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Abstract

Verb Sense Disambiguation is a well-known task in NLP, the aim is to find the
correct sense of a verb in a sentence. Recently, this problem has been extended in a
multimodal scenario by exploiting both textual and visual features of ambiguous
verbs. The sense of a verb is assigned by the actual content of the image paired with
it. In this work, such a task will be performed in a transductive semi-supervised
learning (SSL) setting in which a small amount of labelled information is used
to perform the verb-sense classification. The SSL is performed through a game-
theoretic framework, in which each multimodal representation of a pair image-verb
is a player and the possible strategies correspond to the set of senses that the verb
belongs to. A Nash Equilibrium in this non-cooperative game corresponds to a
consistent labeling between verbs and their possible senses. Experiments have been
carried out on the recently published dataset VerSe. The results achieved outperform
the current state-of-the-art by a large margin.
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Chapter 1

Introduction

1.1 Word Sense Disambiguation (WSD)

Each language has ambiguous words (i.e. words with multiple meanings), the
human brain has a natural ability to identify the meant sense of words in a sentence.
This process is unconsciously carried out using the words that occur close to the
ambiguous word (i.e. word context). For instance in these sentences:

1. The tap is dripping, there is a break in the pipe system.

2. When we were halfway to Milan, the driver decided to have a break.

the word break occurs in both sentences, however, it is utilised in two different
ways: In the first case, it is employed to denote a hole in a pipe, whereas, in the
second case it is used as a synonym for pause. It is clear that in both occurrences
the role of the word is to indicate an interruption on something, nevertheless, such
usages are different.

In the field of Natural Language Processing (NLP) i.e. the Machine Learning
area which deals with the interpretation and understanding of human communica-
tion; there is subsphere of research which aims to study Word Sense Disambiguation
(WSD). WSD is the task to identify the proper meaning of one or more words in
a sentence in a computational manner among a batch of senses; this is done by
exploiting the context in which such words occur.
This task is needed to get unstructured and semi-structured textual data (data ware-
houses, web pages, document corpora) machine-readable. The need of WSD
systems arose when the data on the web increased so much that typical text mining
techniques were not sufficient to handle and understand such a wide amount of
information, so new methods were needed [49]. For this reason, WSD cannot be
considered as a standalone task, in fact, it acts as a preliminary process for some
other applications which rely on it, e.g. Machine translation [52], Information
Extraction [47], Content Analysis, Sentiment Analysis and Speech Synthesis [48].
WSD problem has been considered for the first time in the half of ’900s by Warren
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3 Chapter 1. Introduction

Weaver for a machine translation application [46]. At that time, researchers started
taking into account aspects like word contexts and patterns. Nevertheless, they had
problems as limited computational power and the lack of wide and structured knowl-
edge sources [49]. The decisive moment occurred in the ’80s, with the introduction
of large knowledge bases such as dictionaries, thesauri, and labelled corpora [48].

The first attempts to tackle the WSD problem was symbolic rather than data-
driven: semantic networks were used to represent sentences. Nevertheless, this class
of techniques requires the manual encoding of rules and concepts [48].
There are several approaches which can be categorised depending on the amount
of knowledge needed at either end of the scale are domain-driven methods (sym-
bolic) and unsupervised methods. However, there are three common WSD ap-
proaches [50]:

• Supervised

• Unsupervised

• Knowledge-based

1.1.1 Supervised word sense disambiguation

These methods rely on sense-tagged corpora which act as the training set. The
goal is to train a classifier being able to tag words with their correct sense in an
unlabeled corpus. Supervised systems require a priori knowledge about all the
available senses of target words. Therefore, each future prediction is based on
senses (labels) covered in training data. These methods usually extract features like
the target word context i.e. the collocation of words occurring near it, part-of-speech
tags, to recognise the syntactic role of words in the sentence.

Being a classification task, in WSD can be exploited all typical Statistical
Learning Theory-based techniques i.e. Naive Bayes, Max Entropy [51], Support
Vector Machines [5], and other ones like Decision Lists [53] and Neural Networks [4,
77]. A typical very simple algorithm which can be used is the Most Frequent Sense
(MFS) heuristic, which usually acts as a baseline to evaluate more complex models.
It classifies the sense of the target word according to the sense which occurred
the most in the training corpora. Clearly, with this technique, there is no need to
take into account the context or other information beyond the verb. The results are
usually better than WSD algorithms due to the skewness of word senses distributions.
Nevertheless, this approach cannot generalise.

1.1.2 Unsupervised word sense disambiguation

The main limit of supervised WSD systems is that they have to handle all the possible
senses of target corpus and it is unlikely to find a training set with a sufficiently big
sample size for each word sense [49]. For this reason, supervised WSD operates
better when only a part of the corpus is going to be disambiguated like either nouns
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or verbs. So, when the number of senses to handle become unfeasible, unsupervised
learning algorithms may be a more suitable solution. The goal of this class of
systems is to disambiguate word senses of an unlabeled corpus from which they
are extracted. Since the labels are usually not known a priori, the unsupervised
approach may handle better all-world WSD tasks1.

Purely unsupervised systems rely on sense distributions of the target word in a
specific corpus, exploiting the fact that words with the same sense will have similar
neighbouring words. However, since they do not rely on any machine-readable
resource, rather than labelling words with senses, they can only extract clusters of
senses. So, once that word contexts are encoded into vectors and a distance metric
is defined, standard clustering algorithms can be used. For instance, one of the most
used clustering algorithms for WSD is agglomerative clustering.

The main limit of purely unsupervised WSD algorithms is that since they do
not rely on any knowledge bases, the extracted senses are likely to not match the
ones categorised and defined in standard dictionaries. In these situations, the WSD
task is switched into a Word Sense Discrimination or Word Sense Induction (WSI)
task [54] and the results can be difficult to compare with the ones of supervised
methods.

1.1.3 Knowledge-based word sense disambiguation

This category of methods is the most attracting one in the research community.
The amount of data available is the same as in unsupervised learning, but their
senses are regulated using wide knowledge bases, resulting in a proper WSD. The
main difference with respect to purely unsupervised algorithms is that rather than
extracting the sense inventory from the corpus, it is known a priori. So, a mapping
between a dictionary and the occurrences in the corpus is performed. The main
categories of knowledge bases which can be used are [49]:

• Machine Readable Dictionaries: the digital version of a canonical dictio-
nary. So every word is paired with a list of senses in which each of them has
a definition and possibly some examples of use.

• Thesauri: they provide information about relationships between words, e.g.
synonymy, antonymy, etc. In a practical view, each sense of a word has a list
of semantically related words.

• Ontologies: lexical databases usually made for domain-specific terms. Here,
concepts are connected through semantic networks and are organised accord-
ing to a taxonomy.

These resources have a great performance impact on purely unsupervised learning
algorithms. For instance, they can be combined with the input corpus to extract

1In all-world WSD, all the words that compose a sentence have to be disambiguated, whereas, a
simpler instance of the WSD problem is to consider either nouns or verbs or some specific words.
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the text domain and find which is the more frequent sense of the target word in
that scenario [55]. Some other approaches compute which is the sense with more
overlapping words between the target word context (neighbourhood) and the context
of each sense entry in a sense inventory i.e. the Lesk algorithm [15] (a more detailed
description can be found in Section 2.1.3). Knowledge bases can also be used to
provide domain-free and corpus-independent sense distributions. For instance, in
WSD performance evaluation, a canonical baseline method that relies on knowledge
bases is the First Sense (FS) heuristic (sometimes it is called MFS anyway). Such
method returns the first sense listed in the knowledge base, which should be the
most common for the language.
Even if supervised methods generally perform better, knowledge-based methods [59]
and graph-based methods [24,57,58,60] are gaining more and more interest and their
results are getting closer to the supervised counterpart [56]. Such algorithms do not
need training corpus, but they use the lexical knowledge and semantic relationships
extracted from the knowledge-base and perform WSD by exploiting graph theory.
The most important resources which are currently used in WSD for these systems
are ontologies like WordNet, OntoNotes and BabelNet [9–11].

WordNet WordNet was born as a pure lexical database whose goal is to exploit
conceptual-driven search instead of the canonical alphabetical-driven one. However,
once its potential has been shown, it evolved into a dictionary based on psycholin-
guistic principles. WordNet is organised in categories, the first distinction is between
parts of speech: nouns, verbs, adjectives, adverbs, and function words. Each one of
these classes has a different organisation, for instance, nouns are classified in hierar-
chies, verbs are organised in entailment relations, and so on [10]. Moreover, each
word entry has lists of semantic relationships (antonymy, synonymy, pertainymy,
etc.).
WordNet can be considered as the evolution in terms of organisation of Machine-
Readable Dictionaries, combined with the relationships of thesauri; becoming an
essential resource in WSD.

OntoNotes Another big knowledge base is OntoNotes [9]. Even if it was meant
for a different task, it became a WSD resource. The main difference with Word-
Net is that their fine-grained categories produce a low agreement between human
annotators and automatic tagging systems. OntoNotes instead relies on WordNet
categories and split them into more coarse-grained senses. This split improved the
inter-annotator agreement.

1.1.4 Semi-supervised word sense disambiguation

As described in Section 1.1, the typical learning paradigms in WSD are supervised
and unsupervised, and in some cases, they may rely on knowledge bases. However,
there is a set of algorithms which lays between these two classes: they are semi-
supervised algorithms. Generally, supervised learning requires a lot of data to reach
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a good generalisation. On the other hand, when small labelled data is available, it is
a pity to leave it unused by moving to (knowledge-based) unsupervised learning.
The strength of this class of algorithm arises when the labelled set size is not
statistically significant to train an accurate fully-supervised classifier. In semi-
supervised learning, only a small amount of hand-labelled (or automatically labelled)
elements is needed; their information then will be propagated to the unlabeled part
of the dataset. A typical example of semi-supervised learning applied in NLP is
the one performed through bootstrapping. This set of methods can be split into two
classes of algorithms: self-training and co-training.

