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A B ST R A C T

Over the last years, client-side attacks against web sessions covered a relevant subset
of web security incidents. Existing solutions proposed in the literature and by web
standards, though interesting, typically address only specific classes of attacks and
thus fall short of providing robust foundations to reason on web authentication
security.

In this thesis we provide such foundations by introducing a novel notion of web
session integrity, which allows to capture many existing attacks and spot some
new ones. We present FF+, a formal model of a security-enhanced browser that
provides a complete and provably sound enforcement of web session integrity.

Our theory serves as a basis for the development of SessInt, a client-side solution,
implemented as a Google Chrome extension, which provides a level of security
very close to FF+, while keeping an eye at usability and user experience.
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I N T R O D U C T I O N

In the last few years, the Internet has become an integral part of our life. Everyday
activities are more and more digitalized and made available on-line, including
critical ones such as financial operations or health data management, and need
to be adequately protected to prevent a variety of cyber-criminals from stealing
confidential data and impersonating legitimate users.

The authentication scheme more commonly used on the Web relies on a password-
based challenge and almost all web applications employ cookies to maintain the
session across consecutive HTTP requests: both these techniques are fragile, as
passwords and cookies can be leaked by malicious scripts injected by an attacker
into a page [42] or by sniffing unencrypted HTTP traffic [58]. Moreover, untrusted
parties may force the browser into creating arbitrary authenticated requests to
trusted websites [10] or into binding a cookie used for authentication purposes to a
known value, to hijack the session after the login is performed [61].

While web application frameworks allow to deploy authentication safely at the
server side, developers often misuse them and/or are reluctant to adopt recom-
mended security practices [106].

Enforcing protection at the browser side has thus become a popular approach
for securing web authentication [17, 64, 68, 72, 81, 82, 93–95, 101]. The existing
solutions, however, address only specific classes of threats under particular attacker
models, granting just partial protection against the multitude of attacks on the Web,
and do not offer robust foundations for understanding the real effectiveness of
client-side defenses for web authentication.

In this thesis we provide such foundations by introducing a novel notion of web
session integrity, which allows to capture client-side attacks against web authentica-
tion, and a model of a security-enhanced browser that provides a full-fledged and
provably sound enforcement of session integrity.

contributions

The contributions of this thesis can be summarized as follows:

• we give a bibliographic survey of client-side attacks against web sessions
and the corresponding defenses proposed in the literature and by standards.
We discuss, for each proposal, the protection offered against a certain attack
under various threat models, the usability and the deployment cost;

• we propose our notion of session integrity which relies on reactive systems, a
formalism that has been proposed to model the browser behavior [15]. We
show how our definition captures many existing attacks and spots variants
able to evade some state-of-the-art solutions;

xv



xvi introduction

• we introduce Flyweight Firefox (FF), a core model of a standard web browser,
and FF+, a secure variant of FF that provides a provable full-fledged enforce-
ment of web session integrity against both web and network attackers;

• we leverage our theory to develop SessInt, an extension for Google Chrome
which implements the security policy formalized in FF+ in a slightly relaxed
fashion to improve the usability of our solution.

structure of the thesis

The thesis is organized as follows:

• in Chapter 1 we provide to the reader the basic concepts about the Web which
are used throughout this thesis;

• in Chapter 2 we discuss the attacks against web sessions, the properties they
break and we evaluate the solutions proposed in the literature in terms of
security, usability and deployment cost;

• in Chapter 3 we present our notion of session integrity and describe the
security mechanisms implemented in FF+;

• in Chapter 4 we discuss the design of SessInt and we report on the experi-
mental evaluation of our solution in terms of security and usability;

• in Chapter 5 we draw some concluding remarks and discuss possible future
works.



1 T H E I N G R E D I E N T S O F T H E W E B

In this chapter we briefly introduce the building blocks of modern Web applications.
We describe the HTTP protocol and its secure counterpart HTTPS, which determine
how the client user agent and the web server communicate with each other. Next
we discuss how web pages are realized and the security restrictions on their content
imposed by browsers. Then we illustrate cookies, pieces of data registered by a
web application on the client side that are attached to the subsequent requests to
the same application. Cookies are widely used in the Web because they provide
a reliable mechanism to implement sessions using the stateless HTTP(S) protocol.
Finally, we discuss how user authentication is typically implemented on the Web.

1.1 http protocol

The HyperText Transfer Protocol (HTTP) is a text-based application-level protocol for
distributed, collaborative, hypertext information systems [39]. Originally introduced
by Tim Berners-Lee and his team in 1989, it has been updated during the years
to reflect the renewed needs of web applications and to improve its performance.
The current version is HTTP 1.1, released in 1997 and last redifined in RFC 7230–
7235 [35–40].

HTTP is a request-response protocol based on the client-server computing model:
in a typical interaction, the browser of the user corresponds to the HTTP client,
while the machine hosting the website acts as the HTTP server. The client initiates
the communication by sending a HTTP request message over a TCP connection
established with the server, which offers resources or other services: the response of
the server contains the completion status information of the corresponding request
and its outcome. HTTP servers (typically) listen for incoming requests on port 80.

1.1.1 HTTP methods

The protocol defines several methods to declare the action to be performed on the
resource specified in the request. Methods are classified upon the effect that is
produced by the fulfillment of the request.

Safety A method is safe if it produces relatively harmless or no side effects on
the server.

Idempotence A method is idempotent if multiple identical requests produce the
same effect of a single request.

1



2 the ingredients of the web

Notice that a programmer may still decide to produce persistent changes on
the server as effect of processing a request using a method defined to be safe.
Nevertheless, this behavior is discouraged because of possible problems in presence
of caches and web crawlers.

The most widely used methods are GET and POST.

Get It is used to retrieve a representation of the resource identified by the URI
in the request message. GET is defined to be safe and idempotent.

Post The target resource processes the request message body according to its
semantics. The method is typically used when submitting HTML forms or
uploading files. POST is not safe and not idempotent.

Other methods defined in HTTP/1.1 include HEAD, OPTIONS, PUT, DELETE,
TRACE and CONNECT.

1.1.2 HTTP messages

An HTTP message consists of the following elements:

• a request line in client requests or a status line in server responses;

• a list of HTTP headers;

• an empty line followed by an optional message body.

The request line contains the URI of the resource interested by the request and the
method used to access it. The status line includes a number encoding the result
of the corresponding request, called status code, and a reason phrase describing the
meaning of this code: the first digit of the status code illustrates the general class of
the response (cf. Table 1). Both lines report the version of the protocol in use.

Table 1: HTTP status codes.

Status code Message type

1xx Informational
2xx Success
3xx Redirection
4xx Client error
5xx Server error

Headers are used to pass additional information about the request/response beyond
what is placed in the request/status line. The client can use particular headers to
specify which of the possible versions of a resource identified by a URI should
be returned (content negotiation), transmit cookies previously set by the website
and so on. The server can use headers to declare the type and the encoding of the
delivered resource, specify caching settings or require the enforcement of particular
security policies like CSP [21] or HSTS [55].



1.1 http protocol 3

The body (if any) is used to carry the payload of the message. For instance, a
request may include a body containing form fields submitted via POST, while the
body of a response typically includes the representation of the requested resource.

An interaction between a client and a server is shown in Listing 1.

Listing 1: Message exchange using HTTP protocol.

(a) Request message using method GET.

GET /index.html HTTP/1.1

User-Agent: curl/7.30.0

Host: www.example.local

Accept: */*

(b) Server response.

HTTP/1.1 200 OK

Date: Wed, 03 Dec 2014 13:21:41 GMT

Server: Apache/2.2.26 (Unix) DAV/2 PHP/5.5.18 mod_ssl/2.2.26

Last-Modified: Wed, 03 Dec 2014 13:20:50 GMT

ETag: "47d113-6d-5094fb65a7080"

Accept-Ranges: bytes

Content-Length: 109

Content-Type: text/html

<html>

<head>

<title>Example page</title>

</head>

<body>

Welcome to our example page.

</body>

</html>

The HTTP client asks for the resource identified by the URI /index.html hosted
at the domain www.example.local, port 80. The header Host is needed to support
name-based virtual hosting1 and is mandatory since HTTP 1.1. The message also
contains a string identifying the agent which has performed the request (the
command line tool cURL) and states that any content type is accepted in the
response.

The server has successfully fulfilled the request, as the status line reports the
code 200. The response includes a body containing the resource requested by the
client. Headers specify several information, such as the type and length of the
representation of the resource provided in the body, caching details and the specific
server application which has processed the request.

1 Name-based virtual hosting allows to use several domain names on a single IP address.



4 the ingredients of the web

1.1.3 Security

HTTP does not guarantee neither the confidentiality nor the integrity of the commu-
nication, as all the traffic flows in cleartext between client and server. Moreover, it
does not provide any mechanism for server authentication.

An attacker with network capabilities can exploit these weaknesses to his own
favour. A passive network attacker may easily eavesdrop all the traffic exchanged
by client and server and obtain access to sensitive information, e. g. user credentials
or credit card details. Worse, an active network attacker is able to arbitrarily tamper
all traffic and/or impersonate the intended remote server.

The only security mechanism provided by HTTP is an access control feature
which allows to restrict the access to a resource only to authorized users by using a
username/password challenge [37]. The scheme, however, is not designed to be
robust against network attackers.

1.2 https protocol

Several solutions have been proposed to protect web communications [67, 89, 90].
The de facto standard is the HyperText Transfer Protocol Secure (HTTPS), introduced
by Netscape in 1994 and formally specified in RFC 2818 [89].

Strictly speaking, HTTPS is not a new protocol written from scratch, but the
result of wrapping HTTP within the SSL/TLS cryptographic protocol. It protects
against eavesdropping, tampering and forging of the contents of a communication
by implementing bidirectional encryption of the traffic exchanged by client and
server. It is designed to defend against man-in-the-middle attacks by employing
server authentication mechanisms based on public key certificates signed by trusted
certificate authorities. Finally, it supports client authentication, but this feature is
rarely used in the Web.

1.2.1 Public key certificates

To activate HTTPS support on a web server, first the administrator must create a
public key certificate for the server, then he needs to sign it.

A digital certificate is an electronic document which ensures that the key it
encloses belongs to the subject to which the certificate was issued. A certificate
contains several information, including:

• the subject identified by the certificate, e. g. the server hostname, and its
public key;

• various attributes listing possible uses of the certificate, e. g. whether it can
be used to sign other certificates;

• the issuer and its signature;

• the period of validity.
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Figure 1: Certificates chain of trust [48].

The signature can be placed either by a trusted certificate authority2 or by the
administrator itself, using the private key of its own certificate authority. The two
approaches are equivalent from a security perspective, but they differ in the effort
required to use HTTPS safely:

• in the former case, legitimate certificates can be validated out-of-the-box,
since operating systems and browser ship with a list of root certificates of
well-known CAs;

• in the latter case, the user must install manually the certificate of the CA in
his browser or operating system keychain before visiting the site to be fully
protected: the certificate must be deployed to users in an alternative safe way,
limiting the applicability of this approach to personal or internal corporate
websites.

A certificate can be signed with a CA’s root certificate or, more commonly, with an
intermediate certificate, provided that it can be used to perform such an operation.
The path from the end-entity certificate up to the root defines the chain of trust of
the certificate. Figure 1 shows a chain of trust of length 3 where each element is
signed with the next certificate in the path, except the last which is a trust anchor,
i. e. a reliable certificate acquired in a trustworthy way.

1.2.2 Setup of a secure connection

When the browser wants to load a resource over HTTPS, it must negotiate a secure
SSL/TLS tunnel. During the handshake protocol (cf. Figure 2), client and server
agree on the protocol version and the cipher suite3 to use and establish the master
secret from which all the session keys used for traffic encryption are derived.

2 A certificate authority (CA) is an entity that issues digital certificates. A commercial CA is a company
that issues to its customers certificates for domains they possess, upon identity verification.

3 A cipher suite specifies 1) a key exchange algorithm, used to determine how client and server
authenticate during the handshake (RSA, Diffie-Hellman, ECDH); 2) a bulk encryption algorithm,
used to encrypt the message stream (AES, 3DES, RC4); 3) a message code authentication algorithm,
used to create the message digest needed to verify traffic integrity (HMAC using MD5 or SHA hash
functions); 4) a pseudorandom function, used to generate the master secret shared between client and
server.
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Figure 2: SSL/TLS handshake [48].

Server authentication and the creation of the master secret rely on the use of the
server certificate, which is downloaded and validated by the browser during the
handshake. The validation process involves several checks:

• the hostname of the server must match the one reported in the certificate;

• the signature of each certificate (except the last) must be correctly verified
using the public key of the next certificate in the chain;

• the attributes for certificate signing must be checked in intermediate certifi-
cates;

• none of the certificates in the trust chain is expired or revoked;4

• the trust anchor must be a certificate known to the browser.

When validation fails, the browser displays a warning message and asks the user if
he wants to proceed:5 in case of a positive answer, if the error is due to an active
network attacker who has provided a forged certificate, the protection offered by
HTTPS is nullified.

4 A certificate may be revoked if the corrisponding private key is leaked. Browsers employ different
techniques to perform these checks, e. g. revocation lists (CRL) or the Online Certificate Status Protocol
(OCSP) [97].

5 If HSTS is enabled for the site, the browser notifies an error, but does not allow the user to go ahead.
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1.3 web pages

A web page consists of a hypertext file, together with related files for styles, scripts
and graphics, which is often hyperlinked to other documents. The majority of pages
on the Web are written using several languages, each one affecting a particular
aspect of the page:

• the HyperText Markup Language (HTML) [26] or a comparable markup lan-
guage (e. g. XHTML) defines the structure of the page and the elements it
includes;

• the Cascading Style Sheets (CSS) language [20] is used to add style information
to web pages (e. g. fonts, colors, position of elements);

• the JavaScript language [57] is a full-fledged programming language which al-
lows the development of rich, interactive web applications whose contents can
change dinamically upon user interaction or asynchronous communication
with the web server.

CSS directive and JavaScript codes can be included either directly in the HTML
code, using <style> and <script> tags, or as external resources.

JavaScript programs can alter the contents of a page by manipulating the Doc-
ument Object Model (DOM) tree [23–25], a tree structure for representing and
interacting with objects that make up a (X)HTML page.

1.3.1 Same-origin policy

The same-origin policy (SOP) [43] is a standard security policy introduced in 1995

by Netscape, currently implemented by all major browsers, which prevents a
document or script loaded from an origin from manipulating properties of (or
communicating with) a resource loaded from another origin. An origin is given by
the combination of protocol, hostname and port number.

The same-origin policy applies to various operations, e. g. DOM manipulations,
AJAX requests using the XMLHttpRequest API and access to the local storage; a
relaxed version of the SOP is used for cookies. Some legacy operations are not
subject to same-origin checks, like cross-domain inclusion of scripts and submission
of forms, leaving space for attacks like CSRF and XSS (cf. Section 2.1.3).

The SOP can be relaxed using a variety of techniques like the Cross-Origin
Resource Sharing standard [22] or cross-document messaging [27].

1.3.2 Mixed contents

A mixed content page is a webpage that is received over a HTTPS connection, but
some of its contents are loaded over HTTP: if no restriction is posed on this behavior,
an active network attacker may modify particular types of contents (e. g. scripts) to
compromise the entire page [77].
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Modern browsers distinguish two types of mixed content, depending on the
threat level of the worst case scenario if the content is modified by a network
attacker.

Passive content It is content that cannot modify other portions of the page,
e. g. images, audio tracks or videos. An attacker may force the page to display
as broken or alter the response to show misleading contents.

Active content It is content that has access to (parts of) the DOM of the
page, e. g. scripts, frames, stylesheets, XMLHttpRequest objects. An attacker can
tamper these resources to include malicious code which can be used to steal
sensitive data or as a vector for other attacks.

While passive contents are typically allowed by the browser, active mixed contents
are blocked by default.

1.4 cookies

HTTP(S) is a stateless protocol, i. e. it operates as if each request is independent
from all others. Some applications, however, need to remember information about
previous requests, e. g. to track if a user is already authenticated to grant him access
to a reserved page. Introduced in 1994 by Netscape and currently supported by
all major browsers, HTTP cookies are the most widespread mechanism employed
on the Web to maintain stateful information about the clients. Their latest formal
specification is published as RFC 6265 [9].

A cookie is a small piece of data, registered by the server on the client side, which
is attached to subsequent requests to the same website. It is identified by a name
and must have an associated value. Moreover, the server can specify one or more
attributes to customize the way the browser handles the cookie: available options
are reported in Table 2.

Cookies are attached by the browser to outgoing requests, using the HTTP
header Cookie, as a sequence of name=value pairs. They can be set via the header
Set-Cookie or using scripting languages like JavaScript.6

For historical reasons, cookies exhibit a number of security infelicities, as well as
counterintuitive characteristics. For instance, there may be multiple cookies with
the same name set for a website, which differ in the domain and/or the path: in
such a case, all cookies are attached to the request and the choice of the value to be
selected is application dependent. From a security perspective, the Secure attribute
does not provide integrity in presence of an active network attacker, as it can be
overwritten by a non-secure cookie. Similarly, cookies for a given host are shared
across all the ports on that host, despite the usual same-origin policy enforced by
the browser.

6 The HttpOnly attribute can be applied only to cookies registered via HTTP headers.
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Table 2: Cookie attributes.

Attribute
Requires
value?

Description

Domain 3

The domain on which the cookie is available. If not
set, the cookie is available only to the domain of the
request that set the cookie. Otherwise, it is available to
the specified domain and all its subdomains.

Path 3

The path where the cookie is valid. If not set, the cookie
is available only to the path of the request that set the
cookie.

Expires 3

The date/time when the cookie expires. If not set, the
cookie is deleted when the browser is closed. If the date
is in the past, the cookie is removed.

Max-Age 3

Alternative way to express the expiry date in terms
of number of seconds in the future. If the number of
seconds is 0, the cookie is removed.

Secure 7 The cookie must be sent only over secure connections.

HttpOnly 7
The cookie cannot be accessed via non-HTTP methods
(e. g. property document.cookie in JavaScript).

1.5 user authentication on the web

Nowadays, the vast majority of sites available on the Web provide a subset of pages
only to authenticated users. The most common mechanism used to implement user
authentication relies on cookies and is sketched in Figure 3.

• First, the user navigates to a login page containing a form requesting user-
name/email address, password and eventually other data (e. g. a one-time-
password for home banking) and submits it.

• The server checks the correctness of data and, in case of success, sets one or
more cookies. These cookies compose the authentication token of the established
session and typically consist of a long sequence of random characters.

• The client attaches the token to subsequent request to the website, which is
used to associate the request to the user who has performed the authentication.
In this way the server can decide whether the request should be satisfied or
not.
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Figure 3: Cookie-based user authentication.

Authentication cookies and passwords are a common target of attacks, since an
attacker who manages to acquire them is able to perform operations on user’s
behalf, hence their protection is a crucial aspect to implement security on the Web.



2 A J O U R N E Y I N TO W E B S E S S I O N
S E C U R I TY

In this chapter we take the delicate task of describing, organizing and classifying
web security properties, attacks, attacker models and proposed solutions to client-
side attacks against web sessions. In our analysis we do consider:

• client-side attacks enabled by server-side vulnerabilities, e. g. reflected and
stored cross-site scripting attacks;

• purely client-side defenses or server-side solutions which collaborate with
the web browser to protect the session.

