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Abstract

Adversarial Robustness Toolbox (ART) is an open-source project for machine
learning security by IBM research. ART implements many novel adversarial at-
tacks and defenses, it can be used by researchers as a standard benchmark for
novel adversarial attack and defense techniques, and it is considered as a tool for
developers to build and deploy secure machine learning systems that are resilient
against adversarial attacks. In this thesis, we review a recent version of ART
Python library.

We cover data poisoning and evasion attacks supported in current version of “Ad-
versarial Robustness Toolbox v1.5.17. We evaluate the performance results of
those attacks against machine learning models for classification tasks on image
and tabular data in adversarial setting. Specifically, we evaluate those attack
methods ART supports against four supervised machine learning algorithms: sup-
port vector machines (SVM), decision trees (DT) and random forest (RF) trained
with scikit-learn; and gradient-boosted decision trees (GBDT) trained with light-
GBM, and two publicly available datasets (i.e. census income dataset and MNIST
handwritten digit database for tabular and image data respectively).

Keywords Adversarial Robustness Toolbox, Adversarial Attacks, Evasion At-
tacks, Poisoning Attacks, Adversarial Examples
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Chapter 1

Introduction

Despite the success of Machine Learning (ML) /AT systems, ML models have been
shown to be vulnerable to adversarial examples i.e, maliciously perturbed exam-
ples, which are undetectable to the human, but mislead models to make incorrect
classification ([19], [13], [27], [34] [11]). The vulnerability of ML models to ad-
versarial examples exposes a security risk in ML/AT systems such as computer
vision, image classification, fraud detection, spam detection, malware detection,

and beyond ([3], [23], [31], [25], [12], [10], [39], [34], [11], [13], [7]).

Nicolae et al., (2018) introduce Adversarial Robustness Toolbox (ART)!, which is
an open source machine learning security library developed at IBM research using
Python programming language. ART used as a tool to test adversarial robustness
of ML models with many state-of-the-art adversarial attacks and defense methods,
and supports most known machine learning frameworks.

ART contains Attacks i.e security attacks (i.e. poisoning attacks and evasion at-
tacks) and privacy attacks (i.e. inference attacks and extraction attacks), Defenses
(i.e adversarial training, preprocessing, post-processing, detectors, and transformer),
and Model Robustness (i.e certificator, metrics, and verification) tools (Nicolae
et al., 2018).

ART SECURITY ATTACK MODULES

Researcher / Training Phase
Developer Training data ML
Algorithm
. \L Test Phase
Testdata ) ML Prediction
(unseen data) Model (output)

Figure 1.1: ART evasion and poison attack on ML pipeline

"https://github.com/Trusted-AI/adversarial-robustness-toolbox
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Adversarial attacks are a type of attacks performed to fool the targeted classifier
in ML, in which the classifier assigns the example to the wrong class. However,
researcher or developer wants to understand the problem and under what situation
the attack methods fails, and how well can defend in those attacks to the ML
models using ART library is illustrated in Figure 1.1.

Many researchers proposed adversarial attacks and defense mechanisms for Deep
Neural Networks (DNN). However adversarial attack is not limited to DNN. Em-
phasize that, in this paper we aim at review on adversarial attacks on traditional
machine learning algorithms. Particularly, we study the ART evasion and poison
attacks against support vector machines, decision trees, random forest, gradient-
boosting decision trees approaching classification tasks on tabular and image data

types.

The contributions of this thesis are as follows:

e We experiment evasion and data poisonous attacks on four machine learning
models for tabular and image data type and highlights the weakness and
strength of those attack algorithms implemented in ART.

e We assess the effectiveness of adversarial examples produced using traditional
machine learning models rather than deep neural network models.

1.1 Overview

The rest of the document is organized as follows: Chapter 2 introduces supervised
machine learning, particularly classification models; then discuss key concepts on
adversarial attacks; Chapter 3 reviews the adversarial attacks (i.e., evasion and
poisoning attacks) implemented in ART; Chapter 4 discusses the experimental
result and analysis of the study; Chapter 5 summary and conclude this document.



Chapter 2

Background

This chapter has two sections. Section 1, gives some theoretical background for
supervised learning problems, specifically, the classification models followed by
classification algorithms and metrics used in our experiments. In section 2, we
discuss basic adversarial machine learning concepts, in which our focus is on ad-
versarial attacks. Specifically, the security attacks on ML models, in which an
attacker generates adversarial examples against ML models aiming to fool the
target model.

2.1 Machine Learning

Mitchell (1997) provides the founding definition of Machine Learning ” A computer
program is said to learn from experience E with respect to some class of tasks T
and performance measure P, if its performance at tasks in T, as measured by P,
improves with experience E”. For example, consider the Census Income dataset
from the UCI ML Repository, the task is to predict yearly income of a person be
greater than $50k or not:

e Task T: classifying the yearly income of a person be greater than $50k or
not from tabular data.

e Performance measure P: percentage of yearly income of persons classified
correctly.

e Training experience E: yearly income dataset, i.e., Census Income dataset
from the UCI ML Repository.

Machine learning can be categorized into the following:

e Supervised Learning is a learning task in which examples of labeled data
are used in learning classification or regression models. Classification models
used to classify discrete class label. whereas, Regression models used to
predict continuous values.

e Unsupervised Learning is unlike supervised learning tasks, we use unla-
beled data to find or cluster the hidden structure of the data by using the
clustering, dimensional reductions, and others when labeled training data
are not available.



e Semi-supervised learning is the combination of supervised and unsuper-
vised machine learning tasks.

¢ Reinforcement Learning is a learning task in which an agent performs
continuous actions while observing the result (or rewards).

2.1.1 Supervised Learning

Given a training set Diqqin = {(X1,Y1), -, (Xn, Yn)} of correctly labeled examples
and set of hypotheses H, the learning stage of ML algorithm is to find the function
f* € H while minimizing a loss function. We define a hypothesis function f(x)
that estimate some unknown target function, and if there exists a target function,
we can define as:

ff:X=Y = y=f(x) fori=1,...n (2.1)

where x; is i-th input feature vector in the dataset and y; is i-th class label in
classification problems.

However, finding the target function to predict y requires to search all f € H
and it is computationally infeasible. Loss functions measures the error difference
between a predicted label using hypothesis f and a true label. When the loss
function is defined as L? loss (mean squared error):

1
Uf(x),y) = 5(f(x) ~ y)° (2.2)
and, the empirical risk or training loss for a set of labeled examples Dy, is de-

fined as:

1 n
L, = n Zf(ﬂxi), Yi) (2.3)
i=1
Classical machine learning algorithms are based on empirical risk minimization
(Vapnik, 1992) approach to search the best hypothesis f* € H that minimizes the
loss function on the given training set D;,.qin. In addition to that, the identified
hypothesis function f* will generalize to test (unseen) data.

[T = arg minyey Z O(f (%), yi) (2.4)

=1

Before starting the implementation of the support vector machines, decision trees,
random forest and gradient-boosted decision trees classifiers using Scikit-learn and
Light GBM, some basic concepts on those classifiers will be presented below.

Support Vector Machines (SVM): Given a training set Dyain = { (X1, Y1), s (Xny Yn) }
the learning stage of an SVM algorithm is to separate the training data into classes
using a hyperplane by choosing the maximum margin while minimizing the loss
function. SVM also know as ”a maximum margin classifier”. Figure 2.3(a) shows
an example of decision boundary separates the two classes with maximum margin
by SVM with Linear kernel model. Sometimes, the robustness of the model de-
pends on the generalization performance, meaning when the classifier is best (or
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have wide margin), then it is not easily affected by small perturbations which leads
to misclassification on the decision boundary (Biggio et al., 2012).

Decision trees (DT): Given a training set Dy.qin = {(X1,¥1), -, (Xn, Yn) }, deci-
sion trees are constructed by recursively splitting the training set. Each split is
based on a single feature with a threshold condition, in which successive binary
splits of training set into smaller and smaller pieces. However, finding the best
sequence of split rules is NP-Complete problem (Murthy, 1998). Hence, Breiman
et al., (1984) introduce a heuristic algorithm called Classification And Regression
Tree (CART) algorithm, which incrementally adds nodes to a decision tree, start-
ing from the root. At test time, an instance x is classified by traverses the decision
tree from its root until it reaches a leaf, i.e., the class assigned in according to
conditions specified in the tree internal nodes .

Random forest (RF) is an ensemble learning methods for decision trees. RF is
an ensemble predictor consists of set of trees which are trained independently and
combined by a majority voting to assign the class label. Each tree constructed
with bagging and per-node feature sampling over the training set (Breiman, 2001).

Gradient-boosted decision trees (GBDT) are an ensemble learning methods
for decision trees, which uses an iterative procedure to generate one single stronger
model by combining the decisions of the weak learners produced i.e. decision tree
models.

Given a training set Dyugin = {(X1,%1), - (Xn,yn)} and set of hypotheses H is
the set of decision trees, GBDT algoithm identifies the set of functions f; € H
while minimizing the loss function.

GBDT uses classification and regression trees (CART) as base learners and gradi-
ent boosting aims to minimize the loss function in every iteration. The approxi-
mation of §; w.r.t the i-th labeled example x; in additive form is defined as:

K
§=> fi(xi), freH (2.5)
t=1
where K is the number of trees.

Then the base function in case of CART algorithm is defined as:

ft(Xi) = We(x;) (26)

where w € R",¢: R = {1,2,..,T}. T is the number of leaves. For input
x; € R? ¢(x;) function outputs the i-th estimation value of the leaf node of the
decision tree.

Then the loss function is defined as:

arg mingey > L(fi(%:), yi) (2.7)
=1

where n is the number of examples in the training (Lin et al., 2020).



Classification metrics are evaluation metrics used to evaluate the performance
of classification models. these metrics are built based on the confusion matrix
(see Figure 2.1), in which the columns represent the number of examples in the
predicted class and the rows represents the number of examples in the actual class.
TP and TN indicate both actual and predicted values are 1 and 0 respectively.
FN indicates actual and predicted values are 1 and 0 respectively. Whereas, FP
indicates actual and predicted values are 0 and 1 respectively. In case of binary
classification problem, The classifier’s wrong prediction will be recorded in FP or
FN.

PREDICTED CLASS

POSITIVES (1) NEGATIVES (0)

P

FN
POSITIVES (1)

TRUE POSITIVES FALSE NEGATIVES

Fp ™

NEGATIVES (0)

ACTUAL CLASS

FALSE POSITIVES TRUE NEGATIVES

Figure 2.1: Confusion matrix.

Metrics used to measures the performance of our ML models are as follows:

e Accuracy is defined as:

TP +TN
TP+TN+ FP+TN

Accuracy = (2.8)
Whereas (TP+TN) is the number of correct predictions and (TP+TN+FP+TN)
is total number of predictions. The above formula works to evaluate binary
classification, and generally for multiclass classification, the accuracy will be
calculated as the fraction of all correctly predicted (on the diagonal of the
confusion matrix) over all examples.

e Macro Accuracy (Balanced Accuracy) is defined as:

k TP+TN;
TPATN+FP1TN,
Macro Accuracy = g it J]; kAL (2.9)

i=1

where k is the number of class labels and the fraction of correctly predicts is
computed based on one-vs-all confusion matrix.

e Precision is defined as:

TP
Precision = T’P-{——_FP (210)



Where TP is the number of correctly predicted positive values, and (TP
+ FP) will be all the positive predictions. In the census case, precision
indicates the proportion of persons that the model guesses with $50k and
above income and actually have mentioned income.

Recall is defined as: Tp
Recall = ————— 2.11
T TPYFN (2.11)
Where TP is the number of correctly predicted positive values, and (TP +
FN) will be all actually positive values. In the census case, recall indicates
the proportion of persons having $50k and above income that are correctly

guessed by the model as having income $50k and above.
F} score is defined as:

Precision - Recall

Fsz=(1 2
p=(1+5 )(52 - Precision) + Recall

(2.12)

Precision - Recall
F, =2 2.13
! Precision + Recall ( )

Where Fj , a parameter [ controls the importance of each assigned term
and popular setting is =1 which is known as F} score, precision is a positive
predictive value, and recall is a true positive rate. As in the formula specified
above, F) score measures a weighted harmonic mean between precision and
recall (Fernandez et al., 2018).

Matthews correlation coefficient (MCC) defined as:

MOC — TP+TN—-FP+ FN (2.14)
/(TP + FP)(TP+ FN)(TN + FP)(TN + FN)

Where TP, TN,FP and FN are all 4 categories of the confusion matrix, which
takes advantage over F} score because of considering errors and correct clas-
sification in both classes. The result of MCC ranges between -1 and 1 (similar
to correlation), where MCC=1 indicates the classification is always correct,
MCC=0 indicates the classification used is a random guess, and MCC=-1
when the classification is wrong. Note that, MCC is useful where unbalanced
class data occurs (Fernandez et al., 2018).

Area Under the ROC Curve (ROC AUC) defined on the basis of

TP
TPR=—"—
R=rprFn
(2.15)
FP
FPR=——"
R=rpi7n

Where TPR is True Positive Rate, FPR is False Positive Rate, and the ROC
Curve plots constructed based on the two parameters: TPR versus FPR at
different model thresholds. ROC curve used to determine the right threshold
value and AUC (Area under the ROC curve) indicates model quality by
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considering the area under the curve, the larger the area indicates the model
quality. ROC AUC computes an aggregated single score from the ROC curve
based on the overall performance of the model thresholds, ranging between
0.5 and 1, A model whose guesses are 100% correct has ROC AUC of 1.0;
one whose model guesses are 50% correct has ROC AUC of 0.5, which will
be achieved by any randomly chosen model. ROC AUC is the preferred
evaluation metric for class imbalanced datasets (Fernandez et al., 2018).

2.2 Adversarial Machine Learning

There are two main categories of adversarial attacks on ML systems. One category
focuses on the privacy attacks on ML/AI systems, which extracts ML models and
collects sensitive data/attributes. The other category is about security attacks on
ML/AI systems, which generates adversarial examples, i.e., evasion and poisoning
attacks. The wide use of such kinds of attacks due to ML models are vulnerable
to adversarial examples, Adversarial Machine Learning (AML) becomes the study
of ML that deals with protecting ML pipeline at training, test and inference time
(Nicolae et al., 2018).

