Adversarial Machine Learning:
A review of the “Adversarial Robustness

Toolbox (ART)”

CA’ FOSCARI UNIVERSITY OF VENICE
Department of Environmental Sciences, Informatics and Statistics

Computer Science Master’s Thesis
Academic Year 2021-2022

Graduand Habtamu Desalegn Woldeyohannes - 877159
Supervisor Claudio Lucchese

Acknowledgments

First of all, Praise to God! Everything in my life happened because of your bless-
ing. Then, I would like to thank all my beloved families especially my mother
Zimam W /Gaber, Tizazu Desalegn (brother), and to my love Addisalem Haile for
her patience and love.

Next, I would like to give special thanks my thesis supervisor, Dr. Claudio Luc-
chese for his support and guidance throughout during this study. I wish I work
with you in future too. Then, I would like to thank all our professors for the best
training, encourage and support in these last two and half years. At last to my
best classmates batch 2018/19 for good memories and supports, Thank you so
much.

1

Abstract

Adversarial Robustness Toolbox (ART) is an open-source project for machine
learning security by IBM research. ART implements many novel adversarial at-
tacks and defenses, it can be used by researchers as a standard benchmark for
novel adversarial attack and defense techniques, and it is considered as a tool for
developers to build and deploy secure machine learning systems that are resilient
against adversarial attacks. In this thesis, we review a recent version of ART
Python library.

We cover data poisoning and evasion attacks supported in current version of “Ad-
versarial Robustness Toolbox v1.5.17. We evaluate the performance results of
those attacks against machine learning models for classification tasks on image
and tabular data in adversarial setting. Specifically, we evaluate those attack
methods ART supports against four supervised machine learning algorithms: sup-
port vector machines (SVM), decision trees (DT) and random forest (RF) trained
with scikit-learn; and gradient-boosted decision trees (GBDT) trained with light-
GBM, and two publicly available datasets (i.e. census income dataset and MNIST
handwritten digit database for tabular and image data respectively).

Keywords Adversarial Robustness Toolbox, Adversarial Attacks, Evasion At-
tacks, Poisoning Attacks, Adversarial Examples

111

Contents

4.3.1

4.4 Experimental Evaluation

4.4.1

4.4.2 Poisoning attacks in ART

5 Conclusion

1 Introduction
1.1 Overview e
2 Background
2.1 Machine Learning L oL
2.1.1 Supervised Learning L.
2.2 Adversarial Machine Learning .
2.2.1 Adversarial Attacks
3 ART Attacks
3.1 ART Evasion Attacks
3.1.1 Gradient-based attacks .
3.1.2 Score-based attacks
3.1.3 Decision-based attacks .
3.1.4 Decision tree-based attacks
3.2 ART Poisoning Attacks
3.2.1 Adversarial Poisoning Attack on SVM
4 Experiments and Analysis
4.1 Experimental setup
4.2 Dataset
4.3 Training and Evaluation

Data Preparation
4.3.2 Model Training and Evaluation

Evasion attacks in ART

v

12
13
15
22
23
25
26
26

28
28
28
29
29
31
38
38
o4

57

List of Figures

1.1

2.1
2.2
2.3
2.4

3.1

3.2

3.3

3.4

3.5

3.6

3.7

3.8

3.9

3.10

ART evasion and poison attack on ML pipeline

Confusion matrix.o
Sample data points representing in two-dimensional space.
Training data (70%): ART Poisoning attack on SVM
Test data (30%): Clean and Poison SVM model

ART evasion and poison attacks supports scikit-learn or Light GBM
ML frameworks.

Generating perturbation and adversarial example by FGSM
(From Goodfellow et al., 2014)

The top-side of the figure shows image of original MNIST and the
bottom-side shows the perturbed images generated by ART FGSM
under /., norm bounded by € = 0.3 and predicted class labels by
SVM model.

Image of original and perturbed images generated by ART FGSM,
BIM, and PGD attacks under /., norm bounded by ¢ = 0.3 on
MNIST and predicted class labels by SVM model.

Image of original and perturbed images generated by ART C&W ({)
attack on MNIST. As a result, the predicted class labels by SVM
model.

The top-side of the figure shows image of original MNIST and the
bottom-side shows the perturbed images generated by ART Elastic-
Net EAD(EN) attack with 100 iterations. As a result, the predicted
class labels by SVM model.

Image of original and perturbed images generated by ART FGSM
and UP attack with ¢, norm bounded by ¢ = 0.3 on MNIST. As a
result, the predicted class labels by SVM model.

Image of original and perturbed images generated by ART FGSM
and UAP attacks with ¢, norm bounded by € = 0.3 and prediction
of the classifier on MNIST. As a result, the predicted class labels
by SVM model.
The top-side of the figure shows image of original MNIST and
the bottom-side shows the perturbed images generated by ART
JSMA(¢y) attack and predicted class labels by SVM model.

The top-side of the figure shows image of original MNIST and
the bottom-side shows the perturbed images generated by ART
DeepFool(¢y) attack with € = 1le — 6 and 100 iterations. As a result,
the predicted class labels by SVM model.

v

20

21

3.11

3.12

3.13

3.14

3.15

3.16

4.1
4.2
4.3
4.4
4.5
4.6
4.7
4.8

4.9

4.10

The top-side of the figure shows image of original MNIST and
the bottom-side shows the perturbed images generated by ART
Newton(¢y) attack with n = 0.1. As a result, the predicted class
labels by SVM model.o
Image of original and perturbed images generated by ART ZOO(¢3)
attack on MNIST. As a result, the predicted class labels by DT
model results 60%, 70%, and 70% fooling rate for step size 0.1, 0.3
and 1, respectively. oo o
Image of original and perturbed images generated by BA (/) against
DT, RF, GBDT, and SVM models on MNIST with 100 iterations
and € = 0.01. As a result, the predicted class labels for adversarial
images by DT, RF, GBDT, and SVM models.
Image of original and perturbed images generated by HSJA (/)
attack against DT, RF, GBDT, and SVM models on MNIST with
10 iterations and € = 0.01. As a result, the predicted class labels
for adversarial images by DT, RF, GBDT, and SVM models.
Generating adversarial examples with DecisionTree Attack

(From Papernot et al., (2016))
The top-side of the figure shows image of original MNIST and the
bottom-side shows the perturbed images generated by ART Deci-
sion Tree attack and predicted class labels by DT model, i.e., 100%
assigns the adversarial images to the wrong class but it looks very
similar to the original image.

Class label (or digits) distribution of mnist data.
Plotting digit ’eight’ from mnist
Visualization of confusion matrix result for census test sets
Visualization of ROC Curve on census
Visualization of confusion matrix result on MNIST test data
Classifier’s per-class accuracy results on MNIST test data
Visualization of confusion matrix for 100 MNIST original examples
MNIST: ART DecisionTree attack against Decision Trees with off-
set=0.01
census: shows comparisons on SVM model performance and attack
success rate on adversarial examples created by ART FGSM (/)
with computing minimal perturbation or not. (Note that, we re-
strict the number of steps used to 0.01 for attack budgets from
0.01 to 0.1, and step size=0.1 for attack budgets from 0.1 to 1, in
which to keep the computational cost of experiments manageable
and correct.)

Image of original and adversarial examples generated by ART Bound-
ary attack on MNIST with e =0.01 and 6 =0.01.

vi

47

o1

List of Tables

3.1

4.1
4.2
4.3
4.4
4.5
4.6
4.7
4.8
4.9
4.10

4.11
4.12

4.13

4.14

4.15

4.16

4.17

ART evasion attacks sorted by submission year (recent on the top). 14

census training datao oL 31
census test data 31
census training data: over-sampling using SMOTE 32
Experimental result on ~ 9k census test data. (best results in

boldface) 34
Hyperparameter configuration used for model training on census . . 35

Hyperparameter configuration used for model training on MNIST . 36
Experimental result on 14k MNIST test data. (best results in bold-

face) 37
Experimental result on census 1500 original examples. (best results
in boldface) 39
Experimental result on MNIST 100 original examples. (best results
in boldface) 40
Experimental results using ART DecisionTree attack against deci-
sion trees on Census. Lo oo 40
Parameters for the gradient-based attack algorithms 42

census: Experimental results on 1500 adversarial examples gener-

ated by ART FGSM, BIM, and PGD attacks under the ¢;, ¢5, and

l+ distance metrics bounded with different values of ¢ in targeted
setting (best attack success rate in boldface). 43
census: Experimental results on 1500 adversarial examples gener-

ated by ART FGSM, BIM, and PGD attacks under the ¢, ¢, and

U, distance metrics bounded with different values of € in untar-
geted setting (best attack success rate in boldface). 44
MNIST: Experimental results on 100 adversarial examples FGSM(/,),
BIM(/y), and PGD(/+,) attacks bounded with different values of ¢

in the targeted and untargeted settings (best attack success rate in
boldface). 44
census: Experimental results on 1500 adversarial examples gener-

ated by ART Targeted FGSM and UAP attacks under the ¢, ¢,

and /, distance metrics bounded with different values of £ (best
attack success rate in boldface). L. 45
census: Experimental results on 1500 adversarial examples gener-

ated by ART Untargeted FGSM and UP attacks under the ¢y, s,

and /., distance metrics bounded with different values of e. 46
census: Experimental results on 1500 adversarial examples gener-

ated by ART PGD attacks under the ¢1, {5, and /., distance metrics
bounded by =0.1 with in different iterations in targeted and un-
targeted settings (best attack success rate in boldface). 48

Vil

4.18 MNIST: Targeted and untargeted FGSM, UP, and UAP. Experi-
mental results on 100 adversarial samples (best fooling rate in bold-

4.19 Parameters for the decision-based attack algorithms

4.20 Boundary attack for census 1500 examples with ¢ = 0.01 and § =
0.01 in the targeted and untargeted settings (best attack success
rate in boldface) o oo o o

4.21 ART HopSkipJump attack for census 1500 original examples with
targeted and untargeted settings.

4.22 ART HopSkipJump attack for MNIST 100 examples with targeted
and untargeted settings. L.

4.23 Boundary attack for MNIST 100 examples with ¢ = 0.01 and § =
0.01 in the targeted and untargeted settings (best attack success
rate in boldface) oo

4.24 Parameters for the score-based attack algorithms

4.25 MNIST: Experimental results on 100 adversarial examples gener-
ated by ART ZOO attacks with different values of € in the targeted
and untargeted settings (best attack success rate in boldface).

4.26 census: Experimental results on 1500 adversarial examples gener-
ated by ART ZOO attacks with different values of ¢ in the targeted
and untargeted settings (best attack success rate in boldface).

4.27 Parameters for the Poisoning attack algorithms

4.28 Experimental results on clean and poison SVM model on 180 census
original examples (Best result in bold).

4.29 Experimental results on clean and poison SVM model on 565 MNIST
original examples (Best result in bold).

4.30 Summary: ART Evasion and Poisoning Attacks

5.1 List of ART evasion and poison attacks not evaluated.

Viil

52

o4

Abbreviations

ART Adversarial Robustness Toolbox
Al Artificial Intelligence

ML Machine Learning

AML Adversarial Machine Learning
DNN Deep Neural Networks

SVM Support Vector Machines

DT Decision trees

RF Random forest

GBDT Gradient-boosted decision tree
TP True Positive

FP False Positive

TN True Negative

FN False Negative

TPR True Positive Rate

FPR False Positive Rate

MCC Matthews Correlation Coefficient
ROC Receiver Operating Characteristic
ROC AUC Area Under the ROC Curve
FGM Fast Gradient Method

FGSM Fast Gradient Sign Method
PGD Projected Gradient Descent
BIM Basic Iterative Method

UP Universal Perturbation

UAPs Targeted Universal Adversarial Perturbations
HSJA HopSkipJump Attack

BA Boundary Attack

200 Zeroth-order optimization

EAD Elastic-Net Attack

C&W Carlini & Wagner

JSMA Jacobian Saliency Map Attack
VAT Virtual Adversarial Method

1X

Chapter 1

Introduction

Despite the success of Machine Learning (ML) /AT systems, ML models have been
shown to be vulnerable to adversarial examples i.e, maliciously perturbed exam-
ples, which are undetectable to the human, but mislead models to make incorrect
classification ([19], [13], [27], [34] [11]). The vulnerability of ML models to ad-
versarial examples exposes a security risk in ML/AT systems such as computer
vision, image classification, fraud detection, spam detection, malware detection,

and beyond ([3], [23], [31], [25], [12], [10], [39], [34], [11], [13], [7]).

Nicolae et al., (2018) introduce Adversarial Robustness Toolbox (ART)!, which is
an open source machine learning security library developed at IBM research using
Python programming language. ART used as a tool to test adversarial robustness
of ML models with many state-of-the-art adversarial attacks and defense methods,
and supports most known machine learning frameworks.

ART contains Attacks i.e security attacks (i.e. poisoning attacks and evasion at-
tacks) and privacy attacks (i.e. inference attacks and extraction attacks), Defenses
(i.e adversarial training, preprocessing, post-processing, detectors, and transformer),
and Model Robustness (i.e certificator, metrics, and verification) tools (Nicolae
et al., 2018).

ART SECURITY ATTACK MODULES

Researcher / Training Phase
Developer Training data ML
Algorithm
. \L Test Phase
Testdata) ML Prediction
(unseen data) Model (output)

Figure 1.1: ART evasion and poison attack on ML pipeline

"https://github.com/Trusted-AI/adversarial-robustness-toolbox

1

https://github.com/Trusted-AI/adversarial-robustness-toolbox

Adversarial attacks are a type of attacks performed to fool the targeted classifier
in ML, in which the classifier assigns the example to the wrong class. However,
researcher or developer wants to understand the problem and under what situation
the attack methods fails, and how well can defend in those attacks to the ML
models using ART library is illustrated in Figure 1.1.

Many researchers proposed adversarial attacks and defense mechanisms for Deep
Neural Networks (DNN). However adversarial attack is not limited to DNN. Em-
phasize that, in this paper we aim at review on adversarial attacks on traditional
machine learning algorithms. Particularly, we study the ART evasion and poison
attacks against support vector machines, decision trees, random forest, gradient-
boosting decision trees approaching classification tasks on tabular and image data

types.

The contributions of this thesis are as follows:

e We experiment evasion and data poisonous attacks on four machine learning
models for tabular and image data type and highlights the weakness and
strength of those attack algorithms implemented in ART.

e We assess the effectiveness of adversarial examples produced using traditional
machine learning models rather than deep neural network models.

1.1 Overview

The rest of the document is organized as follows: Chapter 2 introduces supervised
machine learning, particularly classification models; then discuss key concepts on
adversarial attacks; Chapter 3 reviews the adversarial attacks (i.e., evasion and
poisoning attacks) implemented in ART; Chapter 4 discusses the experimental
result and analysis of the study; Chapter 5 summary and conclude this document.

Chapter 2

Background

This chapter has two sections. Section 1, gives some theoretical background for
supervised learning problems, specifically, the classification models followed by
classification algorithms and metrics used in our experiments. In section 2, we
discuss basic adversarial machine learning concepts, in which our focus is on ad-
versarial attacks. Specifically, the security attacks on ML models, in which an
attacker generates adversarial examples against ML models aiming to fool the
target model.

2.1 Machine Learning

Mitchell (1997) provides the founding definition of Machine Learning ” A computer
program is said to learn from experience E with respect to some class of tasks T
and performance measure P, if its performance at tasks in T, as measured by P,
improves with experience E”. For example, consider the Census Income dataset
from the UCI ML Repository, the task is to predict yearly income of a person be
greater than $50k or not:

e Task T: classifying the yearly income of a person be greater than $50k or
not from tabular data.

e Performance measure P: percentage of yearly income of persons classified
correctly.

e Training experience E: yearly income dataset, i.e., Census Income dataset
from the UCI ML Repository.

Machine learning can be categorized into the following:

e Supervised Learning is a learning task in which examples of labeled data
are used in learning classification or regression models. Classification models
used to classify discrete class label. whereas, Regression models used to
predict continuous values.

e Unsupervised Learning is unlike supervised learning tasks, we use unla-
beled data to find or cluster the hidden structure of the data by using the
clustering, dimensional reductions, and others when labeled training data
are not available.

e Semi-supervised learning is the combination of supervised and unsuper-
vised machine learning tasks.

¢ Reinforcement Learning is a learning task in which an agent performs
continuous actions while observing the result (or rewards).

2.1.1 Supervised Learning

Given a training set Diqqin = {(X1,Y1), -, (Xn, Yn)} of correctly labeled examples
and set of hypotheses H, the learning stage of ML algorithm is to find the function
f* € H while minimizing a loss function. We define a hypothesis function f(x)
that estimate some unknown target function, and if there exists a target function,
we can define as:

ff:X=Y = y=f(x) fori=1,...n (2.1)

where x; is i-th input feature vector in the dataset and y; is i-th class label in
classification problems.

However, finding the target function to predict y requires to search all f € H
and it is computationally infeasible. Loss functions measures the error difference
between a predicted label using hypothesis f and a true label. When the loss
function is defined as L? loss (mean squared error):

1
Uf(x),y) = 5(f(x) ~ y)° (2.2)
and, the empirical risk or training loss for a set of labeled examples Dy, is de-

fined as:

1 n
L, = n Zf(ﬂxi), Yi) (2.3)
i=1
Classical machine learning algorithms are based on empirical risk minimization
(Vapnik, 1992) approach to search the best hypothesis f* € H that minimizes the
loss function on the given training set D;,.qin. In addition to that, the identified
hypothesis function f* will generalize to test (unseen) data.

[T = arg minyey Z O(f (%), yi) (2.4)

=1

Before starting the implementation of the support vector machines, decision trees,
random forest and gradient-boosted decision trees classifiers using Scikit-learn and
Light GBM, some basic concepts on those classifiers will be presented below.

Support Vector Machines (SVM): Given a training set Dyain = { (X1, Y1), s (Xny Yn) }
the learning stage of an SVM algorithm is to separate the training data into classes
using a hyperplane by choosing the maximum margin while minimizing the loss
function. SVM also know as ”a maximum margin classifier”. Figure 2.3(a) shows
an example of decision boundary separates the two classes with maximum margin
by SVM with Linear kernel model. Sometimes, the robustness of the model de-
pends on the generalization performance, meaning when the classifier is best (or

4

have wide margin), then it is not easily affected by small perturbations which leads
to misclassification on the decision boundary (Biggio et al., 2012).

Decision trees (DT): Given a training set Dy.qin = {(X1,¥1), -, (Xn, Yn) }, deci-
sion trees are constructed by recursively splitting the training set. Each split is
based on a single feature with a threshold condition, in which successive binary
splits of training set into smaller and smaller pieces. However, finding the best
sequence of split rules is NP-Complete problem (Murthy, 1998). Hence, Breiman
et al., (1984) introduce a heuristic algorithm called Classification And Regression
Tree (CART) algorithm, which incrementally adds nodes to a decision tree, start-
ing from the root. At test time, an instance x is classified by traverses the decision
tree from its root until it reaches a leaf, i.e., the class assigned in according to
conditions specified in the tree internal nodes .

Random forest (RF) is an ensemble learning methods for decision trees. RF is
an ensemble predictor consists of set of trees which are trained independently and
combined by a majority voting to assign the class label. Each tree constructed
with bagging and per-node feature sampling over the training set (Breiman, 2001).

Gradient-boosted decision trees (GBDT) are an ensemble learning methods
for decision trees, which uses an iterative procedure to generate one single stronger
model by combining the decisions of the weak learners produced i.e. decision tree
models.

Given a training set Dyugin = {(X1,%1), - (Xn,yn)} and set of hypotheses H is
the set of decision trees, GBDT algoithm identifies the set of functions f; € H
while minimizing the loss function.

GBDT uses classification and regression trees (CART) as base learners and gradi-
ent boosting aims to minimize the loss function in every iteration. The approxi-
mation of §; w.r.t the i-th labeled example x; in additive form is defined as:

K
§=> fi(xi), freH (2.5)
t=1
where K is the number of trees.

Then the base function in case of CART algorithm is defined as:

ft(Xi) = We(x;) (26)

where w € R",¢: R = {1,2,..,T}. T is the number of leaves. For input
x; € R? ¢(x;) function outputs the i-th estimation value of the leaf node of the
decision tree.

Then the loss function is defined as:

arg mingey > L(fi(%:), yi) (2.7)
=1

where n is the number of examples in the training (Lin et al., 2020).

Classification metrics are evaluation metrics used to evaluate the performance
of classification models. these metrics are built based on the confusion matrix
(see Figure 2.1), in which the columns represent the number of examples in the
predicted class and the rows represents the number of examples in the actual class.
TP and TN indicate both actual and predicted values are 1 and 0 respectively.
FN indicates actual and predicted values are 1 and 0 respectively. Whereas, FP
indicates actual and predicted values are 0 and 1 respectively. In case of binary
classification problem, The classifier’s wrong prediction will be recorded in FP or
FN.

PREDICTED CLASS

POSITIVES (1) NEGATIVES (0)

P

FN
POSITIVES (1)

TRUE POSITIVES FALSE NEGATIVES

Fp ™

NEGATIVES (0)

ACTUAL CLASS

FALSE POSITIVES TRUE NEGATIVES

Figure 2.1: Confusion matrix.

Metrics used to measures the performance of our ML models are as follows:

e Accuracy is defined as:

TP +TN
TP+TN+ FP+TN

Accuracy = (2.8)
Whereas (TP+TN) is the number of correct predictions and (TP+TN+FP+TN)
is total number of predictions. The above formula works to evaluate binary
classification, and generally for multiclass classification, the accuracy will be
calculated as the fraction of all correctly predicted (on the diagonal of the
confusion matrix) over all examples.

e Macro Accuracy (Balanced Accuracy) is defined as:

k TP+TN;
TPATN+FP1TN,
Macro Accuracy = g it J]; kAL (2.9)

i=1

where k is the number of class labels and the fraction of correctly predicts is
computed based on one-vs-all confusion matrix.

e Precision is defined as:

TP
Precision = T’P-{——_FP (210)

Where TP is the number of correctly predicted positive values, and (TP
+ FP) will be all the positive predictions. In the census case, precision
indicates the proportion of persons that the model guesses with $50k and
above income and actually have mentioned income.

Recall is defined as: Tp
Recall = ————— 2.11
T TPYFN (2.11)
Where TP is the number of correctly predicted positive values, and (TP +
FN) will be all actually positive values. In the census case, recall indicates
the proportion of persons having $50k and above income that are correctly

guessed by the model as having income $50k and above.
F} score is defined as:

Precision - Recall

Fsz=(1 2
p=(1+5)(52 - Precision) + Recall

(2.12)

Precision - Recall
F, =2 2.13
! Precision + Recall ()

Where Fj , a parameter [controls the importance of each assigned term
and popular setting is =1 which is known as F} score, precision is a positive
predictive value, and recall is a true positive rate. As in the formula specified
above, F) score measures a weighted harmonic mean between precision and
recall (Fernandez et al., 2018).

Matthews correlation coefficient (MCC) defined as:

MOC — TP+TN—-FP+ FN (2.14)
/(TP + FP)(TP+ FN)(TN + FP)(TN + FN)

Where TP, TN,FP and FN are all 4 categories of the confusion matrix, which
takes advantage over F} score because of considering errors and correct clas-
sification in both classes. The result of MCC ranges between -1 and 1 (similar
to correlation), where MCC=1 indicates the classification is always correct,
MCC=0 indicates the classification used is a random guess, and MCC=-1
when the classification is wrong. Note that, MCC is useful where unbalanced
class data occurs (Fernandez et al., 2018).

Area Under the ROC Curve (ROC AUC) defined on the basis of

TP
TPR=—"—
R=rprFn
(2.15)
FP
FPR=——"
R=rpi7n

Where TPR is True Positive Rate, FPR is False Positive Rate, and the ROC
Curve plots constructed based on the two parameters: TPR versus FPR at
different model thresholds. ROC curve used to determine the right threshold
value and AUC (Area under the ROC curve) indicates model quality by

7

considering the area under the curve, the larger the area indicates the model
quality. ROC AUC computes an aggregated single score from the ROC curve
based on the overall performance of the model thresholds, ranging between
0.5 and 1, A model whose guesses are 100% correct has ROC AUC of 1.0;
one whose model guesses are 50% correct has ROC AUC of 0.5, which will
be achieved by any randomly chosen model. ROC AUC is the preferred
evaluation metric for class imbalanced datasets (Fernandez et al., 2018).

2.2 Adversarial Machine Learning

There are two main categories of adversarial attacks on ML systems. One category
focuses on the privacy attacks on ML/AI systems, which extracts ML models and
collects sensitive data/attributes. The other category is about security attacks on
ML/AI systems, which generates adversarial examples, i.e., evasion and poisoning
attacks. The wide use of such kinds of attacks due to ML models are vulnerable
to adversarial examples, Adversarial Machine Learning (AML) becomes the study
of ML that deals with protecting ML pipeline at training, test and inference time
(Nicolae et al., 2018).

2.2.1 Adversarial Attacks

Adversarial attacks are algorithms for seeking adversarial perturbations. For ex-
ample, attack algorithm uses ¢, norm distance changes to create an adversarial
example, i.e., input to a ML models that is designed on purpose to fool the tar-
geted classifier and are often imperceptible (or valid input) to humans (Brendel
et al., 2018; Goodfellow et al., 2014). Here, the goal of adversarial attacks is to
minimize the perturbation magnitude while creating adversarial example under ¢,
distance metric, for grayscale MNIST images with 784 pixel values, the ¢, distance
between original and adversarial image is the number of pixels where the intensity
value is different. whereas, the /., distance is the maximum of intensity differences
among pixels of the two images. Formally, the distance metric d(-) between the
original x and adversarial example x’ is less than the attack budget (denoted as
€), while fooling the targeted classifier C to assign the example to the wrong class.

d(x,x’) < e

where C(x) # C(x) (2.16)

According to the attacker’s knowledge and accessible of the targeted ML system,
we can categorize adversarial attacks into three category such as:

1. White-box attacks: the attacker has full access to the classifier’s archi-
tecture, parameters and evaluate loss/class gradients on the training data

(Chen et al., 2017).

2. Black-box attacks: the attacker doesn’t know any information about the
targeted model except output (class labels) produced to the given input.
Black-box attacks (a.k.a query-based attacks) are performed considering the
feedback provided by querying the classifier with adversary manipulated data
to learn the true labels based on the predicted class label or confidence score
(Chen et al., 2017).

3. Gray-box attacks: the attacker execute attacks having knowledge of the
targeted classifier architecture, algorithm or training data only (Nicolae
et al., 2018).

In white-box attacks, attackers able to calculate gradient w.r.t input example but
in black-box (or gray-box) attacks doesn’t. In the case of our review, we look at
13 white-box and 3 black-box attack methods implemented in ART.

When we consider attack objectives, there are two objectives of the attacker:

1. Untargeted attack: Given an original example with correct labeling, by
untargeted attack, the attacker aims to create an adversarial example that
lead to misclassification (or different from the corresponding original example
class label).