Conversely, we do not consider:

• server-side attacks targeting the backend of the web application, e. g. SQL
injections, and client-side attacks that exploit browser vulnerabilities;

• server-side solutions which are completely immaterial to the web browser
and agnostic to its operational behavior, e. g. frameworks for static analysis of
the application’s source code.

These are not arbitrary choices: since we are focusing on client-side attacks, it is
natural to privilege the client in the analysis; on the other hand, since we reason
about sessions, it would be limiting to completely abstract from the server.

The work is organized according to the following steps.

• We identify a few general security properties representative of web session
security and organize attacker models from the literature in a unified lattice
that correlates different attackers based on their relative power.

• We consider typical client-side attacks against web sessions and classify them
based on the security properties they break and on the least powerful attacker
who can perform them. For each attack we show possible simplifications of
the lattice of attacker models to reflect which capabilities are relevant to carry
it out.

• We examine existing solutions that prevent or mitigate the different attacks.
Each proposal is evaluated with respect to the different attacker models to
clarify which security guarantees it provides and under which assumptions;
moreover, we discuss its impact on usability and the deployment cost.

11
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2.1 attacking web sessions

2.1.1 Security properties

We consider four standard security properties, formulated in the setting of web
sessions, which represent typical targets of web session attacks.

Confidentiality Data transmitted within a session should not be disclosed to
unauthorized users.

Integrity Data transmitted within a session should not be modified by unau-
thorized users.

Authenticity Data transmitted within a session should only originate from
the honest user.

User Authenticity New sessions should only be initiated by the honest user.

Interestingly, these properties are not independent and a violation of one might
imply the violation of others. For instance, compromising session confidentiality
might reveal authentication cookies that, in turn, would allow the attacker to
hijack the session, thus breaking authenticity. Integrity violations might cause the
disclosure of confidential information, e. g. when HTTPS links are changed to HTTP
links by an attacker. Credentials theft breaks user authenticity, but may indirectly
break the confidentiality of data exchanged during honest sessions and stored on
the web server.

2.1.2 Threat model

In our analysis we consider four different classes of attackers.

Web attackers They control at least one web server that responds to any
HTTP(S) request it receives with arbitrary malicious contents. We assume that
a web attacker can obtain trusted HTTPS certificates for all web servers under
his control and that he can perform content injection attacks against trusted
websites.

Related-domain attackers They have all the capabilities of web attackers,
with the addition that they can host malicious web pages on a domain sharing
a “sufficiently long” suffix with the domain of the target website.1 This means
that the attacker can set cookies for the target website [9, 16]. These cookies
will be indistinguishable from other cookies set by the target website and will
be automatically sent to the latter by the browser.

Passive network attackers They have all the capabilities of a web attacker,
plus the ability to inspect all the HTTP traffic sent on the network.

1 The common suffix is “sufficiently long” if it is not limited to the public suffix of the domain, i. e. a
suffix under which Internet users can directly register names [88].
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Figure 4: Attacker models and their relative power.
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Figure 5: Simplified attackers lattices for each attack.

Active network attackers They have all the capabilities of a web attacker,
plus the ability to inspect, forge and corrupt all the HTTP traffic and the HTTPS
traffic which does not use trusted certificates.

All the attackers we consider are at least as powerful as a web attacker and,
by definition, active network attackers are strictly more powerful than passive
network attackers. Moreover, active network attackers are strictly more powerful
than related-domain ones, as they can forge HTTP responses from related-domain
hosts to tamper with cookies.2 The relative power of attackers is summarized in
Figure 4, where higher points in the lattice correspond to more powerful attackers.

2.1.3 Attacks

We consider client-side attacks against web sessions and classify them depending
on the security properties they undermine. We also discuss the attacker capabilities
which are relevant to each attack.

Cross-site request forgery (CSRF)

A CSRF is an instance of the “confused deputy” problem in the context of web
browsing [53]. Assume that the user’s browser is storing some authentication cook-
ies identifying the user at website w1: an attacker can forge authenticated requests
inside the user session simply by injecting links to w1 in unrelated web pages from

2 This is not true only for the case in which HSTS is enabled for the domain and all its subdomains.
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website w2 rendered by the user’s browser. The user does not necessarily have to
click these links, since the attacker can just include broken <img> tags pointing to
w1 in his own web page, and the browser will still try to contact it including the
authentication cookies. These injected requests may have dangerous side-effects
on the user’s account at w1, thus disrupting the integrity of the user’s session.
However, the attacker will not be able to hijack the session or fully impersonate the
user, as the authentication cookies and the credentials are not disclosed to him.

Setting cookies or eavesdropping HTTP traffic are not relevant to mount a CSRF
attack, hence related-domain and passive network attackers are as powerful as
a standard web attacker. Active network attackers, instead, can corrupt HTTP
responses to force the browser into sending authenticated requests to the target
website: this ability can be used to circumvent existing defenses against CSRF
(cf. Section 2.2). We can thus collapse W, P and R to a single point that is strictly
less powerful than A: the corresponding lattice is reported in Figure 5a.

Session fixation

In a session fixation attack, the attacker is able to impose in the user’s browser a
cookie which will identify the user’s session with a target website [61]. Specifically,
the attacker first contacts the target website w and gets a valid cookie, which is then
fixed (e. g. exploiting a script injection vulnerability) into the user’s browser before
the initial password-based authentication step at w is performed. If the website
does not generate a fresh cookie upon authentication, the user’s session will be
identified by a cookie known to the attacker. The attack harms the authenticity of
the user’s session, by letting the attacker hijack the session at the target website.

Session fixation is not enabled by confidentiality violations, hence passive net-
work attackers are no more powerful than web attackers in this respect. Related-
domain attackers can set cookies for related-domain hosts, hence they are in a
privileged position for session fixation against them. Similarly, active network
attackers can set cookies by forging HTTP responses from the target website. The
resulting attacker lattice is reported in Figure 5b.

Login cross-site request forgery (login CSRF)

A login CSRF is a subtle attack first described by Barth et al. [10]. In this attack, the
attacker first establishes an authenticated session with the target website w and
then imposes the corresponding cookie into the user’s browser, e. g. by exploiting a
content injection vulnerability on w. Alternatively, the attacker may silently login
the user browser at w using the attacker’s credentials by forcing the browser into
submitting an invisible login form. The outcome of the attack is that the user is
forced into an attacker’s session on w: if he is not careful, he may store sensitive
information into the attacker’s account, thus breaking the confidentiality of the
session.

Passive network attackers have no more power than web attackers for login
CSRF. Related-domain attackers can force a honest user into their own session
with a related-domain website just by setting their own authentication cookies into
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the user’s browser. Active network attackers can additionally force a honest user
into their own session by making the user’s browser silently submit a login form
with the attacker credentials from an arbitrarily chosen HTTP page: in this case,
the server legitimately sets the authentication cookies in the user’s browser. The
resulting attacker lattice is reported in Figure 5c.

Content injection

This type of attack enables a malicious user to inject harmful contents into web
applications either to leak sensitive information retained in the client-side browsing
context associated with the vulnerable website or to alter the application logic
for malicious purposes. Content injection attacks are traditionally assimilated to
cross-site scripting (XSS), i. e. injections of malicious JavaScript code. However, there
exist alternative techniques, such as HTML or CSS injections, which allow to
achieve goals analogous to the ones of traditional XSS attacks [54, 105]. Another
distinguishable form of content injection attack is known as header injection, in
which the application inadvertently inserts attacker-controlled input into the HTTP
response headers. An attacker may leverage this flaw to conduct a range of other
attacks, such as session fixation, XSS and redirections to malicious sites.

Injected malicious contents can leak sensitive data, undermine integrity or leak
cookies and user credentials, breaking all the security properties of Section 2.1.1.
Since content injection is traditionally a web attack that does not assume any control
over the network, we only focus on web attackers during its study, i. e. we consider
the single-point lattice in Figure 5d.

HTTP sniffing

As discussed in Section 1.1.3, a passive network attacker can eavesdrop all HTTP
traffic exchanged on a network, thus gaining access to sensitive information and
compromising the confidentiality of the session. Websites which are served on
HTTP or on a mixture of HTTP and HTTPS can easily expose authentication cookies
or user credentials to a passive network attacker: in these cases, he will be able to
break the authenticity of the session or even user authenticity. HTTP sniffing can
be indifferently performed by both passive and active network attackers, leading to
the single-point lattice of Figure 5e.

HTTP tampering

An active network attacker can mount a man-in-the-middle attack and arbitrarily
modify HTTP requests and responses exchanged by the target user and remote
web servers. In particular, it is worth mentioning SSL stripping [74], an attack
whose aim is to prevent web applications from switching from HTTP to HTTPS.
The attack exploits the fact that the initial connection to a website is typically
initiated over HTTP and the upgrade to HTTPS is done through HTTP redirect
messages, links or HTML forms targets. By corrupting the first HTTP response,
the attacker may replace all HTTPS references with their HTTP version, to force
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Table 3: Popular attacks against web authentication

Attack C I A UA Least Attacker

CSRF 7 W
Session fixation 7 W
Login CSRF 7 W
Content injection 7 7 7 7 W
HTTP sniffing 7 7 7 P
HTTP tampering 7 7 7 7 A

the session in clear, and then forward the traffic received by the user to the real
web server (possibly over HTTPS). The same operation will be performed for all
the subsequent messages exchanged during the session, hence the web application
will work seamlessly, but the communication will be entirely under the control of
the attacker. The attack is particularly subtle, because the user may fail to notice
the missing usage of HTTPS, which is only notified by some components of the
browser’s user interface (e. g. a padlock icon or a colored address bar).

These active network attacks may harm all the security properties of Section 2.1.1,
since HTTP does not provide any confidentiality or integrity guarantee (cf. Sec-
tion 1.1.3). Active network attackers are the only ones who can perform HTTP
tampering, as represented in Figure 5f.

Table 3 summarizes, for each attack, the security properties violated and the
weakest attacker who can perform it. Web attackers are already powerful enough
to carry out all the attacks, with the exception of HTTP sniffing/tampering where
a passive/active network attacker is needed.

2.2 protecting web sessions

2.2.1 Evaluation criteria

We evaluate existing defenses along three orthogonal axes.

Protection We assess the effectiveness of the proposed defense against the
different attackers from our threat model. If the proposal does not prevent
an attack against a given attacker in the most general case, we discuss under
which assumptions it may still be effective.

Usability We evaluate whether the proposed mechanism may negatively affect
the user experience, for instance by making some websites not working, by
heavily impacting on the perceived performances of the user’s browser or by
involving the user into complicated security decisions.
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Deployment cost We evaluate how much effort should be put by browser ven-
dors and web developers to support a large-scale deployment of the defensive
solution.

We exclude from our survey several solutions which have a very significant de-
ployment cost and would require major changes to the current Web, such as new
communication protocols or authentication mechanisms replacing cookies and
passwords [29, 52, 62, 99].

2.2.2 Cross-site request forgery

Purely client-side solutions

Several browser extensions and client-side proxies have been proposed to counter
the risks posed by CSRF attacks, including RequestRodeo [64], CsFire [93, 94]
and BEAP [72]. All these solutions share the same idea of stripping authentication
cookies from selected classes of cross-site requests sent by the browser. The main
difference between the proposals is when this restrictive security policy should
be applied, i. e. when a cross-site request should be legitimately considered as
malicious.

All these solutions are designed to protect against web attackers, which host
malicious web pages including (implicit) links to trusted websites, in the attempt
of forcing the browser into sending them authenticated requests. Unfortunately,
the protection is bound to fail if a web attacker is able to exploit a content injection
vulnerability on the target website, since he may force the browser into sending
authenticated requests to the target website from a same-site position. For the same
reason, these defenses are ineffective against an active network attacker who can
forge a HTTP response from the target website: this can be done even when the
target website is entirely deployed over HTTPS, since the attacker can always
include fake HTTP links in unrelated malicious web pages and provide arbitrary
responses to the HTTP requests sent by the user’s browser.

A very nice advantage of these client-side defenses is their low deployment cost:
the user can install the extension/proxy on his machine and he will be automatically
protected from CSRF attacks. On the other hand, usability may be at harm, since
any heuristic for determining whenever a cross-site request should be considered
malicious is bound to (at least occasionally) produce some false positives. To
the best of our knowledge, the most sophisticated heuristic is implemented in
the last release of CsFire [94], but a large-scale evaluation on the real Web has
unveiled that even this approach may break legitimate functionalities of standard
web browsing [28].

Allowed referrer lists

ARLs have been proposed as a client/server solution against CSRF attacks [28].
Roughly, an ARL is a whitelist that specifies which URLs are entitled to send au-
thenticated requests to a given website. The whitelist is compiled by the developers
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of the site, who should be fully aware of the web application semantics, while its
enforcement is done by the browser, that knows the navigation context in which a
given request is generated. ARL policies received over HTTP can only overwrite
old policies set over HTTP, while ARL policies delivered over HTTPS can overwrite
any old policy.

ARLs are effective against web attackers, provided that no content injection
vulnerability affects any of the whitelisted pages. If protection against active
network attackers is desired, the ARL should only include HTTPS addresses and
any request triggering a side-effect on the website should be similarly sent over
HTTPS. Moreover, the ARL must have been set over HTTPS to prevent corruptions.

The deployment cost of ARLs is acceptable in most cases. Users must adopt a
security-enhanced web browser, but ARLs do not require major changes for their
implementation: the authors of the original paper [28] added ARLs support in
Firefox with around 700 lines of C++ code. Web developers, instead, must write
down their own whitelists. We believe that for many websites this process requires
limited effort: for instance, e-commerce websites may include in their ARL only
the desired e-payment provider, e. g. Paypal. For other sites, instead, a correct ARL
may be large and rather dynamic, like in the case of service providers which desire
to provide their functionalities only to selected websites. If ARLs are compiled
correctly, their adoption is transparent to the end-user and has no impact on
usability.

Tokenization

Tokenization is a popular server-side countermeasure against CSRF attacks [10].
The idea is that, when a user wants to perform a request with side-effects, he must
also provide a token randomly generated by the web server. The inclusion of the
token is transparently done by the browser during the legitimate use of the web
application, e. g. every sensitive HTML form must be extended to include it as a
hidden parameter. If the web server receives a request which does not include the
correct token, no side-effect takes place. Tokens must vary among different users,
otherwise an attacker could legitimately acquire a valid token for his own session
and force it into the user’s browser, to fool the web application into accepting
malicious authenticated requests as part of the user’s session.

Tokenization is robust against web attackers without scripting capabilities in
the target website. Indeed, the tokens are included in the DOM of the web page
and exposed to an attacker who exploits a content injection vulnerability. Even
assuming the absence of content injection vulnerabilities, the secrecy of the tokens
may be particularly hard to guarantee against network attackers: any request or
response including a token must be sent over HTTPS.

The use of tokens is completely transparent to the end-user, but the deployment
cost of tokenization may be high in practice for web developers. Manually inserting
tokens is a tedious operation typically hard to get right. Some web development
frameworks offer automatic support for tokenization, but are not always compre-
hensive and may leave room for attacks. These frameworks are language-dependant
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and may not be powerful enough for sophisticated web applications developed
using various languages [28].

NoForge

NoForge [65] is a server-side proxy implementing the tokenization approach
against CSRF, without requiring any change to the web application code. NoForge

parses the HTTP responses sent by the web server and automatically extends each
hyperlink and form with a secret token bound to the user’s session; incoming
requests are then delivered to the web server only if they contain a valid token.

The protection offered by NoForge is equivalent to what can be achieved by
implementing tokenization at the server side. The adoption of a proxy for the
tokenization task significantly lowers the deployment cost of the defensive solution,
but it has a negative impact on usability, since HTML links and forms which are
dynamically generated at the client side will not be rewritten to include the secret
token. Requests sent by clicking on these links or by submitting these forms will
then be rejected by NoForge.

Origin Checking

Origin checking is a popular alternative to tokenization [10]. Modern web browsers
implement the Origin header, a privacy-preserving variant of the Referer header.
Like its ancestor, this header contains information about the origin which generated
a request sent to the web server, hence web developers may inspect it to detect
whether a potentially dangerous cross-site request has been generated by a trusted
domain or not.

Origin checking is robust against web attackers without scripting capabilities
in any of the domains trusted by the target website. An active network attacker,
however, can forge HTTP responses from a trusted domain, so as to force the
browser into sending authenticated requests to the target from a trusted position.
Moreover, if the Origin header is included in a HTTP request, it may have been
corrupted, thus voiding the protection. Hence, to achieve protection against active
network attackers, only headers sent by a HTTPS page over a HTTPS connection
must be trusted.

Server-side origin checking is transparent to the end-user and has no impact on
the navigation experience. The solution has a lower deployment cost than tokeniza-
tion, since it can be implemented by properly configuring a web application firewall,
e. g. ModSecurity. This means that there is no need to carry out a comprehensive
inspection of the web application code to identify the program points where origin
checking should take place, hence the typical deployment cost for origin checking
is low. Unfortunately, to use the Origin header as a defense against CSRF, websites
must not perform side-effecting operations as the result of a GET request, since this
header is only attached to POST requests [10]. While only POST requests should
trigger side-effects according to the HTTP specification, many websites ignore this
indication and thus enforcing this practice on existing websites may be hard.
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2.2.3 Session fixation

Serene

Serene is a browser extension offering automatic protection against session fixation
attacks [95]. It inspects each outgoing HTTP(S) request sent by the browser and
applies a heuristic to identify cookies which are likely used for authentication
purposes: if any of these cookies was not set via HTTP headers, it is stripped from
the outgoing request, hence cookies fixed by a malicious script cannot be used
to authenticate the client. The key observation behind this design is that existing
websites always set their authentication cookies using HTTP headers.

The solution is designed to be robust against web attackers: if no header injection
vulnerability affects the target website w, a web attacker can fix a cookie for w only
by exploiting a script injection vulnerability, but (authentication) cookies set by a
script are never sent over the network by a browser extended with Serene. The
protection offered by Serene can be voided by an active network attacker, who
can overwrite any cookie by forging HTTP responses from w. Similarly, Serene is
not effective against a related-domain attacker, since this attacker can set domain
cookies for w using standard HTTP headers.

The deployment cost of this solution is very low: users can just install Serene in
their browser and it will provide automatic protection against session fixation for
any website, even though the false negatives produced by the heuristic may still
leave room for attacks. Similarly, the usability of Serene crucially depends on the
underlying heuristic: its false positives may negatively affect the user experience,
since some cookies which should be accessed by the web server are never sent
to it. In practice, it is impossible to be fully accurate in the authentication cookie
detection process, even using sophisticated techniques [18], hence it is hard to
ensure that no usability issue will bother the end-user.

Origin cookies

Origin cookies, which have been proposed to rectify some known integrity issues
affecting standard cookies (cf. Section 1.4), are cookies that are only sent to and
can only be modified by an exact web origin [16]. For instance, an origin cookie
set by https://example.com can only be overwritten by an HTTPS response from
example.com and will only be sent to example.com over HTTPS. Origin cookies
are sent by the browser using a new custom header, thus letting web applications
distinguish origin cookies from normal ones.