2.2.1 Adversarial Attacks

Adversarial attacks are algorithms for seeking adversarial perturbations. For ex-
ample, attack algorithm uses ¢, norm distance changes to create an adversarial
example, i.e., input to a ML models that is designed on purpose to fool the tar-
geted classifier and are often imperceptible (or valid input) to humans (Brendel
et al., 2018; Goodfellow et al., 2014). Here, the goal of adversarial attacks is to
minimize the perturbation magnitude while creating adversarial example under ¢,
distance metric, for grayscale MNIST images with 784 pixel values, the ¢, distance
between original and adversarial image is the number of pixels where the intensity
value is different. whereas, the /., distance is the maximum of intensity differences
among pixels of the two images. Formally, the distance metric d(-) between the
original x and adversarial example x’ is less than the attack budget (denoted as
€), while fooling the targeted classifier C to assign the example to the wrong class.

d(x,x’) < e

where C(x) # C(x) (2.16)

According to the attacker’s knowledge and accessible of the targeted ML system,
we can categorize adversarial attacks into three category such as:

1. White-box attacks: the attacker has full access to the classifier’s archi-
tecture, parameters and evaluate loss/class gradients on the training data

(Chen et al., 2017).

2. Black-box attacks: the attacker doesn’t know any information about the
targeted model except output (class labels) produced to the given input.
Black-box attacks (a.k.a query-based attacks) are performed considering the
feedback provided by querying the classifier with adversary manipulated data
to learn the true labels based on the predicted class label or confidence score
(Chen et al., 2017).



3. Gray-box attacks: the attacker execute attacks having knowledge of the
targeted classifier architecture, algorithm or training data only (Nicolae
et al., 2018).

In white-box attacks, attackers able to calculate gradient w.r.t input example but
in black-box (or gray-box) attacks doesn’t. In the case of our review, we look at
13 white-box and 3 black-box attack methods implemented in ART.

When we consider attack objectives, there are two objectives of the attacker:

1. Untargeted attack: Given an original example with correct labeling, by
untargeted attack, the attacker aims to create an adversarial example that
lead to misclassification (or different from the corresponding original example
class label).

2. Targeted attack: Given an original example with correct labeling, the goal
of the targeted attack is to modify the original example aiming to be classified
as the specified target class (Nicolae et al., 2018; Chen et al., 2017).

Evasion Attack

Evasion attack (a.k.a. adversarial examples) is carefully perturbing the input to
a classifier such that it is misclassfied at test time. Like DNN, this attack applies
to gradient-based models, such as SVM using gradient descent optimization tech-
niques (Biggio et al., 2013). However, for models without gradient, for example,
random forest uses input binarization, which transforms input into an array of

{0,1} based on given threshold (Chen and Jordan, 2019).

Based on Brendel et al. (2018), adversarial attack algorithms are categorized into
four categories: gradient-based, score-based, decision-based, and transfer-based
(see Table 3.1). However, the Decision Tree attack implemented in ART is catego-
rized according to the method used, so we categorized it under decision tree-based
attack.

1. Gradient-based attack uses model gradient of the training data to create
adversarial example in white-box setting.

2. Score-based attack works by accessing the predicted confidence scores
of the model, i.e., logit or output probabilities used to create adversarial
example in black-box setting.

3. Decision-based attack uses final decision of the model, i.e., class label to
create adversarial example in black-box setting. In contrast to the score-
based attack, it uses the final model prediction. In our work, all ART attack
algorithms in this category supports SVM, DT, RF, and GBDT models (see
Table 3.1).

4. Transfer-based attack uses information of the training data, i.e., with out
model information to create adversarial example.

5. Decision tree-based attack uses decision tree structure to create adver-
sarial example for decision tree model only. Example, ART Decision Tree
attack.



Poisoning Attack

In contrast to evasion attacks where attacks against ML model at test time, poi-
soning attack is injecting poisonous data during model training and data collection
phase of ML pipeline (Nicolae et al., 2018; Biggio et al., 2012).

Biggio et al., (2012) proposed an attack on support vector machines algorithm by
injecting carefully crafted attack points into training data that will maximize the
classification errors on the unseen test data, as a result the model generalization
performance is decreased.

The below example shows data poisoning attack on SVM scikit-learn model, which
can slip the decision boundary such that the classifier makes wrong prediction to
the examples given at test time (see Figure in 2.3(b)).

feature 2

-1 0 1 2 3 4
feature 1

Figure 2.2: Sample data points representing in two-dimensional space.

Let consider synthetic data, which has a set of bk data points with 2 class labels
generated by make_blobs?, which are linearly separable as shown in Figure 2.2.
Now for simplicity fit the model using the linear kernel of a SVM classifier on
training data points will be obtained in Figure 2.3(a).

On model training, the best decision boundary for the classifier is represented in
two-dimensional space. This decision boundary is selected to best separate the
data points by their class labels, either 0 (blue) or 1 (yellow). In Figure 2.3(a)
the support vectors are shown in circles, and the classifier used only those support
vectors to make decision boundary for separation between the two class labels,
whereas other data points are not considered to maximize the margin of the deci-
sion boundary.

Now we will consider the scenario of using specially crafted attack points in model
training by choosing randomly 50 data points with ”1” class and alter their class

’https://scikit-1learn.org/
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labels. As a result, we can notice in Figure 2.3(b) that the decision boundary of the
targeted classifier has slightly shifted, changes in the number of support vectors and
increased margin cause of the contaminated data (noise). The support vectors are
shown in circles and the attack point in red. In this example, the attacker provides
50 poisonous data points in the targeted setting, As a result, the attack influence
the change in the decision boundary. Since the decision boundary is changed, the

model generalization performance will be decreased for unseen test examples as
seen in Figure 2.4.

(a) two-class linear SVM (b) two-class linear SVM after poison attack

feature 2
feature 2

Figure 2.3: Training data (70%): ART Poisoning attack on SVM

(a) two-class linear SVM (b) two-class linear SVM after poison attack

feature 2
feature 2

feature 1 feature 1

Figure 2.4: Test data (30%): Clean and Poison SVM model
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Chapter 3
ART Attacks

In this chapter, we consider adversarial threats to ML /AT systems implemented in
ART, i.e., evasion and data poisoning attacks only, which are adversarial attacks
against ML models during testing and training time, respectively. Adversarial
examples created by ART adversarial attack methods are evaluated on the follow-
ing supervised machine learning classes: support vector machines (SVM), decision
trees (DT), random forest (RF), and gradient-boosting decision trees (GBDT)
trained on handwritten digit images from MNIST and census income dataset.

ART library implements many advanced adversarial attack algorithms, which are
used to create adversarial examples for most well known ML/DNN models and its
applications. In the benchmark experiments or development of a secured ML sys-
tem, ART provides framework-agnostic library modules, i.e., an implementation of
Python code for the state-of-the-art adversarial attacks, defenses, and robustness
metrics. ART 1.5.1 library has a total of 37 security attacks on ML/AI systems,
including 32 evasion attacks and 5 data poisoning attacks.

ART 1.5.1 Evasion & Poison Attacks

."f Supports
| 432%

|, 56.8% \
Mot supports | \

Figure 3.1: ART evasion and poison attacks supports scikit-learn or Light GBM
ML frameworks.

Adversarial attack methods implemented in ART are considered to be ML frame-
work independent and work with a number of ML/DNN models. But as shown

12



in Fig. 3.1 more than half of the attacks unable to poisoned or create adver-
sarial examples from input data on ML algorithms: SVM, DT, RF trained with
scikit-learn; GBDT trained with Light GBM ML framework (Appendix I: Table 5.1
contains list of ART attack algorithms excluded from evaluation). Since, some at-
tack algorithms are designed and implemented to support only a specific ML,/DNN
model, library, algorithm and application. For example, ART ShapeShifter attacks
against deep learning models to object detection application. ART Decision Tree
attack supports only scikit-learn decision tree classifier, But ART evasion attacks
which are listed in Table 3.1, except Decision Tree attack creates adversarial ex-
ample to fool the target SVM model. With these considerations, Our work focuses
on ART attack methods against supervised ML algorithms are: SVM, DT, RF
trained with scikit-learn and GBDT trained with light GBM on image and tabular
data for classification tasks.

This chapter is organized as follows. we review ART evasion attack algorithms in
Section 3.1 and ART poisoning attack algorithm in Section 3.2. In evasion attack
section, we review 15 ART evasion attacks, for instance, 14/15 of these evasion
attacks against SVM model (as shown in Table 3.1). and in the data poison attacks
section, we review only 1 ART poisoning attack on SVM.

3.1 ART Evasion Attacks

In ART evasion attacks, we generate adversarial examples in the targeted and un-
targeted settings. Note that the following two approaches will be used to perform
framework-agnostic evasion attacks against ML models in ART are:

Approach #1: using pretrained models

1. Load a dataset (if needed do preprocessing).

2. Load pretrained model.

3. Create the ART classifier and wrap a model.

4. Generate adversarial examples using ART evasion attack algorithm.

5. To evaluate the classifier, predictions are made on the adversarial examples.
Approach #2: using untrained models

1. Load a dataset (if needed do preprocessing)

2. Create/build a model

3. Create ART classifier and fit a model.

4. Generate adversarial examples using ART evasion attack algorithm.

5. To evaluate the classifier, predictions are made on the adversarial examples.

13



Table 3.1: ART evasion attacks sorted by submission year
(recent on the top).

ART Evasion Attacks

No, Attack Algorithms Attack Attack Type | Objective | Supports
Method on scikit-
learn /
Light GBM
1 | Targeted Universal Ad- || White-box | Gradient-based | Targeted SVM
versarial Perturbations
(UAPs, Hirano and Take-
moto, 2019), Section 3.1.1
SVM
. . DT
2 | HopSkipJump Attack || Black-box | Decision-based | Both RF
(HSJA, Chen and Jordan, GBDT
2019), Section 3.1.3
SVM
. DT
3 | Boundary Attack (BA, || Black-box | Decision-based | Both
RF
Brendel et al., 2018), GBDT
Section 3.1.3
4 | NewtonFool (Jang et al., || White-box | Gradient-based | Untargeted| SVM
2017), Section 3.1.1
SVM
o DT
5 Zeroth-order optimization || Black-box | Score-based Both RF
Attack (ZOO, Chen et al., GBDT
2017), Section 3.1.2
6 | Elastic-Net Attack (EAD, || White-box | Gradient-based | Both SVM
Chen et al., 2017), Section
3.1.1
7 | Projected Gradient Descent || White-box | Gradient-based | Both SVM
(PGD, Madry et al., 2017),
Section 3.1.1
8 Carlini & Wagner Attack || White-box | Gradient-based | Both SVM
(C&W ,Carlini and Wagner,
2017), Section 3.1.1
SVM
9 | Universal Perturbation || White-box | Gradient-based | Untargeted| DT
(UP, Moosavi-Dezfooli RF
et al., 2016), Section 3.1.1
10 | Basic Iterative Method || White-box | Gradient-based | Both SVM
(BIM, Kurakin et al., 2016)
11 | DecisionTree Attack (Pa- || - Decision tree- | Untargeted| DT
pernot et al., 2016), Section based
3.1.4
12 | Jacobian  Saliency = Map || White-box | Gradient-based | Untargeted| SVM

Attack (JSMA, Papernot
et al., 2016) , Section 3.1.1
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13 | DeepFool (Moosavi- || White-box | Gradient-based | Untargeted| SVM
Dezfooli et al., 2015),
Section 3.1.1
SVM
. . . DT
14 | Virtual Adversarial Method || - Gradient-based | Untargeted R
(VAT, Miyato et al., 2015), GBDT
Section 3.1.1
15 | Fast Gradient Sign Method || White-box | Gradient-based | Both SVM

(FGSM, Goodfellow et al.,
2014) , Section 3.1.1

3.1.1 Gradient-based attacks

In this section, we review the gradient-based (belonging to white-box) attack al-
gorithms to produce adversarial examples.

Fast Gradient Method (FGM)

The Fast Gradient Method (FGM) (Nicolae et al., 2018) is a gradient-based attack,
which designed to find a perturbation for a given original example, such that the
classifier might forced to assigns the example to the wrong class in the targeted
and untargeted settings (see 2.2, Annex 5). This attack works by computing the
gradient of the loss with respect to the input once, and creating a small pertur-
bation by multiplying a small adversarial budget (denoted as €) by the vector of
the gradients, i.e. a fast attack method. This attack has two versions based on
distance metric used to create an adversarial example:

1. Fast Gradient Method attack, which uses /., norm to create adversarial ex-
ample is known as ”Fast Gradient Sign Method (FGSM)”, which is originally
implemented by Goodfellow et al. (2014). Figure 3.3 shows the images gener-
ated using ART FGSM attack, in which an adversarial image were created by
changing to relatively gray color of some background (black) and foreground
(white) pixel of the original image.

In FGSM attack, a small perturbation (denoted as ¢) is generated by com-
puting the gradient of the classifier loss function w.r.t the input x is given as:

d = —e- sign(ViL(x,y)) (3.1)

where € > 0 is the size of the adversarial perturbation (adversarial bud-
get) with in £, norm, x is the input data and normalized into [0,1], y is
either the class labels associated with x or specified by the attacker in untar-
geted and targeted settings, respectively. The gradient of the loss function
of the targeted classifier is computed with respect to input x (Backpropa-
gation algorithm used for DNN) and the sign of the gradient indicates the
perturbation direction. the value of attack input variation e controls the
perturbation strength. Increasing e value will increase misclassification, but
the adversarial image is very different from the original image. Instead using
small e for which x 4+ ¢ is remains adversarial and maintains the similarity
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Figure 3.2: Generating perturbation and adversarial example by FGSM
(From Goodfellow et al., 2014)

between the original and adversarial example (see Figure 3.2 for illustration
of FGSM attack on MNIST).

2. Fast Gradient Method (FGM) is an attack implementation based on ¢; and
{5 norm to create an adversarial example. In contrast to FGSM, the pertur-
bation ¢ is computed as:

_ .. Vxlxy)
o= L), (3.2

where p=1 and 2 for ¢;,/5 norm, respectively. In ¢, norm, we create the
adversarial examples by adding the perturbation value computed in Equation
(3.2) in the direction of the gradient.

In ART, the adversarial examples for all attack methods are constructed using
clip function, which brings the value of adversarial example within allocated range
during constructing of the adversarial examples, i.e., in the range of [0,1]. In
FGM/FGSM attack, the adversarial example x’ is created using Equation (3.3).

x’ = clip(X + 0, Xmin, Xmaz) (3.3)

] 1 2 3 4 5 5] 7 8 9
E “ .:
Ovs2 1vsg 2 Ays? 5 Gvs8 7

<1 3 G 3 R I I e P

Figure 3.3: The top-side of the figure shows image of original MNIST and the
bottom-side shows the perturbed images generated by ART FGSM under /., norm
bounded by € = 0.3 and predicted class labels by SVM model.
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In ART FGM/FGSM attack, the minimal perturbation parameter is used to attack
in constraint of maximum input variation (denoted as €,,,,) and step size (denoted
as €step). When minimal perturbation applied, the attack performed iteratively
with given step size until the attack succeed or failed (if €sep > €maz). This
computing with minimal perturbation is shown in Figure 4.9.

