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Abstract

Audio data compression and decompression are usually implemented via software
codecs which are handmade crafted, often exploiting the spectral properties of the
signal. In this thesis we propose to tackle such problem as a data-driven approach,
considering the time-frequency domain of an audio signal as an intensity map to be
reconstructed. The main idea is to mask some input values and then apply sparse
convolutional operation in order to perform depth completion and reconstruct the
missing signal. In particular, our method is divided into two main parts: first, we
explore the feasibility of audio signal compression with sparse convolutions varying
the level of missing information; we also explored how different levels of sparsity
affect the quality of the final reconstruction in order to choose the most suitable
one according to the context. Secondly, we aim at creating an ad-hoc binary mask
so that the loss of information during the decompression step is minimized. We
set the problem of mask generation as an optimization problem using two different
approaches: by solving a minimization problem and via genetic algorithms.
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Chapter 1

Introduction

In the digital age we currently inhabit, nearly all aspects of our lives are stored
in digital memories, which are inherently limited. In order to make efficient use
of this space, we must employ various forms of file compression. Another example
that demonstrates the usefulness of this task can be encountered when we need to
share files, the speed at which we can do it becomes a paramount concern and the
dimension file plays a major role.

In particular in our work, of all possible file types, we have decided to focus on audio
files. Classical audio compression algorithms are usually implemented in software
as audio codecs [1, 2, 3, 4], they remove redundant or irrelevant information from
audio data in order to save space. There exist two main categories of compression
algorithms: lossy and lossless. When an audio file is compressed using a lossy
algorithm, the codec will analyze the audio signal, it will discard the information that
is considered inaudible or less important to human hearing, then it will compress the
remaining information. On the other hand, lossless compression aims to preserve all
the information in order to reconstruct the signal when decompression is performed.

In this thesis, we want to explore whether is possible to create a lossy compression
and decompression models for audio files exploiting their frequency domain. We
start extracting the log-spectrogram of the audio waveform which can be seen as
an intensity map of signal frequencies. Using those spectrograms allows us to ex-
periment methods that work on images and intensity maps, more precisely we want
to address this problem as a depth completion task. The depth completion task
usually works with a sparse input, our compressed spectrogram, and performs an
interpolation giving a dense map as output.

As we have formulated the problem, we divide it into two distinct parts: in the first
one, we want to use a deep neural network (DNN) model in order to decompress our
data, in the second one we want to compress the file creating a sparse spectrogram
in order to have the reconstructed audio as good as possible.

We decided to use the DNN for the decompression phase because, with the advance-
ment of technology and computational power, they become more and more popular
to solve different problems in different scientific fields. Thanks to their exceptional
ability to learn from the data is possible to craft new compression method in a short
time with respect to domain-specific research that took years to develop and were
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largely hand-designed.

For the compression phase, on the other hand, we will create a binary mask, with
the same size as the spectrogram, that yields the property of having information,
represented with a 1, or not in this case we have a 0. The goal of this work is to
compress the spectrograms of a fixed level of sparsity 80%, 85%, 90%, and 95%. If we
generate a random uniform mask, we will surely remove the amount of information
that we are aiming for, but in the end, we could also eliminate useful information
in order to restore the entire spectrogram. In order to improve the quality of the
decompression, we want to create an ad-hoc mask for each sample. We formulated
the generation of the latter masks with two different approaches: in the first one
we described and solved a minimization problem, and in the second one we used
genetic algorithms.

The remainder of the thesis is organized as follows: in Chapter 1 we outline all the
background theories and concepts that are used for this work, in Chapter 2 are de-
scribed some related work in literature, in Chapter 3 we present the implementation
of our methods talking about the architecture of the model and the optimization
problems, in Chapter 4 we discuss the results that we have obtained and, lastly, in
Chapter 5 we conclude our work make some considerations about what we achieved
and talk about some improvement that can be done.

1.1 Theory of audio signals

What is sound? Sound is produced by a vibrating object and such vibrations cause
air molecules to oscillate, this change in air pressure will create a wave. More
specifically, the sound is a mechanical wave whose particularity is the need of a
medium in order to expand, most of the time the medium is the air. A sound is
created by a source, such as a musical instrument or a person speaking, which will
travel through a channel and can then be detected by our ears and perceived as
sound.

How can we represent a complex sound? Is possible to visualize every complex
sound, such as music and speech, with a waveform. Waveforms are fundamental
for audio processing because they carry multiple pieces of information, for example,
frequency, intensity, and timbre.

As shown in figure 1.1, each waveform can be divided into different categories:

• Periodic waveform, repeat regularly through time. They are divided in:

– Simple, for example, a single sinewave, is a smooth and repetitive wave
that oscillates between a maximum and minimum value;

– Complex, which is composed of multiple sinewaves.

• Aperiodic waveform, the wave doesn’t have periodicity. They are divided in:

– Continuous, sometimes referred to as noise, are non-repeating waveform
that does not have a distinct shape or pattern;
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– Transient, for example, pulse waves, are waveforms that consist of brief,
high-amplitude pulses, often with a constant low-amplitude "off" state in
between.

Figure 1.1: Different types of waveform.

1.1.1 Digital vs analog signal

An audio signal is a representation of the sound it encodes all the information needed
to be reproduced, is possible to plot an audio signal in a 2-dimensional plane where
on the x-axis we represent the time and on the y-axis we represent the amplitude.
In real life the signals are analog but in order to use them in our computer, for
example, we need to convert them to a digital signal. How we can do that?

In analog signals, we have for time and amplitude continuous values, but when we
have to make the signal digital we have a sequence of discrete values and the data
point can only take a finite number of values. This analog-to-digital conversion
(ADC), also called pulse-code modulation, is composed of two steps:

• Sampling, we want to sample our data points in a specific value in time, the
x-axis, based on a period T . We can define the sample rate sr = 1/T as
the average number of samples for each second, usually the sample rate is
measured in Hertz. Is simple to imagine that if we have a lower sample rate
we will be more prone to have the so called sample error because we are going
to sample a fewer number of points.

• Quantization, the quantization can be seen as sampling our data points in the
y-axis, the amplitude of the signal. We choose a fixed number of amplitudes
and each sample will be indexed with the nearest value. The number of values
is usually referred as resolution and is determined by a number of bits, for
example, a CD has a 16 bits resolution which is 216 = 65536 values. Just like

Chapter 1 Giovanni Scodeller 3
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the sampling error, we can also create a quantization error if we choose a lower
resolution.

In figure 1.2 is represented an example of conversion from an analog signal to a digital
signal, is shown how the operation of sampling and quantization is performed.

Figure 1.2: Example of sampling and 3-bit resolution.

1.1.2 Fourier Transform

The Fourier Transform (FT) [5] is a mathematical technique that can be used to
decompose a complex signal, such as a sound or an image, into its individual fre-
quency components. We need to use this transformation in order to move from the
time domain of a signal into its frequency domain, figure 1.3.

Figure 1.3: Time domain to frequency domain sketch.

The FT work with the intuition of comparing the original signal with sinusoids of
various frequencies. The process can be described as follows:

4 Giovanni Scodeller Chapter 1
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• The original signal is multiplied by sinusoids of particular frequencies. For
each of those frequencies, we calculate the magnitude and phase.

• If the resulting magnitude of the product is high, it indicates that there is a
high similarity between the original signal and the sinusoid of that particular
frequency.