2. Targeted attack: Given an original example with correct labeling, the goal
of the targeted attack is to modify the original example aiming to be classified
as the specified target class (Nicolae et al., 2018; Chen et al., 2017).

Evasion Attack

Evasion attack (a.k.a. adversarial examples) is carefully perturbing the input to
a classifier such that it is misclassfied at test time. Like DNN, this attack applies
to gradient-based models, such as SVM using gradient descent optimization tech-
niques (Biggio et al., 2013). However, for models without gradient, for example,
random forest uses input binarization, which transforms input into an array of

{0,1} based on given threshold (Chen and Jordan, 2019).

Based on Brendel et al. (2018), adversarial attack algorithms are categorized into
four categories: gradient-based, score-based, decision-based, and transfer-based
(see Table 3.1). However, the Decision Tree attack implemented in ART is catego-
rized according to the method used, so we categorized it under decision tree-based
attack.

1. Gradient-based attack uses model gradient of the training data to create
adversarial example in white-box setting.

2. Score-based attack works by accessing the predicted confidence scores
of the model, i.e., logit or output probabilities used to create adversarial
example in black-box setting.

3. Decision-based attack uses final decision of the model, i.e., class label to
create adversarial example in black-box setting. In contrast to the score-
based attack, it uses the final model prediction. In our work, all ART attack
algorithms in this category supports SVM, DT, RF, and GBDT models (see
Table 3.1).

4. Transfer-based attack uses information of the training data, i.e., with out
model information to create adversarial example.

5. Decision tree-based attack uses decision tree structure to create adver-
sarial example for decision tree model only. Example, ART Decision Tree
attack.

Poisoning Attack

In contrast to evasion attacks where attacks against ML model at test time, poi-
soning attack is injecting poisonous data during model training and data collection
phase of ML pipeline (Nicolae et al., 2018; Biggio et al., 2012).

Biggio et al., (2012) proposed an attack on support vector machines algorithm by
injecting carefully crafted attack points into training data that will maximize the
classification errors on the unseen test data, as a result the model generalization
performance is decreased.

The below example shows data poisoning attack on SVM scikit-learn model, which
can slip the decision boundary such that the classifier makes wrong prediction to
the examples given at test time (see Figure in 2.3(b)).

feature 2

-1 0 1 2 3 4
feature 1

Figure 2.2: Sample data points representing in two-dimensional space.

Let consider synthetic data, which has a set of bk data points with 2 class labels
generated by make_blobs?, which are linearly separable as shown in Figure 2.2.
Now for simplicity fit the model using the linear kernel of a SVM classifier on
training data points will be obtained in Figure 2.3(a).

On model training, the best decision boundary for the classifier is represented in
two-dimensional space. This decision boundary is selected to best separate the
data points by their class labels, either 0 (blue) or 1 (yellow). In Figure 2.3(a)
the support vectors are shown in circles, and the classifier used only those support
vectors to make decision boundary for separation between the two class labels,
whereas other data points are not considered to maximize the margin of the deci-
sion boundary.

Now we will consider the scenario of using specially crafted attack points in model
training by choosing randomly 50 data points with ”1” class and alter their class

’https://scikit-1learn.org/

10

https://scikit-learn.org/

labels. As a result, we can notice in Figure 2.3(b) that the decision boundary of the
targeted classifier has slightly shifted, changes in the number of support vectors and
increased margin cause of the contaminated data (noise). The support vectors are
shown in circles and the attack point in red. In this example, the attacker provides
50 poisonous data points in the targeted setting, As a result, the attack influence
the change in the decision boundary. Since the decision boundary is changed, the

model generalization performance will be decreased for unseen test examples as
seen in Figure 2.4.

(a) two-class linear SVM (b) two-class linear SVM after poison attack

feature 2
feature 2

Figure 2.3: Training data (70%): ART Poisoning attack on SVM

(a) two-class linear SVM (b) two-class linear SVM after poison attack

feature 2
feature 2

feature 1 feature 1

Figure 2.4: Test data (30%): Clean and Poison SVM model

11

Chapter 3
ART Attacks

In this chapter, we consider adversarial threats to ML /AT systems implemented in
ART, i.e., evasion and data poisoning attacks only, which are adversarial attacks
against ML models during testing and training time, respectively. Adversarial
examples created by ART adversarial attack methods are evaluated on the follow-
ing supervised machine learning classes: support vector machines (SVM), decision
trees (DT), random forest (RF), and gradient-boosting decision trees (GBDT)
trained on handwritten digit images from MNIST and census income dataset.

ART library implements many advanced adversarial attack algorithms, which are
used to create adversarial examples for most well known ML/DNN models and its
applications. In the benchmark experiments or development of a secured ML sys-
tem, ART provides framework-agnostic library modules, i.e., an implementation of
Python code for the state-of-the-art adversarial attacks, defenses, and robustness
metrics. ART 1.5.1 library has a total of 37 security attacks on ML/AI systems,
including 32 evasion attacks and 5 data poisoning attacks.

ART 1.5.1 Evasion & Poison Attacks

."f Supports
| 432%

|, 56.8% \
Mot supports | \

Figure 3.1: ART evasion and poison attacks supports scikit-learn or Light GBM
ML frameworks.

Adversarial attack methods implemented in ART are considered to be ML frame-
work independent and work with a number of ML/DNN models. But as shown

12

in Fig. 3.1 more than half of the attacks unable to poisoned or create adver-
sarial examples from input data on ML algorithms: SVM, DT, RF trained with
scikit-learn; GBDT trained with Light GBM ML framework (Appendix I: Table 5.1
contains list of ART attack algorithms excluded from evaluation). Since, some at-
tack algorithms are designed and implemented to support only a specific ML,/DNN
model, library, algorithm and application. For example, ART ShapeShifter attacks
against deep learning models to object detection application. ART Decision Tree
attack supports only scikit-learn decision tree classifier, But ART evasion attacks
which are listed in Table 3.1, except Decision Tree attack creates adversarial ex-
ample to fool the target SVM model. With these considerations, Our work focuses
on ART attack methods against supervised ML algorithms are: SVM, DT, RF
trained with scikit-learn and GBDT trained with light GBM on image and tabular
data for classification tasks.

This chapter is organized as follows. we review ART evasion attack algorithms in
Section 3.1 and ART poisoning attack algorithm in Section 3.2. In evasion attack
section, we review 15 ART evasion attacks, for instance, 14/15 of these evasion
attacks against SVM model (as shown in Table 3.1). and in the data poison attacks
section, we review only 1 ART poisoning attack on SVM.

3.1 ART Evasion Attacks

In ART evasion attacks, we generate adversarial examples in the targeted and un-
targeted settings. Note that the following two approaches will be used to perform
framework-agnostic evasion attacks against ML models in ART are:

Approach #1: using pretrained models

1. Load a dataset (if needed do preprocessing).

2. Load pretrained model.

3. Create the ART classifier and wrap a model.

4. Generate adversarial examples using ART evasion attack algorithm.

5. To evaluate the classifier, predictions are made on the adversarial examples.
Approach #2: using untrained models

1. Load a dataset (if needed do preprocessing)

2. Create/build a model

3. Create ART classifier and fit a model.

4. Generate adversarial examples using ART evasion attack algorithm.

5. To evaluate the classifier, predictions are made on the adversarial examples.

13

Table 3.1: ART evasion attacks sorted by submission year
(recent on the top).

ART Evasion Attacks

No, Attack Algorithms Attack Attack Type | Objective | Supports
Method on scikit-
learn /
Light GBM
1 | Targeted Universal Ad- || White-box | Gradient-based | Targeted SVM
versarial Perturbations
(UAPs, Hirano and Take-
moto, 2019), Section 3.1.1
SVM
. . DT
2 | HopSkipJump Attack || Black-box | Decision-based | Both RF
(HSJA, Chen and Jordan, GBDT
2019), Section 3.1.3
SVM
. DT
3 | Boundary Attack (BA, || Black-box | Decision-based | Both
RF
Brendel et al., 2018), GBDT
Section 3.1.3
4 | NewtonFool (Jang et al., || White-box | Gradient-based | Untargeted| SVM
2017), Section 3.1.1
SVM
o DT
5 Zeroth-order optimization || Black-box | Score-based Both RF
Attack (ZOO, Chen et al., GBDT
2017), Section 3.1.2
6 | Elastic-Net Attack (EAD, || White-box | Gradient-based | Both SVM
Chen et al., 2017), Section
3.1.1
7 | Projected Gradient Descent || White-box | Gradient-based | Both SVM
(PGD, Madry et al., 2017),
Section 3.1.1
8 Carlini & Wagner Attack || White-box | Gradient-based | Both SVM
(C&W ,Carlini and Wagner,
2017), Section 3.1.1
SVM
9 | Universal Perturbation || White-box | Gradient-based | Untargeted| DT
(UP, Moosavi-Dezfooli RF
et al., 2016), Section 3.1.1
10 | Basic Iterative Method || White-box | Gradient-based | Both SVM
(BIM, Kurakin et al., 2016)
11 | DecisionTree Attack (Pa- || - Decision tree- | Untargeted| DT
pernot et al., 2016), Section based
3.1.4
12 | Jacobian Saliency = Map || White-box | Gradient-based | Untargeted| SVM

Attack (JSMA, Papernot
et al., 2016) , Section 3.1.1

14

13 | DeepFool (Moosavi- || White-box | Gradient-based | Untargeted| SVM
Dezfooli et al., 2015),
Section 3.1.1
SVM
. . . DT
14 | Virtual Adversarial Method || - Gradient-based | Untargeted R
(VAT, Miyato et al., 2015), GBDT
Section 3.1.1
15 | Fast Gradient Sign Method || White-box | Gradient-based | Both SVM

(FGSM, Goodfellow et al.,
2014) , Section 3.1.1

3.1.1 Gradient-based attacks

In this section, we review the gradient-based (belonging to white-box) attack al-
gorithms to produce adversarial examples.

Fast Gradient Method (FGM)

The Fast Gradient Method (FGM) (Nicolae et al., 2018) is a gradient-based attack,
which designed to find a perturbation for a given original example, such that the
classifier might forced to assigns the example to the wrong class in the targeted
and untargeted settings (see 2.2, Annex 5). This attack works by computing the
gradient of the loss with respect to the input once, and creating a small pertur-
bation by multiplying a small adversarial budget (denoted as €) by the vector of
the gradients, i.e. a fast attack method. This attack has two versions based on
distance metric used to create an adversarial example:

1. Fast Gradient Method attack, which uses /., norm to create adversarial ex-
ample is known as ”Fast Gradient Sign Method (FGSM)”, which is originally
implemented by Goodfellow et al. (2014). Figure 3.3 shows the images gener-
ated using ART FGSM attack, in which an adversarial image were created by
changing to relatively gray color of some background (black) and foreground
(white) pixel of the original image.

In FGSM attack, a small perturbation (denoted as ¢) is generated by com-
puting the gradient of the classifier loss function w.r.t the input x is given as:

d = —e- sign(ViL(x,y)) (3.1)

where € > 0 is the size of the adversarial perturbation (adversarial bud-
get) with in £, norm, x is the input data and normalized into [0,1], y is
either the class labels associated with x or specified by the attacker in untar-
geted and targeted settings, respectively. The gradient of the loss function
of the targeted classifier is computed with respect to input x (Backpropa-
gation algorithm used for DNN) and the sign of the gradient indicates the
perturbation direction. the value of attack input variation e controls the
perturbation strength. Increasing e value will increase misclassification, but
the adversarial image is very different from the original image. Instead using
small e for which x 4+ ¢ is remains adversarial and maintains the similarity

15

+.007 =

" m ———
i Ve O 20) ign(Va(6,2,1)
“panda” “nematode” “gibbon”
57.7% confidence 8.2% confidence 99.3 % confidence

Figure 3.2: Generating perturbation and adversarial example by FGSM
(From Goodfellow et al., 2014)

between the original and adversarial example (see Figure 3.2 for illustration
of FGSM attack on MNIST).

2. Fast Gradient Method (FGM) is an attack implementation based on ¢; and
{5 norm to create an adversarial example. In contrast to FGSM, the pertur-
bation ¢ is computed as:

_ .. Vxlxy)
o= L), (3.2

where p=1 and 2 for ¢;,/5 norm, respectively. In ¢, norm, we create the
adversarial examples by adding the perturbation value computed in Equation
(3.2) in the direction of the gradient.

In ART, the adversarial examples for all attack methods are constructed using
clip function, which brings the value of adversarial example within allocated range
during constructing of the adversarial examples, i.e., in the range of [0,1]. In
FGM/FGSM attack, the adversarial example x’ is created using Equation (3.3).

x’ = clip(X + 0, Xmin, Xmaz) (3.3)

] 1 2 3 4 5 5] 7 8 9
E “ .:
Ovs2 1vsg 2 Ays? 5 Gvs8 7

<1 3 G 3 R I I e P

Figure 3.3: The top-side of the figure shows image of original MNIST and the
bottom-side shows the perturbed images generated by ART FGSM under /., norm
bounded by € = 0.3 and predicted class labels by SVM model.

16

In ART FGM/FGSM attack, the minimal perturbation parameter is used to attack
in constraint of maximum input variation (denoted as €,,,,) and step size (denoted
as €step). When minimal perturbation applied, the attack performed iteratively
with given step size until the attack succeed or failed (if €sep > €maz). This
computing with minimal perturbation is shown in Figure 4.9.

Basic Iterative Method (BIM)

The Basic Iterative Method (BIM) (Nicolae et al., 2018) is an extension of FGSM
attack in the targeted and untargeted settings (see 2.4, Annex 5), in which an
adversarial example is created based on iterative procedure to modify the input
within the /o, norm bound of adversarial budget € via chosen step size €., at each
iteration, where 0 < €y, < €.

Projected Gradient Descent (PGD)

The Projected Gradient Descent (PGD) (Nicolae et al., 2018) is an extension of
FGSM attack, which modifies the input multiple times iteratively in the targeted
and untargeted settings. In contrast with BIM attack, PGD perturbs the input
example using ¢y, {5 and ¢, norm. Figure 3.4 shows the images generated using

ART FGSM, BIM, PGD attacks.

0 1 2 3 4 5 3] 7 8 9
I!:::I II[]II I!IIII I!Ei'l Iiiill IEEiil IIE;II Iliiil |I!iii| Iliiil
orginal :
Ovs2 1vs8 Ays2 evs8

Ovs2 1vsg qys2 ovsg

Ovs2 1vsd 2vs8 dus2 ovsd Tvs2 Gvsh

Figure 3.4: Image of original and perturbed images generated by ART FGSM,
BIM, and PGD attacks under /., norm bounded by ¢ = 0.3 on MNIST and pre-
dicted class labels by SVM model.

Carlini & Wagner (C&W) Attack

The Carlini & Wagner (C&W) ¢, attack (Nicolae et al., 2018; Carlini and Wagner,
2017) is a gradient-based attack aims at finding adversarial example using mini-
mum ¢, norm of adversarial perturbations in the targeted and untargeted settings.
The targeted version of the C&W attack solves the optimization problem in Equa-
tion (3.4) to find the smallest ¢ for which the ¢(x’) minimizing the objective func-
tion such that ¢(x’) = 0. In the equation, ||x” —x]||, is the distance between the

17

original example x and adversarial example x’, £(x’) is the approximation function,
y is the target label, £ > 0 is a confidence parameter, c is a size of perturbation.
Therefore, we have the constraint [|x” — x||, < € for a given € > 0.

minimize |x’ — x|, +c- £(x’)
Such that ||x—x|, <e (3.4)
where ((x') = max(mazx {Z;(x") i € Y\ {y}} — Z,(x") + k,0).

Where Z is the logit for input x’, in the targeted setting ¢(x’)=0 if and only if the
clasifier C(x")=

In contrast, the untargeted version of the C&W attack solves the objective function
in Equation (3.5).

U(x") = max(Z,(x’) — mazx{Z;(x") :i € Y\ {y}} + k,0) (3.5)
In the ART implementation, the distance metric are ¢, and ¢, norm. and, binary

search method is used to find c. Figure 3.5 shows the images generated using ART
C&W U, attack (more in 2.7, Annex 5).

EHEEHEEEEE

Ovs9 1vsd 2vsg 4ys9 SysT

EBIIIIEIII

Ovs9 1vsd 2vs8 Ivs9 4ys9 evsd Tvso 8vs0 SusT

. ENEERGARER

Figure 3.5: Image of original and perturbed images generated by ART C&W (/)
attack on MNIST. As a result, the predicted class labels by SVM model.

Original

Elastic-Net (EAD) Attack

The Elastic-Net (EAD) attack (Nicolae et al., 2018; Chen et al., 2017) is a gradient-
based attack aims to minimize ¢; norm of adversarial perturbations in the targeted
and untargeted settings. Figure 3.6 shows the images generated using ART EAD
attack. In addition, EAD uses elastic-net regularization method (see 2.8, Annex
5).

Chen et al., (2017) proposed variant of C&W attack with ¢; norm of adversarial
perturbations. ¢; norm is a convex function which measures the number of modified
pixels (when the input is image), i.e., sparsity by the perturbation and small
number of perturbation is enough for attack.

18

0 1 2 3 4 5 6 7 3 9
E“.:E
Ovs9 Ivs8 2vs3 3vs9 4vs9 SvsB Bvsd3 Tvs3 BvsD OGusT

EHEEEREORER

Figure 3.6: The top-side of the figure shows image of original MNIST and the
bottom-side shows the perturbed images generated by ART Elastic-Net EAD(EN)
attack with 100 iterations. As a result, the predicted class labels by SVM model.

Universal Perturbation (UP)

The Universal perturbations (UP) (Nicolae et al., 2018) aims at finding a sin-
gle adversarial perturbation p, i.e., used to generate input agnostic perturbations
using the following algorithms: FGSM, C&W, DeepFool, BIM, PGD, EAD, New-
tonFool, JSMA, and VAT in the untargeted setting. Figure 3.7 shows the images
generated using ART FGSM and UP attacks.

Moosavi-Dezfooli et al., (2016) proposed a universal perturbation computing algo-
rithm and demonstrate a single perturbation, which is image-agnostic can causes
high probability classification errors on a natural images using DNN model.

The Universal Adversarial Perturbation implementation in (Nicolae et al., 2018)
is an iterative procedure to accumulate the universal perturbation on random
inputs, and its refined universal perturbation is projected into the £, norm with
the maximum bound e for attack strength. When iteration ends and the attack
failure tolerance satisfies, the final universal perturbation p is added to examples
to create adversarial examples (see Equation (3.6)).

X =X+p (3.6)

0 1 2 3 4 5 3] 7 g 9
EHEEHEEEEE
Ovs: 1vsE8 EvsE Qvs5

Ivs2 qus7 vs7

Figure 3.7: Image of original and perturbed images generated by ART FGSM and
UP attack with /., norm bounded by € = 0.3 on MNIST. As a result, the predicted
class labels by SVM model.

Original

FGSM

19

Targeted Universal Adversarial Perturbations (UAPs)

The Targeted Universal Adversarial Perturbations (UAPs) (Nicolae et al., 2018) is
similar with UP attack, but the main difference is UAPs attack works in the tar-
geted setting (Hirano and Takemoto, 2019), and with two algorithm: Fast Gradi-
ent Sign Method (FGSM) and Simple Black-box Adversarial (SimBA) algorithms.
Figure 3.8 shows the images generated using ART FGSM and UP attacks.

EHEENRENRER

Original
1vs8 dys8 Svs0

FGSM E“........
lvs2 4vsd

. ERERRERRRR

Figure 3.8: Image of original and perturbed images generated by ART FGSM and
UAP attacks with /o, norm bounded by ¢ = 0.3 and prediction of the classifier on
MNIST. As a result, the predicted class labels by SVM model.

Jacobian Saliency Map Attack (JSMA)

The Jacobian-based Saliency Map Attack (JSMA) (Nicolae et al., 2018) is a
gradient-based attack, which aims at perturbing a small set of input features i.e.
controlling by ¢y norm (sparse perturbations), instead of the whole input features,
and based on the saliency map to create an adversarial examples in the untargeted

setting Papernot et al., (2016). Figure 3.9 shows the images generated using ART
JSMA attack.

The JSMA method implementation in (Nicolae et al., 2018) is an iterative proce-
dure, in which for a given input example with target label, the algorithm computes
a saliency map using saliency_map function, then based on the saliency map, the
algorithm iteratively chose a small set of input features to change at each step
to construct an adversarial example that will increase the likelihood of the target
label (see 2.4, Annex 5).

DeepFool

The DeepFool (Nicolae et al., 2018) is a gradient-based attack, its goal is to find a
minimum adversarial perturbation direction that push the original example x over
the separating hyperplane of the classifier C(x) with ¢, norm to assigns the ex-
ample to the different class in the untargeted setting. Note that, the perturbation
applied iteratively in case of nonlinear problems. Figure 3.10 shows the images
generated using ART DeepFool attack.

20

0 1 2 3 4 5 6 7 3 9
E“.:E
Ovs9 Ivs4 2vsd dysT 5vsh Jvs3d Bvs4d Gvsd

olil2]3]<]s] el 2]#] 7

Figure 3.9: The top-side of the figure shows image of original MNIST and the
bottom-side shows the perturbed images generated by ART JSMA(¢,) attack and
predicted class labels by SVM model.

The DeepFool attack implementation in (Nicolae et al., 2018) is based on an itera-
tive procedure to find the nearest decision boundary in /5 distance metric and push
the original example over the decision boundaries until a different target label ob-
tained or maximum iteration reached, and the results of adversarial perturbation
d is computed using multiplied by a factor 1 plus overshoot parameter (termed
epsilon € > 0) in Equation (3.7) to push the example over the decision boundary,
then adversarial example constructed as in Equation (3.8):

d=(1+4¢- (X —x) (3.7)

x’ = clip(X + 0, Xmin, Xmaz) (3.8)

Moosavi-Dezfooli et al., (2015) shows that the computed perturbation using this
algorithm is faster than FGSM (see 2.5, Annex 5).

0 1 2 3 4 5 & 7 g 9
E“.:E
Owvs9 1vsd 2vs8 Jvsh qusT Svs3 Bwsh Twsh Busl GusT

=l 1 2 K K 5 P P

Figure 3.10: The top-side of the figure shows image of original MNIST and the
bottom-side shows the perturbed images generated by ART DeepFool(¢s) attack
with € = le — 6 and 100 iterations. As a result, the predicted class labels by SVM
model.

NewtonFool

The NewtonFool (Nicolae et al., 2018) is a gradient-based attack, in which the
attack aims to decrease class probabilities (softmax output for Neural Networks)
to zero by applying gradient descent in the untargeted setting (Jang et al., 2017).
Figure 3.11 shows the images generated using ART NewtonFool attack.

21

The NewtonFool attack implementation in (Nicolae et al., 2018; Jang et al., 2017)
is based on iterative procedure to find small perturbation d such that the proba-
bility F,(z+d) ~ 0. In each iteration, compute using Newton’s method for solving
the step size (denoted as ¢), which changes over time based on step 6 in Newton-
Fool attack algorithm and tuning parameter n € (0,1) to control how small the
perturbation does, the perturbation d is computed as based on Equation (3.9),
and results of adversarial example constructed (see 2.6, Annex 5) using Equation

(3.10).

§-VE,(x)

d= oo (3.9)
IVE,(x)]|2

x’ = clip(x + d, Xpmin, Xmaz) (3.10)

] 1 2 3 4 5 5] 7 8 9
W]
O I] E
Owvs2 1vsd Jvsh qusT ewsh Tws2 GysT

Figure 3.11: The top-side of the figure shows image of original MNIST and the
bottom-side shows the perturbed images generated by ART Newton({y) attack
with n = 0.1. As a result, the predicted class labels by SVM model.

Virtual Adversarial Method (VAT)

The Virtual Adversarial Method (VAT) (Nicolae et al., 2018) is a gradient-based
attack aims at finding ¢, norm bounded adversarial perturbation by maximiz-
ing the Kullback-Leibler (KL) divergence between output distribution in the un-
targeted setting. Note that, VAT uses a local distributional smoothness (LDS)
technique for the output distribution of the classifier in the adversarial training
methods (Miyato et al., 2015).

The Virtual Adversarial Method with finite differences implementation in (Nicolae
et al., 2018) is based on iterative approach to construct a perturbation d under
minimum ¢, norm and computes KL divergence.

3.1.2 Score-based attacks

In this section, we review Zeroth-order optimization (ZOO) attack only, i.e., a
score-based attack algorithm to produce adversarial examples compatible with
traditional ML algorithms.

Zeroth-order optimization (ZOO) Attack

The Zeroth-order optimization (ZOO) Attack (Nicolae et al., 2018) is a score-based
(black-box) version of C&W (/y) attack in the targeted and untargeted settings

22

(see 4.1-4.4, in Annex 5). Chen et al., (2017) proposed a black-box (query-based)
attack, aims to estimate the gradients of the objective function with respect to the
input x using stochastic coordinate descent, i.e., in each iteration computes the
gradient of a batch of input coordinate or dimension instead of the whole input
features. In the ART ZOO attack implementation, the optimization algorithm is
based on ADAM coordinate descent method. The illustration in Figure 3.12 shows
that an adversarial images produced by ART ZOO attack on MNIST.

0 1 2 3 4 5 +] 7 2] 9
Ovss 1ws7 evsd Tvse Bws2 9wss

OvsS 1wsy 4ys9 evsd Tvso Bvs2 Gyso

EI]IIEIII

Ovss 1wsy 4vs9 ovsd Tvso Bvs2 Qvsh

Figure 3.12: Image of original and perturbed images generated by ART ZOO(¢5)
attack on MNIST. As a result, the predicted class labels by DT model results 60%,
70%, and 70% fooling rate for step size 0.1, 0.3 and 1, respectively.

Original

3.1.3 Decision-based attacks

In this section, we reviews two decision-based attack algorithms to produce adver-
sarial examples compatible with traditional ML algorithms.

Boundary Attack (BA)

The Boundary Attack (BA) (Nicolae et al., 2018) is the first successful decision-
based attack, and works in the targeted setting. Figure 3.13 shows the images
generated using ART Boundary attack on DT, RF, GBDT, and SVM models on
MNIST.

Brendel et al. (2018) proposed a heuristic algorithm, in which the algorithm first
initialize a sample that is already adversarial, and then perturbs this sample along
the decision boundary, until the perturbed input minimizes the ¢, norm difference
with respect to the original input is as follow:

e Proposal distribution: sample from normal distribution A(0,1) and then
rescale and clip the sample.

e Projection: project onto a sphere around the original input.

23

e Decision boundary: finally make a small movement towards the original
input.