Basic Iterative Method (BIM)

The Basic Iterative Method (BIM) (Nicolae et al., 2018) is an extension of FGSM
attack in the targeted and untargeted settings (see 2.4, Annex 5), in which an
adversarial example is created based on iterative procedure to modify the input
within the /o, norm bound of adversarial budget € via chosen step size €., at each
iteration, where 0 < €y, < €.

Projected Gradient Descent (PGD)

The Projected Gradient Descent (PGD) (Nicolae et al., 2018) is an extension of
FGSM attack, which modifies the input multiple times iteratively in the targeted
and untargeted settings. In contrast with BIM attack, PGD perturbs the input
example using ¢y, {5 and ¢, norm. Figure 3.4 shows the images generated using

ART FGSM, BIM, PGD attacks.

0 1 2 3 4 5 3] 7 8 9
I!:::I II[]II I!IIII I!Ei'l Iiiill IEEiil IIE;II Iliiil |I!iii| Iliiil
orginal :
Ovs2 1vs8 Ays2 evs8

Ovs2 1vsg qys2 ovsg

Ovs2 1vsd 2vs8 dus2 ovsd  Tvs2 Gvsh

Figure 3.4: Image of original and perturbed images generated by ART FGSM,
BIM, and PGD attacks under /., norm bounded by ¢ = 0.3 on MNIST and pre-
dicted class labels by SVM model.

Carlini & Wagner (C&W) Attack

The Carlini & Wagner (C&W) ¢, attack (Nicolae et al., 2018; Carlini and Wagner,
2017) is a gradient-based attack aims at finding adversarial example using mini-
mum ¢, norm of adversarial perturbations in the targeted and untargeted settings.
The targeted version of the C&W attack solves the optimization problem in Equa-
tion (3.4) to find the smallest ¢ for which the ¢(x’) minimizing the objective func-
tion such that ¢(x’) = 0. In the equation, ||x” —x]||, is the distance between the
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original example x and adversarial example x’, £(x’) is the approximation function,
y is the target label, £ > 0 is a confidence parameter, c is a size of perturbation.
Therefore, we have the constraint [|x” — x||, < € for a given € > 0.

minimize |x’ — x|, +c- £(x’)
Such that ||x—x|, <e (3.4)
where ((x') = max(mazx {Z;(x") i € Y\ {y}} — Z,(x") + k,0).

Where Z is the logit for input x’, in the targeted setting ¢(x’)=0 if and only if the
clasifier C(x")=

In contrast, the untargeted version of the C&W attack solves the objective function
in Equation (3.5).

U(x") = max(Z,(x’) — mazx{Z;(x") :i € Y\ {y}} + k,0) (3.5)
In the ART implementation, the distance metric are ¢, and ¢, norm. and, binary

search method is used to find c. Figure 3.5 shows the images generated using ART
C&W U, attack (more in 2.7, Annex 5).

EHEEHEEEEE

Ovs9  1vsd 2vsg 4ys9 SysT

EBIIIIEIII

Ovs9  1vsd 2vs8 Ivs9 4ys9 evsd  Tvso 8vs0 SusT

. ENEERGARER

Figure 3.5: Image of original and perturbed images generated by ART C&W (/)
attack on MNIST. As a result, the predicted class labels by SVM model.

Original

Elastic-Net (EAD) Attack

The Elastic-Net (EAD) attack (Nicolae et al., 2018; Chen et al., 2017) is a gradient-
based attack aims to minimize ¢; norm of adversarial perturbations in the targeted
and untargeted settings. Figure 3.6 shows the images generated using ART EAD
attack. In addition, EAD uses elastic-net regularization method (see 2.8, Annex
5).

Chen et al., (2017) proposed variant of C&W attack with ¢; norm of adversarial
perturbations. ¢; norm is a convex function which measures the number of modified
pixels (when the input is image), i.e., sparsity by the perturbation and small
number of perturbation is enough for attack.
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Figure 3.6: The top-side of the figure shows image of original MNIST and the
bottom-side shows the perturbed images generated by ART Elastic-Net EAD(EN)
attack with 100 iterations. As a result, the predicted class labels by SVM model.

Universal Perturbation (UP)

The Universal perturbations (UP) (Nicolae et al., 2018) aims at finding a sin-
gle adversarial perturbation p, i.e., used to generate input agnostic perturbations
using the following algorithms: FGSM, C&W, DeepFool, BIM, PGD, EAD, New-
tonFool, JSMA, and VAT in the untargeted setting. Figure 3.7 shows the images
generated using ART FGSM and UP attacks.

Moosavi-Dezfooli et al., (2016) proposed a universal perturbation computing algo-
rithm and demonstrate a single perturbation, which is image-agnostic can causes
high probability classification errors on a natural images using DNN model.

The Universal Adversarial Perturbation implementation in (Nicolae et al., 2018)
is an iterative procedure to accumulate the universal perturbation on random
inputs, and its refined universal perturbation is projected into the £, norm with
the maximum bound e for attack strength. When iteration ends and the attack
failure tolerance satisfies, the final universal perturbation p is added to examples
to create adversarial examples (see Equation (3.6)).

X =X+p (3.6)

0 1 2 3 4 5 3] 7 g 9
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Ovs:  1vsE8 EvsE Qvs5

Ivs2 qus7 vs7

Figure 3.7: Image of original and perturbed images generated by ART FGSM and
UP attack with /., norm bounded by € = 0.3 on MNIST. As a result, the predicted
class labels by SVM model.

Original

FGSM
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Targeted Universal Adversarial Perturbations (UAPs)

The Targeted Universal Adversarial Perturbations (UAPs) (Nicolae et al., 2018) is
similar with UP attack, but the main difference is UAPs attack works in the tar-
geted setting (Hirano and Takemoto, 2019), and with two algorithm: Fast Gradi-
ent Sign Method (FGSM) and Simple Black-box Adversarial (SimBA) algorithms.
Figure 3.8 shows the images generated using ART FGSM and UP attacks.

EHEENRENRER
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Figure 3.8: Image of original and perturbed images generated by ART FGSM and
UAP attacks with /o, norm bounded by ¢ = 0.3 and prediction of the classifier on
MNIST. As a result, the predicted class labels by SVM model.

Jacobian Saliency Map Attack (JSMA)

The Jacobian-based Saliency Map Attack (JSMA) (Nicolae et al., 2018) is a
gradient-based attack, which aims at perturbing a small set of input features i.e.
controlling by ¢y norm (sparse perturbations), instead of the whole input features,
and based on the saliency map to create an adversarial examples in the untargeted

setting Papernot et al., (2016). Figure 3.9 shows the images generated using ART
JSMA attack.

The JSMA method implementation in (Nicolae et al., 2018) is an iterative proce-
dure, in which for a given input example with target label, the algorithm computes
a saliency map using saliency_map function, then based on the saliency map, the
algorithm iteratively chose a small set of input features to change at each step
to construct an adversarial example that will increase the likelihood of the target
label (see 2.4, Annex 5).

DeepFool

The DeepFool (Nicolae et al., 2018) is a gradient-based attack, its goal is to find a
minimum adversarial perturbation direction that push the original example x over
the separating hyperplane of the classifier C(x) with ¢, norm to assigns the ex-
ample to the different class in the untargeted setting. Note that, the perturbation
applied iteratively in case of nonlinear problems. Figure 3.10 shows the images
generated using ART DeepFool attack.
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Figure 3.9: The top-side of the figure shows image of original MNIST and the
bottom-side shows the perturbed images generated by ART JSMA(¢,) attack and
predicted class labels by SVM model.

The DeepFool attack implementation in (Nicolae et al., 2018) is based on an itera-
tive procedure to find the nearest decision boundary in /5 distance metric and push
the original example over the decision boundaries until a different target label ob-
tained or maximum iteration reached, and the results of adversarial perturbation
d is computed using multiplied by a factor 1 plus overshoot parameter (termed
epsilon € > 0) in Equation (3.7) to push the example over the decision boundary,
then adversarial example constructed as in Equation (3.8):

d=(1+4¢- (X —x) (3.7)

x’ = clip(X + 0, Xmin, Xmaz) (3.8)

Moosavi-Dezfooli et al., (2015) shows that the computed perturbation using this
algorithm is faster than FGSM (see 2.5, Annex 5).

0 1 2 3 4 5 & 7 g 9
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Figure 3.10: The top-side of the figure shows image of original MNIST and the
bottom-side shows the perturbed images generated by ART DeepFool(¢s) attack
with € = le — 6 and 100 iterations. As a result, the predicted class labels by SVM
model.

NewtonFool

The NewtonFool (Nicolae et al., 2018) is a gradient-based attack, in which the
attack aims to decrease class probabilities (softmax output for Neural Networks)
to zero by applying gradient descent in the untargeted setting (Jang et al., 2017).
Figure 3.11 shows the images generated using ART NewtonFool attack.
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The NewtonFool attack implementation in (Nicolae et al., 2018; Jang et al., 2017)
is based on iterative procedure to find small perturbation d such that the proba-
bility F,(z+d) ~ 0. In each iteration, compute using Newton’s method for solving
the step size (denoted as ¢), which changes over time based on step 6 in Newton-
Fool attack algorithm and tuning parameter n € (0,1) to control how small the
perturbation does, the perturbation d is computed as based on Equation (3.9),
and results of adversarial example constructed (see 2.6, Annex 5) using Equation

(3.10).

§-VE,(x)

d= oo (3.9)
IVE,(x)]|2

x’ = clip(x + d, Xpmin, Xmaz) (3.10)
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Figure 3.11: The top-side of the figure shows image of original MNIST and the
bottom-side shows the perturbed images generated by ART Newton({y) attack
with n = 0.1. As a result, the predicted class labels by SVM model.

Virtual Adversarial Method (VAT)

The Virtual Adversarial Method (VAT) (Nicolae et al., 2018) is a gradient-based
attack aims at finding ¢, norm bounded adversarial perturbation by maximiz-
ing the Kullback-Leibler (KL) divergence between output distribution in the un-
targeted setting. Note that, VAT uses a local distributional smoothness (LDS)
technique for the output distribution of the classifier in the adversarial training
methods (Miyato et al., 2015).

The Virtual Adversarial Method with finite differences implementation in (Nicolae
et al., 2018) is based on iterative approach to construct a perturbation d under
minimum ¢, norm and computes KL divergence.

3.1.2 Score-based attacks

In this section, we review Zeroth-order optimization (ZOO) attack only, i.e., a
score-based attack algorithm to produce adversarial examples compatible with
traditional ML algorithms.

Zeroth-order optimization (ZOO) Attack

The Zeroth-order optimization (ZOO) Attack (Nicolae et al., 2018) is a score-based
(black-box) version of C&W (/y) attack in the targeted and untargeted settings
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(see 4.1-4.4, in Annex 5). Chen et al., (2017) proposed a black-box (query-based)
attack, aims to estimate the gradients of the objective function with respect to the
input x using stochastic coordinate descent, i.e., in each iteration computes the
gradient of a batch of input coordinate or dimension instead of the whole input
features. In the ART ZOO attack implementation, the optimization algorithm is
based on ADAM coordinate descent method. The illustration in Figure 3.12 shows
that an adversarial images produced by ART ZOO attack on MNIST.

0 1 2 3 4 5 +] 7 2] 9
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Figure 3.12: Image of original and perturbed images generated by ART ZOO(¢5)
attack on MNIST. As a result, the predicted class labels by DT model results 60%,
70%, and 70% fooling rate for step size 0.1, 0.3 and 1, respectively.

Original

3.1.3 Decision-based attacks

In this section, we reviews two decision-based attack algorithms to produce adver-
sarial examples compatible with traditional ML algorithms.

Boundary Attack (BA)

The Boundary Attack (BA) (Nicolae et al., 2018) is the first successful decision-
based attack, and works in the targeted setting. Figure 3.13 shows the images
generated using ART Boundary attack on DT, RF, GBDT, and SVM models on
MNIST.

Brendel et al. (2018) proposed a heuristic algorithm, in which the algorithm first
initialize a sample that is already adversarial, and then perturbs this sample along
the decision boundary, until the perturbed input minimizes the ¢, norm difference
with respect to the original input is as follow:

e Proposal distribution: sample from normal distribution A(0,1) and then
rescale and clip the sample.

e Projection: project onto a sphere around the original input.
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e Decision boundary: finally make a small movement towards the original
input.
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Figure 3.13: Image of original and perturbed images generated by BA (/) against
DT, RF, GBDT, and SVM models on MNIST with 100 iterations and ¢ = 0.01.
As a result, the predicted class labels for adversarial images by DT, RF, GBDT,
and SVM models.

Original

GBD

SVM

HopSkipJump Attack (HSJA)

The HopSkipJump Attack (HSJA) (Nicolae et al., 2018) is an algorithm that uses
decision boundary to create an adversarial example in the targeted and untargeted

settings. Figure 3.14 shows the images generated using ART HopSkipJump attack
on DT, RF, GBDT, and SVM models on MNIST.

Chen and Jordan (2019) proposed HopSkipJump attack, which is an improved
version of the Boundary attack, i.e., fewer model queries used to craft adversarial
examples using /5 and /., norms. The algorithm introduced by the author’s is an
iterative algorithm and in each iteration the following functions are executed:

1. Boundary search: performs binary search from the last iteration if exists
to approach the decision boundary. First, set upper and lower bounds as
well as the threshold for the binary search, then start the binary search
by updating the upper bound and lower bound iteratively, see Bin-Search
algorithm in Chen and Jordan (2019).

2. Gradient-direction estimation: the gradient direction is estimated, since
the gradient of the model with respect to the input is not available, see
Eq.(16) in Chen and Jordan ( 2019).
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3. Step size search: the updating step size along the gradient direction is
initialized, see Eq.(13) in Chen and Jordan (2019).
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Figure 3.14: Image of original and perturbed images generated by HSJA(/.,) at-
tack against DT, RF, GBDT, and SVM models on MNIST with 10 iterations and
€ = 0.01. As a result, the predicted class labels for adversarial images by DT, RF,
GBDT, and SVM models.

SVM

3.1.4 Decision tree-based attacks

In this section, we see the decision tree based attack algorithm to produce adver-
sarial examples.

Decision Tree attack

The Decision Tree attack (Nicolae et al., 2018) is an algorithm that uses decision
tree structure to create an adversarial example in the untargeted setting (see Fig-
ure 3.16).