The process of multiplying the original signal with sinusoids of different frequencies,
and comparing the resulting magnitudes, allows us to identify which frequencies
are present in the original signal. Now a waveform that was represented in a time-
amplitude domain is represented in a frequency-intensity domain.

Complex number for signal processing

Is useful to introduce complex numbers because they are used in the Fourier Trans-
form. They provide a convenient mathematical representation of the phase and
amplitude of a signal.

A complex number can be divided into two parts: the real part of the number
and the imaginary part. Complex numbers allow for the representation of both
amplitude and phase information in a single mathematical object, making it easier
to manipulate and analyze signals in the frequency domain.

Is possible to represent the complex number z = x+ iy in the Cartesian plane where
the magnitude of the signal is represented by the absolute value of z:

|z| =
√
x2 + (iy)2 (1.1)

and the phase is represented by the angular coordinate denoted as

ϕ = arctan

(
y

x

)
(1.2)

The point z can be represented in Cartesian coordinate by the tuple P (Re, Im), but
also another convenient way to represent the wave is to use its Polar coordinates
which are given by the point P (|z| cosϕ, |z| sinϕ).

Now, after applying some mathematical computation, the following equation for the
point z is obtained:

z = |z| · (cos(ϕ) + i sin(ϕ)) (1.3)

which is really useful because we can now introduce the Euler formula:

eiϕ = cos(ϕ) + i sin(ϕ) (1.4)

in order to write it in a much more compact way the value of z as:

z = |z| · eiϕ (1.5)

Chapter 1 Giovanni Scodeller 5
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Figure 1.4: Complex number in Cartesian coordinate.

Continuous and Discrete Fourier Transform

To be more precise the Fourier Transform is defined as a mathematical transforma-
tion from R → C. In the case of a continuous-time Fourier Transform (CTFT) the
transformation formula is the following:

ĝ(f) =

∫ ∞

−∞
g(t)e−2πiftdt =

∫ ∞

−∞
g(t) cos(−2πft)dt+ i

∫ ∞

−∞
g(t) sin(−2πft)dt (1.6)

Where g(t) is our continuous signal function in domain time t and ĝ(f) is the
frequency-domain representation expressed as a complex number. Thanks to the
latter described Euler’s formula in equation 1.4 we can divide the integral in two,
one for the real part and one for the imaginary part.

But in reality, as we said, we are dealing with discrete digital signals so we are more
interested in the discrete version of the FT called Discrete Fourier Transform (DFT).
Instead of having a continuous signal g(t) we will have an array of samples x(n), in
order to make use of the DFT we have to deal with two issues:

• Because we can not integrate through time we have to fix a certain number of
samples N , so we need to map the continuous time domain and the discrete-
time domain. The mapping tn is given by multiplying a discrete value n =
0, 1, 2, ... by the period T .

tn = nT =
n

sr
(1.7)

• Instead of considering all the possible real values for frequencies, we choose
a discrete number of them. Usually, the number of frequencies considered is
equal to the number of samples in order to make the transformation invertible.

Now we can write the discrete formulation of the Fourier transform as:

6 Giovanni Scodeller Chapter 1
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x(k) =
N−1∑
n=0

x(n) · e−i2πn k
N for k = 0, 1, 2, ...., N − 1 (1.8)

The range of all possible frequencies will correspond to F (k) =
k

NT
=

k · sr
N

, which
ensures that the maximum number of frequencies is equal to the sample rate.

One last thing is important to say if we plot the magnitudes of the DFT frequencies
we can observe that the plot is redundant, in particular, the values are mirrored.
They are mirrored when k = N/2 so we can take into consideration only half of

them, in particular up to the frequency sr/2. The frequency f =
sr

2
is called

Nyquist frequency [6] and represents the highest frequency that can be accurately
reconstructed from a given sampling rate without error.

Short-Time Fourier Transform

In order to retrieve the spectrograms that we need in our work, we need to in-
troduce another variation of the FT: the so called Short-Time Fourier Transform
(STFT). The standard Fourier Transform provides information for the entire signal,
but cannot provide time-specific frequency information. In other words, FT tells us
the importance of some particular frequencies in the signal, but can not tell where
those frequencies are important through time. Furthermore, our signal is aperiodic,
applying the STFT on a small portion of time helps us cheat on the assumption
that the signal is periodic.

The STFT is calculated by dividing the signal into small, overlapping segments, and
then applying the Fourier Transform to each of them individually. The result is a
set of frequency spectra and by examining the content of each segment, the STFT
provides information about how the relative frequencies change over time.

The STFT can be represented mathematically as:

S(m, k) =
N−1∑
n=0

x(n+mH) · w(n) · e−i2πn k
N (1.9)

Where N now corresponds to the frame size which is the number of samples that
we are considering for the time frame, H is the hop size from one frame to another,
and w(n) is a windowing function, the most common functions are the Hamming,
Hanning, and Blackman window. The value k is the proxy for frequencies as de-
scribed in equation 1.8 and the value of m is the proxy to identify the time frame
that we are going to consider.

Now instead of having a feature vector, with STFT, we obtain a F ×T matrix where
F denotes the frequency bins and is equal to half of the frame size N, for the Nyquist
theorem. On the other hand, the value T is equal to the number of frames that we
analyze in the waveform.

Chapter 1 Giovanni Scodeller 7
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The choice of the window function, the frame size, and the hop size of the segments
will affect the resolution of the spectrogram. In figure 1.5 is represented a little
schema of the STFT process.

Figure 1.5: Schema of the STFT process.

1.1.3 Spectrogram

Thanks to the Short-Time Fourier Transform we have found a way to transform
our audio signal in a matrix of complex value X ∈ CF×T . From this matrix, we
are particularly interested in plotting the magnitude of the frequencies which carry
useful information and are much more interpretable than the phases which look al-
most random. When we plot a spectrogram we will have on the y-axis the frequency
bins (Hz) and on the x-axis the time frames, each cell of the matrix will have the
corresponding frequency intensity.

There exist different types of spectrograms, each one with its own meaning and
characteristics, in our work we have decided to work with the log-power spectrogram
(LPS). We can obtain it by the power spectrogram (PS), which in turn is obtained
in the following way |X|2, where we remind that |X| represents the magnitude of
our signal. Now applying a logarithmic transformation we can retrieve the log-
power spectrogram. In particular, we are interested in the following logarithm 10 ∗
log10|X|2, this logarithmic transformation rescales our values in the decibel scale
(dB).

The LPS will be the protagonist of our work, as shown in figure 1.6 the spectrogram
carries a lot of information about the signal frequencies. Our work will aim to remove
as much as possible information from it and then, in a second moment, reconstruct
the signal.

8 Giovanni Scodeller Chapter 1
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Figure 1.6: Top: Log-power spectrogram of an audio signal. Bottom: phase of the
same signal.

1.2 Neural Networks

Neural networks are a type of machine learning model that has been inspired by
the structure and functionality of the human brain. They consist of interconnected
nodes, called neurons, that are connected by edges, called weights. Each neuron
performs a simple computation on the input it receives, then the produced output
will become the input for the next layer. This architecture allows neural networks
to learn complex patterns and relationships from the data.

Each type of network has its own characteristics and is suited to different types of
problems, for example, we can describe:

• Feedforward neural networks are the simplest type of neural network,
where the information flows in one direction, from the input layer to the output
layer. They have been used for tasks such as image classification, speech
recognition, and natural language processing.

