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CHAPTER	
  1	
  
Presentation	
  of	
  the	
  problem	
  

 
 

1.1	
   The	
  lead	
  optimization	
  phase	
  in	
  drug	
  discovery  

New drug discovery is usually a long and complex process because it involves several 

phases and the presence of a high number of relevant variables including categorical 

ones can make difficult the phases of analysis, modelling and experimentation on the 

data. 

A key phase of this process concerns the generation of modulators of protein 

function that are small molecules that binding to a protein, alter and modulate the 

activity because when proteins are linked with other molecules, their conformation 

can change slightly or relevantly. [1] [2] [3] 

This phase is done under the hypothesis that this activity can affect a particular 

disease state.  

Current practices rely on the screening of vast libraries of small molecules (often 1-2 

million molecules) in order to identify a molecule which specifically inhibits or 

activates the protein function, commonly known as a Lead Molecule (LM) and it 

serves as a starting point for developing a new drug.  

The lead molecule generally lacks the other attributes needed for a drug candidate, 

such as: absorption, distribution, metabolism and excretion (ADME). [1] 

These attributes enable the molecule to be dosed orally, reach the required site of 

action in the body and stay around long enough to have an effect. 

In addition, the molecule should be safe avoiding activities that cause adverse 

effects. . [4] 

In order to achieve these attributes, retaining the interaction capacity with the target 

protein, the lead molecule must be modified through the phase called Lead 

optimization.  

This optimization is accomplished through chemical modification of the molecule 

structure (hit structure), by involving long synthesis and testing cycles with 
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modifications chosen by employing knowledge of the structure-activity relationship 

(SAR) as well as quantitative structure activity relationships (QSAR). [1] [4] [5] 

The structure-activity relationship (SAR) is the relationship between the chemical or 

3D structure and its biological activity and using these information allows to 

determine the chemical groups for achieving a certain effect on a biological target 

organism and then to modify the effect of a drug by varying its chemical structure. 

[6] 

This quantitative structure activity relationships (QSAR) is a mathematical relation 

that quantitatively expresses the biological activity of a drug as a function of certain 

physical-chemical or structural features of the molecule that are used as predictor 

variables. 

In addition, models based on QSA allow to predict the biological activity of new 

drugs. [7] 

This is a multi-objective optimization and complex high dimensional problem in 

pharmaceutical research: the chemical space in which teams operate is very large, 

the objectives tend to compete (for example, solubility and absorption are inversely 

correlated) and some of the criteria (for example, metabolism) are both expensive to 

measure and difficult to predict. 

The traditional approach consists in an long iterative procedure among formulation, 

synthesis, and testing cycles involving high investment of resources in terms of 

experimental units and time to reach the target that can lead to a possible negative 

impact on the environment.  

In the last few years have been proposed computational approaches for the SAR and 

QSAR analyses mostly based upon machine learning techniques. 

In addition, evolutionary algorithms (genetic algorithms, evolutionary programming, 

evolution strategies) for searching and optimization have been presented and applied 

with success in the drug discovery process.  

The objective of lead optimization is to reach the optimal value of the variable of 

interest conducting a very small number of tests reducing thus the investments on 

resources. [1] 
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Focusing on the phase of lead optimization, the themes of classification and 

clustering are analyzed for the construction of models for the identification of the 

most useful variables for this purpose.  

 

1.2	
   Description	
  of	
  data	
  

The thesis is focused mainly on the topics of classification and clustering on data 

provided to the research center European Centre for Living Technology (ECLT) in 

Venice from a well known pharmaceutical company with headquarters in London as 

subject of a European research project (FET area: future emerging technologies). 

The project involves the analysis of molecules for the formulation of a new drug 

against childhood leukemia. 

The company has provided to the research center 2 dataset for this project. 

The first dataset is a library of 2500 molecules identified by two reagents (Atag and 

Btag components) that define their chemical composition on which 5 measurements 

have been calculated for each molecule. 

Focusing on this dataset, it is composed by: 

• 2 independent categorical variables characterized by 50 levels each: Atag and 

Btag represent specific different components of a molecule 

• 5 dependent variables: pIC50 MMP12 - Activity, gskmw, clogP, ADMET Solubility 

and TOPKAT Rat Oral LD50   

Then each data point, representing a molecule, is described by two categorical 

variables defined as reagents, each of which can assume 50 different modalities.  

The whole experimental space is therefore identified by 2500 experimental points 

(502) without replications in the experiments. 

In our analysis, we will give more importance to the most important response 

variable that is pIC50 MMP12 which measures the molecular activity of the reaction 

product. 

Its numerical values are recorded for only 1704 experiments while the remaining 

experiments assume different labels: “Assay Failed” (28), “Inactive” (176), “Not 

Assayed” (26) and “Not Mate” (566). 
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We denoted as “Activity” the variable pIC50 MMP12 with only numerical values to 

make clear this distinction. 

The variable Activity assumes values between 3.7 and 8 and we are primarily 

interested in molecules associated to high values for this variable because the intent 

of the analysis is to find the reaction whose product maximises the molecular 

activity.   

On the other hand, the values of the other 4 response variables are reported for all 

the 2500 experimental points.  

The second dataset provided by the pharmaceutical company contains a similarity 

matrix among molecules (example “A01B04” against “A01B06”). 

The matrix size is 2500x2500 and it shows how one experiment is chemically similar 

to all the other experiments in terms of Tanimoto distance. 

What we are interested in is to understand if molecules closer in the chemical 

composition (which means molecules with higher values in the similarity matrix), 

have similar Activity values with, as consequence, low distance between their 

responses. 

Having to deal with also categorical variables which makes the problem rather 

complicated, the analysis will be quite difficult and for this reason will be used also 

some statistical methods that can handle this kind of variables.   

 

1.3	
   Exploratory	
  data	
  analysis	
  

Before starting with the analysis, we have to extract the main features from these 

response variables to describe these data. 

We have conducted a preliminary descriptive analysis aiming to identify specific 

patterns among the chemical compounds. 

The information extracted by this analysis will be then used to understand which 

methodology will more effective and efficient in modeling the data. 

 

The simple descriptive statistics of the responses are summarized in Table 1 and the 

same information can be extracted looking their boxplots in Figure 1.  

A boxplot is a graphical representation used to describe the distribution of data 

through simple indices of dispersion and position. 
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 Min 1st Qu. Median Mean 3rd Qu. Max sd 

Activity-pIC50 MMP12 3.700 4.600 5.300 5.461 6.300 8.000 1.025 

gskmw 291.3 416.4 448.5 454.1 483.5 728.9 57.427 

clogP -2.505 2.656 3.731 3.635 4.609 9.142 1.503 

ADMET Solubility -8.280 -5.353 -4.554 -4.628 -3.817 -1.766 1.117 

TOPKAT Rat Oral LD50 0.618 2.005 2.316 2.280 2.571 3.626 0.445 
 

Table 1: simple descriptive statistics 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 1: boxplots of response variables 

 

A measure of variability based on percentiles is given by the interquartile difference 

Q3-Q1 that is just the width of the box. 

Since between Q1 and Q3 there is the median value that is the central point of the 

distribution, if their difference is small this means that the variability is limited, 

otherwise is high. [8] 

At this point, we can say that the response variable pIC50 MMP12 has the maximum 

variability while the other variables seems to have a quite symmetric distribution.  
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Except for the first variable, there are some outlier values, in particular in the 

variable gskmw. 

An outlier is an anomalous value that unbalances the distribution and it lies more 

than one and a half time the length of the box from either extremities, so above a 

threshold defined by Q1 !1.5*(Q3 !Q1)  or Q3 +1.5*(Q3 !Q1) . 

The smoothed estimated density distributions of response variables are plotted in  

Figure 2 to see how their values are distributed.  

Focusing on our main variable of interest pIC50 MMP12-Activity, we can note that we 

have the highest density of values in the range between 4.5 and 5.5 approximately. 

The shape of its density function confirms the absence of a symmetrical distribution. 

Its global density distribution highlights a bimodal behavior of the variable’s 

frequencies if we consider two groups of molecules: red line identifies the 

distribution of the variable for the molecules with high Activity (≥ 6.8) while the blue 

line for molecules with low Activity (< 6.8). 

Looking at the other variables, mostly gskmw presents a quite long tail for the 

presence of outliers seen in the previous boxplot that makes the distribution less 

symmetric.  
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Figure 2: smoothed estimated density distributions 

 

A correlation analysis among the response variables has been performed to identify if 

and which dependent variables can be expressed by linear relationship with another 

one. 

The linear correlation expresses the intensity of the bond between the two variables 

and it can measured by the Pearson coefficient. 

This coefficient always takes values between -1 and 1 and if it is greater than 0, this 

means that the two variables are positively/directly correlated otherwise they are 

negatively/inversely correlated. 

Positively correlated means that if a variable grows, then the other variable grows as 

well, while in the other case we have that the other variable decreases.  
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Table 2 show that some response variables are particularly related, in particular: 

- ADMET Solubility vs gskmw = -0.518 (moderate correlation) 

- ADMET Solubility vs clogP = -0.806 (strong correlation) 
 

 

pIC50 MMP12 gskmw clogP ADMET TOPKAT 

pIC50 MMP12 1 -0.058 0.040 0.068 -0.130 

gskmw -0.058 1 0.459 -0.518 -0.156 

clogP 0.040 0.459 1 -0.806 0.262 

ADMET 0.069 -0.518 -0.806 1 -0.339 

TOPKAT -0.130 -0.156 0.262 -0.339 1 
 

Table2: correlation analysis 

 

Another way to obtain these conclusions from the correlation matrix is to use the 

scatter plot matrix which aim is to investigate particular behaviors considering the 

variables in pair, as we can see in Figure 3.  

A scatter plot pairs up the values of the two variables in the same observation as 

(x,y) coordinates in a Cartesian diagram. 

If the points are arranged as a cloud, this means that there isn’t a particular 

relationship between the variables. 

In the other case, the points are approximately arranged as a diagonal and its 

direction gives us the information the type of correlation, so positive or negative. 
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Figure 3: scatter plot matrix 

 

We further investigate the behavior of Activity variable (numeric values from pIC50 

MMP12) trying to understand if a specific molecule (which means a specific 

combination of Atag and Btag levels) is influenced by the presence of a particular 

Atag or Btag modality.   

We used the paired boxplots to observe if there are differences in the values 

distribution of Activity variable, taking a fixed component (Atag or Btag variable). 

For a correct analysis, we have also to consider for each level of the fixed variable, 

the number of modalities of the other variable in which is present a value. 
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The behavior of Activity fixing each level of Atag is reported in Figure 4(a) where the 

number above each boxplot indicates the modalities of Btag associated to that 

specific Atag level. 

For example, the first boxplot in the figure represent the distribution of 39 molecules 

composed by the element A01.   

We note that there is no significant difference in position of the boxplots. 

Instead, looking at the behavior of the boxplots fixing each level of Btag, there is a 

large variability in their positions. 

Then, we put the boxplots in ascending order according to their median value to 

easily see the trend, as illustrated in Figure 4(b).  

For reasons of layout of this figure, we report directly in the table the Btag levels in 

ascending order with respect to the median value with the number of Atag modalities 

associated to that specific Btag level.  

The boxplots with the highest median values of the distribution correspond to B18, 

B25 and B19 which are levels of Btag with many modalities of Atag associated (45, 

42 and 43 respectively) and we have to take them into account. 

After this analysis on these boxplots, we can conclude that the Btag component 

seems to highly effect the Activity values of the molecules. 
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        Figure 4(a): behavior of Activity fixing each level of Atag 
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Figure 4(b): behavior of Activity fixing each level of Btag 
 

It is possible to describe the main response variable Activity with a 3D-plot that can 

help to identify regions of the experimental space where the highest response is 

more likely to be found. [9] 

As the Activity depends on the combination of the two independent variables Atag 

and Btag, a heat map representing the Activity values for each combination is 

derived in Figure 5.  

The variable Btag is reported on the x-axis whereas the variable Atag is on the y-

axis. 

The point in which one Atag level intersects with one Btag level represents the 

activity of the resulting molecule. 

Higher values of Activity are represented by blue squares (pixels) and smaller values 

by light blue squares as reported in the legend. 
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White pixels correspond to combinations of components in which the response 

variable pIC50 MMP12 has as value a string.  

The heat map emphasizes that the Btag variable has a more homogeneous behavior 

because the response Activity is more similar if we consider the columns. 

Immediately, we see that only very few molecules have a high Activity value. 

In particular, only two optima experiments (A21B07 and A31B25) achieve the 

maximum value (8) of the response variable (circled in red). 

Looking at the columns associated to Btag, the molecules between B17 and B20 (red 

rectangle) reach very good responses but they not include the two global maxima.  

 
 

Figure 5: heat map of Activity 
 

 

As said before, the pharmaceutical company provided us a second dataset, collecting 

a similarity matrix among molecules based on Tanimoto distance. 
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The values express how one experiment is chemically similar to all the other 

experiments. 

As done for the previous dataset, we compute a preliminary descriptive analysis on 

the similarity matrix considering all the 2500 molecules, so we take into account 

molecules that don’t have a numeric value on the variable pIC50 MMP12 but rather a 

label. 

The symmetric similarity matrix has obviously the main diagonal of ones.  

The descriptive statistics on the similarity matrix reported in Table 2 don’t consider 

the main diagonal in order to not distort the values. 
 

Min 1st Qu. Median Mean 3rd Qu. Max sd 

0.1429 0.2564 0.2887 0.3020 0.3271 0.8667 0.075 
 

Table 2: simple descriptive statistics on similarity matrix 
 

Looking at these indexes, mean and median are pretty close to each other and this 

suggests that the distribution of the similarity values is quite symmetric. 

Moreover, the values related to the quantiles are rather low and this means that the 

molecules are not so close in chemical composition.   

These aspects can be seen also through the density distribution of the similarity 

matrix in which gives us an idea of how its values are distributed, plotted in Figure 6. 
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 Figure 6: density distribution of similarity values 

 

The highest density is in the range between 0.2 and 0.4 approximately (91.16% of 

similarity values). 

As consequence, we will have to do mainly with low similarity values thus with 

molecules not so much similar to each other chemically.  

Using the heap map representing the similarity values for each combination of 

molecules, we can take note some clusters but for the large amount of data is 

difficult to extrapolate other information. 

After analyzing the two matrices, we have to study how and how much the Activity 

variable changes, fixing the Atag component as varying the Btag component and 

viceversa.  

We have created a new matrix collecting the absolute differences in the variable 

Activity among experiments. 

In the following graphs, the similarity values between molecules are reported on x-

axis whereas the differences of Activity are positioned on y-axis. 
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In Figure 7 we examine this relation, considering for example the two molecules 

where we have the maximum value in Activity variable (A21B27) and its minimum 

value (A06B06), respectively. 

For each graph, the refence molecule is put in relation with at most 50 experiments 

that have in common one of the two components Atag or Btag and we plot their 

response distances against the similarity values. 

The graphs on the left represent the comparisons keeping fixed the Atag component 

of the specified molecule but Btag varies (for example in the graph on the top left, 

the molecule A21B07 is compared with molecules in which Atag variable is A21 and 

Btag component ranges from 01 to 50). 

Instead on the other side, the comparisons are made keeping fixed the Btag 

component and varying Atag (for example in the graph on the top right, the 

molecule A21B07 is compared with molecules in which Atag ranges from 01 and 50 

and Btag is B07). 