A practical example of self-training is the Yarowsky algorithm [61]. Such
an algorithm is fed with a small set of labelled data points in which at least one
element per class (sense) exists, then a classifier is trained on it. After that, the
trained classifier is used to assign a label to unlabeled data points. Eventually,
the classifications which have a probability above a certain threshold are used to
train a new classifier. This process is repeated for a fixed amount of steps, or
until a convergence condition is reached, e.g. when the model parameters remain
unchanged or the classifier is not able to assign a label with a probability over the
defined threshold. This algorithm has been designed by Yarowsky relying on two
main principles:

• One sense per discourse: which is the observation that words strongly tend
to exhibit only one sense in a given discourse or document2.

• One sense per collocation: which is the strong tendency for words to exhibit
only one sense in a given collocation3.

An approach similar to bootstrapping can be found in [66] which used a combination
of a Naive Bayes classifier and the Expectation-Maximization algorithm. Even if in
that paper it is used to for text classification it then became a standard algorithm to
compare that has been used in a few papers, as in [67]. In [64], a first comparison
between self-training and co-training is performed. However, a derivative of such
paper which covers more algorithms can be found in [65] which adds to the list the
transductive approach. In that paper, four algorithms have been proposed:

• Co-training: This method is based on the extraction of two different feature
sets called views; with the assumption of being conditionally independent.
For each view a classifier is trained, therefore, classification is performed on
the unlabeled set and the most confident labelled elements are then added to
the training set. By doing this, each classifier reinforces the other.

• Smoothed co-training: A modified version of co-training which introduces
majority voting. The vote is between current classifiers and the ones that
appeared during previous iterations. By doing this, typical performance decay
over time is delayed.

2already defined in [62] but used for the first time in [61]
3introduced in [63]
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• Spectral Graph Transduction (SGT): Graph-Transductive algorithms are
based on different reasoning, in fact, rather than trying to infer an inductive,
general classification rule, they focus just on the available observations.
In SGT, a graph is built mapping both labelled and unlabeled elements as
vertices and their similarities as edges. The labelling process is performed
by partitioning the graph into two subgraphs and a different label is assigned
to each subgraph. The partitions are selected accordingly to the cut that
minimises a normalised-cut cost function.

• Spectral Graph Transduction co-training: A modified version of SGT
which exploits the ‘multiple views’ principle of co-training.

These are some well known semi-supervised algorithms, however, there are a lot of
examples that have been developed for some specific tasks. Like the one in [4], in
which Label Propagation is performed and word sequences are exploited through
LSTM networks. Or the one in [23] i.e. a semi-supervised game-theoretic approach
for WSD (then moved to unsupervised in [24]) on which this thesis relies on. Such
a framework will be discussed in the next chapters.

1.1.5 Visual Sense Disambiguation

A particular subdomain of WSD is the one related to verbs, this task is known
as Verb Sense Disambiguation. For instance, considering the verb run the most
common sense is the one related to the action of ‘moving quickly’:

• If you want to break a record, you have to run faster.

• Every Saturday morning I run in the park.

but there are other common senses, like the one related to ‘machine operations’:

• The washing machine is running.

• With this tool, you can see the usage of processes that are running right now.

or to cover a distance:

• this train runs hundreds of miles every day

all these senses share the same verb, but they have quite different meanings.

As for WSD, Verb Sense Disambiguation is an intermediate task which affects
several domains, for instance in an image retrieval scenario, the goal is that the search
engine being able to find the correct results in queries which contain ambiguous
verbs and ideally that images get grouped by sense [76]. Another example is that a
machine translation system being able to generate correct syntactic structures; or
that in automatic summarisation the text is being misunderstood and so on.
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The existing literature on Verb Sense Disambiguation is quite small with respect
to the one related to general words. For instance, in [68], a smoothed maximum
entropy system is used exploiting syntactical features based on linguistics. In [69]
Levin verb classes are introduced and can be useful as priors for sense disambigua-
tion. In [70], verb senses are clustered and mapped to sense inventory ones.

In Verb Sense Disambiguation the correct sense of a verb is inferred by exploit-
ing the words surrounding it. In the field of Computer Vision there exists two tasks
that have something in common with the WSD subtask: Action Classification (AC)
and Human-Object Interaction (HOI). They exploit the identification of objects and
entities in an image to infer either the action that is being performed or the correct
verb that links those entities and objects. Even if there are some clear overlappings
between WSD and AC/HOI, the latter do not take into account the ambiguity of
verbs. The analogy between these tasks in NLP and CV fields may be exploited
combining the features of both of them to improve the overall performance of
the disambiguation system. For this reason, the task of Visual/Multimodal Sense
Disambiguation (VSD) is introduced.

1.2 Related works

The majority of VSD systems that have been developed are designed to deal with
nouns. One of the first approaches has been introduced in [8], which used a statisti-
cal model based on joint probabilities between images and words. In this case, the
textual data is given by dataset captions, whereas image features are labels extracted
with a region-labelling system. Moving to an unsupervised approach, in [6] they
focused on image sense discrimination of web images and text. Spectral clustering
has been applied to the combination of image features and textual features extracted
from such data. A similar approach can be found in [73] which used co-clustering
between textual domain and visual domain to discover multiple semantic and visual
senses of a given noun phrase. In [7], they used Latent Dirichlet Allocation [42, 43]:
a topic modelling technique; to discover a latent space by exploiting dictionaries
definitions to learn distributions which represent senses. An interesting instance of
multimodal disambiguation is the one proposed in [19]. In this case, the disambigua-
tion targets are not the words of the sentence, but its overall meaning, for instance,
given the following sentence: Sam approached the chair with a bag. There are two
possible interpretations:

• Sam is approaching the chair carrying a bag

• Sam is approaching the chair with a bag on it

the goal of such a paper is to use images to solve those linguistic ambiguities. A
similar task has been accomplished in [72].

All these systems perform quite good, however, they are mostly noun-oriented,
having bad results for verb disambiguation. Nowadays, VSD for nouns can be easily
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performed exploiting State-Of-The-Art object detectors [8,73]. The first system able
to perform fully verb-oriented VSD is the one introduced in Disambiguating Visual
Verbs by Spandana Gella, Frank Keller and Mirella Lapata [2]. They proposed
a modified Lesk algorithm [15] which deals with feature vectors of visual and
textual data of both senses and inputs, using them as the definition and the context
in canonical Lesk (a more detailed explanation will be given in Section 2.1.3).
Another instance of multimodal disambiguation which deals with verbs is in [20].
Nevertheless, in such a paper, verb disambiguation is not the main task, since they
use multimodal data for semantic frame labelling.

1.3 Goal

In this thesis, the Multimodal Sense Disambiguation problem is faced in a semi-
supervised scenario relying on a game-theoretic framework. This approach has been
chosen because, as described in Section 1.1.4 even if the amount of labelled infor-
mation is much lower than in supervised approaches, a little supervision can help to
boost the performance significantly, obtaining more accurate decision boundaries
and higher classification accuracy with respect to unsupervised learning both in its
pure or knowledge-based version [4]. Since the chosen semi-supervised learning
approach is transductive, both labelled and unlabeled information is exploited to
propagate the known labels to each unlabeled element. The selected transductive
process is based on a game-theoretic model called Graph Transduction Games
(GTG), defined for the first time in [21]. This game-theoretic model has already
been successfully used for a WSD task both in a semi-supervised [23] and super-
vised [24] scenario and proved to perform better than other alternatives (like Label
Propagation [22]) in semi-supervised tasks [3].

The main goal of this thesis is to map the Multimodal Sense Disambiguation
dataset and the encoding pipeline implemented in the paper Gella et al. 2019:
Disambiguating Visual Verbs [1]; into this GTG model in a way that each encoded
feature point represent a node in the graph transduction algorithm. The dataset, the
preprocessing of the data, the feature extraction, and performance evaluation are all
based on the work described in the former paper. The VSD will be accomplished
in both a unimodal and multimodal approach, taking into account both the image,
its descriptions and tags. The experiments are performed on the recently published
VerSe dataset [1], which is tailor-made for this task (whose composition is explained
in Section 2.1.1).

1.4 Contribution

As described in Section 1.3, in this thesis, the pipeline used in Gella et al. 2019, is
applied through GTG, so both approaches are gathering new results and applications.
The main contributions are:
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1. GTG is applied for the first time in a Multimodal Sense Disambiguation
scenario.

2. Since the classification relies on Evolutionary Game Theory, players mutate
their choices over time, whereas in Gella et al. 2019, just direct evaluation is
performed.

3. The principle of label consistency is exploited, which means that the similari-
ties among all the verbs are considered during inference and not only local
information as in Gella et al. 2019 [1].

4. The results of previous state-of-the-art systems are outperformed using a
labelled set which contains just two labelled data points per class. Anyway,
the resulting performance improvement on the increase of labelled set size is
documented.

5. In Gella et al. 2019, verb senses are encoded entities, so their creation is
time-consuming, both for the annotation phase and for the data crawling
phase. Using GTG, senses are only labels in semi-supervised learning. Thus,
the creation of time-consuming hand-crafted queries and the consequent data
crawling is avoided.

This thesis is composed as follows: in Chapter 2, all the techniques used in Gella
et al. 2019, are illustrated. Describing the characteristics and limits of the ap-
proach. After that, the theoretical foundations of GTG are given, moving then to
the implementation details. In Chapter 3, the proposed disambiguation algorithm is
then compared to the former one in all its configurations and their results are then
examined in Chapter 4. Eventually, conclusions and future works on the topic will
be discussed in Chapter 5.