Since origin cookies are isolated between different origins, active network attack-
ers and related-domain attackers have no more power than standard web attackers.
This means that all these attackers may be able to fix an origin cookie only by
exploiting a content injection vulnerability on the target website.3

The deployment cost of origin cookies is low when a website is entirely hosted
on a single domain and served over a single protocol: for such a website, it is

3 The reference specification for origin cookies [16] never clarifies whether these cookies should be
legitimately set by JavaScript.
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enough to add the backward-compatible Origin attribute to all of its cookies. On
the other hand, if a web application needs to share cookies between different
schemes or related domains, the web developer is forced to implement a federation
protocol connecting different sessions built on distinct origin cookies: this may be
a non-trivial task which may also have a perceivable impact on the application
performances.

Refresh of authentication cookies

The simplest defense against session fixation is implemented at the server side, by
ensuring that the authentication cookies identifying the user’s session are refreshed
when the level of privilege changes, i. e. when the user successfully logs in to
the website [61]. If this is done, no cookie fixed by an attacker before the first
authentication step may be used to identify the user’s session.

Remarkably, even though cookies do not provide strong integrity guarantees,
this solution is effective even against active network attackers. Indeed, an active
network attacker may be able to arbitrarily overwrite any cookie set in the user’s
browser before the password-based authentication step, but a fresh authentication
cookie unknown to the attacker will be generated by the server to identify the
session.

Renewing authentication cookies upon password-based authentication is a rec-
ommended security practice and it is straightforward to implement for newly
written web applications. However, retrofitting an existing web application may
require some effort, since the authentication-related parts of session management
must be clearly identified and corrected. It may actually be more viable to keep
the application code unchanged and operate at the framework level, by enforcing
a renewal of the authentication cookies whenever a password is identified in an
incoming HTTP(S) request [61]. This solution is framework-specific and any failure
at detecting a submitted password may leave room for session fixation attacks.

2.2.4 Login cross-site request forgery

Origin cookies

Login CSRF is briefly mentioned as a motivating example in the paper on origin
cookies [16]. Recall that these cookies can only be set by an exact web origin, thus
providing stronger integrity guarantees than standard cookies. Since origin cookies
cannot be overwritten by an attacker, the authentication cookies identifying the
attacker’s session cannot be imposed in the user’s browser, thus eliminating a
possible vector for login CSRF. Nevertheless, an attacker can still be able to carry
out a login CSRF by forcing the user’s browser into silently submitting a login form
including the attacker’s credentials to the target website.

Origin cookies only mitigate the threats posed by this scenario, making it more
unlikely: if the user is already authenticated on the target website and the latter
refuses any subsequent login request by the user, the adoption of origin cookies
is enough to prevent login CSRF. Since these are quite strong assumptions and
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login forms can be submitted by any attacker from our threat model, we argue that
origin cookies are not a robust countermeasure against login CSRF.

Pre-sessions

A commonly used server-side defense against login CSRF relies on pre-sessions [10].
The core idea resembles the tokenization approach against CSRF: whenever a user
first visits the website, the web server generates a fresh random secret, identifying
the session before the password is submitted by the user. This random secret is
included in a specific cookie (a login cookie) and it will appear as a hidden field of
the login form. When the login form is submitted, the web server checks that the
browser is presenting a login cookie including the correct secret; if this is not the
case, the login request is rejected. Different implementations of this technique are
possible, since it is not strictly needed that the secret is directly included in the
login cookie: the important aspect is that the web server must be able to bind the
value in the cookie with the secret in the form, e. g. using cryptography.

This solution is robust against web attackers without scripting capabilities on the
target website: if a web attacker is able to exploit a content injection vulnerability,
he can simply establish a session with the target website and then impose the
legitimately obtained authentication cookies into the user’s browser. Pre-sessions
are not effective against related-domain and active network attackers, due to the
low integrity guarantees provided by standard cookies.

The deployment cost of pre-sessions may be relatively high in practice, since
the web developer has to clearly isolate the authentication-related portions of the
application code to extend them with the required integrity checks.

Origin Checking

Checking the Origin header is a possible server-side solution against login CSRF:
the server may inspect this header to determine whether a login request was sent
from a trusted origin or not. From a security perspective, this approach shares the
same limitations of the usage of origin checking to defend against standard CSRF,
i. e. it is robust only as long as the attacker has no scripting capabilities in any of
the trusted origins. Protection against active network attackers requires that the
Origin header is sent from a HTTPS page over a HTTPS connection.

The deployment cost of origin checking as a solution against login CSRF is low.
It is significantly easier to implement origin checking as a solution to login CSRF
rather than standard CSRF, since login operations are typically performed using
POST requests, which ensure that the Origin header is correctly populated by the
browser.

2.2.5 Content injection

Given the critical impact of content injection attacks, there exist many proposals
which focus on them: most of them exclusively target XSS attacks, some are effective
also against markup injection, but none of them provides protection against header
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injection. Here we compare the most relevant solutions and we classify them
depending on where the protection mechanism operates.

Purely client-side solutions

Noxes is one of the first client-side defenses against XSS attacks [68]. It is imple-
mented as a web proxy installed on the user’s machine, aimed at preserving the
confidentiality of sensitive data such as cookies and session identifiers. Instead of
blocking malicious script execution, Noxes analyzes the pages fetched by the user
to allow or deny outgoing connections on a whitelist basis: static links embedded
into a page are automatically considered safe with respect to XSS attacks. In more
complicated cases, Noxes resorts to user interaction to take a security decision.

SessionShield [81] is a client-side proxy preventing the leakage of authentication
cookies via XSS attacks. It operates by automatically identifying these cookies in
incoming response headers, stripping them from the responses, and storing them
in a private database inaccessible to scripts. SessionShield then reattaches the
previously stripped cookies to outgoing requests originating from the client to
preserve the session. A similar idea is implemented in Zan [101], a browser-based
defense which (among other things) automatically applies the HttpOnly attribute
to the authentication cookies detected through the usage of a heuristic.

For all these proposals the deployment cost is low, since no server-side modifica-
tions are required and users simply need to install an application on their machines
to be protected. Conversely, they suffer from usability issues: Noxes requires too
much user interaction to be adopted in the modern Web, given the high number
of dynamic links [81]; SessionShield and Zan, instead, may lead to annoyances
whenever some cookies are incorrectly detected as authentication cookies by the
underlying heuristics, since these cookies would be made unavailable to legitimate
scripts.

Besides the proposals above, which just protect authentication cookies against
XSS, there exist several protection mechanisms which try to prevent XSS attacks al-
together, e. g. the NoScript extension for Firefox [73], IE XSS Filter [92] and WebKit
XSSAuditor [11]. NoScript takes the restrictive choice of allowing script execution
on a whitelist basis: this provides high protection against both reflected and stored
XSS attacks, despite of being unable to detect stored XSS within whitelisted web
sites. From a usability standpoint, the security offered by NoScript comes at the
cost of involving the user in many security decisions. IE XSS Filter and WebKit
XSSAuditor, instead, perform string matching analysis on HTTP requests and
corresponding responses to detect and stop reflected XSS attacks. These solutions
showed an acceptable usability and have thus been introduced in standard web
browsers.4

4 However, these solutions have also been exploited to introduce new flaws in otherwise secure
websites [63, 80].
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Hybrid client-server solutions

The HttpOnly attribute has been introduced in 2002 with the release of Internet
Explorer 6 SP1 to mitigate the theft of authentication cookies via content injection
attacks. However, the threats posed by these attacks are not limited to cookies theft,
hence several other proposals have been developed to improve protection.

Browser-Enforced Embedded Policies (BEEP) [60] hinges on the assumption
that web developers have a precise understanding of which scripts should be
trusted for execution. Websites should provide a filtering policy to the browser
in order to allow the execution of trusted scripts only, blocking any malicious
script injected in the page. The policy is embedded in web pages through a
security hook implemented as a trusted JavaScript function which is invoked by
a specially-modified browser during the parsing phase. Blueprint [71] tackles
the problem of denying malicious script execution by relieving the browser of
building untrusted HTML parse trees. Indeed, the authors claim that relying on
the HTML parsers of different browsers is inherently unsafe, due to the presence of
numerous browser quirks. In this approach, web developers provide annotations on
web application code which generates user-provided contents. Once the untrusted
HTML is identified, a script-free approximation of the parse tree is produced on
the server and transmitted to the browser. Then, a client-side JavaScript decodes
the sanitized parse tree and reconstructs the page. The deployment cost of both
solutions is high, since they require changes to the web application. However,
with respect to BEEP, the deployment cost of Blueprint is lower, since it does
not require browser modifications. In contrast, Blueprint suffers from several
performance problems which may have a major impact on usability [102]. Both
solutions are mainly focused on preventing untrusted script execution and no
protection is provided against injections of HTML markup code. Furthermore, it
has been shown that BEEP is prone to node-splitting attacks and to more advanced
XSS injections similar to return-to-libc attacks [60].

Along the same line of research, Noncespaces [51] is an approach which enables
web clients to distinguish between trusted and untrusted contents to prevent
content injection attacks. All the (X)HTML tags and attributes within a page are
enriched with randomly chosen strings by the web application, generated according
to a hierarchy of content trust classes. Noncespaces provides a policy mechanism
which enables web developers to declare constraints on elements, attributes and
values according to their trust class. The server sends the URI of the policy for the
current page and the mapping between trust classes and random strings as HTTP
headers to the browser, which is responsible of enforcing the policy. In parallel
with the development of Noncespaces, Nadji et al. [79] proposed a similar solution
based on the concept of document structure integrity (DSI). The approach relies on
marking at server side nodes generated by user-inserted data, so that the browser is
able to recognize and isolate them during the parsing phase to prevent unintended
modifications to the document structure. Permitted ways to modify the document
structure are specified by a confinement policy provided by the server. Untrusted
data is enclosed within randomly generated markers, i. e. sequences of Unicode
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whitespace characters. These markers and the confinement policy are shipped to
the browser in the <head> tag of the requested page. To dynamically keep track
of untrusted data upon document structure manipulation, all browser parsers
supporting DSI must be modified. Noncespaces and DSI annotate untrusted data
automatically by using a modified version of a template engine and taint tracking,
respectively. The deployment cost of these solutions is high, since they require
major changes on both server and client side. On the other hand, the usability is
also high, since the policies are tailored standard behavior of users interacting with
the web application in permitted ways. These solutions are effective at preventing
stored and reflected XSS attacks, and allow web developers to permit the inclusion
of user-provided HTML code in a controlled way.

All the aforementioned proposals share the idea of defining a security policy
which is enforced at the client side [102]. The same principle is embraced by the
Content Security Policy (CSP) [21], a web security policy standardized by W3C
and adopted by all major browsers with the exception of Internet Explorer, which
offers a very limited support. CSP is deployed via a HTTP response header and
allows to specify the trusted origins from which the browser is permitted to fetch
the resources included in the page. The control mechanism is fairly granular,
allowing to distinguish among different types of resources, such as JavaScript, CSS
and XHR targets. Unless differently specified, CSP does not allow inline scripts
and CSS directives (which can be used for data exfiltration) and the usage of
particularly harmful JavaScript functions (e. g. eval). When properly configured,
the CSP provides an effective defense against XSS attacks. However, general content
injection attacks, such as markup code injections, are not prevented by the CSP.
The cost of deploying an accurate policy for legacy applications can be high, since a
major site restyling for inline scripts and styles removal is required. Being the CSP
defined on a page-by-page basis, it places restrictions even on the development
of new applications [102], but the average deployment cost is acceptable. Though
providing security benefits and being supported by many standard web browsers,
it has been shown that the adoption rate of CSP is still not significant [103].

2.2.6 HTTP sniffing

Obviously, sniffing can be prevented by using HTTPS, which ensures the confiden-
tiality of the communication session. While it is well-understood that passwords
should only be sent over HTTPS, web developers often underestimate the risk of
leaking authentication cookies in clear, thus undermining session authenticity. As a
matter of fact, many websites are still only partially deployed over HTTPS, either
for better performances or because only a part of their contents need to be secured.
However, cookies set by a given website are by default attached to all the requests
sent to it, irrespectively of the communication protocol. If a web developer wants
to deliver a non-sensitive portion of her website, e. g. images, over HTTP, it is still
possible to protect the confidentiality of the authentication cookies by assigning
them the Secure attribute.
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Activating HTTPS support on a server needs little technical efforts, but requires
a signed public key certificate, as discussed in Section 1.2.1. The adoption of secure
cookies is straightforward whenever the entire website is deployed over HTTPS:
it is enough to add the Secure attribute to all the cookies set by the website. For
sites partially served over HTTPS, however, the deployment cost may be high, since
secure cookies cannot be used to authenticate the user on the HTTP portion of
the website. Keeping the user authenticated while ensuring that security-critical
operations are only available over HTTPS would require a change to the cookie
scheme.

2.2.7 HTTP tampering

HTTP traffic tampering can be completely prevented only by using HTTPS with
trusted certificates throughout all the session: a single insecure request can be
enough to compromise the security of the entire session. The solutions proposed in
this section aim at enforcing the usage of HTTPS and/or protecting against SSL
stripping attacks.

HProxy

HProxy is a client-side solution against SSL stripping which analyzes the browser
history to produce a profile for each website visited by the user [82]. A profile con-
tains information about the usage of HTTP redirect messages, iframe tags, HTML
forms and JavaScript blocks. HProxy inspects all the responses sent to requests
initiated by the user’s browser and compares them against the corresponding page
profiles: modifications from the expected behavior are evaluated against a strict set
of rules to decide whether the received response should be accepted or an error
should be returned to the user.

The deployment cost of HProxy is very low: the user simply needs to install
the software on his machine and configure the browser proxy settings to use it.
Unfortunately, the effectiveness of HProxy crucially depends on the completeness
of the detection ruleset and the precision of the JavaScript preprocessor, which
must be able to deal with blocks of code that partially change in consecutive page
loads. The main concern here is about usability, since the proposed method for
JavaScript analysis is bound to produce some false positives. Moreover, the solution
clearly does not provide any protection for websites which have never been visited
by the user.

HTTP Strict Transport Security (HSTS)

HSTS is a security policy implemented in modern web browsers, which allows a
web server to communicate to a user agent to interact with it exclusively over a
secure channel [55]. HSTS policies can be delivered only over a HTTPS connection
via a HTTP response header, where it is possible to specify the lifetime and whether
the policy should be enforced also for requests sent to subdomains (e. g. to protect
cookies shared by them). When the browser performs a request to a HSTS host, its
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behavior is modified so that every HTTP reference is transformed into a HTTPS
reference before being accessed; TLS errors (e. g. self-signed certificates or name
mismatches) terminate the communication session and the embedding of mixed
contents is prohibited.

Similarly to the previous solution, HSTS is not able to provide any protection
against active network attackers whenever the initial request to a website is carried
out over an insecure channel: to address this issue, browsers vendors include a
list of known HSTS hosts, but this approach does not scale enough to cover the
entire Web. A recently introduced attack against HSTS [98] exploits the fact that
implementations trust the operating system current time: since (almost) all modern
OSs employ the NTP protocol for time synchronization with security features
disabled by default, an active network attacker can mount a man-in-the-middle
and modify the system time, thus making HSTS policies expire. HSTS support
can be activated by web developers with little effort, however its adoption is
currently limited by the missing support from Internet Explorer, one of the most
used browsers in the market.

HTTPSEverywhere

HTTPS Everywhere [86] is an extension for Firefox, Chrome and Opera which
performs URL rewriting to force access to the HTTPS version of a website whenever
available, according to a set of hard-coded rules supplied with the extension.
Essentially, HTTPS Everywhere applies the same idea of HSTS, with the difference
that no instruction by the website is needed: the ruleset is populated by security
experts and volunteers.

The deployment cost of this solution is low: the user just needs to install the
extension to enforce the usage of HTTPS on supported websites. On the down side,
HTTPS Everywhere is able to protect only sites included in the ruleset: even if
the application allows the insertion of custom rules, this requires technical skills
(writing regular expressions) that a typical user does not have. In case of partial
lack of HTTPS support, the solution may break websites and user intervention is
required to switch to the usual browser behavior: these problems can be rectified
by refining the ruleset.

We summarize in Table 4 our survey of the different solutions. For each proposal,
we make explicit the assumptions needed for security against the different attacker
models. If a solution presents occasional usability issues, we deem it as unusable.
The deployment cost is evaluated as fairly as possible on the average case. XSS
filters are not deemed as secure or insecure: they surely help in preventing many
attacks, but their adequacy is still subject of debate [63, 80].

2.3 defenses against multiple attacks

All the web security mechanisms described so far have been designed to prevent
(or mitigate) very specific attacks against web sessions. Still, in the literature there
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Table 4: Analysis of proposed defenses.

Attack Proposal Type Attacker Safety Assumptions Usability Cost Assumptions

CSRF

Client-side defenses client
W, P, R 3 (1s)

7 low -
A 7 -

Allowed referrer lists client/server
W, P, R 3 (2s)

3 medium -
A 3 (2s) (5s)

Tokenization server
W, P, R 3 (1s)

3 high -
A 3 (1s) (6s)

NoForge server
W, P, R 3 (1s)

7 low -
A 3 (1s) (6s)

Origin checking server
W, P, R 3 (2s)

3 low (1c)
A 3 (2s) (5s)

Session fixation
Serene client

W, P 3 (3s)
7 low -

R, A 7 -
Origin cookies client/server W, P, R, A 3 (1s) 3 low (2c)
Cookies renewal server W, P, R, A 3 - 3 medium (3c)

Login CSRF

Origin cookies client/server W, P, R, A 7 - 3 low (2c)

Pre-sessions server
W, P 3 (1s)

3 high -
R, A 7 -

Origin checking server
W, P, R 3 (2s)

3 low -
A 3 (2s) (5s)

Content Injection

Noxes, SessionShield, Zan client W 3 (7s) 7 low -
NoScript client W 3 (4s) (8s) 7 low -
In-browser XSS filters client W - - 3 low -
HttpOnly cookies client/server W 3 (7s) 3 low -
BEEP client/server W 7 - 3 high -
Blueprint client/server W 3 (4s) 7 high -
Noncespaces, DSI client/server W 3 - 3 high -
CSP client/server W 3 (4s) 3 medium (4c)

HTTP sniffing HTTPS w. secure cookies client/server P, A 3 - 3 low (5c)

HTTP tampering
HProxy client A 3 (9s) 7 low -
HSTS client/server A 3 (9s) (10s) 3 low -
HTTPS Everywhere client A 3 (11s) 3 low -

(1s) no content injection on website
(2s) no content injection on source
(3s) no header injection on website
(4s) no markup injection
(5s) source and destination over HTTPS
(6s) full HTTPS deployment on website
(7s) only cookie leakage via script
(8s) no stored XSS in whitelisted sites
(9s) only for already visited sites
(10s) no NTP exploitation
(11s) only for sites in the ruleset

(1c) no side-effects on GETs
(2c) no cookie sharing between
schemes/sub-domains
(3c) easy to retrofit authentication-related
code portion
(4c) for new applications
(5c) no cookies sharing between schemes

are also a number of proposals aimed at providing a more comprehensive solution
to a range of different threats. All these proposals are based on good insights
and are worth mentioning, however they are significantly more complex than
those in the previous section and their original papers do not always provide
comprehensive details about them for space reasons. Hence, it is much harder
to provide a schematic overview and to discriminate between current limitations
and intrinsic shortcomings in the design which cannot be overcome by further
work in the same research line. To carry out a fair analysis and avoid inaccurate
speculations, we decide to:

• evaluate the effectiveness of each solution only with respect to the threat
model considered in the original papers;

• assert whether a given attack is prevented or not only if there is definite
evidence in the existing literature that this is the case.
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2.3.1 FlowFox

FlowFox [49] is the first web browser implementing a full-fledged information flow
control framework for general confidentiality policies. The chosen enforcement
technique is secure multi-execution, a dynamic approach based on the idea of per-
forming multiple runs of a given program under a special policy for input/output
operations ensuring non-interference [30]. In FlowFox, every script is subject to
secure multi-execution, hence many confidentiality threats posed by script injection
attacks are prevented: for instance, web attackers cannot leak authentication cookies
using XSS. In recent work, FlowFox has been extended to include limited support
for integrity policies and has proved to be able to stop various CSRF attacks [66].