An important aspect to note making these types of comparisons is that we find 

practically all the highest similarity values related to the molecule used as reference. 

In fact, these similarity values are so high that they correspond to the right tail of the 

similarity distribution seen previously. 

This confirms that we have high similarity values when these molecules are formed 

by one of the components of the reference molecule, in other words if they are 

chemically similar. 
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Figure 7: relation between similarity and distance values 

 

As we said before, it is interesting to understand if molecules closer in the chemical 

composition have low distance between their Activity values. 

Looking at the plots, especially where Btag varies, we can intuit a decreasing trend 

which means that if the similarity increases, then the distance in the responses tends 

to decrease. 

Going further in details, we can consider 100 randomly molecules to have an idea if 

there is this global decreasing behavior, as shown in the Figure 8.   
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Figure 8: relation considering 100 random molecules 

 

It is difficult to realize this behavior using simple plots, we well see if this intuition is 

confirmed in the chapter about the clustering. 

 

1.4	
   Some	
  highlights	
  from	
  exploratory	
  data	
  analysis	
  

After this preliminary descriptive analysis, the most interesting conclusions that we 

can drawn are: 

• levels between B17 and B20 are characterized by high Activity values 

• Btag component highly effects the Activity behavior 

• Large amount of low similarity values between the range [0.2,0.4] and this 

aspect will be considered in the following chapters  

• High similar values when the molecules have one component in common 

• Some elements show a possible relationship between similarity and distance 

values among molecules: if the similarity increase, the distance in the response 

variable tends to decrease  
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CHAPTER	
  2	
  
Classification	
  approach	
  

 

 
The theme of classification has been dealt with in this thesis for the identification of 

classes of molecules with specific behaviors and these classes produced by the 

algorithm will be compared with predefined classes from the pharmaceutical 

company. 

	
  

2.1	
   Supervised	
  learning:	
  classification	
  

In statistical methods exists a main distinction between supervised and unsupervised 

learning algorithms. 

Classification is an instance of supervised learning where the training set consists of 

a set of labelled training examples in which each observation is composed by its 

features and a label representing its class. 

A supervised learning algorithm analyzes the training data and produces a model to 

assign a class to the unlabelled observations belonging to the test set. 

The objective of the learning phase is to understand this mapping between data and 

mapping 

Then, the aim of the supervised classification is to search a decision criterion for the 

classification of new units based on their characteristics. 

These new observations are assigned to !  groups/classes (known in advance) 

according to the values of ! explanatory variables !!,… , !! measured on them.   

In this context, we have to find methods able to associate new molecules to 

predefined classes, in order to identify the best molecules in terms of Activity value. 

A good way to evaluate the goodness of the classification criterion is the confusion 

matrix, through which we come to the determination of the number of observations 

classified correctly or incorrectly in their respective classes. 
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2.2	
   Definition	
  of	
  the	
  classes	
  

Being in the field of supervised learning, we need to specify how many and how are 

the classes for this dataset. 

ACS Medicinal Chemistry Letter Journal published an article in which the values of 

the response variable pIC50 MMP12 are subdivided into 8 classes according to the 

pharmaceutical company. [5] 

As we said in the previous chapter, this variable contains some strings and for this 

task we want to deal with only numerical values, so considering the variable Activity 

we will treat only 6 classes. 

 

Then we will consider only 1704 molecules whose minimum value for Activity is 3.7 

while the maximum one is 8 and within this range we will treat only the 6 classes laid 

down in the article on ACS Medicinal Chemistry Letter Journal. 

The distribution of classes among the 1704 molecules is shown in the pie chart in 

Figure 1.  

For example, we associate experiments with Activity value from 3.7 to 5 (included) to 

the class A, if the value is between 5 (excluded) and 6 (included) to the class B and 

so on. 
 

 
Figure 1: molecular groups 

 

A	
  (3.7-­‐5)	
  	
  
706;	
  42%	
  

B	
  (5-­‐6)	
  	
  
466;	
  27%	
  

C	
  (6-­‐6.5)	
  	
  
193;	
  11%	
  

D	
  (6.5-­‐7)	
  	
  
209;	
  12%	
  

E	
  (7-­‐7.5)	
  	
  
118;	
  7%	
  

F	
  (7.5-­‐8)	
  	
  
12;	
  1%	
  

A	
  [3.7-­‐5]	
  

B	
  (5-­‐6]	
  

C	
  (6-­‐6.5]	
  

D	
  (6.5-­‐7]	
  

E	
  (7-­‐7.5]	
  

F	
  (7.5-­‐8]	
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As we could intuit after seeing the its density distribution, we can state that most of 

the molecules belongs to the class A that contains the lowest values, while the class 

F which covers the highest values has the lowest number of observations. 

 

2.3	
   Division	
  in	
  training	
  and	
  test	
  set	
  

Our initial dataset is splitted into training set and test set to obtain unbiased 

estimates of percentage of correct/incorrect classification. 

We have used 500 molecules for the test set (about 30%) while the remaining 1204 

observations (about 70%) for the training set. 

The training set contains training examples in which each observation is composed 

by its features and a label representing its class according to the previous definition 

of classes.  

The training set is used for the learning phase to obtain a classifier estimating its 

parameters. 

The test set contains molecules with the same set of measurements but the class 

membership is not specified and thus it is used to measure the generalization ability 

of the classifier on data never seen during the learning phase.  

The task of the classifier is to assign a class to these observations according to their 

features.  

Evaluating the results obtained, the predictive ability of the model is calculated in the 

confusion matrix through the percentage of misclassification (number of molecules 

belonging to the test set that have been assigned to a class different from the real 

one). 

 

Using the software R, there are 2 steps for each classifier: 

• use of the corresponding classification function to estimate the parameters of the 

model on the training set and the result obtained is stored 

• launch of the command predict to make predictions on the test set using the 

estimated classifier 
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Summarizing, the problem of classification can be divided into 3 phases: 

• estimation of classifiers using the training set able to discriminate efficiently 

between various classes 

• calculate the percentage of misclassification using the test set 

• choose the most appropriate model according to their generalization ability on 

new data 

2.4	
   Methods	
  

There are many algorithms for classification but having to deal with also categorical 

variables will be used the Multinomial Logistic Regression method to test whether 

Atag and Btag variables are discriminant in the implementation of the classes.   

 

We have data belonging to ! classes. 

The matrix X contains the values !!"   of the j-th variable for the i-th observation, so 

i=1,…,n and j=1,…,p. 

2.4.1	
  	
  	
  Multinomial	
  Logistic	
  Regression	
  	
  

The multinomial logistic model is a generalization of the binomial one in the case of 

classification in more than two groups. 

In this classifier, the logit transformation is implemented to ensure that the 

probabilities belong to a range between 0 and 1. 

Then the logistic regression model arises from the desire to model the posterior 

probabilities of the C  classes using linear function in x  ensuring that they sum to 

1. 

We assume that the log-odds of posterior probabilities of the classes can be 

modelled as a linear function of the inputs: 

log
P(G = h X = x)
P(G =C X = x)

!

"
##

$

%
&&= !h0 +!h

T x             h =1,...,C !1  

The model is defined using C !1  log-odds or logit transformations in such a way 

that the constraint on the sum of the probabilities is valid. 

The last class is used as denominator in the odds-ratios of the model but this choice 

on the reference class is arbitrary.   
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We can see the result in terms of probabilities of belonging to the classes with a 

simple calculation: 

P(G = h X = x) =  
exp(!h0 +!h

T x)
1+ exp(!l0 +!l

T x)
l=1

C!1
"

  l =1,...,C !1 

 
P(G =C X = x) =

1
1+ exp(!l0 +!l

T x)
l=1

C!1
"

 

They clearly sum to 1 and to stress their dependence on the whole parameter set 

! = "10,"1
T ,...,!(C!1)0,!C!1

T{ } , we can denote the probabilities as 

P(G = h X = x) = pk (x;! ) . 

The parameters of the logistic regression model are estimated via maximum 

likelihood, using the multinomial distribution for P(G X = x) . [10] [11] 

The nnet package provides the function multinom() for the multinomial logit model. 

 

Using the multinomial logistic regression, we have to define the explanatory variables 

of the model in order to have the minimum percentage of misclassification.  

In R, the stepAIC function compute an iterative procedure that eliminates variables 

from the model which are not significant in terms of AIC, using a backwards 

regression analysis that starts with the initial model composed by all the explicative 

variables. 

The AIC (Akaike Information Criterion) criterion is used to evaluate the model and it 

contains information both on the goodness of the model and the number of 

predictors that it contains.  

It assumes a high value if the model doesn’t fit well or if there are to much 

predictors, so the goal is to find a model that minimizes the value of AIC. 

The variables that can be eliminated are those that lead to a model with a lower AIC 

value than that of the complete model. 
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2.5	
   Results	
  

The results are highly dependent on how I choose the examples to put in the 

training set and test set which can lead to results absolutely busted.  

It is advisable to have in the training set examples belonging to all classes for 

achieving a good performance of the classifier in terms of correct classifications.  

If there are no examples belonging to the all classes in the training set, the classifier 

hardly will be able to classify observations of the test set belonging to the remaining 

classes.   

For this reason, each method has been applied N times (N=100) then on N different 

partitions of the training set to have a high probability that we have considered all 

the 6 classes. 

Setting for each run the same seed for all the classifiers, the partitions of the training 

set and test set are equals and then we are able to determine which is the best 

algorithm for this dataset which is the method with the smallest mean percentage of 

misclassification. 

 

For each execution of the classifier, the percentage of misclassification is calculated 

on the test set from the confusion matrix and making a mean on these values, we 

get an indication of the goodness of the classifier. 

The confusion matrix is a table for evaluating the performance of an algorithm, 

typically used in supervised learning on the test set. 

Each column of the matrix represents the istances in a predicted class, while each 

row indicates those in an actual group, as we can see in Table 1 that shows an 

example. 

 
 
 
 
 
 
 
 

 

 
 

Table 1: example of confusion matrix 

 

A B C D E F 

A 209 0 0 0 0 0 

B 0 114 11 0 0 0 

C 0 0 59 0 0 0 

D 0 0 0 70 0 0 

E 0 0 0 7 28 0 

F 0 0 0 0 2 0 
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In other words, there is a confrontation for each observation of the test set between 

its real class according to its real value of Activity and the class predicted by the 

classifier. 

In this confusion matrix, of the 125 units of actual class B, the classifier predicts that 

11 molecules belongs to the class C, and of the 35 of class E, it predict that 7 of 

them are molecules that fit on class D. 

An important aspect is that given the low number of molecules actually belonging to 

the class F (12 in total on the starting database), the classifier hardly assigns this 

class to the units of the test set, as succeed in this example. 

To try to go beyond this limit, you could organize each training set in such a way 

that it has a fixed fraction of molecules belonging to each available class (usually 

60%-70%). 

Looking at the general confusion matrix, it is easy to understand that the main 

diagonal contains only the units classified correctly while the observations outside 

from it are taken in account to calculate the error percentage for each execution by 

dividing the total number of error for the size of the test set (500). 

Taking an average of these N percentages, we get a more accurate index on the 

goodness of the algorithm. 

 

Adding categorical variables in Multinomial Logistic Regression we don’t have 

problems, the mean error percentage varies according with the configuration on the 

explanatory variables used in the function. 

We have considered for the construction of the model the single variables but also 

the pairwise iterations to understand if there are relationships between the variables 

involved, as we can see from the Table 2. 
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   %	
  error	
  
Activity	
   0.128	
  
Activity	
  +	
  Atag	
   9.02	
  
Activity	
  +	
  Btag	
   4.49	
  
Activity	
  *	
  Atag	
   12.05	
  
Activity	
  *	
  Btag	
   7.82	
  
Activity	
  +	
  Atag	
  +	
  Btag	
   17.06	
  
Atag	
   60.86	
  
Btag	
   39.34	
  
Atag+Btag	
   30.16	
  

 

Table 2: error percentage according the model 

 

The best result has been obtained considering Activity as the only explanatory 

variable in each classifier, then taking into account only this variable, the methods 

estimate the classes for the observations belonging to the test set. 

We must consider the fact that this result is excellent because it has been obtained 

with Activity as unique explanatory variable which is the only one that sets out the 

definition of the classes. 

This conclusion regarding the best model among the logistic regression models is 

confirmed also in terms of AIC and residual deviance using the stepAIC procedure 

starting from the complete model composed by all 3 variables. 

Adding other explanatory variables, the mean error percentage increases. 

Moreover, using only the categorical variables in the definition of the model, we get 

a percentage of error of 30.16% and this tells us that these variables have an 

influence in the definition of the 6 classes determined by the company. 

In addiction to predictive purpose, in this case the classification results useful to 

determine which variables are most influential and useful in determining the class 

membership. 

We can assert that the variable Btag has a higher discriminatory capability than Atag, 

taken individually or together with Activity, as we have seen with the paired boxplots 

in the previous chapter. 

Another important aspect is that the pairwise interactions are not useful for achieving 

good results. 
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After this classification phase, the most interesting conclusions that we can drawn 

are: 

• best results are obtained using only Activity as explanatory variable but the 

classes are defined considering only this variable 

• the categorical variables Atag and Btag have some influence in the definition of 

the 6 predefined classes 

• using the Multinomial Logistic Regression results that Btag has a higher 

discriminant capability rather than Atag and the pairwise interactions are not 

useful in the predictive purpose 

• the best model obtained in the Multinomial Logistic Regression is the same 

using the stepAIC procedure  

 

Most interesting results could be obtained using the similarity matrix that determines 

how the experiments are similar to each other in the search of clusters among 

molecules. 

This aspect will be discussed in the next chapter that covers the clustering methods. 



CHAPTER	
  3	
  
Clustering	
  approach	
  

 
 

3.1	
   Unsupervised	
  learning:	
  clustering	
  

We said in the previous chapter that in machine learning there is a distinction 

between supervised and unsupervised learning.  

We have already discussed the problem of supervised learning by treating some of 

the most widely used classification algorithms. 

In unsupervised learning the goal is to find the hidden structure and the key features 

of the data using only unlabelled data, so without the information about the group 

membership. 

The clustering research is one of the approaches to unsupervised learning and it is a 

multivariate analysis technique. 

 

3.2	
   Criterions	
  in	
  clustering	
  

Data clustering has gained a lot of attention in many fields such as statistic, data 

mining, marketing, pattern recognition and bioinformatics. 

The task of the cluster analysis is to clumping a set of observations in such a way 

that the units in the same group (called cluster) are more similar to each other than 

to those in other groups in order to have homogeneous groups. 

Another interpretation on the objective is to find groups with small distances among 

the cluster members ensuring thus that these observations are similar to each other 

but at the same time are different respect to those belonging to the other clusters. 

Then cluster analysis is a useful method for identifying homogeneous groups of 

observations in such a way that the objects in a specific cluster share many features 

but at the same time they are very dissimilar to objects not belonging to that cluster.  