Chapter 2

Visual Verb Sense
Disambiguation

The pipeline of this approach is composed of four main steps:

1. Cues extraction

2. Features embedding

3. Graph construction

4. Verb-sense assignment

In order to understand properly the strengths of Graph Transduction Games with
respect to the algorithm proposed in Gella et al. 2019 (that covers the first two
steps), both approaches are explained is explained in Section 2.1 (Gella et al. 2019)
and Section 2.2 (GTG).

2.1 Original approach

In Gella et al. 2019 there are two VSD methods:

• The system is fed with an input image and a target verb to disambiguate. The
features extracted from the image/object labels/captions are used to perform
the task.

• The system is fed just with an image, verbs are predicted using either a
multilabel classification algorithm or Multiple Instance Learning (MIL). After
that the features extracted from the image/object labels/captions are used to
perform the task.

in this thesis, only the former approach is explored.

11
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2.1.1 Dataset

As pointed out in Section 1.1.5 there is a connection between Verb Sense Disam-
biguation and Action Classification (AC). For this reason, a good example of data
that could have fit this new task is the one extracted from AC datasets. However
such datasets usually have a small size or they are domain-oriented. Moreover, they
lack generalisation and contain ambiguous labels. For this reason, a new dataset for
Visual Sense Disambiguation has been created: the VerSe (Verb Sense) dataset.

VerSe is built as a combination of Microsoft COCO (Common Objects in Con-
text) [13] and TUHOI (the Trento Universal Human-Object Interaction dataset) [12].
COCO is not an action recognition dataset, however, its captions contain verbs
that can be used for semantic role tagging. On the other hand, the majority of
TUHOI action categories occur only once. For this reason, VerSe is the result of the
combination of some limited parts of COCO and TUHOI.
The resulting dataset is composed of 3518 images and 90 verbs. In COCO every
image is described by multiple captions and there is an object label which tags each
object that appears in it. For instance, for the action which takes place in Figure 2.1
the captions are:

• young woman in orange dress about to serve in tennis game, on blue court
with green sides.

• a woman taking a swing at a tennis ball

• a girl dressed all in orange hitting a tennis ball.

• a tennis player getting ready to serve the ball.

• a woman swinging a tennis racquet at a tennis ball.

and the object labels are person, sports ball, tennis racket, chair.

The textual part of TUHOI is slightly different, it does not contain natural like
descriptions, but text fields which can be resumed in verb-object pairs. For instance,
for the action which takes place in Figure 2.2, the available captions are:

• sing/none/use — microphone

• play/play/play — saxophone

in this case, multiple verbs fit with the object microphone, thus, three different
sentences are generated. Whereas, for the object saxophone, only the verb play is
compatible with it, and it is repeated three times (having three equal sentences).
When TUHOI captions are used in VerSe, they are slightly modified: the noun
person is prepended each pair, having a triple person-verb-object (e.g. person —
use — microphone).
Regarding object labels, they are made using the elements which appear in the
object fields, so for Figure 2.2, the object labels are microphone, saxophone.
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Figure 2.1: A sample image from COCO dataset.

Figure 2.2: A sample image from TUHOI dataset.
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In VerSe, every image is related to one or more verbs. For each of such <image,
verb> pairs there is a sense identifier. Moreover, the dataset is provided with a
list of verb senses. In fact, for each verb, there is a group of identifiers (one for
each sense) and for each verb sense, there is a typical dictionary definition and
some examples of use (such features are extracted from OntoNotes). Furthermore,
every verb sense is paired with a list of web queries. Such queries, if inserted in a
search engine, should fetch a list of images which matches their sense. Lastly, there
is a classification of verbs in Levin classes (motion and non-motion verbs), since
experiments have been performed taking into account such a separation.

The VSD method introduced in this thesis is run only on VerSe dataset, this
is done mostly to have a real performance comparison with Gella et al. 2019 and
because, as described previously, there is a lack of image datasets that could fit in
this task.

2.1.2 Setups

VSD is performed through 7 main setups, by analysing:

• captions (C)

• object labels (O)

• captions combined with object labels (O+C)

• images (CNN)

• images combined with captions (CNN+C)

• images combined with object labels (CNN+O)

• images combined with object labels and captions (CNN+O+C)

this is done to understand which feature impact more on the disambiguation. Re-
garding textual annotations, there are two available setups:

• GOLD captions: The original captions and object labels provided with
VerSe are used as information to disambiguate (as expected).

• PRED captions: Captions are generated using a tool which describes images
with sentences. Object labels are extracted using an image classifier.

this distinction is done to project the results of the paper to a harder scenario
which simulates real-life conditions i.e. having an image without captions. GOLD
captions are written by human annotators, whereas in PRED, a state-of-the-art
image descriptor is used, which would be a mandatory choice in a real application.
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PRED annotations generation: Captions In PRED setup, image captions are
generated using NeuralTalk1 a tool developed in Karpathy and Fei-Fei, 2015 [32].
This system generates natural language descriptions of images and their regions.
This process is carried out by combining Convolutional Neural Networks with
bidirectional Recurrent Neural Networks. The training is performed by feeding
the system with an image and its captions. There is a first model whose goal is to
associate sentence entities with their visual regions. Afterwards, Such relations are
used as training data for the bidirectional RNN, whose goal is to learn to generate
captions.
This tool has been improved by the Google brain team [31], the structure is almost
the same, but they did some modifications like replacing RNN with LSTM.

PRED annotations generation: Object labels In the PRED setup, object labels
are extracted using state-of-the-art image classifier. At the time of the first article
drafting (published in 2016 [2]), the most advanced neural networks for image
classification were the set of VGGs. In this case, VGG16-layers has been used (a
more detailed overview of VGGs can be found in Paragraph 2.1.4.1). VGGNet does
not perform object detection, therefore they used a trick to extract object labels:
they extracted the probabilities of the SoftMax activation layer, and set a threshold
of 0.2, the classes that had a probability higher than the threshold were used as
object labels. When none of these classes satisfies the requirements, the class with
the highest probability is used. With this technique, multiple classes/objects labels
per image are obtained.

2.1.3 Lesk Algorithm

Gella et al. 2019 implementation is based on a modified version of the Lesk
algorithm [15]. Lesk is a typical algorithm used on unsupervised-knowledge-based
WSD algorithms, its most famous version is the Simplified Lesk Algorithm [16].
The main idea behind it is to count the overlapping words between the target word
neighbourhood i.e. context and the sense definition in the sense inventory i.e.
definition; The higher the number of overlapping words, the more likely to be the
correct sense.

• Definition: the words which appear in the dictionary-like definitions of the
word sense and (if available) their examples of use.

• Context: the words which occur nearby the target word. They are selected
according to a certain window size. It can select one word on the right and
one word on the left, two words on the right and two words on the left and so
on; it can also be asymmetrical.

So, given a knowledge base such as a dictionary or an ontology like WordNet or
OntoNotes, a for each sense definition of the target word to disambiguate, a list the

1https://github.com/karpathy/neuraltalk
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list of words which compose them is extracted, after that, the words appearing in the
the sentence which fit in a context windows of size N , are inserted in another list.
Then, the sense whose list has more overlappings with the context list is returned as
the more proper word sense. The behaviour of the algorithm is summarised in the
following pseudocode (taken from [78]):

max-overlap ← 0
context ← set of words in sentence:

for each sense in senses of word do
signature ← set of words in the gloss

and examples of sense
overlap ← COMPUTEOVERLAP(signature, context)
if overlap > max-overlap then

max-overlap ← overlap
best-sense ← sense

end
return best-sense

where word and a sentence are the input parameters of the algorithm. The
COMPUTEOVERLAP function computes the number of word which appear both in
the word signature and the word context.

bank-1 definition a financial institution that accepts deposits and channels the money into lending activities
examples he cashed a check at the bank, that bank holds the mortgage on my home;

bank-2 definition sloping land (especially the slope beside a body of water)
examples they pulled the canoe up on the bank, he sat on the bank of the river and watched the currents;

Table 2.1: Dictionary definitions of the word bank. (example taken from [78]).

Here it is an example [78] of usage the algorithm on disambiguating the word bank
in the following sentence and the definitions in Table 2.1:

The bank can guarantee deposits will eventually cover future tuition
costs because it invests in adjustable-rate mortgage securities.

the definition and the examples of the first sense of the word bank in the dictionary
has overlappings with two words i.e. deposit and mortgage whereas for the second
sense there are no overlappings, hence the former is selected.
This Lesk version and can be formalised in the following function [1]:

ŝ = arg max
s∈S(v)

Φ(s, v,D) = |context(v) ∩ definition(s,D)| (2.1)

where context(v) function represents the nearby words of the target word v and
definition(s,D) function represents the words which occur in the definition of sense
s in the dictionary D.
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As pointed out previously, there are several implementations of the Lesk algo-
rithm, some of them rather than simply count overlappings, they weight them in
different ways. The original version of Lesk [15] is quite different since it does
not count the overlappings with target word context, but the overlappings with its
definition.
For instance, given the sentence pine cone and the sense definitions of Table 2.2,
for the word cone, the Lesk algorithm will return the third sense entry. The reason
of this selection is that there are two overlapping words between the third sense of
cone and the first sense of pine i.e. evergreen and tree.

Verb Sense ID Definition
pine 1 kinds of evergreen tree with needle-shaped leaves
pine 2 waste away through sorrow or illness
cone 1 solid body which narrows to a point
cone 2 something of this shape whether solid or hollow
cone 3 fruit of certain evergreen trees

Table 2.2: Dictionary definitions of the words pine and cone (example taken
from [78]).