0 1 2 3 4 5 3] 7 2] 9
E“.:E
Ovs8 1lvs3 2vs0 Jvsd 4vs3 5vs8 ovs9 Tvsd 8vsh Svs0

EHEENENRER

Ovse 1vsd 2vsg Jvs0 4vsg Svs0 evs8 Tvsb Bvs0 Svs0

- EHNEERENRER

Oys8& 1vs8 2vs8 Jvs8 dysB SvsB owsB TvsE Gys 8

 ENEERGAREGR

Ovs& 1vs8 2vs8 Jws8 4vs8 Sws8 Bvs? TvsE Bvs?2 OwsE

Figure 3.13: Image of original and perturbed images generated by BA (/) against
DT, RF, GBDT, and SVM models on MNIST with 100 iterations and ¢ = 0.01.
As a result, the predicted class labels for adversarial images by DT, RF, GBDT,
and SVM models.

Original

GBD

SVM

HopSkipJump Attack (HSJA)

The HopSkipJump Attack (HSJA) (Nicolae et al., 2018) is an algorithm that uses
decision boundary to create an adversarial example in the targeted and untargeted

settings. Figure 3.14 shows the images generated using ART HopSkipJump attack
on DT, RF, GBDT, and SVM models on MNIST.

Chen and Jordan (2019) proposed HopSkipJump attack, which is an improved
version of the Boundary attack, i.e., fewer model queries used to craft adversarial
examples using /5 and /., norms. The algorithm introduced by the author’s is an
iterative algorithm and in each iteration the following functions are executed:

1. Boundary search: performs binary search from the last iteration if exists
to approach the decision boundary. First, set upper and lower bounds as
well as the threshold for the binary search, then start the binary search
by updating the upper bound and lower bound iteratively, see Bin-Search
algorithm in Chen and Jordan (2019).

2. Gradient-direction estimation: the gradient direction is estimated, since
the gradient of the model with respect to the input is not available, see
Eq.(16) in Chen and Jordan (2019).

24

3. Step size search: the updating step size along the gradient direction is
initialized, see Eq.(13) in Chen and Jordan (2019).

EHEENRENRER

Original
OvsS 1wsh 2vsl Jvso 4vs3 Svsi ovsd Tvsb avsT 5o
E“.:E
1vsg Jvss 4vs3 5vs8 evs8 Tvs3d Gysd
Oys8& 1vs8 2vs8 Jvs8 dvsB SvsB owsB Tvs2 Gysd
aBD E“....E...

Ivs& 2vs8 Jws8 dws9 Sws3 6".-'58 ?".-'52 vsd
E n

Figure 3.14: Image of original and perturbed images generated by HSJA(/.,) at-
tack against DT, RF, GBDT, and SVM models on MNIST with 10 iterations and
€ = 0.01. As a result, the predicted class labels for adversarial images by DT, RF,
GBDT, and SVM models.

SVM

3.1.4 Decision tree-based attacks

In this section, we see the decision tree based attack algorithm to produce adver-
sarial examples.

Decision Tree attack

The Decision Tree attack (Nicolae et al., 2018) is an algorithm that uses decision
tree structure to create an adversarial example in the untargeted setting (see Fig-
ure 3.16).

Decision Tree attack is a pioneer work on adversarial attack against DT model. In
ART, this algorithm is implemented based on the crafting decision tree adversarial
samples algorithm in Papernot et al., (2016).

Given a decision tree, original examples and its corresponding class labels as shown
in Figure 3.15, the algorithm first finds the leaf in decision tree corresponding to
example given and then search leaves with different classes in the neighborhood of
the original leaf using simple tree search procedure, then the searched leaf used as

25

an adversarial leaf. In the second step, the algorithm modifies the example accord-
ingly to traverse to adversarial leaf. As a result the modified example (adversarial
example) created, in which the targeted classifier outputs a wrong result.

Figure 3.15: Generating adversarial examples with DecisionTree Attack
(From Papernot et al., (2016))

0 1 2 3 4 5 6 7 3 9
E “ .: E
Ovs7 Ivsd 2vs3 3wsd 4vsD Svs3 6vsd Tvs3 Bvwsh OGvsh

EHEENREHRED

Figure 3.16: The top-side of the figure shows image of original MNIST and the
bottom-side shows the perturbed images generated by ART Decision Tree attack
and predicted class labels by DT model, i.e., 100% assigns the adversarial images
to the wrong class but it looks very similar to the original image.

3.2 ART Poisoning Attacks

In case of adversarial poisoning attacks, adversaries feed malicious input that will
be used to fit a model, then due to malicious training data are used to fit a model,
this classifier test error will be high.

3.2.1 Adversarial Poisoning Attack on SVM

The Adversarial Poisoning attack on Support Vector Machines (SVM) is a white-
box attack, in which adversaries introduce malicious input to fit the SVM model
in the targeted and untargeted settings. The following pseudo-code describes the
implementation of this attack in ART, which will accepts SVM model and mali-
cious sample input, then it finds attack points (adversarial examples) iteratively
starting from given malicious sample input, which are initialized as attack points
(at least one malicious input required), then compute per-class derivatives with re-
spect to the attack point, which the attack class will be the opposite of the model’s

26

classification for the attack point, results a poisonous model and adversarial ex-
amples returned. The malicious training data (adversarial and original examples)
are used to fit the model, in which the decision boundaries of the model might
wrongly classify new unseen test data or the model performance decreases. The
implementation of this attack algorithm in ART is based on Biggio et al., (2012)
and supports only LinearSVC and SVC model types provided by scikit-learn ML
framework? .

Based on the ART implementation, we can review two specific functions from the
Poisoning attack on SVM module functions. First create a wrapper class, which
is used to train scikit-learn implementation of the SVM algorithm. Then initialize
the data poison attack module “PoisoningAttackSVM” | which has trained model,
training data and attack parameter settings. The training data must be cleaned
to remove duplicate examples and dividing it into training/test sets, and target
labels for the attack be specified. On the first function poison, which works by
accepting input as an initial attack points, then the algorithm iteratively finds the
optimal attack points (i.e. poisoned examples and poisoned labels), then list of
poisoned examples and labels are returned. Note that, providing parameters such
as maximum number of iterations will increase data poisoning attack on original
input data. The function attack gradient, which implements the algorithm based
on Eq. (8) in Biggio et al., (2012) calculates and returns list of attack gradients
using the specified tolerance level.

27

Chapter 4

Experiments and Analysis

4.1 Experimental setup

Our experimental setup is based on the current version of Adversarial Robustness
Toolbox (version 1.5.1), Scikit-learn (version 0.23.1) and Light GBM (version 3.1.1)
with Jupyter Lab and Jupyter Notebooks, to perform the threat of evasion and poi-
son attacks against supervised machine learning models: support vector machines
(SVM), decision trees (DT), random forest (RF), gradient-boosting decision trees
(GBDT); applied to census income tabular data and MNIST handwritten digit
image classification dataset.

We compare ART Attacks (i.e., data poisoning and evasion attacks) against the
baseline models, in which the models doesn’t implement any adversarial defense
techniques at training and test time, respectively.

We identified 15 evasion attacks and 1 poisoning attack implemented in ART;
and in the following experiment, we will analyze and evaluate the performance of
our chosen classifiers under ART attacks in targeted and untargeted adversarial
settings, and evaluate their performance for tabular and image data. All the ex-
periments are done on a system with Intel core i3 2.53GHz CPUs (4-core) and
4GB RAM.

4.2 Dataset

ART supports all kinds of data types such as tabular, audio, video, images and
others. Among a number of datasets available, we used the following two datasets
for our experimental analysis on tabular and image data types are as follow.

First, for a tabular data type we used the Census Income dataset from the UCI
Machine Learning Repository®, which refers from now as census. The census used
in our work contains 48,842 entries, by merging of train data® and test data®. It
has the following 15 columns entries: income group, age, work class, final weight,
education level, education number, marital status, occupation, relationship, race,

3https://archive.ics.uci.edu/ml/datasets/Census+Income
4https://archive.ics.uci.edu/ml/machine-learning-databases/adult /adult.data
Shttps://archive.ics.uci.edu/ml/machine-learning-databases/adult /adult.test

28

https://archive.ics.uci.edu/ml/datasets/Census+Income

sex, capital gain, capital loss, working hours per week, and native-country. The
class distribution in census: 76.1% entries labeled with <50k (or negative class)
and 23.9% entries labeled with >50k (or positive class), which means there is
skewness in the distribution. Hence, census class distribution are slightly skewed,
with around 3/4 of the entries labeled with negative class.

Second, for an image data type we used the handwritten digits from the MNIST
database®, which will be referred to as MNIST, which contains grayscale images
with size of 28 x 28 pixels of 10 digit images (from digit 0 to 9). This dataset
contains 70,000 digit images and labels values from 0 to 9, by merging the training
set and test set examples’ (see Figure 4.1). Each digit image has the size of 28
X 28 pixels, of each pixel value is in the range of 0 and 255 of pixel intensity
where 0 represents white color (or background) and 255 represents black color (or
foreground).

Class distribution of MNIST database
anoo

ToOoo
G600
3000
4000
3001
200
1000

0

0 1 2 3 4 3 6 T 8 9

Class

[=]

Total
=

[=]

Figure 4.1: Class label (or digits) distribution of mnist data.

4.3 Training and Evaluation

Following that, we train and evaluate our chosen baseline models, i.e. SVM, DT,
RF, and GBDT on the training data. With assumption to that, data preparation
is recommended before training our baseline models; this process is mandatory to
improve the performance of the model on test data, if the data is not processed
properly, then an errors may be raised during model training.

4.3.1 Data Preparation

We used data preprocessing techniques on both datasets. The data preprocessing
will be conducted with the below steps:

Shttp://yann.lecun.com/exdb/mnist/
"https://s3.amazonaws.com/img-datasets/mnist.npz

29

http://yann.lecun.com/exdb/mnist/
https://s3.amazonaws.com/img-datasets/mnist.npz

e First we need to handle missing values. In fact, missing values are issues
in real world datasets. For instance, the census has missing values in some
categorical features. If missing values were not handled either by removing
or imputing, it will reduce the performance of the model or error will be
raised by many machine learning algorithms. To resolve missing data issues
in census, we used imputation methods for handling missing values that will
be replaced by the median and mode value for each numerical and categorical
columns, respectively (AMI, 2016).

e Then encoding categorical features, as machine learning algorithms like SVM
assumes numeric inputs then all categorical features in census data needs to
transform to numeric values. In census data, the following feature such as
work class, education level, marital status, occupation, relationship, race,
sex, and native-country are categorical data. To transform categorical data
to numerical data, we used get_dummies from pandas library® for one-hot
encoding, which binarize the categorical (discrete) features. To compute
gradient loss in ART, class labels must be transformed to one-hot encoded

labels, i.e., y is encoded as the y-th standard basis vector e, (Nicolae et al.,
2018).

e After handling categorical data, the next task is data scaling, we scaled
numerical features in census and mnist data using normalization scaling
method, which scales only the numeric features to [0,1] but categorical fea-
tures are already in [0,1]. It was recommended to build machine learning
model on scaled data. For example, SVM algorithm can efficiently compute
the gradient in scaled data. In ART, the attack algorithms generates an
adversarial example x’ in the valid range of [X,nin, Xmaz|, Which mean in [0,1]
when the given data is normalize (Nicolae et al., 2018).

e Last, we don’t use all features in census to train our baseline models. For
example, education number and level are basically the same, then we drop ed-
ucation number feature. The resulting set of features used in model training
are: age, work class, final weight, education level, marital status, occupation,
relationship, race, sex, capital gain, capital loss, working hours per week, and
native country.

Considering to MNIST, This dataset contains 1 channel gray color handwritten
digit images, each image is a size of 28 x 28 pixels, where each pixel value is in
the range of 0 and 255. In our work we used the preprocessed data’. Then we
applied two data preparation before model training and testing stages (1) data
scaling, which normalizes values (or pixel intensity values) between 0 and 1. In
this regard, ART can generates adversarial example 2z’ in the valid data range of
[Zmins Tmaz), which is in the range of [0,1]; (2) each digit image with 28X28 (as
shown in Figure 4.2 should be flattened to 784 features, where each feature value
is in the range of 0 and 255. mnist is an example of high dimensional features
dataset and in this work, we didn’t apply any feature reduction methods.

8https://pandas.pydata.org/
https://s3.amazonaws.com/img-datasets/mnist.npz

30

https://pandas.pydata.org/
https://s3.amazonaws.com/img-datasets/mnist.npz

Figure 4.2: Plotting digit ’eight’ from mnist

4.3.2 Model Training and Evaluation
On Tabular data type

In case of census, the problem is a binary classification task having two class labels:
either <50k Income (class=0 or negative class) or >50k Income (class=1 or positive
class). We split the census data into three parts while maintaining class distribu-
tion into 60%-+20%=20% parts: In which ~ 29k entries will be for training sets,
and ~ 9k entries will be for each validation and test sets. Validation sets are used
for model evaluation by tuning hyperparameters while training a model. on other
hand, training set and test set are used for model training and testing respectively.

Before data split, we shuffled the dataset using stratified k-fold cross validation?
instead of random k-fold cross validation. This technique is useful to preserve the
percentage of samples for each class under splitting the data in train/test sets.

We also use the same random seed to guarantee reproducibility on training and

test sets, which helps to compare performance between different models having
different hyperparameter settings.

Table 4.1: census training data

TargetLabel || Entries | InPercentage
<50k 29,724 76.073%
>50k 9,349 23.927%

Table 4.2: census test data

TargetLabel || Entries | InPercentage
<50k 7,431 76.067%
>50k 2,338 23.933%

Table 4.1 and 4.2 shows statistics information for census training and test data,

31

respectively. Both training and test data contains a class distribution of approxi-
mately 76% entries labeled with <50k (or negative class) and approximately 24%
entries labeled with >50k (or positive class). This shows skewed distribution of
3/4 portions belongs to negative class on both training and test data.

For each baseline model, we used cross validation techniques with hyperparameter
settings to optimize model performance which generalize the performance on test
data. One of the useful advantages using hyperparameter tuning is to minimize
prediction errors concerning bias-variance trade-off. For example, a regularization
parameter such as the C-term in Ly penalty in scikit-learn support vector machine
are used as hyperparameter setting. Our machine learning model evaluation and
selection is based on K-Fold cross validation techniques. In this method, training
data is randomly separated into k folds, k-1 folds are used for training then one
for testing, Then summarized into mean and standard deviation of all k different
trained model performance scores.

The class distribution in census training data is skewed as shown in Table 4.1. The
performance of the trained model will be poor on minor class as a result of the
skewed class distribution. Hence, we use an oversampling technique called Syn-
thetic Minority Oversampling Technique (SMOTE)!® which is an over sampling
method to overcome class imbalance problem. Then the new training set resam-
pled to balanced class distribution (see Table 4.3). However, the test set remains
unchanged.

Table 4.3: census training data: over-sampling using SMOTE

TargetLabel || Entries | InPercentage
<50k 29,724 50%
>50k 29,724 50%

RandomizedSearchCV? is a scikit-learn API, which is a hyperparameter tuning
method based on randomized search with cross validation. On model training, this
method finds the best model by evaluating multiple models produced with ran-
domly selected hyperparameter values on validation sets. This process is known as
model selection. We fit a model using best hyperparameter values, then evaluate
the model on unseen data to generalize the model performance. We use Random-
izedSearchCV for hyperparameter tuning on training of SVM, DT and RF models.
Whereas, this API is not compatible with GBDT trained with Light GBM. To use
RandomizedSearchCV, we need to use LGBMClassifier'!, which is an extension
of Light GBM that interface with scikit-learn API’s. Whereas, the model trained
using LGBMClassifier is not compatible with ART library. For this reason, we use
an iterative procedure to search hyperparameter values. With this assumption, we
fit our model using the best hyperparameter values and used as a baseline model
in our ART attack experiments.

Ohttps://imbalanced-learn.org
Hhttps://github.com/microsoft/LightGBM

32

https://imbalanced-learn.org
https://github.com/microsoft/LightGBM

The following performance metrics are used to evaluate our classification models:
precision, recall, micro F1 score, receiver-operating characteristic and area under
the curve (ROC-AUC) and matthews correlation coefficient (MCC) on census test
data, since the distribution of classes is not symmetrical; macro accuracy used for
model performance on mnist test data.

On mnist data, the problem is multiclass classification task and having 10 class
labels with relatively balanced dataset as shown in Figure 4.1, there is a balanced
distribution of digits in the dataset, except ‘digit 1’ occurs more than other digits.
Hence, macro accuracy (balanced accuracy) performance metric is useful evalua-
tion metric.

Before considering a comparison between ART attacks for prediction performance
of chosen classifiers on original and adversarial examples. Let’s start with the
summary and visualization of the performance of the baseline models on test data
(original examples) and which are attack unaware models. Figure 4.3 shows con-
fusion matrix results for each baseline classifiers: SVM, DT, RF and GBDT. We
evaluate each baseline classifier on 9769 census test data.

(census, SVM) (census, DT)
0.8
0.8
437 07
0.06)
T [06 w 0.6
=] =]
[[05
g u :
= 759 04 = 1783 04
0.32) 0.76) 03
0.2 '
0.2
0 1
predictad label predicted label
(census, RF) (census, GBDT)
0.8 08
0.7
T 0.6 T 0.6
3 3
?:'.' 05 ?:'.'
s 1669 04 B 1654 0.4
0.71) 03 0.71)
02 0.2
0 1
predicted label predicted label

Figure 4.3: Visualization of confusion matrix result for census test sets

All evaluation metrics mentioned in this thesis are based on the confusion matrix
(Ferndndez et al., 2018). In our model selection, ROC AUC metric is used to com-
pare models, Figure 4.4 shows the ROC AUC performance of the best model on
census test data. The hyper-parameter settings used to train best model configura-
tion for the census and MNIST data are specified in Tables 4.5 and 4.6, respectively.

33

ROC CURVES

10 -
08
=
= 06
L
=
=]
=%
W 0.4
=
02 - ,.a" === Random Prediction: ROC AUC=0.500
J #= SYM: ROC AUC=0.776
o -#%- DTs: ROC AUC=0.897
/’ -%- RF: ROC AUC=0.913
0.0 -#=- GBDTs: ROC AUC=0.924

0.0 0.2 0.4 06 0.8 10
FALSE POSITIVE RATE

Figure 4.4: Visualization of ROC Curve on census

Table 4.4 shows baseline model performance results evaluated with =~ 9k census
test data: precision, recall, F1 score, ROC AUC and MCC (best results in bold-
face). GBDT has best performance compared to other models in precision, F1
score, ROC-AUC and MCC. whereas, DT has better result on recall compared to
RF and GBDT.

Table 4.4: Experimental result on ~ 9k census test data. (best results in boldface)

| Model | Precision | Recall | Fy score | ROC-AUC | MCC |

SVM 0.635 0.325 0.794 0.776 0.346
DT 0.614 0.763 | 0.828 0.897 0.571
RF 0.689 0.714 0.855 0.913 0.605

GBDT | 0.719 0.707 | 0.864 0.924 0.624

On Image data type

Our aim here is to correctly guess the digit value of a handwritten digit image on
MNIST data, which indicates a multiclass classification problem. Now similar with
model training on census data, we split the MNIST data into three parts while
maintaining class distribution into 60%-+20%-20% parts: In which 42k entries for

34

Table 4.5: Hyperparameter configuration used for model training on census

\ Classifier

\ Grid search intervals

\ Model hyperparameter

Scikit-learn
SVC

C=stats.uniform(0.5, 10)
gamma=stats.uniform(0.1, 1)
kernel=["linear’, 'rbf’, 'poly’]

C=5.134701386869259
gamma=0.8514309967653098
kernel=rbf

probability=True
random_state=42

Scikit-learn
DecisionTree

max_depth=randint(3, 50)
max_leaf_nodes=randint(5, 1000),
min_samples_split=randint(2, 100)

max_depth=46
max_leaf nodes=97
min_samples_split=5
random_state=42

Scikit-learn

max_depth=randint(4, 50),
min_samples_split=randint(3, 25)

max_depth=45
min_samples_split=11
n_estimators=748

(};{SindomFor— n_estimators=randint (10, 1000), random state—d?
learning rate=0.19422055180753994
. . boosting_type=gbdt
learning_rate=random.uniform(0, 1) o . ,
.) , objective=multiclass
boosting_type=['gbdt’|
: num_class=(2,)
: sub_feature=random.uniform(0, 1) : :
Light GBM num _leaves—randint (20, 300) metric=multi_logloss
Gradient- . o ' sub_feature=0.4582447205067339
min_data=randint(10, 100)
Boosted max_depth=randint(5, 97) num-_leaves=150
Decision GOt ’ min_data=12
Trees max_depth=88

35

training sets, 14k entries for validation and 14k entries for test sets.

In addition to the size of the split and before applying split, shuffle the dataset us-
ing stratified k-fold cross validation used instead of random k-fold cross validation.
We use stratified k-fold cross validation to preserve the percentage of examples for
each class under splitting the data in train/test sets.

Table 4.7 shows model performance results evaluated with 14k MNIST test data
using macro accuracy metric. The GBDT model has achieved best accuracy per-
formance compared to other models, and Figure (4.6) shows the per-class accuracy
comparison of each models.

Figure 4.5 shows confusion matrix results for classifiers: SVM, DT, RF and GBDT.
We evaluate each classifier on 14k MNIST test data (original example). As we can
see, we had fewer errors on SVM, RF and GBDT models than in DT, where one
digit was misclassified as another digit.

Table 4.6: Hyperparameter configuration used for model training on MNIST

\ Classifier \ Grid search intervals \ Model hyperparameter
C=0.001
kernel=["poly’, 'rbf’] gamma=10
Scikit-learn C:[0.001] kernel=poly
SVC gamma=/[10] probability=True
random _state=42
Scikit-learn max_depth=(2, 4, 10, 784, None) max.depth=784
DecisionTree random _state=42
max_depth=784
Scikit-learn n_estimators=(10, 25, 50, 100) E;sltalsriziu‘iors:25
(E{SimdomFor- random _state=42
learning rate=0.242
boosting_type=gbdt
learning_rate=random.uniform(0, 1) ziﬁc(tjggj_n(nllétl)class
boosting type=[gbdt’] metr&c—m;lti 170 loss
: sub_feature=random.uniform(0, 1) N 08
Light GBM . sub_feature=0.986
. num_leaves=random.randint(20, 300)
Gradient- . : num _leaves=179
min_data=random.randint(10, 100) .
Boosted max_depth=random.randint(5, 784) min.data=88
Decision ~CepH= ' ’ max_depth=>596
Trees num_iterations=100
early_stopping_round=None

36

Table 4.7: Experimental result on 14k MNIST test data. (best results in boldface)

‘ Model ‘ Accuracy ‘

SVM 0.9957
DT 0.9749
RF 0.9922
GBDT | 0.9959

(MNIST, SVM) (MNIST, DT)
0- 0 3 0 2 0 04
LK o o0 4 3 1
248 3 1 1 6 8 1 - 13
2 2 12 0 7 9 0 15
84-2 2 5 0 5 3 2 15 ol 7
== [1s]
g 5 2 3 7 8 7 L (19 8
T 6-9 0 3 0 3 “els s
1 4 8 0 1 7 12
g- 6 2 4 10 g{11 12
10 4 0 6 3 12 9 13
| I | I | T T T T T
0 2 4 [+ 8] p 4 B 8
predicted label predicted label
(MNIST, RF) (MNIST, GBDT)
oA
2 1 0
1
T W
8 2 47 4 5
E 5 |4 0
= =
416 2
1 5 H
g1 3 2 G
2 7 2
1 T 1 T 1
o 2 4 G B
predicted label predicted label

Figure 4.5: Visualization of confusion matrix result on MNIST test data

37

100

40 ||| |||| |||| |||| |||| |||| |||| |||| |||| |||
0 1 2 3 4] G T a 9

Figure 4.6: Classifier’s per-class accuracy results on MNIST test data

a0
3
o
3 . SV
3 w07
@ mm RF
L]
5 s GEDT
[~
o
o

5]

=]

4.4 Experimental Evaluation

Following reviews on adversarial attacks implemented in ART and trained models,
we evaluate ART attacks against trained models on census and MNIST data at
test and training time. All the adversarial examples were generated on the test
data.

We evaluates the fooling (success) rate!? | i.e., the percentage of successful adver-
sarial examples of an attack given by:

n 1(Yadw, = ¥i) ifAis atargeted attack
. examples aav; 1
Successa =) ;51 {1(yadvi Z Yo,) otherwise

1

Nexamples

Successratey = (Success)

Where the i-th entry of y, and y,4, specifies the predicted label of original example
and adversarial example, respectively. whereas, the i-th entry of y is a target label
assigned by the attack A. Note that, the success rate in targeted attack setting
calculate based on the attack to the desired (or assigned) class label only.

Our experiments organized in two sections: (1) evasion attacks in ART, (2) data
poisoning in ART.

4.4.1 Evasion attacks in ART

In this section, we report on the evasion attacks implemented in ART on chosen
trained models. Tables 4.8 and 4.9 show the performance of those models before
attack (or model performance on original examples). We consider two adversarial

12art /utils.py

38

settings: (1) Targeted attack, in which the attack uses random targets'? function
to generate random class labels but different from the corresponding input true
labels. for example, in binary classification task, the class label assigned to its
corresponding opposite class label; (2) Untargeted attack, we didn’t provide true
labels with the classifier input because this approach prone to label leaking effect,
instead for target label, we use the prediction of the classification of the input
to prevent the label leaking problem (Nicolae et al., 2018). Figure 4.7 shows the
confusion matrix that gives information to know how many digits were misclassified
for 100 MNIST original examples by each baseline models.

(MNIST, SVM) (MNIST, DT)

iR 10 0 o o0 oo ogpb@ o 0 0 0O O 0 0
I 10 0 o 0 0 opLlE O 0 0 O 0 0
240 0 ply 0 o oo 210 O @ o 0 O 1 2
0 0 0 0 o 0 0 0 0 O EEO0 1 1 0
%4 00 0 0 oo %4 00 0 1 e 01
% 0 0 0 B 01 % 0 0 0 0 1 01
- 640 0 O o oo - G40 0 0 0O O O 0 0
0 0 0 0 0 0 0 00 0 0 O 0 0
B40 0 0O 0o 0 Bq0 0 0 1 0 O i 1
0 0 0 0o] 0 00 1 0 O 0 Bl

o 2 4 & 8 o 2 4 & 8

predicted label predicted label
(MNIST, RF) (MNIST, GBDT)

0 0o o0 oo i 10 0o o0 0 0 0
0 0 0 10 000 0 0 0
240 0 oo 210 0 000 0 0 0
0 0 0 1 0 0 0 oph@o O O O O O
%4 0 0 0 oo %4 0 0 0 Oph@o 0 O 0O O
?EJ 0 0 0 2 0 ?EJ 0 0 0 0 OoOpb@O O 0 O
. 641 0 0O oo - 640 0 0 0 0 Oph@o 0O 0O
0 0 0 0 0 0 0 00 0 0 O 0 0
Bq40 1 0O 0] Bq40 0 0 0 0O O 0
0 0 0 0 0 00 0 0 O]

0 2 a6 8 0 2 a6 8

predicted lab

m

| predicted label

Figure 4.7: Visualization of confusion matrix for 100 MNIST original examples

Table 4.8: Experimental result on census 1500 original examples. (best results in
boldface)

Baseline models Precision Recall Fj score MCC

SVM 0.628 0.35 0.804 0.363
DT 0.592 0.781 0.827 0.568
RF 0.667 0.723 0.854 0.599
GBDT 0.694 0.714 0.863 0.615

39

Table 4.9: Experimental result on MNIST 100 original examples. (best results in
boldface)

Baseline models Accuracy

SVM 0.994
DT 0.972
RF 0.986
GBDT 0.998

Decision Tree-based attack

In this section, we report on the performance of ART DecisionTree attack against
decision trees with different values of offsets/threshold, such as 0.0001, 0.001, 0.01,
0.1, and 1. Note that, this attack method gives similar result to the offset specified
here and supports scikit-learn DecisionTree classifier only.