The definition of “cluster” is ambiguous in literature and also this has lead to many 

cluster models with different algorithm implementations but they have in common 

the aim to create groups of observations separating the data. [12] 
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Informally, a cluster can be defined using these two criterions: 

• internal criterion: all observations inside a cluster should be highly similar to each 

other so the intra-cluster distances are minimized (coherent group, homogeneity) 

• external criterion: all observations outside a cluster should be highly dissimilar to 

the ones inside so the inter-cluster distances are maximized (external isolation, 

separation) 

 

3.3	
   Implementation	
  of	
  clustering	
  algorithm	
  

The starting point is the definition of a measure of distance or dissimilarity between 

 data points in order to identify clusters. 

In clustering algorithms the pairwise distance between each observation of the 

dataset is defined, depending on the type of data, through a distance metric 

(Euclidean, Manhattan) or by using an index of dissimilarity which is usually the 

complementary to 1 of the similarity value. [13] 

Observation with smaller distances between one another are more similar, whereas 

observations with larger distances are more dissimilar.  

The dissimilarity matrix or a distance matrix based on a metric has this form 

(Figure1): 
 

! =

0 !(1,2) !(1,3) … !(1,!)
!(2,1) 0 !(2,3) … !(2,!)
!(3,1) !(3,2) 0 … …
… … … … …

!(!, 1) !(!, 2) … … 0

 

Figure 1: dissimilarity/distance matrix 

 

where d(i, j) = d( j, i)  measures the distance or the dissimilarity between objects i 

and j.  

The definition of this matrix is one of the key issues of cluster analysis because it is 

the basis for the implementation of clustering algorithms and consequently it has an 

influence on the obtained results. [14] 

 

n
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Given a set of data objects, a distance/dissimilarity matrix  and also the number 

 of cluster, the classical approach for clustering is: 

• define a clustering problem as a partition problem 

• run an algorithm that returns the partition in clusters which covers all data 

• define a quality measure of the partitioning 

 

3.4	
  Similarity	
  matrix	
  based	
  on	
  Tanimoto	
  

As said before, the pharmaceutical company provided us a second dataset, collecting 

a similarity matrix among molecules based on Tanimoto distance. 

The values express how one experiment is chemically similar to all the other 

experiments. 

This distance is widely used for molecular fingerprints that is a method of encoding 

the structure of a molecule. 

The most common type of fingerprint is a series of binary digits (bits) that indicates 

the presence or absence of a particular feature in the molecule. 

These comparisons between fingerprints associated to molecules allow to determine 

the similarity matrix among experiments. [15] 

The Tanimoto distance is an extended version of the Jaccard’s coefficient similarity 

and the general formula for calculating is: 

T (A,B) = c
a+ b! c

 
where: 

- ! is the number of bits turned on (set to 1) in molecule A  

- ! is the number of bits turned on in molecule B 

- ! is the number of common bits turned on in both A and B 

Simplifying, it is the ratio between the number of features/characteristics common to 

both objects divided by the sum of features present in A and in B less those in 

common. 

As all similarity measures, it varies between 0 and 1 where 0 means totally different 

molecules while 1 means maximum similarity and it is a symmetric distance, so 

T (A,B) = T (B,A) . 

nxn

k
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From this similarity matrix, we can extrapolate the dissimilarity matrix by calculating 

its complementary matrix, then Diss =1! Sim . [16] 

 

3.5	
   Distinction	
  between	
  methods	
  

There are many clustering methods available in literature which have different 

theoretical aspects and therefore they produce different cluster structures.  

The clustering methods used for this analysis can be classified using the following 

general distinction according to the type of cluster solution that they produce: 

• Hierarchical methods: yield an entire hierarchy of clustering of the data using a 

dissimilarity or distance matrix, producing a nested clustering 

• Partitioning methods: divide the dataset into non-overlapping similar clusters 

by optimizing a function, where the desired number of cluster  must be 

specified such that each data object is in exactly one group 

At the beginning of the clustering process, we have to select appropriate variables 

for clustering according to the objective of the analysis because they can provide 

different segmentations. 

It is important to select the variables that provide a clear subdivision of the groups 

avoiding to use an abundance of explanatory variables. 

Each of these clustering procedure follows a different approach to grouping the most 

similar objects into a cluster. [12] [17]  

Now, we will discuss in more detail the features of these two methodologies. 

 

3.6	
   Hierarchical	
  methods	
  

The hierarchical methods used in this analysis are fully described by Kaufman and 

Rousseeuw (1990). [18]    

The aspect that distinguishes them from non-hierarchical methods is that the 

assignment of an observation to a cluster is irrevocable, this means that once an 

object is allocated to a certain cluster, there is no possibility of reassigning this object 

to another cluster. [12] [13] 

This can be considered as a drawback because a bad decision about splitting or 

grouping objects in one step cannot be corrected in the following steps. [19]   

k

k
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The problem of the construction of the clusters is addressed in two complementary 

ways, for this reason the hierarchical methods are divided into two sub-classes: 

• Agglomerative:  

Starting from  observations as individual clusters, at each step the algorithm 

merges the closest pair of clusters until only one (or ) clusters left 

• Divisive: 

Starting from a unique big cluster containing all the observations, at each step 

the largest cluster is splitted in two smallest clusters until each one contains an 

observation (or remain clusters) [14] [19] 

All hierarchical algorithms produce a set of nested clusters organized as a 

hierarchical tree, called dendrogram that is a graphical tool to see a cluster solution, 

where ach merge/split is represented by a horizontal line and its y-coordinate is the 

dissimilarity or distance at which the two clusters are merged/splitted while the 

clusters are placed along the x-axis. 

The same dataset can produce a different sequence of nodes for agglomerative or 

divisive clusterings on the same dataset. [19] 
 

The interpretation of the dendrogram is immediate and very easy. 

In the dendrogram shown in Figure 2, observation 3 and 6 are the most similar and 

they join to form the first cluster, followed by observations 2 and 5. 

The last two clusters to form are 3-6-2-5-4 and the single object 1. 

Clusters may join pairwise, such as the merging of the observations 3-6 or 

alternatively, a single observation can be sequentially added to an existing cluster, 

such as the case of the joining of the cluster 3 with the object 4.  

As said before, the strength of clustering is indicated by the level of height 

(distance/dissimilarity) in the y-axis and in this example the clusters 2 and 3 join at 

similar levels. [20] 

 

N

k

k
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Figure 2: example of dendrogram 

 

Applying a hierarchical algorithm, the number of cluster  is not specified because 

cutting the dendrogram at the proper level we can obtain any desired number of 

clusters. [21] 

There is a tradeoff between the number k  of clusters and the similarity of the 

elements in each group. 

If k  is high, the clusters will be small in size end their elements will be highly similar 

but the analysis on many groups can be difficult. 

Instead, if there are few clusters, their larger number of elements will show less 

similarity to each other, but on the other hand the analysis will be easier. [20] 
 

Sometimes the validity of a cluster is evaluated by considering an index which tells 

me the strength of the clustering structure found so the amount of structure that has 

been found by the algorithm. [18] 

For agglomerative algorithms there is the agglomerative coefficient AC described by 

this formula: 
 

AC = 1
n

1! hi
h

"

#
$

%

&
'

i=1

n

(
 

 

where hi  is the height in which the i-th observation is reported in its first merged 

cluster in the dendrogram while h  is the maximum height that is the height of the 

last and only one cluster that is created. 

k
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Whereas for divisive algorithms, we consider the divisive coefficient DC following this 

formula: 
 

DC = 1
n

hi
h

!

"
#

$

%
&

i=1

n

'
 

 

where hi  is the height in which the i-th observation is reported in its last merged 

cluster in the dendrogram (before being split as a single object) while h  is the 

maximum height of the whole dataset.  

These indexes are between 0 and 1 and the divisive coefficient DC typically assumes 

slightly larger values when applied to the same dataset. 

If the index is very small, we are in a situation in which the algorithm has not found 

a natural structure because no cluster has been found or the data consists of one big 

cluster. 

On the other hand, the coefficients assume high values close to 1 for dendrograms 

with a strong clustering which means that a very clear clustering structure has been 

identified but this does not necessary mean that a good clustering has been found 

because for example the presence of possible outliers increases the value of these 

indexes. [14] [18] [22]  

 

3.6.1	
  	
  Agglomerative	
  algorithms	
  

The initial situation consists in having  separate clusters each of which contains an 

observation of the dataset. 

The observations are connected to form clusters according to their distances which 

can be of different metrics depending on the available data (for example Euclidean, 

Manhattan, Mahalanobis) or based on a similarity index. 

These quantities are used to compute the distance according to the linkage criterion 

that determines how to calculate the distances between a new cluster and the 

existing clusters.  

At each step of the algorithm, after calculating the pairwise distances following the 

linkage criterion using the Lance-Williams dissimilarity update formula, the nearest 

(most similar) two groups of observations are combined into a higher-level cluster. 

n
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Note that we have to merge those observations with the smallest distance, 

regardless of the clustering procedure and at each step the number of clusters 

decreases. [12]   

Then at the first step, the agglomerative algorithm examines all the distances or 

dissimilarities between all the clusters and pairs together the two most similar 

clusters (those with the smallest distance between them) to form a new bigger 

cluster. 

Proceeding in this way, at the last step, all data points are represented by a single 

big cluster. [12] [18] 
 

In summary, all the hierarchical agglomerative clustering methods can be described 

by a general algorithm with these steps: 

1) starts with  singleton clusters labelled as  which represent the input 

data 

2) finds the pair of clusters with minimal pairwise distance using the distance 

function or the dissimilarity matrix according to the linkage criterion 

3) joins the two clusters into a larger higher-level cluster, it associates a label to 

that new cluster and it removes the two old clusters 

4) repeats  times from step 2 using the Lance-Williams dissimilarity update 

formula until we obtain an unique big cluster containing all data points 

This allows to establish a hierarchy of clusters from bottom-up since the algorithm 

starts considering  singleton clusters and it ends with a single large cluster. [12]   

 

Linkage criterions 

There are several agglomerative procedures and they can be distinguished by the 

way in which they define the distance from a newly cluster to the others. [12]   

A key point in evaluating the results is how the distance between two clusters has 

been computed because the results on the same dataset depend significantly on this 

choice. 

In fact, different methods not always produce the same hierarchies and this choice 

on the linkage criterion is reflected on the obtained results. [12] [13]   

N 1,...,N

N !1

N
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In hierarchical methods, the main linkage criterions between two groups  and  

in which two observations and are the following: 

§ Single link 

 

The distance between two clusters is computed as the distance between the two 

closest elements belonging to these different clusters (Figure 3). 

In terms of similarity, the two joining groups are those in which two observations 

have the maximum similarity because the distance is inversely proportional to the 

similarity concept.   

A possible disadvantage is that two clusters may be forced together due to a pair of 

elements close to each other, even if many of the other observations can be very 

distant. 

In this case, it is necessary that only one pair of elements belonging to the two 

clusters have a high similarity value because this distance is based only on the two 

most similar (closest) single points.  

It tends to form one large cluster with the other groups containing only few objects. 

[12] [21]  
 

 
Figure 3: single link concept 

 

§ Complete link 

 

The distance between two clusters is computed as the maximal distance between 

two elements belonging to these different clusters (Figure 4). 

In terms of similarity, the two joining groups are those in which two observations 

have the minimum similarity. 

X Y
x ! X y ! Y

d(x, y) = min
x!X,y!Y

d(x, y)

d(x, y) = max
x!X,y!Y

d(x, y)
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Although it is based on two single points, by considering the observations more 

distant from each other, it avoids the drawback of the single linkage but it can be 

significantly distorted by moderate outliers. 

In this way, this linkage criterion is strongly biased towards finding clusters with 

approximately equal diameter. [21] 
 

 
Figure 4: complete link concept 

 

§ Average (unweighted pair-group average method UPGMA) 

      with  

The distance between two clusters is computed as the average distance between all 

pairs of elements, one in each cluster (Figure 5). 

Compared to the previous linkage criterion, it considers all the possible squared 

pairwise distances by averaging, so it is a compromise between single and complete 

linkage and it is less susceptible to outliers and noise. 

In terms of similarity, the two merged groups are those in which the mean similarity 

value is the minimum one. 

It tends to join clusters with low within-cluster variance and it is slightly influenced 

towards creating clusters with the same variance and similar size. [12] [21]  
  

 
Figure 5: average link concept 

 

§ Centroid 

 

d(X,Y ) = 1
X Y

d(x, y)
y!Y
"

x!X
" d(x, y) = x ! y 2

d(X,Y ) = cX ! cY
2
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The distance between two clusters is computed as the squared Euclidean distance 

between their centroids (Figure 6). 

Each cluster is identified by a centroid which is a vector of means of the explanatory 

variables measured on the observations belonging to that group.  

At each step, the distance matrix is recalculated starting not from the previous 

distances but from the updated centroid of each cluster and the pair of clusters with 

the most similar centroids is merged. 

It is more robust to outliers than most other hierarchical methods but in other cases 

may not perform as well as them. 

It tends to produce clusters with low within-cluster variance and similar sizes, as well 

as in average linkage. [12] [23]   
 

 
Figure 6: centroid concept 

 

§ Median 

 

The distance between two clusters is computed as the squared Euclidean distance 

between their medians. 

The median method is similar to the centroid method but the centroids of the two 

merging clusters are not weighted proportionally to the size of the clusters. 

This linkage is better than the previous one if we suspect groups of different sizes. 

[17] 
 

§ Ward 

 

The distance between two clusters is computed as the sum of the within sum of 

squared distances from the cluster centroids less the within cluster sum of squared 

distances resulting from the merging of the two clusters.  

d(X,Y ) = wX !wY
2

d(X,Y ) = x ! cX( )
x"X
#

2
+ x ! cY( )

x"Y
#

2
! x ! cZ( )

x"Z
#

2
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The two merged groups are those in which occurs the minimum increment in the 

total within group sum of squares errors thus minimizing the increase of variance 

within groups (total within-cluster sum of squared errors) because increasing the 

number of observations contained in a cluster, we have as consequence an increase 

in the within group variance. 

By keeping the distances within the cluster as small as possible, it tends to find 

clusters with approximately equal size and it is often useful when the other methods 

find clusters composed by few observations. 

It is less susceptible to noise and outliers. [13] [21] 
 

§ McQuitty (WPGMA) 

d(E,C) = 1
A B

A *d(A,C)+ B *d(B,C)( )  

The distance between the new cluster E  and another cluster C  is computed based 

on the distances of the two clusters that were merged (  and  to form E ) with 

respect to the cluster C  (Figure 7). [24] 
 

 
Figure 7: McQuitty concept 

 

Lance-William dissimilarity update formula 

The Lance-Williams dissimilarity update formula is a method for determining which is 

the distance between the new cluster  (  and  have just been merged to 

form the cluster ) and any other existing clusters  

It is useful because all the linkage criterions can be formalized in a unified manner 

using this formula: 
 

 
 

A B

CI ,J CI CJ

CI ,J CK

d(CI ,J ,CK ) =!id(CI ,CK )+! jd(CJ ,CK )+"d(CI ,CJ )+# d(CI ,CK )! d(CJ ,CK )
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Using only the parameter , the formula becomes: 
 

 
 

The formula can be modified by setting the values of the parameters , ,  

and  depending on the chosen linkage criterion, as these values are reported in the 

following table (Table 1): 

 
HACM 

 
   

Single link 
  

0 
-  

Complete 
link   

0 
 

Group 
average   

0 0 

Median 
   

0 

Centroid 
   

0 

Ward 
   

0 

 

Table 1: Lance-William dissimilarity update parameters 
 

where  is the number of items in . [17] 

 

HCLUST and AGNES algorithms 

Two agglomerative algorithms were used in the analysis: HCLUST (Hierarchical 

CLUstering) and AGNES (Agglomerative NESting). 