Now that the main idea behind the set of Lesk algorithms and the version introduced
in Gella et al. 2019 is described. In such an implementation, the algorithm is run
on the encoded feature vectors of context and definition rather than their textual
counterpart. It is formalised as follows:

ŝ = arg max
s∈S(v)

Φ(s, v, i,D) = i · s (2.2)

where s represents the encoded features of the dictionary definition/images from D
and i represents the encoded features of the input image in which the verb v occurs.
In Equation 2.2, the vectors i and s are assumed to be unit-normalised, so the dot
product (·) operator is intended as a cosine distance similarity i.e.

cos θ =
x · y
‖x‖ · ‖y‖

where x and y are two input vectors and the norm operator is the Euclidean norm:

‖x‖ := ‖x‖2 :=
√
x21 + · · ·+ x2n

where x = (x1, . . . , xn). The sense with the most similar feature vector with the
input one is selected.
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2.1.4 Features encoding

As pointed out in Section 2.1.2, the available data can be used in several setups,
therefore, different encodings can be used, they can be split into three main cate-
gories: textual, visual and multimodal. In this model, encoded data is represented as
unit-normalised feature vectors to exploit the cosine similarity measure.

2.1.4.1 Visual features

In order to encode images, a model able to extract their features is needed. A
typical algorithm like HOG (Histogram of Oriented Gradients) [74] or SIFT (Scale
Invariant Feature Transform) [75] could be used. However, in the last few years, the
power of deep learning is outperforming almost every other method, for this reason,
an approach of this type has been preferred. In Gella et al. 2019 the most powerful
image classifier at the time has been selected: VGGNet [44].

VGGNet VGGNet scored promising results in ILSVRC 2014 (Large Scale Visual
Recognition Challenge) both in classification and localisation tasks. Such network is
characterised by the substitution of the big convolutional filters used in AlexNet [45]
with stacks of small (3 × 3) convolutional filters, resulting in a network with the
same receptive field but with more non-linearities and fewer parameters.

VGGNet is provided in two variants:

• VGG16: (Figure 2.3a) it is composed of two stacks of two convolutional
filters and three stacks of three convolutional filters. On top of them, there
are three fully-connected layers. Each stack is separated by a max-pooling
layer.

• VGG19: (Figure 2.3b) it is composed of two stacks of two convolutional
filters and three stacks of four convolutional filters. On top of them, there are
three fully-connected layers. Each stack is separated by a max-pooling layer.

with respect to VGG16, VGG19 is slightly more accurate, however, it requires much
more memory because of the greater number of parameters to train.

Encoding VerSe images In Gella et al. 2019, has been selected as feature extrac-
tor, a VGG16 network pre-trained on ILSVRC 2012 object classification dataset.
The FC-7 layer of VGG16 is used as feature representation. The resulting encoding
is a vector composed of 4096 elements (such vector is then unit-normalised as
described in Section 2.1.3)

2.1.4.2 Textual features

Gella et al. 2019 approach is designed to be run with multimodal data, however, the
encoding of text and images is independent (in the first stage of the process), hence
a representation for textual data has been selected: word2vec [33].
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Figure 2.3: VGGNet architectures

word2vec In NLP, words or sentences are usually encoded in vectors composed
of real numbers. Such vectors are called word embeddings, they can capture infor-
mation about the semantics of encoded-words and their context.
A typical encoding in NLP is co-occurrence matrix which represents the frequencies
of words which appear nearby; or tf-idf which is its weighted version. Nevertheless,
these approaches produce sparse and long vectors with a dimensionality corre-
sponding to the size of the vocabulary. Due to the computational effort, and the
easier representation of relationships between words, it might be better to have
short and dense vectors [78]. A method able to produce vectors which satisfy such
requirements is skip-gram with negative sampling; it is often called word2vec, from
the name of the package which provided it.
Such algorithms aim to redesign the idea which stands behind word encoding. The
intuition is to move the core of the algorithm from word frequencies to a binary
classification task of the likelihood of a word occurring close to another one. Never-
theless, such a task is only a medium to learn a set of weights able to represent the
text dictionary and map it into a vector space.
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Therefore, the main idea behind skip-gram is [78]:

1. Treat the target word and a neighbouring context word as positive examples.

2. Randomly sample other words in the lexicon to get negative samples

3. Use logistic regression to train a classifier to distinguish those two cases

4. Use the regression weights as the embeddings

So, the classifier task is to decide whether a word c occurring near the target
word t is a context word by computing such probability; this is done by using the
similarity between them. Such result is then fed into an activation function (such
as sigmoid or logistic) to convert the real value into a probability. The goal is
to maximise the similarity (dot product) of the target word with positive samples
and minimise it with negative samples. In this process, the classifier will learn
an embedding for the target word and an embedding for its context words. The
optimisation process is carried out with gradient descent to maximise the objective
function.

Even if the true purpose of this process is to learn word embeddings, the
classification task on which it relies on can be performed by exploiting neural
networks. This approach provides two different models [33]:

• Continuous Bag of Words (CBOW): Each word in a sentence is predicted
given its context words.
For instance, given the sentence: the quick brown fox jumps over the lazy dog
and the context words quick, brown, jumps, over; the target word to predict is
fox.

• Skip-Gram: The context words of the target word are predicted.
For instance, given the sentence: the quick brown fox jumps over the lazy dog
and the target word fox the context word to predict are: quick, brown, jumps,
over.

by doing this, the trained weight matrix can be seen as a lookup table for word
vectors.

CBOW Continuous Bag of Words algorithm can be split into the following
steps [33, 79]:

1. Each wordwI,1, . . . , wI,C in the window is encoded using one-hot representa-
tion, in which the vector element in the position of the word in the dictionary
is set to one and zero to every other position.

2. Such vectors are then multiplied by the weight matrix2 W and averaged. Such
a matrix is randomly initialised at the beginning of the process.

2The weights are the ones which link the input layer to the hidden layer
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Figure 2.4: CBOW neural network representation.

3. The resulting vector is passed through a linear activation function.

4. The output of the activation function is then multiplied by another weight
matrix3 W ′.

5. A SoftMax function is used to compute the probabilities of the next occurring
word.

6. The parameters are trained through gradient descent trying to predict the next
occurring word. The loss function is the cross-entropy function:

L = − log p(wO | wI,1, . . . , wI,C)

where wO is the output target word to predict and wI,1, . . . , wI,C are the
context input word.

all this process can be resumed with the neural network in Figure 2.4.
3The weights are the ones which link hidden layer to the output layer
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Skip-Gram The Skip-Gram model can be seen as a reverse CBOW. Starting
from the conceptual idea behind it: in Skip-Gram the goal of the model is to compute
the probability of each word in the vocabulary to appear in a random position nearby
(considering a certain window) the target word. The Skip-Gram algorithm can be
split into the following steps [33, 79]:

wO,1

wO,2

wO,C

.

.

.

W'NxV

WVxN

CxV

N
V

wI hi

W'NxV

W'NxV

Figure 2.5: Skip-Gram neural network representation.

1. The target word wI is encoded using one-hot representation.

2. The input vector is then multiplied by the weight matrix W .4

3. The resulting vector is passed through a linear activation function.

4. The output of the activation function is then multiplied by another weight
matrix W ′.

5. In the output layer, there is a multinomial distribution for each word ‘place-
holder’ in the context window.

4Note that since the vector is one-hot encoded and no mean operations are performed, the result of
the multiplication is the transposition of the i-th row of W .



23 Chapter 2. Visual Verb Sense Disambiguation

6. The parameters are trained through gradient descent trying to predict the next
occurring word. The loss function is the cross-entropy function:

L = − log p(wO,1, wO,2, . . . , wO,c | wI)

where wO,1, wO,2, . . . , wO,c are the output context words to predict and wI

is the target input word.

all this process can be resumed with the neural network in Figure 2.5.
The differences of use between the two models are that Skip-Gram works well with
a small amount of data and is able to capture rare occurring words well. On the
other hand, CBOW is faster and has better representations for more frequent words.

word2vec parameters and vector semantics A parameter in word2vec models
is the dimensionality. According to the results provided in the original paper [33],
the higher the dimensionality, the higher the accuracy, although, there is a point in
which a dimensionality increase implies a very small accuracy gain. To have better
growth, the dataset size must be increased as well. In this case, the more the training
data, the better the accuracy. A typical compromise on embeddings dimensionality
is 300 since is the point in which the accuracy starts capping if the data size remains
the same.
Vectors dimensionality is a parameter that needs to be tuned, nevertheless, it has
to be kept in mind that longer vector are harder to keep in memory and they need
more training time to learn weights.

As pointed out at the beginning of the paragraph, Skip-Gram and CBOW models
produce embeddings which can capture semantic properties of words. An ideal
model should always be able to respect semantics like in the following examples
(which are visualised in Figure 2.6):

Paris− France + Italy = Rome

King−Male + Female = Queen

In Table 2.3 there is a list of relationships kept in a Skip-gram model trained
on 783M words. Several relationships have been caught i.e. country — capital,
adjective — superlative, president — country, company — product, etc. In this case,
the model scored a 60% exact-match accuracy. According to authors [33], the model
would have produced better results by increasing the dimensionality of embeddings
(these were 300-dimensional vectors) and perform the training on a larger dataset.
Several techniques and tricks have been used to improve word2vec algorithms
like frequent words subsampling and negative sampling. Furthermore, some other
models have been built on top of word2vec, like GloVe [80] and FastText [81].

5The table as been taken from the original paper Efficient Estimation of Word Representations in
Vector Space [33]
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King

QueenMan

Woman

Figure 2.6: word2vec semantics.

Encoding VerSe descriptions As pointed out in Section 2.1.2, in Gella et al.
2019, the unimodal encoding of image descriptions is used in three setups:

• Captions (C): Each word of the caption is fed into a word2vec Skip-gram
model.