Decision Tree attack is a pioneer work on adversarial attack against DT model. In
ART, this algorithm is implemented based on the crafting decision tree adversarial
samples algorithm in Papernot et al., (2016).

Given a decision tree, original examples and its corresponding class labels as shown
in Figure 3.15, the algorithm first finds the leaf in decision tree corresponding to
example given and then search leaves with different classes in the neighborhood of
the original leaf using simple tree search procedure, then the searched leaf used as
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an adversarial leaf. In the second step, the algorithm modifies the example accord-
ingly to traverse to adversarial leaf. As a result the modified example (adversarial
example) created, in which the targeted classifier outputs a wrong result.

Figure 3.15: Generating adversarial examples with DecisionTree Attack
(From Papernot et al., (2016))

0 1 2 3 4 5 6 7 3 9
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EHEENREHRED

Figure 3.16: The top-side of the figure shows image of original MNIST and the
bottom-side shows the perturbed images generated by ART Decision Tree attack
and predicted class labels by DT model, i.e., 100% assigns the adversarial images
to the wrong class but it looks very similar to the original image.

3.2 ART Poisoning Attacks

In case of adversarial poisoning attacks, adversaries feed malicious input that will
be used to fit a model, then due to malicious training data are used to fit a model,
this classifier test error will be high.

3.2.1 Adversarial Poisoning Attack on SVM

The Adversarial Poisoning attack on Support Vector Machines (SVM) is a white-
box attack, in which adversaries introduce malicious input to fit the SVM model
in the targeted and untargeted settings. The following pseudo-code describes the
implementation of this attack in ART, which will accepts SVM model and mali-
cious sample input, then it finds attack points (adversarial examples) iteratively
starting from given malicious sample input, which are initialized as attack points
(at least one malicious input required), then compute per-class derivatives with re-
spect to the attack point, which the attack class will be the opposite of the model’s
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classification for the attack point, results a poisonous model and adversarial ex-
amples returned. The malicious training data (adversarial and original examples)
are used to fit the model, in which the decision boundaries of the model might
wrongly classify new unseen test data or the model performance decreases. The
implementation of this attack algorithm in ART is based on Biggio et al., (2012)
and supports only LinearSVC and SVC model types provided by scikit-learn ML
framework? .

Based on the ART implementation, we can review two specific functions from the
Poisoning attack on SVM module functions. First create a wrapper class, which
is used to train scikit-learn implementation of the SVM algorithm. Then initialize
the data poison attack module “PoisoningAttackSVM” | which has trained model,
training data and attack parameter settings. The training data must be cleaned
to remove duplicate examples and dividing it into training/test sets, and target
labels for the attack be specified. On the first function poison, which works by
accepting input as an initial attack points, then the algorithm iteratively finds the
optimal attack points (i.e. poisoned examples and poisoned labels), then list of
poisoned examples and labels are returned. Note that, providing parameters such
as maximum number of iterations will increase data poisoning attack on original
input data. The function attack gradient, which implements the algorithm based
on Eq. (8) in Biggio et al., ( 2012) calculates and returns list of attack gradients
using the specified tolerance level.
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Chapter 4

Experiments and Analysis

4.1 Experimental setup

Our experimental setup is based on the current version of Adversarial Robustness
Toolbox (version 1.5.1), Scikit-learn (version 0.23.1) and Light GBM (version 3.1.1)
with Jupyter Lab and Jupyter Notebooks, to perform the threat of evasion and poi-
son attacks against supervised machine learning models: support vector machines
(SVM), decision trees (DT), random forest (RF), gradient-boosting decision trees
(GBDT); applied to census income tabular data and MNIST handwritten digit
image classification dataset.

We compare ART Attacks (i.e., data poisoning and evasion attacks) against the
baseline models, in which the models doesn’t implement any adversarial defense
techniques at training and test time, respectively.

We identified 15 evasion attacks and 1 poisoning attack implemented in ART;
and in the following experiment, we will analyze and evaluate the performance of
our chosen classifiers under ART attacks in targeted and untargeted adversarial
settings, and evaluate their performance for tabular and image data. All the ex-
periments are done on a system with Intel core i3 2.53GHz CPUs (4-core) and
4GB RAM.

4.2 Dataset

ART supports all kinds of data types such as tabular, audio, video, images and
others. Among a number of datasets available, we used the following two datasets
for our experimental analysis on tabular and image data types are as follow.

First, for a tabular data type we used the Census Income dataset from the UCI
Machine Learning Repository®, which refers from now as census. The census used
in our work contains 48,842 entries, by merging of train data® and test data®. It
has the following 15 columns entries: income group, age, work class, final weight,
education level, education number, marital status, occupation, relationship, race,

3https://archive.ics.uci.edu/ml/datasets/Census+Income
4https://archive.ics.uci.edu/ml/machine-learning-databases/adult /adult.data
Shttps://archive.ics.uci.edu/ml/machine-learning-databases/adult /adult.test
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sex, capital gain, capital loss, working hours per week, and native-country. The
class distribution in census: 76.1% entries labeled with <50k (or negative class)
and 23.9% entries labeled with >50k (or positive class), which means there is
skewness in the distribution. Hence, census class distribution are slightly skewed,
with around 3/4 of the entries labeled with negative class.

Second, for an image data type we used the handwritten digits from the MNIST
database®, which will be referred to as MNIST, which contains grayscale images
with size of 28 x 28 pixels of 10 digit images (from digit 0 to 9). This dataset
contains 70,000 digit images and labels values from 0 to 9, by merging the training
set and test set examples’ (see Figure 4.1). Each digit image has the size of 28
X 28 pixels, of each pixel value is in the range of 0 and 255 of pixel intensity
where 0 represents white color (or background) and 255 represents black color (or
foreground).

Class distribution of MNIST database
anoo
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Figure 4.1: Class label (or digits) distribution of mnist data.

4.3 Training and Evaluation

Following that, we train and evaluate our chosen baseline models, i.e. SVM, DT,
RF, and GBDT on the training data. With assumption to that, data preparation
is recommended before training our baseline models; this process is mandatory to
improve the performance of the model on test data, if the data is not processed
properly, then an errors may be raised during model training.

4.3.1 Data Preparation

We used data preprocessing techniques on both datasets. The data preprocessing
will be conducted with the below steps:

Shttp://yann.lecun.com/exdb/mnist/
"https://s3.amazonaws.com/img-datasets/mnist.npz
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e First we need to handle missing values. In fact, missing values are issues
in real world datasets. For instance, the census has missing values in some
categorical features. If missing values were not handled either by removing
or imputing, it will reduce the performance of the model or error will be
raised by many machine learning algorithms. To resolve missing data issues
in census, we used imputation methods for handling missing values that will
be replaced by the median and mode value for each numerical and categorical
columns, respectively (AMI, 2016).

e Then encoding categorical features, as machine learning algorithms like SVM
assumes numeric inputs then all categorical features in census data needs to
transform to numeric values. In census data, the following feature such as
work class, education level, marital status, occupation, relationship, race,
sex, and native-country are categorical data. To transform categorical data
to numerical data, we used get_dummies from pandas library® for one-hot
encoding, which binarize the categorical (discrete) features. To compute
gradient loss in ART, class labels must be transformed to one-hot encoded

labels, i.e., y is encoded as the y-th standard basis vector e, (Nicolae et al.,
2018).

e After handling categorical data, the next task is data scaling, we scaled
numerical features in census and mnist data using normalization scaling
method, which scales only the numeric features to [0,1] but categorical fea-
tures are already in [0,1]. It was recommended to build machine learning
model on scaled data. For example, SVM algorithm can efficiently compute
the gradient in scaled data. In ART, the attack algorithms generates an
adversarial example x’ in the valid range of [X,nin, Xmaz|, Which mean in [0,1]
when the given data is normalize (Nicolae et al., 2018).

e Last, we don’t use all features in census to train our baseline models. For
example, education number and level are basically the same, then we drop ed-
ucation number feature. The resulting set of features used in model training
are: age, work class, final weight, education level, marital status, occupation,
relationship, race, sex, capital gain, capital loss, working hours per week, and
native country.

Considering to MNIST, This dataset contains 1 channel gray color handwritten
digit images, each image is a size of 28 x 28 pixels, where each pixel value is in
the range of 0 and 255. In our work we used the preprocessed data’. Then we
applied two data preparation before model training and testing stages (1) data
scaling, which normalizes values (or pixel intensity values) between 0 and 1. In
this regard, ART can generates adversarial example 2z’ in the valid data range of
[Zmins Tmaz), which is in the range of [0,1]; (2) each digit image with 28X28 (as
shown in Figure 4.2 should be flattened to 784 features, where each feature value
is in the range of 0 and 255. mnist is an example of high dimensional features
dataset and in this work, we didn’t apply any feature reduction methods.

8https://pandas.pydata.org/
https://s3.amazonaws.com/img-datasets/mnist.npz

30


https://pandas.pydata.org/
https://s3.amazonaws.com/img-datasets/mnist.npz

Figure 4.2: Plotting digit ’eight’ from mnist

4.3.2 Model Training and Evaluation
On Tabular data type

In case of census, the problem is a binary classification task having two class labels:
either <50k Income (class=0 or negative class) or >50k Income (class=1 or positive
class). We split the census data into three parts while maintaining class distribu-
tion into 60%-+20%=20% parts: In which ~ 29k entries will be for training sets,
and ~ 9k entries will be for each validation and test sets. Validation sets are used
for model evaluation by tuning hyperparameters while training a model. on other
hand, training set and test set are used for model training and testing respectively.

Before data split, we shuffled the dataset using stratified k-fold cross validation?
instead of random k-fold cross validation. This technique is useful to preserve the
percentage of samples for each class under splitting the data in train/test sets.

We also use the same random seed to guarantee reproducibility on training and

test sets, which helps to compare performance between different models having
different hyperparameter settings.

Table 4.1: census training data

TargetLabel || Entries | InPercentage
<50k 29,724 76.073%
>50k 9,349 23.927%

Table 4.2: census test data

TargetLabel || Entries | InPercentage
<50k 7,431 76.067%
>50k 2,338 23.933%

Table 4.1 and 4.2 shows statistics information for census training and test data,
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respectively. Both training and test data contains a class distribution of approxi-
mately 76% entries labeled with <50k (or negative class) and approximately 24%
entries labeled with >50k (or positive class). This shows skewed distribution of
3/4 portions belongs to negative class on both training and test data.

For each baseline model, we used cross validation techniques with hyperparameter
settings to optimize model performance which generalize the performance on test
data. One of the useful advantages using hyperparameter tuning is to minimize
prediction errors concerning bias-variance trade-off. For example, a regularization
parameter such as the C-term in Ly penalty in scikit-learn support vector machine
are used as hyperparameter setting. Our machine learning model evaluation and
selection is based on K-Fold cross validation techniques. In this method, training
data is randomly separated into k folds, k-1 folds are used for training then one
for testing, Then summarized into mean and standard deviation of all k different
trained model performance scores.

The class distribution in census training data is skewed as shown in Table 4.1. The
performance of the trained model will be poor on minor class as a result of the
skewed class distribution. Hence, we use an oversampling technique called Syn-
thetic Minority Oversampling Technique (SMOTE)!® which is an over sampling
method to overcome class imbalance problem. Then the new training set resam-
pled to balanced class distribution (see Table 4.3). However, the test set remains
unchanged.

Table 4.3: census training data: over-sampling using SMOTE

TargetLabel || Entries | InPercentage
<50k 29,724 50%
>50k 29,724 50%

RandomizedSearchCV? is a scikit-learn API, which is a hyperparameter tuning
method based on randomized search with cross validation. On model training, this
method finds the best model by evaluating multiple models produced with ran-
domly selected hyperparameter values on validation sets. This process is known as
model selection. We fit a model using best hyperparameter values, then evaluate
the model on unseen data to generalize the model performance. We use Random-
izedSearchCV for hyperparameter tuning on training of SVM, DT and RF models.
Whereas, this API is not compatible with GBDT trained with Light GBM. To use
RandomizedSearchCV, we need to use LGBMClassifier'!, which is an extension
of Light GBM that interface with scikit-learn API’s. Whereas, the model trained
using LGBMClassifier is not compatible with ART library. For this reason, we use
an iterative procedure to search hyperparameter values. With this assumption, we
fit our model using the best hyperparameter values and used as a baseline model
in our ART attack experiments.

Ohttps://imbalanced-learn.org
Hhttps://github.com/microsoft/LightGBM
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The following performance metrics are used to evaluate our classification models:
precision, recall, micro F1 score, receiver-operating characteristic and area under
the curve (ROC-AUC) and matthews correlation coefficient (MCC) on census test
data, since the distribution of classes is not symmetrical; macro accuracy used for
model performance on mnist test data.

On mnist data, the problem is multiclass classification task and having 10 class
labels with relatively balanced dataset as shown in Figure 4.1, there is a balanced
distribution of digits in the dataset, except ‘digit 1’ occurs more than other digits.
Hence, macro accuracy (balanced accuracy) performance metric is useful evalua-
tion metric.

Before considering a comparison between ART attacks for prediction performance
of chosen classifiers on original and adversarial examples. Let’s start with the
summary and visualization of the performance of the baseline models on test data
(original examples) and which are attack unaware models. Figure 4.3 shows con-
fusion matrix results for each baseline classifiers: SVM, DT, RF and GBDT. We
evaluate each baseline classifier on 9769 census test data.
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Figure 4.3: Visualization of confusion matrix result for census test sets

All evaluation metrics mentioned in this thesis are based on the confusion matrix
(Ferndndez et al., 2018). In our model selection, ROC AUC metric is used to com-
pare models, Figure 4.4 shows the ROC AUC performance of the best model on
census test data. The hyper-parameter settings used to train best model configura-
tion for the census and MNIST data are specified in Tables 4.5 and 4.6, respectively.
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Figure 4.4: Visualization of ROC Curve on census

Table 4.4 shows baseline model performance results evaluated with =~ 9k census
test data: precision, recall, F1 score, ROC AUC and MCC (best results in bold-
face). GBDT has best performance compared to other models in precision, F1
score, ROC-AUC and MCC. whereas, DT has better result on recall compared to
RF and GBDT.