On Tabular data type: To evaluate this attack on tabular data type, we uses
all census test data, which is approximately 9k original examples. Since, this
attack is fast, we generates approximately 9k adversarial examples against decision
trees in untargeted setting. As a result, the model wrongly predict by 92.38%
on the adversarial examples. Table 4.10 shows the experimental result of ART
DecisionTree attack with offset=0.01. We can see that the model performance on
adversarial examples are decreases (best results in boldface).

Table 4.10: Experimental results using ART DecisionTree attack against decision
trees on census.

Test data Precision Recall Micro F1 score MCC Fooling rate(%)

Original 0.614 0.763 0.828 0.571 -
Adversarial 0.082 0.214 0.237 -0.478 92.38

On Image data type: We evaluate adversarial attacked examples generated by
ART DecisionTree attack with different values of offsets on 100 MNIST original
examples in the untargeted setting. The model test accuracy on adversarial ex-
amples and original examples are 2% and 97.2%, respectively. In addition, the
fooling rate of this attack has 100%. As an example, consider Annex 5 shows the
prediction on adversarial examples generated with 0.1 and 1 offsets. The adver-
sarial example produced by this attack are very similar to the original image while
being misclassified by the model, which is 100 percent wrong prediction (Annex 5
shows the comparison of this attack with Boundary attack, HSJA(/;), and ZOO
attack), DecisionTree attack outperformed all other models against decision trees
in terms of the adversarial images produced are similar with the original image
and fooling rate, but its limitation is, it works only in the untargeted setting only.
On the other hand, accuracy depend on the model performance, in which the per-
formance of the model is 97.2% on original examples (see Table 4.9). For example,
the targeted model classify digit 3 by 5 on original examples and then the same
digit classified as 3 in adversarial examples. The result is shown in Figure 4.8.

40

Original examples

4 9 0 3 6 4 1 7 2vs9 B
ql/)3felul/ i 7)2) ¢
1 9vs3 6

8 7
Elllllﬂlll

0 4vs7 4
IHEEEEHIEE
2 8vs9 1 5 4v59 D

Adversarial examples
dys6 9vsb Ovs3 3vsb Bvs3 4vs3 1vsS Tvsb 2vsl Bvsh

AN OnFEBEn

3vs5 Bws3 7wsb 1vsb 9vs5 Svws3 6vwsl &vs3 2vs3 bvs3

EEBANEEBEANn

Bvs3 Ovws7¥ 8vws5 TvsD Ows7 5vws3 2vs5 1vs5 Bvsl 1vss

AZRANMEERANEN

2vs3 3ws5 Tvsh Bvs3 3vs5 9vsh 9vse Iwsh Gvsh Svse

BENMOHHNOEHNH

3ws5 2ws3 Avse Fvse Tvs3 3 1ws5 Bws3 Tvse Ovs?

HREOHEENREGED

3ws5 Ovsh 2vsD Svsh dvsh Bvs3 use Ovsh Jvsl

BAEROBORHE

5ws3 3vse dvse OwsT Bush 2vs5 2vs5 Swsb 4vs5 1vss

HEANDRENEHEDN

Ovs7 Bws5 1vwsh 9vsb6 Bvsl Fvst 1vsS &vs7 Bvs3 bBvs3

PHAAEEDNGEOH

7vs6 Svsl Ows7 Bvs3 Ows7 4vs0 4vwst 1vs5 2vs5 OvsS

HEHBHEENQERBRE

2vs53 BwsE 1vsh 9vs6 5Svs3 4vse OvwsT 4vsb Tvs3 Svsl

ESNANCANEHE

Figure 4.8: MNIST: ART DecisionTree attack against Decision Trees with off-
set=0.01

Gradient-based attacks

In this section, we run two experiments using the parameters in Table 4.11 in the
targeted and untargeted settings. First, we evaluates ART FGM, FGSM, BIM,
and PGD attacks against SVM model on 1500 census and 100 MNIST test data.
Second, we evaluates ART FGM, FGSM, UP and UAP against SVM model on
1500 census and 100 MNIST test data.

On Tabular data type: ART FGM, FGSM, BIM, and PGD attacks

e Targeted setting: In Table 4.12, FGM(¢;) and FGM({;) attack achieves
95.06% and 95.33% success rate with ¢ = 0.1, respectively. However, FGSM ()
attack achieve 97.8% success rate with e = 0.1, whereas FGM(¢;) and FGM(¢3)
at €=0.5 and £=0.3, respectively. F} score drops from 0.804 on original ex-
amples (Table 4.8) to 0.049, 0.047, and 0.022 on adversarial examples created
under the FGM(¢;), FGM({;), and FGSM (/) attacks, respectively. Figure
4.9 shows that FGSM({,) performance metrics when computing with and
without minimal perturbation budget. BIM (/) attack with e=0.1 achieves
97.8% fooling rate, and MCC drops from 0.363 on original examples (Ta-
ble 4.8) to -0.937 on adversarial examples. In PGD attack, with e=0.1, we
achieves 95.6%, 97.39%, and 97.8% fooling rate under the ¢;, ¢y, and /
distance metrics, respectively. MCC drops from 0.363 on original examples
to -0.874, -0.926, and -0.937 on adversarial examples created by PGD(¢;),
PGD(4;), PGD({,), respectively. Since ART implements an extension on
FGM/FGSM attack, the attack success rate achieved is comparable with the
iterative versions, i.e., BIM and PGD attacks.

e Untargeted setting: In Table 4.13, those attacks fooling rate is similar
with in the targeted setting, But the performance of the model is changed,

41

Table 4.11: Parameters for the gradient-based attack algorithms

Attack Algorithm Parameters
FGM(¢;), FGM(43), FGSM (/) e=0.1, 0.3, 0.5, 0.7, 0.9, 1.0;
6step:O‘]-;

minimal perturbation=True

BIM((-)

e=0.1, 0.3, 0.5, 0.7, 0.9, 1.0;
gstep:()-]-;
maximum iteration=2

PGD(¢,), PGD((,), PGD (o)

¢=0.1, 0.3, 0.5, 0.7, 0.9, 1.0;
€5tep:O-1;
maximum iteration=2

UP(¢4y), UP(¢3), UP({s)

e=0.1, 0.3, 0.5, 0.7, 0.9, 1.0;
Estepzo-l;
maximum iteration=1

UAP((,), UAP((y), UAP((x)

€=0.1, 0.3, 0.5, 0.7, 0.9, 1.0;
5step:0‘]-;
maximum iteration=1

C&W(Ls), C&W(l0)

e=0.1, 0.3, 0.5, 0.7, 0.9, 1.0;
6step:0-]-;
maximum iteration=2

JSMA (¢y) 0=0.1, 0.3, 0.5, 0.7, 0.9, 1.0;
v=0.1;
maximum iteration=2
NewtonFool n=0.1, 0.3, 0.5, 0.7, 0.9, 1.0;
maximum iteration=2
DeepFool e=0.1, 0.3, 0.5, 0.7, 0.9, 1.0;

nb_grads=10;
maximum iteration=2

EAD((;), EAD((,), EAD(EN)

e=0.1, 0.3, 0.5, 0.7, 0.9, 1.0;

maximum iteration=2

VAT (0,)

e=0.1, 0.3, 0.5, 0.7, 0.9, 1.0;
finite_diff=1e-6;
maximum iteration=2

For example, MCC result increases from -0.937 on targeted attack (Table
4.12) to -0.248.

Table 4.12: census: Experimental results on 1500 adversarial examples generated
by ART FGSM, BIM, and PGD attacks under the ¢, {5, and /., distance metrics
bounded with different values of ¢ in targeted setting (best attack success rate in
boldface).

FGSM BIM PGD

E Foaling Fooling Foaling
Prec. | Rec. F1 MCC | rate® | Prec. | Rec. F1 MCC | rate® | Prec. | Rec. F1 MCC | rate %
0.1|0.06 |0.216 |0.049 |-0.859 (95.06 |- - - - - 0.054 |10.192 |0.044 |-0.874 |95.6
0.3|0.054 |0.192 |0.044 |-0.874 (956 |- - - - - 0.054 |10.192 |0.044 |-0.874 |95.6

1 0.5|0.028 |0.096 |0.022 |0.022 (978 |- - - - - 0.054 |10.192 |0.044 |-0.874 |95.6
0.7|0.009 |0.032 [0.007 |-0.979 (99.26 |- - - - - 0.054 |10.192 |0.044 |-0.874 |95.6
0.9(0.009 |0.032 [0.007 |-0.979 (99.26 |- - - - - 0.054 |10.192 |0.044 |-0.874 |95.6
1/0.009 (0.032 |0.007 |-0.979 |199.26 |- - - - - 0.054 |10.192 |0.044 |-0.874 |95.6
0.1|0.057 |0.204 |0.047 |-0.866 (9533 |- - - - - 0.033 10.114 [0.026 |-0.926 |197.39
0.3|0.033 |0.114 |0.026 |-0.926 (9739 |- - - - - 0033|0114 [0.026 |-0.926 |97.39

12 0.5(0.009 |0.032 [0.007 |-0.979 (99.26 |- - - - - 0.033 10.114 [0.026 |-0.926 |197.39
0.7|0.009 |0.032 [0.007 |-0.979 (99 26 |- - - - - 0033|0114 [0.026 |-0.926 |97.39
0.9(0.009 |0.032 [0.007 |-0.979 (99.26 |- - - - - 0.033 10.114 [0.026 |-0.926 |197.39
1/0.009 (0.029 |0.007 |-0.981 |99.33 |- - - - - 0033|0114 [0.026 |-0.926 |97.39
0.1|0.028 |0.096 [0.022 |-0.937 (97.8 |0.028 |0.096 (0.022 |-0.937 |97.8 |0.028 (0.096 |0.022 (-0.937 (97.8
0.3(0.028 |0.096 [0.022 |-0.937 (97.8 |0.028 |0.096 |0.022 |-0.937 |97.8 |0.028 (0.096 |0.022 (-0.937 (97.8
- 0.5(0.028 |0.096 [0.022 |-0.937 (97.8 |0.028 |0.096 (0.022 |-0.937 |97.8 |0.028 (0.096 |0.022 (-0.937 (97.8
0.7/10.028 |0.096 [0.022 |-0.937 (97.8 |0.028 |0.096 [0.022 |-0.937 |97.8 |0.028 (0.096 |0.022 (-0.937 (97.8
0.9(0.028 |0.096 [0.022 |-0.937 (97.8 |0.028 |0.096 (0.022 |-0.937 |97.8 |0.028 (0.096 |0.022 (-0.937 (97.8
1/0.028 (0.096 |0.022 {-0.937 |97.8 |0.028 (0.096 |0.022 (-0.937 |97.8 |0.028 |0.096 |0.022 |-0.937 |97.8

In Table 4.17, PGD(¢;), PGD(¥¢3), and PGD(/,) attacks achieves 97.6%, 97.8%,
and 97.8% fooling rate with perturbation budget ¢ = 0.1 and iterations= 1, 2, and
3 in the targeted and untargeted settings, respectively. The result shown that the
fooling rate will increases with given iteration values.

On Image data type: ART FGSM, BIM, and PGD attacks

e Targeted and untargeted setting: Since these attack methods using ¢,
or { distance has 0% attack success rate. The following result in Table 4.14
is an adversarial examples generated with /., distance on MNIST data. In
this setting, FGSM(/,) has the highest fooling rate among BIM({,,) and
PGD(/,) as shown in 2.1, 2.2 and 2.3 Annex 5.

On Tabular data type: ART FGM, FGSM, UP and UAP attacks
Universal perturbation, discussed in Section 3.1.1, executes another attacks it-
eratively, in this experiment, we evaluate the FGSM (/) algorithm runs inside
UP/Targeted UAP algorithms versus FGSM({,). As a result, accumulation per-
turbations over all inputs has less attack success rate (see Tables 4.15, 4.16).

e Targeted setting: In Table 4.15, FGM(¢;) and FGM(¢5), and FGSM (/)
attacks achieves 95.06%, 95.33%, and 97.8% fooling rate with perturbation
budget ¢ = 0.1. UAP(¢;), UAP({;y), and UAP (/) attacks with £=0.1

43

Table 4.13: census: Experimental results on 1500 adversarial examples generated
by ART FGSM, BIM, and PGD attacks under the ¢, ¢5, and /., distance metrics
bounded with different values of € in untargeted setting (best attack success rate

in boldface).

FGSM BIM PGD

E Foaling Fooling Foaling
Prec. | Rec. F1 MCC | rate® | Prec. | Rec. F1 MCC | rate® | Prec. | Rec. F1 MCC | rate %
0.1|0.212 |0.866 |0.234 |-0.147 (934 |- - 0.21110.843 |0.242 |-0.141|95.26
0.3|0.211 |0.843 |0.242 |-0.141 (9526 |- - 0.21110.843 |0.242 |-0.141 |95.26

1 0.5|0.192 |0.746 |0.223 |-0.248 (978 |- - 0.21110.843 |0.242 |-0.141|95.26
0.7|0.178 |0.682 |0.209 |-0.316 (99.26 |- - 0.21110.843 |0.242 |-0.141 |95.26
0.9(0.178 |0.209 [0.209 |-0.316 (99.26 |- - 0.21110.843 |0.242 |-0.141|95.26
1|0.178 (0.209 |10.209 |-0.316 |199.26 |- - 0.21110.843 |0.242 |-0.141 |95.26
0.1|0.212 |0.854 |0.241 |-0.134 (9466 |- - 0.195 |10.764 [0.227 |-0.23 |97.33
0.3|0.195 |0.764 |0.227 |-0.23 (9733 |- - 0195 |0.764 [0.227 |-0.23 |97.33

12 0.5|0.178 |0.682 [0.209 |-0.316 (99.26 |- - 0.195 |10.764 [0.227 |-0.23 |97.33
0.7|0.178 |0.682 |0.209 |-0.316 (99.26 |- - 0195 |0.764 [0.227 |-0.23 |97.33
0.9|0.178 |0.682 [0.209 |-0.316 (99.26 |- - 0.195 |10.764 [0.227 |-0.23 |97.33
1|0.178 (0.682 |0.209 |-0.316 |99.26 |- - - - - 0195 |0.764 [0.227 |-0.23 |97.33
0.1|0.192 |0.746 (0.223 |-0.248 (97.8 |0.192 |0.746 |0.223 |-0.248 |97.8 |0.192 (0.746 |0.223 (-0.248 (97.8
0.3]10.192 |0.746 (0223 |-0.248 [97.8 |0.192 |0.746 (0223 |-0.25 (9773|0192 (0.746 |0.223 [-0.25 (9773
- 0.510.192 |0.746 (0.223 |-0.248 [97.8 |0.192 |0.746 (0.223 |-0.25 |97.73|0.192 (0.746 |0.223 [-0.25 ([97.73
0.7]10.192 |0.746 (0223 |-0.248 [97.8 |0.192 |0.746 (0223 |-0.25 |97.73|0.192 (0.746 |0.223 [-0.25 ([97.73
0.910.192 |0.746 (0.223 |-0.248 [97.8 |0.192 |0.746 (0.223 |-0.256 |97.73|0.192 (0.746 |0.223 [-0.25 (97.73
1|0.192 (0.746 |0.223 [-0.248 |97.8 |0.192 (0.746 |0.223 [-0.25 |97.73|0.192 |0.746 |0.223 |-0.25 |97.73

Table 4.14: MNIST: Experimental results on 100 adversarial examples FGSM({,),
BIM({w), and PGD(/.,) attacks bounded with different values of ¢ in the targeted
and untargeted settings (best attack success rate in boldface).

FGSM (/) BIM(4s) PGD(4.)
Objective Epsilon(e) | Acc. Fooling Acc. Fooling Acc. Fooling
rate(%) rate(%) rate(%)
0.1 0.97 0 0.97 0 0.97 0
Targeted 0.2 0.85 5 0.83 4 0.83 3
0.3 0.85 5 0.83 4 0.72 14
0.4 0.18 75 0.83 4 0.61 21
0.1 0.89 12 0.88 13 0.88 13
Untargeted 0.2 0.59 42 0.56 45 0.55 46
0.3 0.59 42 0.56 45 0.38 63
0.4 0.1 91 0.56 45 0.28 73

44

achieves 20.13%, 77.13%, and 77.13% fooling rate, respectively. MCC re-
sult drops from 0.363 on original examples to 0.349, 0, and 0 on adversarial
examples created by UAP(¢;), UAP({;), and UAP (/) attacks, respectively.

e Untargeted setting: In Table 4.16 the FGM(¢;),FGM(¢5), and FGSM (/)
attacks achieves 93.4%, 94.66%, and 97.8% fooling rate with € = 0.1, respec-
tively. All UP(¢,), UP(¢;), and UP (/) attacks with e=0.1 achieves 86.73%
fooling rate. MCC drops from 0.363 on original examples (Table 4.8) to 0
on adversarial examples created UP(¢;), UP({s), and UP(/,,) attacks.

Table 4.15: census: Experimental results on 1500 adversarial examples generated
by ART Targeted FGSM and UAP attacks under the ¢;, ¢5, and /., distance
metrics bounded with different values of € (best attack success rate in boldface).

FGSM Targeted UAP
norm| E Fooling Fooling
Prec.| Rec. | F1 | MCC| rate’| Prec.| Rec. | F1 | MCC | rate %
0.1 0.06|0.216|0.049(-0.86(95.06| 0.603| 0.35/0.799 | 0.349| 2013
0.3| 0.054| 0.192| 0.044(-0.87| 956| 0229 110229 0] 7713
1 0.5| 0.028| 0.096| 0.022(0.022(97.8| 0229 110,229 0] 7713
0.7/ 0.009| 0.032| 0.007(-0.98| 99.26| 0.229 110229 0] 7713
0.9|0.009| 0.032|0.007(-0.98(99.26| 0.229 110,229 0] 7713
1) 0.009| 0.032| 0.007(-0.98| 99.26| 0.229 110229 0] 7713
0.1| 0.057| 0.204| 0.047(-0.87| 95.33| 0.229 110,229 0] 7713
0.3| 0.033| 0.114| 0.026(-0.93| 97.39) 0.229 110229 0] 7713
12 0.5)0.009| 0.032| 0.007(-0.98(99.26| 0.229 110,229 0] 7713
0.7/ 0.009| 0.032| 0.007(-0.98| 99.26| 0.229 110229 0] 7713
0.9|0.009| 0.032|0.007(-0.98(99.26| 0.229 110,229 0] 7713
1/ 0.009| 0.029| 0.007(-0.98(99.33| 0.229 110229 0] 7713
0.1|0.028| 0.096| 0.022(-0.94| 97.8| 0229 110,229 0] 7713
0.3|0.028(0.096(0.022| -0.94| 97.8| 0229 110229 0] 7713
- 0.5(0.028(0.096(0.022| -0.94| 97.8| 0229 110,229 0] 7713
0.7/ 0.028| 0.096| 0.022(-0.94| 97.8| 0229 110229 0] 7713
0.9|0.028| 0.096| 0.022(-0.94| 97.8| 0229 110,229 0] 7713
1| 0.028| 0.096| 0.022(-0.94| 97.8| 0229 110229 0] 7713

On Image data type: ART FGSM, UP and UAP attacks

e Targeted and untargeted setting: Since the FGSM(¢;) and FGSM (/)
attacks fooling rate is 0% on MNIST data, Table 4.18 shows ART FGSM(/,,),
UP(¢y), and Targeted UAP({) attacks only. In both attack settings,
FGSM (/) has the highest fooling rate than UP(/,,) and UAP({,) attacks.

Decision-based attacks

In both targeted and untargeted setting, we evaluate decision-based attacks: ART
Boundary attack and HopSkipJump attack on SVM, DT, RF, or GBDT on census

45

Table 4.16: census: Experimental results on 1500 adversarial examples generated
by ART Untargeted FGSM and UP attacks under the ¢;, {5, and /., distance
metrics bounded with different values of e.

FGSM up
norml € Fooling Fooling
Prec.| Rec. | F1 | MCC| rate’| Prec.| Rec. | F1 | MCC| rate%
0.1 0.212| 0.866| 0.234| -015] 93.4(0.229 11 0.229 0] 86.73
0.3 0.211(0.843| 0.242| -0.14| 95 26| 0.229 110229 0] 86.73
11 0.5(0192(0.746| 0.223| -0.25) 97.8(0.229 11 0.229 0] 86.73
0.7| 0.178(0.682| 0.209| -0.32| 99.26| 0.229 110229 0] 86.73
0.9(0178(0.209(0.209| -0.32| 99.26(0.229 11 0.229 0] 86.73
1| 0.178| 0.209| 0.209(-0.32| 99.26(0.229 110229 0] 86.73
0.1 0.212(0.854| 0.241| -0.13| 94.66(0.229 11 0.229 0] 86.73
0.3 0.195(0.764| 0227 -0.23| 897.33| 0.229 110229 0] 86.73
12 0.5 0.178| 0.682| 0.209| -0.32| 99.26(0.229 11 0.229 0] 86.73
0.7| 0.178(0.682| 0.209| -0.32| 99.26| 0.229 110229 0] 86.73
0.9(0178| 0.682(0.209| -0.32| 99.26(0.229 11 0.229 0] 86.73
1| 0.178| 0.682| 0.209| -0.32| 99.26(0.229 110229 0] 86.73
0.1 0.192| 0.746| 0.223| -0.25) 97.8(0.229 11 0.229 0] 86.73
0.3| 0192 0.746| 0.223| -0.25| 97.8| 0.229 110229 0] 86.73
Lem 0.5(0192(0.746| 0.223| -0.25) 97.8(0.229 11 0.229 0] 86.73
0.7| 0192 0.746| 0.223| -0.25| 97.8| 0.229 110229 0] 86.73
0.9(0192(0.746| 0.223| -0.25) 97.8(0.229 11 0.229 0] 86.73
1| 0.192| 0.746| 0.223| -0.25| 97.8(0.229 110229 0] 86.73

46

ART FGSM(L=) attacks on SVM

— \ Attack settings
g \ —— Untargeted
% 1 Targeted
Metric
—— Fooling rate (%)
m g
[
=]
I
B85 4
m -
T T T T T T T T T T T
001 003 005 007 009 01 03 05 07 09 1
Attack budget ()
ART FGSM(Lx=) attacks an SVM
0.25 -
0.20 1
015 A
[
=]
I
010
Attack settings
— Untargeted
0.05 | Trgeted
Metric
— F1 Scare
T T T T T T T T T T T
00l 003 005 007 009 01 03 05 07 09 1
Attack budget ()
ART FGSM(Lwx) attacks on SVM
0oq
\ — i
-0.2 4 .
w —0.4 1
Q
A
-0.6 :
Attack settings
— Untargeted
0.8 - Targeted
Metric
— MCC
T T T T T T T T T T T
00l 003 005 007 009 01 03 05 07 09 1

Attack budget (g)

re

Score

Score

ART FGSMI(L=) attacks on SVM (with minimal perturbation)

98 e
/”-_
7
% N //
//I
%4 -
92
a0 - ."I Attack settings
—— Untargeted
Targeted
B8 Metric
! — Fooling rate (%)
T T T T T T T T T T T
001 003 005 007 009 01 03 05 07 09 1
Attack budget ()
ART FG5M(L=)} attacks on SWM (with minimal perturbation)
0.25 1 -
020 1
Attack settings
015 —— Untargeted
Targeted
Metric
0.10 —— F1 Score
0.05 1
T T T T T T T T T T T
00l 003 005 007 009 01 03 05 07 09 1
Attack budget ()
ART FGSM(L=) attacks on SVM (with minimal perturbation)
0oq
-0.2 S
Attack settings
—04 — Untargeted
Targeted
Metric
06 1 — MCC
—-0.8 1
T T T T T T T T T T T
00l 003 005 007 009 Q1 03 05 07 09 1

Attack budget (g)

Figure 4.9: census: shows comparisons on SVM model performance and attack
success rate on adversarial examples created by ART FGSM (/) with computing
minimal perturbation or not. (Note that, we restrict the number of steps used to
0.01 for attack budgets from 0.01 to 0.1, and step size=0.1 for attack budgets from
0.1 to 1, in which to keep the computational cost of experiments manageable and
correct.)

47

Table 4.17: census: Experimental results on 1500 adversarial examples generated
by ART PGD attacks under the ¢1, /5, and /., distance metrics bounded by £=0.1
with in different iterations in targeted and untargeted settings (best attack success
rate in boldface).

Objective | Max.| Avg. Time | Prec. | Rec. | F1 MCC | Fooling
Norm
Iter. | (per attack) rate
1 2.58 sec 0.06 | 0.216] 0.049| -0.859| 95.06
Targeted 2 4.31 sec 0.054| 0.192] 0.044| -0.874| 95.6
0 3 10.5 sec 0.03 | 0.105] 0.024| -0.932| 97.60
1 2.42 sec 0.212| 0.866| 0.234| -0.147| 93.4
Untargeted| 2 5.68 sec 0.211| 0.843| 0.242| -0.141] 95.26
3 9.90 sec 0.194| 0.755| 0.225| -0.24 97.53
1 3.31 sec 0.057| 0.204| 0.047| -0.866| 95.33
Targeted 2 4.79 sec 0.033| 0.114] 0.026] -0.926| 97.39
0y 3 9.66 sec 0.028| 0.096| 0.022| -0.937| 97.80
1 2.47 sec 0.212| 0.854| 0.241] -0.134| 94.66
Untargeted| 2 6.29 sec 0.195| 0.764| 0.227| -0.23 97.33
3 6.65 sec 0.192| 0.746| 0.223| -0.248| 97.80
1 3.69 sec 0.028| 0.096| 0.022] -0.937| 97.8
Targeted 2 4.64 sec 0.028| 0.096| 0.022{ -0.937| 97.8
¢ 3 7.99 sec 0.028| 0.096| 0.022| -0.937| 97.80
> 1 3.1 sec 0.192| 0.746| 0.223| -0.248| 97.8
Untargeted| 2 4.47 sec 0.192| 0.746| 0.223| -0.248| 97.8
3 10.09 sec 0.192| 0.746| 0.223| -0.248| 97.80

Table 4.18: MNIST: Targeted and untargeted FGSM, UP, and UAP. Experimental
results on 100 adversarial samples (best fooling rate in boldface).