In R, the functions associated with these algorithms are hclust and agnes, the latter 

contained in the library cluster. 

The function hclust performs a hierarchical clustering using a dissimilarity matrix for 

the observations being clustered and any linkage criterion described above can be 

used. 

! > 0

d(CI ,J ,CK ) =!d(CI ,CK )+!d(CJ ,CK )+ (1! 2!)d(CI ,CK )
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Initially, each observation is assigned to its own cluster and then the algorithm 

proceeds iteratively joining at each step the two most similar clusters, until there is 

just a unique big cluster.  

At each step, the distances between the newly cluster and the existing clusters are 

recomputed through the Lance-Williams dissimilarity updated formula according to 

the linkage criterion used.  

The function agnes constructs a hierarchy of clustering using a data matrix with only 

numeric variables or a dissimilarity matrix using any linkage criterion except 

“mcquitty”, “centroid” and “median” but in addition you can set the parameters of 

the Lance-Williams formula using “flexible”.  

In the latter case, the 4 coefficients of Lance-Williams formula are specified  by the 

vector par.method and if it is of length 1 ( a ), the coefficients are defined as follows: 

ai = aj = a , ! =1! 2a , ! = 0 .         

Initially each observation is a small cluster by itself and at each stage the two most 

similar clusters are combined to form one larger cluster until only one large cluster 

remains containing all the observations. 

Compared to other agglomerative clustering methods such as hclust, agnes has more 

features: it yields the agglomerative coefficient AC which measures the amount of 

clustering structure found and it also provide the banner plot that is just an 

alternative graphical tool to the dendrogram. [19] [25] [26] 

These 2 functions, being agglomerative algorithm but with different implementation, 

can lead to the same solution. 

 

As example, we consider a distance matrix of 5 observations (Table 2) to show how 

works a general agglomerative coefficient using the single linkage criterion: 

	
  	
   A	
   B	
   C	
   D	
   E	
  
A	
   0	
   1	
   5	
   6	
   8	
  
B	
   1	
   0	
   3	
   8	
   7	
  
C	
   5	
   3	
   0	
   4	
   6	
  
D	
   6	
   8	
   4	
   0	
   2	
  
E	
   8	
   7	
   6	
   2	
   0	
  

 

Table 2: distance matrix of 5 observations 



	
  

	
   44	
  

In the first step, the observations A  and B  are merged having the smallest 

distance with =1. 

Now, we need to calculate the distances between this new cluster A,B{ }  and the 

other observations: 

 

 

 

In this way, we obtain a new distance matrix (Table 3): 
 

	
  	
   AB	
   C	
   D	
   E	
  
AB	
   0	
   3	
   6	
   7	
  
C	
   3	
   0	
   4	
   6	
  
D	
   6	
   4	
   0	
   2	
  
E	
   7	
   6	
   2	
   0	
  

 

 

Table 3: updated distance matrix 

 

Again, we have to repeat the previous procedure to calculate the distances among 

clusters according to the single criterion and so on so forth. [13] 

 

3.6.2	
  	
  Divisive	
  algorithms	
  

All datasets that can be clustered by means of the agglomerative approach can also 

be analyzed in a divisive way. 

If agglomerative algorithms start with clusters attributable to the single 

observations and at each step the closest pair of clusters are merged, with divisive 

algorithms we have the inverse procedure that is starting from a unique big cluster, 

at each step there is a split on the biggest cluster. 

 

All the hierarchical divisive clustering methods can be described by a generic 

algorithm with these steps: 

1) starts with  observations labelled as  into a big cluster 

2) finds the largest available cluster 

dAB

d(A,B)C =min(dAC,dBC ) =min(5,3) = dBC = 3

d(A,B)D =min(dAD,dBD ) =min(6,8) = dAD = 6

d(A,B)E =min(dAE,dBE ) =min(8, 7) = dBE = 7

N

N 1,...,N
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3) splits that cluster into two smaller sub-groups that are homogenous as possible, 

it labels them and it removes the old cluster 

4) repeats  times from step 2 until all clusters contain a single object 

Then, it is a top-down methodology since the algorithm starts with a single large 

cluster and it ends with  singleton clusters. [27] 

 

DIANA algorithm 

The divisive methods are less commonly used and few algorithms are used. 

The divisive algorithm that was used is DIANA (Divisive ANAlysis clustering) and in R 

its function is diana. 

This function implements the iterative algorithm proposed by Macnaughton-Smith 

(1964). 

DIANA constructs a hierarchy of clusters using a data matrix with only numeric 

variables or a dissimilarity matrix starting from a one large cluster containing all the 

observations. 

At each step, the cluster with the largest diameter R , which corresponds to the 

largest dissimilarity between any two of its observations, is selected and then divided 

into two clusters A  and B  until each cluster contains only a single observation. 

Initially, A  equals R  and B  is empty and we have to move one object from A  to 

B . 

To divide the selected cluster into two new clusters, the algorithm finds the most 

disparate observation that has the largest average dissimilarity respect to all other 

observations of the selected cluster, after computing these values for each 

observation i of A : 
 

d i,A \ i{ }( ) = 1
A !1

d(i, j)
j"A
j#i

$  

 

This observation i '  initiates the “splinter group” moving it from the original group, 

so we put: 
 

Anew = Aold \ i '{ }  

N !1

N
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Bnew = Bold ! i '{ }  

In the subsequent steps, we look for other points to move from A  to B .  

The algorithm for each observation of the larger group A  compares the average 

dissimilarity respect the remaining objects in the original cluster and with those in 

the “splinter group” making their difference: 
 

d i,A \ i{ }( )! d i,B( ) = 1
A !1

d(i, j)! 1
B

d(i,h)
h"B
#

j"A
j$i

#
 

 

After these comparisons, the algorithm detects the observation i ''  which lies much 

further from the remaining objects than from the “splinter group” (maximum 

difference) and this object moves from A  and B . 

If the difference is negative for each observation, this means that must not be done 

other changes and then the division of R  into A  and B  is completed. 

The next step is to compute the diameter of the two clusters and that one with the 

maximum value will be the group to split: 
 

diam(Q) =max
j!Q
h!Q

d( j,h)
 

 

and the procedure is repeated until we obtain N  clusters. 

This value is also used as the level for representing the division in the dendrogram. 

The function diana provides the divisive coefficient DC that measures the amount of 

clustering structure found and it also provides the banner plot that is an another 

graphical tool. 

 

As example, we consider the dissimilarity matrix between 5 observations (Table 4) to 

show how works the function diana for the divisive algorithm: 
 

 
A B C D E 

A 0 0.1 0.5 0.9 0.8 
B 0.1 0 0.4 0.8 0.7 
C 0.5 0.4 0 0.3 0.4 
D 0.9 0.8 0.3 0 0.2 
E 0.8 0.7 0.4 0.2 0 

 

Table 4: distance matrix of 5 observations 
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Being divisive, the algorithm assumes that the observations initially form a unique 

cluster A,B,C,D,E{ } . 

In the first step, the algorithm has to split up the cluster into two smaller clusters, 

looking for the object for which the average dissimilarity respect to all other objects 

is largest (Table 5): 
 

Object Average dissimilarity 
A (0.1+0.5+0.9+0.8)/4 = 0.575 
B (0.1+0.4+0.8+0.7)/4 = 0.5 
C (0.5+0.4+0.3+0.4)/4 = 0.4 
D (0.9+0.8+0.3+0.2)/4 = 0.55 
E (0.8+0.7+0.4+0.2)/4 = 0.525 

 

Table 5: average dissimilarity values  

 

Comparing the values, the observation A  initiates the splinter group and at this 

stage we have the groups A{ }  and B,C,D,E{ } .  

For each object of the larger group, the algorithm computes the average dissimilarity 

respect to the remaining objects and those in the splinter group, as shown in Table 

6: 
 

Object Avg dissimilarity to 
original group 

Avg dissimilarity 
to splinter group Difference 

B (0.4+0.8+0.7)/3 = 
0.63 

0.1 0.53 

C 
(0.4+0.3+0.4)/3 = 

0.37 
0.5 -0.13 

D 
(0.8+0.3+0.2)/3 = 

0.43 0.9 -0.47 

E (0.7+0.4+0.2)/3 = 
0.43 

0.8 -0.37 
 

Table 6: differences in terms of average dissimilarity 

 

The largest difference is related to object B , which stays much further from the 

remaining observations in the old group than from the splinter group. 

Therefore B changes membership becoming a member of the splinter group, which 

now consists of the objects A,B{ }  while the remaining group is C,D,E{ } . 
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Repeating the procedure calculating the average dissimilarities respect the two 

groups, we obtain: (Table 7)  
 

Object Avg dissimilarity to 
original group 

Avg dissimilarity to 
splinter group Difference 

C (0.3+0.4)/2 = 0.35 (0.5+0.4)/2 = 0.45 -0.1 

D (0.3+0.2)/2 = 0.25 (0.9+0.8)/2 = 0.85 -0.6 

E (0.4+0.2) = 0.3 (0.8+0.7)/2 = 0.75 -0.45 
 

Table 7: differences in terms of average dissimilarity 

 

At this step, all the differences are negatives because the average dissimilarity values 

respect the splinter group is greater and then no further changes must be made. 

This is the first divisive step completed which splits the dataset into the clusters 

A,B{ }  and C,D,E{ } . 

In the next step, the algorithm divides the biggest cluster (group with the largest 

diameter that is the highest dissimilarity value between two of its objects) following 

the previous procedure. [18] 

 

3.7	
   Partitioning	
  methods	
  

Using partitioning methods a completely different approach is adopted. 

As said before, in a partitional clustering there is a division of the dataset into non-

overlapping similar clusters such that each observation is in exactly one cluster 

(mutually exclusive) and in this case it is necessary to establish the number k  of 

clusters that we desire in the cluster solution. [21] 

The initialization phase consists in choosing a center for each of the k  clusters and 

the method initially allocates the observations to the cluster that is closest by some 

distance measure.  

The partition algorithm iteratively adjusts the cluster centers to best fit the 

associated observations until no further improvement can be made. [28] 

In fact, the observations are reallocated to the nearest representative cluster during 

the iterative procedure, producing thus a single partition according to the 

optimization of a certain criteria.  
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In contrast to hierarchical algorithms, at each step the obtained partition is being 

questioned by considering new cluster centers around which aggregate the 

observations, so the assignment of an observation to a cluster is not irrevocable and 

this means that the observations are reassigned to a different cluster if the initial 

allocation is inappropriate. 

There are several algorithms which differ in these aspects: 

- how the cluster centers are initialized 

- how the elements are assigned to the clusters 

- how some or all elements can be reassigned to a different group [13] 
 

Some of the most commonly used partition clustering methods have been applied for 

the analysis and they are k-means, PAM (Partition Around Medoids) and fuzzy 

clustering. 

PAM is less sensitive to outliers and noise than k-means but they have in common 

the property that they provide “hard clusters”, meaning that each observation is 

assigned to only one cluster.   

An alternative to this approach is fuzzy clustering where ach observation is assigned 

to every cluster according to a degree of membership. [28] 

 

3.7.1	
  	
  K-­‐means	
  algorithm	
  

K-means is one of the simplest partitioning methods in its implementation.  

This algorithm segments the dataset in k  homogenous clusters in such a way that 

the within cluster variance (within-group sum of squares) is minimized. 

It employs a greedy iterative approach to find a good clustering solution and it can 

converge to a locally optimal solution. 

The first step in the clustering process is to choose, often randomly, a centroid for 

each cluster that is the mean vector of the numerical variables of the observations in 

that group: 
 

mi =

xi
i!Ci=i
"

Ni
  i =1,...,k  
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In each step of the iterative process, each observation is assigned to the cluster with 

the closest centroid minimizing the within-cluster variation, which is basically the 

squared distance from each observation to the cluster centroid: 
 

Ci = argmin x !mi
x"Ci

#
2

i=1

k

#
 

 

where x  is an observation in cluster Ci  and mi  is the centroid of the cluster Ci  

and each observation is bint to the cluster with the minimum distance. 

After the assignments of the observations to the k clusters, the centroids are 

recalculated shifting into positions and the algorithm repeats the iterative 

assignments procedure considering the new centroids until the convergence is 

achieved (centroids don’t change then the allocations remain the same) or a 

predetermined number of iterations is reached. 

An important aspect is that in contrast to the hierarchy methodology, an allocation to 

a cluster can change in the course of the clustering process.  

Most of the convergence happens in the first few iterations but sometimes the 

stopping condition is changed in “Until relatively few points change clusters”. 

It is very important the initialization phase where we have to choose the initial 

centroids because sometimes they are readjusted in the right way during the 

iterative procedure but this don’t happens always, thus arriving at different 

conclusions. 

K-means has problems when the data contains outliers. 

In addition, the k-means algorithm can have limitations when clusters are of differing 

sizes and densities. [12] [21] [29] 
 

General algorithm: 

- select k  centers as the initial centroids  

- repeat 

 for all observations compute the distances to the k  centroids  

 assign all objects to the closest centroid 

 recompute the centroid of each cluster 

- until the centroids don’t change or a predetermined number of iterations is reached 
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As example, we consider 2 explanatory variables of 7 observations (Table 8) to show 

how works the function kmeans using k =2: 
 

Observation Variable 1 Variable 2 
A 1 1 
B 1.5 2 
C 3 4 
D 5 7 
E 3.5 5 
F 4.5 5 
G 3.5 4.5 

 

Table 8: data of 7 observations 

 

In the initialization phase, we have to randomly choose the 2 centroids for the 

clusters and in this case they are: m1=(1.5,1.7) and m2=(5.2,7.4). 

Now we have to allocate the observations to the closest cluster according to the 

previous formula for calculating the distance. 

If we consider the observation B  we have these distances: 

d(A,m1) = 1!1.5( )2 + 1!1.7( )2 = 0.86  

d(A,m2 ) = 1! 5.2( )2 + 1! 7.4( )2 = 7.65  

then we associate this element to cluster 1 and repeating the calculation for the 

others observation, we have this situation (Table 9): 
 

Observation Distance 
centroid 1 

Distance 
centroid 2 

Nearest 
cluster 

A 0.86 7.65 1 
B 0.3 6.54 1 
C 2.74 4.05 1 
D 6.35 0.45 2 
E 3.86 2.94 2 
F 4.46 2.5 2 
G 3.44 3.36 2 

 

Table 9: nearest cluster for each observation 

 

Thus, the two clusters are composed by A,B,C{ }  and D,E,F,G{ }  having new 

centroids: 
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m1 =
1
3
1+1.5+3( ), 1

3
1+ 2+ 4( )

!

"
#

$

%
&= 1.83, 2.33( )  

m2 =
1
4
5+3.5+ 4.5+3.5( ), 1

4
7+ 5+ 5+ 4.5( )

!

"
#

$

%
&= 4.12, 5.37( )  

The iterative procedure goes on until the centroids don’t change or a predetermined 

number of iterations is reached. 

 

The function associated in R is kmeans that can be implemented using 4 different 

versions formulated by Hartigan-Wong (1979), Forgy (1965), Lloyd (1982) and 

MacQueen (1967).  