Table 4.4: Experimental result on ~ 9k census test data. (best results in boldface)

| Model | Precision | Recall | Fy score | ROC-AUC | MCC |

SVM 0.635 0.325 0.794 0.776 0.346
DT 0.614 0.763 | 0.828 0.897 0.571
RF 0.689 0.714 0.855 0.913 0.605

GBDT | 0.719 0.707 | 0.864 0.924 0.624

On Image data type

Our aim here is to correctly guess the digit value of a handwritten digit image on
MNIST data, which indicates a multiclass classification problem. Now similar with
model training on census data, we split the MNIST data into three parts while
maintaining class distribution into 60%-+20%-20% parts: In which 42k entries for
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Table 4.5: Hyperparameter configuration used for model training on census

\ Classifier

\ Grid search intervals

\ Model hyperparameter

Scikit-learn
SVC

C=stats.uniform(0.5, 10)
gamma=stats.uniform(0.1, 1)
kernel=["linear’, 'rbf’, 'poly’]

C=5.134701386869259
gamma=0.8514309967653098
kernel=rbf

probability=True
random_state=42

Scikit-learn
DecisionTree

max_depth=randint(3, 50)
max_leaf_nodes=randint(5, 1000),
min_samples_split=randint(2, 100)

max_depth=46
max_leaf nodes=97
min_samples_split=5
random_state=42

Scikit-learn

max_depth=randint(4, 50),
min_samples_split=randint(3, 25)

max_depth=45
min_samples_split=11
n_estimators=748

(};{SindomFor— n_estimators=randint (10, 1000), random state—d?
learning rate=0.19422055180753994
. . boosting_type=gbdt
learning_rate=random.uniform(0, 1) o . ,
. ) , objective=multiclass
boosting_type=['gbdt’|
: num_class=(2,)
: sub_feature=random.uniform(0, 1) : :
Light GBM num _leaves—randint (20, 300) metric=multi_logloss
Gradient- . o ' sub_feature=0.4582447205067339
min_data=randint(10, 100)
Boosted max_depth=randint(5, 97) num-_leaves=150
Decision GOt ’ min_data=12
Trees max_depth=88

35




training sets, 14k entries for validation and 14k entries for test sets.

In addition to the size of the split and before applying split, shuffle the dataset us-
ing stratified k-fold cross validation used instead of random k-fold cross validation.
We use stratified k-fold cross validation to preserve the percentage of examples for
each class under splitting the data in train/test sets.

Table 4.7 shows model performance results evaluated with 14k MNIST test data
using macro accuracy metric. The GBDT model has achieved best accuracy per-
formance compared to other models, and Figure (4.6) shows the per-class accuracy
comparison of each models.

Figure 4.5 shows confusion matrix results for classifiers: SVM, DT, RF and GBDT.
We evaluate each classifier on 14k MNIST test data (original example). As we can
see, we had fewer errors on SVM, RF and GBDT models than in DT, where one
digit was misclassified as another digit.

Table 4.6: Hyperparameter configuration used for model training on MNIST

\ Classifier \ Grid search intervals \ Model hyperparameter
C=0.001
kernel=["poly’, 'rbf’] gamma=10
Scikit-learn C:[0.001] kernel=poly
SVC gamma=/[10] probability=True
random _state=42
Scikit-learn max_depth=(2, 4, 10, 784, None) max.depth=784
DecisionTree random _state=42
max_depth=784
Scikit-learn n_estimators=(10, 25, 50, 100) E;sltalsriziu‘iors:25
(E{SimdomFor- random _state=42
learning rate=0.242
boosting_type=gbdt
learning_rate=random.uniform(0, 1) ziﬁc(tjggj_n(nllétl)class
boosting type=[gbdt’] metr&c—m;lti 170 loss
: sub_feature=random.uniform(0, 1) N 08
Light GBM . sub_feature=0.986
. num_leaves=random.randint(20, 300)
Gradient- . : num _leaves=179
min_data=random.randint(10, 100) .
Boosted max_depth=random.randint(5, 784) min.data=88
Decision ~CepH= ' ’ max_depth=>596
Trees num_iterations=100
early_stopping_round=None
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Table 4.7: Experimental result on 14k MNIST test data. (best results in boldface)

‘ Model ‘ Accuracy ‘

SVM 0.9957
DT 0.9749
RF 0.9922
GBDT | 0.9959
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Figure 4.5: Visualization of confusion matrix result on MNIST test data
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4.4 Experimental Evaluation

Following reviews on adversarial attacks implemented in ART and trained models,
we evaluate ART attacks against trained models on census and MNIST data at
test and training time. All the adversarial examples were generated on the test
data.

We evaluates the fooling (success) rate!? | i.e., the percentage of successful adver-
sarial examples of an attack given by:

n 1(Yadw, = ¥i) ifAis atargeted attack
. examples aav; 1
Successa = ) ;51 {1(yadvi Z Yo, ) otherwise

1

Nexamples

Successratey = (Success )

Where the i-th entry of y, and y,4, specifies the predicted label of original example
and adversarial example, respectively. whereas, the i-th entry of y is a target label
assigned by the attack A. Note that, the success rate in targeted attack setting
calculate based on the attack to the desired (or assigned) class label only.

Our experiments organized in two sections: (1) evasion attacks in ART, (2) data
poisoning in ART.

4.4.1 Evasion attacks in ART

In this section, we report on the evasion attacks implemented in ART on chosen
trained models. Tables 4.8 and 4.9 show the performance of those models before
attack (or model performance on original examples). We consider two adversarial

12art /utils.py
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settings: (1) Targeted attack, in which the attack uses random targets'? function
to generate random class labels but different from the corresponding input true
labels. for example, in binary classification task, the class label assigned to its
corresponding opposite class label; (2) Untargeted attack, we didn’t provide true
labels with the classifier input because this approach prone to label leaking effect,
instead for target label, we use the prediction of the classification of the input
to prevent the label leaking problem (Nicolae et al., 2018). Figure 4.7 shows the
confusion matrix that gives information to know how many digits were misclassified
for 100 MNIST original examples by each baseline models.
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Figure 4.7: Visualization of confusion matrix for 100 MNIST original examples

Table 4.8: Experimental result on census 1500 original examples. (best results in
boldface)

Baseline models Precision Recall Fj score MCC

SVM 0.628 0.35 0.804 0.363
DT 0.592 0.781 0.827 0.568
RF 0.667 0.723  0.854 0.599
GBDT 0.694 0.714 0.863 0.615
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Table 4.9: Experimental result on MNIST 100 original examples. (best results in
boldface)

Baseline models Accuracy

SVM 0.994
DT 0.972
RF 0.986
GBDT 0.998

Decision Tree-based attack

In this section, we report on the performance of ART DecisionTree attack against
decision trees with different values of offsets/threshold, such as 0.0001, 0.001, 0.01,
0.1, and 1. Note that, this attack method gives similar result to the offset specified
here and supports scikit-learn DecisionTree classifier only.

On Tabular data type: To evaluate this attack on tabular data type, we uses
all census test data, which is approximately 9k original examples. Since, this
attack is fast, we generates approximately 9k adversarial examples against decision
trees in untargeted setting. As a result, the model wrongly predict by 92.38%
on the adversarial examples. Table 4.10 shows the experimental result of ART
DecisionTree attack with offset=0.01. We can see that the model performance on
adversarial examples are decreases (best results in boldface).

Table 4.10: Experimental results using ART DecisionTree attack against decision
trees on census.

Test data  Precision Recall Micro F1 score  MCC  Fooling rate(%)

Original 0.614 0.763 0.828 0.571 -
Adversarial 0.082 0.214 0.237 -0.478 92.38

On Image data type: We evaluate adversarial attacked examples generated by
ART DecisionTree attack with different values of offsets on 100 MNIST original
examples in the untargeted setting. The model test accuracy on adversarial ex-
amples and original examples are 2% and 97.2%, respectively. In addition, the
fooling rate of this attack has 100%. As an example, consider Annex 5 shows the
prediction on adversarial examples generated with 0.1 and 1 offsets. The adver-
sarial example produced by this attack are very similar to the original image while
being misclassified by the model, which is 100 percent wrong prediction (Annex 5
shows the comparison of this attack with Boundary attack, HSJA(/;), and ZOO
attack), DecisionTree attack outperformed all other models against decision trees
in terms of the adversarial images produced are similar with the original image
and fooling rate, but its limitation is, it works only in the untargeted setting only.
On the other hand, accuracy depend on the model performance, in which the per-
formance of the model is 97.2% on original examples (see Table 4.9). For example,
the targeted model classify digit 3 by 5 on original examples and then the same
digit classified as 3 in adversarial examples. The result is shown in Figure 4.8.
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Figure 4.8: MNIST: ART DecisionTree attack against Decision Trees with off-
set=0.01

Gradient-based attacks

In this section, we run two experiments using the parameters in Table 4.11 in the
targeted and untargeted settings. First, we evaluates ART FGM, FGSM, BIM,
and PGD attacks against SVM model on 1500 census and 100 MNIST test data.
Second, we evaluates ART FGM, FGSM, UP and UAP against SVM model on
1500 census and 100 MNIST test data.

On Tabular data type: ART FGM, FGSM, BIM, and PGD attacks

e Targeted setting: In Table 4.12, FGM(¢;) and FGM({;) attack achieves
95.06% and 95.33% success rate with ¢ = 0.1, respectively. However, FGSM ()
attack achieve 97.8% success rate with e = 0.1, whereas FGM(¢;) and FGM(¢3)
at €=0.5 and £=0.3, respectively. F} score drops from 0.804 on original ex-
amples (Table 4.8) to 0.049, 0.047, and 0.022 on adversarial examples created
under the FGM(¢;), FGM({;), and FGSM (/) attacks, respectively. Figure
4.9 shows that FGSM({,) performance metrics when computing with and
without minimal perturbation budget. BIM (/) attack with e=0.1 achieves
97.8% fooling rate, and MCC drops from 0.363 on original examples (Ta-
ble 4.8) to -0.937 on adversarial examples. In PGD attack, with e=0.1, we
achieves 95.6%, 97.39%, and 97.8% fooling rate under the ¢;, ¢y, and /
distance metrics, respectively. MCC drops from 0.363 on original examples
to -0.874, -0.926, and -0.937 on adversarial examples created by PGD(¢;),
PGD(4;), PGD({,), respectively. Since ART implements an extension on
FGM/FGSM attack, the attack success rate achieved is comparable with the
iterative versions, i.e., BIM and PGD attacks.

e Untargeted setting: In Table 4.13, those attacks fooling rate is similar
with in the targeted setting, But the performance of the model is changed,
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Table 4.11: Parameters for the gradient-based attack algorithms

Attack Algorithm Parameters
FGM(¢;), FGM(43), FGSM (/) e=0.1, 0.3, 0.5, 0.7, 0.9, 1.0;
6step:O‘]-;

minimal perturbation=True

BIM((-)

e=0.1, 0.3, 0.5, 0.7, 0.9, 1.0;
gstep:()-]-;
maximum iteration=2

PGD(¢,), PGD((,), PGD (o)

¢=0.1, 0.3, 0.5, 0.7, 0.9, 1.0;
€5tep:O-1;
maximum iteration=2

UP(¢4y), UP(¢3), UP({s)

e=0.1, 0.3, 0.5, 0.7, 0.9, 1.0;
Estepzo-l;
maximum iteration=1

UAP((,), UAP((y), UAP((x)

€=0.1, 0.3, 0.5, 0.7, 0.9, 1.0;
5step:0‘]-;
maximum iteration=1

C&W(Ls), C&W(l0)

e=0.1, 0.3, 0.5, 0.7, 0.9, 1.0;
6step:0-]-;
maximum iteration=2

JSMA (¢y) 0=0.1, 0.3, 0.5, 0.7, 0.9, 1.0;
v=0.1;
maximum iteration=2
NewtonFool n=0.1, 0.3, 0.5, 0.7, 0.9, 1.0;
maximum iteration=2
DeepFool e=0.1, 0.3, 0.5, 0.7, 0.9, 1.0;

nb_grads=10;
maximum iteration=2

EAD((;), EAD((,), EAD(EN)

e=0.1, 0.3, 0.5, 0.7, 0.9, 1.0;

maximum iteration=2

VAT (0,)

e=0.1, 0.3, 0.5, 0.7, 0.9, 1.0;
finite_diff=1e-6;
maximum iteration=2




For example, MCC result increases from -0.937 on targeted attack (Table
4.12) to -0.248.

Table 4.12: census: Experimental results on 1500 adversarial examples generated
by ART FGSM, BIM, and PGD attacks under the ¢, {5, and /., distance metrics
bounded with different values of ¢ in targeted setting (best attack success rate in
boldface).

FGSM BIM PGD

E Foaling Fooling Foaling
Prec. | Rec. F1 MCC | rate® | Prec. | Rec. F1 MCC | rate® | Prec. | Rec. F1 MCC | rate %
0.1|0.06 |0.216 |0.049 |-0.859 (95.06 |- - - - - 0.054 |10.192 |0.044 |-0.874 |95.6
0.3|0.054 |0.192 |0.044 |-0.874 (956 |- - - - - 0.054 |10.192 |0.044 |-0.874 |95.6

1 0.5|0.028 |0.096 |0.022 |0.022 (978 |- - - - - 0.054 |10.192 |0.044 |-0.874 |95.6
0.7|0.009 |0.032 [0.007 |-0.979 (99.26 |- - - - - 0.054 |10.192 |0.044 |-0.874 |95.6
0.9(0.009 |0.032 [0.007 |-0.979 (99.26 |- - - - - 0.054 |10.192 |0.044 |-0.874 |95.6
1/0.009 (0.032 |0.007 |-0.979 |199.26 |- - - - - 0.054 |10.192 |0.044 |-0.874 |95.6
0.1|0.057 |0.204 |0.047 |-0.866 (9533 |- - - - - 0.033 10.114 [0.026 |-0.926 |197.39
0.3|0.033 |0.114 |0.026 |-0.926 (9739 |- - - - - 0033|0114 [0.026 |-0.926 |97.39

12 0.5(0.009 |0.032 [0.007 |-0.979 (99.26 |- - - - - 0.033 10.114 [0.026 |-0.926 |197.39
0.7|0.009 |0.032 [0.007 |-0.979 (99 26 |- - - - - 0033|0114 [0.026 |-0.926 |97.39
0.9(0.009 |0.032 [0.007 |-0.979 (99.26 |- - - - - 0.033 10.114 [0.026 |-0.926 |197.39
1/0.009 (0.029 |0.007 |-0.981 |99.33 |- - - - - 0033|0114 [0.026 |-0.926 |97.39
0.1|0.028 |0.096 [0.022 |-0.937 (97.8 |0.028 |0.096 (0.022 |-0.937 |97.8 |0.028 (0.096 |0.022 (-0.937 (97.8
0.3(0.028 |0.096 [0.022 |-0.937 (97.8 |0.028 |0.096 |0.022 |-0.937 |97.8 |0.028 (0.096 |0.022 (-0.937 (97.8
- 0.5(0.028 |0.096 [0.022 |-0.937 (97.8 |0.028 |0.096 (0.022 |-0.937 |97.8 |0.028 (0.096 |0.022 (-0.937 (97.8
0.7/10.028 |0.096 [0.022 |-0.937 (97.8 |0.028 |0.096 [0.022 |-0.937 |97.8 |0.028 (0.096 |0.022 (-0.937 (97.8
0.9(0.028 |0.096 [0.022 |-0.937 (97.8 |0.028 |0.096 (0.022 |-0.937 |97.8 |0.028 (0.096 |0.022 (-0.937 (97.8
1/0.028 (0.096 |0.022 {-0.937 |97.8 |0.028 (0.096 |0.022 (-0.937 |97.8 |0.028 |0.096 |0.022 |-0.937 |97.8

In Table 4.17, PGD(¢;), PGD(¥¢3), and PGD(/,) attacks achieves 97.6%, 97.8%,
and 97.8% fooling rate with perturbation budget ¢ = 0.1 and iterations= 1, 2, and
3 in the targeted and untargeted settings, respectively. The result shown that the
fooling rate will increases with given iteration values.