• Feedback loop or Recurrent neural networks are a type of neural net-
work that have feedback connections, allowing information to flow in a cyclic
manner. They are well suited for tasks such as speech recognition, natural
language processing, and time series prediction.

Chapter 1 Giovanni Scodeller 9
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• Fully connected, all neurons in one layer are connected with all neurons on
the next layer.

• Sparsely connected, only a subset of neurons are connected to the next
layer.

The first definition of neural network was made by McCulloch and Pitts in 1943, in
their work they have given the definition of the MP neuron [7] which is and highly
simplified computational model of a biological neuron.

Given a set of inputs I ∈ 0, 1n, which values can be 0 or 1, and a set of weights
w ∈ Rn the neuron "fires" if

∑
j wj ∗ Ij reaches or exceed a unit’s threshold (or

"bias") T ∈ R. The output y of the MP is determined as follows:

y = g

(∑
j

wj ∗ Ij − T

)
(1.10)

where g(x) denotes an activation function such that:

g(x) =

{
0 if x < 0

1 if x ≥ 0
(1.11)

MP-neuron will be improved years later by Rosenblatt when he introduces the per-
ceptron [8], which has the benefit of weight assignment to variables and can take
real values as input.

Nowadays, also thanks to technological advancement, they have been used in a wide
range of applications, and they have been particularly successful in tasks that involve
large and complex datasets, such as image classification [9], handwriting recognition
[10], automatic speech recognition [11], language modeling [12], and machine trans-
lation [13], where traditional methods struggle to achieve high accuracy. Deep neural
networks (DNNs) are composed of an input layer, multiple hidden layers, and an
output layer.

DNNs are capable of learning thanks to the back-propagation algorithm [14] which
self-adjusts the weights and bias with respect to an error loss function, denoted
by E, that describes the goodness of our model. It is composed of two steps: the
forward step and the backward step.

In the forward step, the input of the network is propagated in the forward direction
layer after layer. In the backward step, the error measured with the loss function is
propagated in the backward direction to update the weights properly. The weights
wji from node i to node j are updated using the gradient descent method through
the following formula:

wji = wji − η
∂E

∂wji

(1.12)

where η is a parameter called learning rate and governs the speed at which the
network reaches the local minimum. The value for the parameter has to be carefully

10 Giovanni Scodeller Chapter 1
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chosen, if we choose it too small it will converge too slowly and if we choose it too
large the gradient starts oscillating. To solve this problem usually is involved a
momentum term α that allows the use of large values of η without worrying about
the oscillating phenomena, the new variation on the weights is calculated as:

∆wji(t+ 1) = −η
∂E

∂wji

+ α∆wji(t) (1.13)

1.2.1 Convolutional Neural Network

Convolutional Neural Networks are a particular category of DNNs models, they
usually work with images and video to perform a wide range of tasks such as semantic
segmentation [15] or object detection [16]. The fundamental operation behind their
construction is called convolution, it’s a mathematical operation that applies a filter
(or kernel) to the image in order to extract certain features from it. Figure 1.7 show
how a particular value of the feature mask is calculated through the convolutional
operation.

The shape of the extracted feature is determined by different parameters such as the
kernel size determines the dimension of the window where the convolution operation
is performed, the stride that determines how many units we move for performing
the convolution, and padding which adds a fixed value, usually zero, in the contour
of the image.

Figure 1.7: Example of convolution operation.

1.3 Interpolation problems

As we remind you, the goal of our work is to reconstruct the values from a sparse
spectrogram and such spectrogram can be seen as an intensity map with only one

Chapter 1 Giovanni Scodeller 11
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channel. We can refer to the problem of reconstructing those missing values as an
interpolation problem.

In the mathematical field, interpolation is a method of estimating or determining a
value based on a discrete set of known data points. There exist different types of
interpolation, some common algorithms that can be used are:

• Bilinear interpolation, this method is an extension of the linear interpolation,
it assumes that the function being interpolated is a hyperplane between the
known points. We first apply linear interpolation in one direction and then
again in the other one.

• Bicubic interpolation, this method is similar to bilinear interpolation, but it
uses a bicubic polynomial function to estimate the value of the point being
interpolated. It’s a more complex method than bilinear interpolation, but it
produces a better result when the data is more complex and non-linear.

• Interpolation with convolution, convolution can be used for interpolation in
some cases, convolving our matrix with different kernels can produce different
outputs.

• Interpolation with Neural Networks, DNNs can also be used to fill the missing
values [17, 18], these networks are trained to reconstruct the original data,
once they are trained they can fill the missing values by recreating them.

Figure 1.8: Example of bilinear and bicubic interpolation techniques.

Each method has advantages and disadvantages in terms of the quality of the result
and speed of computation.

1.3.1 Depth completion problem

The depth completion problem performs the task of predicting dense pixel-wise
depth from an extremely sparse map captured from a depth sensor. Those maps

12 Giovanni Scodeller Chapter 1
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obtained by the sensors are often noisy, incomplete, and have holes, the goal is to
be able to artificially create those missing values in order to have a dense map as
output.

It has a variety of applications in the computer vision field, such as autonomous
driving [19], augmented reality [20], and 3D scene reconstruction [21]. The depth
map is a representation of the distance between the sensor and the objects in a
scene, in our case we are working on spectrograms that don’t have real objects and
are not retrieved by a sensor too.

Nevertheless, we are interested in more than the what but how the missing values are
created, we assume that the spectrogram yields the same characteristics of a depth
map. Neural networks, particularly deep convolutional neural networks (CNNs),
have been widely used in recent years to tackle the depth completion task. The neu-
ral network based methods can handle large missing regions, noise, and occlusions,
and provide a dense depth map as output.

1.4 Optimization problems

An optimization problem is a problem in which the goal is to find the best solution
among a set of possible solutions. Typically we want to maximize or minimize
a certain objective function, which is a mathematical function that describes the
goodness of the solution. There exist various types of optimization problems such
as linear programming, non-linear programming, and genetic algorithms.

We will introduce a brief theory behind the optimization problems because we need
them when we are going to create the best possible binary mask which will maximize
the reconstruction of the image. In the following section, we will give an introduction
about the two types of optimization problems that we have decided to focus on, later
on, we will see how we have applied the theory to the practice.

1.4.1 Non-linear programming problems

We can describe the general non-linear programming problem as [22, 23, 24]:

min
x∈X

f(x) (1.14)

Where the feasible set X ∈ Rn is explicitly defined through a finite number of
equalities and/or inequalities:

X :

{
hj(x) = 0, j = 1, ..., p,

gi(x) ≤ 0, i+ 1, ...,m.
(1.15)

Where in case every hj are linear and every gi are convex then for some mathematical
proposition the function f(x) is convex.

Chapter 1 Giovanni Scodeller 13
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Now given the described minimization problem we can introduce the following new
variables λ0 ∈ R, λ ∈ Rp, µ ∈ Rm and define the Lagrangian function L(x, λ0, λ, µ)
as:

L(x, λ0, λ, µ) = λ0f(x) + hj(x)
Tλ+ gi(x)

Tµ

Now in order to define the Karush-Kuhn-Tucker (KKT) optimality conditions for
the minimization problem we need to verify one of the constraint qualification con-
ditions, which ensures that λ∗

0 ̸= 0.