• Object labels (O): All the words which compose object labels are fed into a
word2vec Skip-gram model.

• Combined (O+C): The caption and the object labels are concatenated into a
single string, each word in it is fed into a word2vec Skip-gram model.

Relationship Example 1 Example 2 Example 3

France — Paris Italy: Rome Japan: Tokyo Florida: Tallahassee
big — bigger small: larger cold: colder quick: quicker
Miami — Florida Baltimore: Maryland Dallas: Texas Kona: Hawaii
Einstein — scientist Messi: midfielder Mozart: violinist Picasso: painter
Sarkozy — France Berlusconi: Italy Merkel: Germany Koizumi: Japan
copper — Cu zinc: Zn gold: Au uranium: plutonium
Berlusconi — Silvio Sarkozy: Nicolas Putin: Medvedev Obama: Barack
Microsoft — Windows Google: Android IBM: Linux Apple: iPhone
Microsoft — Ballmer Google: Yahoo IBM: McNealy Apple: Jobs
Japan — sushi Germany: bratwurst France: tapas USA: pizza

Table 2.3: Examples of word relationships learnt in the embedding5.
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the model will produce an embedding vector for each input word. Such vectors are
unit-normalised, and an overall average is computed between each output vector of
the caption/labels/both (depending on the setup) and unit-normalised once again.
By doing this, for each configuration, there is an embedding which represents the
textual data of the image, therefore, an embedding for each image (Figure 2.7).

Σ

a cat is on a shelf looking in the mirror

...

Figure 2.7: word2vec encoding pipeline.

Such encoding is performed using a Gensim model [26] which produces vectors
in a 300-dimensional space. It has been pre-trained on Google News corpus dataset,
composed of about 100 billion words.

2.1.4.3 Multimodal features

Gella et al. 2019 is a paper which aims to deal with multimodal data in which
three techniques are used to combine the feature vectors of Section 2.1.4.1 and
Section 2.1.4.2:

• Concatenation

• Canonical Correlation Analysis

• Deep Canonical Correlation Analysis

also in such cases, for each combination technique, three setups are evaluated: image
with captions, image with object labels, image with object labels and captions; as
pointed out in Section 2.1.2.

Features concatenation In this encoding the 300-dimensional textual feature
vector is appended to the 4096-dimensional visual-feature vector, resulting in a
4396-dimensional vector which captures both traits.
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(Deep) Canonical Correlation Analysis Canonical Correlation Analysis (CCA)
[82] is a statistical method which receives in input two vectors of random variables
X and Y which correlate between them. The goal is to train a model able to
transform vectors through a linear combination of them which maximises their
correlation. By doing this the two vectors are projected in a new vector space in
which they are correlated. CCA has already been used to combine textual and visual
data, producing good results for an image retrieval scenario [83].

On the other hand, Deep Canonical Correlation Analysis (DCCA) [84] is a
non-linear version of CCA, this is done by passing data through two deep neural
networks in which the output layers are maximally correlated.
DCCA has already been used for combining textual and visual data [85], overcoming
the results of linear CCA and its kernel versions (KCCA).

Encoding VerSe with (Deep) Canonical Correlation Analysis In Gella et al.
2019, CCA and DCCA are used to project textual and visual data into a joint latent
300-dimensional space. The resulting vectors are then merged through a convex
combination as follows:

im = λit
′
+ (1− λ)ic

′

where im is the output multimodal representation, it
′

is the projected image feature
vector (it), ic

′
is the projected textual feature vector (ic) and λ is balancing parameter

which weights the relevance of the vectors.
The models are trained using the textual features (Section 2.1.4.2) of descrip-

tions provided with COCO and Flickr30k [14] datasets and the visual features
(Section 2.1.4.1) of their respective images. The best scores have been obtained
with a balancing parameter λ = 0.5.

2.1.5 Sense Encoding

As described in Section 2.1.3, Gella et al. 2019 algorithm relies on Lesk algorithm.
It needs an input-image representation (context), whose encoding has already been
illustrated in Section 2.1.4 and a set of sense definitions. In this section it is show
how such definitions are encoded in vector-form in order to compute the similarity
with the context and infer the most likely sense for the verb; therefore, in this setup,
there is a vector for each available sense.

Also in this case, different encodings can be used, which can be split into three
main categories: textual, visual and multimodal.

2.1.5.1 Visual features

In a standard Lesk algorithm usage, the textual definition of senses are extracted from
dictionaries and knowledge bases, however, in this case, such information would
not fit with image data. Visual definitions can be retrieved from ImageNet [17]: a
wide knowledge base for images. Nevertheless, such data is related to nouns, and
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there is a lack of information regarding verbs. For this reason, a technique to have
an image-feature-based representation of verb senses has been designed.
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Figure 2.8: Visual-sense encoding pipeline.

In Gella et al. 2019, a plethora of sense-related images has been fetched from
the web. The pipeline can be found in Figure 2.8 and can be resumed as follows:

1. For each verb sense s in the dictionary, at least three queries that should return
images related to it have been defined by human annotators.

2. For each query q ∈ Q(s) the topmost fifty images returned by Bing search
engine have been fetched.

3. Each image i ∈ I(q) is converted into a feature vector ci using the FC-7 layer
of VGG16 as described in Section 2.1.4.1.

4. The fetched images of the same sense are averaged as follows:

sc =
1

n

∑
qj∈Q(s)

∑
i∈I(qj)

ci

where sc is the vectorial representation of the sense and n is the total number
of images fetched for s.

2.1.5.2 Textual features

The approach used for textual encoding for senses is very similar to the one used for
the descriptions in the dataset. In this case, a list of verb-sense definitions and usage
examples has been extracted from OntoNotes (as described in Section 2.1.1). Such
data is then encoded into a vectorial representation i.e. for each verb sense, each
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word composing its definition and usage examples is fed to the same word2vec Skip-
gram model used in Section 2.1.4.2, such vectors are then averaged and normalised,
resulting in a single 300-dimensional vector for each verb sense.

2.1.5.3 Multimodal features

The multimodal encodings used for senses are the same used in Section 2.1.4.3.
Therefore, given the textual representation st and the visual representation si of the
sense, they are can be combined with:

• Vector concatenation

• Canonical Correlation Analysis

• Deep Canonical Correlation Analysis

in the two latter cases, the combination equation of the two projected vectors is the
following:

sm = λst
′
+ (1− λ)sc

′

where sm is the output multimodal representation, st
′

is the projected image feature
vector, sc

′
is the projected textual feature vector and λ is balancing parameter which

weights the relevance of the vectors.

2.1.6 Unsupervised Visual Verb Disambiguation

Once the encoding has been performed, there are the following elements available:

• Three possible textual representations it for each image (one with captions,
one with object labels and one with both of them).

• A visual representation ic for each image.

• Nine possible multimodal representations im, three for each setup (concate-
nation, CCA, DCCA) for each image (one with the image and captions, one
with the image and object labels and one with both of them).

• A textual representation st for each verb sense in the dictionary.

• A visual representation sc for each verb sense in the dictionary.

• Three (one for setup: concatenation, CCA, DCCA) possible multimodal
representations sc for each verb sense in the dictionary.

According to the setup, there is a set of image representations and sense rep-
resentations. As defined in Section 2.1.3, the disambiguation algorithm is the
following:
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max-similarity ← 0
context ← set of features from image:

for each sense in senses of verb do
sense_definition ← set of features from

sense inventory of sense
similarity ← COSINESIM(sense_definition,context)
if similarity > max-similarity then

max-similarity ← similarity
best-sense ← sense

end
return best-sense

where the input parameters of the algorithm are the image, and the verb. And
the function COSINESIM computes the similarity between the two vectors.
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2.2 Graph Transduction Games for VSD

In Gella et al. 2019 the typical WSD task has been enchanced. Introducing a
new dataset, and using state-of-the-art encoding (at the moment of writing the first
version [2], language models like ELMo [86] and BERT [87] and image classifiers
like ResNet [88] were not yet available6) which used some feature-combination that
got interesting results in the multimodal field.

In this thesis, the pipeline provided in Gella et al. 2019 has been inserted in a
more dynamical space which relies on game theory and is used in a semi-supervised
setup. As each semi-supervised learning setup, this approach stays in the middle
between a fully supervised algorithm and the one proposed in Gella et al. 2019.
However, the main goal here is to overcome the limits of the former approach.

The first of them is the static nature of the modified Lesk application. When
selecting the verb sense which is more similar to the input image, the operation
is performed in an independent manner, which does not take into account neither
all the (possible) previous classifications nor the information of other embeddings.
This is a waste of information which could be exploited to improve the next results.
Moreover, the classification is a one-step operation which does not iterate since it
does not rely on evolving states kept by the algorithm.

The second limit consists of the encoding of a sense-representing entity. Since
each classification is independent, there is a strong assumption about the proper
representation of the encoded sense. If this task can be easily accomplished for the
textual data, it is quite hard to replicate for the visual features since it is required
a lot of data to ensure a reliable representation. The fetching operation is very
time-consuming and probably not replicable, due to the possible modification of
search engine internals.

In this thesis, these two disadvantages are being overcome by using a trans-
ductive algorithm which relies on Evolutionary Game Theory which eliminate
the concept of sense-representing entity, treating senses only as class labels in a
classification task.