Since many web attacks can be naturally interpreted as violations of an intended
information flow policy, FlowFox holds great promise in being an appropriate
solution for them. Unfortunately, the protection offered by FlowFox is limited to
threats posed by malicious scripts, hence some important attack vectors exploited
by web attackers are not covered, e. g. redirects through HTTP headers to carry out a
CSRF. This limitation can be overcome by multi-executing the entire browser rather
than just the scripts, but this would require a major reengineering of FlowFox and
would likely have a quite significant impact on the performance of the browser.
On the other hand, we observe that FlowFox is effective even against stored XSS
attacks, given that every script is run under secure multi-execution. Protection
against network attacks is beyond the scope of FlowFox.

We think that a set of default information flow policies shipped with FlowFox

may already be enough to stop/mitigate a wide class of attacks against web
sessions launched by malicious scripts. Remarkably, a preliminary experiment on
the top 500 sites of Alexa shows that usability is preserved for a very simple policy
which marks as sensitive any access to the cookie jar [49]. However, a large-scale
deployment of the browser would likely require web developers to write down
their own policies to ensure the usability of their websites. The original paper on
FlowFox never quantifies the complexity of this operation, but we think that a
comprehensive information flow policy for a real website may be hard to write
down. The adoption of secure multi-execution also has an impact on the usability
of the browser, since the performance of FlowFox are approximately 20% worse
than those of a standard web browser, even under a relatively simple two-level
policy.

2.3.2 AJAX intrusion detection system

Guha et al. proposed an AJAX intrusion detection system based on the combination
of a static analysis for JavaScript and a reverse proxy in the browser [50]. The
static analysis is employed by the server to construct the control flow graph of the
AJAX application to protect, while the reverse proxy in the browser dynamically
monitors and prevents violations to the expected control flow. The solution also
implements defenses against mimicry attacks, where the attacker complies with
legitimate access patterns to hide his malicious purposes.
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The approach is deemed useful to mitigate the threats posed by content injection
and to prevent (login) CSRF, provided that these attacks are launched via AJAX.
Since the syntax of the control flow graph explicitly tracks session identifiers, session
fixation attacks can be prevented: indeed, in these attacks there is a mismatch
between the cookie set in the first response sent by the web server and the cookie
which is included by the browser in the login request, hence a violation to the
intended control flow will be detected. The approach is effective even against AJAX-
based stored XSS attacks, provided that they are mounted after the construction of
the control flow graph.

The solution has a relatively low deployment cost, since the construction of the
control flow graph is totally automatic; however, the browser has to be extended to
include the reverse proxy facility. The adoption of a context-sensitive static analysis
for JavaScript makes the construction of the control flow graph very precise, hence
preserving the usability of the web application.

2.3.3 JavaScript security policies

In the literature, there are several proposals of mechanisms for enforcing general
security policies on untrusted JavaScript code [70, 75, 85, 104]. We refer the inter-
ested reader to a recent survey by Bielova [12] for a comprehensive overview of
these proposals. Security policies for JavaScript have proved helpful for protecting
access to authentication cookies, thus limiting the dangers posed by XSS, and for re-
stricting cross-domain communication by untrusted code. We conjecture that other
useful policies for protecting web sessions can be encoded in these frameworks,
but the authors of the original papers do not discuss them. All these solutions are
effective even against stored XSS attacks.

Devising a comprehensive security policy for JavaScript code may be hard for
web developers, but some default policies can already support a good degree
of protection and there is preliminary evidence that some useful policies can
be automatically synthesized by static analysis or runtime training [75]. Web
developers can always retrofit their security policies to ensure the usability of their
web applications.

2.3.4 Escudo

Escudo [59] is a novel protection model for web browsers, extending the standard
same-origin policy to rectify several known shortcomings. By assimilating the
browser to an operating system, the authors of Escudo argue the adoption of a
hierarchical protection rings mechanism, where different elements of the DOM are
placed in n different rings with decreasing privileges; the definition of the number
of rings and the ring assignment for the DOM elements is done by individual web
developers. Developers can also assign protection rings to their cookies, while the
internal browser state is put by default in ring 0. Access to objects in ring h is
allowed only to subjects in ring k ≤ h.
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Escudo is designed to prevent XSS and CSRF attacks. Untrusted web contents
should be put in the least privilege ring, so that scripts crafted by exploiting a
reflected XSS vulnerability would not harm. Similarly, requests from untrusted
web pages should be put in a low privilege ring without access to authentication
credentials, thus preventing CSRF attacks. Observe, however, that stored XSS
vulnerabilities may be exploited to inject code running with high privileges in
trusted web applications and attack them. The authors of Escudo do not discuss
any solution against network attacks.

Deploying ring assignments for Escudo looks challenging. The authors evaluate
this aspect by retrofitting two existing opensource applications: both experiments
required around one day of work, which looks reasonable. On the other hand, many
web developers are not security experts and the fine-grained policies advocated by
Escudo may be too much of a burden for them: without tool support for annotating
the DOM elements, the deployment cost of Escudo would be high, especially if a
comprehensive solution is desired. Escudo is designed to be backward compatible:
Escudo-based web browsers are compatible with non-Escudo applications and
vice-versa; if an appropriate policy is put in place, no usability issue will affect the
end-user, besides a slight decrease in the performance of the browser (around 5%
of loss).

2.3.5 CookiExt

CookiExt [17] is a Google Chrome extension protecting the confidentiality of
authentication cookies against both web threats and network attacks. The extension
adopts a heuristic to identify authentication cookies in incoming HTTP(S) responses:
if a response is sent over HTTP, all the identified authentication cookies are marked
as HttpOnly; if a response is sent over HTTPS, these cookies are also marked as
Secure. In the latter case, to preserve the session, CookiExt forces an automatic
redirection over HTTPS for all the subsequent HTTP requests to the website,
since these requests would not include the cookies extended with the Secure

attribute: the extension implements a fallback mechanism which removes the
attribute automatically assigned to authentication cookies identifying sessions
which cannot be entirely protected using HTTPS, due to a partial lack of server-side
support. The design of CookiExt has been formally validated by proving that a
browser where the extension has been installed will be non-interferent with respect
to the value of the authentication cookies. CookiExt does not protect against (login)
CSRF and session fixation: it just ensures the confidentiality of the authentication
cookies.

The proposal has a very low deployment cost, since it provides automatic pro-
tection just after the installation of the extension. Preliminary experiments by the
authors show good usability results, even though the adoption of a heuristic for
authentication cookie detection makes potential problems hard to predict and
quantify for a large-scale adoption.
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2.3.6 SOMA

Same Origin Mutual Approval (SOMA) [83] is a research proposal describing a
simple yet powerful policy for content inclusion and remote communication on the
Web. Roughly, a web page from a domain d can include contents from an origin
o on domain d′ only if: (1) d has listed o as an allowed source of remote contents
and (2) d′ has listed d as an allowed destination for content inclusion. SOMA is
designed to offer protection against web attackers: web developers can effectively
prevent (login) CSRF attacks and mitigate the threats posed by content injection
vulnerabilities, including stored XSS, by preventing the injected contents from
communicating with attacker-controlled web pages. However, session fixation is
still possible, since this attack does not depend on communication.

The deployment cost of SOMA is acceptable: browsers must be patched to
support the mutual approval policy described above, while web developers should
identify appropriate policies for their websites. These policies are declarative in
nature and should be relatively small in practice; no change to the web application
code is required. If a policy is written correctly, no usability issue may affect the
end-user.

2.3.7 App Isolation

App Isolation [19] is a defensive mechanism aimed at offering within a single
browser the protection granted by the usage of two different browsers for navigating
websites at different levels of trust. It is well-known that, if one browser is used to
navigate trusted websites, while another browser is used to navigate potentially
malicious web pages, many of the threats posed by the latter are voided by the
absence of shared state between the two browsers. Enforcing a similar protection
within a single browser requires two conditions: strong state isolation for the web
applications to protect and an entry point restriction for them, ensuring that an
attacker cannot fool the user into accessing these applications from a maliciously
crafted URL. This design is effective at preventing reflected XSS attacks, session
fixation and (login) CSRF, but no protection is given against network attacks.
Moreover, stored XSS attacks against trusted websites will bypass the protection
offered by App Isolation.

The deployment cost of App Isolation is acceptable: the authors of the original
paper implemented the required changes to Chromium with around 1,500 lines of
C++ code. Developers who desire to take advantage of the protection offered by
App Isolation must compile a list of entry points, i. e. the allowed landing pages of
their web application. This is feasible and easy to do only for non-social websites,
e. g. online banks, which are typically accessed only from their homepage, but it is
prohibitively hard for social networks or content-oriented websites, e. g. newspapers
websites.
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Table 5: Defenses against multiple attacks

proposal type attacker CSRF
session
fixation

login
CSRF

content
injection

HTTP
sniffing

HTTP
tampering

assumptions usability
deployment

cost

FlowFox client/server W 3 - - 3 - - attack via script - medium
AJAX IDS client/server W 3 3 3 3 - - attack via AJAX 3 low
JS Policies client/server W 3 - - 3 - - attack via script 3 medium
Escudo client/server W 3 - - 3 - - no stored XSS 3 medium
CookiExt client P 7 7 7 3 3 - - 3 low
SOMA client/server W 3 7 3 3 - - - 3 low
App Isolation client/server W 3 3 3 3 - - no stored XSS 7 low

We summarize our observations about the described solutions in Table 5. We use
the dash symbol whenever we do not have any definite evidence about a specific
aspect of our investigation based on the existing literature.





3 A F O R M A L M O D E L F O R S E S S I O N
I N T E G R I TY

In this chapter we introduce FF, a model of a web browser distilled from Feather-
weight Firefox proposed in [13, 14]. Next we instantiate the threat model, which
covers both web and network attackers, and define our notion of session integrity. Fi-
nally we discuss FF+, a security-enhanced extension of FF which provides provable
guarantees for web session integrity against our threat model.

3.1 ff: core model of a web browser

3.1.1 Reactive systems

Along the lines of [14], we define web browsers in terms of a very general notion
of reactive systems.

Definition 1 (Reactive System). A reactive system is a tuple (C,P , I ,O,→), where
C and P are disjoint sets of consumer and producer states, I and O are disjoint sets of input
and output events and→ is a labelled transition relation over the set of states S , C ∪ P
and the set of labels A , I ∪O, defined by the following clauses:

1. C ∈ C and C α−→ Q imply α ∈ I and Q ∈ P ;

2. P ∈ P , Q ∈ S and P α−→ Q imply α ∈ O;

3. C ∈ C and i ∈ I imply ∃P ∈ P : C i−→ P;

4. P ∈ P implies ∃o ∈ O, ∃Q ∈ S : P o−→ Q.

A reactive system is an event-driven state machine that waits for an input, produces
a sequence of outputs in response, and repeats the process indefinitely without
ever getting stuck.

3.1.2 FF: syntax

Let N = {a, b, c, d, k, m, n, p} and V = {w, x, y, z} be disjoint sets of names and
variables, respectively.

A map M is a partial function from keys to values and we write M(k) = v or
{k 7→ v} ∈ M when the key k is bound to the value v in M; dom(M) denotes the

35
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domain of M and {} is the empty map. Given two maps M1 and M2, M = M1 / M2

is the map defined as follows:

M(k) =

{
M2(k) if k ∈ dom(M2)

M1(k) if k ∈ dom(M1) ∧ k /∈ dom(M2)

Finally, M1 ]M2 stands for the map M1 / M2 whenever dom(M1) ∩ dom(M2) = ∅.

URLs

A URL u ∈ U is either the constant blank or a triple (π, d, v), where π ∈ {http, https}
denotes a protocol identifier, d is a domain name and v is a value encoding
additional information, like the full path of the accessed resource or a query string.
Given u = (π, d, v), we let domain(u) = d and path(u) = v.

Cookies

Cookies are collected in maps ck such that ck(k) = (n, f ) whenever the cookie
named k is bound to the value n and marked with the flag f ∈ {H, S,>,⊥}. Flags H

and S model HttpOnly and Secure cookies respectively, ⊥ is used for cookies with
no special security requirements, while > marks cookies which are both HttpOnly

and Secure. We let ck_vals(ck) denote the set of values associated to cookies in the
map ck, i. e. ck_vals(ck) = {n | ∃k, f : ck(k) = (n, f )}.

Values and expressions

We let v range over the set of possible values:

v ::= () unit
u URL
n name
x variable
λx.e function

We let e range over expressions of a simple scripting language which includes
first-class functions, basic operations on cookies and the creation of AJAX requests:

e ::= v value
v v′ application
let x = e in e′ let (scope of x is e′)
v? get cookie
v!〈v′, f 〉 set cookie
xhr(v, v′) AJAX request
auth(v, v′) login operation

In particular:

• (λx.e) v evaluates to e{v/x}, i. e. the expression where all occurrences of x
are replaced with value v;
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• let x = e in e′ first evaluates e to a value v and then behaves as e′{v/x};

• k? returns the value of cookie k, provided that it is not flagged as HttpOnly;

• k!〈n, f 〉, with f ∈ {⊥, S}, stores the cookie {k 7→ (n, f )} in the cookie jar,
ensuring that no existing HttpOnly cookie is overwritten;

• xhr(u, λx.e) sends an AJAX request to u and, whenever a value v is available
as a response, behaves as e{v/x};

• auth(u, p) sends the password p to the URL u.

Event handlers

We let h range over (sets of) event handlers, i. e. maps from names to functions. If
h(k) = λx.e, a handler registered on k is ready to run e, with x bound to the value
received along with the firing event. FF handlers model two different aspects of
web browsing:

• we use them to encode event-driven JavaScript programming: indeed, we
represent the DOM with a set of event handlers;

• a new handler is instantiated when an AJAX request is sent to a server and it
is triggered only when a response is sent back.

Pages

Pages are triples (u, h, h′), where u is the origin of the page, h is a set of event
handlers registered on the DOM and h′ is a dynamic set of handlers, which grows
when new AJAX requests are sent by the page and shrinks when the corresponding
responses are received.

Events

Input events i are defined as follows:

i ::= load(u) load page
text(p, k, n) input in a form
doc_resp(n, ck, u, u′, h, e) response to page request
xhr_resp(n, ck, u, u′, v) response to AJAX request

Specifically:

• load(u) models the user pointing the web browser to URL u: the browser
reacts to the event by opening a new network connection to u and sending a
request for the document;

• text(p, k, n) corresponds to the user inserting the value n in the text field k
of page p: if p contains a set of handlers h such that h(k) = λx.e, the event
triggers the expression e{n/x};
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• doc_resp(n, ck, u, blank, h, e) models the receipt of a response from u over the
network connection n: the browser stores the cookies ck in its cookie jar,
renders the document structure, modelled as the set of handlers h, and then
runs the expression e;

• doc_resp(n, ck, u, u′, h, e) with u′ 6= blank represents a redirect from u to u′:
cookies ck are stored by the browser, but both h and e are ignored;

• xhr_resp(n, ck, u, blank, v) corresponds to the receipt of an AJAX response from
u over the network connection n: the browser stores the cookies ck, retrieves
the continuation λx.e which must be triggered by the response, and runs the
expression e{v/x};

• xhr_resp(n, ck, u, u′, v) with u′ 6= blank models a redirect from u to u′ triggered
by an AJAX response: cookies ck are stored by the browser, while v is ignored.

Output events o are defined as follows:

o ::= • dummy event
doc_req(ck, u) document request
xhr_req(ck, u) AJAX request
login(ck, u, p) login operation

In particular:

• the dummy event • represents a silent reaction to an input event with no
observable side-effect;

• doc_req(ck, u) models a document request to u containing the cookies ck: it
is triggered either by a load(u) event or when the browser follows a redirect
targeted at u after a document response;

• xhr_req(ck, u) models an AJAX request to u containing the cookies ck: it
is triggered either by the expression xhr(u, λx.e) or when the browser is
redirected to u after an AJAX response;

• login(ck, u, p) represents a request to u which includes the password p, cor-
responding to the submission of a login form: the occurrence of this event
may signal the establishment of a new session. The event is triggered by the
expression auth(u, p) and includes the cookies ck which must be sent to u.

We let α ::= i | o range over input and output events. We refer to requests, responses
and logins as network events.
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Browser states

Browser states are 5-tuples Q = 〈W, K, N, T, O〉 where:

Windows W ::= {} | {p 7→ page} |W ]W

Cookies K ::= {} | {d 7→ ck} |K ] K

Networks N ::= {} | {n 7→ (u, v)} |N ] N

Tasks T ::= {} | {p 7→ e}
Outputs O ::= [ ] | o

The different components have the following meaning:

• W is the window store which maps fresh page identifiers to pages;

• K is the cookie jar mapping domain names to the cookies they registered in
the browser;

• N is the network connection store which tracks the open network connections:
if {n 7→ (u, v)} ∈ N, the browser is waiting for a response from u, where
v = () for a document or login request while, for an AJAX request, v is the
identifier of the page that has generated it;

• T is used to represent tasks: if {p 7→ e} ∈ T, then the expression e is running
in the page p;

• O is a size-1 buffer of output events, which is convenient to interpret our
model as a reactive system.

Q = 〈W, K, N, T, O〉 is a consumer state when both T and O are empty and we
denote it with C, otherwise it is a producer state and we denote it with P.

3.1.3 Cookie operations

We introduce the standard cookie operations implemented by web browsers to
select cookies to be attached to requests and to update the cookie jar by means of
the functions get_ck and upd_ck.