The default algorithm is Hartigan-Wong and this is considered to be the most robust 

and generally does a better job respect the others but it is often recommended 

trying several random starts.  

In the Forgy’s version, the cluster centroids are recomputed after all data points 

have been assigned, while in MacQueen’s version, after the allocation of each 

observation and not at the end of a cycle of reallocation, the centroid of the cluster 

that has gained the element and that one that has lost the point are recalculated.  

Moreover, another difference is that the Forgy’s method iterates until converged 

while the MacQueen’s basic algorithm performs only one complete pass through 

data.  

In addition, the starting points of the MacQueen’s algorithm are often the first k  

observations in the dataset. [28] [30] [31]    

The R function kmeans uses only a data matrix with only numeric variables and 

imposing the initial configuration of k  centroids the 3 versions converge to a unique 

solution. 

 

3.7.2	
  	
  PAM	
  algorithm	
  

The PAM algorithm (1987) is based on the search for k  representative objects called 

medoids among the observations of the dataset, one for each cluster and it requires 

that all the variables are of quantitative type. 

In other words, a medoid is the most centrally located object in a cluster. 
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The algorithm considers possible choices for the medoids and after finding them, 

each element is assigned to the nearest representative object thus forming the k  

clusters. 

PAM algorithm is more insensitive to outliers and noise than k-means but it is more 

computationally expensive. 

As example, let’s consider the dataset containing 7 objects each characterized by two 

variables, given in Table 10 and supposing that the data must be divided into k =2 

clusters, we consider the observations 4 and 8 as the selected medoids:  
 

Observation Variable 1 Variable 2 
A 1 4 
B 5 1 
C 5 2 
D 5 4 
E 10 4 
F 25 4 
G 25 6 

 

Table 10: data of 7 observations 

 

In Table 11 the Euclidean distances from each observation to the two medoids and 

its nearest cluster are given: 
 

Observation Distance 
object 1 

Distance 
object 5 

Minimal 
distance 

Closest 
medoid 

A 0 9 0 1 
B 5 5.83 5 1 
C 4.47 5.38 4.47 1 
D 4 5 4 1 
E 9 0 0 2 
F 24 15 15 2 
G 24.08 15.13 15.13 2 

   
6.23 

  

Table 11: nearest medoid for each observation 

 

The average distance in this case is 6.23 and this value gives an indication about the 

quality of the clustering considering the strength of the clusters.    

There is an algorithm that is able to select k  medoids in such a way to have a very 

low average dissimilarity/distance and so a good partition solution. 
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In this way, the medoid is an object of the cluster for which the average 

dissimilarity/distance respect to the other observations of the cluster is minimal. 

The algorithm used in PAM minimizes the sum of these dissimilarities which is 

mathematically equivalent to minimize the average dissimilarity of objects to their 

closest medoid but the calculations result more accurate. 

 

The algorithm consists of two steps: 

• BUILD phase: iterative selection of k  representative objects creates an initial 

clustering 

• SWAP phase: attempt to improve the set of medoids and consequently the 

cluster solution changing the medoids 

 

BUILD phase 

The first selected medoid is the one for which the sum of the dissimilarities to all 

other observations is smallest. 

At each step, another medoid is selected and it is that one that decreases the 

objective function as much as possible, executing these phases: 

- consider an observation i  that has not yet been selected as medoid  

- consider another non-selected object j  and calculate the difference between its 

dissimilarity Dj  respect the most similar medoid and its dissimilarity d( j, i)  with 

observation i  
- if this difference is positive, the observation j  contributes to the decision to select 

object i  as medoid calculating: 
 

Cji =max(Dj ! d( j, i), 0)  
 

- calculate the total gain obtained by selecting the element i  using the formula: 
 

        
Cji

j
!    (objective function) 

 

- select as medoid the observation i  that minimizes the total gain:  
 

min
i

Cji
j
!  
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This process ends when the algorithm finds k  medoids, one for each cluster. 

The algorithm assigns each observation to the cluster with the nearest medoid. 

 

SWAP phase 

In this second phase, we have to consider all pair (i,h)  for which only object i  has 

been selected as medoid: 
 

i ! m1,...,mk{ }  and  h ! m1,...,mk{ }  

 

The role of the two objects is exchanged ( h  is a medoid) and the effect of this 

change is evaluated considering the value of a clustering determined by k  

representative objects, that is defined as the sum of dissimilarities between each 

observation and the most similar medoid. 

This second phase goes on until no exchange leads to an improvement in the 

clustering solution in terms of total distance. 

To calculate the effect of this swap between i  and h  on the clustering value, the 

algorithm executes these two steps: 

1) consider a non-selected object j  and calculate its contribution Cjih  to the swap 

between object i  and h :  

a) if j  is more distant from both i  and h  than its medoid k  (Figure 8) then the 

contribution is null:  
 

Cjih = 0  
 

 
Figure 8 

 

The object k  is the medoid of j .  
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b) if j  is not further from its medoid i  d( j, i) = Dj( )  
than from any other medoid, 

there are two possible situations: 

- if j  is closer to h  than to the second closest medoid j2  (Figure 9) then the 

contribution of object j  to the swap between elements i  and h  is: 
 

d( j,h)< d( j, j2)    →   Cjih = d( j,h)! d( j, i)  
 

  Cjih  can be positive or negative depending on the positions of the elements j

, h , and i : Cjih  is positive if object j  is closer to i  than to h  

d( j, i)< d( j,h)( )  then the swap is not favorable regarding j  
 

 
Figure 9 

 

 The object j  is allocated to the cluster with medoid h .  

- if j  is at least as distant from h  than from the second closest medoid j2  

(Figure 10) then the contribution of object j  to the swap is: 
 

d( j,h) ! d( j, j2)    →   Cjih = d( j, j2)! d( j, i)  
 

   Cjih  can be only positive and the swap is not suggested 
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Figure 10 

 
 

 The object j  is bind to the cluster with medoid j2 .  

c) if j  belonging to the cluster with k  as medoid is more distant from i  respect 

to at least one of the other medoid but it is closer to h  than to any medoid 

(Figure 11), then the contribution of j  to the swap is: 
 

Cjih = d( j,h)! d( j,k)  
 

 
Figure 11 

 

 The object j  is allocated to the cluster with medoid h .  

 

2) calculate the total result of the swap by adding the contributions Cjih : 

 

Tih = Cjih
j
!  

 

3) to decide if the swap must be done, select the pair (i,h)  that:  
 



	
  

	
   58	
  

min
i,h
Ti,h  

 

 if minTi,h  is negative, the swap is carried out i! h( )  and the algorithm returns 

to step 1, whereas if it is positive or equal to 0 then the swap is not suggested 

and the algorithm stops.  

 

A graphical representation of the clustering solution is provided by means a 

silhouette plot (Rousseeuw 1987) that gives an indication of the quality of the 

clustering with a certain number of clusters k . 

As example, Figure 12 shows the silhouette plot for the iris dataset considering k =3 

also because the observations really belong equally to 3 classes. 
 

 
Figure 12: silhouette plot 
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Each cluster is represented by a silhouette showing how each observation lies within 

a particular group according to the silhouette width value, allowing thus a 

comparison about the quality of each cluster. 

Each observation i  is associated with one cluster, generally called A , and then the 

silhouette width value s(i)  is defined using the notions of: 

a(i)  = 
1

A !1
d(i, j)

j"A, j#i
$   

average dissimilarity of i  respect all other observations within cluster A  

d(i,C)  = 
1
C

d(i, j)
j!C
"  

average dissimilarity of i  respect all observations contained in any cluster C  

different from A   

b(i) =min
C!A

d(i,C)    

minimum average dissimilarity considering a cluster C  different from A   

The cluster B  for which the minimum is achieved, so b(i) = d(i,B) , is called the 

neighbor of the observation i  and it can be considered as the second-best choice for 

the object i . 

Then the value of s(i)  is obtained by combining the previous quantities in this way: 
 

s(i) = b(i)! a(i)
max a(i),b(i){ }

  !1" s(i) "1  

 

Note that if the cluster A  has only a single observation, we simply set s(i)=0. 

If s(i)  is close to 1 then the object i  is “well classified” in cluster A  and this implies 

that the within dissimilarity a(i)  is much smaller than the b(i)  value. 

In this case we are pretty sure that the observation has been assigned to an 

appropriate cluster and the neighbor cluster B  is not so close to i  as the actual 

group A . 
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If s(i)  is close to 0, the assignment of the object i  to clusters A  or B  is not clear 

because the a(i)  and b(i)  values are approximately equal, so it can be considered 

as an intermediate case. 

If s(i)  is close to -1, the object i  stays on average much closer to cluster B  than to 

A  because a(i)  value is much larger than b(i) , then it would be more correct to 

assign the element i  to cluster B  concluding that i  has been misclassified. 

The silhouette plot displays the silhouette width value s(i)  for each observation i  

respect to its cluster A , ranked in decreasing order. 

The average of the s(i)  for all observations belonging to a particular cluster is called 

the average silhouette width of that cluster and looking at these values we are able 

to distinguish clear clusters from weak ones. 

In Figure 11, on the right is reported for each cluster the number of observations 

associated to that cluster and its average silhouette width.  

Considering the average of s(i)  for all observations of the dataset, we obtain the 

average silhouette width for the entire dataset s (k)  that gives a global indication 

about the clustering solution quality using k  clusters.  

Taking the maximum value of s (k)  over all possible values for k  ( k = 2,3,…,n-1), 

we have the silhouette coefficient: 
 

SC =max
k
s (k)  

 

This index gives us a suggestion about the optimal value of k  and consequently a 

measure of the amount of clustering structure that has been discovered by the 

algorithm. [18] [26] [28] [30] 

A possible interpretation of the silhouette coefficient SC  is summarized in Table 12:  
 

SC Proposed interpretation 

0.71-1 found a strong structure  

0.51-0.7 found a reasonable structure  

0.26-0.5 found a week structure 

< 0.25 no substantial structure found 
 

Table 12: interpretation of silhouette coefficient SC 
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In R the function associated to PAM is simply pam but it is necessary to load the 

library cluster. 

In constructs a partition of clusters using a data matrix with only numeric variables 

or a dissimilarity matrix and it gives the ability to impose the initial configuration of 

k medoids by choosing k  observations from the dataset. 

 

3.7.3	
  	
  Fuzzy	
  clustering	
  

In many practical situations, we need clusters that overlap but by definition applying 

a partition algorithm the groups are disjoint. 

As said previously, an alternative to the mutually exclusive approach is fuzzy 

clustering where ach observation is assigned to every cluster according to a degree 

of membership. [28] 

A fuzzy clustering technique is then useful to describe situations in which an object 

lays at approximately the same distance among some clusters. 

For example, a fuzzy clustering algorithm is able to say that an object belongs mainly 

to a certain cluster or should be divided almost equally between two clusters. 

This degree of membership to each cluster is the membership coefficients and its 

range is between 0 and 1. 

Then a fuzzy method spreads each observation over the various clusters, so for each 

object i  and each cluster v  there is a percentage of membership uiv  that indicates 

how strongly object i  belongs to cluster v  or in other terms how each object fits 

into each group.  
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As example, let’s consider a dataset of 5 objects on which has been applied a fuzzy 

clustering method with k =3, obtaining a list of membership coefficients (Table 13): 
 

 

Membership 

Object Cluster 1 Cluster 2 Cluster 3 

1 0.87 0.06 0.07 

2 0.93 0.03 0.04 

3 0.06 0.86 0.08 

4 0.10 0.10 0.80 

5 0.35 0.42 0.23 
 

Table 13: percentage memberships for 3 clusters 

 

The interpretation of this table is very easy: observation 1 belongs for the most part 

to the cluster 1 because it has 87% of membership while observation 5 is almost 

equally distributed among the three clusters, so it can be considered as an 

intermediate case but it is closer to cluster 2. 

Obviously the sum of the membership coefficients for each object must be equal to 1 

(100%). 

Having the percentages of membership to each cluster, this algorithm shows more 

information on the structure of the data.   

The FANNY (Fuzzy Analysis) algorithm iteratively minimizes the following objective 

function: 
 

uiv
2ujv

2 d(i, j)
i, j=1

n
!

2 ujv
2

j=1

2
!v=1

k

!
 

 

where uiv  indicates the unknown membership of observation i  to cluster v , d(i, j)  

is the distance or dissimilarity between objects i  and j  and the membership 

exponent r  is 2. 

The sum in the numerator ranges over all pairs of objects i, j{ } , so each pair i, j{ } 

is encountered twice because j, i{ } also occurs and this is the reason of the division 

by 2. 
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The membership quantities uiv  have these following constraints: 
 

     uiv ! 0      for i =1,...,n;  v =1,...,k;  

 
uiv =1

v
!   for i =1,...,n;  

 

The algorithm finds these uiv  values by minimizing the objective function until  

the convergence is achieved.  

The minimization of the objective function is carried out using an iterative procedure 

that uses Lagrange multipliers (see pag. 182 [18]) 
 

Some fuzzy clustering solutions are more fuzzy than others: we have complete 

fuzziness when each observation has the same percentage of membership in all 

clusters (hence 1 k ), whereas if each object is allocated to a certain cluster with a 

percentage equal to 1 (hence 0 percentage in the other clusters), we are in the case 

of hard clustering (mutually exclusive) as in partition clustering.   

The Dunn’s partition coefficient Fk  (1976) measures how hard a fuzzy clustering is: 

Fk =
uiv
2

nv=1

k

!
i=1

n

!
 

Its minimum value is 1 k  occurs in the case of completely fuzzy clustering (all 

uiv =1 k , whereas when the algorithm acts as a partitioning methods (all uiv = 0 or 

1), the index assumes its maximum value which is 1.  

The normalized version of this index is given by: 
 

Fk
' =

Fk ! 1 k( )
1! 1 k( )

=
kFk !1
k !1  

 

It is easy to interpret it because it assumes values in the range between 0 and 1. 

From a fuzzy clustering it is possible to obtain the closest hard clustering by 

assigning each observation to the cluster associated with the highest percentage of 

membership. 

Considering the previous example, observations 1 and 2 are clearly related to cluster 

1, while observation 3 to cluster 3. 
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However, the intermediate observations must be allocated then observation 5 is 

associated with cluster 2 because its percentage (42%) is larger with respect to that 

of its second cluster (35%). 

Also in fuzzy clustering, the silhouette plot described in PAM can be used to evaluate 

the fit of objects within a particular group according to the silhouette width value 

considering only the dissimilarities, allowing thus a comparison about the quality of 

each cluster. [18] [26] [28] 
 

The fuzzy clustering algorithm implemented in R is present in the library cluster and 

its function associated is fanny.  

It uses a data matrix with only numeric variables or a dissimilarity matrix and it has 

an important parameter memb.exp r  that specifies the membership exponent used 

in the objective function and it can be reduced to obtain a less fuzzy membership of 

objects in each cluster. 

Furthermore, useful for this analysis is the closest hard clustering where for each 

object returns the cluster that corresponds to the highest percentage of membership. 

 

3.8	
   Dissimilarity	
  using	
  daisy	
  

We are also interested to verify whether the categorical variables Atag and Btag are 

significant for identifying clusters that respect as much as possible the composition of 

the 6 classes. 