On Image data type: ART FGSM, BIM, and PGD attacks

e Targeted and untargeted setting: Since these attack methods using ¢,
or { distance has 0% attack success rate. The following result in Table 4.14
is an adversarial examples generated with /., distance on MNIST data. In
this setting, FGSM(/,) has the highest fooling rate among BIM({,,) and
PGD(/,) as shown in 2.1, 2.2 and 2.3 Annex 5.

On Tabular data type: ART FGM, FGSM, UP and UAP attacks
Universal perturbation, discussed in Section 3.1.1, executes another attacks it-
eratively, in this experiment, we evaluate the FGSM (/) algorithm runs inside
UP/Targeted UAP algorithms versus FGSM({,). As a result, accumulation per-
turbations over all inputs has less attack success rate (see Tables 4.15, 4.16).

e Targeted setting: In Table 4.15, FGM(¢;) and FGM(¢5), and FGSM (/)
attacks achieves 95.06%, 95.33%, and 97.8% fooling rate with perturbation
budget ¢ = 0.1. UAP(¢;), UAP({;y), and UAP (/) attacks with £=0.1
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Table 4.13: census: Experimental results on 1500 adversarial examples generated
by ART FGSM, BIM, and PGD attacks under the ¢, ¢5, and /., distance metrics
bounded with different values of € in untargeted setting (best attack success rate

in boldface).

FGSM BIM PGD

E Foaling Fooling Foaling
Prec. | Rec. F1 MCC | rate® | Prec. | Rec. F1 MCC | rate® | Prec. | Rec. F1 MCC | rate %
0.1|0.212 |0.866 |0.234 |-0.147 (934 |- - 0.21110.843 |0.242 |-0.141|95.26
0.3|0.211 |0.843 |0.242 |-0.141 (9526 |- - 0.21110.843 |0.242 |-0.141 |95.26

1 0.5|0.192 |0.746 |0.223 |-0.248 (978 |- - 0.21110.843 |0.242 |-0.141|95.26
0.7|0.178 |0.682 |0.209 |-0.316 (99.26 |- - 0.21110.843 |0.242 |-0.141 |95.26
0.9(0.178 |0.209 [0.209 |-0.316 (99.26 |- - 0.21110.843 |0.242 |-0.141|95.26
1|0.178 (0.209 |10.209 |-0.316 |199.26 |- - 0.21110.843 |0.242 |-0.141 |95.26
0.1|0.212 |0.854 |0.241 |-0.134 (9466 |- - 0.195 |10.764 [0.227 |-0.23 |97.33
0.3|0.195 |0.764 |0.227 |-0.23 (9733 |- - 0195 |0.764 [0.227 |-0.23 |97.33

12 0.5|0.178 |0.682 [0.209 |-0.316 (99.26 |- - 0.195 |10.764 [0.227 |-0.23 |97.33
0.7|0.178 |0.682 |0.209 |-0.316 (99.26 |- - 0195 |0.764 [0.227 |-0.23 |97.33
0.9|0.178 |0.682 [0.209 |-0.316 (99.26 |- - 0.195 |10.764 [0.227 |-0.23 |97.33
1|0.178 (0.682 |0.209 |-0.316 |99.26 |- - - - - 0195 |0.764 [0.227 |-0.23 |97.33
0.1|0.192 |0.746 (0.223 |-0.248 (97.8 |0.192 |0.746 |0.223 |-0.248 |97.8 |0.192 (0.746 |0.223 (-0.248 (97.8
0.3]10.192 |0.746 (0223 |-0.248 [97.8 |0.192 |0.746 (0223 |-0.25 (9773|0192 (0.746 |0.223 [-0.25 (9773
- 0.510.192 |0.746 (0.223 |-0.248 [97.8 |0.192 |0.746 (0.223 |-0.25 |97.73|0.192 (0.746 |0.223 [-0.25 ([97.73
0.7]10.192 |0.746 (0223 |-0.248 [97.8 |0.192 |0.746 (0223 |-0.25 |97.73|0.192 (0.746 |0.223 [-0.25 ([97.73
0.910.192 |0.746 (0.223 |-0.248 [97.8 |0.192 |0.746 (0.223 |-0.256 |97.73|0.192 (0.746 |0.223 [-0.25 (97.73
1|0.192 (0.746 |0.223 [-0.248 |97.8 |0.192 (0.746 |0.223 [-0.25 |97.73|0.192 |0.746 |0.223 |-0.25 |97.73

Table 4.14: MNIST: Experimental results on 100 adversarial examples FGSM({, ),
BIM({w ), and PGD(/.,) attacks bounded with different values of ¢ in the targeted
and untargeted settings (best attack success rate in boldface).

FGSM (/) BIM(4s) PGD(4.)
Objective Epsilon(e) | Acc. Fooling Acc. Fooling Acc. Fooling
rate(%) rate(%) rate(%)
0.1 0.97 0 0.97 0 0.97 0
Targeted 0.2 0.85 5 0.83 4 0.83 3
0.3 0.85 5 0.83 4 0.72 14
0.4 0.18 75 0.83 4 0.61 21
0.1 0.89 12 0.88 13 0.88 13
Untargeted 0.2 0.59 42 0.56 45 0.55 46
0.3 0.59 42 0.56 45 0.38 63
0.4 0.1 91 0.56 45 0.28 73
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achieves 20.13%, 77.13%, and 77.13% fooling rate, respectively. MCC re-
sult drops from 0.363 on original examples to 0.349, 0, and 0 on adversarial
examples created by UAP(¢;), UAP({;), and UAP (/) attacks, respectively.

e Untargeted setting: In Table 4.16 the FGM(¢;),FGM(¢5), and FGSM (/)
attacks achieves 93.4%, 94.66%, and 97.8% fooling rate with € = 0.1, respec-
tively. All UP(¢,), UP(¢;), and UP (/) attacks with e=0.1 achieves 86.73%
fooling rate. MCC drops from 0.363 on original examples (Table 4.8) to 0
on adversarial examples created UP(¢;), UP({s), and UP(/,,) attacks.

Table 4.15: census: Experimental results on 1500 adversarial examples generated
by ART Targeted FGSM and UAP attacks under the ¢;, ¢5, and /., distance
metrics bounded with different values of € (best attack success rate in boldface).

FGSM Targeted UAP
norm| E Fooling Fooling
Prec.| Rec. | F1 | MCC| rate’| Prec.| Rec. | F1 | MCC | rate %
0.1 0.06|0.216|0.049( -0.86( 95.06| 0.603| 0.35/0.799 | 0.349| 2013
0.3| 0.054| 0.192| 0.044( -0.87| 956| 0229 110229 0] 7713
1 0.5| 0.028| 0.096| 0.022( 0.022( 97.8| 0229 110,229 0] 7713
0.7/ 0.009| 0.032| 0.007( -0.98| 99.26| 0.229 110229 0] 7713
0.9|0.009| 0.032|0.007( -0.98( 99.26| 0.229 110,229 0] 7713
1) 0.009| 0.032| 0.007( -0.98| 99.26| 0.229 110229 0] 7713
0.1| 0.057| 0.204| 0.047( -0.87| 95.33| 0.229 110,229 0] 7713
0.3| 0.033| 0.114| 0.026( -0.93| 97.39) 0.229 110229 0] 7713
12 0.5)0.009| 0.032| 0.007( -0.98( 99.26| 0.229 110,229 0] 7713
0.7/ 0.009| 0.032| 0.007( -0.98| 99.26| 0.229 110229 0] 7713
0.9|0.009| 0.032|0.007( -0.98( 99.26| 0.229 110,229 0] 7713
1/ 0.009| 0.029| 0.007( -0.98( 99.33| 0.229 110229 0] 7713
0.1|0.028| 0.096| 0.022( -0.94| 97.8| 0229 110,229 0] 7713
0.3|0.028( 0.096( 0.022| -0.94| 97.8| 0229 110229 0] 7713
- 0.5(0.028(0.096(0.022| -0.94| 97.8| 0229 110,229 0] 7713
0.7/ 0.028| 0.096| 0.022( -0.94| 97.8| 0229 110229 0] 7713
0.9|0.028| 0.096| 0.022( -0.94| 97.8| 0229 110,229 0] 7713
1| 0.028| 0.096| 0.022( -0.94| 97.8| 0229 110229 0] 7713

On Image data type: ART FGSM, UP and UAP attacks

e Targeted and untargeted setting: Since the FGSM(¢;) and FGSM (/)
attacks fooling rate is 0% on MNIST data, Table 4.18 shows ART FGSM(/,,),
UP(¢y), and Targeted UAP({) attacks only. In both attack settings,
FGSM (/) has the highest fooling rate than UP(/,,) and UAP({,) attacks.

Decision-based attacks

In both targeted and untargeted setting, we evaluate decision-based attacks: ART
Boundary attack and HopSkipJump attack on SVM, DT, RF, or GBDT on census
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Table 4.16: census: Experimental results on 1500 adversarial examples generated
by ART Untargeted FGSM and UP attacks under the ¢;, {5, and /., distance
metrics bounded with different values of e.

FGSM up
norml € Fooling Fooling
Prec.| Rec. | F1 | MCC| rate’| Prec.| Rec. | F1 | MCC| rate%
0.1 0.212| 0.866| 0.234| -015] 93.4(0.229 11 0.229 0] 86.73
0.3 0.211( 0.843| 0.242| -0.14| 95 26| 0.229 110229 0] 86.73
11 0.5(0192( 0.746| 0.223| -0.25) 97.8(0.229 11 0.229 0] 86.73
0.7| 0.178( 0.682| 0.209| -0.32| 99.26| 0.229 110229 0] 86.73
0.9(0178( 0.209( 0.209| -0.32| 99.26( 0.229 11 0.229 0] 86.73
1| 0.178| 0.209| 0.209( -0.32| 99.26( 0.229 110229 0] 86.73
0.1 0.212( 0.854| 0.241| -0.13| 94.66( 0.229 11 0.229 0] 86.73
0.3 0.195( 0.764| 0227 -0.23| 897.33| 0.229 110229 0] 86.73
12 0.5 0.178| 0.682| 0.209| -0.32| 99.26( 0.229 11 0.229 0] 86.73
0.7| 0.178( 0.682| 0.209| -0.32| 99.26| 0.229 110229 0] 86.73
0.9(0178| 0.682( 0.209| -0.32| 99.26( 0.229 11 0.229 0] 86.73
1| 0.178| 0.682| 0.209| -0.32| 99.26( 0.229 110229 0] 86.73
0.1 0.192| 0.746| 0.223| -0.25) 97.8(0.229 11 0.229 0] 86.73
0.3| 0192 0.746| 0.223| -0.25| 97.8| 0.229 110229 0] 86.73
Lem 0.5(0192( 0.746| 0.223| -0.25) 97.8(0.229 11 0.229 0] 86.73
0.7| 0192 0.746| 0.223| -0.25| 97.8| 0.229 110229 0] 86.73
0.9(0192( 0.746| 0.223| -0.25) 97.8(0.229 11 0.229 0] 86.73
1| 0.192| 0.746| 0.223| -0.25| 97.8(0.229 110229 0] 86.73
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Figure 4.9: census: shows comparisons on SVM model performance and attack
success rate on adversarial examples created by ART FGSM (/) with computing
minimal perturbation or not. (Note that, we restrict the number of steps used to
0.01 for attack budgets from 0.01 to 0.1, and step size=0.1 for attack budgets from
0.1 to 1, in which to keep the computational cost of experiments manageable and
correct.)
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Table 4.17: census: Experimental results on 1500 adversarial examples generated
by ART PGD attacks under the ¢1, /5, and /., distance metrics bounded by £=0.1
with in different iterations in targeted and untargeted settings (best attack success
rate in boldface).

Objective | Max.| Avg. Time | Prec. | Rec. | F1 MCC | Fooling
Norm
Iter. | (per attack) rate
1 2.58 sec 0.06 | 0.216] 0.049| -0.859| 95.06
Targeted 2 4.31 sec 0.054| 0.192] 0.044| -0.874| 95.6
0 3 10.5 sec 0.03 | 0.105] 0.024| -0.932| 97.60
1 2.42 sec 0.212| 0.866| 0.234| -0.147| 93.4
Untargeted| 2 5.68 sec 0.211| 0.843| 0.242| -0.141] 95.26
3 9.90 sec 0.194| 0.755| 0.225| -0.24 97.53
1 3.31 sec 0.057| 0.204| 0.047| -0.866| 95.33
Targeted 2 4.79 sec 0.033| 0.114] 0.026] -0.926| 97.39
0y 3 9.66 sec 0.028| 0.096| 0.022| -0.937| 97.80
1 2.47 sec 0.212| 0.854| 0.241] -0.134| 94.66
Untargeted| 2 6.29 sec 0.195| 0.764| 0.227| -0.23 97.33
3 6.65 sec 0.192| 0.746| 0.223| -0.248| 97.80
1 3.69 sec 0.028| 0.096| 0.022] -0.937| 97.8
Targeted 2 4.64 sec 0.028| 0.096| 0.022{ -0.937| 97.8
¢ 3 7.99 sec 0.028| 0.096| 0.022| -0.937| 97.80
> 1 3.1 sec 0.192| 0.746| 0.223| -0.248| 97.8
Untargeted| 2 4.47 sec 0.192| 0.746| 0.223| -0.248| 97.8
3 10.09 sec 0.192| 0.746| 0.223| -0.248| 97.80

Table 4.18: MNIST: Targeted and untargeted FGSM, UP, and UAP. Experimental
results on 100 adversarial samples (best fooling rate in boldface).