Given a cookie store K and a URL u, we define the partial function get_ck(K, u)
as the least map M such that:

M(k) =


(n, f ) if u = (https, d, v) and ∃ck : K(d) = ck ∧

ck(k) = (n, f )
(n, f ) if u = (http, d, v) and ∃ck : K(d) = ck ∧

ck(k) = (n, f ) ∧ f ∈ {⊥, H}

When u = blank, get_ck(K, u) is not defined.
Let ck be the cookie attached to the response from u, with d = domain(u). We

define the function upd_ck(K, d, ck) to update cookies in the store K as follows:

upd_ck(K, d, ck) =

{
K ] {d 7→ ck} if d /∈ dom(K)

K′ ] {d 7→ (ck′ / ck)} if K = K′ ] {d 7→ ck′}
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Table 6: Reactive semantics of FF: inputs

(I-Load)
ck = get_ck(K, u)

〈W, K, N, {}, [ ]〉 load(u)7−−−−→ 〈W, K, N ] {n 7→ (u, ())}, {}, doc_req(ck, u)〉

(I-Text)
W(p) = (u, h, h′) h(k) = λx.e

〈W, K, N, {}, [ ]〉 text(p,k,n)7−−−−−→ 〈W, K, N, {p 7→ e{n/x}}, [ ]〉

(I-DocResp)
d = domain(u) K′ = upd_ck(K, d, ck)

〈W, K, N ] {n 7→ (u, ())}, {}, [ ]〉 doc_resp(n,ck,u,blank,h,e)7−−−−−−−−−−−−−−→ 〈W ] {p 7→ (u, h, {})}, K′, N, {p 7→ e}, [ ]〉

(I-DocRedir)
d = domain(u) K′ = upd_ck(K, d, ck) ck′ = get_ck(K′, u′)

〈W, K, N ] {n 7→ (u, ())}, {}, [ ]〉 doc_resp(n,ck,u,u′ ,h,e)7−−−−−−−−−−−−→ 〈W, K′, N ] {n 7→ (u′, ())}, {}, doc_req(ck′, u′)〉

(I-XhrResp)
d = domain(u)

K′ = upd_ck(K, d, ck) h′ = h′′ ] {n 7→ λx.e} W ′ = W ] {p 7→ (u′, h, h′′)}

〈W ] {p 7→ (u′, h, h′)}, K, N ] {n 7→ (u′, p)}, {}, [ ]〉 xhr_resp(n,ck,u,blank,v)7−−−−−−−−−−−−−→ 〈W ′, K′, N′, {p 7→ e{v/x}}, [ ]〉

(I-XhrRedir)
d = domain(u) K′ = upd_ck(K, d, ck) ck′ = get_ck(K′, u′)

〈W, K, N ] {n 7→ (u, p)}, {}, [ ]〉 xhr_resp(n,ck,u,u′ ,v)7−−−−−−−−−−−→ 〈W, K′, N ] {n 7→ (u′, p)}, {}, xhr_req(ck′, u′)〉

(I-Mirror)

C i7−→ P

C i−→ P

(I-Complete)

〈W, K, N, {}, [ ]〉 6 i7−→

〈W, K, N, {}, [ ]〉 i−→ 〈W, K, N, {}, •〉

3.1.4 Semantics: inputs

The transitions C i−→ P in Table 6 describe how the consumer state C reacts to the
input i by evolving into a producer state P. First we define an auxiliary relation

C i7−→ P, which is the bulk of the semantics and is used in the following inference
rules:

• rule (I-Load) models a user that navigates the browser to a URL u: a new
network connection n is created and a document request event, which includes
cookies set for the domain of u, is inserted in the output buffer;

• rule (I-Text) handles events related to the insertion of the data n in the text
field k on page p: when such an event occurs, the disclosed expression e{n/x}
is executed in the page p;

• rule (I-DocResp) represents the receipt of a response over the network con-
nection n: n is removed from the connection store, the cookie jar is updated
according to the definition of upd_ck, the received page p is added to the
window store and the expression e is executed in the context of the page;
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• rule (I-DocRedir) models a redirect message, received over connection n,
targeted at URL u′: the cookie jar is updated, the URL associated to the
connection n is replaced with u′ and a new document request is placed in the
output buffer;

• rules (I-XhrResp) and (I-XhrRedir) are needed to handle responses and
redirects related to AJAX requests: the main difference with respect to the
previous two rules consists on the different task which is executed on the
page that has triggered the request.

The definition of C i−→ P consists of two rules, i. e. (I-Mirror) and (I-Complete):
for a given pair (state C, input event i), −→ behaves as 7−→ if one of the previous
inference rules can be applied, otherwise the reactive system produces a dummy
action as output.

3.1.5 Semantics: outputs

The reactive semantics for output events P o−→ Q is given in Table 7. As in the
previous section, we define an auxiliary relation 7−→ which is used in the following
rules:

• rule (O-App) models the application of a value to a function inside an expres-
sion;

• rules (O-LetCtx) and (O-Let) allow to manage the use of let inside expres-
sions;

• rules (O-Get) and (O-GetFail) are used to model the retrivial of a cookie
via JavaScript: the first one represents a situation in which the operation is
performed successfully, while the second is needed to handle failures (e. g. no
cookie with the specified name or the cookie is marked as HttpOnly);

• similarly, rules (O-Set) and (O-SetFail) are used to model the setting of a
cookie via JavaScript;

• rule (O-Xhr) models the sending of an AJAX request by an expression
running on a page p: a new connection is added to the connections store and
a new handler, i. e. the function that must be invoked when the response is
received, is added to the set of handlers registered on p.

• rule (O-Login) represents the submission of a login form;

• rule (O-Flush) is needed to model the flushing of the output buffer.

The definition of P o−→ Q consists of the two rules (O-Mirror) and (O-Complete),
which are analogous to (I-Mirror) and (I-Complete) seen in Section 3.1.4.



42 a formal model for session integrity

Table 7: Reactive semantics of FF: outputs

(O-App)

〈W, K, N, {p 7→ (λx.e) v}, [ ]〉 •7−→ 〈W, K, N, {p 7→ e{v/x}}, [ ]〉

(O-LetCtx)
〈W, K, N, {p 7→ e′}, [ ]〉 o7−→ 〈W ′, K′, N′, {p 7→ e′′}, [ ]〉

〈W, K, N, {p 7→ let x = e′ in e}, [ ]〉 o7−→ 〈W ′, K′, N′, {p 7→ let x = e′′ in e}, [ ]〉

(O-Let)

〈W, K, N, {p 7→ let x = v in e}, [ ]〉 •7−→ 〈W, K, N, {p 7→ e{v/x}}, [ ]〉

(O-Get)
W(p) = (u, h, h′) d = domain(u) ∃ck : K(d) = ck ∧ ck(k) = (n, f ) ∧ f ∈ {⊥, S}

〈W, K, N, {p 7→ k?}, [ ]〉 •7−→ 〈W, K, N, {p 7→ n}, [ ]〉

(O-GetFail)
W(p) = (u, h, h′) d = domain(u) ¬∃ck : K(d) = ck ∧ ck(k) = (n, f ) ∧ f ∈ {⊥, S}

〈W, K, N, {p 7→ k?}, [ ]〉 •7−→ 〈W, K, N, {p 7→ ()}, [ ]〉

(O-Set)
W(p) = (u, h, h′) d = domain(u)

¬∃ck : K(d) = ck ∧ ck(k) = (_, f ′) ∧ f ′ ∈ {H,>} K′ = upd_ck(K, d, {k 7→ (n, f )})
〈W, K, N, {p 7→ k!〈n, f 〉}, [ ]〉 •7−→ 〈W, K′, N, {p 7→ ()}, [ ]〉

(O-SetFail)
W(p) = (u, h, h′) d = domain(u) ∃ck : K(d) = ck ∧ ck(k) = (_, f ′) ∧ f ′ ∈ {H,>}

〈W, K, N, {p 7→ k!〈n, f 〉}, [ ]〉 •7−→ 〈W, K, N, {p 7→ ()}, [ ]〉

(O-Xhr)
h′′ = h′ ] {n 7→ λx.e} W ′ = W ] {p 7→ (u′, h, h′′)} ck = get_ck(K, u)

〈W ] {p 7→ (u′, h, h′)}, K, N, {p 7→ xhr(u, λx.e)}, [ ]〉 xhr_req(ck,u)7−−−−−−−→ 〈W ′, K, N ] {n 7→ (u, p)}, {p 7→ ()}, [ ]〉

(O-Login)
ck = get_ck(K, u)

〈W, K, N, {p 7→ auth(u, pwd)}, [ ]〉 login(ck,u,pwd)7−−−−−−−−→ 〈W, K, N ] {n 7→ (u, ())}, {p 7→ ()}, [ ]〉

(O-Flush)

〈W, K, N, T, o〉 o7−→ 〈W, K, N, T, [ ]〉

(O-Mirror)
P o7−→ Q

P o−→ Q

(O-Complete)
〈W, K, N, {p 7→ e}, [ ]〉 67→

〈W, K, N, {p 7→ e}, [ ]〉 •−→ 〈W, K, N, {}, [ ]〉
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. . .https(d2)https(d1) https(dn) . . .
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. . .http(d2)http(d1) http(dn) . . .

evil

⊥

Figure 6: Lattice of security labels.

3.2 session establishment

We presuppose a lattice of security labels (L,v), with bottom and top elements ⊥
and > (cf. Figure 6). The idea is that labels in the lattice correspond to interaction
points for the reactive system, i. e. origins in the context of web systems.

Definition 2 (Security Labels). The set of security labels L, ranged over by l, is the
smallest set generated by the following grammar:

l := ⊥ |> | evil | net |π(d) with π ∈ {http, https}

We define v as the least pre-order over L with ⊥ as bottom element, > as top element,
induced by the axioms: {evil v http(d), http(d) v net, net v https(d)}.
We define a partial function url_label : U → L such that url_label(u) = π(d) for
u = (π, d, v). We also stipulate that the set of names N is partitioned into the
indexed family {Nl}l∈L: this is needed to capture the inability of the attacker to
guess random secrets, like passwords or authentication cookie values.

To each output event of the reactive system we associate a label in L by way
of a trust mapping τ : O → L such that τ(o) = l indicates that o is a message
output by the reactive system in an authenticated session with the endpoint l. We
write τ(o) = ⊥ whenever o does not belong to any authenticated session and let
τ⊥ stand for the trust mapping such that τ⊥(o) = ⊥ for all o ∈ O.

We adopt password-based authentication to establish new sessions with remote
web servers: when a valid password is submitted to a website supporting authenti-
cated access, a cookie is endorsed to identify the password’s owner for the session.
This is formally represented by letting trust change dynamically, noted τ

o−→ τ′,
upon certain output events.
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Table 8: Rules for password-based authentication

(A-Srv)
u ∈ Uok n← Nρ(c)

ρ(c) ∈ {url_label(u), evil}

τ
login(ck,u,c)−−−−−−→ τ t τu,n,c

(A-Fix)
u ∈ Ufix κ(u) = k

ck(k) = (n, f ) ρ(c) ∈ {url_label(u), evil}

τ
login(ck,u,c)−−−−−−→ τ t τu,n,c

(A-Nil)
α has a different form

τ
α−→ τ

where τu,n,c(o) =


ρ(c) if o ∈ {{doc, xhr}_req(ck′, u′) | domain(u) = domain(u′) ∧

ck′(κ(u)) = n ∧ τ(o) v ρ(c)}
⊥ otherwise

For this purpose, we presuppose a function ρ : N → L such that, if ρ(n) = π(d),
then n is the user’s password for the website at d and can be exchanged on the
protocol π. We let ρ(n) = evil whenever n is a password identifying the attacker’s
account: for simplicity, we assume that this password can be used to establish
authenticated sessions on any website. We assume ρ to be consistent with respect to
the partitioning of names, i. e. we stipulate ρ(n) v l whenever n ∈ Nl .

Let now Uauth ⊆ U be the set of the URLs containing a login form, which can be
partitioned into two subsets Uok and Ufix. If a valid password c is sent to:

• u ∈ Uok, a fresh authentication cookie is created by the server and employed
to identify the password’s owner;

• u ∈ Ufix, the server is subject to session fixation, hence it endorses for authen-
tication a cookie already included in the login request.

In both cases the (only) authentication cookie is chosen by a function κ : Uauth → N
identifying its name, and the trust mapping is updated to reflect that any output
event o including that cookie will have the trust level ρ(c) bound to the password.

A description of the rules used for password-based authentication, reported in
Table 8, follows:

• rule (A-Srv) models a login on u ∈ Uok. If c is a valid password, a fresh value
n is picked from the name partition Nρ(c), based on an underlying total order
(n← Nρ(c)), that will be used to identify the password’s owner: specifically,
we perform a point-wise join between the original trust function τ and the
auxiliary trust function τu,n,c which raises to ρ(c) the trust of the output events
sent to domain(u) which include the cookie {κ(u) 7→ (n, f )} for some f ;

• rule (A-Fix) models a login on u ∈ Ufix. In this case, the value n bound to the
key k = κ(u) among the cookies ck sent to the server will be used to identify
the password’s owner;
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• rule (A-Nil) is applied when authentication fails or the output event is not a
login operation.

3.3 threat model

We characterize the attacker’s power by a security label l, with the understanding
that higher labels provide additional capabilities. A novel aspect of our threat
model is that we assume the attacker has full control over compromised sessions,
i. e. authenticated sessions established using the attacker’s credentials. If a network
request belongs to a compromised session, we pessimistically assume that all
the data included in the request is stored by the server in the attacker’s account
and later made available to him: this is useful to capture login CSRF attacks [10].
Moreover, we assimilate all the HTTPS traffic signed with untrusted certificates to
HTTP traffic.

The threat model results from instantiating the definitions of interception (†),
eavesdropping ( ? ) and synthesis (). Let ev_label : A → L be defined as follows:

ev_label(α) =

url_label(u) if α is a network event sent to or
received from u

> otherwise

The relations † and ? are given by the following rules:

(II-Net)
ev_label(α) v l

τ, l † α

(IH-Net)
ev_label(α) u net v l

τ, l ? α

(IH-Evil)
τ(o) = evil

τ, l ? o

In particular:

• rule (II-Net) states that a web attacker at level http(d) can intercept only the
network traffic sent to d either in clear or with no trusted certificates, while a
network attacker can intercept all the HTTP traffic and any HTTPS message
directed to him;

• rule (IH-Net) states that HTTPS traffic can still be overheard by a net-level
attacker: network attackers are thus aware of all the network traffic, even
though they may be unable to access its payload;1

• rule (IH-Evil) makes any request sent over compromised sessions available
to the attacker, as discussed above.

1 We remark that a net-level attacker cannot intercept arbitrary HTTPS traffic, as TLS ensures both
freshness and integrity of the communication [31]. The attacker cannot replay encrypted messages or
otherwise tamper with HTTPS exchanges without breaking the communication session: preventing
the interception of arbitrary HTTPS traffic ultimately amounts to discarding denial of service attacks,
which we are not interested to deal with in this thesis.
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Defining the synthesis relation is slightly more complex. We start by providing an
auxiliary relation τ, l, M  n, which identifies the names that the attacker is able to
generate:

(NS-Base)
n ∈ Nl′

l′ v l
τ, l, M  n

(NS-Look)
ev_label(α) v l

n ∈ fn(α)
τ, l, M ∪ {α}  n

(NS-Evil)
τ(o) = evil
n ∈ fn(o)

τ, l, M ∪ {o}  n

According to:

• rule (NS-Base), an l-attacker can generate any name in a partition indexed by
a label bounded above by l;

• rule (NS-Look), the attacker may generate the free names of any network
event α previously intercepted or overheard, provided that the attacker can
inspect its payload;

• rule (NS-Evil), the attacker has the capability to generate any name commu-
nicated over compromised sessions.

Now, we can define the relation τ, l, M  α:

(IS-Gen)
α = i⇒ ev_label(α) v l
∀n ∈ fn(α) : τ, l, M  n

τ, l, M  α

(IS-Rep)
α ∈ M

ev_label(α) v net v l
τ, l, M  α

• rule (IS-Gen) states that an l-attacker can forge an input event i, provided that
he can generate all the free names in i and the event label of i is bounded above
by l: the latter condition ensures that a net-level attacker cannot forge signed
HTTPS traffic and that a web attacker http(d) cannot provide responses for
another web server at d′. Moreover, the rule (IS-Gen) also allows the attacker
to send arbitrary output events to any server, provided that he is able to
compose the request contents;

• rule (IS-Rep) allows an attacker with network capabilities to replay previ-
ously intercepted/eavesdropped traffic. Since HTTPS ensures freshness, the
side-condition ev_label(α) v net guarantees that encrypted traffic cannot be
replayed.

We conclude this section with a note on XSS attacks: we implicitly include them
in our model, since the session integrity property we are going to introduce in
Section 3.4 quantifies over all the possible inputs made available to the browser.
This universal quantification grants any attacker the capability to mount reflected
XSS attacks on any website.
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3.4 session integrity

Now we introduce the concepts of trace and attacked trace, based on which we define
our notion of session integrity.

Definition 3 (Traces). Given a trust mapping τ and an input stream I, a reactive
system in a state Q generates the output stream O iff the judgement τ ` Q(I) O can be
derived by the following inference rules:

(T-Nil)

τ ` C([ ]) [ ]

(T-In)

C i−→ P τ ` P(I) O
τ ` C(i :: I) O

(T-Out)
P o−→ Q τ

o−→ τ′ τ′ ` Q(I) O
τ ` P(I) (o, τ(o)) :: O

A reactive system generates the trace (I, O) if and only if τ⊥ ` C0(I) O, where C0 is
the initial state of the reactive system.

Most existing frameworks formalize integrity as a non-interference property pred-
icating that the sensitive (high-level) outputs generated by a system should not
depend on the tainted (low-level) information the system receives as an input.
This simple idea becomes more complicated in the presence of active attackers,
like the network attackers we consider in our threat model. Our proposal is thus
reminiscent of robustness [44, 78], which intuitively ensures that an active attacker
does not have more power than a passive attacker.

We define the behavior of an attacked system in terms of an output-generation
relation τ, l, M ` Q(I)  O, where M represents the messages the attacker was
able to intercept or eavesdrop. The definition is parametric with respect to the
relations of interception, eavesdropping and synthesis.

Definition 4 (Attacked Traces). Let l be an attacker. Given an input stream I and a
trust mapping τ, an attacked reactive system in a given state Q generates an output stream
O (written τ, l ` Q(I)  O) if and only if the judgement τ, l, ∅ ` Q(I)  O can be
derived by the inference rules below:

(AT-Nil)

τ, l, M ` C([ ]) [ ]

(AT-In)

C i−→ P τ, l, M ` P(I) O
τ, l, M ` C(i :: I) O

(AT-Out)
P o−→ Q τ

o−→ τ′ τ′, l, M ` Q(I) O
τ, l, M ` P(I) (o, τ(o)) :: O

(AT-GetIn)
τ, l † i

τ, l, M ∪ {i} ` Q(I) O
τ, l, M ` Q(i :: I) O

(AT-GetOut)
P o−→ Q τ, l † o

τ, l, M ∪ {o} ` Q(I) O
τ, l, M ` P(I) O

(AT-HearIn)
τ, l ? i τ, l, M ∪ {i} ` Q(i :: I) O

τ, l, M ` Q(i :: I) O
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(AT-HearOut)
P o−→ Q τ

o−→ τ′ τ, l ? o
τ′, l, M ∪ {o} ` Q(I) O

τ, l, M ` P(I) (o, τ(o)) :: O

(AT-SynIn)

C i−→ P τ, l, M  i
τ, l, M ` P(I) O
τ, l, M ` C(I) O

(AT-SynOut)
τ, l, M  o τ

o−→ τ′ τ′, l, M ` Q(I) O
τ, l, M ` Q(I) (o, τ(o)) :: O

A reactive system generates the attacked trace (l, I, O) if and only if τ⊥, l ` C0(I) O,
where C0 is the initial state of the reactive system.

Our definition of session integrity arises from contrasting the traces of a reactive
system in presence, or absence, of an attacker. Given an output stream O, let O ↓ l
denote the stream that results from O by considering only the events at trust level l.