A dissimilarity matrix can be computed in R using two different functions depending 

on the data present in the dataset: dist uses, as we have seen, only quantitative 

variables while the main feature of daisy is that it works with other types of variables 

such as nominal, ordinal, binary (a)symmetric and ratio scaled variables. 

Applying the function daisy to Atag, Btag and Activity variables, the dissimilarity 

values take into account two categorical variables and a numerical one.   

The ability of handling this mixture of variables is obtained by using a generalization 

of Gower’s dissimilarity coefficient (1971): 
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dij = d(i, j) =
wk!ij

(l )dij
(l )

l=1

p
!

wk!ij
(l )

k=1

p
!

 ! 0,1[ ]  
 

In other words, the dissimilarity value between two observations is the weighted 

mean of the contributions of each variable, specifically dij  is a weighted mean of 

dij
(l )

 with weights wl!ij
(l )

, where: 

• wl  : weight for each variable (default: 1 in Gower’s original formula, so each 

variable has the same importance)  

• !ij
(l )

 : weight is 0 when the l -th variable is missing in either or both objects ( i  

and j ) otherwise it is 1 so this weight indicates the presence of the variable 

• dij
(l )

 : l -th variable contribution to the total dissimilarity, specifically, if the 

variable is categorical, it assumes value equal to 0 if both values are equal (same 

modality) 1 otherwise, but if the variable is quantitative, its contribution is given 

by the absolute difference of both values divided by the total range of the 

variable: 
 

dij
(l ) =

xil ! x jl
maxh xhl !minh xhl

 

 

The dissimilarity values dij  range between 0 and 1 since each individual contribution 

dij
(l )

 is in [0,1].   

The output from daisy is a dissimilarity object that can be used as input for the 

algorithms described above. [14] [18] [26] [32]  
 

As example, we consider Atag, Btag and Activity components of two molecules to 

calculate their dissimilarity value according to Gower’s coefficient:  
 

Atag Btag Activity 

A01 B01 6.5 

A01 B10 5.6 
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First of all, we calculate the contribution to the total dissimilarity of the quantitative 

variable Activity that must be added to the formula: 
 

dij
(l ) =

6.5! 5.6
8!3.7

= 0.209
 

 

Therefore, the dissimilarity value between these two molecules results: 
 

dij = d(i, j) =
1*1*0+1*1*1+1*1*0.209

1*1+1*1+1*1
=
1+ 0.209

3
= 0.403

 
 

3.9	
   Results	
  of	
  clustering	
  solutions	
  

We are interested in determining whether the use of the similarity matrix based on 

Tanimoto distance between the objects to be clustered leads to a meaningful 

splitting of the molecules into groups. 

We would like to have significant groups in the clustering solution that only makes 

use of the information contained in the similarity matrix but it is often difficult to spot 

a structure in a dataset by merely looking at its similarity matrix. 

Similarity value s(i, j)  takes values between 0 and 1 but it is necessary to compute 

its complement to 1 because the clustering algorithms use a dissimilarity matrix as a 

distance matrix to gradually build clusters. 

It can be shown that there is no absolute “best” criterion for the evaluation of a 

clustering solution, consequently a specific criterion must be supply in such a way 

that the result will suit the needs as much as possible.  

Only the 1704 molecules with a numeric value for pIC50 MMP12 - Activity and their 

similarity values have been considered in the clustering process because as 

comparison criterion of the clustering solution has been used how these observations 

are really distributed among the 6 classes based on Activity values, seen in the 

previous chapter (Table 14). 
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A 

[3.7-5] 

B 

(5-6] 

C 

(6-6.5] 

D 

(6.5-7] 

E 

(7-7.5] 

F 

(7.5-8] 

 Freq. 706 466 193 209 118 12 1704 

% 41,43 27,35 11,33 12,27 6,92 0,70 100 
 

Table 14: composition of classes 

 

Then for each of these observations there is a comparison between its real class and 

its cluster of membership established by the clustering algorithm, using as number of 

clusters k = 6.    

 

In this context, the criterion to evaluate the quality of a clustering solution is to 

allocate each cluster formed by the algorithm to a dominant class that is the class of 

membership of the majority of observations which belong to that cluster.   

It is preferable that each cluster is associated to a different dominant class in order 

to have these 6 clusters related to all the classes. 

It is very difficult that a clustering algorithm, especially if it uses a dissimilarity 

matrix, is able to produce clusters in which each of these clusters contains molecules 

belonging to only one class. 

 

An example of an optimal solution is reported in Table 15 where each column of the 

matrix shows the percentages of instances predicted in a particular cluster (1,..., 6 ) 

distributed to the various classes ( A,...,F ), so we have to analyze this table by 

column: 
 

% 1 2 3 4 5 6 

A 0 0 96 0 0 0 

B 95 0 4 0 0 0 

C 5 0 0 0 0 97 

D 0 98 0 0 0 3 

E 0 2 0 0 100 0 

F 0 0 0 100 0 0 
 

Table 15: distribution of the clusters 
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For example looking at the first column, we can say that cluster 1 has 95% of 

observations belonging to class B while the remaining 5% are observations of class 

C. 

Moreover, clusters 4 and 5 contain only molecules of only one class, respectively 

class F and class E.  

Note that the sum of each column is 100, so each column shows the distribution of 

the observations of the cluster among the 6 classes.  

Then in this case, each cluster is associated with a different majority class according 

to its highest percentage (Table 16). 
 

cluster 1 2 3 4 5 6 

class B D A F E C 

% 95 98 96 100 100 97 
 

Table 16: majority classes 

 

On the other hand, it’s also important to see how the observations of a particular 

class are distributed among the clusters created by the algorithm because it makes 

no sense to allocate a cluster to a majority class if the cluster contains only few 

observations of that class. 

As we mentioned earlier, 95% of observations in cluster 1 are of class B but in what 

proportion corresponds taking into account all the 466 molecules belonging to class 

B? 

Considering the previous example, a table is used for this purpose (Table 17) but in 

this case each column shows the percentages of molecules owned by a class ( A,...,F

) among the clusters (1,..., 6 ) formed by the clustering algorithm: 
 

% A B C D E F 

1 0 97 8 0 0 0 

2 0 0 0 90 5 0 

3 100 3 0 0 0 0 

4 0 0 0 0 0 100 

5 0 0 0 0 95 0 

6 0 0 92 10 0 0 
 

Table 17: distribution of the classes 
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For example looking at the second column, we can say that most of observations of 

class B is inside of cluster 1 (97%) while the remaining 3% belongs to cluster 3. 

Note that also here, the sum of each column is 100, so each column shows the 

distribution of the molecules of a class among the 6 clusters. 

Then, it is necessary to consider both tables (Table 15, Table 17) to evaluate the 

goodness of a solution. 

Table 18 summarizes the previous matrices reporting for each cluster the two 

percentages relative to its dominant class: 
 

 

1 2 3 4 5 6 

 

B D A F E C 

 %in cluster 95 98 96 100 100 97 

% in class 97 90 100 100 95 92 
 

Table 18: summary cluster-dominant class 

 

We look at the first column to better understand this table: cluster 1 is associated to 

class B because 95% of molecules in this cluster are of class B but in the evaluation 

must be considered that this quantity of molecules corresponds to 97% of the total 

observations of class B. 

Note that in this case, both tables (Table 15, Table 17) have the highest percentage 

in each column located in correspondence of the same pair cluster-class.  

The solution taken as example reported in Table 18 can be considered optimal 

because each cluster is associated to a different class and the percentages are rather 

high. 

Concluding, for each clustering solution provided by any possible configuration of an 

algorithm previously described, following this proposed procedure of evaluating, we 

want to verify if there is this matching between the composition of each cluster with 

that of the class associated.  

 

Following the goal of the clustering procedure for this project, we already know the 

number of segments that have to be derivated from the dataset, which is k = 6  

because we have 6 classes based on Activity value.  
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In the R functions used to apply partitioning methods, it is necessary to specify the 

number k  of clusters but this is not the case for hierarchical methods because this is 

the main distinction between these two approaches. 

The function cutree has been used in hierarchical methods to assign molecules to a 

defined number of clusters in such a way that each case fall into one of the 6 non-

overlapping clusters. 

It takes as parameter the dendrogram of the clustering solution along with a number 

specifying the number of clusters k  that you want to split the tree into.  

Practically, the dendrogram is cut such that k  distinct subtrees are left. 

 

There are a lot of combinations that the described algorithms can provide by 

changing parameters according to the algorithm used. 

Summarizing foregoing, the parameters that can be set in the corresponding R 

functions are the following: 

• dissimilarity matrix used for the analisys:  

1! sim(i, j)   

 sim(i, j)*mean(i, j)  

 1! sim i, j( )( )*mean(i, j)  

 dist(i, j)*mean(i, j)   

 
dist(i, j)* sim(i, j)

  

 
dist(i, j)* 1! sim(i, j)( )

 

 distance in term of Activity values 

 dissimilarity computed with daisy 

 daisy(i, j)*mean(i, j)  

 daisy(i, j)* sim(i, j)  

 daisy(i, j)* 1! sim(i, j)( )  

 where: 

 sim(i, j)  = similarity value between molecules i, j  

 dist(i, j)  = difference between Activity values of molecules i, j  
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 mean(i, j)  = mean between Activity values of molecules i, j  

 daisy(i, j)  = dissimilarity of molecules i, j  computed with daisy  

 this aspect will be discussed later in this chapter 

• all the described algorithms have as parameter a dissimilarity matrix or a data 

matrix (in this case Activity variable) using as metric the Euclidean distance but 

there are some exceptions: hclust can only use a dissimilarity matrix while 

kmeans utilizes a data matrix  

• linkage criterions in hclust, agnes 

• kmeans algorithm has 4 different versions (Hartigan-Wong, Lloyd, Forgy, 

MacQueen) and it gives the ability to set the initial centroids as well as in pam 

with its initial medoids 

• par.method in agnes is used for the calculation of Lance-Williams dissimilarity 

update formula: they proposed taking a value of alpha slightly larger than 0.5 so 

that 1! 2!  becomes a small negative number where !  is a strictly positive 

constant 

• memb.exp r( )  in fanny function specify the membership exponent used in the 

objective function and it can be reduced to obtain a less fuzzy membership of 

objects in each cluster (default: r =2 because it can leads to complete 

fuzzyness) but in the analysis has been mainly considered the hard clustering 

assignment case where each output cluster reflects the highest percentage of 

membership 

If an algorithm uses a dissimilarity matrix, this must be converted into a distance 

matrix using the function as.dist that practically does not consider its main diagonal 

and its upper or lower part.  

On the other hard, if a data matrix is used, each row corresponds to an observation 

and each column is a numeric variable and considering the context of the project, 

the unique variable that can be used is Activity. 

Moreover, in this case the Euclidean distance (metric=Euclidean) is used to calculate 

the distances between molecules for the creation of clusters. 

Usually in kmeans the initial centroids are chosen randomly but it is possible to 

establish the initial configuration of k  centroids and a good idea is to choose them 
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as central values of the k  classes (for example, class B varies between 5 and 6, so 

one of the 6 initial centroids is 5.5). 

In this way, initially the molecules are mapped to their closest clusters according to 

their distances from these centroids and using any of the 4 versions we obtain the 

same solution. 

Similarly, in pam is possible to set the initial configuration of the 6 medoids but in 

this case, the closest molecule to the central value of each class is considered as a 

medoid (for example, class B varies between 5 and 6, so the nearest molecule to the 

Activity value equal to 5.5 becomes a medoid). 

In fanny, the parameter memb.exp has been also reduced but the hard clustering 

assignment has been mainly considered where each output cluster reflects the 

highest percentage of membership for each observation. 

All these possible settings have been applied to the data provided by Glaxo in order 

to obtain the best possible result using the methods described previously. 

We are interested to verify whether the similarity matrix based on Tanimoto distance 

leads to clusters that fit together with the compositions of the 6 classes. 

To apply the algorithms useful for this purpose (hclust, agnes, diana, pam, fanny), 

the similarity matrix must be converted into a dissimilarity matrix computing its 

complement to 1 and then as a distance matrix (as.dist function). 

Using this dissimilarity matrix in the various algorithms, not significant results have 

been achieved because for almost all clusters created by the algorithm result that A 

is the dominant class, that is these clusters are formed mainly by molecules of class 

A. 

This is due to the values that the similarity matrix assumes, as we have noted in 

chapter 1: the highest density is in the range between 0.2 and 0.4 approximately 

(91.16% of similarity values) and higher values occur when two molecules share the 

same Atag or Btag component. 

As consequence, we have to do mainly with low similarity values thus with molecules 

not so much similar chemically to each other and then it is difficult to create clusters 

that are at the same time internally homogeneous but different among them. 

This similarity matrix has been used in combination with the new created mean 

matrix in which the mean between each pair of molecules is calculated trying to 
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create new dissimilarity matrices sim(i, j)*mean(i, j) , 1! sim i, j( )( )*mean(i, j) ) 

that are able to create clusters near to our needs. 

There are improvements but also using these matrices, significant results have not 

been achieved because in most clusters created by the algorithm result that A is the 

dominant class. 

The variable Activity has been used as data matrix in the algorithms (agnes, diana, 

kmeans, pam and fanny) instead of dissimilarity matrix to verify if these algorithms, 

based only on this variable, are able to achieve good solutions computing Euclidean 

distances 

As might be expected, by setting the initial configuration of the 6 centroids in 

kmeans as central values of the classes and using any version, each cluster, except 

the first, contains molecules belonging to 2 adjacent classes whereas the molecules 

of each class, unless class F, are distributed over two clusters, as we can see from 

Table 19 and Table 20: 
 

% 1 2 3 4 5 6 

A 100 41.81 0 0 0 0 

B 0 58.19 72.32 0 0 0 

C 0 0 27.68 51.53 0 0 

D 0 0 0 48.47 51.04 0 

E 0 0 0 0 48.96 66.67 

F 0 0 0 0 0 33.33 
 

Table 19: distribution of the clusters 

 

% A B C D E F 

1 72.52 0 0 0 0 0 

2 27.48 57.94 0 0 0 0 

3 0 42.06 38.86 0 0 0 

4 0 0 61.14 53.11 0 0 

5 0 0 0 46.89 79.66 0 

6 0 0 0 0 20.34 100 
 

Table 20: distribution of the classes 
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Looking at Table 19, although initially the molecules are mapped to their closest 

cluster according to their distances from the centroids, all clusters except the first 

centroid, contain a substantial part of molecules that don’t belong to their 

corresponding centroid (for example cluster 3 has as centroid the value equal to 6.25 

but 72.32% of its observations is related to molecules of class B). 

Applying the algorithm agnes with the linkage criterion “average”, we get these 

results presented in Table 21 and Table 22: 
 

% 1 2 3 4 5 6 

A 0 0 88.33 0 100 0 

B 0 0 11.67 100 0 0 

C 81.78 0 0 0 0 0 

D 18.22 57.44 0 0 0 0 

E 0 40.83 0 0 0 0 

F 0 1.73 0 0 0 100 
 

Table 21: distribution of the clusters 

 

% A B C D E F 

1 0 0 100 20.57 0 0 

2 0 0 0 79.43 100 41.67 

3 62.18 12.45 0 0 0 0 

4 0 87.55 0 0 0 0 

5 37.82 0 0 0 0 0 

6 0 0 0 0 0 58.33 
 

Table 22: distribution of the classes 

 

Cluster 4-5-6 contain molecules of a single class (100%) thus are associated 

respectively with classes B, A and F. 