FGSM (/) Targeted UAP (/o) UP(/)
Objective Epsilon | Accuracy | Fooling Accuracy | Fooling Accuracy | Fooling
(€) rate(%) rate(%) rate(%)
0.1 0.97 0 0.95 3 - -
0.3 0.85) 0.59 41 - -
0.5 0.03 96 0.35 64 - -
Targeted 0.7 0.02 98 0.28 71 i :
0.9 0.02 98 0.13 87 - -
1 0.02 98 0.2 80 - -
0.1 0.89 12 - - 0.96 4
0.3 0.59 42 - - 0.89 12
0.5 0.01 100 - - 0.5 49
Untargeted | 7 0.01 100 i i 0.15 84
0.9 0.01 100 - - 0.3 70
1 0.01 100 - - 0.54 45

48

and MNIST data with different parameter values. Table 4.19 shows the parameters
used for decision-based attack algorithms.

Table 4.19: Parameters for the decision-based attack algorithms

Attack Algorithms Parameters

Maximum number of iterations (max_iter=2), Max-
imum number of evaluations for estimating gradi-
ent(max_eval=4); Initial number of evaluations for es-
timating gradient(init_eval=2), Maximum number of
trials for initial generation of adversarial examples
(init_size=1)
length of the total perturbation (orthogonal step
d = 0.01), step towards the target (¢ = 0.01),
step_adapt=0.01, Maximum number of iterations=2
BA (but for MNIST 100 iterations used), Number of tri-
als per iteration=5, Number of samples per trial=10,
Number of trials for initial generation of adversarial ex-
amples=10

HISA(f.), HISA(f)

On Tabular data type: The following Tables 4.20 and 4.21 shows experimen-
tal results for adversarial examples created by ART Boundary and HopSkipJump
attacks on 1500 census test data, respectively (Best attack result in bold). Hop-
SkipJump attacks on random forest is computationally expensive. In both attack
algorithms, the targeted attack setting achieves the highest fooling rate.

On Image data type: The following Table 4.22 and Figure 4.23 shows ex-
perimental results for adversarial examples created by ART Boundary and Hop-
SkipJump attacks on 100 MNIST test data, respectively (Best attack result in
bold). We show adversarial examples created by the ART Boundary attack for
MNIST in 3.2, Annex 5. and, by HopSkipJump attack in 3.1, Annex 5.

For example, adversarial examples is produced by Boundary attack with mini-
mal perturbations computed under ¢, norm bound with ¢=0.01, § = 0.01, and
iterations of 10, 100,and 1000 are shown in the Figure 4.10.

Table 4.20: Boundary attack for census 1500 examples with € = 0.01 and § = 0.01
in the targeted and untargeted settings (best attack success rate in boldface)

Model Objective | Avg. time | Prec. Rec. F1 MCC Fooling
(per attack) rate
VM Targeted 0.26 sec 0 0 0.719 | -0.128 28.13
Untargeted| 0.33 sec 0 0 0.771 | 0 13.26
DT Targeted 0.01 sec 0.123 | 0472 | 0.108 | -0.68 89.2
Untargeted| 0.01 sec 0.18 0.697 | 0.203 | -0.326 81.13
RF Targeted 1.29 sec 0.1 0.376 | 0.086 | -0.749 91.4
Untargeted| 1.6 sec 0.177 | 0.688 | 0.198 | -0.345 86.4
GBDT Targeted 0.01 sec 0.108 | 0.408 | 0.093 | -0.727 90.66
Untargeted| 0.01 sec 0.184 | 0.729 | 0.199 | -0.328 85.93

49

Table 4.21: ART HopSkipJump attack for census 1500 original examples with
targeted and untargeted settings.

Objective | Dist. | Avg. Time | Prec. | Rec. F1 MCC | Fooling
Model
(per attack) rate
Targeted (s 0.4 sec 0.094 | 0.35 0.08 -0.767| 92
VM Uy 0.33 sec 0.094 | 0.35 0.08 -0.767| 92
Untargeted (s 0.49 sec 0.229 | 1 0229 | 0 86.73
Uy 0.4 sec 0.229 | 1 0229 | 0 86.73
Targeted l 0.03 sec 0.184 | 0.738 | 0.193 | -0.348| 80.66
DT Uy 0.02 sec 0.186 | 0.741 | 0.201 | -0.318| 79.86
Untargeted l 0.03 sec 0.23 0.956 | 0.257 | 0.012 | 67.2
ly 0.02 sec 0.228 | 0.95 0.254 | -0.004| 68.73
Targeted (s 7.82 sec 0.176 | 0.682 | 0.197 | -0.349| 80.26
RF Uy 5.98 sec 0.175 | 0.679 | 0.193 | -0.362| 80.66
Untargeted (o 8.44 sec 0.229 | 0.939 | 0.263 | 0.003 | 71.86
Uy 6.73 sec 0.229 | 0.927 | 0.271 | 0.006 | 71.86
Targeted l 0.11 sec 0.176 | 0.685 | 0.193 | -0.361| 80.66
GBDT Uy 0.09 sec 0.167 | 0.644 | 0.183 | -0.405| 81.73
Untargeted ls 0.06 sec 0.233 | 0.959 | 0.267 | 0.037 | 72.66
ly 0.05 sec 0.231 | 0.959 | 0.259 | 0.02 73.46

Table 4.22: ART HopSkipJump attack for MNIST 100 examples with targeted
and untargeted settings.

Model Objective | Distance | Avg. Time | Accuracy Fooling rate
ode (per attack) (%)
loo 0.17 sec 0.79 19
Targeted |/ 0.14 sec 0.82 17
SVM
Unt tod U 0.71 sec 0.1 91
nargeted) o, 0.59 sec 0.09 92
l 0.01 sec 0.8 11
o Targeted |/ 0.01 sec 0.8 10
Unt tod U 0.04 sec 0.12 87
nargeted) o, 0.03 sec 0.1 92
e 0.08 sec 0.86 11
- Targeted |,/ 0.08 sec 0.81 15
Untarseted| £ 0.56 sec 0.12 87
argered) g, 0.42 sec 0.09 92
loo 0.02 sec 0.79 20
— Targeted |,/ 0.01 sec 0.79 20
Untarseted| £ 0.06 sec 0.11 89
argeted) 0.04 sec 0.1 89

20

Table 4.23: Boundary attack for MNIST 100 examples with ¢ = 0.01 and = 0.01
in the targeted and untargeted settings (best attack success rate in boldface)

Model Objective | Avg. Time | Accuracy Fooling rate
(per attack) (%)

SVM Targeted 16.73 sec 0.66 33
Untargeted| 34.83 sec 0.02 98

DT Targeted 0.49 sec 0.39 57.99
Untargeted| 0.83 sec 0.01 100

R Targeted 0.27 sec 0.79 20
Untargeted| 1.24 sec 0.1 89
Targeted 3.97 sec 0.66 31

GBDT Untargeted| 11.46 sec 0.02 99

EHEEIIEIII

orginal

Ovs3 l\.n'53 2\.1'58 Jvss 4\.1'55 5\.1'53 evs3 Tvs0D 8BvsD 9vsh
Ovs8 1vs2 2vsd 3vs0 dvsT S5vsd ovs3 Tvsd 8vs0 Q55

100 steps .
Ows5 1vsd 2vsh Jvsd 4vs3 Svs9 ovsd Twvsd Bys2 Gysd

EREENEARER

1000 steps
Figure 4.10: Image of original and adversarial examples generated by ART Bound-
ary attack on MNIST with e = 0.01 and 6 = 0.01.

o1

Score-based attacks

In this section, we report on the score-based attack in the targeted and untargeted
setting. We compare ART ZOO attack on SVM, DTs, RF, or GBDTSs for census

and MNIST data with different parameter values used in Table .

Table 4.24: Parameters for the score-based attack algorithms

Attack Algorithm

Parameters

Z00

Step size for numerical estimation of derivatives
(¢ =0.1,0.3,0.5,0.7,0.9]), Maximum number of itera-
tions (max_iter=2), confidence=0, learning rate=0.01,
binary_search_steps=2,

abort_early=True,

initial_const=0.001,

nb_parallel=784for

nb_parallel=97(for census), batch_size=1

MNIST),

On Image data type: We evaluate the ART ZOO attack against SVM, DT, RF,
and GBDT on MNIST test set in the targeted and untargeted settings in Table
4.25. In this setting, we observe that SVM is robust to ZOO attack, but this
attack is computationally expensive on SVM.

Table 4.25: MNIST: Experimental results on 100 adversarial examples generated
by ART ZOO attacks with different values of ¢ in the targeted and untargeted
settings (best attack success rate in boldface).

Targeted Untargeted
Model eps. Avg. Time | Acc. Fooling | Avg. Time | Acc. Fooling
() (per attack) rate(%) | (per attack) rate(%)
0.1 91.29 sec| 0.98 0 91.41 sec| 0.97 3
0.3 72.95 sec| 0.98 0 72.98 sec| 0.97 3
SVM 0.5 74.07 sec| 0.98 0 74.06 sec| 0.97 3
0.7 76.59 sec| 0.98 0 76.59 sec| 0.97 3
0.9 79.72 sec| 0.98 0 79.72 sec| 0.97 3
0.1 2.69 sec 0.65 26 3.83 sec 0.23 83
0.3 3.69 sec 0.66 25 3.76 sec 0.27 76
DT 0.5 3.72 sec 0.68 23 3.75 sec 0.27 74
0.7 3.61 sec 0.68 23 3.87 sec 0.27 74
0.9 3.56 sec 0.75 16 3.42 sec 0.3 71
0.1 2.87 sec 0.67 28.9 2.86 sec 0.26 76
0.3 2.88 sec 0.73 23 3 sec 0.3 72
RF 0.5 2.85 sec 0.75 21 3 sec 0.31 71
0.7 2.85 sec 0.74 21 2.88 sec 0.3 72
0.9 2.88 sec 0.72 23 2.87 sec 0.34 68
0.1 7.46 sec 0.95 3 7.19 sec 0.82 19
0.3 7.37 sec 0.95 3 6.96 sec 0.86 15
GBDT 0.5 7.35 sec 0.94 4 6.48 sec 0.9 11
0.7 7.42 sec 0.95 3 5 sec 0.84 16
0.9 7.29 sec 0.95 3 4.95 sec 0.8 21

52

On Tabular data type: Table 4.26 shows the experimental results of an ad-
versarial examples generated by ART ZOO attacks for each model using census
1500 original examples. For each models, the performance we obtained is shown
in the table. For example, SVM model fooled by 92% and 86.73% in targeted and
untargeted attack settings, respectively. Note that, this attack method succeed
more on SVM than DT, RF or GBDT models.

Table 4.26: census: Experimental results on 1500 adversarial examples generated
by ART ZOO attacks with different values of ¢ in the targeted and untargeted
settings (best attack success rate in boldface).

Targeted Untargeted

Model eps. | Pre. Rec. | F1 MCC | Fooling| Pre. Rec. F1 MCC | Fooling
(¢) rate(%) rate(%)

0.1 0.094, 0.35 | 0.08 | -0.767] 92 0.229| 1 0.229| 0 86.73

0.3 0.094| 0.35 | 0.08 | -0.767] 92 0.229| 1 0.229| 0 86.73

SVM 0.5 0.094| 0.35 | 0.08 | -0.767] 92 0.229| 1 0.229| 0 86.73
0.7 0.094, 0.35 | 0.08 | -0.767] 92 0.229| 1 0.229| 0 86.73

0.9/ 0.094, 0.35 | 0.08 | -0.767] 92 0.229| 1 0.229| 0 86.73

0.1, 0.089, 0.21 | 0.327, -0.361] 67.26] 0.194) 0.397| 0.485| -0.078 65.66
0.3] 0.089) 0.21 | 0.33 | -0.358] 67 0.195| 0.397| 0.487| -0.075 65.4
DT 0.5 0.09 | 0.21 | 0.334] -0.353] 66.6 0.195| 0.394| 0.491] -0.073] 64.93
0.7 0.091) 0.21 | 0.343] -0.343| 65.73| 0.198| 0.391] 0.499| -0.066] 64
0.9/ 0.107) 0.21 | 0421} -0.259] 57.93| 0.234| 0.379| 0.574| 0.009 | 55.93

0.1 0.024| 0.044| 0.382] -0.405] 61.8 | 0.181| 0.306] 0.525| -0.09 | 61.46
0.3| 0.028 0.044| 0.435| -0.355] 56.46 | 0.204| 0.294| 0.575| -0.042] 55.86
RF 0.5/ 0.028 0.044| 0.435/ -0.355] 56.46 | 0.202| 0.292| 0.575| -0.045] 55.8
0.7/ 0.028 0.044| 0.438 -0.353] 56.2 0.204| 0.292] 0.577] -0.042) 55.53
0.9 0.028 0.044] 0.439 -0.351] 56.06 | 0.204, 0.292) 0.579| -0.04 | 55.4

0.1 0.162) 0.114| 0.663, -0.07 | 33.73| 0.212) 0.099| 0.71 | -0.013] 30.33
0.3| 0.162) 0.114| 0.663| -0.07 | 33.73| 0.316] 0.146] 0.733| 0.072| 27.93
GBDT 0.5/ 0.154| 0.111| 0.658 -0.078] 34.2 0.254| 0.105] 0.725] 0.019| 28.59
0.7/ 0.178 0.134| 0.661| -0.055] 33.93| 0.287| 0.125| 0.729] 0.046 | 28.46
0.9/ 0.152) 0.111} 0.655| -0.082] 34.46/ 0.31 | 0.143| 0.731] 0.067| 28.06

93

4.4.2 Poisoning attacks in ART

In this section, we report on ART poisoning attack against SVM on census and
MNIST data in the targeted settings.

Table 4.27: Parameters for the Poisoning attack algorithms

Attack Algorithms Parameters
Poisoning Attacks on SVM e= 0.3 or e= 1,
68t6p:O‘1’

maximum iteration=10

15 examples (Attack data points on census data)

315 training sets+180 test sets (For census data)

10 examples (Attack data points on MNIST data)
1169 training sets+565 test sets (For MNIST data)

ART Poisoning Attack on SVM

We evaluates the ART Poisoning attack against SVM with polynomial kernel on
MNIST data and Radial Basis Function (RBF) kernel on census data. Table 4.27
shows the parameter we used. The performance results for the trained clean and
poison SVM models are shown in Table 4.28 and Table 4.29.

On Tabular data type: In this experiment, we poisoned the trained SVM model
using census data based on procedures in Section 3.2.1. For example, for a model
poisoned by € = 0.3, &4, = 0.1, 15 poison examples, and 10 iterations achieves
20% attack success rate at training time; whereas, with ¢ = 1 rises to 66.66%.
while the model F'1 score on test data decreases from 0.8 (on clean model) to
0.767 and 0.772 (on poisoned model) as shown in Table 4.28.

Table 4.28: Experimental results on clean and poison SVM model on 180 census
original examples (Best result in bold).

Trained SVM model Precision Recall F1 score MCC
Clean 0.667 0.4 0.8 0.404
Poison(e = 0.3) 0.6 0.2 0.767 0.244
Poison(e = 1) 0.667 0.178 0.772 0.257

On Image data type: Now that the data poisoning attack have been discussed
in Section 3.2.1. The ART Poisoning attack against MNIST data is evaluated as
follow: A trained clean SVM model is poisoned by ART Poisoning on SVM at-
tack method with the € = 0.3, e4¢, = 0.1, 10 poison examples, and 10 iterations
achieves 70% attack success rate at training time; whereas, with e = 1 rises to 80%.
while the test accuracy of the model decreases from 99.47% (on clean model) to
97.33% and 97.60% (on poisoned model) as shown in Table 4.29.

Now, our assessment of the library summarized by report on the pros and cons
of various ART Attacks against our chosen models on tabular and image data

o4

Table 4.29: Experimental results on clean and poison SVM model on 565 MNIST
original examples (Best result in bold).

SVM model Accuracy
Clean 0.9947
Poison(e = 0.3) 0.9733
Poison(e = 0.1) 0.9760

in the targeted and untargeted settings experimented are provided in Table 4.30
(100% fooling rate in bold). The meaning of the symbols are as follow: (4+) for
very effective attack, (+) for effective attack, (——) for not effective or the attack
algorithm is not compatible against the model/ML framework, finally (—) for
attacks its success rate is below 15%. The results are based on the parameters used
on experiment in Table 4.19 for decision-based attacks, Table 4.11 for gradient-
based attacks, Table 4.24 for score-based attack, and Table 4.27 for data poisoning
attack.

95

Table 4.30: Summary: ART Evasion and Poisoning Attacks .

ART Attack Algorithms

Targeted

Untargeted

SVM [DT | RF [GBDT

SVM [DT | RF [GBDT

TABULAR DATA TYPE

DecisionTree

Poisoning Attack on SVM
IMAGE DATA TYPE
FGM(¢,)

Z00(¢5)
DecisionTree
Poisoning Attack on SVM

o
o
+
-
-
++
+

++
++
++
-
+e
++
++
'
++
++
+
++

Chapter 5

Conclusion

Evasion and Poisoning attacks can be a serious threat to traditional ML based
systems and applications such as fraud detection. Adversarial Robustness Tool-
box (ART) is an open source Python ML security library by IBM, which consists
of various framework-agnostic modules of the state-of-the-art attack and defense
algorithms. However, considering the attack modules, except Poisoning attack on
SVM and Decision Tree attacks implementations, all other attacks implemented
in ART are based on DL algorithms and applications such as computer vision and
natural language understanding. Hence, our research focused on understanding
and evaluating ART library on evasion and poisoning attacks against traditional
ML models via adversarial examples of tabular and image data types. Table 3.1 is
an experimented list of evasion attacks implemented in ART, but Table 5.1 doesn’t.

Concluding from the results and analysis in Section 4.4, We would like to point
out that in our experiments, adversarial examples generated by ART are very ef-
fective in comparing models test accuracy in adversarial settings. ART Decision
Tree attack is very effective against decision trees in untargeted setting only. Most
ART gradient-based attacks are very effective on SVM models in tabular data
than in image data in both targeted and untargeted settings. ART black-box at-
tack algorithms are very successful to generate adversarial examples on all chosen
models and data types, for example, ART HSJA attack successfully attacks all
chosen models on tabular and image data in the targeted and untargeted settings.
Decision tree is the weakest classifier on image, for instance, BA and Decision tree
attack algorithms fool 100% a decision tree classifier on image data, and EAD(EN)
attack against SVM model does. Table 4.30 invites us to pursue understanding of
these attacks pros and cons against chosen ML models on tabular and image data
in the targeted and untargeted settings.

Finally, in this thesis, we showed various ART evasion and poisoning attacks
against traditional ML models, which are attack unaware models. As future work,
we extend this work to incorporate ART defense mechanisms such as adversarial
training methods and evaluate adversarial examples generated by ART evasion
and poisoning attacks on resilient ML models.

57

Bibliography

[1]

Missing data imputation using fuzzy-rough methods. Neurocomputing, 205:152-164, 2016.
ISSN 0925-2312. URL https://www.sciencedirect.com/science/article/pii/
50925231216302582.

M. Andriushchenko, F. Croce, N. Flammarion, and M. Hein. Square attack: a query-efficient
black-box adversarial attack via random search, 2020. URL https://arxiv.org/abs/
1912.000409.

B. Biggio, B. Nelson, and P. Laskov. Poisoning attacks against support vector machines.
abs/1206.6389v1, 2012. URL https://arxiv.org/abs/1206.6389v1.

B. Biggio, I. Corona, D. Maiorca, B. Nelson, N. Srndi¢, P. Laskov, G. Giacinto, and F. Roli.
Evasion attacks against machine learning at test time. In Joint European Conference on
Machine Learning and Knowledge Discovery in Databases, pages 2429-2432. Springer, 2013.

L. Breiman. Random forests. Machine Learning, 45, 5-32, 2001. doi: https://doi.org/10.
1023/A:1010933404324.

L. Breiman, J. Friedman, A. O. Richard, and J. S. Charles. Classification and regression
trees. Wadsworth, 1984. ISBN 0-534-98053-8.

W. Brendel, J. Rauber, and M. Bethge. Decision-based adversarial attacks: Reliable attacks
against black-box machine learning models. ICLR, abs/1712.04248, 2018. URL https:
//arxiv.org/abs/1712.04248.

W. Brendel, J. Rauber, M. Kiimmerer, I. Ustyuzhaninov, and M. Bethge. Accurate, reliable
and fast robustness evaluation, 2019. URL https://arxiv.org/abs/1907.01003.

T. B. Brown, D. Mané, A. Roy, M. Abadi, and J. Gilmer. Adversarial patch, 2018. URL
https://arxiv.org/abs/1712.09665.

N. Carlini and D. Wagner. Towards evaluating the robustness of neural networks. In IEFEFE
Symposium on Security and Privacy, abs/1608.04644, 2017. URL http://arxiv.org/
abs/1608.04644.

J. Chen and M. I. Jordan. Boundary attack++: Query-efficient decision-based adversarial
attack. CoRR, abs/1904.02144, 2019. URL https://arxiv.org/abs/1904.02144.

P.-Y. Chen, Y. Sharma, H. Zhang, J. Yi, and C.-J. Hsieh. Ead: Elastic-net attacks to deep
neural networks via adversarial examples. CoRR, abs/1709.04114, 2017. URL https:
//arxiv.org/abs/1709.04114.

P.-Y. Chen, H. Zhang, Y. Sharma, J. Yi, and C.-J. Hsieh. Zoo: Zeroth order optimization
based black-box attacks to deep neural networks without training substitute models. CoRR,
abs/1708.03999, 2017. URL https://arxiv.org/abs/1708.03999.

S.-T. Chen, C. Cornelius, J. Martin, and D. H. Chau. Shapeshifter: Robust physical
adversarial attack on faster r-cnn object detector. Lecture Notes in Computer Science,
abs/1804.05810:52-68, 2019. ISSN 1611-3349. URL https://arxiv.org/abs/1804.
05810.

o8

https://www.sciencedirect.com/science/article/pii/S0925231216302582
https://www.sciencedirect.com/science/article/pii/S0925231216302582
https://arxiv.org/abs/1912.00049
https://arxiv.org/abs/1912.00049
https://arxiv.org/abs/1206.6389v1
https://arxiv.org/abs/1712.04248
https://arxiv.org/abs/1712.04248
https://arxiv.org/abs/1907.01003
https://arxiv.org/abs/1712.09665
http://arxiv.org/abs/1608.04644
http://arxiv.org/abs/1608.04644
https://arxiv.org/abs/1904.02144
https://arxiv.org/abs/1709.04114
https://arxiv.org/abs/1709.04114
https://arxiv.org/abs/1708.03999
https://arxiv.org/abs/1804.05810
https://arxiv.org/abs/1804.05810

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

23]

[26]

[27]

[28]

[32]

[33]

F. Croce and M. Hein. Reliable evaluation of adversarial robustness with an ensemble of
diverse parameter-free attacks, 2020. URL https://arxiv.org/abs/2003.01690.

L. Engstrom, B. Tran, D. Tsipras, L. Schmidt, and A. Madry. Exploring the landscape of
spatial robustness, 2019. URL https://arxiv.org/abs/1712.02779.

A. Fernandez, S. Garcia, M. Galar, R. C. Prati, B. Krawczyk, and F. Herrera. Learning
from Imbalanced Data Sets, pages 47—61. Springer International Publishing, 2018.

A. Ghiasi, A. Shafahi, and T. Goldstein. Breaking certified defenses: Semantic adversarial
examples with spoofed robustness certificates, 2020. URL https://arxiv.org/abs/
2003.08937.

1. J. Goodfellow, J. Shlens, and C. Szegedy. Explaining and harnessing adversarial examples.
CoRR, abs/1412.6572, 2014. URL https://arxiv.org/abs/1412.6572.

K. Grosse, D. Pfaff, M. T. Smith, and M. Backes. The limitations of model uncertainty in
adversarial settings, 2019. URL https://arxiv.org/abs/1812.02606.

T. Gu, B. Dolan-Gavitt, and S. Garg. Badnets: Identifying vulnerabilities in the machine
learning model supply chain, 2019. URL https://arxiv.org/abs/1708.06733.

C. Guo, J. R. Gardner, Y. You, A. G. Wilson, and K. Q. Weinberger. Simple black-box
adversarial attacks, 2019. URL https://arxiv.org/abs/1905.07121.

H. Hirano and K. Takemoto. Simple iterative method for generating targeted universal ad-
versarial perturbations. abs/1911.06502, 2019. URL https://arxiv.org/abs/1911.
06502.

N. Inkawhich, M. Inkawhich, Y. Chen, and H. Li. Adversarial attacks for optical flow-based
action recognition classifiers, 2018. URL https://arxiv.org/abs/1811.11875.

U. Jang, X. Wu, and S. Jha. Objective metrics and gradient descent algorithms for adver-
sarial examples in machine learning. In Proceedings of the 33rd Annual Computer Security
Applications Conference, page 262-277. Association for Computing Machinery, 2017. ISBN
9781450353458. URL https://dl.acm.org/doi/10.1145/3134600.3134635.

S. Kotyan and D. V. Vargas. Adversarial robustness assessment: Why both [y and [
attacks are necessary, 2020. URL https://arxiv.org/abs/1906.06026.

A. Kurakin, I. J. Goodfellow, and S. Bengio. Adversarial examples in the physical world.
CoRR, abs/1607.02533, 2016. URL https://arxiv.org/abs/1607.02533.

M. Lee and Z. Kolter. On physical adversarial patches for object detection, 2019. URL
https://arxiv.org/abs/1906.11897.

L. Lin, D. Sida, C. Zhiwei, H. Jinghui, J. Shu, and Y. Kunmeng. Using improved gradient-
boosted decision tree algorithm based on kalman filter (gbdt-kf) in time series prediction,
2020. URL https://doi.org/10.1007/s11227-019-03130-y.

X. Liu, H. Yang, Z. Liu, L. Song, H. Li, and Y. Chen. Dpatch: An adversarial patch attack
on object detectors, 2019. URL https://arxiv.org/abs/1806.02299v4.

A. Madry, A. Makelov, L. Schmidt, D. Tsipras, and A. Vladu. Towards deep learning
models resistant to adversarial attacks. CoRR, abs/1706.06083, 2017. URL https://
arxiv.org/abs/1706.06083.

T. Mitchell. McGraw Hill, 1997. ISBN 0070428077.
T. Miyato, S. ichi Maeda, M. Koyama, K. Nakae, and S. Ishii. Distributional smoothing

with virtual adversarial training. abs/1507.00677, 2015. URL https://arxiv.org/
abs/1507.00677.