Definition 5 (Session Integrity). A reactive system preserves session integrity for
its trace (I, O) if and only if for all l ∈ L, and all its attacked traces (l, I, O′) one has:

∀l′ 6v l : O′ ↓ l′ is a prefix of O ↓ l′

A reactive system preserves session integrity if and only if it preserves session integrity for
all its traces.

Session integrity ensures that the attacker has no effective way to interfere with
any authenticated session within the set of traces:

• if the trust mapping remains constant at τ⊥ along the trace, no authentication
event occurs in O and the attacker may only initiate its own authenticated
sessions, at level l or lower;

• if the trust mapping does change, to include authenticated output events at
level l′ 6v l, then the requirement that O′ ↓ l′ is a prefix of O ↓ l′ ensures that
the attacker will at best be able to interrupt the on-going sessions, but not
intrude into them.

3.4.1 Web attacks as session integrity violations

We illustrate a series of attack scenarios, showing how they can be characterized
as violations of our session integrity property. We display attacks as diagrams in
which the browser is the reactive system whose input and output events are respec-
tively represented by incoming and outgoing edges. Inputs are either generated by
the user or correspond to responses from the origins the browser contacts, while
outputs are the requests made by the browser or by other origins. Each output is
marked by its associated trust level. The diagrams also mark the dynamic changes
to the trust mapping along the trace: these arise as a result of authentication events,
whose effect is to upgrade the trust level of the cookies set upon authentication to
the level of the authentication credentials. The trust level for the credentials is pre-
defined and given as assumptions credential: Origin, where each Origin corresponds
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to a label in the security lattice. All attack scenarios involve two origins, S and E,
placed at incomparable levels in the security lattice: S is the browser’s intended
partner in the session, while E plays the role of the attacker or compromised server.
The formal encoding of the attacks in the FF model is given in [87].

Cross-site request forgery (Figure 7a)

Requested by the user, the browser establishes an authenticated session with S that
the server associates with the cookie c which assumes a trust label S, based on the
assumption pwd: S. Later, the user opens a new page on site E in another browser
tab, concluding the unattacked trace. The attacker, sitting at E, provides a response
page which automatically triggers a further request to S (via XHR): being directed
to S, for which the browser has registered the cookie c, the new request includes
c, thus effectively becoming part of the existing authenticated session with S in
the attacked trace. Since S 6v E, this violates the prefix condition in our integrity
definition.

Password theft (Figure 7b)

In this scenario, the browser requests a login page over an HTTP connection to
S. In the unattacked trace, S would respond with the page and the trace would
be concluded with the authentication step, where the password is sent to S over
an HTTPS connection. In the attacked trace, instead, the attacker at E intercepts
the login page on HTTP and responds to the browser with a fake page of its own,
masquerading as S. As a result, the attacker may steal the S-level password and
start its own authenticated session with S, thus violating the integrity condition for
the trace. The attack is not reported as a confidentiality leak, when the password is
inadvertently passed to E, but rather as an integrity violation that arises from E
using pwd to start a new session on behalf of the user.

Login CSRF (Figure 7c)

Again, the trace starts with the browser authenticating with S and continues with a
request for a page at E in a new browser tab. Later on, the user enters a secondary
password xyz for future accesses to S, which is stored in clear. In the unattacked
trace, this last step would include the cookie c set by S and thus store the credentials
on the user’s account at S.

In the attacked trace, the attacker at E forces the browser to silently authenticate
at S with the attacker’s password, starting his own session associated with the
new cookie ĉ: E. The subsequent request by the browser includes this new cookie
registered in the browser, thus continuing the attacker session at S, rather than
resuming the intended user session. As a result, the user’s password xyz is stored
at the attacker’s account, who may later use it to start a new session at S on behalf
of the user. This last step breaks the integrity condition on the attacked trace.
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Figure 7: Violations of session integrity (pwd: S, epwd: E, xyz: S).
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Session fixation (Figure 7d)

The attacker at E injects a malicious script on S through an XSS vulnerability,
which registers in the browser a cookie ĉ chosen by the attacker. This cookie is
not refreshed by S when the user authenticates, rather it is endorsed by the user
password and grants access to the session associated to the user’s credentials.
The attacker can then arbitrarily use ĉ to hijack the session, violating the integrity
condition. Without the attacker intervention, no redirection would have occurred
in the trace, and the login step would not have included any cookie. Clearly, the
problem would be easily rectified if S had refreshed the cookie upon receiving the
credential pwd.

Reflected XSS (Figure 7e)

The browser establishes an authenticated session with S, associated to the cookie
c: S, and later the user requests a new page on site E in another browser tab,
concluding the unattacked trace. The response, provided by the attacker at E,
redirects the browser to a new page û at S, passing a script as a parameter to the
page. Assuming S is vulnerable to injection attacks, the script gets included in
the response page at û and executed after page rendering, thus leaking c to E. At
this stage E may generate an output event at level S, which violates the integrity
condition for the trace.

In the diagram we assume that the unattacked part of the trace is over HTTPS,
the redirection forced by the attacker is over HTTP, and the cookie c is flagged as
Secure. If the cookie was not flagged as Secure, the attack would resurface as a
forgery, like in Figure 7a, since c would be attached to the request to û.

Local CSRF (Figure 7f)

This scenario has the same structure as the reflected XSS attack represented in
Figure 7e: the difference is that the attacker exploits the XSS vulnerability to mount
a “same-site” request forgery via the injected script. As a result, unlike the XSS
scenario in Figure 7e, the attack is effective even when the cookie is flagged as
HttpOnly. Interestingly, this attack is not prevented by the standard browser-based
protection mechanisms against CSRF [64, 72, 93, 94] that strip the cookies from
cross-site requests, since the last one is same-site.

3.5 ff+ : a secure extension of ff

FF provides a faithful abstraction of standard web browsers and, just like them, it
is vulnerable to a variety of attacks. In this section, we discuss the design of FF+, a
security-enhanced extension of FF aimed at enforcing web session integrity.
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3.5.1 Qualifiers

FF lacks the contextual information needed to apply a sound security policy for
session integrity, since it does not track origin changes across network requests. We
fix this by extending the structure of network connections and pages with qualifiers,
as follows:

N ::= {} | {n 7→ (u, v, q)} |N ] N

page ::= (u, h, h′, q)

A qualifier q ∈ {3, 7} is a boolean flag used to taint track the open network connec-
tions. Pages inherit the qualifier of the connection from which they are downloaded
and connections become tainted when a cross-origin redirect is performed over
them. FF+ enforces different security policies on a page based on the value of its
qualifier.

3.5.2 Security contexts

FF must also be enhanced to prevent the risk of password theft. When the user
enters a password into a login form, an event handler registered on the page can
steal the password and leak it to the attacker. We address this issue by running
each expression e inside a security context, i. e. a sandbox represented by a pair (e, l).
If l = π(d), the expression e is allowed to communicate only with d on the protocol
π.

When a password n is disclosed to an expression e, we instantiate a new security
context (e, ρ(n)), which provides FF+ with the information needed to protect n.
This assumes that FF+ keeps track of ρ(n) for any password n entered by the
user, for instance by using an internal password manager.2 Formally, we enrich the
syntax of tasks by having T ::= {} | {p 7→ (e, l)}.

3.5.3 Secure cookie operations

Updates to the cookie jar in FF+ adopt a strong security policy, whereby authen-
tication cookies received over HTTP are marked HttpOnly, while authentication
cookies received over HTTPS are flagged both HttpOnly and Secure. If a Secure

cookie is sent from the server to the browser over HTTP, which is one of the many
quirks allowed on the Web, it is discarded by FF+. Moreover, FF+ strengthens
the integrity of cookies set over HTTPS against network attacks, by ensuring that
cookies which are marked as both HttpOnly and Secure are never overwritten
by cookies set through HTTP responses. As discussed in Section 1.4, this is not
ensured by standard web browsers and previous proposals already highlighted
the dangers connected to this practice [16]. The formal details correspond to the
definition of the secure cookie update function sec_upd_ck in Table 9.

2 For simplicity, in the formal model each password is associated to a single origin: our implementation,
however, allows to reuse the same password on different websites (cf. Chapter 4).
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Table 9: Secure management of the cookie jar

{} ↗ π = {}
f ∈ {⊥, H}

{k 7→ (n, f )} ↗ http = {k 7→ (n, H)}
f ∈ {S,>}

{k 7→ (n, f )} ↗ http = {}

{k 7→ (n, f )} ↗ https = {k 7→ (n,>)}
ck1 ↗ π = ck′1 ck2 ↗ π = ck′2

(ck1 ] ck2)↗ π = ck′1 ] ck′2

For u = (π, d, v), we let:

sec_upd_ck(K, u, ck) =


K ] {d 7→ (ck↗ π)} if d /∈ dom(K)
K′ ] {d 7→ (ck′ / (ck↗ π))} if K = K′ ] {d 7→ ck′} ∧

π = https
K′ ] {d 7→ (ckh / (ck↗ π / cks))} if K = K′ ]{d 7→ ckh ] cks}∧

π = http

where

∀k ∈ dom(ckh) : ckh(k) = (n, f )⇒ f ∈ {⊥, H, S}
∀k ∈ dom(cks) : cks(k) = (n, f )⇒ f = >

Finally, we let get_http_ck(K, u) be defined as the least map M such that:

M(k) =

{
(n,>) if u = (https, d, v) ∧ ∃ck : K(d) = ck ∧ ck(k) = (n,>)
(n, H) if u = (http, d, v) ∧ ∃ck : K(d) = ck ∧ ck(k) = (n, H)

We also introduce a secure counterpart of the standard procedure employed by
web browsers to select the cookies to be attached to a given network request: in
particular, FF+ ensures that no outgoing cookie can have been fixated by an attacker.
For HTTP requests we enforce protection against web attacks, by requiring that only
HttpOnly cookies are sent to the web server: since these cookies cannot be set by a
script, they can only be fixated by network attacks. For HTTPS requests, instead,
we target a higher level of protection, i. e. we ensure that any cookie attached to
them cannot have been fixated, even by a network attacker: accordingly with the
previous discussion, we impose that only cookies which are marked both as Secure
and HttpOnly are attached to HTTPS requests. The formal details amount to the
definition of the function get_http_ck in Table 9.

3.5.4 Semantics: inputs

We report in Table 10 the updated semantics for input events. Now we discuss the
most relevant changes:

• rule (I-Load) is updated so that the qualifier 3 is assigned to the new connec-
tion;
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Table 10: Reactive semantics of FF+: inputs

(I-Load)
ck = get_http_ck(K, u)

〈W, K, N, {}, [ ]〉 load(u)7−−−−→ 〈W, K, N ] {n 7→ (u, (), 3)}, {}, doc_req(ck, u)〉

(I-Text)
W(p) = (u, h, h′, q) h(k) = λx.e

〈W, K, N, {}, [ ]〉 text(p,k,n)7−−−−−→ 〈W, K, N, {p 7→ (e{n/x}, ρ(n))}, [ ]〉

(I-DocResp)
W ′ = W ] {p 7→ (u, h, {}, q)} q = 3⇒ K′ = sec_upd_ck(K, u, ck) q = 7⇒ K′ = K

〈W, K, N ] {n 7→ (u, (), q)}, {}, [ ]〉 doc_resp(n,ck,u,blank,h,e)7−−−−−−−−−−−−−−→ 〈W ′, K′, N, {p 7→ (e,⊥)}, [ ]〉

(I-DocRedir)
q = 3⇒ K′ = sec_upd_ck(K, u, ck) q = 7⇒ K′ = K

q = 3∧ url_label(u) = url_label(u′)⇒ ck′ = get_http_ck(K′, u′) ∧ q′ = 3

q = 7∨ url_label(u) 6= url_label(u′)⇒ ck′ = {} ∧ q′ = 7

〈W, K, N ] {n 7→ (u, (), q)}, {}, [ ]〉 doc_resp(n,ck,u,u′ ,h,e)7−−−−−−−−−−−−→ 〈W, K′, N ] {n 7→ (u′, (), q′)}, {}, doc_req(ck′, u′)〉

(I-XhrResp)
q = 3⇒ K′ = sec_upd_ck(K, u, ck) q = 7⇒ K′ = K h′ = h′′ ] {n 7→ λx.e}

W ′ = W ] {p 7→ (u′, h, h′, q)} W ′′ = W ] {p 7→ (u′, h, h′′, q)} l = url_label(u′)

〈W ′, K, N ] {n 7→ (u, p, q)}, {}, [ ]〉 xhr_resp(n,ck,u,blank,v)7−−−−−−−−−−−−−→ 〈W ′′, K′, N, {p 7→ (e{v/x}, l)}, [ ]〉

(I-XhrRedir)
q = 3⇒ K′ = sec_upd_ck(K, u, ck) q = 7⇒ K′ = K

q = 3∧ url_label(u) = url_label(u′)⇒ ck′ = get_http_ck(K′, u′) ∧ q′ = 3

q = 7∨ url_label(u) 6= url_label(u′)⇒ ck′ = {} ∧ q′ = 7

〈W, K, N ] {n 7→ (u, p, q)}, {}, [ ]〉 xhr_resp(n,ck,u,u′ ,v)7−−−−−−−−−−−→ 〈W, K′, N ] {n 7→ (u′, p, q′)}, {}, xhr_req(ck′, u′)〉

(I-Mirror)

C i7−→ P

C i−→ P

(I-Complete)

〈W, K, N, {}, [ ]〉 6 i7−→

〈W, K, N, {}, [ ]〉 i−→ 〈W, K, N, {}, •〉

• rule (I-Text) is modified so that the expression which is disclosed upon the
insertion of data n by the user is run in the security context ρ(n);

• rule (I-DocRedir) states that, if a cross-origin redirect is received, the qualifier
7 must be assigned to the network connection and it will never be restored
to an untainted state: in this case, the cookie jar is not updated and further
requests will never include cookies, to thwart local and classic CSRF attacks
performed through a redirect;

• rule (I-DocResp) says that a page inherits the qualifier of the connection from
which it has been received: as for the previous rule, the cookie jar is not
updated if the connection is flagged as tainted;

• rules (I-XhrResp) and (I-XhrRedir) are similar to the previous two. The main
differences from a security perspective are in rule (I-XhrResp), where we
instantiate the label of the new security context to the url_label of the page
which sent the AJAX request, to protect the confidentiality of passwords when
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the continuation of an AJAX request is executed. We require the qualifier
q of the network connection to match the qualifier of the page where the
response is received: loading tainted scripts inside an untainted page would
be unsound, since these scripts would be allowed to send authenticated
requests.

In all rules we use the secure cookie operations introduced in Section 3.5.3.

3.5.5 Semantics: outputs

We report in Table 11 the updated semantics for outputs events. The most interesting
changes follow:

• in rule (O-Set) we require the security label ⊥ on the security context, to
prevent confidentiality leaks resulting by setting a cookie containing password
information;

• in rule (O-Xhr) we apply different security policies, depending on the qualifier
of the page and the label of the security context where the expression is run.
Let u′ be the URL of the page, q the qualifier of the page, l the security context
and u the destination of the AJAX request:

– if l = ⊥, no password was previously typed by the user and no confi-
dentiality policy is enforced;

– if l 6= ⊥, FF+ allows the request only if l = url_label(u);

– we require l = url_label(u′) to prevent a password leakage when the
asynchronous continuation of an AJAX request is disclosed, as antici-
pated in rule (I-XhrResp);

– to prevent classic and local CSRF attacks, FF+ strips the cookies from
outgoing requests when url_label(u) 6= url_label(u′) or q = 7.

• in rule (O-Login), the condition ρ(c) = url_label(u) prevents login CSRF
attacks, while the requirement l = url_label(u) ensures the confidentiality of
the password. We also require that any login form is submitted to a URL
within the same origin of the page, to prevent the attacker from fooling
the user into establishing new authenticated sessions with trusted websites,
which would violate session integrity.

In rules (O-Xhr) and (O-Login) we use the secure cookie operations introduced
in FF+, while we rely on the standard cookie update operation upd_ck available
in web browsers in rule (O-Set): this choice is safe because authentication cookies
cannot be modified by this rule, since they are flagged by FF+ as HttpOnly.
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Table 11: Reactive semantics of FF+: outputs

(O-App)

〈W, K, N, {p 7→ ((λx.e) v, l)}, [ ]〉 •7−→ 〈W, K, N, {p 7→ (e{v/x}, l)}, [ ]〉

(O-LetCtx)
〈W, K, N, {p 7→ (e′, l)}, [ ]〉 o7−→ 〈W ′, K′, N′, {p 7→ (e′′, l)}, [ ]〉

〈W, K, N, {p 7→ (let x = e′ in e, l)}, [ ]〉 o7−→ 〈W ′, K′, N′, {p 7→ (let x = e′′ in e, l)}, [ ]〉

(O-Let)

〈W, K, N, {p 7→ (let x = v in e, l)}, [ ]〉 •7−→ 〈W, K, N, {p 7→ (e{v/x}, l)}, [ ]〉

(O-Get)
W(p) = (u, h, h′, q) d = domain(u) ∃ck : K(d) = ck ∧ ck(k) = (n, f ) ∧ f ∈ {⊥, S}

〈W, K, N, {p 7→ (k?, l)}, [ ]〉 •7−→ 〈W, K, N, {p 7→ (n, l)}, [ ]〉

(O-GetFail)
W(p) = (u, h, h′, q) d = domain(u) ¬∃ck : K(d) = ck ∧ ck(k) = (n, f ) ∧ f ∈ {⊥, S}

〈W, K, N, {p 7→ (k?, l)}, [ ]〉 •7−→ 〈W, K, N, {p 7→ ((), l)}, [ ]〉

(O-Set)
W(p) = (u, h, h′, q) d = domain(u)

¬∃ck : K(d) = ck ∧ ck(k) = (m, f ′) ∧ f ′ ∈ {H,>} K′ = upd_ck(K, d, {k 7→ (n, f )})
〈W, K, N, {p 7→ (k!〈n, f 〉,⊥)}, [ ]〉 •7−→ 〈W, K′, N, {p 7→ ((),⊥)}, [ ]〉

(O-SetFail)
W(p) = (u, h, h′, q)

d = domain(u) l 6= ⊥∨ (∃ck : K(d) = ck ∧ ck(k) = (m, f ′) ∧ f ′ ∈ {H,>})
〈W, K, N, {p 7→ (k!〈n, f 〉, l)}, [ ]〉 •7−→ 〈W, K, N, {p 7→ ((), l)}, [ ]〉

(O-Xhr)
W ′ = W ] {p 7→ (u′, h, h′, q)} W ′′ = W ] {p 7→ (u′, h, h′ ] {n 7→ λx.e}, q)}

l 6= ⊥ ⇒ l = url_label(u) = url_label(u′) ∧ q = 3

q = 3∧ url_label(u) = url_label(u′)⇒ ck = get_http_ck(K, u) ∧ q′ = 3

q = 7∨ url_label(u) 6= url_label(u′)⇒ ck = {} ∧ q′ = 7

〈W ′, K, N, {p 7→ (xhr(u, λx.e), l)}, [ ]〉 xhr_req(ck,u)7−−−−−−−→ 〈W ′′, K, N ] {n 7→ (u, p, q′)}, {p 7→ ((), l)}, [ ]〉

(O-Login)
W(p) = (u′, h, h′, 3)

ρ(c) = url_label(u) l = url_label(u) = url_label(u′) ck = get_http_ck(K, u)

〈W, K, N, {p 7→ (auth(u, c), l)}, [ ]〉 login(ck,u,c)7−−−−−−→ 〈W, K, N ] {n 7→ (u, (), 3)}, {p 7→ ((), l)}, [ ]〉

(O-Flush)

〈W, K, N, T, o〉 o7−→ 〈W, K, N, T, [ ]〉

(O-Mirror)
P o7−→ Q

P o−→ Q

(O-Complete)
〈W, K, N, {p 7→ (e, l)}, [ ]〉 67→

〈W, K, N, {p 7→ (e, l)}, [ ]〉 •−→ 〈W, K, N, {}, [ ]〉
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3.6 a running example

Now we provide a detailed example of application of our theory in the context of
the CSRF scenario described in Section 3.4.1:

• first we report the behavior of a standard web browser, according to the FF
model, and show how our definition of session integrity is violated;

• next we discuss the behavior of a patched browser implementing the security
policy of FF+ and show how it prevents the attack.