2.2.1 Semi-supervised learning with Graph Transduction Games

Graph Transduction Games (GTG) [21] is a graph-based approach to perform semi-
supervised learning. Thus, as described in Section 1.1.4 the information coming
from both labelled and unlabeled data points is leveraged to perform classification.
In this class of algorithms, the data is modelled as a graph G = (V,E,w) whose
vertices are the observations in the dataset and edges represent similarities among
them. The set of nodes is defined as V = L∪U , where L = {(f1, y1), . . . , (fl, yl)}
is the set of labelled observations, whereas U = {fl+1, . . . , fn} is the set of
unlabeled ones, with fi being feature vectors and yi ∈ {1, 2, . . . ,m} being labels.
Weights w are a general measure of consistency among a pair of observations
assigned to each edge (u, v) ∈ E, which can be given in advance or computed

6However, nowadays VGGNet is still a widely used feature extractor.
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using the features of the observations. This representation is then exploited to
perform inference by propagating the labelling information of each node to its direct
neighbours. GTG algorithm relies on the cluster assumption, which is composed of
two principles:

1. data points that are close to each other are expected to have the same label.

2. data points in the same cluster are expected to have the same label.

In this transductive classification algorithm, the graph represents a context in
which a noncooperative multiplayer game is performed. Data points are mapped
to the players, which play games with their neighbours choosing among a set of
action (strategies) which represent their labels. They receive a payoff based on the
similarities among the neighbours along with the strategies they have selected. This
game is run multiple times until a point of convergence is reached, namely the Nash
Equilibrium [37], which provides a well-founded way of consistent labelling for
the unlabeled data points. Since this is a semi-supervised setting, the strategies of
labelled players are already set to the ones corresponding to their actual label.

2.2.1.1 Framework definition

Noncooperative Game Noncooperative Game Theory aims to analyse the indi-
vidual strategic behaviour (games) of anonymous agents (players). The goal of
each player is to interact with the game in a way which its own utility (payoff )
is maximised. Players can play the game by selecting actions (pure strategies)
provided by it. When a strategy is played, a payoff is returned and it is dependent
on the choices of each player in the game. A Multiplayer Noncooperative Game
can be defined as:

G = (I, S, π)

where:

• I = {1, . . . , n} is the set of players (n ≥ 2).

• S is the joint strategy space given by the Cartesian product of the individual
pure strategy sets Si = {1, . . . ,mi} (with i ∈ I).

• π : S → Rn is the combined payoff function which assigns a payoff πi(s) to
each pure strategy s ∈ S of each player i ∈ I.

Mixed strategies and mixed profiles A mixed strategy is a probability distribu-
tion over its pure strategy set Si. It can be formalised as xi = (xi1, . . . , ximi)

T

where each element xih represents the probability that the player i ∈ I plays its h-th
pure strategy. Mixed strategies are intended to model the uncertainty in choosing
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one pure strategy over another. Mixed strategies lie in the standard simplex of the
mi-dimensional Euclidean space Rmi :

∆i =

{
xi ∈ Rmi :

mi∑
h=1

xih = 1, and xih ≥ 0 for all h

}
Taking into account the mixed strategies of all players i ∈ I results into a mixed
strategy profile, it is defined as x = (x1, . . . , xn) with xi ∈ ∆i and represents the
state of the game in a certain moment. Mixed strategy profiles lie in the mixed
strategy space:

Θ = ×i∈I∆i

Pure strategies are probabilistically equivalent to extreme mixed strategies. They
are denoted as ehi , with 1 at position h and 0 elsewhere.

2.2.1.2 Payoff functions

To evaluate the best choice for each player, a tuple of payoff functions u =
(u1, . . . , un) s.t. u : ∆n×m → Rn

≥0 is defined. Such payoffs quantify the gain
that each player obtains given the actual configuration of the mixed strategy space.

Let z = (xi, y−i) ∈ Θ denote a strategy profile in which player i plays strategy
xi, whereas every other player j ∈ I \ {i} plays on the strategy profile y ∈ Θ. The
notation z = (xi, y−i) ∈ Θ is used to indicate a strategy profile in which player i
plays strategy xi and every other player j ∈ I s.t. i 6= j plays on the strategy profile
y ∈ Θ. The expected value of the payoff of player i is the following:

ui(x) =
∑
s∈S

x(s)πi(s) =

mj∑
k=1

ui(e
k
j , x−j)xjk

where ui(ekj , x−j) represents the payoff gained by player i when player j selects
its extreme mixed strategy ekj ∈ ∆i.

Payoffs in GTG In this graph transductive setup, it is assumed to play in a
polymatrix game [40] where only pairwise interactions are allowed and the payoffs
associated to each player is given by the sum of the payoffs gained from each game
played with one of its neighbours. With this assumption, the payoff function can be
cast to:

πi(s) =

n∑
j=1

Aij(si, sj)

where Aij ∈ Rm×m is the partial payoff matrix between player i and player j. In
particular, Aij = Im × ωij where Im is the identity matrix and ωij , is the similarity
between player i and j. Therefore, the payoffs can be computed as:
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ui(e
h
i , x−i) = ui(e

h
i ) =

∑
j∈U

(Aijxj)h +
m∑
k=1

∑
j∈L

Aij(h, k) (2.3)

ui(x) =
∑
j∈U

xTi Aijxj +
m∑
k=1

∑
j∈L

xTi (Aij)k (2.4)

where Equation 2.3 is the payoff received by the player i when playing strategy h
and Equation 2.4 is the expected payoff for the player i, for its mixed strategy xi.
The goal of each player is to pick a strategy which leads to a payoff greater or equal
than the expected ones.

2.2.1.3 Nash equilibrium

A central concept in Game Theory is Nash equilibrium which is a strategy selection
performed by players such that no player, has an incentive to deviate from his
current strategy because a unilateral change cannot increase his payoff. Such a
concept is formalised as follows:

ui(x
∗
i , x
∗
−i) ≥ ui(x

,
ix
∗
−i) ∀i ∈ I, xi ∈ ∆i s.t. xi 6= x∗i

Nash equilibria based on pure strategies may not exist in some games. However, a
Nash equilibrium based on mixed strategies is always available.

In Graph Transduction Game, a Nash equilibrium moves mixed strategies to
extreme strategies resulting in globally consistent labelling of the dataset [38]. When
equilibrium is found, data points class is represented by the strategy with the highest
probability:

φi = arg max
h=1,...,c

xih

Computing the Nash equilibrium In this setup, an evolutionary approach is
used to compute Nash equilibria. They can be found through a dynamical system
belonging to the class of Replicator Dynamics [39] introduced in [41]. Within this
context, the mixed strategies together compose a multi-population where only the
fittest pure strategies are kept whereas the others go extinct.

In an evolutionary scenario, Nash equilibria can be seen as the evolution of the
fittest strategies in a multi-population of strategies. Such an evolution is the result
of playing a game repeatedly. The discrete version of the dynamics is the following:

x
(t+1)
ih = x

(t)
ih

ui(e
(h)
i , x

(t)
−i)

ui(x(t))

where t defines the current iteration of the process. The exit condition of dynamics
can be a maximum number of iteration to reach or when there is a non-significant
difference between two consecutive steps.
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2.2.2 Graph Transduction Games for VSD

GTG requires as input three components:

1. The set of labelled players L and the set of unlabeled players U .

2. The similarity graph between the players.

3. An initial assignment between players and labels.

2.2.2.1 Players definition

GTG framework relies on the definition of a graph in which each node is a player of
the noncooperative game. In this specific VSD setting, each element in the set of
nodes V = L ∪ U corresponds to a pair <image, verb>, whereas each available
strategy corresponds to a possible sense of the verb. For labelled players L, the verb
sense (the fittest pure strategy) is known, while for players in U , it has to be inferred
(Figure 2.9).

Figure 2.9: Set of labelled (green) and unlabeled (black) players.

2.2.2.2 Similarity between players

The similarity matrix ω is the adjacency matrix of the graph edges. It contains the
similarity between each pair of players. The similarity function is the cosine, as
defined in Section 2.1.3 and it is computed on the feature vectors (fi) of the dataset
images (Section 2.1.4):

Aij = fi · fj
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The similarity between each pair of players i and j quantifies the effect that the
player i has on player j, during the strategy selection. The more the players are
similar the more likely they will share the same strategy (which means the same
verb sense).

Ride

Look

Look

Ride

Look

Ride

Sense-1

Sense-4

Figure 2.10: Set of labelled (green) and unlabeled (black) players.

2.2.2.3 Probability Initialisation

Strategies are initialised into a probability matrix x (in the evolutionary notation, at
the step x(0)) in which the rows are the players and the columns are the strategies.
It is taken into account the distinction between labelled players L and unlabeled
players U (where each player is a < image, verb > pair). Players in L play only
extreme strategies i.e. with a 1 probability on the strategy which matches their label,
resulting in a one-hot vector.
For each player (< image, verb > pair) in U the strategies are uniformly initialised
among the feasible classes (senses that belong to the input verb), so just a submatrix
is taken into account. Each cell xih is initialised as follows:

xih =


1 if i is labelled and have sense h
1
|Si| if i is unlabeled and h ∈ Si
0 otherwise

where xih corresponds to the probability that the i-th player chooses strategy h
while Si is the set of possible senses associated with the verb paired with the image
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(pair i). An example to clarify this point is that if the target player has the verb play,
the uniform probability is distributed only among the strategies which match the
senses of play; the probabilities of all the other strategies are set to zero.

2.2.3 Algorithmic pipeline
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Figure 2.11: Pipeline of the algorithm considering both labelled (green border) and
unlabeled images (black border).

The whole pipeline of the GTG Multimodal Verb Sense Disambiguation algorithm
used on VerSe dataset is summarised in Figure 2.11 and is composed of the following
steps:

1. At the beginning of the process, only a partition of the dataset is already
labelled (at least an observation per class). Each observation is represented
by a pair <image, verb> the label information (if known) is the verb sense
identifier.

2. Each image i is encoded either in a unimodal (image/text/labels) or a multi-
modal (concatenation of image/text/labels) way, as described in Section 2.1.4,
resulting in < fi, verb> pairs.