Hopefully, in our work, we have only one equality constraint which describes our
will to have a fixed ratio of compression, so we can verify one of the most used con-
straint qualification conditions called Linear Independency Constraint Qualification
(LICQ):

Given the problem 1.14 and the point x∗ ∈ X, we define the set I(x∗) of the active
constraints at x∗ as the set of indices of the constraints which satisfy:

I(x∗) = {j : hj(x
∗) = 0, j = 1, ..., p} ∪ {i : gi(x∗) = 0, i = 1, ...,m}.

The LICQ states that in case the gradients of the vectors of the active constraints
are linearly independent, then λ∗

0 = 0, in our case having a single equality constraint
the condition is satisfied.

Using the latter constraint qualification conditions we can define the KKT:

Given the problem 1.14, let f : Rn −→ R, h : Rn −→ Rpandg : Rn −→ Rm, with
f(x), h(x) and g(x) continuously differentiable in an open set containing X. Let
f(x) be convex on X, gi(x) be convex on X, i = 1, ...,m, and let hj(x) be linear
(affine) j = 1, ..., p. If there exist vectors λ∗ ∈ Rp and µ∗ ∈ Rm such that the next
conditions at x∗ hold

∇f(x∗) +
∑p

j=1∇hj(x
∗) +

∑m
i=1∇gi(x

∗) = 0,

hj(x
∗) = 0, j = 1, ..., p,

gi(x
∗) ≤ 0, i = 1, ...,m,

µ∗
i gj(x

∗) = 0, i = 1, ...,m,

µ∗ ≥ 0,

then x∗ is a local (and global) minimum of 1.14. In particular if f(x) is also strictly
convex on X, then x∗ is the unique local (global) minimum of 1.14.

1.4.2 Genetic algorithms

Genetic algorithms (GA) are also widely used in optimization problems, they per-
form a search heuristic inspired by Charles Darwin’s theory of natural evolution
[25, 26]. The idea behind this is to start from an initial population, made of individ-
ual, and perform a process of natural selection where in the end we obtain the best
individual that minimizes (or maximize) the objective function (or fitness function).
The steps of the genetic algorithm can be divided into five points:
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• Initialization: in this phase, the initial population is generated, it contains
individuals which are generated randomly from the solution space. The pop-
ulation size depends on the nature of the problem.

• Selection: in the selection phase we want to select the best individuals who
are responsible to pass on to the next generation their genes. The selection is
made by a fitness score which evaluates the population, then two individuals
are chosen, and those parents will reproduce in order to make a child that will
inherit their genes.

• Crossover: This is one of the operations performed during the reproduction
step. The crossover operator split the two parents and then combines different
genetic information together in order to generate a new candidate.

• Mutation The mutation step is performed to maintain diversity within the
population and prevent premature convergence. With a random probability p
the genes of the child are perturbed.

• Termination The genetic algorithm is repeated until a termination condition
has been reached, for example, we can decide to stop when we have reached
a fixed number of iterations or the highest ranking solution’s fitness does not
change anymore.
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Chapter 2

Related works

In this chapter, we are going to describe some works in literature that have some
connection to our work.

2.1 Depth completion

As we described in section 1.3.1 the depth completion problem performs the task
of predicting dense pixel-wise depth from an extremely sparse map captured from a
depth sensor.

In the last decades, deep neural networks have shown great performance in the tasks,
the work of Hu et al. [27] classified the different methodologies that can be divided
into two categories: unguided methods, which aim to complete the sparse depth map
with only DNN models, an example of input feature is represented in figure 2.1, and
RGB guided methods, which also use the RGB information in order to reconstruct
the sparse depth map.

In particular, from the first category we took into consideration the sparsity-aware
CNNs that use a binary mask to differentiate between valid and missing elements
during the completion convolution operation, among them [28, 29, 30] we chose the
work of Uhrig et al. [28] which was the most compatible with our assumptions.
Other depth completion methods, instead, replace the binary validity mask with a
continuous confidence map [31, 32] for a better completion performance, but in this
way, we can’t store only the values that we are interested to keep.

The RGB guided depth completion does not fit at all with our task, because they
work along with the RGB image that doesn’t exist in our case, for the sake of
completeness is right to mention some methods in literature: early fusion methods
[33, 34, 35], they directly concatenate the sparse depth map and the RGB image
before feeding them to the DNN model; late fusion models [36, 37], usually consist of
dual encoders or two sub-networks; explicit 3D representation models [38, 39], which
explicitly learn 3D representations; Residual depth models (RDM) [40, 41], learn a
coarse depth map and a residual depth map; Spatial Propagation Network (SPN)
based [42, 43], they learn the affinity matrix and then use it for depth refinement.
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Figure 2.1: Example of depth map for a depth completion task taken by the paper
of Hu et al. [27]. In the figure is represented an example of sparse input and dense
output from data obserbed by a kinect (left) and a LiDAR (right).

2.2 Speech enhancement

Speech enhancement was always a challenging task to perform, the goal of the task
is to extract the speech signal from a mixture of speech and background of ambient
noise in order to improve the intelligibility and quality of speech [44].

It depends on the objective of the problem but speech enhancement can be achieved
by separating the clean speech from the background or trying to conceal the noise
in the audio in order to improve intelligibility or quality. Usually, this type of task
is involved in speech compression, recognition, and authentication. Enhancement
can also be used when we are communicating through a noisy signal or we want a
clean signal that was registered in systems located in noisy environments[45].

In literature there exist different classical enhancement methods, for example, Boll
et al. [46] and Berouti et al. [47] proposed a noise reduction technique that estimates
the magnitude frequency spectrum of the underlying clean speech by subtracting the
noise magnitude spectrum from the noisy speech spectrum.

But with the advent of neural networks, more machine learning-based techniques
arose, addressing the task in a supervised manner by training a DNN model to
estimate the clean speech signal from the noisy input.

Starting from more or less complex network architecture, each one of them has its
unique characteristics and assumptions. For example, the work of Fu et al. [48]
proposed a convolutional neural network estimate of the clean real and imaginary
spectrogram from noisy ones. In particular, their implementation of a multi-metrics
loss function that involved both log-power spectrogram and the real and imaginary
one was very performing.

A more complex architecture was proposed by Pascual et al. [49] with their Speech
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Enhancement Generative Adversarial Network (SEGAN) which involves the use of
a generative adversarial network (GAN) [50] applied to the waveform level of the
signal. The idea behind involving the GAN in order to retrieve clean speech is that
they play a game of counterbalance between the generator and the discriminator in
order to get rid of the noise, it will also help the generalization of the network for
different scenarios.

Figure 2.2: Network architecture of the autoencoder proposed by Defossez et al.

2.3 Data compression

Data compression is a technique that reduces the quantity of data used to represent
something without excessively losing too much in quality. It can be used in different
contexts and applications, for example, it is performed when we store information
on permanent memory or for example when we transmit something over a channel.
We can divide the data compression algorithms into two categories [51]: lossless
compression techniques and lossy data compression techniques.

The first methods ensure that when the data is decompressed we will retrieve the ex-
act same data before the compression. On the other hand, the second technique does
not preserve all of the information when the data is compressed, usually, the irrel-
evant data are removed. In particular, in the audio field, some lossless handcrafted
compression techniques are WAV, FLAC, and ALAC; and also lossy techniques:
MP3, MP4, and OGG.

Although in recent years, with the advancement of technology, deep neural networks
have begun to be used as a data-driven approach to compression. Adopting this ap-
proach to compress the data eliminates the need for manual coding and assumptions,
allowing the machine learning model to autonomously learn the task.