FGSM (/) Targeted UAP (/o) UP(/)
Objective Epsilon | Accuracy | Fooling Accuracy | Fooling Accuracy | Fooling
(€) rate(%) rate(%) rate(%)
0.1 0.97 0 0.95 3 - -
0.3 0.85 ) 0.59 41 - -
0.5 0.03 96 0.35 64 - -
Targeted 0.7 0.02 98 0.28 71 i :
0.9 0.02 98 0.13 87 - -
1 0.02 98 0.2 80 - -
0.1 0.89 12 - - 0.96 4
0.3 0.59 42 - - 0.89 12
0.5 0.01 100 - - 0.5 49
Untargeted | 7 0.01 100 i i 0.15 84
0.9 0.01 100 - - 0.3 70
1 0.01 100 - - 0.54 45
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and MNIST data with different parameter values. Table 4.19 shows the parameters
used for decision-based attack algorithms.

Table 4.19: Parameters for the decision-based attack algorithms

Attack Algorithms Parameters

Maximum number of iterations (max_iter=2), Max-
imum number of evaluations for estimating gradi-
ent(max_eval=4); Initial number of evaluations for es-
timating gradient(init_eval=2), Maximum number of
trials for initial generation of adversarial examples
(init_size=1)
length of the total perturbation (orthogonal step
d = 0.01), step towards the target (¢ = 0.01),
step_adapt=0.01, Maximum number of iterations=2
BA (but for MNIST 100 iterations used), Number of tri-
als per iteration=5, Number of samples per trial=10,
Number of trials for initial generation of adversarial ex-
amples=10

HISA(f.), HISA(f)

On Tabular data type: The following Tables 4.20 and 4.21 shows experimen-
tal results for adversarial examples created by ART Boundary and HopSkipJump
attacks on 1500 census test data, respectively (Best attack result in bold). Hop-
SkipJump attacks on random forest is computationally expensive. In both attack
algorithms, the targeted attack setting achieves the highest fooling rate.

On Image data type: The following Table 4.22 and Figure 4.23 shows ex-
perimental results for adversarial examples created by ART Boundary and Hop-
SkipJump attacks on 100 MNIST test data, respectively (Best attack result in
bold). We show adversarial examples created by the ART Boundary attack for
MNIST in 3.2, Annex 5. and, by HopSkipJump attack in 3.1, Annex 5.

For example, adversarial examples is produced by Boundary attack with mini-
mal perturbations computed under ¢, norm bound with ¢=0.01, § = 0.01, and
iterations of 10, 100,and 1000 are shown in the Figure 4.10.

Table 4.20: Boundary attack for census 1500 examples with € = 0.01 and § = 0.01
in the targeted and untargeted settings (best attack success rate in boldface)

Model Objective | Avg. time | Prec. Rec. F1 MCC Fooling
(per attack) rate
VM Targeted 0.26 sec 0 0 0.719 | -0.128 28.13
Untargeted| 0.33 sec 0 0 0.771 | 0 13.26
DT Targeted 0.01 sec 0.123 | 0472 | 0.108 | -0.68 89.2
Untargeted| 0.01 sec 0.18 0.697 | 0.203 | -0.326 81.13
RF Targeted 1.29 sec 0.1 0.376 | 0.086 | -0.749 91.4
Untargeted| 1.6 sec 0.177 | 0.688 | 0.198 | -0.345 86.4
GBDT Targeted 0.01 sec 0.108 | 0.408 | 0.093 | -0.727 90.66
Untargeted| 0.01 sec 0.184 | 0.729 | 0.199 | -0.328 85.93
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Table 4.21: ART HopSkipJump attack for census 1500 original examples with
targeted and untargeted settings.

Objective | Dist. | Avg. Time | Prec. | Rec. F1 MCC | Fooling
Model
(per attack) rate
Targeted (s 0.4 sec 0.094 | 0.35 0.08 -0.767| 92
VM Uy 0.33 sec 0.094 | 0.35 0.08 -0.767| 92
Untargeted (s 0.49 sec 0.229 | 1 0229 | 0 86.73
Uy 0.4 sec 0.229 | 1 0229 | 0 86.73
Targeted l 0.03 sec 0.184 | 0.738 | 0.193 | -0.348| 80.66
DT Uy 0.02 sec 0.186 | 0.741 | 0.201 | -0.318| 79.86
Untargeted l 0.03 sec 0.23 0.956 | 0.257 | 0.012 | 67.2
ly 0.02 sec 0.228 | 0.95 0.254 | -0.004| 68.73
Targeted (s 7.82 sec 0.176 | 0.682 | 0.197 | -0.349| 80.26
RF Uy 5.98 sec 0.175 | 0.679 | 0.193 | -0.362| 80.66
Untargeted (o 8.44 sec 0.229 | 0.939 | 0.263 | 0.003 | 71.86
Uy 6.73 sec 0.229 | 0.927 | 0.271 | 0.006 | 71.86
Targeted l 0.11 sec 0.176 | 0.685 | 0.193 | -0.361| 80.66
GBDT Uy 0.09 sec 0.167 | 0.644 | 0.183 | -0.405| 81.73
Untargeted ls 0.06 sec 0.233 | 0.959 | 0.267 | 0.037 | 72.66
ly 0.05 sec 0.231 | 0.959 | 0.259 | 0.02 73.46

Table 4.22: ART HopSkipJump attack for MNIST 100 examples with targeted
and untargeted settings.

Model Objective | Distance | Avg. Time | Accuracy Fooling rate
ode (per attack) (%)
loo 0.17 sec 0.79 19
Targeted |/ 0.14 sec 0.82 17
SVM
Unt tod U 0.71 sec 0.1 91
nargeted) o, 0.59 sec 0.09 92
l 0.01 sec 0.8 11
o Targeted |/ 0.01 sec 0.8 10
Unt tod U 0.04 sec 0.12 87
nargeted) o, 0.03 sec 0.1 92
e 0.08 sec 0.86 11
- Targeted |,/ 0.08 sec 0.81 15
Untarseted| £ 0.56 sec 0.12 87
argered) g, 0.42 sec 0.09 92
loo 0.02 sec 0.79 20
— Targeted |,/ 0.01 sec 0.79 20
Untarseted| £ 0.06 sec 0.11 89
argeted) 0.04 sec 0.1 89
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Table 4.23: Boundary attack for MNIST 100 examples with ¢ = 0.01 and = 0.01
in the targeted and untargeted settings (best attack success rate in boldface)

Model Objective | Avg. Time | Accuracy Fooling rate
(per attack) (%)

SVM Targeted 16.73 sec 0.66 33
Untargeted| 34.83 sec 0.02 98

DT Targeted 0.49 sec 0.39 57.99
Untargeted| 0.83 sec 0.01 100

R Targeted 0.27 sec 0.79 20
Untargeted| 1.24 sec 0.1 89
Targeted 3.97 sec 0.66 31

GBDT Untargeted| 11.46 sec 0.02 99

EHEEIIEIII

orginal

Ovs3 l\.n'53 2\.1'58 Jvss 4\.1'55 5\.1'53 evs3 Tvs0D  8BvsD  9vsh
Ovs8  1vs2 2vsd 3vs0 dvsT S5vsd ovs3  Tvsd 8vs0 Q55

100 steps .
Ows5  1vsd 2vsh Jvsd 4vs3 Svs9 ovsd  Twvsd Bys2 Gysd

EREENEARER

1000 steps
Figure 4.10: Image of original and adversarial examples generated by ART Bound-
ary attack on MNIST with e = 0.01 and 6 = 0.01.
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Score-based attacks

In this section, we report on the score-based attack in the targeted and untargeted
setting. We compare ART ZOO attack on SVM, DTs, RF, or GBDTSs for census

and MNIST data with different parameter values used in Table .

Table 4.24: Parameters for the score-based attack algorithms

Attack Algorithm

Parameters

Z00

Step size for numerical estimation of derivatives
(¢ =0.1,0.3,0.5,0.7,0.9]), Maximum number of itera-
tions (max_iter=2), confidence=0, learning rate=0.01,
binary_search_steps=2,

abort_early=True,

initial_const=0.001,

nb_parallel=784for

nb_parallel=97(for census), batch_size=1

MNIST),

On Image data type: We evaluate the ART ZOO attack against SVM, DT, RF,
and GBDT on MNIST test set in the targeted and untargeted settings in Table
4.25. In this setting, we observe that SVM is robust to ZOO attack, but this
attack is computationally expensive on SVM.

Table 4.25: MNIST: Experimental results on 100 adversarial examples generated
by ART ZOO attacks with different values of ¢ in the targeted and untargeted
settings (best attack success rate in boldface).

Targeted Untargeted
Model eps. Avg. Time | Acc. Fooling | Avg. Time | Acc. Fooling
() (per attack) rate(%) | (per attack) rate(%)
0.1 91.29 sec| 0.98 0 91.41 sec| 0.97 3
0.3 72.95 sec| 0.98 0 72.98 sec| 0.97 3
SVM 0.5 74.07 sec| 0.98 0 74.06 sec| 0.97 3
0.7 76.59 sec| 0.98 0 76.59 sec| 0.97 3
0.9 79.72 sec| 0.98 0 79.72 sec| 0.97 3
0.1 2.69 sec 0.65 26 3.83 sec 0.23 83
0.3 3.69 sec 0.66 25 3.76 sec 0.27 76
DT 0.5 3.72 sec 0.68 23 3.75 sec 0.27 74
0.7 3.61 sec 0.68 23 3.87 sec 0.27 74
0.9 3.56 sec 0.75 16 3.42 sec 0.3 71
0.1 2.87 sec 0.67 28.9 2.86 sec 0.26 76
0.3 2.88 sec 0.73 23 3 sec 0.3 72
RF 0.5 2.85 sec 0.75 21 3 sec 0.31 71
0.7 2.85 sec 0.74 21 2.88 sec 0.3 72
0.9 2.88 sec 0.72 23 2.87 sec 0.34 68
0.1 7.46 sec 0.95 3 7.19 sec 0.82 19
0.3 7.37 sec 0.95 3 6.96 sec 0.86 15
GBDT 0.5 7.35 sec 0.94 4 6.48 sec 0.9 11
0.7 7.42 sec 0.95 3 5 sec 0.84 16
0.9 7.29 sec 0.95 3 4.95 sec 0.8 21
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On Tabular data type: Table 4.26 shows the experimental results of an ad-
versarial examples generated by ART ZOO attacks for each model using census
1500 original examples. For each models, the performance we obtained is shown
in the table. For example, SVM model fooled by 92% and 86.73% in targeted and
untargeted attack settings, respectively. Note that, this attack method succeed
more on SVM than DT, RF or GBDT models.

Table 4.26: census: Experimental results on 1500 adversarial examples generated
by ART ZOO attacks with different values of ¢ in the targeted and untargeted
settings (best attack success rate in boldface).

Targeted Untargeted

Model eps. | Pre. Rec. | F1 MCC | Fooling| Pre. Rec. F1 MCC | Fooling
(¢) rate(%) rate(%)

0.1 0.094, 0.35 | 0.08 | -0.767] 92 0.229| 1 0.229| 0 86.73

0.3 0.094| 0.35 | 0.08 | -0.767] 92 0.229| 1 0.229| 0 86.73

SVM 0.5 0.094| 0.35 | 0.08 | -0.767] 92 0.229| 1 0.229| 0 86.73
0.7 0.094, 0.35 | 0.08 | -0.767] 92 0.229| 1 0.229| 0 86.73

0.9/ 0.094, 0.35 | 0.08 | -0.767] 92 0.229| 1 0.229| 0 86.73

0.1, 0.089, 0.21 | 0.327, -0.361] 67.26] 0.194) 0.397| 0.485| -0.078 65.66
0.3] 0.089) 0.21 | 0.33 | -0.358] 67 0.195| 0.397| 0.487| -0.075 65.4
DT 0.5 0.09 | 0.21 | 0.334] -0.353] 66.6 0.195| 0.394| 0.491] -0.073] 64.93
0.7 0.091) 0.21 | 0.343] -0.343| 65.73| 0.198| 0.391] 0.499| -0.066] 64
0.9/ 0.107) 0.21 | 0421} -0.259] 57.93| 0.234| 0.379| 0.574| 0.009 | 55.93

0.1 0.024| 0.044| 0.382] -0.405] 61.8 | 0.181| 0.306] 0.525| -0.09 | 61.46
0.3| 0.028 0.044| 0.435| -0.355] 56.46 | 0.204| 0.294| 0.575| -0.042] 55.86
RF 0.5/ 0.028 0.044| 0.435/ -0.355] 56.46 | 0.202| 0.292| 0.575| -0.045] 55.8
0.7/ 0.028 0.044| 0.438 -0.353] 56.2 0.204| 0.292] 0.577] -0.042) 55.53
0.9 0.028 0.044] 0.439 -0.351] 56.06 | 0.204, 0.292) 0.579| -0.04 | 55.4

0.1 0.162) 0.114| 0.663, -0.07 | 33.73| 0.212) 0.099| 0.71 | -0.013] 30.33
0.3| 0.162) 0.114| 0.663| -0.07 | 33.73| 0.316] 0.146] 0.733| 0.072| 27.93
GBDT 0.5/ 0.154| 0.111| 0.658 -0.078] 34.2 0.254| 0.105] 0.725] 0.019| 28.59
0.7/ 0.178 0.134| 0.661| -0.055] 33.93| 0.287| 0.125| 0.729] 0.046 | 28.46
0.9/ 0.152) 0.111} 0.655| -0.082] 34.46/ 0.31 | 0.143| 0.731] 0.067| 28.06
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4.4.2 Poisoning attacks in ART

In this section, we report on ART poisoning attack against SVM on census and
MNIST data in the targeted settings.

Table 4.27: Parameters for the Poisoning attack algorithms

Attack Algorithms Parameters
Poisoning Attacks on SVM  e= 0.3 or e= 1,
68t6p:O‘1’

maximum iteration=10

15 examples (Attack data points on census data)

315 training sets+180 test sets (For census data)

10 examples (Attack data points on MNIST data)
1169 training sets+565 test sets (For MNIST data)

ART Poisoning Attack on SVM

We evaluates the ART Poisoning attack against SVM with polynomial kernel on
MNIST data and Radial Basis Function (RBF) kernel on census data. Table 4.27
shows the parameter we used. The performance results for the trained clean and
poison SVM models are shown in Table 4.28 and Table 4.29.

On Tabular data type: In this experiment, we poisoned the trained SVM model
using census data based on procedures in Section 3.2.1. For example, for a model
poisoned by € = 0.3, &4, = 0.1, 15 poison examples, and 10 iterations achieves
20% attack success rate at training time; whereas, with ¢ = 1 rises to 66.66%.
while the model F'1 score on test data decreases from 0.8 (on clean model) to
0.767 and 0.772 (on poisoned model) as shown in Table 4.28.

