and must use a longer test sequence in
such a way that it is long enough to guarantee a correct identification and stability.
The such modified algorithm can also figure out the total length of the chain by

39

40 CHAPTER 6. PERFORMING ATTACKS ON PCBS

TDITDI

TDITDITDI

TDI TDO TDO

TDOTDO

TDO

TDO

TMSTMSTMS

TMS

TCKTCKTCK

TCK

Figure 6.2: TAP interconnection with common TMS and TCK signals

counting the number of clock cycles of delay; this information is vital for reverse
engineering the PCB.

Connection in two paralleled serial chains

This configuration is composed by: common TCK and dedicated TMS for each
chain; the TAPs of each chain are arranged as in the pure serial connection described
above. The algorithms described in Chapter 3 are able to detect this configuration
but requires some small modifications. The algorithm that will be used to find this
particular configuration must take into consideration the length of the TAP chain
and the presence of more than one chain (also of different length). Chain length
problem can be solved as shown in the paragraph above. To detect more than one
chain, the algorithm must take into consideration that there can be more than one
combination of pins that correspond to a different JTAG chain with the same TCK
pin.

Multiple independent paths with common TMS and TCK signals

This configuration (see Figure 6.2) is composed by: common TCK and TMS; the
TDI and TDO pin of each TAP are independent and separate. The algorithms
described in Chapter 3 are able to detect this configuration but requires some small
modifications. The algorithm that will be used to find this particular configuration
must take into consideration the presence of more than one TDO and TDI. To detect
all the TDI and TDO, the algorithm must take into consideration that there can be
more than one combination of pins that correspond to a different JTAG port with
the same TCK and TMS pins.

40

Chapter 7

Conclusions

The JTAG interface can expose valuable information about the attached IC, ranging
from manufacturer’s name, IC model and revision, to the flash memory content
and the internal processor registers. During the reverse engineering process of an
unknown, unlabelled or undocumented IC it is often required to correctly identify
the pins associated to the JTAG interface. In this thesis, we have analyzed the
problem of discovering of a mapping between JTAG signals and the corresponding
pins using an automated procedure. We have described a naive solution based on a
brute-force attack of the full set of pins combination of an IC package, and we have
demonstrated the poor performance of this solution: O(n4) with n the number of
tested pins. In order to reduce the time complexity of this task, we have presented
a new and efficient algorithm that exploits the physical nature of the problem. In
particular, our technique uses a combination of input/output, high/low impedance
GPIO modes along with the integrated pull-up/down resistors to achieve a four-
states GPIO configuration. Under reasonable assumptions, the time complexity of
our algorithm is one to two orders of magnitude lower than the trivial solution. In
this work, we have given an overview of the methods that allow us to find the JTAG
port on an unknown/undocumented IC or PCB. We provided a set of algorithms
and electronic techniques to speed up the process.

7.1 Identifying the IC model (if possible)

The JTAG standard offers to manufacturers the possibility of implementing an iden-
tification register. Once the attacker has found the JTAG port on the IC or on the
PCB, he can exploit the standard to retrieve the identification code of an unknown
chip. The standard prescribes that if the IDCODE instruction and consequently
the identification register are implemented, the TAP controller must load by default
in the identification register as data register when the state machine is in Test-
Logic-Reset . This fact allows a blind identification of the model and manufacturer
of the unknown IC. Having the identification code (32 bits), the attacker can use
web services that convert the code into manufacturers and model information and
subsequently retrieve valuable information such as the datasheet and if is available
the BSDL document with all the specification of the JTAG port.

41

42 CHAPTER 7. CONCLUSIONS

7.2 Security drawbacks

The techniques presented in this work has shown that debug port such as JTAG
can be found also in case of unlabeled and undocumented ICs. Security through
obscurity is not the correct method to secure debug ports on embedded devices.
Once the attacker gained access to the JTAG port, the content of the IC’s memory
can be dumped and reverse engineering techniques can be applied in order to extract
data and decompile the firmware. The attacker can also use software such as JREV
[27] that allows he to reverse engineer the connections between the various ICs on
the board.