The observations of these classes are present in these clusters respectively with the 

percentages of 87.55%, 37.82% and 58.33% then only cluster 4 has a high 

percentage.    

Most observations of cluster 1 are of class C (81.78%) for which it becomes the 

majority class representing all the 193 observations then this association results 

significant.  
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By the same reasoning, cluster 2 is associated with class D (57.44%), which 

corresponds to 79.43% of all molecules of class D.  

At this point remains cluster 3 that contains observations belonging to class A 

(88.33%) and class B (11.67%) but they are already dominant classes in clusters 5 

and 4 

Considering that this cluster is almost entirely made up of molecules belonging to 

class A (88.33%) and that these molecules are distributed mainly in this cluster 

(62.18%), it is worth considering this cluster and to bind it to class A. 

In this way, the only class that remain is E and a possible solution is to allocate this 

class to cluster 2 (40.83%) since it contains observations of the adjacent class D so 

that this cluster also contains the totality of molecules of class E (100%). 

Table 23 summarizes what has been said about the association cluster-dominant 

class: 
 

 

1 2 3 4 5 6 

 

C D+E A B A F 

% in cluster 81.78 57.44 + 40.83 88.33 100 100 100 

% in class 100 79.43 + 100 62.18 87.55 37.82 58.33 
 

Table 23: summary cluster-dominant class 

 

A difference of 0.1 can be related to two molecules whose Activity values are both 

low (for example 4 and 4.1) or between molecules with high values (for example 7.2 

and 7.3) and the Euclidean distance does not give this information. 

In order to take into account this additional information, a new dissimilarity matrix 

has been created by combining the mean matrix with the new formed matrix of 

Euclidean distances that contains the pair-wise differences between molecules 

according to their Activity values ( dist(i, j)*mean(i, j) ). 

An important aspect is that if two molecules have the same Activity value then their 

difference is set by default to 0.01 in order to take account their relationship if we 

combine this difference with another value, as in this case. 

This dissimilarity matrix is converted in a distance matrix using the function as.dist 

and applied to algorithms useful for this purpose (hclust, agnes, diana, pam, fanny).  
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Applying the algorithm agnes with the linkage criterion “flexible” using 

par.method=0.8, we get these results presented in Table 24 and Table 25: 
 

% 1 2 3 4 5 6 

A 0 0 0 58.72 0 100 

B 0 0 0 41.28 100 0 

C 81.78 0 0 0 0 0 

D 18.22 100 0 0 0 0 

E 0 0 90.77 0 0 0 

F 0 0 9.23 0 0 0 
 

Table 24: distribution of the clusters 

 

% A B C D E F 

1 0 0 100 20.57 0 0 

2 0 0 0 79.43 0 0 

3 0 0 0 0 100 100 

4 36.26 38.63 0 0 0 0 

5 0 61.37 0 0 0 0 

6 63.74 0 0 0 0 0 
 

Table 25: distribution of the classes 

 

Proceeding in the same way, clusters 2-5-6 contain molecules of a single class 

(100%) thus are related respectively to classes D, B and A. 

These molecules represent, respect the total number of observations for each class, 

respectively the percentages of 79.43%, 61.37% and 64.74%. 

Looking at the highest values, cluster 1 is associated with class C (81.78%) so that it 

contains all molecules of this class (100%) and cluster 3 to class E (90.77%) having 

within all its molecules (100%). 

At this point we are in the same situation as before, it remains cluster 4 that contains 

observations belonging to class A (58.72%) and class B (41.28%) but they are 

already dominant classes in clusters 6 and 5. 

Although the percentages are not very high, this cluster can be bind to its dominant 

class A (58.72%) and the only class that remains is F that can be allocate to cluster 3 
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(9.23%) since it contains observations of the adjacent class E so that this cluster also 

contains the totality of molecules of class E (100%). 

Table 26 summarizes these associations also reporting their percentages: 
 

 

1 2 3 4 5 6 

 

C D E + F A B A 

 % in cluster 81.78 100 90.77 + 9.23 58.72 100 100 

 % in class 100 79.43 100 + 100 36.26 61.37 63.74 
 

Table 26: summary cluster-dominant class 

 

After all these analysis, the best result has been obtained using this dissimilarity 

matrix based on means and distances applied to diana algorithm, as we can see from 

Table 27 and Table 28:  
 

% 1 2 3 4 5 6 

A 0 0 12.22 0 100 0 

B 22.48 0 87.78 0 0 0 

C 55.62 0 0 0 0 0 

D 21.9 66.5 0 0 0 0 

E 0 33.5 0 91.07 0 0 

F 0 0 0 8.93 0 100 
 

Table 27: distribution of the clusters 

 

% A B C D E F 

1 0 16.74 100 36.36 0 0 

2 0 0 0 63.64 56.78 0 

3 7.65 83.26 0 0 0 0 

4 0 0 0 0 43.22 41.67 

5 92.35 0 0 0 0 0 

6 0 0 0 0 0 58.33 
 

Table 28: distribution of the classes 

 

Clusters 5-6 contain molecules of a single class (100%) thus are easily associated 

respectively with classes A, F. 
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The observations of these classes are present in these clusters respectively with the 

percentages of 92.35% and 58.33%. 

As regard the other clusters, we proceed in the same way by assigning them to the 

classes with the highest percentage. 

Cluster 1 can be bind to the dominant class C (55.62%) but it is a cluster of difficult 

assignment because it contains significant percentages of molecules belonging to 

three different classes even though there are no alternatives because all the 

molecules of class C are within cluster 1 (100%). 

For the other three remaining clusters, the percentages of the dominant classes are 

quite significant. 

Table 29 summarizes these associations also reporting their percentages: 
 

 

1 2 3 4 5 6 

 

C D B E A F 

   % in cluster 55.62 66.5 87.78 91.07 100 100 

% in class 100 63.64 83.26 43.22 92.35 58.33 
 

Table 29: summary cluster-dominant class 

 

As we have seen commenting the previous clustering solutions, this table is easy to 

interpret. 

An important aspect that has not been encountered in previous solutions is that each 

cluster is allocated to a different dominant class and in this case there is an 

association 1-to-1 between cluster and class. 

For example, the best group is 5 because it is entirely composed by molecules of 

class A (100%) which corresponds to 92.35% of all the 706 observations of this 

class. 

On the other side, cluster 1 is for the most part formed by molecules of class C 

(55.62%) but it contains the totality of molecules of this class (100%). 

For this reason, the proposed procedure for evaluating a solution considers the 

distributions of both clusters and classes, trying to maximize these two aspects in 

order to achieve a good clustering solution. 
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Analyzing the molecules present in each cluster, the observations that are outside 

the dominant class are those with Activity values in proximity of the extremities of 

the range of the class. 

In the following table are reported for each cluster, in addition to the dominant class, 

the number of molecules and its average value of Activity (Table 30): 
 

 

1 2 3 4 5 6 

 

C D B E A F 

n° 347 200 442 56 625 7 

mean 6.29 7 5.36 7.39 4.42 7.84 
 

Table 30: cluster summary 

 

All the dissimilarity matrices used for the analysis can be normalized in order to have 

values that vary between 0 and 1 as in the case of the similarity matrix based on 

Tanimoto distance, using the following formula: 
 

Imin < Ii < Imax  → normalization → I n =
Ii ! Imin
Imax ! Imin

;0 < I n <1 

 

Applying these normalized dissimilarity matrices are obtained the same results 

achieved using the matrices without this transformation (except with agnes algorithm 

in the case of changing the parameter par.method using the metric dist*mean).  

In addition, creating the dissimilarity matrix that contains the pair-wise distances 

between molecules in terms of Activity, we have the same results achieved using the 

Euclidean metric as distance, but being a dissimilarity matrix it is possible to use also 

the hclust algorithm for further analysis.   

 

Comparing the results obtained using this dissimilarity matrix based on daisy with 

those achieved considering only the pairwise Euclidean differences between Activity 

values of molecules, occurs a worsening in the clustering solutions. 

This leads to say that Atag and Btag variables are not useful in the formation of the 

6 clusters similar to the composition of the classes. 

In addition, changing the weights associated to the 3 variables, it is seen that by 

giving more importance to Btag variable than Atag, the results are not yet good but 



	
  

	
   80	
  

there is a general improvement in the clustering solutions and this means that Btag 

is more discriminant in the formation of the clusters, as demonstrated in the previous 

chapter about the classification. 

 

After carrying out these analysis with the proposed evaluation method, we can draw 

the following conclusions: 

• to evaluate a clustering solution have been considered the distributions of the 

clusters with respect to classes and vice versa, trying to find a matching between 

the highest percentages 

• the similarity matrix based on Tanimoto distance is not useful for this analysis 

because often it returns A as majority class for each cluster 

• unsatisfactory results are obtained also multiplying the similarity/dissimilarity 

matrix with other matrices 

• it is difficult to find associations 1-to-1between clusters and classes, especially 

for class F that represents only 12  

• better results are obtained by considering also the mean between 2 molecules 

into the dissimilarity matrix  

• the best result is achieved by applying the algorithm diana using the dissimilarity 

matrix dist(i, j)*mean(i, j)  

• combining the distance matrix in terms of Activity with the mean matrix have 

been achieved better solutions than those obtained using the same distance 

matrix with similarity/dissimilarity values and this confirms what has been said 

about the poor usefulness of the similarity matrix based on Tanimoto distance in 

the formation of the required clusters 

• using daisy for computing dissimilarities we have seen that Atag and Btag 

variables are not useful in the formation of the 6 clusters similar to the 

composition of the classes but Btag is more discriminant  

 

3.10	
   Some	
  highlights	
  from	
  clustering	
  

After analyzing the obtained results using clustering methods, we want to intuit if 

Atag and Btag variables and similarity values based on Tanimoto distance are not 
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useful in identifying clusters as close as possible to the composition of the 6 classes, 

as it has been said commenting the results.  

The following table (Table 31) shows for each class, how many different Atag and 

Btag components are present within the class and the corresponding tag with the 

highest numerosity, reporting also its percentage. 
 

 

 

Table 31: predominant Atag and Btag components in each class 

 
For example, class A consisting of 706 molecules whose range is from 3.7 to 5, 

contains 46 different Atag components and 3.54% is the percentage of the 

components A38 and A44 which are those more present inside the class, while 

regarding the Btag component, there are 38 different modalities and B46 is the 

predominant one having the highest percentage with 4.81%.    

Considering each class, the number of different Atag and Btag components is high 

but making a comparison between the two numbers, there are many fewer Btag 

modalities (except for class B) and this aspect can confirm the intuition that Btag 

variable is more discriminant than Atag, as mentioned in the previous chapter on 

classification issues.    

These comparisons should be made by considering the numerosity of each class, 

especially for class F that is composed by only 12 molecules.  

Given the high numbers about Atag and Btag modalities and the percentages rather 

low also for predominant modalities in each class, it can be stated that these 

variables are not very useful for identifying the 6 clusters close to the requests. 

 
Regarding the usefulness of the similarity matrix based on Tanimoto distance, for 

each class have been considered the pairwise similarity values of each its molecules 

compared to other observations belonging to the same class (Table 32): 

  
 

A (706)    

[3.7-5] 

B (466)    

(5-6] 

C (193)    

(6-6.5] 

D (209)   

(6.5-7] 

E (118)    

(7-7.5] 

F (12)    

(7.5-8] 

Atag Btag Atag Btag Atag Btag Atag Btag Atag Btag Atag Btag 

46 38 45 46 43 22 45 20 36 15 10 4 

A38/44 B46 A37 B10 A17 B23 A40 B02 A41 B18 A21 B07/25 

3.54% 4.81% 5.58% 6.44% 4.66% 8.29% 4.31% 10% 9.32% 22.03% 16.7% 33.3% 
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Min. 1st Qu. Median Mean 3rd Qu. Max 

A 0.143 0.254 0.285 0.303 0.325 0.821 

B 0.144 0.259 0.293 0.309 0.333 0.827 

C 0.179 0.283 0.317 0.337 0.362 0.814 

D 0.176 0.298 0.333 0.352 0.378 0.867 

E 0.208 0.333 0.372 0.399 0.435 0.843 

F 0.313 0.367 0.404 0.444 0.498 0.71 
 

Table 32: similarity values distribution for each class 

 

For example, class A is composed by 706 molecules for which it was created a matrix 

of size 706x706 containing all the pairwise similarity values in order to obtain 

information about its density distribution.   

Each similarity density distribution, but especially mean and median indices, is 

compared with that of the similarity matrix based on all 2500 molecules (Table 33), 

seen in chapter 1 concerning the preliminary descriptive analysis. 
 

Min 1st Qu. Median Mean 3rd Qu. Max sd 
0.1429 0.2564 0.2887 0.3020 0.3271 0.8667 0.075 

 

Table 33: summary similarity values 

 
We have already said that the highest density is in the range between 0.2 and 0.4 

approximately (91.16% of similarity values) and in general the mean and median 

indices of the distributions fall in the middle of this range, although it should be 

noted that the indices related to classes E and F are more close to the right tail of 

the overall distribution of similarity values. 

Then we can say that the molecules belonging mainly to classes A, B, C, and D are 

not particularly chemically similar to each other, so we don’t have homogeneous 

groups. 

This aspect allows us to conclude that the similarity matrix based on Tanimoto 

distance is not particularly discriminant in the formation of the 6 clusters as close as 

possible to the compositions of the classes. 