We consider a honest origin S = https(d1) providing three pages:

• the page at u1 = (https, d1, v1) contains the login form for the website;

• the page at u′1 = (https, d1, v′1) is the target of the login form;

• the page at u′′1 = (https, d1, v′′1 ), available only to authenticated users, is
vulnerable to a CSRF attack.

The user can authenticate at S using his password pwd. We assume S is not
vulnerable to session fixation attacks, thus we use rule (A-Srv) for authentication.

We also consider a web attacker of level E = http(d2) hosting a server providing
the page at URL u2 = (http, d2, v2), which automatically triggers a malicious request
to u′′1 when visited.

3.6.1 Standard web browser

Let us consider a standard browser, modeled as a reactive system, in the initial
state S0 = 〈{}, {}, {}, {}, [ ]〉 and let the initial trust mapping be τ⊥, i. e. there are
no active authenticated sessions. In this section we refer to rules in Table 6 and
Table 7.

1. The user types URL u1 in the address bar: by rules (I-Load) and (I-Mirror)
we can write

S0
load(u1)−−−−→ S1

where

S1 = 〈{}, {}, {n1 7→ (u1, ())}, {}, [doc_req({}, u1)]〉

Notice that the output event does not include cookies, since the cookie jar is
empty.

2. Next the browser sends the document request: according to rules (O-Flush)
and (O-Mirror), we have

S1
doc_req({},u1)−−−−−−−−→ S2

where

S2 = 〈{}, {}, {n1 7→ (u1, ())}, {}, [ ]〉
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3. We model the receipt of a response according to (I-DocResp) and (I-Mirror).
The page includes a text field k, which triggers an authentication request
when submitted, and no additional content (e. g. images or scripts), thus the
expression executed by the browser when the page is received is simply ().
We have

S2
doc_resp(n1,{},u1,blank,{k 7→λx.auth(u′1,x)},())
−−−−−−−−−−−−−−−−−−−−−−−−−→ S3

where

S3 = 〈{p1 7→ (u1, {k 7→ λx.auth(u′1, x)}, {})}, {}, {}, {p1 7→ ()}, [ ]〉

4. At this point we can apply only rule (O-Complete), by which we remove
{p1 7→ ()} from the set of tasks. We have

S3
•−→ S4

where

S4 = 〈{p1 7→ (u1, {k 7→ λx.auth(u′1, x)}, {})}, {}, {}, {}, [ ]〉

5. Now the user inserts his password pwd in the text field k: according to rules
(I-Text) and (I-Mirror), we can write

S4
text(p1,k,pwd)−−−−−−−→ S5

where

S5 = 〈{p1 7→ (u1, {k 7→ λx.auth(u′1, x)}, {})}, {}, {},
{p1 7→ auth(u′1, pwd)}, [ ]〉

6. Next the user submits the login form: since get_ck({}, u′1) = {}, by rules
(O-Login) and (O-Mirror) we can write

S5
login({},u′1,pwd)
−−−−−−−−→ S6

where

S6 = 〈{p1 7→ (u1, {k 7→ λx.auth(u′1, x)}, {})}, {},
{n′1 7→ (u′1, ())}, {p1 7→ ()}, [ ]〉

7. At this point we can apply only (O-Complete) to obtain

S6
•−→ S7

where

S7 = 〈{p1 7→ (u1, {k 7→ λx.auth(u′1, x)}, {})}, {},
{n′1 7→ (u′1, ())}, {}, [ ]〉
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8. The browser receives a response to the login request including the cookie
ck1 which authenticates at S. The response includes a page which does not
trigger further requests, hence the browser runs the expression (). According
to rules (I-DocResp) and (I-Mirror) we can write

S7
doc_resp(n′1,ck1,u′1,blank,{},())
−−−−−−−−−−−−−−−−→ S8

where

S8 = 〈{p1 7→ (u1, {k 7→ λx.auth(u′1, x)}, {}),
{p′1 7→ (u′1, {}, {})}}, {d1 7→ ck1}, {}, {p′1 7→ ()}, [ ]〉

After the login operation, the trust function is updated in such a way that
output events doc_req and xhr_req targeted at d1 and including the cookie ck1

have a trust level of ρ(pwd) = S.

9. Again, we can apply only (O-Complete) and we have

S8
•−→ S9

where

S9 = 〈{p1 7→ (u1, {k 7→ λx.auth(u′1, x)}, {}),
{p′1 7→ (u′1, {}, {})}}, {d1 7→ ck1}, {}, {}, [ ]〉

10. Next the user opens a new tab in his browser and types the URL u2 in the
address bar. By rules (I-Load) and (I-Mirror) we have

S9
load(u2)−−−−→ S10

where

S10 = 〈{p1 7→ (u1, {k 7→ λx.auth(u′1, x)}, {}), {p′1 7→ (u′1, {}, {})}},
{d1 7→ ck1}, {n2 7→ (u2, ())}, {}, [doc_req({}, u2)]〉

11. Finally the browser sends the document request: according to rules (O-Flush)
and (O-Mirror) we can write

S10
doc_req({},u2)−−−−−−−−→ S11

where

S11 = 〈{p1 7→ (u1, {k 7→ λx.auth(u′1, x)}, {}),
{p′1 7→ (u′1, {}, {})}}, {d1 7→ ck1}, {n2 7→ (u2, ())}, {}, [ ]〉

and this concludes the unattacked trace.
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Table 12: Unattacked trace.

Input I Output O

load(u1)

(doc_req({}, u1),⊥)
doc_resp(n1, {}, u1, blank, {k 7→ λx.auth(u′1, x)}, ())

text(p1, k, pwd)
(login({}, u′1, pwd),⊥)

doc_resp(n′1, ck1, u′1, blank, {}, ())
load(u2)

(doc_req({}, u2),⊥)

By applying rules (T-Nil), (T-In), (T-Out) from Section 3.4 and using the deriva-
tions above, we can show that the browser generates, up to dummy outputs, the
unattacked trace (I, O) in table Table 12.

Let us consider now the attacked trace:

12. The browser receives, as a response for the request targeted at u2, a page
which automatically triggers a request to u′′1 : we model this behavior by
using xhr(u′′1 , λx.()) as the expression executed when the page is received.
According to rules (I-DocResp) and (I-Mirror) we can write

S11
doc_resp(n2,{},u2,blank,{},xhr(u′′1 ,λx.()))
−−−−−−−−−−−−−−−−−−−−−−→ S12

where

S12 = 〈{p1 7→ (u1, {k 7→ λx.auth(u′1, x)}, {})},
{p′1 7→ (u′1, {}, {})}, {p2 7→ (u2, {}, {})},
{d1 7→ ck1}, {}, {p2 7→ xhr(u′′1 , λx.())}, [ ]〉

13. Next the browser sends a XHR request at url u′′1 . The request includes the
cookie c1, thus it is part of the authenticated session with S previously
established by the user. By rules (O-Xhr) and (O-Mirror) we can write

S12
xhr_req(ck1,u′′1 )−−−−−−−−→ S13

where

S13 = 〈{p1 7→ (u1, {k 7→ λx.auth(u′1, x)}, {})},
{p′1 7→ (u′1, {}, {})}, {p2 7→ (u2, {}, {n′′1 7→ λx.()})},
{d1 7→ ck1}, {n′′1 7→ (u′′1 , p2)}, {p2 7→ ()}, [ ]〉

By applying rules (AT-Nil), (AT-In), (AT-Out) from Section 3.4 and using the
derivations above, we can show that the reactive system generates the attacked
trace (E, I′, O′) in table Table 13.
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Table 13: Attacked trace (FF).

Input I’ Output O’

load(u1)

(doc_req({}, u1),⊥)
doc_resp(n1, {}, u1, blank, {k 7→ λx.auth(u′1, x)}, ())

text(p1, k, pwd)
(login({}, u′1, pwd),⊥)

doc_resp(n′1, ck1, u′1, blank, {}, ())
load(u2)

(doc_req({}, u2),⊥)
doc_resp(n2, {}, u2, blank, {}, xhr(u′′1 , λx.()))

(xhr_req(ck1, u′′1 ), S)

It is easy to show that a standard browser does not satisfy our definition of session
integrity for the trace (I, O). Let us consider the attacker E and the attacked trace
(E, I′, O′): for S 6v E, we have O′ ↓ S = [(xhr_req(ck1, u′′1 ), S)], O ↓ S = [ ], but O′ ↓ S
is not a prefix of O ↓ S.

3.6.2 Patched web browser

Again, let us consider a standard browser in the initial state S+
0 = 〈{}, {}, {}, {}, [ ]〉

and let the initial trust mapping be τ⊥. In this section we refer to rules in Table 10

and Table 11.

1. The user types URL u1 in the address bar: by rules (I-Load) and (I-Mirror)
we can write

S+
0

load(u1)−−−−→ S+
1

where

S+
1 = 〈{}, {}, {n1 7→ (u1, (), 3)}, {}, [doc_req({}, u1)]〉

2. Next the browser sends the document request: according to rules (O-Flush)
and (O-Mirror), we have

S+
1

doc_req({},u1)−−−−−−−−→ S+
2

where

S+
2 = 〈{}, {}, {n1 7→ (u1, (), 3)}, {}, [ ]〉

3. The browser receives the requested page, which includes the text field k
used for the insertion of the password. The qualifier of the connection n1 is
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transferred to p1, hence the page is flagged as untainted. According to rules
(I-DocResp) and (I-Mirror) we have

S+
2

doc_resp(n1,{},u1,blank,{k 7→λx.auth(u′1,x)},())
−−−−−−−−−−−−−−−−−−−−−−−−−→ S+

3

where

S+
3 = 〈{p1 7→ (u1, {k 7→ λx.auth(u′1, x)}, {}, 3)}, {}, {}, {p1 7→ ((),⊥)}, [ ]〉

4. At this point we can apply only rule (O-Complete): we have

S+
3
•−→ S+

4

where

S+
4 = 〈{p1 7→ (u1, {k 7→ λx.auth(u′1, x)}, {}, 3)}, {}, {}, {}, [ ]〉

5. Now the user inserts his password pwd in the text field k: according to rules
(I-Text) and (I-Mirror), the expression auth(u′1, pwd) will be executed in
the security context ρ(pwd) = S, which ensures the confidentiality of the
password. We have

S+
4

text(p1,k,pwd)−−−−−−−→ S+
5

where

S+
5 = 〈{p1 7→ (u1, {k 7→ λx.auth(u′1, x)}, {}, 3)}, {}, {},

{p1 7→ (auth(u′1, pwd), S)}, [ ]〉

6. Next the user submits the login form: the operation is allowed since page
p1 is untainted, the password pwd is used to authenticate the user at S and
url_label(u1) = url_label(u′1) = S. By rules (O-Login) and (O-Mirror) we can
write

S+
5

login({},u′1,pwd)
−−−−−−−−→ S+

6

where

S+
6 = 〈{p1 7→ (u1, {k 7→ λx.auth(u′1, x)}, {}, 3)}, {},

{n′1 7→ (u′1, (), 3)}, {p1 7→ ((), S)}, [ ]〉

7. At this point we can apply only (O-Complete) to obtain

S+
6
•−→ S+

7

where

S+
7 = 〈{p1 7→ (u1, {k 7→ λx.auth(u′1, x)}, {}, 3)}, {},

{n′1 7→ (u′1, (), 3)}, {}, [ ]〉
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8. As before, the browser receives a response to the login request including the
cookie ck1 which authenticates at S. The received page p′1 inherits the qualifier
3 of the connection n′1. According to rules (I-DocResp) and (I-Mirror) we
can write

S+
7

doc_resp(n′1,ck1,u′1,blank,{},())
−−−−−−−−−−−−−−−−→ S+

8

where

S+
8 = 〈{p1 7→ (u1, {k 7→ λx.auth(u′1, x)}, {}, 3),

{p′1 7→ (u′1, {}, {}, 3)}}, {d1 7→ ck1}, {}, {p′1 7→ ((),⊥)}, [ ]〉

9. Again, we can apply only (O-Complete) and we have

S+
8
•−→ S+

9

where

S+
9 = 〈{p1 7→ (u1, {k 7→ λx.auth(u′1, x)}, {}, 3),

{p′1 7→ (u′1, {}, {}, 3)}}, {d1 7→ ck1}, {}, {}, [ ]〉

10. Next the user opens a new tab in his browser and types the URL u2 in the
address bar. By rules (I-Load) and (I-Mirror) we have

S+
9

load(u2)−−−−→ S+
10

where

S+
10 = 〈{p1 7→ (u1, {k 7→ λx.auth(u′1, x)}, {}, 3),

{p′1 7→ (u′1, {}, {}, 3)}}, {d1 7→ ck1},
{n2 7→ (u2, (), 3)}, {}, [doc_req({}, u2)]〉

11. Finally the browser sends the document request: according to rules (O-Flush)
and (O-Mirror) we can write

S+
10

doc_req({},u2)−−−−−−−−→ S+
11

where

S+
11 = 〈{p1 7→ (u1, {k 7→ λx.auth(u′1, x)}, {}, 3),

{p′1 7→ (u′1, {}, {}, 3)}}, {d1 7→ ck1}, {n2 7→ (u2, (), 3)}, {}, [ ]〉

and this concludes the unattacked trace.

By applying rules (T-Nil), (T-In), (T-Out) and using the derivations above, we
can show that the browser generates, up to dummy outputs, the same trace of the
standard browser, reported in table Table 12.

We consider now the attacked trace:
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12. The browser receives the page at u2, which inherits the qualifier assigned to
the connection n2. According to rules (I-DocResp) and (I-Mirror) we can
write

S+
11

doc_resp(n2,{},u2,blank,{},xhr(u′′1 ,λx.()))
−−−−−−−−−−−−−−−−−−−−−−→ S+

12

where

S+
12 = 〈{p1 7→ (u1, {k 7→ λx.auth(u′1, x)}, {}, 3)},

{p′1 7→ (u′1, {}, {}, 3)}, {p2 7→ (u2, {}, {}, 3)},
{d1 7→ ck1}, {}, {p2 7→ (xhr(u′′1 , λx.()),⊥)}, [ ]〉

13. Next the browser sends a XHR request at url u′′1 : since url_label(u′′1 ) 6=
url_label(u2), the network connection is flagged as tainted and cookies set for
domain d1 are not attached to the request, thus the CSRF attack is prevented.
In fact, by rules (O-Xhr) and (O-Mirror) we have

S+
12

xhr_req({},u′′1 )−−−−−−−→ S+
13

where

S+
13 = 〈{p1 7→ (u1, {k 7→ λx.auth(u′1, x)}, {}, 3)},

{p′1 7→ (u′1, {}, {}, 3)}, {p2 7→ (u2, {}, {n′′1 7→ λx.()}, 3)},
{d1 7→ ck1}, {n′′1 7→ (u′′1 , p2, 7)}, {p2 7→ ((),⊥)}, [ ]〉

By rules (AT-Nil), (AT-In), (AT-Out) and using the derivations above, we can show
that the patched browser generates the attacked trace (E, I′, O′) reported in Table 14.

Table 14: Attacked trace (FF+).

Input I’ Output O’

load(u1)

(doc_req({}, u1),⊥)
doc_resp(n1, {}, u1, blank, {{k 7→ λx.auth(u′1, x)}}, ())

text(p1, k, pwd)
(login({}, u′1, pwd),⊥)

doc_resp(n′1, ck1, u′1, blank, {}, ())
load(u2)

(doc_req({}, u2),⊥)
doc_resp(n2, {}, u2, blank, {}, xhr(u′′1 , λx.()))

(xhr_req({}, u′′1 ),⊥)

In this case, the patched web browser satisfies session integrity for the unattacked
trace.
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3.7 formal results

We can prove that FF+ enforces session integrity for any well-formed trace. Intuitively,
well-formedness ensures a basic set of constraints on incoming input events, which
are needed for our formal result, but have a limited practical impact. Clearly, we
do not assume that the intruder is forced to produce well-formed inputs.

We say that a URL u is well-formed (written `� u) iff domain(u) ∈ N⊥ and there
exists l v url_label(u) such that path(u) ∈ Nl .

Definition 6 (Well-formed Trace). An input event i is well-formed if and only if
the judgement `� i can be proved through the following inference rules:

(WF-Load)
`� u

`� load(u)

(WF-Text)
n ∈ Nρ(n)

`� text(p, k, n)

(WF-Xhr)
l = url_label(u) ck_vals(ck) ⊆ Nl `� u `� u′

∃l′ v l : path(u′) ∈ Nl′ dom(ck) ∪ fn(v) ∪ {n} ⊆ N⊥
`� xhr_resp(n, ck, u, u′, v)

(WF-Doc)
l = url_label(u) ck_vals(ck) ⊆ Nl

`� u `� u′ ∃l′ v l : path(u′) ∈ Nl′

dom(ck) ∪ fn(h) ∪ fn(e) ∪ {n} ⊆ N⊥
`� doc_resp(n, ck, u, u′, h, e)

We say that a trace (I, O) is well-formed if and only if so is every i ∈ I.

An explanation of the rules follows:

• rule (WF-Load) ensures that the user never types in the address bar a URL
containing a password or an authentication cookie value which should not be
disclosed to the remote server;

• rule (WF-Text) rules out text inputs containing names corresponding to
authentication cookie values: in other words, we assume that the user is
always entering either a password or some public data;

• rules (WF-Doc) and (WF-Xhr) ensure that cookies set by a honest server are
picked from the correct name partition and only occur in the standard HTTP
header: furthermore, we require that confidential data (e. g. passwords) never
appear in the body of a response or in the cookie names.

Theorem 1 (Session Integrity). FF+ enforces session integrity for any well-formed
trace (with respect to the threat model in Section 3.3).

The proof draws on a label-indexed family of simulation relations, which connect the
attacked trace with the original one. The proof is challenging, due to the significant
differences which may arise between the two traces: full details are provided in [87].





4 S E S S I N T: O U R T H E O RY M OV E D TO
T H E R E A L W O R L D

Now we discuss how to transfer FF+ provable security into real browser security.
To accomplish our goal, two aspects must be considered:

• the protection mechanisms should affect as less as possible the user experience:
due to common practices adopted on the Web, a straightforward implementa-
tion of the rules introduced with FF+ would break too many sites, making
our solution completely unusable. Therefore, it is essential to design the
implementation so as to achieve the best possible trade-off between security
and usability;

• the design should lend itself to an implementation as a browser extension, to
ease its deployment: this choice also simplifies the implementation, as we do
not need to inspect and directly modify the source code of the browser; on the
other hand, sometimes the development may be hindered by some limitations
posed by the extension API and it is necessary to adjust the proposed security
mechanisms in such a way they are still consistent with the theoretical model.