3. Each < fi, verb> pair is used as a node in the graph which represents a
player in the Graph Transduction Game. Graph nodes are connected through
each others computing a pairwise similarity function between each data point,
it represents graph weights.
As in Equation 2.2, the similarity function is the cosine similarity.

4. Each row of the strategy space S is initialised with a uniform probability
distribution among the senses of the input verb, each column represents a verb
sense, hence a strategy in the GTG. Regarding the rows related to labelled
data points, since their sense is already chosen, a 1 probability is set on their
extreme strategy matching their class label.
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5. Replicator Dynamics are run until a Nash equilibrium is found. In an algo-
rithmic view this point is reached when one of the following conditions is
satisfied:

• the difference between the strategies in two successive steps is not
significant, hence they remain unchanged.

• Replicator Dynamics have reached a number of iterations in which
according to empirical observations, they should have reached an equi-
librium.

6. Once a Nash equilibrium is found, every player has selected a strategy which
match its best option taking into account the strategies of its opponents. In
classification terms this means that a consistent labelling of unlabeled data
points is obtained.
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Experiments

In this section the configurations used to measure the performances of GTG Visual
Sense Disambiguation are listed. Such results are then compared with the ones
obtained in Gella et al. 2019.
All the unimodal representations of textual and visual data has been used, including
both GOLD and PRED settings.

(Deep) Canonical Correlation Analysis The advanced multimodal representa-
tion techniques employed in Gella et al. 2019 to combine data, i.e. Canonical
Correlation Analysis and its non-linear version, produced performances poorer than
the simpler and fast vector concatenation. Even if such methods had interesting
results in other researches [85] their usage is not worthy with VerSe. Just to replicate
the experiments, in order to have a baseline with Gella et al. 2019 they needed
additional data i.e. Flickr30k dataset and significant time to train the model. For this
reason, they have not been taken into account in the GTG setup since their usage
was not promising.

3.1 Experiments setup

In order to have consistent and comparable results, the experiments have been
performed on the same dataset used in Gella et al. 2019 and the same performance
quantifier has been used (accuracy metric). Considering the different features and
their combinations, there are 7 possible setups for the experiments: captions (C),
object labels (O), captions with object labels (C+O), CNN features (VIS), CNN
features concatenated to captions (CNN+C), CNN features concatenated to object
labels (CNN+O) and CNN features concatenated to captions with object labels
(CNN+O+C). They go up to 13, due to the duplication of textual configurations of
GOLD and PRED textual sources.

In Gella et al. 2019, once the encoding part is performed, the experiments are
purely deterministic since they do not rely on stochastic parts, like samplings. In
this semi-supervised setup, the labels are available for all the data, so we want to

38
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simulate the situation in which only a sample of VerSe is being labelled by randomly
sampling labelled elements. The sampling is performed on n (s.t. n ≥ 1) data points
per class (verb sense). To have an unbiased evaluation which is not affected by the
stochasticity of the sampling process, multiple seeds are taken. Each experiment is
replicated on 15 different seeds, resulting in 15 pilot runs, in a way that each run
has a different initial sample. Once the scores have been gathered they aggregated
in the form: mean ± standard deviation.

In this setup, the chosen exit condition of the Replicator Dynamics is to reach a
maximum of 10 iterations as suggested in [36].

3.1.1 Ablation studies

In some cases, a single labelled element per class may be sufficient to overcome the
results of Gella et al. 2019 since the semi-supervised setup generally lies beyond
the unsupervised one. However, an interesting experiment is to understand how
the labelled sample size affects the accuracy of the classification. For this reason,
the experiments with GTG have been carried out considering an increasing number
of labelled elements per sense and accounting for the accuracy on the unlabeled
elements. The number of labelled elements varies from 1 to 13, after that point the
difference became non-significant.

The distribution of verb senses in the dataset is not uniform but is Zipfian, so
there are many verbs which are related to a few data points and only a few verbs
which are related to many data points. For this reason, a 1-label per sense increase
will be much more influent in some classes rather than other ones. Due to this sense
distribution, on sample size increase some classes will label all their available points
very fast.

To keep having unlabeled data points for each class, the following label sampling
rule is used:

g(n) =

{
n if n < m

m− 1 otherwise

where n is the number of data points for each class that is needed for the experiment
and m is the total number of the data points of the class.

3.1.2 Modern image classifiers

The disambiguation method used in Gella et al. 2019 has been designed around
2015. As described in Section 2.1.4.1, at that moment the best image classifier
available was VGGNet. In the next years, better networks have been released like
Inception and ResNet. Nevertheless, these networks have been trained with the goal
of classifying images.

An interesting experiment to perform is in this GTG setup, is to employ a state-
of-the-art object detector for PRED object label generation: Faster R-CNN [29].
This tool has been designed to provide the actual content of the image rather than
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an estimate of the possible classes of an image. The idea is that an object detector
should be better for pictures with several objects in it. A difference between an
image classifier like VGGNet and an object detector like Faster R-CNN in terms of
produced labels is that the latter might generate non-unique object labels, to have
comparable results the duplicates have been dropped.

Moreover, a modern CNN might affect also the textual data, because the captions
that are generated in the PRED setup are obtained with a neural network trained
on a VGGNet. Thus, another experiment has been performed in which the PRED
image caption tool has been replaced with a more recent one [30], which is based
on a ResNet101 structure rather than a VGGNet.
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Results

In Table 4.1 are reported the results of Gella et al. 2019 (first row) compared
with the game-transductive approach using several labelled sample sizes; using
the GOLD configuration for textual experiments. An explanation about specific
encoding abbreviation can be found in Section 3.1. The table content is measured
using the accuracy metric.

GOLD Verb type
Textual

VIS (CNN)
Concat (CNN+)

O C Combined (O+C) Object (O) Captions (C) Combined (O+C)

Paper results
PAMI 2019

Motion 54.60 73.30 75.60 58.30 66.60 74.70 73.80
Non-Motion 57.00 72.70 72.60 56.10 66.00 72.20 71.30

1 label
Motion 73.32 ± 4.4 73.36 ± 6.0 74.15 ± 5.5 73.33 ± 5.9 74.68 ± 3.4 74.59 ± 5.3 74.07 ± 5.5
Non Motion 71.68 ± 4.6 71.35 ± 4.4 75.78 ± 4.0 64.39 ± 6.6 71.43 ± 4.9 70.81 ± 4.7 74.80 ± 4.0

2 labels
Motion 79.38 ± 5.2 83.06 ± 2.7 83.27 ± 2.6 78.83 ± 4.6 80.72 ± 4.5 83.98 ± 2.9 83.56 ± 3.2
Non Motion 82.49 ± 3.2 81.75 ± 2.9 82.24 ± 4.0 80.80 ± 4.0 83.41 ± 2.8 81.78 ± 2.0 81.72 ± 3.0

3 labels
Motion 80.95 ± 4.9 82.02 ± 2.5 84.30 ± 3.0 81.44 ± 4.3 81.13 ± 5.2 82.04 ± 3.2 84.64 ± 3.4
Non Motion 86.11 ± 2.3 87.60 ± 2.1 87.69 ± 1.9 87.60 ± 2.2 86.24 ± 2.4 87.89 ± 1.4 87.80 ± 1.8

4 labels
Motion 81.85 ± 4.3 81.33 ± 4.4 85.17 ± 3.6 83.80 ± 4.5 82.98 ± 4.2 83.24 ± 3.3 84.84 ± 4.2
Non Motion 86.56 ± 2.4 87.60 ± 2.2 88.05 ± 2.0 87.57 ± 2.4 87.18 ± 2.3 87.61 ± 2.2 87.97 ± 2.2

5 labels
Motion 82.68 ± 3.6 83.40 ± 3.1 86.70 ± 4.1 85.57 ± 4.1 83.36 ± 3.4 82.98 ± 3.0 87.45 ± 3.2
Non Motion 86.84 ± 2.4 88.64 ± 1.8 88.63 ± 2.2 87.62 ± 2.3 86.80 ± 2.2 88.68 ± 2.5 88.87 ± 2.4

6 labels
Motion 83.42 ± 3.3 84.00 ± 3.5 87.15 ± 3.9 86.83 ± 3.3 85.10 ± 3.0 84.39 ± 3.5 87.70 ± 3.9
Non Motion 86.87 ± 1.7 89.07 ± 1.9 88.97 ± 1.4 88.40 ± 3.0 87.09 ± 2.3 89.57 ± 1.4 89.10 ± 1.7

7 labels
Motion 83.81 ± 3.3 88.59 ± 2.0 88.85 ± 2.8 91.60 ± 1.5 85.03 ± 2.6 88.74 ± 1.9 89.58 ± 2.1
Non Motion 89.44 ± 2.4 92.21 ± 2.0 92.20 ± 2.0 90.07 ± 2.8 89.55 ± 2.2 92.81 ± 2.0 93.01 ± 1.9

8 labels
Motion 84.12 ± 3.6 88.89 ± 1.9 89.19 ± 2.0 91.97 ± 1.5 86.41 ± 2.8 89.44 ± 0.9 89.34 ± 2.0
Non Motion 89.59 ± 2.7 92.59 ± 2.0 92.42 ± 1.6 90.76 ± 3.0 89.40 ± 2.7 93.65 ± 1.6 92.39 ± 2.3

9 labels
Motion 87.45 ± 1.1 89.58 ± 0.7 90.00 ± 0.6 92.44 ± 1.6 88.46 ± 2.3 89.81 ± 0.7 90.18 ± 0.6
Non Motion 92.24 ± 2.1 93.36 ± 1.8 92.53 ± 1.7 93.47 ± 2.8 92.25 ± 2.2 93.97 ± 2.0 93.22 ± 1.6