It may be helpful if there were only E and F classes that contain molecules more 

similar to each other. 
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Eucludean distance of Activity values 
 
agnes(average)    
4 →  B(100%) →  87.55% 
6 →  F(100%) →  58.33% 
5 →  A(100%) →  37.82% 
1 →  C(81.78%) →  100% 
2 →  D(57.44%)+E(40.83%)  

→  79.43%+100% 
3 →  A(88.33%) →  62.18% 
 
agnes(single) 
2 →  D(100%) →  32.54%  
6 →  F(100%) →  16.67%  
5 →  E(89.47%) →  72.03%  
1 →  C(65.6%) →  42.49%  
4 →  A(55.03%)+B(36.32%) 

→  100%+100%  
3 →  D(74.81%) →  46.89%  
 
DIST*MEAN  

 
diana (best result) 
5 →  A(100%) →  92.35%  
6 →  F(100%) →  58.33%  
4 →  E(91.07%) →  43.22%  
3 →  B(87.78%) →  83.26%  
2 →  D(66.5%) →  63.64%  
1 →  C(55.62%) →  100% 
 
 
agnes/hclust(average)  
4 →  A(100%) →  63.74%  
6 →  F(100%) →  58.33%  
2 →  E(95.93%) →  100%  
5 →  B(75.41%) →  49.36%  
1 →  D(63.91%)+C(36.09%)  

→  100%+61.14%  
3 →  A(52.03%) →  36.26%  
 
 
 
 
 
 
 
 
 
 
 
 
 

hclust(median)  
4 →  B(100%) →  73.61%  
6 →  A(100%) →  45.47%  
5 →  E(80.95%)+F(19.05%)  

→  43.22%+100%  
1 →  C(63.49%) →  100%  
2 →  D(59.39%) →  46.89%  
3 →  A(75.79%) →  54.53%  
 

 
diana 
5 →  A(100%) →  63.74% 
4 →  E(87.63%)+F(12.37%) 
 →  72.03%+100% 
2 →  D(83.42%) →  79.43% 
6 →  B(80.5%) →  34.55% 
1 →  C(78.17%) →  79.79%  
3 →  B(54.37%) →  65.45%  
 
agnes(flexible, par.method=0.6) 
5 →  A(100%) →  56.52% 
6 →  B(100%) →  41.63%  
4 →  E(80.95%)+F(19.05%) 

→  43.22%+100% 
2 →  D(59.39%) →  46.89%  
1 →  C(56.76%) →  100%  
3 →  A(56.54%) →  43.48%  
 
 
 
agnes(flexible, par.method=0.8)    
2 →  D(100%) →  79.43%  
6 →  A(100%) →  63.74%  
5 →  B(100%) →  61.37%  
3 →  E(90.77%)+F(9.23%)  

→  100%+100%  
1 →  C(81.78%) →  100%  
4 →  A(58.72%) →  36.26%  
 
hclust(complete/mcquitty)   
agnes(complete/weighted) 
4 →  B(100%) →  73.61%  
5 →  A(100%) →  45.47%  
6 →  F(100%) →  58.33%  
1 →  C(63.49%) →  100%  
2 →  E(53.39%)+D(44.34%)  

→  100%+46.89%  
3 →  A(75.79%) →  54.53%  
 
hclust(centroid)  
4 →  A(100%) →  92.35%  
6 →  F(100%) →  50%  
5 →  B(63.84%) →  42.06%  
1 →  C(51.9%) →  42.49%  
2 →  D(51.75%)+E(45.91%)  

→  63.64%+100%  
3 →  B(83.33%) →  57.94% 
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agnes(flexible, par.method=0.6)    
5 →  F(100%) →  100%  
6 →  A(100%) →  37.82%  
4 →  B(91.28%) →  87.55%  
2 →  E(71.52%) →  100%  
1 →  D(51.27%)+C(48.73%)  

→  77.51%+79.79%  
3 →  A(88.33%) →  62.18%  
 
DIST*MEAN NORM  
 
agnes(flexible, par.method=0.7)    
5 →  A(100%) →  92.35%  
3 →  B(84.96%) →  65.45%  
4 →  E(80.95%)+F(19.05%)  

→  43.22%+100%  
2 →  D(59.39%) →  46.89%  
1 →  C(58.11%) →  79.79%  
6 →  B(80.5%) →  34.55%  
 
DISTDISS (Distance as dissimilarity) 
DISTNORM (Normalized distance) 
 
hclust(mcquitty)    
5 →  A(100%) →  63.74%  
6 →  F(100%) →  58.33%  
4 →  E(94.44%) →  72.03%  
3 →  B(72.04%)+C(27.96) 

→  61.37%+57.51%  
1 →  D(64.51%) →  100%  
2 →  A(58.72%) →  36.26%  
 
agnes(average) - only DistNorm  
4 →  A(100%) →  92.35%  
6 →  F(100%) →  58.33%  
3 →  B(84.96%) →  65.45%  
1 →  C(58.11%) →  79.79%  
2 →  E(53.39%)+D(44.34) 

→  100%+46.89%  
5 →  B(80.5%) →  34.55%  
 
DIST*SIM  
 
hclust(complete)       
agnes(complete)    
5 →  A(100%) →  56.52% 
6 →  B(100%) →  41.63% 
4 →  E(80.95%)+F(19.05%)  

→  43.22%+100% 
2 →  D(66.5%) →  63.64% 
1 →  C(63.28%) →  100% 
3 →  A(56.54%) →  43.48% 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

agnes(flexible, par.method=0.8)    
2 →  D(100%) →  77.51%  
5 →  A(100%) →  72.52%  
6 →  B(100%) →  34.33%  
1 →  C(84.28%) →  100%  
3 →  E(66.67%)+F(6.78%)  

→  100%+100%  
4 →  B(58.19%) →  57.94%  
 
 
 
 
agnes(average) - only DistDiss    
4 - 5 →  A(100%) →  62.18%, 37.82%  
3 →  B(100%) →  100%  
6 →  F(100%) →  58.33%  
1 →  C(81.78%) →  100%  
2 →  D(57.44%)+E(40.83%) 

→  79.43%+100%  
 
 
agnes(flexible, par.method=0.6)  
5 - 6 →  A(100%) →  30.45%, 61.9%  
3 →  B(88.84%) →  92.27%  
4 →  E(80.95%)+F(19.05) 

→  43.22%+100%  
2 →  D(59.59%) →  46.89%  
1 →  C(56.76%) →  100%  
 
 
 
 
 

hclust(average)    
agnes(average)    
5 - 6 →  A(100%) →  62.18%, 37.82% 
4 →  F(100%) →  100% 
3 →  B(100%) →  100% 
1 →  C(71.75%) →  100% 
2 →  D(52.99%)+E(47.01%)  

→  63.64%+100% 
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hclust(median)               
5 →  A(100%) →  37.82% 
6 →  B(100%) →  42.06% 
4 →  E(80.95%)+F(19.05%)  

→  43.22%+100% 
1 →  C(63.49%) →  100% 
2 →  D(59.39%) →  46.89% 
3 →  A(61.92) →  62.18% 
 
agnes(flexible, par.method=0.6)    
5 →  A(100%) →  56.52% 
6 →  B(83.4%) →  42.06% 
1 →  C(78.17%) →  79.79% 
2 →  D(61.03%) →  79.43% 
4 →  F(50%)+E(50%) →  100%+10.17% 
3 →  A(53.21%) →  43.48% 
 
DIST*(1-SIM)  
 
hclust(mcquitty)    
agnes(weighted)  
4 →  B(100%) →  56.87% 
6 →  A(100%) →  37.82% 
5 →  E(87.63%)+F(12.37%)  

→  72.03%+100% 
2 →  D(86.36%) → 100% 
1 →  C(71.22%) → 100% 
3 →  A(78.11%) →  62.18% 
 
diana 
2 →  D(100%) →  100% 
6 →  A(100%) →  63.74% 
5 →  B(100%) →  48.71% 
3 →  E(90.77%)+F(9.23%)  

→  100%+100%   
1 →  C(51.6%) →  100% 
4 →  A(81.53%) →  36.26% 
 
 
 
 

hclust(centroid)      
5 →  A(100%) →  37.82% 
6 →  F(100%) →  16.67% 
2 →  D(61.03%) →  79.43% 
4 →  E(54.55%) →  10.17% 
1 →  B(45.37%)+C(44.68%)  

→  42.06%+100% 
3 →  A(61.92%) →  62.18% 
 
diana 
5-6 →  A(100%) →  30.45%,42.07% 
4 →  E(87.63%)+F(12.37%)  

→  72.03%+100% 
2 →  D(83.42%) →  79.43% 
3 →  B(63.94%) →  73.82% 
1 →  C(53.91%) →  100% 
 
 
 
hclust(median)   
2 →  B(100%) →  74.89% 
4-5 →  A(100%) →  69.55%,30.45% 
3 →  E(80.95%)+F(19.05%)  

→  43.22%+100% 
1 →  D(65.93%) →  100% 
6 →  C(56.51%) →  78.76% 
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CHAPTER	
  4	
  
Clustering	
  methods	
  based	
  on	
  Tanimoto	
  similarity	
  

 

 

4.1	
   Introduction	
  

We focus on two of the most widely used clustering algorithms in the pharmaceutical 

industry that can use the similarity matrix based on Tanimoto distance as criterion 

for the formation of clusters. 

Both algorithms are unsupervised non-hierarchical methods but the have different 

features. 

 

4.2	
   Jarvis-­‐Patrick	
  algorithm	
  

J-P clustering algorithm (1973) is similar to nearest-neighbors (knn) approach 

because it is based on similarity between neighbors. 

The main concept of this algorithm is that if two different molecules share enough 

common nearest neighbors, then these two molecules are in the same cluster. 

The neighborhood between two molecules is defined by their similarity value and a 

high value represents two molecules close together. 

It requires a matrix containing the pair-wise distances (similarity matrix) and two 

user-defined parameters that are: 

• Number of neighbors to examine: j  
It indicates how many nearest neighbors for each object must be considered for 

enumerates common neighbors with other molecule. 

Low values lead to the formation of few and small clusters while we have the 

opposite situation using a high value. 

• Minimum number of shared nearest neighbors: k  

It indicates the minimum number of shared nearest neighbors that two object 

must have in such a way these two molecules belong to the same cluster. 

Obviously it must not exceed than the previous parameter and low values lead to 

compact clusters, instead using high values the clusters are more dispersed.     
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The basic procedure is composed by these simple steps: 

• For each item find its j  nearest neighbors in order to have its neighbors list 

• Two molecules belong to the same cluster if:  

- they are included in each other’s neighbor list 

- at least their respective k  nearest neighbor list match  

 

It is easy to deduce that the clustering solution is highly influenced by the choice of 

the two parameters because the procedure can produce clusters which are at the 

same time large and heterogeneous or homogeneous but too small. [33] [34] [35] 

In fact, the mean similarity within a cluster generated by the algorithm can vary 

significantly according to the values of these two parameters. 

This aspect about the quality of the clusters is considered as a drawback from many 

researcher and it reduces the appeal towards this algorithm. 

 

4.3	
  	
   Butina	
  algorithm	
  

The main feature of Butina algorithm (1999) is the formation of homogeneous 

clusters where their similarities reflect the Tanimoto index used for the clustering 

procedure. 

In other words, clusters generated from this algorithm have analogous within 

similarity which is very near to the Tanimoto value used as threshold. 

This algorithm is based on the concept of cluster centroid which is the most similar 

item compared to every other molecule within the cluster, given a Tanimoto 

similarity value. 

To identify such cluster centroids, the number of neighbors is calculated for each 

molecule at the Tanimoto level chosen as threshold. 

Given a molecule and a Tanimoto value used as threshold, a neighbor is found if a 

similarity value of this target molecule respect to an other is at least equal to the 

threshold.  

Then, a cluster centroid is the molecule within a cluster which has the highest 

number of neighbors because it is the element most similar to the other members of 

the cluster. 
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The paper written by Butina [36] describes the procedure using these steps: 

• Generation of Fingerprints 

For each molecule are generated Daylight’s fingerprints encoded as an ASCII string 

of 1’s and 0’s using a fingerprinting algorithm 

Fingerprints give a considerable amount of information about the structural features 

of a molecule because each pattern of the molecule is encoded as a set of bits 

(usually 4 or 5 bits/pattern). 

• Computation of Tanimoto similarity  

The Tanimoto similarity value between two molecules is computed using the usual 

formula. 

• Identification of potential cluster centroids 

The procedure to find potential cluster centroids has already been described above. 

The set is sorted in descending order in such a way the molecules with the highest 

number of neighbors are placed at the top. 

This is the computationally most expensive step. 

• Creation of clusters at a given Tanimoto level 

Starting from the element in the sorted list that becomes centroid c0 , the algorithm 

consider all those molecules with a Tanimoto value above or equal the threshold, 

making them members of that cluster. 

Each of these molecules that becomes a member of the given cluster is flagged and 

removed to avoid other comparisons with other centroids in order that it cannot 

belong to another cluster. 

Once this operation is completed, the first not flagged potential cluster centroid at 

the top of the list becomes the new cluster centroid c1  and the same process of 

allocation is repeated until all potential cluster centroids are analyzed. 

After this procedure of allocation, there is the possibility that there are some 

molecules that either not belong to the list of cluster centroids or are not related to 

any cluster, so these elements become singletons. 

This can happen because some molecules identified as singletons may have 

neighbors given a Tanimoto similarity threshold, but those elements have been 

already associated to a cluster centroid with more weight in terms of number of 

neighbors. 
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Operating in this way, the resulting clusters are separated from each other and they 

are highly homogeneous. [36] [37] 
 

Summarizing, the algorithm has these following features: 

• creation of good quality clusters where the similarity within a cluster reflects the 

Tanimoto level used as threshold for the clustering 

• using a high Tanimoto value leads to a very reliable method of grouping 

chemically similar molecules 

• the more similar molecules ate in a giver cluster, the higher within similarity will 

be 

 

4.4	
   Application	
  of	
  Butina	
  algorithm	
  

Butina algorithm is generally preferred mostly because the similarity within each 

cluster reflects al least the Tanimoto value used as a threshold while the clustering 

solutions of J-P algorithm strongly depend on the choices of its two parameters. 

For this reason, Butina algorithm has been applied to our data using the similarity 

matrix based on Tanimoto distance to see how many homogeneous clusters are 

created by changing the threshold values regardless the 6 clusters identified based 

on Activity values. 

We already have the similarity matrix between molecules, then the first two steps of 

the algorithm regarding fingerprints and calculation of similarity values are skipped. 

The following table (Table 1) shows the results obtained by changing the Tanimoto 

threshold value between 0.2 and 0.9: 
 

	
   N°	
  clusters	
   N°	
  singletons	
   %	
  molecules	
  
into	
  clusters	
  

Global	
  
similarity	
  

	
   0.2	
   1	
   0	
   100%	
   0.349	
  
0.3	
   10	
   2	
   99.88%	
   0.467	
  
0.4	
   40	
   1	
   99.94%	
   0.537	
  
0.5	
   53	
   5	
   99.71%	
   0.587	
  
0.6	
   98	
   31	
   98.18%	
   0.661	
  
0.7	
   276	
   445	
   73.88%	
   0.73	
  
0.8	
   53	
   1548	
   9.15%	
   0.814	
  
0.9	
   0	
   1704	
   0%	
   0	
  

 

Table 1: results of Butina algorithm varying the Tanimoto threshold 
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More in detail, the table shows for each threshold value: 

- number of clusters that are created (groups with more than one molecule inside) 

- number of singletons (molecules that don’t belong to any cluster) 

- percentage of molecules the belong to any cluster 

- average similarity considering all the clusters formed by the algorithm 

Using 0.2 as threshold value, the algorithm returns a single cluster containing all 

1704 molecules while the opposite situation happens by setting the parameter as 0.9 

and for these reasons these 2 values must obviously be discarded. 

Looking at the other cases, the value of average similarity reflects more or less the 

one used as a threshold. 

Increasing the threshold value, the percentage of molecules present in any cluster 

decreases, especially going from 0.7 to 0.8. 

In fact, using 0.8 as threshold value, we obtain 53 small clusters (smaller than 276 

clusters using 0.7) and a lot of singletons. 

 

To make a comparison with the 6 classes defined by the pharmaceutical company, 

setting 0.3 as threshold value, the algorithms produces 10 clusters with only 2 

singletons and 99.88% of molecules considered for the formulation of these 10 

clusters. 

In the following table (Table 2), for each of the 10 clusters is reported its size and its 

within similarity value. 
 

Cluster:	
   1	
   2	
   3	
   4	
   5	
   6	
   7	
   8	
   9	
   10	
  
N°	
  mol.	
   1519	
   75	
   14	
   32	
   24	
   6	
   3	
   5	
   21	
   3	
  
Sim.	
   0.38	
   0.39	
   0.49	
   0.48	
   0.44	
   0.57	
   0.56	
   0.45	
   0.5	
   0.4	
  

 

Table 2: size and within similarity of each cluster using 0.3 as threshold 

 

As we can easily see, the majority of molecules is focused on a single cluster, while 

others are quite small.  
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