Most of the state-of-the-art networks use an autoencoder [52] to perform the task,
they are usually implemented as a feed-forward network that has a particular hour-
glass shape. The main idea behind the model is to try to encode the input into a
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compressed meaningful representation and decode it back reconstructing the input
as similar as possible to the original one. In particular, with speech audio files, the
compression is usually performed by reducing the bitrate of the signal [53, 54]. For
example, Defossez et al. [55] implemented an autoencoder, represented in figure 2.2,
that is trained with six different loss functions they can achieve a state-of-the-art
real-time neural audio compression model, producing high-fidelity audio samples
across a range of sample rates and bandwidth.
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Chapter 3

Audio Compression with Sparse
CNNs

In this chapter, we describe in a more practical way all the instruments that have
been used in our work.

We will discuss the implementation of the network that we have chosen describing
how it works and which parameter we have used. Then will be introduced all the
steps necessary to transform the audio signal in such a way that we can use them as
input for the model. Lastly, we will focus on describing more precisely the problem
of the binary mask and how we have tried to solve the optimization problem for
finding the best mask for each sample.

3.1 Decompression step

For the decompression step, we rely on a machine learning model in order to perform
the task. In figure 3.1 there is an illustration of the pipeline of the operations that
we perform. The neural network takes as input the sparse spectrogram and the
corresponding binary mask which describes where the information is present or
not, and provides as output a dense spectrogram. Then, in order to reconstruct
the waveform, we are going to perform the Inverse Short-Time Fourier transform
(inverse STFT) using the original phase of the signal and the model output. With
the latter waveform, we can now compare it with the original one using audio metrics
such as PESQ and STOI to evaluate the quality of the reconstruction.
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Figure 3.1: Pipeline of the decompression step.

3.1.1 Sparsity invariant CNNs

Our work is based on the sparsity invariant CNNs proposed by Uhrig et al. [28],
the authors proposed a new type of convolutional neural network that is robust to
sparsity, which means that it can handle images with missing or corrupted pixels
and reconstruct it with a certain level of confidence. The neural network model is
used to perform depth completion tasks, it works with two input features: a sparse
image and a sparse binary mask that describe the presence or not of information in
the image. The paper introduced the concept of sparse convolutions, which is an
extension of a normal convolution. Let f be a mapping function from the sparse
input x = {xu,v} ∈ X to the output Y , we denote as o = {ou,v} is the binary mask
where if ou,v = 1 the input is observed otherwise we have ou,v = 0. A standard
convolutional layer in CNN is computed in the following way:

fu,v(x) =
k∑

i,j=−k

xu+i,v+jwi,j + b (3.1)

with kernel size 2k + 1, weight w, and bias b. Instead, the sparse convolution
operation also uses the binary mask information, the motivation behind this convo-
lutional operation is that the output feature map is invariant to the actual number
of observed inputs. The output is computed in the following way:

fu,v(x) =

∑k
i,j=−k ou+i,v+jwi,jxu+i,v+jwi,j∑k

i,j=−k ou+i,v+jwi,j + ϵ
+ b (3.2)

The small epsilon is added in order to avoid division by zero where none of the input
is present. The binary mask is propagated to the next layer changing its visibility
state, we maintain 0 when no information is observed otherwise we have to put a 1.
This type of operation is defined by the max pooling operator:

f o
u,v(o) = max

i,j=−k...k
ou+i,v+jwi,j (3.3)

In our work, we maintain the same implementation of the Sparse convolution block,
pictured in figure 3.3, but slightly change the network structure represented in figure
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Figure 3.2: Original network architecture of the Sparsity Invariant CNNs (Uhrig et
al. 2017).

Figure 3.3: Sparse convolutional block (Uhrig et al. 2017).

3.2. In particular, our net is composed of 6 hidden layers with kernels of 7-7-5-5-3-3
and 16 feature maps and the activation function chosen for the neurons was rectified
linear unit [56].

3.1.2 Reconstruction pipeline

To summarize, we take a log spectrum and reconstruct the whole signal through the
described network.

Now we can apply the inverse STFT using the phases of the ground-truth signal
and the dense output and then evaluate the quality metrics that we have chosen. In
terms of what we physically store, we also need to store the phases together with
the sparse spectrogram in order to reconstruct the waveform. For this reason, we
have also tried to use algorithms that reconstruct the signal without the needing of
the phase, for example, we tried to use the Griffin-Lim algorithm [57], but the latter
result doesn’t perform very well as we will see.
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3.2 Compression step

The first stage of the compression process involves transforming the waveform signal
into its spectrogram and phase representation through the use of the Short-Time
Fourier Transform (STFT). Next, the aim is to find the optimally sparse binary
mask, denoted by M∗, which minimizes the information loss of the input signal X.
This mask must adhere to a sparsity level constraint SL, representing a specified
percentage of non-zero pixels.

By multiplying the sparse mask with the full spectrogram, we obtain a sparse repre-
sentation that can be decompressed at a later stage. The subsequent section outlines
the formulation of two different optimization problems, each with its unique advan-
tages and disadvantages.

Figure 3.4: Pipeline of the compression step.

3.2.1 Minimization problem

We have seen how is possible to theoretically solve a non-linear programming mini-
mization problem. During our analysis, we tried to impose a constraint minimization
problem in order to solve the problem of creating the most suitable ad-hoc mask
given a sample. Our idea was to formulate the problem as follows:

min
M

f(M)

s.t.
∑

M = SL

M ∈ {0, 1}n×m

(3.4)

Where f(M) is the objective function {0, 1}n×m → R that we want to minimize,
subject to the constraint that the mask M is binary and the sum of its values is
equal to a fixed value SL. Such value is equal to the number of pixels that we
want to keep from the original input in order to make it sparse, for example, if the
input has 100 pixels and we want a sparsity level of 90% we will have the value
SL = 100 ∗ (1− 0.9) = 10.

The objective function is defined by the ℓ2 norm squared between the full image and
the net output R(X ·M,M), which takes as input the dense spectrogram and the
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mask that we are minimizing. The mathematical definition of the objective function
is the following:

f(M) =
1

N
∥R(X ·M,M)−X∥22 (3.5)

But solving the optimization problem for a discrete value binary mask in NP-Hard.
We have to construct a new formulation that approximates the binary mask with a
real values mask, in this way the latter mask will be differentiable. The new values
of the mask are sampled in the domain of a smooth function that maps values from

R → (0, 1), in particular, we have chosen the logistic function ϕn(x) =
1

1 + e−nx
,

shown in figure 3.5, the parameter n determine the growth rate or steepness of the
curve.

Figure 3.5: Standard logistic function with n = 1.

After introducing the new elements, we can rewrite the problem as:

min
M

f(ϕn(M))

s.t.
∑

ϕn(M) = SL

M ∈ Rn×m

where f(ϕn(M)) =
1

N
∥R(X · ϕn(M), ϕn(M))−X∥22

(3.6)

Thanks to the Lagrange multiplier methods we can solve the optimization problem
using a stochastic gradient descent optimization method for a certain number of
steps, using for example AdamW. After a certain number of iterations, or the reach-
ing of the local minimum for the problem, we will have an optimal mask M∗ ∈ Rn×m

which minimizes the objective function.