99

https://arxiv.org/abs/2003.01690
https://arxiv.org/abs/1712.02779
https://arxiv.org/abs/2003.08937
https://arxiv.org/abs/2003.08937
https://arxiv.org/abs/1412.6572
https://arxiv.org/abs/1812.02606
https://arxiv.org/abs/1708.06733
https://arxiv.org/abs/1905.07121
https://arxiv.org/abs/1911.06502
https://arxiv.org/abs/1911.06502
https://arxiv.org/abs/1811.11875
https://dl.acm.org/doi/10.1145/3134600.3134635
https://arxiv.org/abs/1906.06026
https://arxiv.org/abs/1607.02533
https://arxiv.org/abs/1906.11897
https://doi.org/10.1007/s11227-019-03130-y
https://arxiv.org/abs/1806.02299v4
https://arxiv.org/abs/1706.06083
https://arxiv.org/abs/1706.06083
https://arxiv.org/abs/1507.00677
https://arxiv.org/abs/1507.00677

[34]

[42]

[43]

[44]

S. Moosavi-Dezfooli, A. Fawzi, and P. Frossard. Deepfool: a simple and accurate method
to fool deep neural networks. CoRR, abs/1511.04599, 2015. URL https://arxiv.org/
abs/1511.04599.

S. Moosavi-Dezfooli, A. Fawzi, O. Fawzi, and P. Frossard. Universal adversarial perturba-
tions. CoRR, abs/1610.08401, 2016. URL https://arxiv.org/abs/1610.08401.

S. Murthy. Automatic construction of decision trees from data: A multi-disciplinary survey.
Data Mining and Knowledge Discovery, 2, 345-389, 1998. doi: https://doi.org/10.1023/A:
1009744630224.

M.-I. Nicolae, M. Sinn, M. N. Tran, B. Buesser, A. Rawat, M. Wistuba, V. Zantedeschi,
N. Baracaldo, B. Chen, H. Ludwig, I. Molloy, and B. Edwards. Adversarial robustness
toolbox v1.2.0. CoRR, abs/1807.01069, 2018. URL https://arxiv.org/abs/1807.
01069.

N. Papernot, P. D. McDaniel, and 1. J. Goodfellow. Transferability in machine learning:
from phenomena to black-box attacks using adversarial samples. CoRR, abs/1605.07277,
2016. URL https://arxiv.org/abs/1605.07277.

N. Papernot, P. D. McDaniel, S. Jha, M. Fredrikson, Z. B. Celik, and A. Swami. The
limitations of deep learning in adversarial settings. IEFE, abs/1511.07528, 2016. URL
https://arxiv.org/abs/1511.07528.

S. Sabour, Y. Cao, F. Faghri, and D. J. Fleet. Adversarial manipulation of deep represen-
tations, 2016. URL https://arxiv.org/abs/1511.05122.

A. Shafahi, W. R. Huang, M. Najibi, O. Suciu, C. Studer, T. Dumitras, and T. Gold-
stein. Poison frogs! targeted clean-label poisoning attacks on neural networks. CoRR,
abs/1804.00792, 2018. URL https://arxiv.org/abs/1804.00792.

J. Su, D. V. Vargas, and K. Sakurai. One pixel attack for fooling deep neural networks.
IEEE Transactions on Evolutionary Computation, abs/1710.08864, 2019. URL https:
//arxiv.org/abs/1710.08864.

T. J. L. Tan and R. Shokri. Bypassing backdoor detection algorithms in deep learning,
2020. URL https://arxiv.org/abs/1905.134009.

V. Vapnik. Principles of risk minimization for learning theory. In J. Moody, S. Hanson, and
R. P. Lippmann, editors, Advances in Neural Information Processing Systems, volume 4.
Morgan-Kaufmann, 1992. URL https://proceedings.neurips.cc/paper/1991/
file/ff4d5fbbafdf976cfdc032e3bde78de5-Paper.pdf.

E. Wong, F. R. Schmidt, and J. Z. Kolter. Wasserstein adversarial examples via projected
sinkhorn iterations, 2020. URL https://arxiv.org/abs/1902.07906.

60

https://arxiv.org/abs/1511.04599
https://arxiv.org/abs/1511.04599
https://arxiv.org/abs/1610.08401
https://arxiv.org/abs/1807.01069
https://arxiv.org/abs/1807.01069
https://arxiv.org/abs/1605.07277
https://arxiv.org/abs/1511.07528
https://arxiv.org/abs/1511.05122
https://arxiv.org/abs/1804.00792
https://arxiv.org/abs/1710.08864
https://arxiv.org/abs/1710.08864
https://arxiv.org/abs/1905.13409
https://proceedings.neurips.cc/paper/1991/file/ff4d5fbbafdf976cfdc032e3bde78de5-Paper.pdf
https://proceedings.neurips.cc/paper/1991/file/ff4d5fbbafdf976cfdc032e3bde78de5-Paper.pdf
https://arxiv.org/abs/1902.07906

Appendix I: Analysis Results

ART evasion and poison attacks that is not supported to generate adversarial
examples on Scikit-learn or light GBM ML frameworks were excluded from the
study see Table 5.1.

Table 5.1: List of ART evasion and poison attacks not

evaluated.

ART Evasion and Poison Attacks

No. | Attack Name Error message

1 AutoAttack(Croce The loss type cross_entropy is not supported for the pro-
and Hein, 2020) vided estimator.

2 Auto Projected Gra- || AutoProjectedGradientDescent is expecting logits as es-
dient Descent Attack || timator output, the provided estimator seems to predict
(Croce and Hein, || probabilities.

2020)

3 Square Attack (An- || Unrecognized input dimension.
driushchenko et al.,
2020)

4 Threshold Attack || ThresholdAttack requires an estimator derived from
(Kotyan and Vargas, || class ’art.estimators.estimator.NeuralNetworkMixin’
2020)

5 Adversarial ~ Embed- || -
ding attack (Tan and
Shokri, 2020)

6 Shadow Attack (Ghi- || Unrecognized input dimension. Shadow Attack can only
asi et al., 2020) be applied to image data.

7 Brendel & Bethge ad- || The provided classifier is an instance of class "NoneType’
versarial attack (Bren-
del et al., 2019)

8 High Confidence Low || HighConfidenceLowUncertainty requires an estimator
Uncertainty (HCLU) || derived from class ’art.estimators.classification.GPy.
Attack(Grosse et al., | GPyGaussianProcessClassifier’

2019)

9 Pixel Attack(Su et al., || PixelAttack requires an estimator derived from class
2019) ‘art.estimators.estimator.NeuralNetworkMixin’

10 Spatial transforma- || SpatialTransformation requires an estimator derived
tion attack (Engstrom || from class ’art.estimators.estimator. NeuralNetwork-
et al., 2019) Mixin’

11 Simple Black-box || 'ScikitlearnSVC’ object has no attribute 'channels_first’
Adversarial (SimBA)

(Guo et al., 2019)

12 Robust DPatch attack || RobustDPatch requires an estimator derived from class
(Lee and Kolter, 2019) || ’art.estimators.object_detection.object_detector. ~ Ob-

jectDetectorMixin’

13 ShapeShifter attack || ShapeShifter requires an estimator derived from class

(Chen et al., 2019)

‘art.estimators.object_detection.tensorflow_faster_renn.
TensorFlowFasterRCNN’

61

14 Adversarial patch || DPatch requires an estimator derived from class
attack ‘DPatch® (Liu || ’art.estimators.object_detection.object_detector. Ob-
et al., 2019) jectDetectorMixin’

15 Clean-Label Backdoor || -

Attacks (Gu et al,
2019)

16 Backdoor Attacks (Gu || -
et al., 2019)

17 Wasserstein attack || ScikitlearnSVC’ object has no attribute 'channels_first’
(Wong et al., 2020)

18 Frame saliency attack || FrameSaliencyAttack requires an estimator derived from
(Inkawhich et al., || class ’art.estimators.estimator.NeuralNetworkMixin’
2018)

19 Feature Collision || -

Poisoning Attack
(Shafahi et al., 2018)

20 Adversarial Patch at- || AdversarialPatch requires an estimator derived from
tack (Brown et al., || class 'art.estimators.estimator.NeuralNetworkMixin’
2018)

21 Feature Adversaries || FeatureAdversaries requires an estimator derived from

attack (Sabour et al.,
2016)

class ’art.estimators.estimator.NeuralNetworkMixin’

62

Appendix II: Experimental Results

1 MINIST: Adversarial examples generated by ART DecisionTree attack
against Decision Trees in the untargeted setting.

offset=0.1 (With out label)

i (53] O S S (ST K
o&uﬂﬂ
) Dy

MEHHHH

BEEOOGERSEN
PHAAEANENDH
HHEEERQ AR E
2] (19]15]4]10]~17]5

(With label)
Avsh dvso Ows3 Jwse Bvsd dvs3 Iwsh Tvsh 2vsl Bush

AN OaFEBE R

Jvs5s Bvs3 Tvso lvsS Svs5 Svws3 owsl Gvsd 2vs3 Gws3

EIHBANASBA[AA

ovs3 OwsT BusS Tws0 OvsT Sws3 2vsh 1vsS Buwsl 1vwsh

AZBNEERNEDN

2vs3 Jvsd Tvsh ows3 Jvsd 9vsh Gvsh Jvsd vsh Swsh

BENMOHHNOENGE

Ivsh 2vsd dvsh Fwst Fvsd 3 1wsd Bvs3 Twso OwsT

HEOVFEBNEAENA

Jvsh vsd 2vs0 Swsh dvst Gws3 9vst 5 Owsb Jwsl

BRAEBEQHEACAEEER

Svs3 Jwsh dvst OwsT Bvsh 2vsh 2vsS Svso dvs5 1vsh

HEANREREEDN

Owvs7 Bvsh 1vsh 9vso Bvsl 7wso 1vsh GvsT ows3 ows3d

PHAGdEAEANADO A

Tvsh Svsl OwsT Bvs3 OvsT dvs0 dvso 1vsh 2vsh Owsh

kB EE QAR R

2vs3 Bvso 1vsh 9vst Svs3 dvso OvsT dvse Tvs3 Dwsl

28] (7] 5R410] 170>

offset=1 (With out label)

IIEHIIEIII
HEANHEBREERN
PHAAEANENH
HEHRHEEZEQABE
2] (19]5]4]0]+17]5

(With label)
Aysh Yvst Ows3 Jvso Bvsd dvs3 1vwsh Tvsh 2vsl BusS

AROEBOAFEER

Jvsh Bvs3 Tvso 1vsh SvsS Sws3 Bwsl Gvsd 2vs3 Gwsd

EHAAESHBORA

ovsd OwsT BvsS TwsD OvsT Svs3 2vsS 1vsS 8Bvsl 1vwss

OZBNFEBEANEDN

2vs3 Jvsh Tvso ews3 Jvsd YvsoH Gvst JvsD Ovsh Dwso

EENMOHHNOENGR

Ivsh 2vsd dvsh Fwst Fvsd 3 1wsd Bvs3 Twso OwsT

BEROFAEBNEAEN

Jvsh st 2vs0 Swst dvst 6ws3 9vse 5 Owst Jwsl

BHREQHACAENEER

Svs3 Jwsh dvst OwsT Bvsh 2vsh 2vsS Svso dvs5 1vsh

HEANRERAEHER

Ows7 Bvsh 1vsh 9vst Bvsl Twst 1vsh GvsT ows3 ows3d

PHEAGEAANADONA

Tvsh Svsl OwsT Bvs3 OvsT dvs0 dvso 1vsh 2vsh Owsh

K I B H E B QB E

2vs3 Bvso 1vsh 9vst Svsd dvso OwsT dvse Tws3 bwsl

ENNOHCBNEREG

2.1 MNIST: Adversarial examples generated by ART FGSM (/) attack
against SVM in the targeted and untargeted settings.

(Targeted e=0.3)

&

3 5] 4 1 7 8

EHEEE¢J7 f

7 Ivsy Gwsd 5 & 5] &
IEIEEEHB 4]
0 8vs3 Tvsz 0 5 2 1 1vsa
llﬂﬂﬁﬁﬂn /|

o 3 9 G 3
El A Ed

3 2v58 4 7 7 3 1lvs? B8 0
BEOHEENR m

2 bHysB 4 6wsB 9 GSys3 3

T-‘

IIIIHIHE

0 8 2 2 5

IIIEEEEEIH

8 1vs7 9 3 7 1 6vsDd & 6vsd

EII-EEHEEE

4 4

5 41;59 D 4 Jws8 5

EEHIIIEEEI

-n-.to\l ﬂamﬁmmup P

dh

(Untargeted e=0.3)
9 Ows3 3 6vsB dvs2 1vs2 7 2vs5 Bwsl

IIEHIIIIII

3 7 1vsy 9vs2 Svs3d ovs? BvsE ovs2

Eﬁﬂllllﬂll

61.-'54 0 Bvs3 Tws2 I:h.r55 2 1vsg 11.-'52

991.-'583

HIIIIEIIEE

31.-'52 2v58 4 7 Eh.rﬁﬁ

31.-'58 9u5? 4 61.-'58 9 51.f53 9".-'53 31.-'58

IIEHIEHEII

5 4dwsi 1

IIIEEEIII“

8 1vs2 9 1 &vs0D 6vs8 ovsE

@EHEIIIIEI

0 4dws5 dws2 1vs2 Ovsa

IHEEEIIIEE

2 Bvs2 lvss 9 4 Owsh 4 Tvs9

2l<] JlsTal o711

(Targeted, € = 0.4)
41.r5? 9 Eh.r52 3 ovs8 4#5? 11.-'59 Tus2 21.-'55 Bus?

8 ?1.-'52 11.-'59 9u54 5#58 61.-'58 6u58 21.-'55 61.-'58

ovsg I:h.r52 Bus? ?1.-'52 I:h.r52 Svs8 2vs3 1vs8 8 11.-'59

OEREESENERA

2vs8 3 Tws2 ovsB 3 9vsd Gvsd 3 9 Swsd

3 E1E2 (3 E3 B4 B3 EAE2 5

s 2vsh dvsT Tws2 Tvs2 3 1ws9 8 Tws2 Ows2

E1 E3 B3 A B4 1 A i Ed 2

9 2vsh Svsd8 dvsT GvsB 9 Svs8 Gwsd 3

alo]af=l=[c]alzl<]=

SvsB 3 dvsT Ows2 BvsT 2vsb 2vsh Svs dvsT 1vsE

EEEEEEEEEH

vs2 Bw.? 11.-'59 Gysd B‘U‘ST Tws2 1vs8 Gvs0 61.-'58 61.-'58

Tus2 SVSE Eh.fsz 8\-'5? 4v5? 4vs9 1v59 2\.-'55 Eh.fsz

21.-'55 Bw.? 11.-'59 9 SvSB 4#5? Eh.r52 4v5? Tus2 5#58

(3 &3 £ E B B B

64

(Untargeted, e = 0.4)
dvs2 DysT Ovs3 IwsB ovs8 dvs2 1vs2 Tvs2 2vsh Bvsl

BENBOONZBRN

Jvs8 8 Twsd lvsT 9vs2 Sws3 Gus? BvsB oys2

I@IIIIIBEI

ovsd Ovs2 Bvs3 Tws2 Ovsh 2vs8 1lvsB 8 1vs2

EEEII@IH@I

2vs8 3 Tws2 ows8 Jvsd Svs2 9vsE Jvsd Gys3

HEHAHE0EEE

Jvs2 2vs8 dvs2 Tws2 Tvs2 Jws8 IvsT? 8 Tws2 Owse

BEREEEEE G EA

Jvs8 SvsT 2vsd 5 dys8 ovsB 9 Svs3 SwsE JusE

BERBREGCEEEB

Svs8 Jvs2 dvs8 Ows9 Bvs3 2vsd 2vsB Svsd dvws3 1vsE

B i B2 U R 25 BS [E A R

Ovse 8 1vs2 Svs2 BvsS Tvsl 1vsE GvsO ovs8 ovsE

@] oy A K 2 52 B 4 1 3

Fvsl SvsT Ows8 Bws2 Ovs2 dysh dws2 1vs2 2vsE Owsa

E2 (R [@ &] 2 O A |4

2vs8 Bvs2 1vsh 9vsE Svs8 dvs? OvwsS dys? Tvs9 Svs2

ERNEGEDEESR

2.2 MINIST: Adversarial examples generated by ART BIM(/,,) attack
against SVM in the targeted and untargeted settings.

(Targeted, e = 0.3)

&

i
=
[¥g)
=]

0 g8 1vs? 9 g 7

EERARER

4 4 1

IIIIEEHEEE

g 1lvsg 9 5 dwsd 0O 4 Tws8 5

al=[{sls]+]ol-17]=

£ -EY -y B -EY <R -8 - -

g H-EORSEUER-

Fud

(Untargeted e =0.3)
0 3 Bvs8 dvs2 Ivs? T 2vsh Busl

sl el A7

3 g 7 1vwsT 9vs2 Sws3d ovs? ewvsB 2 Bws2

EIBEANEEHEOGE A

oysd 0 Bvsl Fws2 Owshs 5 2 1vsB 8 1lvs2

I &2 i A 3 2

9 9vsB 3
BENOEANEAE
Jvs2 2vs8 4 7 7 3 1vs7 B 7 Ovsé

Bl E307 A El i R E T

Jvss GvsT 4 6ws8 9 5vs3 9vs8 Jvsd

IIEHIIHEHI

Sws8 3 5 dys3 1

IIIEEEIII“

lvs2 9ys8 8 1 6vsh Gvs8 ovsd

EEIIIIIEEI

0 4vs5 dvs2 1vs2 Ovsa

IHEEEIIIEE

2 Bvws2 lvsh 9 5 dws9 Owsh 4 Twsd

2l<] JolsTlel 71

(Targeted e=04)

=2
i
oo

i
=
[¥g)
=]

WP
o0
N
< R~ H:
S
= -[-F)-6-
SE-BnbNE
N-8-0-E-B-

SECNE-

DEnRng &
HENOAGNOHOE
3 2vws8 4 7 7 3 1lvsy 8 0
HROEEanEEN
Eﬂﬁﬁﬂﬂﬂ@@@

8 1~.-'53|r 9

EIIIIIHEIE
IIIIEIIIEE

g 1vsg 9 5 dwsd 0O 4 Tws8

al=[{sls]+]ol-17]=

65

(Untargeted e=04)
3 Bvs8 dvs2 Ivs? T 2vsh Busl

EHIIIIIIII

3 2] 7 1vwsT 9vs2 Svs3d ovsZ? ovsE ovs2

EEIIIIIBII

ovsd 0 Bvsl Fws2 Ovsh 2 1vsB 8 1lvs2

Eﬁﬂllllﬂll

2 3 9 Ovwsg 3
EIIIIEIIEE
Jvs2 2vs8 4 3 1vsy 8 T Ovse

IIIHIIIIHE

Jvss SvsT 4 6ws8 9 5Svs3d 9vs8 Jvsd

IIEHIIHEHI

Svsg 3 5 dwsi 1

IIIEEEIII“

lvs2 9ys8 8 1 6vsh ovs8 ovsd

EEIIIIIEEI

0 4vs5 4vs2 1vs2 Ovs8

IHEEEIIIEE

2 Bvs2 lvsh 9 5 4dws9 Owsh 4 Twsd

2l JolsTle A7l

2.3 MNIST: Adversarial examples generated by ART PGD(/,,) attack
against SVM in the targeted and untargeted settings.

(Targeted e=0. 3)
9 Ows2 +] 4

EEIIEI
7 1vws8 9vsd 5

ERRNBE

Gvsd 0 8vs3 Tvus2

5
Eﬁﬂﬂﬁﬁ

3 9

3 2u58 4 ?u52?v52 3 lxrs? 8 ?

Svs8 4 6".!'58 G 5v58 9

2vs8 5

IIIEEEIIIH

1.-'58 G 8 Tys2 1u58 ovs(Em'EB ﬁuss

Tus2 5 D 4v5? 4 1vsa

IIIIEHIIEE

8 1vsg 9 5 dvs9 O 4 Jvws2 5

zl<[{sls]+]ol-17]=

i
o
B

V5

i

o-5-

4%@]
4mmw~
=
(¥}
(=]

(53] ",

(Untargeted, € = 0.3)
4#58 9 IZh.rEB 3 EMEB 41.r52 11.r58 Tus2d 2u55 Bvsl

3 ? 1u52 9'u52 51.r53 61.:'52 6u58 61.:'52

61.r59 I:h.r52 8v53 ?1.r52 I:h.rSS 5 2 1vsg 8 lusB

OEREEERNEH@

7 6vsE 3 Ovs8 3 9ws3 5

Elllﬂﬂllll

Jvs2 2vs8 Fus2 Tvs2 3 1vs2 8 7 Ovsb

IEEIIIIEII

E'NEB Gyss 5 dysi Em'EB 9 51.f53 Gysh Jvs?

51.r58 3 4#58 I:h.rssr 8 2u58 5 41;53 lusS

IIIEEEIII“

8 Ivs? 9vs8 B Twsd lvsB Bvsh ovsh owsE

EEIEIIHEEI

Jvsl 5 0Ovs8 8 0 dws2 dws2 1vs2 Ovsa

EHEREEEEED

2 Bvs2 1lvsB 9 DSvs8 4ys9 Ovss: 4 JusE 5

ERAUEEDEEE

(Targeted, 6204)
dvsT 9 Ovs2 4 1lvsd 7 2vs8 8

EHIIIIIIII

8 TwsD lvs8 9vsd Svws3 6

IIIIIEEEII

ovsB 0 8vs3 Tws2 Ovs2 2 1vs& 8 1vsE

Hﬁlllllﬂll

3 Tus2 6

3 2".1'53 4 ?u52?v52 3 1u58 8 ?u52 D

BIERREENRED

Sysd 4 6wsB 9 5SvsB 9

IIEHIIEEEI

5v58 3 2u58 5 4v5? 1vsa

8 lusB 8 ?1.-'52 1u58 EMED Em'EB ovs8

EIIIIIIEEI

Jvs2 & 0 dwsT 4 1vsa

8 lusB 9 5 4#59 D 4 Tws2 5

Eﬂlﬂlﬂllll

66

(Untargeted, e = 0.4)
Ays8 9vsT Ows3 3 bws8 dys2 1vs8 Tvs2 2vsh Bvsl

2 Bl FA B 3 I T b I

8 TwsD lvs2 9vs2 Svs3 GwsB Bvss oys2

C3 i
HEONEEOOBAR

ovs9 Ovsh Bvsd Tws2 Ovss 5 2 1vsB 8 1lwvs2

K 2 3 X 2 I B

3 Tws? BvsB Gys2 9vsB8 3 9Svws3 5

HENAEEOHOE

Jvs2 2vs8 dvs2 Tws2 Tws2 3 1vs2 8 Tws2 Ows2

B B3 B2 b2 B4) A 1R Ed

Jvs8 Dvsh 5 dysd ovs8 9 5vs3 Svs8 JvsE

Illlllllﬂ-

Svs8 3 dvs8 Ows9 8 2vs8 bvs8 4dvs3 1vsE

IIIEEEIHIH

8 Ivs? 9vs8 B Twsd lvsB Bvsh ovsh owsE

e /% i Bl 2 A W I I

Jvs2 5 Ows8 8 0Ovs2 dys2 dys2 1vs8 2vs8 Owsd

BREEEERERE

2 Bvs? lvsB8 9 5 Ays9 Ovs8 dvs? Tvs8 Svs2

BERECEEER=E

2.4 MINIST: Adversarial examples generated by ART JSMA (/,) attack

against SVM in the untargeted settings.

(0 =0.1,7 = 0.1 , Fooling rate(84%))
41.r5? ysh D 3'.-'58 Gvs9 dvsy 11.-'53 ?1.-'50 21.-'53 Bvsd

3~.-'58 Bvsd ?vsD 1v53 Svs0D 5vs9 6 ovs9

i ' '
-.-q. ,_.., 3

ENEQ 0 Bvsd ?'.-'50 OvsT Svs9 2vs3 1vs3 8 1vs3

AHEBEHEERNEHR

2vs3 JvsE Tvs0 Bvs9 IvsE dvsh Gvso JvsE Svsh Svs9

HEHNOANNOEHIE

JvsB 2vs3 dvsT Tws0 Fvs0 Jws8 Iwvs3 8 TwsD O

El EAC2 4 EA K

Ivs8 Dvsh 2vs3 Swsh dvsT Gvs9 Gvso SvsH Sysh JvsE

EEEEEEEEEE

5v59 3v58 nhrs? 0 8vsd 2v53 2v53 5v59 chrﬁ? 1vs3

8 lv53 Gysh Bysd ?\.-'50 1v53 6v59 6*.-'59 oys9

IEEIEEHIEI

?vED Sws9 D gvsd 0O 4~.f5? 4u5?1~.-'53

2v53 Bvsd lv53 Gysh Svs9 cw's? D 41.f5? Tvs8 Svs9

Bl HIEE E BB

(0 =0.3,7=0.1, Fooling rate(70%))
4ys9 GysB Ovs9 3 Bvsd dys9 Ivs3 Tvs2 BvsO

IIIEEIIEEI

8 ?*.-'52 1vs3 9vs? Sws3 B ovsd

Gvsd Ovs9 E‘JSCI ?1.-'52 01.1'59 51.r59 2 1ys3 8 1vs3

HEEIIIIHII

3 ?\.-'52 o 3v51 9-.-'58 9-.-'58 3 9‘.-'53 Sva?

3 2vs8 41.r59?~.-'52?~.-'52 3 1v53 8 ?v52 Dn.rsQ

EEEEIEIIEE

3 9‘.-'53 5".l"58 dysS 6*.-'54 9-.-'58 Svs3 9vsE 3

Svs3 3 4vs9 Dﬂ.r59 8 2 5u584v59 1vs3

IIHEEIIEEH

8 l*.-'539~.-'58 8 ?\.-'52 1vs3 6 6*.!54 6*.-'54

Tvs2 bvsT DUSQ 8 DVEQ 4~.f59 4vs9 1v53 DUSQ

IEIEEIIIEE

2 Bvs0 1vs3 9vsE SvsT dvs9 OvsS dvs9 Tws2 Swsy

B EHAAERQEEREE

(0 =0.7,7 = 0.1 , Fooling rate(86%))
4vs9 Dysh Ovs8 Jws0 evs9 dvs9 Ivso Fvsd 2vs0 Bvs0

AGOEBOCDHABEBEND

Ivs8 8 Tvs8 Llvsb 9vsl SwsB 6 GvsH 2vsD ows9

EIBEAEEONBO

ovs9 Ovs8 Bvs0O 7vsl Ovs8 Sws8 2 1vse & 1vsé

QERBAEEBEANENA

2 Jws8 Tvsl ovs9 IvsD 9vsh YvsS Jvs8 GwsD Swsd

HBENOHELEHGE

Ivs0 2vs0 4vs9 Tysl Fvs8 JwsB Ivse 8 Tws8 Owsd

BECAMEBOEREA

Fvs8 Svsh 2vs0 5 dAvs9 Gvs9 9 SvsB SvsE JusE

BHAOQROAGEER

Svs8 Jvs0 4vs9 Ows8 8 2vs0 2vs0 Svs8 4vs9 1vso

EEEEE@EEEH

vs8 8 lvsﬁ GysS 8 ?\.-'51 1vsi 6v59 Bvs9 6*.-'59

Fvsl Svs3 Dn.fss 8 D 4\.“59 4vs9 1v5|5 Dn.fss

HGEHEADHEBR

2 Bws0 lvse 9vsh SvsB dysD OvsE dvs9 TvwsE Swsd

2ic) (|7)50410] 7] 2051

(0 =0.9,7=0.1, Fooling rate(76%))
4vsl 9v55 D 3v50 Evs9 4vs2 1v53 Tus9 Susz

Jvsh 81.r52?~.-'591'.-'53 9 Svs9 6 6v59 6*.-'59

ovsg 0 Susz ?\.-'59 I:h.rﬁ? Svs9 2 1v53 8u52 1vs3

OHBAHEBHENER

2 Jws8 Tvs9 ovs9 Ivs0 Svs5 9vs5 Jvs8 Gusd Swso

EEIEIEIEII

Ivs0 4 Tvs9 Tvs9 Jvsd 1v53 8 TusS D

Jvsh 9~.f55 5 41.f58 Bvs9 9 SUSQ 9‘.-'53 3v58

EEEIIIIEEE

5vs9 3vs0 4~.f58 0 Bws2 2 5u59 4~.f53 1vs3

0 Bvs2 lv53 GysS Bys2 ?\.-'59 1v53 6v59 6*.!59 oSS

IEEIEIHIEI

Fvs9 Bvs9 D Busz 0 4~.f51 4 1v53

i
... '-l . 1 .