In this chapter we report on the development of SessInt, an extension for Google
Chrome which enforces the integrity mechanisms introduced in FF+. While the
current design is targeted at Chrome and depends on its API, the same development
appears possible on other major browsers.

4.1 implementing ff+ security

We start by discussing how the different browsing events are mapped to FF+ events
and are handled by SessInt accordingly.

4.1.1 Address bar

Typing a URL in the address bar and loading a page corresponds to the load event
in FF+, i. e. we trust what the user types in the address bar. Here we meet the first
problem due to Chrome’s API, which does not provide enough information to
distinguish between a request triggered by the user typing in the address bar and
other types of requests, possibly caused by JavaScript.

The only way to overcome this limitation consists in using the omnibox API,
which allows to capture the input of the user in the address bar only after the
insertion of a particular keyword: in our case, the user must prepend the character

67
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‘g’ (and a space) to the URL, so that the input is available to the extension. If the
protocol is left unspecified, HTTP is assumed.

4.1.2 User clicks

Following a link via a click is mapped to a xhr operation of FF+: the rationale is
that we do not trust clicks as they might have been generated programmatically
by malicious JavaScript code. Moreover, it is unrealistic to assume that the user
carefully checks every single link and, even in this case, an event handler triggered
by the click may modify the target URL just before the request is dispatched.

For these reasons, though a user click could correspond to a load event, we
decided to treat it as an xhr_req event and apply a more conservative security
policy, whereby SessInt strips all authentication cookies before sending cross-
origin requests, so as to prevent cross-origin request forgeries from malicious
scripts.

4.1.3 Implicit loads

Implicit loads from a page or script correspond to xhr operations in FF+, since we
cannot trust these events: also in this case, SessInt strips all authentication cookies
before sending cross-origin requests.

Furthermore, according to rule (Xhr-Resp) discussed in Section 3.5.4, SessInt

prohibits the inclusion of cross-origin scripts inside untainted pages.

4.1.4 Passwords

When the user types his password in a form, it can be easily leaked by malicious
JavaScript code running inside the page using a variety of techniques, e. g. by
changing the action of the form when it is submitted, by accessing the password
field after a certain time, by using a keylogger, etc.

We solve the problem using the pageAction API which allows us to create an
isolated popup, inaccessible to scripts running on the page, where we sandbox
the login form. Forms detection is implemented by a content script1 that checks
for HTML forms containing a password field, a text field and eventually some
other elements (e. g. a checkbox to maintain the session across different browser’s
executions).

SessInt implements a password manager, which checks that the inserted pass-
word is correct before sending it: if it has not been used previously, the user is
asked for confirmation and, in case of a positive answer, the password is stored and

1 A script which is injected inside a page and can access its DOM, but that is executed in an isolated
world. This means that the content script cannot access JavaScript variables or functions created
by the page and, vice-versa, scripts in the page cannot access any object in the environment of the
content script.
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associated to the page and action URLs, to enforce the runtime discipline adopted
by FF+.

Notice that the Chrome API does not allow to inspect the page content before
inline scripts are executed: however, if these scripts modify the action URL before
the extension creates the sandboxed form, the password manager will detect it by a
comparison with the stored action URL and will warn the user before proceeding.

4.1.5 Cookies

SessInt performs taint tracking over the open network connections, exactly as FF+:
cookies are only updated when they are received over an untainted connection.
SessInt marks any authentication cookie received by the browser on HTTP connec-
tions as HttpOnly, while those received over HTTPS are marked as both HttpOnly

and Secure: this prevents leakage from malicious JavaScript programs and protects
cookies in case HTTP links are injected into HTTPS websites.

Along the lines of other extensions [17, 81, 95], we employ an heuristic for the
detection of authentication cookies. A cookie is identified as an authentication
cookie if it satisfies one of the following conditions:

• its name contains one of the following strings: ‘sess’, ‘sid’, ‘auth’;

• its value contains at least 10 characters and its index of coincidence is below
0.04.

The index of coincidence is a statistical measure widely used in cryptography
which can be employed to estimate the degree of entropy of a text [45]. We consider
a variant which is not normalized by the alphabet size. Given a string s of length
N and an alphabet Σ of size |Σ|, let ni stand for the number of occurrences in s of
the i-th character of the alphabet; the index of coincidence IC(s) is given by the
formula:

IC(s) =
∑|Σ|i=1 ni(ni − 1)

N(N − 1)

The first condition of our heuristic is motivated by the observation that several
languages and frameworks offer native support for cookie-based sessions and they
use authentication cookies with known names satisfying this condition (for instance,
PHPSESSID in PHP); moreover, also custom session identifiers usually include these
strings in their names.

The second condition follows by the expected statistical properties of a robust
session identifier, which is typically a long, random string. The thresholds on the
length and the IC have been set empirically, according to the investigation done
in [17]. In a parallel work, Calzavara et al. [18] formally validated the effectiveness of
our heuristic against a gold set of authentication cookies and showed that, though
sub-optimal, it is still accurate enough to allow a reliable protection.

To preserve functionality, SessInt forces a redirection on HTTPS for the entire
website when a login form is submitted over HTTPS: indeed, if the website contains
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some hard-coded HTTP links, marking some authentication cookies as Secure

would break the session when navigating these links.
Finally, authentication cookies are attached to all requests performed over HTTPS,

while over HTTP they are appended only to requests used to load pages or
frames: the rationale is that resources like images or scripts typically do not require
authentication for their retrivial and, if they do, the website typically supports
HTTPS (e. g. Dropbox).

4.2 protection vs usability

There are a few situations where the security policy of FF+ would break too many
sites, hence we have to slightly relax it in SessInt. We discuss these situations and
the implications on security and usability.

4.2.1 Mixed HTTPS support

Some websites only support HTTPS for a subset of their pages, thus the automatic
redirection implemented by SessInt may prevent such sites from working properly.
When some portions of the website do not provide support for HTTPS, SessInt

selectively allows a fallback to HTTP, with the proviso that cookies which have
been previously promoted to Secure by the extension must be included to preserve
the session.

The choice of when a fallback should be adopted must be made carefully, to avoid
that an attacker can abuse it to force the entire session in clear: our decision is to
allow a fallback only when the server replies to the HTTPS request with a redirect
message (status code 3xx) which explicitly forces over HTTP the request previously
upgraded by the extension. This choice is motivated by the following observations:

• we start redirecting HTTP requests targeted at a certain site only when the
login operation is performed over HTTPS, hence we know that the server
supports the protocol and thus should answer to all well-formed requests;

• we have experimentally observed that a website that is not willing to serve
some contents over HTTPS usually forces the downgrade of the protocol by
using a HTTP redirect message (e. g. with the mod_rewrite module for URL
rewriting in Apache servers).

Differently from [17], we have decided to exclude the use of timeouts to detect
missing HTTPS support: their usage is not robust in practice and is vulnerable to
the action of a network attacker who can arbitrarily intercept all the HTTPS traffic
to force a fallback.

The fallback procedure is not as trivial as it may look at first sight, due to the
restrictions posed on the inclusion of mixed contents (cf. Section 1.3.2). If a request
to a page can be successfully upgraded, but some active content is not available
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over HTTPS, the page appears as broken and the extension must force a fallback
for the entire page.

Of course, we cannot provide session security against network attacks for web-
sites which only partially support HTTPS and the user is warned in this case.

4.2.2 Redirection to HTTPS

Many websites redirect the browser to HTTPS when an HTTP access is requested.
However, SessInt would not include authentication cookies upon these HTTPS
redirections, since they could be exploited by a network attacker to point the
browser to a sensitive HTTPS URL and carry out a forgery: this cookie stripping
breaks many websites, e. g. Facebook. To regain functionality, in the specific case of
a protocol upgrading with unmodified URL, the user is asked (once for each site) to
confirm that the redirection is expected, so that authentication cookies can be sent
to the website. If the redirection looks suspicious, the user can block it.

4.2.3 HTTPS login forms into HTTP pages

It is common to find websites where HTTPS login forms are embedded (e. g. as
inline frames) into HTTP pages: this is insecure, since an attacker can change the
HTTP page to redirect forms to a server he controls, but it is a very common practice
and we need to let it work. Our choice is to warn the user when this happens, then
the password manager will give an extra warning in case the password is going
to be sent to a URL that is not yet known: the combination of the two warnings
should make the user well aware of a possible attack.

4.2.4 Cross-domain scripts

Preventing the inclusion of cross-domain scripts may break several sites which rely
on JavaScript libraries hosted at a different origin (e. g. Facebook), hence SessInt

allows the inclusion of scripts from:

• well-known websites hosting famous JavaScript libraries, e. g. Google Hosted
Libraries distribution network [47];

• origins specified in the CSP policy dispatched with the page.

4.2.5 Subdomains and external sites

It is common that secure sessions link to subdomains or to external sites, e. g. in
electronic payments. Navigating to a different domain would normally strip authen-
tication cookies: to avoid breaking sites, SessInt by default sends authentication
cookies when moving into a subdomain, even though this may sometimes be
exploited by a web attacker with scripting capabilities in the subdomain [16, 95].
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SessInt also forces an upgrade to HTTPS when navigating to a subdomain for
which a domain cookie, flagged as Secure by the extension, has been registered:
if there is no HTTPS support, according to the criteria described in Section 4.2.1,
we remove the flag and adopt a fallback to HTTP only for that subdomain. This
choice allows to prevent a scenario where an active network attacker injects inside
a page a request to a non-existent domain, forges a DNS response for that domain
containing his IP address, does not respond to HTTPS requests to force a fallback to
HTTP and thus obtains cookies flagged as Secure by the extension. This behavior
may break legitimate websites, where only particular subdomains can be accessed
over HTTPS, but preliminary investigations have shown that this does not typically
occur: a whitelist-based approach can be used to handle such particular cases.

We are also investigating on how to extend the approach adopted for subdomains
to external (trusted) websites. A simple idea might be to include a whitelist of
trusted sites that are needed to be reached by other websites, so that when the
navigation comes back to the original one, authentication cookies are correctly
sent and the session is preserved. We also plan to study to which extent we can
engineer in SessInt previous proposals aimed at supporting useful collaborative
web scenarios [94].

4.3 experiments

We have tested SessInt both on:

• deliberately vulnerable web applications installed on our local machine, such
as OWASP Mutillidae and Damn Vulnerable Web Application, to assess the
degree of protection offered by our solution;

• existing websites, to evaluate the impact of the extension on the usability and
the user experience.

We believe this is important to confirm that the more relaxed security policy
adopted in our implementation does not sacrifice too much of the bullet-proof
security of FF+ and that SessInt can be effectively used on the Web.

4.3.1 Security evaluation

We have assessed the protection offered by our solution on a local environment
including three virtual hosts:

• www.good.local runs the latest release of OWASP Mutillidae,2 where the
page add-to-your-blog.php is vulnerable to CSRF and capture-data.php is
exposed to various threats, including reflected XSS via GET parameters;

• www.fix.local is vulnerable to session fixation and the page index.php is
exposed to content injection attacks;

2 Version 2.6.17, available at http://sourceforge.net/projects/mutillidae.

http://sourceforge.net/projects/mutillidae
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• www.evil.local is the attacker’s website, containing several pages used to
launch attacks against the other hosts.

In all experiments, the XSSAuditor of the browser was disabled.

Cross-site request forgery

Since the page add-to-your-blog.php on www.good.local is vulnerable to CSRF
for requests using the POST method, the attack is slightly more complex than the
one depicted in Figure 7a.

Let us assume that the victim, already authenticated at www.good.local, visits a
page at www.evil.local including the code in Listing 2.

Listing 2: CSRF attack via POST method.

<form action="https://www.good.local/index.php?page=add-to-your-blog.php"

style="visibility: hidden" method="post">

<textarea name="blog_entry">PWN3D!</textarea>

<input id="save-button" name="add-to-your-blog-php-submit-button"

type="submit" value="Save Blog Entry">

</form>

<script>

setTimeout(function () {

document.getElementById("save-button").click();

}, 1000);

</script>

The page contains a hidden form, targeted at add-to-your-blog.php, which is
programmatically submitted after one second by the JavaScript code which clicks
on the button. The attack is prevented by SessInt by not attaching the authentication
cookies for www.good.local, since the request is cross-domain.

A login CSRF can be performed similarly, by automatically submitting to the
target website a form filled with the attacker’s credentials: a browser patched with
SessInt prevents the attack by trashing the cookies attached to the response, since
they come from a connection which is flagged as tainted due to the cross-origin
request.

Cookie theft via XSS

A web attacker can easily access and steal authentication cookies set for a domain,
unless explicitly flagged as HttpOnly, in presence of a content injection vulnera-
bility. Suppose the victim visits a page at www.evil.local, which redirects him to
capture-data.php at www.good.local passing in the query string the code shown
in Listing 3.
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Listing 3: Cookie theft via XSS.

<script>

new Image().src = "https://www.evil.local/?q=" + document.cookie;

</script>

When included in the page, the code attempts to load an image from the attacker’s
site, disclosing to him the cookies set for the domain which are not flagged as
HttpOnly.

A browser running SessInt marks authentication cookies (at least) as HttpOnly,
thus preventing their leakage via XSS. Of course, the degree of protection offered by
our solution against this scenario crucially depends on the precision of the heuristic
detailed in Section 4.1.5 to detect authentication cookies.

Cookie theft via HTTP sniffing

Let us consider a scenario where the victim is authenticated at www.good.local over
HTTPS, there is no HSTS policy enabled for the host and authentication cookies are
not flagged as Secure. Suppose the victim requests a page, possibly over HTTPS,
at www.good.local which contains an hard-coded HTTP link, to the same domain,
to include some passive content: the browser will attach authentication cookies to
the request, disclosing their values to attackers on the network.

A browser running SessInt adds the flags HttpOnly and Secure to authenti-
cation cookies when the login is performed and upgrades all future requests to
www.good.local to HTTPS. If the server explicitly forces a fallback to HTTP for the
resource, cookies are not attached anyway, since the retrieval of passive resources
typically do not require authentication (cf. Section 4.1.5) and the attack is still
prevented. Of course, as discussed in Section 4.2.1, a full protection cannot be
offered to the user whenever the site offers just partial HTTPS support.

Session fixation

Let us assume that the victim is not yet authenticated at www.fix.local, where
the session is maintained using the cookie named PHPSESSID, and visits a page at
www.evil.local that redirects him to index.php at www.fix.local passing in the
query string the code shown in Listing 4, which is injected in the page.

Listing 4: Session fixation via XSS.

<script>

scr = document.createElement("script");

scr.innerHTML = "document.cookie=’PHPSESSID=94ipih82uv92edsdpvbbfv5kl5’";

window.location.href = "http://www.fix.local/?name=" + scr.outerHTML;

</script>
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The JavaScript code binds the cookie PHPSESSID to a value known to the attacker,
which is attached to subsequent requests to www.fix.local. Since the application
is vulnerable to fixation, the value of the cookie is not refreshed after the login
operation, hence the attacker will be able to hijack the session.

A browser patched with SessInt attaches only authentication cookies set via
HTTP header: in our case, the cookie PHPSESSID is not attached to future requests
and the server is forced to generate a fresh cookie unknown to the attacker when
the login is performed, thus preventing the attack.

Local CSRF

In this scenario we exploit a reflected XSS vulnerability at www.good.local to auto-
matically trigger a “same-site” request on that domain. We assume the victim visits
a page on www.evil.local that redirects the browser to the page capture-data.php

at www.good.local, where the user is already authenticated, passing in the query
string the code in Listing 5, which is injected in the page.

Listing 5: Same-site request forgery via reflected XSS.

<script>

$(document).ready(function () {

form = $("<form action = ’https://www.good.local/index.php?" +

"page=add-to-your-blog.php’ method = ’post’>");

text = $("<textarea name=’blog_entry’>").val("PWN3D!");

butt = $("<input name=’add-to-your-blog-php-submit-button’" +

" type=’submit’ value=’Save Blog Entry’>");

form.append([text, butt]);

butt.click();

}

</script>

The JavaScript code creates a form targeted at add-to-your-blog.php, which is
vulnerable to CSRF, and programmatically submits it.

A browser running SessInt flags the connection as tainted after the first redirect,
since it occurs across different origins: the qualifier is then inherited by page
capture-data.php and the second request, triggered by a tainted page, does not
include the cookies, thus preventing the attack.

It is worth to notice that standard browser-based solutions against CSRF [64, 72,
93, 94] fail to offer protection against this scenario, since the last request is not
cross-site.

4.3.2 Usability evaluation

The only way to evaluate the impact of our solution on the user experience is by
using the extension during standard browsing sessions. Among the others, we have
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tested SessInt on several sites on the Alexa top 100 ranking [4] where we possess a
personal account.

While our relaxed security policy has proved to be adequate for most of the
websites, we have met some occasional issues due to:

• our heuristic improperly detecting standard cookies as authentication cookies:
since they are flagged as HttpOnly, they become inaccessible to legitimate
JavaScript codes inside the page, thus disrupting some functions of a site,
e. g. the chat on Facebook;

• sites intentionally performing cross-domain redirects, e. g. in e-payments
or during authentication on Google, which switches from google.it to
google.com;

• sites relying on JavaScript to perform the authentication, e. g. using AJAX: in
such a case, the sandboxed login form does not work properly and the user
is forced to use the classic form on the page, exposing him to possible threats,
as in case the page is provided over HTTP and a network attacker adds a
malicious script to leak the password.



5 C O N C LU S I O N S

In this thesis, we have surveyed the most popular solutions proposed in the
literature and by web standards to thwart the most widespread client-side attacks
against web sessions and we have discussed their security guarantees in presence
of different attackers, their deployment cost and their impact on usability.

Many proposals address only specific classes of threats under certain attacker
models, granting just partial protection against the multitude of attacks on the Web,
and do not offer robust foundations to reason on web sessions security.

We have provided such foundations by introducing a novel notion of web session
integrity and the formalization of a security-enhanced browser, called FF+, that
allows a full-fledged and provably sound enforcement of our concept of integrity
against both web and network attackers.

Starting from our model we have developed SessInt, a browser extension which
implements the security checks introduced in FF+ in a carefully relaxed fashion to
deal with some common practices that are adopted on the Web.

5.1 future works

As a future work, we would like to further engineer SessInt to support more
complicated collaborative scenarios involving authenticated cross-origin communi-
cations that are currently not supported by our default policy: this could be done
by adding some server-side support which allows developers to declare what kinds
of cross-origin requests are expected, e. g. using a custom HTTP header (only over
HTTPS, to prevent an active network attacker from abusing this feature).

We are also interested in adding support to other existing technologies, similarly
to what we have done for CSP about the inclusion of cross-origin scripts and HSTS
for the upgrade of requests to HTTPS, to improve the usability of our solution.

Finally, it would be interesting to implement SessInt directly in the browser: in
this way we could overcome some of the limitations posed by the extension API
described in the previous chapter. Moreover, it would also allow us to improve the
performance of our solution and the user experience.
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