3.2.2 Genetic algorithm

In contrast with the non-linear programming problem, respecting the sparsity level
constraint is easier because every mask of the population is created to respect it.
As for the minimization problem, we will describe the real implementation of the
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genetic algorithms theory. In particular, given a fixed spectrogram, we are going to
define how we have implemented each step of the algorithm:

• Initialization: We initialize the population with a fixed number of individ-
uals, each of them corresponding to a randomly generated sparse mask with
the sparsity level constraint that we have chosen.

• Selection: The selection is performed by multiplying every mask of the pop-
ulation for the same spectrogram, the one that we want to sparsify, then, in
order to select the best individuals, we have to compute the model output for
each of them.

Given all the outputs of the model, we rank them using two fitness functions:
the PESQ metrics applied to the reconstructed waveforms and MSE applied
to the spectrograms. Now we can construct the new population that will be
partitioned into three parts: partition 1 have a subset of the best possible
individuals, partition 2 is generated by reproducing a portion of the best in-
dividuals, and the last partition will be composed of new masks which are
generated at random.

• Mutation and Crossover During the selection two individuals are chosen as
parents in order to reproduce and make the child, the mutation and crossover
were implemented following this logic: both parent masks have a 1 where the
information is present, and 0 when the information is missing. The parents
were chosen by their fitness function score, so whether there is or not informa-
tion is important and we want to pass this knowledge to the child. We sum
together the parents’ masks and we obtain a new matrix that we will divide by
2, the values of the child mask are: 1 when both parents have the information,
0 when both parents didn’t have it, and 0.5 when only one of them have the
information. In order to make the constraint respected again, with a random
probability, we will set 0 or 1 values until we have the right number of spar-
sity. In figure 3.6 is represented a little schema of the reproduction between
two masks, and in figure 3.7 we have a schema of how the next population is
created.

• Termination For the termination condition we have chosen to stop the algo-
rithm after a fixed number of iterations.

Although the genetic algorithm will surely respect the constraint condition, does
not guarantee to give the best possible mask at the end of its execution. If we could
perform more iterations would be possible to find a better mask, but we have to take
into consideration the trade-off between the computational time of the algorithm and
the performance of the mask during the reconstruction.
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Figure 3.6: Example of reproduction of two individuals.

Figure 3.7: Partitioning of the next population for the genetic algorithm. In this
experiment, each block is five individuals.
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Chapter 4

Experimental results

In this chapter we are going to discuss the results of our work, we start by introducing
the dataset that we have used and the environment where the tests were performed.
In our work, we have decided to study how the quality of the compression and
decompression were influenced using masks with sparsity levels of 80%, 85%, 90%,
and 95% and show how the two optimization algorithms can further improve the
quality of the compression, or not. The experiments were performed using python,
in particular the PyTorch library, for implementing the model and an ASUS Dual
GeForce RTX 3070 8GB OC were used to train it.

4.1 Flickr 8k Audio Caption Corpus

The dataset that we have chosen for our work is an audio corpus version of the Flickr
8k [58]. The original dataset contains approximately 8,000 images captured from
the Flickr photo-sharing website, each of which depicts actions involving people or
animals. Each image was annotated with a text caption by five different people (non-
expert workers or “Turkers”) who can choose to complete the task for a small amount
of money, resulting in a total of 40,000 captions. For example, the annotations that
the turkers made for the input in figure 4.1 of Flickr were the following 5 phrases:

• A woman climbs up a cliff.

• A woman rock climber scales a cliff far above pastures.

• A woman rock-climbing on a cliff.

• A woman rock-climbs in a rural area.

• Woman climbing a cliff in a rural area.

Harwath and Glass [59] took the Flickr 8k and made the Flickr 8k Audio Caption
Corpus by asking turkers to record a set of 10 random captions from the image
caption dataset. The collection involved 183 unique subjects, that read 218 captions
on average.
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Figure 4.1: Flickr8k reference image for description.

In our tests, we decided to use 10.000 audio samples. Because we need all waveforms
to have the same length, in order to create spectrograms with the same cardinality,
we have to make the shortest audio file long as the longest one. This operation can
be performed by adding zeros at the end of the shortest samples.

More precisely, the audio signals of the dataset are sampled with a sampling rate
of sr = 16000 and the longest file of our data is composed by #Sample = 77276.
Furthermore, if we divide the number of samples by the sr we will obtain the duration
of the audio signal in seconds which is ∼ 4.83”.

In order to have suitable images for our model we have to extract the spectrograms
from the audio files.

A crucial step in order to generate the imaginary spectrograms X is to select the
appropriate parameters for the Short-Time Fourier Transform. In this study we used
the class torchaudio.transforms.Spectrogram from PyTorch [60] for generating
them, it is composed of different parameters, the following ones are responsible to
decide the size of the images:

• n_ftt, it determines the number of frequency bins of the spectrogram. It
creates ⌈n_ftt/2⌉+1 bins, for the Nyquist theorem as we remind you. In our
work, we have decided to use n_ftt = 2048 for a total of 1025 frequency bins.

• win_length defines the size of the window that will move through the wave-
form, in other words, it identifies the number of samples used to perform the
DFT. Usually, the n_ftt is chosen as the default value because it guarantees
that the STFT will be a perfect reconstruction of the original signal.

• hop_length define the number of samples that we skip between STFT win-
dows. In this work, the value is set to hop_length = 256.

Using those parameters, the cardinality of the x-axis, which describes the number
of frames, is given by:

#frames =
#Sample - win_length

hop_size
+ 1 =

77276− 2048

256
+ 1 = 294 (4.1)
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which after adding some padding we will have a total of 302 time frames, each

representing
win_length

sr
=

2048

16000
= 0, 128 ms of audio.

From the imaginary spectrogram X we can now retrieve the dense log-power spec-
trogram by applying the power_to_db function of the librosa library [61] to |X|2.

Now, given the dense log-power spectrogram and a binary mask, we can multiply
them together in order to create the sparse input. We can now train the model
feeding as input the tuple composed by the maskedInput 4.2 and the mask 4.3. The
training target Y is the corresponding full spectrogram, an example is shown in
figure 4.4.

Figure 4.2: Example of sparse input at 95%.

Figure 4.3: Example of sparse mask at 95% for the input in figure 4.2, where black
mean no information.
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Figure 4.4: Target spectrogram for the input in 4.3.

4.2 Training procedure

In the precedent section 3.1.1 we have described the implementation of the network,
in the following one we are going to give more detail about the parameter that we
have used for the experiments. Also for the network implementation we have used
the PyTorch library.

For the training phase, the 10000 samples were divided into two parts: 9000 were
used as the training set and the remaining 1000 for the test set. For the purpose of
computing the quality metrics, additional 2500 samples will be used as the validation
set.

The training loss function that we have decided to use for the model is the MSE
loss between the dense output spectrogram and the groundtruth spectrogram. We
chose this particular loss function because it’s usually used for depth completion
problems, in the following we give its mathematical definition:

MSELoss(X, Y ) =
1

N
∥X, Y ∥22 =

1

N


√√√√ N∑

i=1

(xi − yi)2

2

(4.2)

Each model was trained for 20 epochs and a batch size of 16 samples, as optimizer
for the gradient we have used adaptive moment estimation with weight decay, called
AdamW [62], with learning rate lr = 1e−4 and weight decay equal to 5 ∗ 1e−4.

After the training process the model is able to complete sparse inputs, in figure 4.5
is represented the dense output spectrogram of the input in figure 4.2.