2 Bvs? 1vs3 9-.-'55 SvsS dvs3 0 dvs8 Tvs9 Sws9

ElNHAOEEE I E

67

2.5 MINIST: Adversarial examples generated by ART DeepFool(/;) at-
tack against SVM in the untargeted settings.

(e=0.1, Fooling rate(S%))

1 7 2
IIEIIEEHEI

9us7 5 5]

&
IIIIIEE@

0 Bws3 Ows: 5 2

AERAREERD

9

BEINMOHAOHNE
IEHHIEIEII

3 9vs7 2 Hws9 4

IIEHIIEIII

dvs3 1
HEO0GEnEEn
PHADEADNGEDOA
IHEEEIIHEE

2 Bvsd

PEEOMENEES

3

o

LDE N .
-

w
Ly

(e=0.3 Fooling rate(ll%))

i 1 7 2 8vsl
sl bleld T
EEBANUEDOAn
6 0 8vs3 ovss 5 2 1 8 1
NZAREBRANED
HEIMOHHKAAOEHNGH

0

HEOEAAEBENEA

3 Svs7 2 Sws9 4 5

ala2[=1+1]a]=17
5 3 4 0 8 2

2 5 4dvwsd 1

BEOORENEEn

1 &

PHADEADNENOHE

4

IHHEEIHIEE

2 Bvs2 lvsh 9 0 4 Tys8 5

2l<] s[4 [ol 171>

=
.

w
w

oY

=1
8] o
(=1 5~ K=

Ty

(e=0.7 Fooling rate(lS%))

3 1 7 2 Bwsl
EONABEAGED
EEHANOEOOBRN

0 8Bvs3 Tvwsl Owsh 2 1 g 1
NEBREEANE R
HEIMOHHANOEHNGDH

HEOAGENRAD

3 SysT Sysd 4 9 5Hys3 9 3

IIEHIIEEII

4v53 1

6 6".-'55

Jvsl D 4v51 4 1wsh

IHEEEIIHEE

2 Bys2 lvss 9 4 0Owsd 4 TvsB 5

PEEOMONEAES

(e=0.9, Fooling rate(Zl%))

4 1 7 2 Bvsl
JLLELLL DR

Wb

EEBAAEEHOORA

3] 0 8vwsd Tvsl Ows> 5 2 1 g8 1lwvso

AEBREERNER

2 3 7 & 3 9 9 3

HEINMOHHAOEHNGDH

:I

IEHHIEIIII

3 Sys7 Sys9 4 6wsl 9 5Svs3 9 3

IIEHIIIEII

5 4.._,53 1

6 6".-'55

Jusl D 4v51 4 1vsh

IHEEEHIEEE

2 Bvs2 lvss 9 4 D".-'E'_:r 4 Tys8 5vs9

=

68

2.6 MINIST: Adversarial examples generated by ART NewtonFool(/,)

attack against SVM in the untargeted settings.

(n = 0.3 , Fooling rate(14%))

(n = 0.1, Fooling rate(8%))

E-ENNR R -
[} [(=] [=3] = [=3] [Tl - o
-:-lquf4ﬂ
BB DB @
BB B-B:
O EEE
‘B BB-B-EHE- B
5
w0 ™ Eael =
H:B:N BB
e~
B A
BE-BEEE >~
] = = =t ™ =t
2 &3
o o5 o< B B o B >4 B o~ ™ B >~
Ea- - f
o S WY N m ol oR

- B 8N H MRN8
&
B RR -
=
-0 BB 2@ B
[V}
B EE
NS
w
RN B B
_.....
D
=] = = = o
S i E-5E

D 4v59 4

..fl.r

=]

[Ta]

9
v53

v53
‘5

=

=t

c?

- v =

=t

a8

0

5

7

HEEEEAREER IHEIIIEE

III
III@I
EJIIIIEI

4 TvwsB 5

5 dvsS 0O

4 TvwsB 5

EHE DCEOMONEGS

b N

5 dvwsS 0O

3 1 9

2

2f<] Jo]5]:]0

-
o+

(n = 0.9, Fooling rate(14%))

(n = 0.7 , Fooling rate(14%))

3B B N A NN -F

&

SRS
=

B0 BB @

B-O B D EiE

BB

AR E-E-E-E

u

: NS

SHHON-

P

R T EE-E-
[

S EEE SO EE

&
- B~ - Y -
BB D

0 4vsd 4

..fl.f

=]

nD

3 Swsy
dvs3 1
0 7
HEIIIEEI

III’:]IIIII II

9 5Sys3 9
1

0 4vsd 4

o i Bl
SRS
_...r
NCH- R Bk
(] = = =t
B EEE
- BN &
B8 D

=t

2 9vys
8 1lvs? 9
0 2]

E]IIE EJIIIIIIIE

3 9us?
5

IIIIIIII 389

7

IHEIIIII II
HLEREEADHERR

4 TvwsB 5

5 dvsS 0O

2

DEEOMONEES

4 TvwsB 5

5 dvwsS 0O

3 1 9

2

28] (J2)5R4101-]17) 5]

69

2.7 MINIST: Adversarial examples generated by ART C&W (/) attack
against SVM in the untargeted settings with 10 iterations.

(e=0.1, Fooling rate(lG%))

HHEIII

7 1vsT 9vsT Svs3

Jvs2 2v58 4 8

BIIHIEHEHE

3 SysT Sysd 4 9 5Hys3 9

IIEHIIEIII

4v53 1

8 lvs'.n’ G

EEIIII“EII

4 dys2

IEHEEIIIEE

2 Bvs?Z 4 Tys8 5

2]<] [z 15[+ [ol- 171>

(e = 0.3, Fooling rate(60%))
Avs9 YysT Ovs9 Iws9 6 dvsh 1vs8 TvsD 2vsh Busl

EEEIIIIIII

Jvs8 8B Twvs8 1vsT Svsl Sws3 ENEE

Eﬂ.-'ﬁél D 8‘.-'53 ? D*.f55 21.-'5311.-'58

6 3".1'59 9-.-'54 9-.-'54 JvsS 9~.f53

EIIIIEEIHE

3\.-'52 2v58 4 Tvsl Tvs9 3v58 1

3v58 QUET 2v53 SysS 4 6*.-'54 9 5Svs3 9vsh JvsE

IIEHIIHEII

Svs8 Jvsd 4 (Ows9 Bvs3 5 4dusi 1

IIIEEEIIIH

1 9vs8 8vs9 7 & 6Bvsd Bvsh

EEIIEE“EEI

Tus9 0 8vsS 0 4vs9 dvs2 vsd

HGEHEHEABEER

2 Bvs2 1 9vsd SvsB 4dys9 Owss 4 TwsE Swso

28] (] o)5Ral o)) 70 5]

(e = 0.7 , Fooling rate(96%))
4vs9 dysT Ovs9 Iws9 ovs8 dvsh 1vs8 TvsD 2vsh Busl

ARNBEBOAERBRN

Jvs8 Bvs9 Twsh 1vsT 9vsl Svs3 Gvs? Bvss Gys2

HEENESBEBA

ovsd Ows8 Bvs3 Tws9 OvsS Sws3 2vs3 1vs8 Bvs9 1vsE

OEBHEEENHENR

2vs8 JvsE Tvs9 ovsE Ivs9 Svsd Gysd vsH SGys3 SvsE

HEHNEBHABAOHAE

Jvsh 2vs8 dvso Twsl Tvs9 Iws8 1vsT Bvsd Twsl OwsE

DEEDEHEBNEEEBR

Ivs8 OvsT 2vs3 SwsH dvsE ovsd 9 5Svs3 9vsE JusE

BEREQEAOCOEAER

Svs8 Jvsh dvs8 Ows9 Bvs3 2vs3 2vsT SvsB dvs3 1vsE

HEAMONENEHER

Ovst Bvs3d IvsT SvsB Bvs9 Tvsd IvsE 6 6vs8 owsh

hr§
PHAGAEAAAEBA

Tvs9 Svs8 OwsS Bvs9 Ovs9 dvs9 dys2 1vsT vsg

HEEHEABRHEBR

2 Bvs2 1vs8 9vsd SvsB dvsS Owsh dvs2 TwsE Svso

28] (o) SRalc) <] 7) 5]

(e = 0.9, Fooling rate(96%))
4vs9 YysT Ovs9 Iwvs9 ovs8 dvso 1vs8 TvsD 2vsh Busl

ARNEBOAEBRn

Jvs8 BvsS Twsh 1vsT 9vsl Svs3 Gws? Bvss G52

HEENESBEPA

ovsd Ows8 Bvs3 Tws9 OvsS Sws3 2vs3 1vs8 Bus9 1vsE

OENHNEEHNHENR

2vs8 JvsB Tvs9 ovs8 Ivsd Svsd Sysd Fvs9 SGys3 SvsE

HEHOHHBOEAE

JvsS 2vs8 dvso Twsl Tvs9 Iws8 IvsT BvsD Twsl OwsE

DEDEHEBNEEB

Jvs8 YvsT 2vs3 SwsH dvsE ovsd 9 5Svs3 SGysE JusE

BEREQEHEOCAOEER

Svs8 Jvsd dvs8 Ows9 Bvs3 2vs3 2vsT Svsd dvs3 1vsE

HEAONENEER

Ovst Bvs3 1IvsT SvwsE Bvs9 Tvsd IvsE 6 6Bvs8 owsh

EEIEIHBEHH

Fvs9 Hvsd D“.-'E'_:r 8\.-'59 Ows9 4vs9 4v52 1vsT vsg

) Al
, .-' .-; T JT

2 Bvs2 1vs8 9vsd Svsd dys9 D".-'E'_:r dys? TvsE Svs9

28] (Jo)SsRal o) <] 705

70

2.8 MINIST: Adversarial examples generated by ART ElasticNet(EN)
attack against SVM in the untargeted settings.

(0 =0.1,7 = 0.1, Fooling rate(100%))
Avs9 dysT Ows9 Iws9 ovsE dvsh 1vs8 TvsDd 2vs5 Busl

AN ONkRBEn

FvsB Bvs9 Tvs8 1vsT 9vsl Svws3 bws8 Gvs8 2vsb Bus2

EIBANUEHEOO BB

Gvsd Ows8 8Bvs3 Tvs9 Ovs5 Svsh 2vs3 1vs8 Bvs9 1vsE

OENNEERNNENR

2vs8 JvsE Tvs9 ovs8 Ivs9 Svsd Gysd FvsH GysT SvysE

HENOHANOEHNAE

Jvsh 2vs8 dvso Tws3 Tvs9 Jws8 1vsT BvsS Tvws3 OwsE

BEREOEAEEBNEAENA

Ivs8 s 2vs3 SwsH dvsE ovsd Gvsd Svs3 9ysE JusE

BEREQAACOENEE

Svs8 Jvsh dvs8 Ows9 Bvs3 2vs3 2vsT SvsE dvs3 1vsE

HEAODNREBNEHER

Ovst Bvs9 IvsT SvsB BvsS Tvs9 IvsE & 6vs8 owsh

PHAAEEAONANO R

Fvs9 Svs8 OwsE Bws9 Ovs2 dvs9 dvs2 1vsT 2vs3 Owsd

ik EEE BCQ B R

2vs3 Bvs2 1vs8 Svsd Svs8 4vs9 OvwsE dys? Tvs8 Svs3

28] (] o) 5R410)] 7051

(0 =0.3,7=0.1, Fooling rate(100%))
Avs9 YysT Ovs9 Ivs9 ovsE dvso 1vs8 TvsD 2vsh Busl

AN dnkEBEn

JvsE Bvs9 Tvsd 1vsT Svsl Sws3 bws8 Gvs8 2vsh Bus2

EIBANGEOOE A

Gvsd Ows8 Bvs3 Tvs9 Ovs5 Svsh 2vs3 1vs8 Bus9 1vsE

AERNEERNNER

2vs8 JvsB Tvs9 ovs8 Ivsd Svsd Sysd Fvs9 GysT SvsE

HENOHABNOHNAE

JvsS 2vs8 dvsd Tws3 Tvs9 Jws8 1vsT BvsD Fwsd OwsE

BEREOEAEEBNERENA

Jvs8 s 2vs3 SwsH dvsE ovsd Svsd Svs3 GysE JvsE

BEREQAACAOENEBR

Svs8 Jvsd dvs8 Ows9 Bvs3 2vs3 2vsT SvsE dusd 1vsE

HEANNREREER

Ovst Bvs3 1vsT SvwsE BvsS Tvs9 IvsE 6 Bvs8 owsh

PHAAEEAOANO A

Fvs9 Svs8 OwsE Bws9 Ovs2 dvs9 dvs2 1vsT 2vsd Owsd

HEEEHEQOLDEHBR

2vs3 Bvs2 1vs8 Svsd Svs8 4vs9 OwsE dys? Tvs8 Svs3

ENHANEL DS

71

3.1.1 MINIST: Adversarial examples generated by ART HopSkipJump
attack against Decision Trees in the targeted and untargeted settings.

(Untargeted, £, norm, 87% fooling rate)
AvsB s Ovs2 Jwsd ovsd dvs?2 IvsT Tvsd 2vst Bvsl

ERnanoaEBn

Jvsd 8 Twvs9 1vs? 9vsh Svsd ows? GvsB 2vsh ows9

EIHANAEHOOANA

ovsd Ows2 Bvst Tvsd 0 Sws3 2vs8 1vsS Bvs3 1vs3

AZBNEBENNED

2vs0 Fvs8 Tvs9 Bvs? Jvs8 SvsB Gvsd JvsT SvsE 5

HENMOHANENGH

Jvst 2vs8 dvso Tws2 Tvsd 3 1vwsT Bvs3 Tws3 Owsd

BEROHEBENEEE

Ivs8 9 2vws9 SwsB 4 Gvs2 9vsd SvsH Sys3 Jus2

BRBEEHACAEER

5 3Jwsh dvsD Ovs8 Bvs9 2vs8 2vse 5 dws3d 1vsH

BEAMOREREEDN

Ovs4 8vs3 Ivse 9 8vs3 Tvs8 1vsE bvs> bvsT bvs2

PEAABEADNGEDNS

Jvs2 bvsto Ows2 Bvsd 0 dvs2 lvse 2vs3 OwsE

HLHEEHEOBEER

2vs7 Bvs9 1vsh 9vs3 5 4vs9 Owsd 4vsd Tvs9 Svsd

28] (§71504101-17) 5]

(Targeted, ¢, norm, 11% fooling rate)

4 9vsd 6 dvse 1 2 a8
UL DL
EEAANLSEGE
CLULEETT

3 Svsd 2vs9 5

B EHERE

Svs8 3 0 8 2wvsh 5 dwsh 1

CEOOGEnEan

g8 1wvs9 9 2] 7 1 +]

PHEACDHEDNANE
7 5 0 g 0

4 4 1 2vwsg& 0O

HLHEHEHEODHBER

2 8vs3 1 9vws4 Svs8 4 0

28] (J2)504101-17) >

nea

m

’,

=
|
L
7]
o
Ln

(Untargeted, ¢ norm, 92% fooling rate)
dvst Yvs3 0 3JwsB ovsd dvsT 1vsT Tvs8 2vs8 Bvs3

HHEIIIIIII

3v54 8\.!52 Tvsd 1v5? 9~.f53 6".-'52 58 2v56 6*.-'55

6v52 Cr'.-'52 8 ?\-'53 DvEEI 5*.-'50 2v53 1v5|5 8\.-'53 1v53

IIEII HOEn

2vs8 Jvsd Tvs9 Gvsd Ivse 9 Gvsd JvsT 9

ﬂlllllllﬂﬂ

Jvse 4 Twsl Tvs0 Jvs8 1vsT Bvs9 Tvs9 O

HECEEANEED

Fvsh Gvsl 2vs3 Sws? dvs9 Gvs2 Gvsd SvsH GysE JusE

BREBQRHAACAEER

Svs3 Jvs8 dvsS 0 8Bvs3 2vs3 2vs8 Svsd dvs3 1vsS

Ovs2 Bvs3 1vs8 9vsd 8vs3 Tvsh 1vsE Bvsd bvsT bvs3

PlHAMAGHADAEDS

Fvsd bvsd Owsl Bvsd OvsT dvs0 dvse 1vse 2vs3 0

IEEEETIIEE

2vs9 Bvsd l".-'53 S9vs4 5".!53 4".-'55 D".I'EB 4ys9 Tvs9 SvsE

(Targeted, ¢5 norm, 10% fooling rate)

4 9 0 3 6 4dvst 1 7 2 8
AR iakBn
v5 g 7 1 9 5vs3 6

ot

N
o~

N-5-8-8

2
[#1]

P
L4
[T
Ln

M-§-
wEu:-Lh mu

H\Q.LDH

]
<
[Ty}
Ln

N-5-8

-
A
2
2
3
El
3
B

=D

sd 2vs9 5 4 7] 9 SvsD 9 3wsT
AHNEBERAAEEER
Svs8 3 4 D\fEE g 2 2 5 dysh 1
HEf: AEREEDN
0 8 1 2] 8 7 1 o BysE 6
EEHEEEHE;I
7 5 Ows2 0 1vso 2vs8 0O
HH@IEEHIEE
2 Bvs3 1 5 4 7Jvs8

72

3.1.2 MINIST: Adversarial examples generated by ART HopSkipJump
attack against Random Forest in the targeted and untargeted settings.

(Untargeted, £, norm, 87% fooling rate)
4vsB vs3 Ovstc 3 ovsd dvs?2 1vs8 Tvsd 2vs0 8

AR naEBn

Ivs8 8 Twvsd 1vsB 9vsh Svs3 ows? GvsB 2vs8 ovsE

EEHANAEHOOBA

6 Ows2 8vsd Tws2 Ows2 SvwsB 2vs8 lvsd 8 1vsd

AZBHNEBEENEDN

2vs8 JvsB Tvsd ovsd JvsE 9vsB Gvsd JvsE Svsd SysE

HENAGANEAH

Jvs8 2vs8 dvs2 Tvs2 Tvs8 JwsB 1vs3 Bvs2 Twsd 0

BEREOMEEBNTE RN

Jvs2 Gvs3 2vs8 SwsH dvsE Gvs8 Gvsh 553 Sys8 JvsE

BRBEQNOAAENER

Svs8 Jvs2 dvs3 OwsBE 8 2vs8 2vsB Svs8 dvs3 1vs3

EEEEEEEEEH

Ovse 8‘.-'53 l".-'58 9vs5 8 Twsh 1vs3 Bvso 6".-'52 6".-'55

Fvus2 5".-'53 DusS 8 Cﬂ.’Eﬁ 4v55 qus2 1vs8 DusS

IEHEEIIIEE

2vsg 8 l".-'53 9vsE 5*.*58 4".-'59 D".-'EB 4ys8 Tvs8

(Targeted, ¢, norm, 11% fooling rate)

o-

2
oo

-0

2 3 5vsB
EENMAE
3 2 4 7 7
BRnAA
3 9 2 5vsg 4 BvsB Jvsh
BEREQE

N-0-0-8-8-E8
-

nn >

0 2] 2 1
s[5]4 o]l 0
WE? 8 1 9 2] 7 1 6&vsd ovsB 6
s g o e o e g
NGEREEOREED

sTafol- 171>

(Untargeted, ¢ norm, 92% fooling rate)
4vs? dys3 Ovs8 JwsB ovsd dvs?2 1vs8 Tvsd 2vs8 8

ARnafBnaEBn

Ivs8 8 TwvsO lvsy 9vsT Svs3 owsE GvsB 2vs8 ovsE

EIHANAEHEO[RNA

ovsd Ows2 8 Tws2 Ovsh Sws8 2vs8B 1vs3d & 1ws3

AEBHNEBEENEDN

2 Jws8 Tvs3 ovs2 JvsB 9vsd SysE Jvs8 Gvsd SvsE

HENMOHHNOEHNOH

3v58 2vs8 Ays2 Tvs8 Tvs2 Jvs8 1vs8 8 Tvs3 OwsB

BOHAEBENEAENA

Jvs8 9vsS 2vsB 5 dvsE ovs8 9vs3 Svs3 9vsE JusE

BRBQHOAAEER

Svs8 Jvs2 dvs3 OwsE Bvs3 2vs8 2vs8 SvsE dvs3 1vsE

EREHEN

Twsh 1Ivs2 Bvsh Bvs8 bBvs2

PEAME ANEOH

Fvsh bvsd 8vs0 Ows2 AvsS9 dvs2 1vsE 2vs8 OwsE

HGEEEORHEER

2vs8 8 1vsS 9vs8 SvsE 4vs9 OwsE 4vs8 Twvs8 Svs2

28] (12]504101-17)>1

(Targeted, ¢, norm, 15% fooling rate
3 6“.!'58 4

4 9 Ows2

et
|
=
o
Pt

o-

2
oo

N - [

i
[
1]
=]

- - LN
N-N-N-N-N-EN M-

—Ro

-

L
[
1]
=]

IHEEEEHIEE

2 Bvs2

73

3.1.3 MINIST: Adversarial examples generated by ART HopSkipJump
attack against GBDT in the targeted and untargeted settings.

(Untargeted, £, norm, 89% fooling rate)
4vs8 vsB Ovs8 JwsB ovsd dvsB 1vs2 Tvs8 2vs8 8

RN EOAEABE R

Ivs8 8 Tvs8 1lvs? 9vs8 Svs3 owsE GvsB 2vs8 ows2

EEHANAEHOOANA

ovsB Ows8 8 Twvs3 Ovs8 Svs8 2vsB Ivs8 & 1vsE

AABNNEERNEDN

2vs8 JvsB Tvs2 ovsB Jvs8 9vsB 9vsE JvsB S9vs3 SvsE

BENEBHANENGE

Jvs2 2vs8 4vs8 Tvs2 Tvs2 JwsB Ivs8 8 Tws8 OwsE

BEROHAEBENEAEZ

Jvs8 9vsB 2vsB 5 dvsE ovs8 9vsE SvsB 9vsE JusE

BREBEQHOAAENER

Svs8 Jvs8 4vs8 OwsBE 8 2vs8 2vsB SvsE 4dvs3 1vsE

HEMAONENEEDN

Ovsg& 8 1vs2 9vs8 8 TvsB 1vsE ovsO bvs3 bwsd

PHAAEAENAN A

Fvs2 Svs8 OwsE 8 Ovs8 dvsE dvs8 1vs2 2vs8 OwsE

HEHEEECOQAHEER

2vs8& 8 1vs8 9vs8 Svs8 dvs8 OvsE dvs2 TvsB Svsd

28] (12]504101-17) >

(Targeted ls norm, 20% fooling rate)
3 6vs8& 4

HHEHIII

1 9vs8 5vsB 6vsE 6v58 Evsh
30170 L Tsl el 1] 2
cvs8 0O 2] 7 0 5vsB 2 1 8 1
OERNEERDEL

7 BvsE 3 9 9 3 9 bSvsh
E1 €16 (16 F1 E E A
BECHEENRE

(Untargeted, ¢ norm, 89% fooling rate)
4vs8 vs8 Ovs8 JwsB ovsd dvsB 1vs2 Tvsd 2vs8 8

ARNEGOAEABE R

Ivs8 8 Tvs8 1lvs? 9vs8 SvsB owsE GvsB 2vs8 ows2

EEHANAEHOORA

ovsd Ows8 8 Twvs3 Ovs8 Svws8 2vs8B 1vs8 & 1vsE

OEABNEBERNNEDN

2vs8 JvsB Tvs2 ovsB Jvs8 9vsB 9vsE JvsB S9vs3 SvsE

BENOHANOENGE

Jvs8 2vs8 4vs8 TwsB Tvs2 JwsB Ivs2 8 Tws8 OwsE

BECHEENREAD

Ivs8 Gvs2 2vsB 5 dvsE Gvs8 9vsE SvsB 9vsE JusE

BRBQRHOAAENER

Svs8 Jvs2 4vs8 OwsBE 8 2vs8 2vsB SvsE 4dvs3 1vsE

HEADNENEEDN

Ovsg& 8 1vs2 9vs8 8 TvsB 1vsE ovsO bvs3 bwsd

CHAAEEDNAEONA

Fvs2 Svs8 OwsE 8 Ovs8 dvsE dvs8 1vs2 2vs8 OwsE

i kL B E E B D dHE E

2vs8 8 1vs8 9vs8 Svs8 dvs8 OwsE dvs? TwsB Svs2

28] (1 2]504101~17) >

(Targeted 62 norm, 20% fooling rate)
3 6vs8& 4 2 8

HHEHIIIIEE

1 Svs8 5vsB ovsB GvsE 2 owsE

IIIIIIHEIE

evsé 0 0 5Sws8 2 1 1
LLDEEDLD T
AERBHAOHOR

\q -

DEnREEBNE

Sys8 4 6wsB 9 5SvsBE 9

BROBRHOAAEER

S5vs& 3 4 0 2] 2 2 GvsB 4 1

BEOOREREE

1 6&vsd ovs8 bvsd

EIHEIIHEME

7 Svsd

IHEEEEHIEE

9 5".1'58 4 Svs8

‘_QI
Y

74

3.1.4 MINIST: Adversarial examples generated by ART HopSkipJump

attack against SVM in the targeted and untargeted settings.

fooling rate)

~ norm, 19%

(Targeted, ¢

(Untargeted, £, norm, 91% fooling rate)

N-H 8NV ESHCN-H
R B R E
DB

IE
9 5Svs8& 4 Ows2 4

K

QES] & &..JEEEQ
-5 B @- 6@

~G RSRoR-
=0}
8- -0 -8R
[=4] -
- - B
O E B
SO EOEEE

[=#]

SEEEEEE
EE YD DS

(Targeted, {5 norm, 17% fooling rate)

92% fooling rate)

Y

(Untargeted, 2 norm

S E-EEEEE
G-B- N @B 8-

S On
ows8 Bvss

2vs8 SvsE dvs3 vs

Ws2 5vS3 Bvs2 BVSE

8 7vs9 Ovs5 5vs8 2vs8 1vs8

j. TS

Ovs2 8 1vs2 9vs8

?*.:53 Svs

4vs8 vs8 Ovs2 JwsB ovsd dvs?2 1vs8 TvsS 2vsE

2vs8 '. Tvs3 5 Jvs8
Svs8 35 *.-"5 Ovs2 -

5

3.2 MINIST: Adversarial examples generated by ART BA({y) with § =
0.01, e = 0.01, and 100 iterations in the untargeted setting.