Find hidden features The JTAG standard contemplates also the presence of hid-
den features, called private instructions. These instructions and their codes are not
documented on datasheet or BSDL since they are intended only for manufacturer
service uses. Once detected the pins combination of the JTAG port, an attacker
can perform a blind search of all instructions implemented by the particular TAP
and can discover private instructions. To perform this kind of attack described by
Domke [11], can be used a software called UrJTAG that implements the algorithm
that allows attackers to discover hidden or undocumented instructions. As stated
by Domke [11], once the attacker has discovered the instruction codes of the hid-
den features, the process to figure out the functions of each instruction cannot be
automated and is different for each IC.

7.3 Some attempts of securing JTAG

IC Manufacturers, in order to supply a security layer for ICs that implements JTAG,
offers some functions that are capable to temporary or permanently disable JTAG
ports. The most common techniques are e-fuses and disable bits; e-fuses allows pro-
grammers to permanently disable JTAG and are used only where the manufacturers
do not have the necessity to service the devices through JTAG. Disable bits are a
temporary method to disable JTAG ports, these bits can be reset only by fully erase
the IC memory, this guarantee that the content of the IC internal memory could
not be read via JTAG. The methods already described can be circumvented, e-fuses
can be erased by trying to reprogram them with higher voltages or other techniques
that are specific for each case; enable bits can be circumvented using glitching tech-
niques that allows the attacker to skip the execution of the instructions that checks
the state of the bits. In recent years researchers and manufacturers have developed
and implemented some new technique to secure the JTAG port [7], [22], [23]. These
new techniques, differently from fuses and enable bits, allow engineers to keep the
JTAG port enabled and exposed, allowing manufacturers to service ICs and PCB
more easily. In the light of recent studies, our techniques may seem subtle but, in
spite of that, a lot of manufacturers continue to produce electronic device that does
not implement these new defensive technologies, and for reducing production and
support costs, they tend to continue to use old and untrusted techniques (e.g., hid-
ing the port on the PCB, or putting components that at first sight lock the JTAG
access)to prevent unauthorized use of JTAG ports.

42

Bibliography

[1] Ieee standard test access port and boundary scan architecture. IEEE Std
1149.1-2001, 2001.

[2] Ronnie Brash. Bypassing security through side-channel attacks.

[3] Ing. M.F. Breeuwsma. Forensic imaging of embedded systems using jtag
(boundary-scan). Digital Investigation, 2006.

[4] Marcel Breeuwsma, Martien De Jongh, Coert Klaver, Ronald Van Der Knijff,
and Mark Roeloffs. Forensic data recovery from flash memory. Small Scale
Digital Device Forensics Journal, 1(1):1–17, 2007.

[5] Tianshi Chen, Zidong Du, Ninghui Sun, Jia Wang, Chengyong Wu, Yunji Chen,
and Olivier Temam. Diannao: A small-footprint high-throughput accelerator
for ubiquitous machine-learning. In ACM Sigplan Notices, 2014.

[6] Yu-Hsin Chen, Tushar Krishna, Joel S Emer, and Vivienne Sze. Eyeriss: An
energy-efficient reconfigurable accelerator for deep convolutional neural net-
works. IEEE Journal of Solid-State Circuits, 2017.

[7] Christopher J Clark. Anti-tamper jtag tap design enables drm to jtag regis-
ters and p1687 on-chip instruments. In Hardware-Oriented Security and Trust
(HOST), 2010 IEEE International Symposium on, 2010.

[8] Wikimedia Commons. Package on package asic plus memory pop schematic,
08 2008.

[9] Amitabh Das, Jean Da Rolt, Santosh Ghosh, Stefaan Seys, Sophie Dupuis,
Giorgio Di Natale, Marie-Lise Flottes, Bruno Rouzeyre, and Ingrid Ver-
bauwhede. Secure jtag implementation using schnorr protocol. Journal of
Electronic Testing, 29(2):193–209, 2013.

[10] Eric DeBusschere and Mike McCambridge. Modern game console exploitation.
Technical report, tech. rep., Department of Computer Science, University of
Arizona, 2012.

[11] Felix Domke. Blackbox jtag reverse engineering. Update, 2009.

[12] Dhananjay V. Gadre and Sarthak Gupta. Digital Input/Output. 2018.

[13] S. Ghosh, A. Basak, and S. Bhunia. How secure are printed circuit boards
against trojan attacks? IEEE Design Test, 2015.

43

44 BIBLIOGRAPHY

[14] Swaroop Ghosh, Abhishek Basak, and Swarup Bhunia. How secure are printed
circuit boards against trojan attacks? IEEE Design & Test, 32(2):7–16, 2015.