4.3 Signal reconstruction

In the following section, we are going to talk about the behavior of the model with
the validation set, for the first part we are going to consider sparse spectrograms
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Figure 4.5: Example of output of the model.

created with sparse random masks. But before discussing the results, we have to
introduce the metrics that we have used to evaluate how good is our model to
perform the reconstruction task. We have identified the following metrics:

• Mean Squared Error (MSE), computed between the output spectrogram and
true spectrogram. We chose to employ this metric for evaluation because it is
consistent with the metric utilized during the training process.

• Perceptual evaluation of speech quality (PESQ) [63] is a method for speech
quality assessment of telephone networks and codecs which is also widely used
to evaluate speech. Returns a score from -0.5 to 4.5, with higher scores indi-
cating better quality. Is performed between the reconstructed waveform and
the original one.

• Short-Time Objective Intelligibility (STOI) [64], is a metric to evaluate intel-
ligibility of not so much noisy speech, it does not measure the speech quality.
It is an algorithm that predicts the intelligibility of speech signals, and it is
based on the correlation between the original and the processed speech signals.
The output score is between 0 and 1, where 1 indicates perfect intelligibility,
and 0 indicates poor intelligibility. Is performed between the reconstructed
waveform and the original one.

When we are dealing with audio signals, in particular when we are working with
speech audio signals, is possible to use different metrics [65, 66] for assessment of
quality. The metrics can be divided into two larger groups: full-reference metrics
and non-intrusive metrics.

Full-reference metrics, also known as intrusive or similarity metrics, compare a noisy
signal with a clean reference. Worth to mention are POLQA [67], VISQOL [68],
DPAM [69], CDPAM [70]. On the other hand, no-reference metrics, also called
non-intrusive metrics, don’t need a clean reference in order to give a score, some
examples are DNSMOS [71], NISQA [72], SQAPP [73].
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4.3.1 Reconstruction with all the phases

Now we are going to present the results of our experiments on the four models trained
with the different sparsity levels 80%, 85%, 90%, and 95%. We have summarized
the results in three different plots, one for each metric, and we have reported the
mean and standard error on the validation set. On the x-axis, we have the different
sparsity levels that we have considered, and on the y-axis the score of the metric to
which we refer.

Figure 4.6: Evaluation of the MSE on reconstructed spectrograms.

In the first figure 4.6 we are evaluating the mean squared error, where lower is
better, between the output and reference spectrograms. We can notice that with
80% and 85% of sparsity, our models are able to reconstruct the spectrograms with
more or less the same error rate. With the increasing sparsity, the model begins
to struggle to reconstruct the spectrogram, but we obviously expected it because is
more difficult to perform such task. In particular, having less known data available
during the training the model will perform a sort of Gaussian blur to minimize the
MSE.
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Figure 4.7: The four model compared with PESQ.

As described before the PESQ metric, where higher is better, evaluates the audio
quality. Summarized in figure 4.7 is possible to observe a similar trend described with
the previous metric. With a low level of sparsity, the model is able to reconstruct
the signal with an average score considered audible with a little noise. Instead
with the increasing of missing information, the error in the reconstruction starts to
degenerate.

Figure 4.8: The four model compared with STOI.

The last metric that we have considered is summarized in figure 4.8, STOI metric
represents the intelligibility of the reconstructed waveforms. Although it seems to
follow the two precedent evaluation, the worst intelligibility is given by the model
with 95% of sparsity with a score of 0.81 (higher is better). Despite a slight decrease
in quality, the intelligibility of the phrases is maintained to a considerable extent,
making the score still acceptable.
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4.3.2 Reconstruction with masked phases

During our analysis, we wondered whether all the phases were necessary to recon-
struct the signal or not. In the perspective that we need them all to perform the
inverse STFT, if is possible to save only a few of them without losing speech in
terms of quality, then we could store less information in memory for the decom-
pression. If we analyze the signal phases, we can clearly see that they are highly
uncorrelated with each other, so if we want to mask them we need to do it with
criterion. Specifically, we have decided to investigate the consequences of discarding
the phases corresponding to the weaker frequencies, as they are deemed to have
the least impact on reconstructing the waveform. In particular, we have tried to
remove the phases whose frequencies were below 60dB, 65dB, 70dB, and 75dB, then
evaluate the PESQ and STOI metrics.

Figure 4.9: Different threshold for different different sparsity level evaluated with
PESQ.

Summarized in figure 4.9 is represented the evaluation of the PESQ metrics with the
phases masked at different thresholds in relation to a reconstruction that uses them
all. Is interesting to notice that, when the sparsity level is low, the phases play a
relevant role in the quality of the reconstruction, instead when the sparsity is higher
using all the phases or a portion of them seems to be the same. The behavior could
be justified by the fact that the dense output of the model makes the low frequency
more uniform and the quality is only determined by the higher ones.
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Figure 4.10: Different threshold for different different sparsity level evaluated with
STOI.

On the other hand, in figure 4.10 we represent the average intelligibility score of the
phrases. In contrast with the other metrics, removing a portion of the phases will
negatively affect the reconstruction, but the difference is negligible.

In conclusion, we can say that removing phases of the weakest frequencies does not
significantly reduce the quality and the intelligibility of the reconstructed signal. In
particular, for the validation set, we could save, on average, the 44%, 38%, 32%, and
26% of the information of the phases masking them with the respective threshold
at 60dB, 65dB, 70dB, and 75dB applied to the frequencies of the spectrogram.

4.4 Mask optimization

Throughout this section, we are going to talk about the results of our work re-
garding mask optimization. The challenge can be framed as follows: given a dense
spectrogram, how can we represent it in a more compact form while minimizing the
information loss that may occur during reconstruction by a Convolutional Neural
Network (CNN)?

In our experimental setup, the spectrograms have a density of 1025×302 = 309.550
pixels, if we want to reduce the information by 95% the sparsity level constraint SL
is set to SL = 309.550× 0.95 = 15477 which will correspond the number of zeros in
the mask. As we said, the masks are generated ad-hoc for each sample, to describe
the results of the optimization methods we have to fix one. The audio sample that
we have analyzed is the one corresponding to the phrase: ’A woman rock climber
scales a cliff far above pastures’ which spectrogram is shown in figure 4.4.

For the first part, where we introduce the implementation of our optimization meth-
ods, we want to use as baseline the metrics evaluated using a random mask. In
particular, by dwelling on input with a sparsity level of 95%, we have the following
scores: MSE = 35.234, PESQ = 2.48, and STOI = 0.845.
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4.4.1 Minimization problem

In order to solve the minimization problem we need to create the real values mask
that we mentioned when we described the theory, we have sampled 95% of the values
from the interval (-5,-4) and the remaining 5% in the interval (4,5). In this way,
if we discretize the mask with a threshold on the sigmoid function at 0.5, we will
preserve the right proportion of zeros and ones. We have calculated the minimization
problem by approximating it using a gradient descent approach with the lagrangian
multipliers. The evolution of the gradient of the Lagrangian function is shown in
figure 4.11 which after 10000 steps, as we can see, reaches the local minimum and a
good stopping point.

Figure 4.11: Gradient of the lagrangian function.

After the last iteration, we will obtain the optimized mask ϕ(M∗) that we can use
to create the sparse input and evaluate it to see how the baseline is improved. The
reconstruction performs better in every metric: MSE = 27.360, PESQ = 2.889, and
STOI = 0.875.