(SVM Targeted , Fooling rate of 33%)
9 OwsZ2 3 ovsE 4 1 Tvs2

EHEI%IIQ

1 Svys7 Svs8 6".-'58 ovs8

EEHIEE

Gv 8 Tvs2 Dn.r52 5\;58

-
N

un
<
i
o

MEOE

(SVM, Untargeted, Fooling rate of 98%)
4vs2 YysE Ovs8 JvsB ovs8 dvs8 1vs8 Tvs8 2vs8 Bvs0

InHEnnAGaE

Ivss 852 7vsB 1vs8 9vs8 5vs2 6vs2 bvs2 2vs8 rwsa

27 I I

6\-'58 DUEB Bvs2 ?*.-'58 Dn.fEB 5\;58 2v58 1v58 8u52 lvsS

2v58 3v52 ?*.-'58 6".-'58 3".1'58 9-.-'58 9-.-'58 3v58 9‘.-'50 5#58

3vs8 2vs0 dvs8 Tvs2 ?v58 3vs8 Ivs8 8 53 Ovs2

IHIIIEEA

3v58 Sysh 2vsE SwsB dysd ovs8 9vsE SvsE Sys8 JvsE

BEESHEORBED

Svs8 Jvs2 4vs8 Ows8 2vs8 2vsE bys8 4AysE 1vsE

GEOEQENEHN

Ovs8 Bvs2 1vs8 Svs2 Bvs2 ?5 1lvs8 Bvsd 6".-'58 Evsd

eyl / 12 ﬂ l] clols

?v52 SUES vsa S‘usz Dn.f-32 4\;58 4\;50 1vsg 2".-'53 vsa

2‘.-'58 Bvs2 l".-'58 9'.-'58 51.-'58 41.-'58 D'I.I'EB 4vs8 ?VEB Svsad

ﬂﬂlﬂ.lﬂﬂﬂl

(DT, Targeted, Fooling rate of 57.99%)
4 9vs4 0 3wvsO 6vsd dvsT 1vse 7 2

8
dRnaddnkEBen

8 Twvs2 1vs9 9vsd Svs8 BvsE Gvs8 2vsd 6

HEEOEEAGEAA

6v58 D gvs3 7 D 5v58 2v551v59 8 1*.-'59

2v55 3".-'59 7 6~.-'58 9-.-'54 9 3 9-.-'54 5*.-'58

lllll!llﬂﬂ

JvsH 2vsh 4 Tws2 7 Jws9 1lvs9 8 7 Ovs2

BEREOMEENERENA

IvsD Gysd 2ysh SwsB 4 Gvs8 Svsd SvsE Svsd JusS

EEEHHEEEEE

5v58 3v59 4v5? 0 8 2wvsh 2v55 5v58 4v50 1

8 l".-'599‘.-'54 8 l 6".-'58 6".-'58 6".-'58

Tus2 5".-'53 D 8 [NEZ 4 1 2v55 D

IEEEEIIIEE

2vs5 8vs3 1vs9 Gvsd 4 Twvs2 HvsB

zl<[Ts151: 10l 171>

(DT, Untargeted, Fooling rate of 100%)
AvsT Yvsh Ovs3 Iwsd ovs8 dvs3 Ivsd TvsD 2vs0 Bvs

AR DAEBRR

Jvs8 Bvs0 Tvsd 1vsh 9vsd Svs2 owsE Gvsd 2vs8 owsE

ElBANEEHOORANA

evs8 Owsh Bvsd TwsB Ovsd Svsd 2vsd 1vs8 Bus0 1vs3

AANNEERNEDR

2vsS Jvsh Tvs8 Bvsd Ivs8 Svsd Ovs0O Ivsd SGys3 Svs0

BENOHABNEGE

Jvs8 2vso 4vs0 TwsB Tvs3 Iwsd 1vs8 SvsD Twsd OwsS

BEREOWEBNEENA

JIvs2 9 2vsh Sws?2 dvs0 ovsd 9vsd SvsE Sys8 s

BRBQREACAENER

Svs3 3vs0 4vs8 Ows3 Bvs2 2vs8 2vs0 5vsS dvs3 1vs3

HEAONENEHEDN

OvsS 8vsS 1vsS 9vs8 8vs9 TvsB 1vsO bvs3 ovsD bwsd

PEHEAAEAEANENO A

Fvs0 Svs2 Ovs3 Bvs2 Ovs8 dvsh dwsh 1vs3 2vs0 Ows3

HEREZAREER

2vs0 8vs2 1vs3 9vs3 Svs3 4vsd Owse 4vsd TvsD Svs3

28] (1 2)504100~17) >

3.2 MINIST: cont.
(RF, Targeted, Fooling rate of 31%)

76

(RF, Untargeted, Fooling rate of 99%)

4 9 0 3 6vs8 4 1 7 2 Busl
/A B! 7 2

> 8 7 2 6vs8
312170117 AAFL
ovs8 Ovs2 8 7 0 5ws8 ~.-'55 1 a 1
aEaREERNGN
HER HHAOE

= - 1 8 7vs2 0

Ln
<
[E5]
o

o

1 6v58 6v58 ovsg

EEOEANGEEn

Tvs2 Svs8 0

Thjolrjofalul/1z) o

g 1 9 5Sws8 4 Ows2 4 Tws2 Svsd

Eﬁlﬂllﬁlﬂﬁ

dysd 9vs8 Ovs9 Jvsd ovs0 dvs8 1vss Tvs0O 2vs0 8

ARZERAAEAEBE N

Jvs8 B Tvs8 1lvsB 9vs0 Svs8 ovs8 GvsE 2vsE owsE

EIHANZHOOBA

owsD Ovs8 Bvs2 Tvwsd Ovs8 Svs8 2vs8 1vsE 8vs0 1vss

AZBEEBERNG DN

2vs0 3vs8 7vs8 Bvs8 3vs0 9vs8 9vs2 3vs8 9vs0 5vs8

Elllllllﬂﬂ

3v50 2*.!50 41.r53 TwsD Tvs8 Ivs8 Ivs0 BvsD TvsE OwsB

5u52 EWEB dys? DusB B"JSD 2vs8 2vs8 SUSB dysh lvsD

ﬁllﬂﬁﬂﬂlln

58 8v52 1vs0 9ysE 8'.-'53 7vs8 1vs0 GvsE 6'u58 6v58

TvsD SvSB Ovs8 Bu'sD Dv'sa 4".l'58 4".l'58 1 D 2*.!58 WSB

2\.-'50 8vs2 1vs0D 9vss 5v52 4ys8 Ovsh D Jvs8 bvs8

ENEASDREEE

(GBDT Targeted Fooling rate of 20%)
4 3 bBvsE 4

EHEIIIIIII

3 8 7 1 9vs8 5vsB BvsE ovsE Evsd

evsg 0 g 7 0 5vws8 2 1 g 1
BEHEE
2 3 7 BvsE 3 9 9 3 9 5vs8
BENUHHANEHOH
3 2 4 7 7 3 1 g 7 0
BEREOMEBENEAEA
3 9 2 5vsB 4 6vsB 9 5SvsE 9 3
£

(GBDT, Untargeted, Fooling rate of 89%)
4vs8 YvsE Ovs8 IvsE ovs8 dvsB 1vs8 Tvs8 2vs8 8

RN OAFEE R

Jvs& 8 Jvs8 1lvs8 9vs8 SvsB bvsE bvsE 2vsE bwsd

Iﬂﬂlllﬁﬂll

ovs8 Ows8 8 TwvsB Ovs8 bHwsE 2v58 lvs8 8 1vsd

2vs8 3"»'58 TvsB 6".-'58 3".1'58 9'.-'58 9'.-'58 Jvs8 9'.-'58 5".-'58

HENUOHHNEHOH

Jvs8 2vs8 4vs8 TvsB Tvs8 Jws8 Ivs8 8 Tws8 OwsE

BEROHEBENEAEE

3vs8 9vs8 2vsB SvsE 4vsE 6vs8 9vsE SvsE 9vsE Jvsi

BRABQNAACAENER

S5vs8 Jvs8 dvsB OwsB 8 2vs8 2vsB SvsE dusE 1vsE

HEAONENEEN

Ovs8 B 1vs8 9ysB8 8 Tvs8 1lvs8 GvsE Gvsd ovsd

CHAAEENBENE A

JvsE Svs8 OwsE 8 Ovs8 dusB dvws8 1vs8 2vs8 OwsE

KB EE DD AE R

2vs8 B 1vs8 9ysB Svs8 dysB Ovs8 Avs8 Tvsh Svsd

ENHEAEE NS

7

4.1 MINIST: Adversarial examples generated by ART ZOO(/;) attack

against Decision Trees.

(Untargeted, e = 0.1, 83% fooling rate)
dvst YvsT Ovsd IwsB ovsd dvs2 IvsT Tvsh 2vs8 Busl

HHEIIIIIII

8 Tvsd 1v58 9~.f53 5v53 6".-'52 ovs8 6*.-'55

6v54 D 8 ?\-'50 DvEEI 5v53 2 1vs3 8\.-'53 1v53

3 Jusl 6~.-'54 9-.-'5? 9-.-'54 IvsT 9-.-'58 5*.-'59

ﬂlllllllﬂﬂ

Jvse dys2 TusB 7 3 1lvs? 8 7Tws9 Ovsd

BEEHIEHEIE

SwsD dysh ows2 Gvsd SvsT GvsT Jus?

EREROAOEED

5 3ws8 dvs2 Ovs2 BvsT 2vs3d 2vs8 Svs3 dvs3d 1vsH

EEHEEEEEEH

Ovs2 8‘.-'51 l".-'58 S9vs4 8 Tws8 1vsh Bvs0 6".-'52 6".-'5_.1'

Fvus2 5~.ﬂ54 Dus? D 4v55 Ays2 1vsT DusS

IEEEEIIIEE

8 l".-'53 9vsE 5*.*53 4".-'5_.1' D".-'ES 4ys3 Tvs9 SvsE

(Targeted, € = 0.1, 26% fooling rate)
9 0 3vs9 6 4v5? l 2

3 Svsd 2vsh 5

3
il
BABEROAC

Svs8 3 4 (Ows2 8vsT 2

Ovs2 1 9vs4 8 1 +]

Elﬂﬂllﬂ 646

Jvus2 vs2 4 1 2vsg& O

IHEEEIIEEE

2 8vs3 1 9vs4 5 dvsT Ows2 fvs8 Svsd

2]<[1o 15T 1ol -171>

5 0N

(Untargeted, e = 0.3, 76% fooling rate)
dvst dvsT Ovsd Jws8 ovsd dvs2 IvsT Tvsh 2vs8 8

HHEIIIIIII

8 Tvsd 1v58 9~.f53 5v53 6".-'52 ovs8 6*.-'55

6v54 D B\.-'53 ?\-'50 DvEEI 2 1vs3 8\.-'53 1v53

3 Jusl 6~.-'54 9-.-'5? 9-.-'54 3 9-.-'58 5*.-'59

ﬂlllllllﬂﬂ

dys2 TusB 7 3 1lvs? 8 7Tws9 Ovsd

BEEHIEHEIE

SwsD dyss ows2 Gvsd Svs0 GvsT Jvs2

alol2f=llc]alzl-]=

5 3ws8 dvs2 Ovs2 BvsT 2vs3d 2vs8 Svs3 dvs3d 1vsH

EEHEEEEEEH

Ovs2 8‘.-'51 l".-'58 S9vs4 8 Tws8 1vsh Bvs0 6".-'52 6".-'5_.1'

Fvus2 5~.ﬂ54 Dus? D 4v55 Ays2 1vsT DusS

IEEEEIIIEE

8 l".-'53 9vsE 5 4".-'5_.1' D".-'ES 4ys3 Tvs9 SvsE

(Targeted, € = 0.3, 25% fooling rate)
9 0 3wse 6 4vs7 1

4 2
!HE!IIIIE

8 7 1 9 5Svws3 6 6vsE 2

EIHEOEE R
1EAREERNE
HEHAE

3 2vsE 4 7 7 52

HEOEA

3 Svsd 2vsh 5

a[al2]=1¢

5v58 3 4 Ovs2 BvsT

D‘.-'EE l 9ys4 8 58

Elllllﬂﬁ.ﬁ

vs2 1 2vsg& O

HGEEEAREER

2 8vs3 1 9vs4 5 dwsT Ows2 4 TvsB SvsB

28] (1 2]504101-17) >

E P
Gysd Gysd
Ao
280
1B

B EEE S -
=] [}

3 Gvsd
uGe
21740
4 5ys0 9ysd
EE

Avs

IE

i 5]

2

78

4.2 MINIST: Adversarial examples generated by ART ZOO(/;) attack

against Random Forest.

(Untargeted, e = 0.1, 76% fooling rate)
4vs9 Gysd Ovst IwsB 6 dvs?2 1vs8 Tvsd 2vs8 Bvsl

HHEIIIIIII

3v58 8 Tws0 1 9~.f55 5v53 6 ovs8

6v54 0".-'55 B\.-'53 ?\-'53 Dv55 5v58 2 1vs3 8 1v55

3 Tvs9 6 EWES 9-.-'55 9-.-'54 3 9-.-'58 5*.-'58

ﬂllll!llﬂﬂ

Jvs2 2vs8 dvs2 Tws2 Tvs2 JwsB Ivs2 8 Twsd 0

HEOHEENRED

Jvs8 Gvss 5 dys9 ovs8 9vs3 Svs3 vsE 3

BEREROAOSHB

Svs8 Jvs2 4 OvwsB Bvs9 2vs8 2vs8 5 4dws0D 1vs3

EEHEEEEEEH

0 8‘.-'53 l".-'52 S9vs4 S‘JEB Twsh 1vsh Bvss 6 6".-'52

Tvs9 5~.ﬂ59 D 4v55 qus2 1vs8 2v53 DusS

IEEEEIIIEE

2 Bvws3 1vs3 9vs8 5 4vs9 Ows5 dvse Tvs8 Svs2

28] (1 2]504101-17) >

(Targeted, e = 0.1, 28. 3% fooling rate)

4 9ysd Ows2 Ivs9 6 2 a8
HHEEIIIIIE
7 1vs9 Sysl SvsB 6 GwsE 3]
IIIIIIIEII
8 Twvs2 D 5v58

3 Tus2 6 3".1'59 9-.-'54 9-.-'54 3 9~.f54 5v58

EIIIIIIIEE

4 Twvs2 Tvs2 8 Tus2

BEHHIEHEIE

Sys9 4 ovsB 9 5SvsE 9vsd JusE

IIEHIIIEII

5v58 3 0 8wsY 2 5v58 4

l 9vsd 8 l 6‘.-'58 6 6".-'58

Jvus2
IHHEEEHIEE
2 Bvs? 1 Gysd Svs8

(Untargeted, e = 0.3, 72% fooling rate)
4vs9 ysS Ovso IwsB 6 dvs?2 1vs8 TvsS 2vs8 Bvsl

IHEIIIIIII

8 Tws0 1 QvET 5v53 6 ovs8

6v54 0".-'55 B\.-'53 ?\-'53 Dv55 5v53 2 1vs3 8 1v55

3 Tvs9 6 EWES 9-.-'53 9-.-'54 3 9-.-'5

ﬂlllllllﬂﬂ

Jvs2 2vs8 dvs2 Tvws2 Tvs8 3 g8 Twsd 0

HECEEANEED

Ivs8 9vs5 2vs8 5 dvsH ovsB 9vs3 Svsd wsE 3

BRBQRNOAAENER

Svs8 3 dvs3 OwsB Bvs9 2vs8 2vsl 5 4ws0D 1vs3

EEHEEEEEEH

0 8‘.-'53 l".-'58 S9vs4 S‘JEB Twsh 1vsh Bvss 6 6".-'52

Fvsl 5~.ﬂ59 D 4v55 qus2 1vs8 2v53 DusS

IEEEEIIIEE

2 Bvs9 1vs3 9vs8 5 4vs9 Owsd 4 Tws8 Svs2

28] (12]504101-17) >

(Targeted, € = 0.3, 23% fooling rate)
4 9vsd Ovs2 Ivs9 6 7

IHEHII!H

1 9vsl 5 6

6
IIIIISHQ

8 Twvs2 5 2

AEBANEERD

3 Tws? BvsB Oysd 9ysd 3

ﬂllllﬂﬂﬂﬂ

4 Twvs2 Tvs2 g 7

BEHHIEHE?

Sysd 4 6vsB 9 5SvsB 9 JwsE

IIEHIIIEEI

Svs8 3 0 8wsY 2vsh 5 4 1

IIIEEIIIEH

- M-
N-0-8-0-8-

g
o

Y

1 9vsd4 8 1 &vs8 6 6ovs8
! I
ElllllnEwE
7 Svsd 0
IHHEEEHIEE
2 Bvs? 1 Gysd 4 D*.-'EE Svs8

...-
_J

79

(Targeted, e = 0.1, 3% fooling rate)

4.3 MINIST: Adversarial examples generated by ART ZOO(/;) attack

against GBDT.

(Untargeted, ¢ = 0.1, 19% fooling rate)

SN 8B ESHoR-N-E
‘O USE RSN

-B-0- BB 2 E- @
[V}
B EGE
-6 B BB
NSH ECN W
BN
SEEESEER
G N R EEE
S RNESEN AN R
BN BN
...._
™~ P~ =f
ll!l!¢4
-0 - 0 BB
_._I_
=] oh =i oh
SO EDEGE
=t Ta]
SR

=]

(=]
D
w

T 1vs8 ovs0 6

2

3
5

EEIIIII IIIEEII

l“

(Targeted, € = 0.3, 3% fooling rate)

4 Tvs8

0
5 4 0

8

0

/|

8 1lvs2 9vsE 8
8 Ivs& 9

5

2

DEOIOEONEGE DENOERNEEE

(Untargeted, e = 0.3, 15% fooling rate)

EEEE IHEIEE

0
Fvus2

SN 8BV ESHoR—H-E
‘IR R R
B0 D-2iE- 3
[V}
S
-6 8- - E-0-E-B
DN
o-o- 2

h

-

[=+]
EEE0REDE
GBS ENEDE
BR800 EE

[=5]

L=+]
...._

ylaﬂlﬂal E [l I
_._I_

ol M~ Rl ~H - B ol ~

-0 B R-0- ,?I;

[L=]

RN BB

2
@D -
‘B EEEERED
G-EN R BB
B IR0 EE

[=5]

EJIIIIIIEII EJIIIIIIIEII

1

5 0

7

30

4 Tvs8

lvs2

IEEI!IEE IHEIEE

8 1vs8 SvsE

DEOIOEONENE DENOERNEEE

(Targeted, € = 0.1, 0% fooling rate)

4.4 MINIST: Adversarial examples generated by ART ZOO(/;) attack

against SVM.
(Untargeted, e = 0.1, 0.3% fooling rate)

ﬂ - - - RN [d-
Iaﬂ ..?llnglzl

~E~E- Iglylgla,l
B0 - - B [l [E
oMok ..?llnglzl

=}

,..U =]

,w 3

0
DENONANENE ERNNGENEnS

(Untargeted, ¢ = 0.3, % fooling rate)

B B - @
el []]

SHECE- N
B D -
D!!E!!ff

B B - @
el []]

SHECE- N
B D -
D!!E!!ff

[[
=] =]

(Targeted, € = 0.3, 0% fooling rate)

o ==} [=a] [_n_._ =
O W
BB R-B-E- 3
OG- B
ii?ﬂé?l

(o] L=+] h = _n_._ =]
O E S BB
B-O-EB- 20 I
B G
-GBS E-0-EB
o =] P [=s]
SH SR AN BB
EEEDEEED S
B EEESEED

o =] P [=s]
CH AN R
BT R
B EEESEED

HEIEE IHEIEE

- -

81

8

2

IHEIEE IHEIEE
DENONANENE ERNNGENEnS

MNIST: Adversarial examples generated by ART Decision Tree, Bound-
ary and HopSkipJump(HSJA), zerothorder optimization attack(ZOO)
attacks against decision trees in the untargeted setting.

(ART DecisionTree attack, 100% fooling rate)

Avst Yvsd Ovs3 Iwso ovsd dvs3 1vsh Tvsh 2vsl Bvsh

AN BOaEBE A

JvsS 8vs3 Jvsb 1vsS 9vsS Dws3 Bvsl Bvs3 2vs3 bws3

EIHANEEHOOANA

ovs3 OwsT BvsS Tws0 OvsT Sws3 2vsh 1vsh Bwsl 1vsh

AZBNEBEANEDND

2v53 Jvs5 Fvsb Bvs3 3vsS 9vsh 9vse 3vsS 9vse Svse

HEENMOHHANOENGE

Jwsh 2vs3 dvso Twsb Fvs3d 3 1wsh Bvs3 Twsb OwsT

BEROFEBENEREU

3vs3 9wso 2vs0 5vs6 4vse Bvs3 9vse 5 9vse Jwsl

BRBQHACAENER

Svs3 Jvso dvso OwsT Bvst 2vsb 2vsh Svsh dws5 1vsh

HEANNRENEHEDN

OvsT Bvsh 1vsS 9vst Bvsl Tvsh 1vs5 GvsT Gws3 Gws3d

PHAAEAHENADOA

Fvst Svsl OwsT Bws3 OvsT dws0 dvst IvsSs 2vwsh Owsh

NGEHEHEBDEER

2vs3 Bvso 1vsS 9vsh Svs3 dvsh OvsT dyse Tws3 Swsl

ENHEAEENEE

(ART Boundary attack, 100% fooling rate)
Ays2 GysE Ovs8 Jvsd ovs8 Avs8 1vs8 Tws8 2vs8 8BvsO

bRl -]

Jvs8 B"JSE Fvs8 1vs8 9vsB Svsd bvs? Bvsd 2vsa 6‘.-'58

BEnnE

6".-'58 Dn.fss 8vs2 ?vEB Dn.fES 5#58 2\-'58 1~.-'58 8'.-'52 1~.-'58

2".-'58 3".-'52 ?‘.-'58 6".!58 3vs8 9'.-'58 9'.1'58 Ivs8 9'.-'50 Svs8

“l!ﬂ??ﬁ

Jvs8 2*.-'50 rhrES Tvs2 Tvs8 Jvs8 1lvsB 8 TvsB Ovs2

.w-ﬂ...ﬂﬂh

Jvs8 9vs8 2vsE Svs8 4vs3 ovs8 9vs8 Svs8 9vsE Jvsd

BEERSHOEBNEBR

Sws8 Jws2 dys8 Ovs8 8 2vsB 2vs8 Svs8 dvwsE 1vsE

BEOAODREEEER

Cﬂ.l'EB Busz 1vs8 9vs2 Bys2 ?5 1vs8 ovs8 ovsE8 ovsd

ﬂnf “@ﬂ.

?v52 51.1"53 Ovs8 8v52 Ovs2 4#58 4vs0 1vs8 2vs8 Ovs8
21.-'58 Bvs2 11.-'58 QUEB 5#58 41."58 Dvﬁa 4#58 ?1.-'58 5vs8

ﬁﬂlﬂllﬁﬂﬂl

(ART HSJA(ls) attack, 92% fooling rate)
dvst Yvs3 0 3wsB ovs8 dvsT 1vsT Tvs8 2vs8 Bvs3

IHEIIIIIII

3".-'54 8‘.-'52 Tvs4d l‘.-'E]Ir Q'.I'EEI- 6".-'52 Evs8 2".-'56 6".-'55

6\-'52 Du52 8 ?'.-'53 IINEEI 5*.-'50 2v53 1\!56 8\-'53 1~.-'53

EHEIITIHII

2vsB Jvsd Tvs9 ovsd Ivso Sysd IvsT 9

ﬂlllllllﬂﬂ

Ivsh 4 Twvsl TvsD Fvs8 1vsT Bvs9 Tvs9 O

HECEEANEED

Jvst Yvsl 2vs3 Sws2 Avs9 Gvs?2 Gvsd Svsd Ovs8 JvsE

BRABEQNACNOEER

Svs3 Fvsd dvsh 0 Bvs3d 2vs3 2vsB Svsd dvs3 1vs9

Ovs2 Bvs3 1vs8 9vsd Bvs3 Twsd 1vs8 Gvsd owsT Gwsd

PlHEAMHGANAENDS

Tvsd Sysd Owsl Bvsd OvsT dvs0 dvsod Ivse 2vs3 0

i k1 & E 2 G Qi HE B

2vs9 Bvsd 1vs3 9vsd Svs3 dvsh Ovs8 4Avsd Tvws9 Swsd

28] (1 2]504101-17)>]

82

(ART ZOO attack, 83% fooling rate)
Ayso YysT Ovsd vsE bvsd dvs2 1vsT Twsh 2vs8 Busl

dlnafonEBen

8 7vs4d 1vs8 9vs3 Svs3 Bvs2 Bvs8 2 Bvss

HEDNEEOGRA

evsd 0O 8 TwsD Ows9 Svs3 2 1vs3 8Bvs3d lvs3

AzRnEERNGENn

3 Tvsl Gvsd SvsT Svsd JvsT Gvs8 SvsD

HEAPAAGHOA

Jusec 2 dvs? TvsB 7 3 1vws? 8 Tvws9 Ovsd

HEOHEENRAD

2 5vs9 4dvsh ovs2 9vsd SvsT 9vsT Jus2

IIEHIIIIII

Fuss dus? Ows2 BusT 2vs3 2vs8 Svs3 dvs3 1vsS

BEONGENSED

Ovs2 Bwsl 1vs8 Sysd 8 Tws8 1vsh owsD ows2 owsy

PHAAEAEANGAEAOA

Tws2 Sysd Ovs2 8 0 dysh dys2 lvsT? 2 OvsB

IHEEEIIIEE

a8 1\.-'53 Gysd 5v53 4\.-'5]-r Dv55 Ays5 Tvs9 SvsE

83

	Introduction
	Overview

	Background
	Machine Learning
	Supervised Learning

	Adversarial Machine Learning
	Adversarial Attacks

	ART Attacks
	ART Evasion Attacks
	Gradient-based attacks
	Score-based attacks
	Decision-based attacks
	Decision tree-based attacks

	ART Poisoning Attacks
	Adversarial Poisoning Attack on SVM

	Experiments and Analysis
	Experimental setup
	Dataset
	Training and Evaluation
	Data Preparation
	Model Training and Evaluation

	Experimental Evaluation
	Evasion attacks in ART
	Poisoning attacks in ART

	Conclusion