Table 4.28: Experimental results on clean and poison SVM model on 180 census
original examples (Best result in bold).

Trained SVM model Precision Recall F1 score MCC
Clean 0.667 0.4 0.8 0.404
Poison(e = 0.3) 0.6 0.2 0.767 0.244
Poison(e = 1) 0.667 0.178 0.772 0.257

On Image data type: Now that the data poisoning attack have been discussed
in Section 3.2.1. The ART Poisoning attack against MNIST data is evaluated as
follow: A trained clean SVM model is poisoned by ART Poisoning on SVM at-
tack method with the € = 0.3, e4¢, = 0.1, 10 poison examples, and 10 iterations
achieves 70% attack success rate at training time; whereas, with e = 1 rises to 80%.
while the test accuracy of the model decreases from 99.47% (on clean model) to
97.33% and 97.60% (on poisoned model) as shown in Table 4.29.

Now, our assessment of the library summarized by report on the pros and cons
of various ART Attacks against our chosen models on tabular and image data
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Table 4.29: Experimental results on clean and poison SVM model on 565 MNIST
original examples (Best result in bold).

SVM model Accuracy
Clean 0.9947
Poison(e = 0.3) 0.9733
Poison(e = 0.1) 0.9760

in the targeted and untargeted settings experimented are provided in Table 4.30
(100% fooling rate in bold). The meaning of the symbols are as follow: (4+) for
very effective attack, (+) for effective attack, (——) for not effective or the attack
algorithm is not compatible against the model/ML framework, finally (—) for
attacks its success rate is below 15%. The results are based on the parameters used
on experiment in Table 4.19 for decision-based attacks, Table 4.11 for gradient-
based attacks, Table 4.24 for score-based attack, and Table 4.27 for data poisoning
attack.
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Table 4.30: Summary: ART Evasion and Poisoning Attacks .

ART Attack Algorithms

Targeted

Untargeted

SVM [ DT | RF [ GBDT

SVM [ DT | RF [ GBDT

TABULAR DATA TYPE

DecisionTree

Poisoning Attack on SVM
IMAGE DATA TYPE
FGM(¢,)

Z00(¢5)
DecisionTree
Poisoning Attack on SVM
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Chapter 5

Conclusion

Evasion and Poisoning attacks can be a serious threat to traditional ML based
systems and applications such as fraud detection. Adversarial Robustness Tool-
box (ART) is an open source Python ML security library by IBM, which consists
of various framework-agnostic modules of the state-of-the-art attack and defense
algorithms. However, considering the attack modules, except Poisoning attack on
SVM and Decision Tree attacks implementations, all other attacks implemented
in ART are based on DL algorithms and applications such as computer vision and
natural language understanding. Hence, our research focused on understanding
and evaluating ART library on evasion and poisoning attacks against traditional
ML models via adversarial examples of tabular and image data types. Table 3.1 is
an experimented list of evasion attacks implemented in ART, but Table 5.1 doesn’t.

Concluding from the results and analysis in Section 4.4, We would like to point
out that in our experiments, adversarial examples generated by ART are very ef-
fective in comparing models test accuracy in adversarial settings. ART Decision
Tree attack is very effective against decision trees in untargeted setting only. Most
ART gradient-based attacks are very effective on SVM models in tabular data
than in image data in both targeted and untargeted settings. ART black-box at-
tack algorithms are very successful to generate adversarial examples on all chosen
models and data types, for example, ART HSJA attack successfully attacks all
chosen models on tabular and image data in the targeted and untargeted settings.
Decision tree is the weakest classifier on image, for instance, BA and Decision tree
attack algorithms fool 100% a decision tree classifier on image data, and EAD(EN)
attack against SVM model does. Table 4.30 invites us to pursue understanding of
these attacks pros and cons against chosen ML models on tabular and image data
in the targeted and untargeted settings.

Finally, in this thesis, we showed various ART evasion and poisoning attacks
against traditional ML models, which are attack unaware models. As future work,
we extend this work to incorporate ART defense mechanisms such as adversarial
training methods and evaluate adversarial examples generated by ART evasion
and poisoning attacks on resilient ML models.
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Appendix I: Analysis Results

ART evasion and poison attacks that is not supported to generate adversarial
examples on Scikit-learn or light GBM ML frameworks were excluded from the
study see Table 5.1.

Table 5.1: List of ART evasion and poison attacks not

evaluated.

ART Evasion and Poison Attacks

No. | Attack Name Error message

1 AutoAttack(Croce The loss type cross_entropy is not supported for the pro-
and Hein, 2020) vided estimator.

2 Auto Projected Gra- || AutoProjectedGradientDescent is expecting logits as es-
dient Descent Attack || timator output, the provided estimator seems to predict
(Croce and  Hein, || probabilities.

2020)

3 Square Attack (An- || Unrecognized input dimension.
driushchenko et al.,
2020)

4 Threshold Attack || ThresholdAttack requires an estimator derived from
(Kotyan and Vargas, || class ’art.estimators.estimator.NeuralNetworkMixin’
2020)

5 Adversarial ~ Embed- || -
ding attack (Tan and
Shokri, 2020)

6 Shadow Attack (Ghi- || Unrecognized input dimension. Shadow Attack can only
asi et al., 2020) be applied to image data.

7 Brendel & Bethge ad- || The provided classifier is an instance of class "NoneType’
versarial attack (Bren-
del et al., 2019)

8 High Confidence Low || HighConfidenceLowUncertainty requires an estimator
Uncertainty (HCLU) || derived from class ’art.estimators.classification.GPy.
Attack(Grosse et al., | GPyGaussianProcessClassifier’

2019)

9 Pixel Attack(Su et al., || PixelAttack requires an estimator derived from class
2019) ‘art.estimators.estimator.NeuralNetworkMixin’

10 Spatial  transforma- || SpatialTransformation requires an estimator derived
tion attack (Engstrom || from class ’art.estimators.estimator. NeuralNetwork-
et al., 2019) Mixin’

11 Simple Black-box || 'ScikitlearnSVC’ object has no attribute 'channels_first’
Adversarial (SimBA)

(Guo et al., 2019)

12 Robust DPatch attack || RobustDPatch requires an estimator derived from class
(Lee and Kolter, 2019) || ’art.estimators.object_detection.object_detector. ~ Ob-

jectDetectorMixin’

13 ShapeShifter  attack || ShapeShifter requires an estimator derived from class

(Chen et al., 2019)

‘art.estimators.object_detection.tensorflow_faster_renn.
TensorFlowFasterRCNN’
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14 Adversarial patch || DPatch requires an estimator derived from class
attack ‘DPatch® (Liu || ’art.estimators.object_detection.object_detector. Ob-
et al., 2019) jectDetectorMixin’

15 Clean-Label Backdoor || -

Attacks (Gu et al,
2019)

16 Backdoor Attacks (Gu || -
et al., 2019)

17 Wasserstein attack || ScikitlearnSVC’ object has no attribute 'channels_first’
(Wong et al., 2020)

18 Frame saliency attack || FrameSaliencyAttack requires an estimator derived from
(Inkawhich et al., || class ’art.estimators.estimator.NeuralNetworkMixin’
2018)

19 Feature Collision || -

Poisoning Attack
(Shafahi et al., 2018)

20 Adversarial Patch at- || AdversarialPatch requires an estimator derived from
tack (Brown et al., || class 'art.estimators.estimator.NeuralNetworkMixin’
2018)

21 Feature  Adversaries || FeatureAdversaries requires an estimator derived from

attack (Sabour et al.,
2016)

class ’art.estimators.estimator.NeuralNetworkMixin’
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Appendix II: Experimental Results

1 MINIST: Adversarial examples generated by ART DecisionTree attack
against Decision Trees in the untargeted setting.
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2.1 MNIST: Adversarial examples generated by ART FGSM (/) attack
against SVM in the targeted and untargeted settings.
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2.2 MINIST: Adversarial examples generated by ART BIM(/,,) attack
against SVM in the targeted and untargeted settings.
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2.3 MNIST: Adversarial examples generated by ART PGD(/,,) attack
against SVM in the targeted and untargeted settings.
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2.4 MINIST: Adversarial examples generated by ART JSMA (/,) attack

against SVM in the untargeted settings.

(0 =0.1,7 = 0.1 , Fooling rate(84%))
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2.5 MINIST: Adversarial examples generated by ART DeepFool(/;) at-
tack against SVM in the untargeted settings.

(e=0.1, Fooling rate(S%))
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2.6 MINIST: Adversarial examples generated by ART NewtonFool(/,)

attack against SVM in the untargeted settings.

(n = 0.3 , Fooling rate(14%))

(n = 0.1, Fooling rate(8%))
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2.7 MINIST: Adversarial examples generated by ART C&W (/) attack
against SVM in the untargeted settings with 10 iterations.

(e=0.1, Fooling rate(lG%))

HHEIII

7 1vsT 9vsT Svs3

Jvs2 2v58 4 8

BIIHIEHEHE

3 SysT Sysd 4 9 5Hys3 9

IIEHIIEIII

4v53 1

8 lvs'.n’ G

EEIIII“EII

4 dys2

IEHEEIIIEE

2  Bvs?Z 4 Tys8 5

2]<] [z 15[+ [ol- 171>

(e = 0.3, Fooling rate(60%))
Avs9 YysT Ovs9 Iws9 6 dvsh 1vs8 TvsD 2vsh Busl

EEEIIIIIII

Jvs8 8B Twvs8 1vsT Svsl Sws3 ENEE

Eﬂ.-'ﬁél D 8‘.-'53 ? D*.f55 21.-'5311.-'58

6 3".1'59 9-.-'54 9-.-'54 JvsS 9~.f53

EIIIIEEIHE

3\.-'52 2v58 4 Tvsl Tvs9 3v58 1

3v58 QUET 2v53 SysS 4 6*.-'54 9  5Svs3 9vsh JvsE

IIEHIIHEII

Svs8 Jvsd 4 (Ows9 Bvs3 5 4dusi 1

IIIEEEIIIH

1 9vs8 8vs9 7 & 6Bvsd Bvsh

EEIIEE“EEI

Tus9 0 8vsS 0 4vs9 dvs2 vsd

HGEHEHEABEER

2 Bvs2 1 9vsd SvsB 4dys9 Owss 4 TwsE Swso

28] (] o)5Ral o)) 70 5]
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2.8 MINIST: Adversarial examples generated by ART ElasticNet(EN)
attack against SVM in the untargeted settings.

(0 =0.1,7 = 0.1, Fooling rate(100%))
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3.1.1 MINIST: Adversarial examples generated by ART HopSkipJump
attack against Decision Trees in the targeted and untargeted settings.

(Untargeted, £, norm, 87% fooling rate)
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3.1.2 MINIST: Adversarial examples generated by ART HopSkipJump
attack against Random Forest in the targeted and untargeted settings.

(Untargeted, £, norm, 87% fooling rate)
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3.1.3 MINIST: Adversarial examples generated by ART HopSkipJump
attack against GBDT in the targeted and untargeted settings.

(Untargeted, £, norm, 89% fooling rate)
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3.1.4 MINIST: Adversarial examples generated by ART HopSkipJump

attack against SVM in the targeted and untargeted settings.
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3.2 MINIST: Adversarial examples generated by ART BA({y) with § =
0.01, e = 0.01, and 100 iterations in the untargeted setting.
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4.1 MINIST: Adversarial examples generated by ART ZOO(/;) attack

against Decision Trees.

(Untargeted, e = 0.1, 83% fooling rate)
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4.2 MINIST: Adversarial examples generated by ART ZOO(/;) attack

against Random Forest.

(Untargeted, e = 0.1, 76% fooling rate)
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(Targeted, e = 0.1, 28. 3% fooling rate)

4 9ysd Ows2 Ivs9 6 2 a8
HHEEIIIIIE
7 1vs9 Sysl SvsB 6 GwsE 3]
IIIIIIIEII
8 Twvs2 D 5v58

3 Tus2 6 3".1'59 9-.-'54 9-.-'54 3 9~.f54 5v58

EIIIIIIIEE

4 Twvs2 Tvs2 8 Tus2

BEHHIEHEIE

Sys9 4 ovsB 9 5SvsE 9vsd JusE

IIEHIIIEII

5v58 3 0 8wsY 2 5v58 4

l 9vsd 8 l 6‘.-'58 6 6".-'58

Jvus2
IHHEEEHIEE
2 Bvs? 1 Gysd Svs8

(Untargeted, e = 0.3, 72% fooling rate)
4vs9 ysS Ovso IwsB 6 dvs?2 1vs8 TvsS 2vs8 Bvsl

IHEIIIIIII

8 Tws0 1 QvET 5v53 6 ovs8

6v54 0".-'55 B\.-'53 ?\-'53 Dv55 5v53 2 1vs3 8 1v55

3 Tvs9 6 EWES 9-.-'53 9-.-'54 3 9-.-'5

ﬂlllllllﬂﬂ

Jvs2 2vs8 dvs2 Tvws2 Tvs8 3 g8 Twsd 0

HECEEANEED

Ivs8 9vs5 2vs8 5 dvsH ovsB 9vs3 Svsd wsE 3

BRBQRNOAAENER

Svs8 3 dvs3 OwsB Bvs9 2vs8 2vsl 5 4ws0D 1vs3

EEHEEEEEEH

0 8‘.-'53 l".-'58 S9vs4 S‘JEB Twsh 1vsh Bvss 6 6".-'52

Fvsl 5~.ﬂ59 D 4v55 qus2 1vs8 2v53 DusS

IEEEEIIIEE

2 Bvs9 1vs3 9vs8 5 4vs9 Owsd 4 Tws8 Svs2

28] (12]504101-17) >

(Targeted, € = 0.3, 23% fooling rate)
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(Targeted, e = 0.1, 3% fooling rate)

4.3 MINIST: Adversarial examples generated by ART ZOO(/;) attack

against GBDT.

(Untargeted, ¢ = 0.1, 19% fooling rate)
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(Targeted, € = 0.1, 0% fooling rate)

4.4 MINIST: Adversarial examples generated by ART ZOO(/;) attack

against SVM.
(Untargeted, e = 0.1, 0.3% fooling rate)
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MNIST: Adversarial examples generated by ART Decision Tree, Bound-
ary and HopSkipJump(HSJA), zerothorder optimization attack(ZOO)
attacks against decision trees in the untargeted setting.

(ART DecisionTree attack, 100% fooling rate)
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(ART ZOO attack, 83% fooling rate)
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