[15] F. Majeric, B. Gonzalvo, and L. Bossuet. Jtag combined attack - another
approach for fault injection. In 2016 8th IFIP International Conference on
New Technologies, Mobility and Security (NTMS), 2016.

[16] Microchip. 16-bit Digital Signal Controllers (up to 128 KB Flash and 16K
SRAM) with Motor Control PWM and Advanced Analog, 08 2011.

[17] S. Moein, F. Gebali, T. A. Gulliver, and M. W. El-Kharashi. Hardware at-
tack risk assessment. In 2015 Tenth International Conference on Computer
Engineering Systems (ICCES), 2015.

[18] Samer Moein, F Gebali, and Issa Traore. Analysis of covert hardware attacks.
2014.

[19] Johannes Obermaier and Stefan Tatschner. Shedding too much light on a
microcontroller’s firmware protection. In WOOT, 2017.

[20] Keunyoung Park, Sang Guun Yoo, Taejun Kim, and Juho Kim. Jtag security
system based on credentials. Journal of Electronic Testing, 26(5):549–557, 2010.

[21] Luke Pierce and Spyros Tragoudas. Multi-level secure jtag architecture. In
On-Line Testing Symposium (IOLTS), 2011 IEEE 17th International, pages
208–209. IEEE, 2011.

[22] Xuanle Ren, R. D. Blanton, and Vitor Grade Tavares. A learning-based ap-
proach to secure jtag against unseen scan-based attacks. 2016 IEEE Computer
Society Annual Symposium on VLSI (ISVLSI), 2016.

[23] Xuanle Ren, Vitor Grade Tavares, and R. D. Blanton. Detection of illegitimate
access to jtag via statistical learning in chip. 2015 Design, Automation & Test
in Europe Conference & Exhibition (DATE), 2015.

[24] Renesas Electronics Corporation. Hardware Manual Renesas 16-Bit Single-Chip
Microcomputer H8S Family/H8S/2200 Series H8S/2218 Group, H8S/2212
Group, 12 2008. Rev.7.00.

[25] G. D. Robinson. Why 1149.1 (jtag) really works. In Electro/94 International.
Conference Proceedings. Combined Volumes., pages 749–754, May 1994.

[26] K. Rosenfeld and R. Karri. Attacks and defenses for jtag. IEEE Design Test
of Computers, 2010.

[27] Stanislaw Skowronek. Nsa@home jrev, 2007.

[28] STMicroelectronics NV. Medium-density performance line ARM -based 32-bit
MCU, STM32F103x8 STM32F103xB, 08 2015. Rev.17.

[29] STMicroelectronics NV. ARM R© Cortex R©-M4 32b MCU+FPU, 225DMIPS,
STM32F446xC/E, 09 2016. Rev.6.

44

BIBLIOGRAPHY 45

[30] STMicroelectronics NV. Low & medium-density value line, advanced ARM-
based 32-bit MCU, STM32F100x8, 11 2016. Rev.9.

[31] Texas Instruments. MSP430G2x33, MSP430G2x03 Mixed-Signal Microcon-
trollers, 04 2011.

[32] Daichuan Wang and Pizhuang Zhang. The technology research of remote au-
tomatic detection and fault diagnosis based on jtag boundary scan. Procedia
Engineering, 7:270–274, 2010.

45

	Abstract
	Acknowledgements
	Introduction
	Structure of the thesis
	Contributions

	Background
	Acronyms and Definitions
	Hardware Terminology
	Software Terminology

	Equipment
	Embedded Architectures
	Microcontrollers Architecture

	JTAG Standard
	Test Access Port (TAP)
	TAP Controller
	The instruction register
	Test data registers

	Analysis of the problem and naive solution
	Problem definition
	Naive solution O(n5)
	Exploiting the directions O(n4)
	Tests and RESET Problem

	Efficient algorithms based on 4-state GPIO
	Problem definition and base idea
	Electronic background
	Real case application

	Base implementation O(n3)
	Further optimization O(n2)
	Real test case
	Clock deformation problem

	Randomized algorithms

	Comparison
	Performing attacks on PCBs
	Introduction
	IC package types

	Finding the JTAG pins
	More than one JTAG enabled chip

	Conclusions
	Identifying the IC model (if possible)
	Security drawbacks
	Some attempts of securing JTAG