But will subsist a substantial problem, the optimized mask ϕ(M∗) has real values in
(0,1), we could consider it a sort of weighted mask, so it violates the assumption of
having only 0 and 1 values. If we discretize back the mask, setting the greatest SL
values to one and the remaining to zeros, we notice that the results are slightly worst
with respect to the previous mask obtaining the following scores: MSE = 36.676,
PESQ = 2.36, STOI = 0.832. The scores of the mask are worst because during the
optimization process, the algorithm has difficulties flipping values to the other side,
so we have 0 that move a little towards the 1 but don’t flip and vice versa.

4.4.2 Genetic algorithm

For the genetic algorithms, we have performed the optimization process using a
population of 50 individuals for a total of 500 steps. We did a total of four exper-
iments, divided into two reproducing methods and two different fitness functions,
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the MSE and PESQ. The first experiment that we performed was to create random
masks for each iteration and keep track of only the best one, we conducted this type
of experiment to understand whether continuing to create random masks without
criteria could find a mask that was suitable for the compression task.

The second experiment was made by actually reproducing the individuals as de-
scribed in the section 3.2.2, in particular, in order to create the new population we
have partitioned the individuals into three parts: %10 of them are the best possible
one and they will directly pass in the next generation, %40 of the new population will
be created by reproducing the %40 best individuals within them and the remaining
%50 individuals are recreated at random.

Figure 4.12: Evolution of the fittest individual with MSE ↓.

We have reported in figure 4.12 and in figure 4.13 the evolution of the genetic algo-
rithms using the MSE and the PESQ metrics as fitness functions. As we expected,
even if we generated 50 × 500 = 25000 masks at random the quality of the com-
pression does not improve so much. In table 4.1 we have also summarized the
performances of the dense spectrogram reconstructed by using the masks obtained
with the genetic algorithms, in the rows of the table we have the metrics that we took
into consideration, in the columns we represent if the genetic mask were obtained
by reproduction or not and which metric was used as the fitness function.

About the results in the latter table we can make some important conclusions,
although all algorithms minimize what is asked, in the end, we are more interested
in metrics that have to do with the audio signal and not only with the spectrogram.

If we carefully observe, the MSE obtained by the mask generated with PESQ metrics
is obviously higher than the one generated with the fitness function MSE, but what
we didn’t expect was the so much lower score for the PESQ metric generated with
the MSE.
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Figure 4.13: Evolution of the fittest individual with PESQ ↑.

With reproduction No reproduction

MSE PESQ MSE PESQ

MSE ↓ 31.370 34.597 33.337 34.553
PESQ ↑ 2.802 3.353 2.481 2.798
STOI ↑ 0.853 0.869 0.851 0.857

Table 4.1: Different performance for a mask at 95% of sparsity generated with
genetic algorithms.

4.4.3 Different sparsity level

In this last subsection, we want to compare all the models that we have created, one
for each target sparsity level, and discuss the quality of the reconstruction.

Starting from table 4.2 are summarized the evaluations of the PESQ score for the
reconstructed signal of all the masks that we have generated, excluding the ones
generated at random with genetic algorithms which are not pertinent. Our re-
sults suggest that the compression process is optimized when using masks generated
through a genetic algorithm with PESQ as the fitness metric. This approach re-
sulted in a noticeable improvement in perceptual quality, with an average increase
of at least 0.5 across all sparsity levels.
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Type of mask
genetic PESQ genetic MSE min real min binary baseline

Sparsity 80%
all phases 3.54 3.06 3.10 2.83 3.00

phase mask 3.52 3.06 3.09 2.83 3.01
Sparsity 85%

all phases 3.51 3.08 3.16 2.94 2.92
phase mask 3.49 3.07 3.14 2.94 2.92

Sparsity 90%
all phases 3.40 3.01 3.09 2.74 2.89

phase mask 3.37 3.01 3.10 2.75 2.89
Sparsity 95%

all phases 3.35 2.80 2.88 2.36 2.48
phase mask 3.30 2.81 2.88 2.35 2.49

Table 4.2: Evaluation of PESQ ↑ metrics for all the masks and sparsity levels.

On the other hand in terms of intelligibility, which performances are summarized
in table 4.3, we can see one more time how the decompression made with the mask
generated with the genetic algorithm and PESQ perform slightly better. Despite the
change in sparsity levels, the speech intelligibility of the phrases remains relatively
unaffected, with only a 10% loss in comparison to a perfect reconstruction.

Type of mask
genetic PESQ genetic MSE min real min binary baseline

Sparsity 80%
all phases 0.90 0.89 0.89 0.88 0.88

phase mask 0.89 0.89 0.89 0.88 0.88
Sparsity 85%

all phases 0.90 0.88 0.88 0.87 0.87
phase mask 0.90 0.88 0.89 0.88 0.87

Sparsity 90%
all phases 0.89 0.87 0.89 0.86 0.87

phase mask 0.89 0.87 0.89 0.86 0.87
Sparsity 95%

all phases 0.87 0.85 0.87 0.83 0.85
phase mask 0.87 0.85 0.87 0.83 0.85

Table 4.3: Evaluation of STOI ↑ metrics for all the masks and sparsity levels.
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Chapter 5

Conclusion and future work

In this work, we have seen how is possible to create a lossy data-driven audio com-
pression and decompression pipeline using a sparse convolutional neural network.
In particular, the assumption that we have made of considering a spectrogram of
an audio file as a depth map seems to be a good intuition. We have shown how is
possible to reduce a spectrogram up to 95% of sparsity and reconstruct it, after the
generation of an ad-hoc mask, without losing too much audio quality and intelligibil-
ity. Furthermore, for the initial phase of this exploration work, we need the phases
in order to reconstruct the waveform back, from a perspective of having also this
information stored in memory we tried to filter out the weaker frequency obtaining
practically the same result, but also reducing, on average, the phases information of
about 44%, 38%, 32%, 26% respectively for thresholds at 60dB, 65dB, 70dB, 75dB.

Is also important to make some considerations about the compression step, the
ad-hoc masks were generated with two different optimization problems: crafting a
non-linear programming problem and genetic algorithms. The first method is the
more efficient in terms of convergence to the local minimum of the problem, but
the drawback is that by softening the binary constraint the resultant mask will be
weighted and not discrete. At the moment that we discretize such mask worst results
are obtained because the ones and zeroes of the mask struggle to change state, but
move a little from the 0 and 1 values.

On the other hand, genetic algorithms, in which the mask generation takes much
more time with respect to the previous method, can reconstruct the signal in a
better way. In particular, we have used two metrics as fitness function MSE and
PESQ. Although the first metric is also the same one that we have used to train
our model, in term of audio quality the second metric, which is more interesting in
the end, outperform the audio quality retrieved with the first metric. From this we
can assert that MSE is not a proxy for audio quality metrics despite the MSE loss
is commonly used for depth completion tasks.

The first step that can be taken to possibly improve the quality of the reconstruction
is to train the model using a perceptual loss, for example, we can compute the Mel-
frequency cepstral coefficients (MFCC) [74] for both the original and reconstructed
signals and then compute the l2 loss as a proxy of perceptual distance [53].

Is also interesting to explore how we can further improve the quality of the audio
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file if we can enhance the noisy output spectrogram [48] with the information that
we have available.

Lastly, we want to mention that in signal audio processing working with speech files
or music compression can lead to differences in terms of assumption. In particular
during the construction of the masks, if are working with speech files, we can try
to introduce some psychoacoustics constraints in order to improve the quality and
intelligibility of the reconstruction.
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