10 labels
Motion 87.51 ± 1.1 89.90 ± 0.6 90.28 ± 0.4 92.51 ± 1.6 88.55 ± 2.0 90.15 ± 0.5 90.40 ± 0.5
Non Motion 92.99 ± 2.0 93.20 ± 2.1 92.93 ± 1.7 94.28 ± 1.7 93.37 ± 1.1 93.61 ± 2.1 93.69 ± 1.5

11 labels
Motion 87.76 ± 1.3 90.36 ± 0.7 90.49 ± 0.4 93.16 ± 0.9 89.04 ± 2.3 90.64 ± 0.7 90.56 ± 0.4
Non Motion 93.15 ± 1.5 93.82 ± 1.5 93.24 ± 1.1 94.51 ± 1.7 93.26 ± 0.9 93.98 ± 1.7 93.41 ± 1.2

12 labels
Motion 88.85 ± 1.6 91.37 ± 0.4 91.53 ± 0.4 94.21 ± 1.0 90.20 ± 2.7 91.56 ± 0.3 91.60 ± 0.4
Non Motion 93.29 ± 0.9 93.88 ± 1.7 93.19 ± 1.2 94.43 ± 1.7 93.22 ± 0.9 93.75 ± 1.6 93.19 ± 1.2

13 labels
Motion 90.33 ± 2.3 91.67 ± 0.2 91.85 ± 0.1 94.51 ± 0.9 91.65 ± 3.1 91.82 ± 0.1 91.89 ± 0.1
Non Motion 93.42 ± 1.3 93.55 ± 1.5 93.10 ± 1.2 94.65 ± 1.8 93.44 ± 1.3 93.92 ± 1.8 93.13 ± 1.2

Table 4.1: Results of Gella et al. 2019 vs. GTG for GOLD setting

These results consist in the means of all the 15 runs coupled with their standard
deviations. In Gella et al. 2019, the results have been split according to Levin
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PRED Verb type
Textual

VIS (CNN)
Concat (CNN+)

O C Combined (O+C) Object (O) Captions (C) Combined (O+C)

Paper results
PAMI 2019

Motion 65.1 54.9 61.6 58.3 72.6 63.6 66.5
Non-Motion 59.0 64.3 65.0 56.1 63.8 66.3 66.1

1 label
Motion 71.17 ± 6.4 71.52 ± 3.9 71.87 ± 5.1 73.33 ± 5.9 72.97 ± 6.3 73.83 ± 4.3 74.01 ± 3.6
Non Motion 64.37 ± 5.2 72.18 ± 5.4 73.34 ± 4.4 64.39 ± 6.6 65.58 ± 6.0 73.31 ± 4.9 73.31 ± 4.6

2 labels
Motion 79.54 ± 4.9 77.09 ± 4.3 78.04 ± 5.0 78.83 ± 4.6 80.17 ± 4.4 77.70 ± 3.6 78.27 ± 3.7
Non Motion 75.32 ± 4.1 84.34 ± 3.3 82.71 ± 3.7 80.80 ± 4.0 77.34 ± 3.4 84.31 ± 3.7 83.07 ± 3.7

3 labels
Motion 80.09 ± 4.3 79.76 ± 3.6 80.00 ± 3.7 81.44 ± 4.3 80.14 ± 4.4 79.16 ± 3.6 80.05 ± 4.0
Non Motion 82.95 ± 3.3 89.01 ± 1.5 88.81 ± 1.9 87.60 ± 2.2 85.63 ± 3.7 89.17 ± 1.9 88.60 ± 2.4

4 labels
Motion 79.29 ± 4.7 82.16 ± 3.5 82.20 ± 3.6 83.80 ± 4.5 79.88 ± 4.4 81.95 ± 3.6 82.22 ± 4.1
Non Motion 85.12 ± 4.4 89.49 ± 1.6 89.20 ± 2.0 87.57 ± 2.4 87.31 ± 2.9 89.47 ± 1.5 89.05 ± 1.8

5 labels
Motion 81.23 ± 3.8 85.21 ± 3.2 84.11 ± 3.0 85.57 ± 4.1 82.43 ± 4.1 85.04 ± 3.2 84.67 ± 3.6
Non Motion 87.40 ± 3.1 90.27 ± 2.4 89.93 ± 2.3 87.62 ± 2.3 87.90 ± 2.6 90.28 ± 2.2 89.94 ± 2.3

6 labels
Motion 82.39 ± 4.8 86.91 ± 2.6 86.72 ± 2.5 86.83 ± 3.3 83.78 ± 4.8 87.28 ± 2.7 87.46 ± 2.3
Non Motion 87.86 ± 3.1 90.49 ± 2.0 90.04 ± 2.0 88.40 ± 3.0 88.69 ± 3.3 90.45 ± 2.2 89.81 ± 2.4

7 labels
Motion 83.78 ± 5.2 88.05 ± 1.1 87.99 ± 1.0 91.60 ± 1.5 84.78 ± 3.7 88.47 ± 1.1 88.42 ± 1.0
Non Motion 88.94 ± 2.9 92.33 ± 1.6 91.61 ± 1.5 90.07 ± 2.8 90.56 ± 2.7 92.22 ± 1.7 91.41 ± 2.6

8 labels
Motion 85.71 ± 4.2 88.32 ± 0.7 88.18 ± 0.7 91.97 ± 1.5 86.49 ± 3.1 88.65 ± 1.0 89.01 ± 1.2
Non Motion 89.51 ± 3.5 92.87 ± 1.5 92.43 ± 2.0 90.76 ± 3.0 89.65 ± 2.6 93.45 ± 1.5 93.23 ± 2.2

9 labels
Motion 87.90 ± 2.9 88.53 ± 0.8 88.62 ± 0.8 92.44 ± 1.6 88.54 ± 2.5 88.95 ± 0.9 89.24 ± 1.2
Non Motion 91.39 ± 2.7 92.95 ± 2.0 92.65 ± 2.1 93.47 ± 2.8 91.99 ± 2.6 93.30 ± 2.2 93.11 ± 2.1

10 labels
Motion 88.88 ± 2.7 88.93 ± 0.6 89.26 ± 0.7 92.51 ± 1.6 88.86 ± 2.7 89.47 ± 0.7 89.58 ± 0.6
Non Motion 92.15 ± 3.1 93.39 ± 2.0 92.56 ± 2.3 94.28 ± 1.7 93.95 ± 1.6 94.03 ± 1.6 93.57 ± 2.2

11 labels
Motion 89.70 ± 2.6 89.45 ± 0.5 89.63 ± 0.5 93.16 ± 0.9 90.07 ± 1.9 90.00 ± 0.6 89.89 ± 0.7
Non Motion 94.00 ± 1.5 94.44 ± 1.8 93.99 ± 1.7 94.51 ± 1.7 94.21 ± 1.6 94.46 ± 1.8 93.77 ± 1.6

12 labels
Motion 90.44 ± 2.6 90.94 ± 0.7 91.07 ± 0.6 94.21 ± 1.0 90.70 ± 2.0 91.38 ± 0.7 91.29 ± 0.9
Non Motion 93.84 ± 1.6 94.43 ± 1.9 93.89 ± 1.7 94.43 ± 1.7 94.02 ± 1.6 94.12 ± 1.7 93.94 ± 1.7

13 labels
Motion 91.35 ± 2.2 91.49 ± 0.7 91.63 ± 0.6 94.51 ± 0.9 91.14 ± 1.7 91.77 ± 0.4 91.77 ± 0.7
Non Motion 94.19 ± 1.7 94.01 ± 1.8 93.69 ± 1.7 94.65 ± 1.8 94.27 ± 1.8 94.17 ± 1.8 94.31 ± 1.8

Table 4.2: Results of Gella et al. 2019 vs. GTG for PRED setting

semantic verb classes (motion and non-motion verbs) [18] since considering them
jointly in some cases would have affected the final score. Moreover, the verbs
related to the images which compose the dataset are almost uniformly distributed
among these two classes i.e. 1812 for motion verbs and 1698 for non-motion verbs.

In the table, it is shown how the labelled sample size affects the accuracy of the
algorithm. The same tabular organisation has been used for Table 4.2 for PRED
configuration for textual experiments.
The comparison between the two approaches can be seen also from the plots in
Figure 4.1 and Figure 4.2, in which the performances are plotted varying the number
of labelled data points per class in the vertical axes and the disambiguation accuracy
in the horizontal axes. The circles in the plots at x-value zero, represent the scores
obtained in Gella et al. 2019 which are used as the baseline. As can be seen, the
performances with 1 labelled point per sense are comparable with Gella et al. 2019,
this means that a dynamic classification, performed after a convergence point can
improve the performance. Adding more labelled information i.e. 2 or more labelled
data points per class, dramatically outperforms the baseline. Theoretically the
more the labelled information increase, the more the accuracy means will converge,
reducing at each step the standard deviations.

In GOLD setting (Fig.4.1), for the experiments performed using unimodal rep-
resentations of object labels (O) and visual features (CNN); the GTG approach
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Figure 4.1: GOLD results for text data, cnn and cnn+text varying the number of
labelled points in comparison with Gella et al. approach (circles).

outperforms Gella et al. accuracies needing just 1 labelled point per class. Whereas
for caption data, they are quite aligned; especially if taking into account standard
deviations. This has an impact on all derived configuration, both unimodal (cap-
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Figure 4.2: PRED results for text data, cnn and cnn+text varying the number of
labelled points in comparison with Gella et al. approach (circles).

tions+object labels) and multimodal. In fact, in such cases, the GTG score is aligned
with Gella et al. 2019. In PRED textual configuration (Fig. 4.2), all GTG experi-
ments outperform Gella et al. 2019 results when two labelled points are considered.
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When only 1 labelled point is used, the performances of Gella et al. 2019 are in the
range of variances of GTG. In general, it can be noted that as expected, the higher
the number of labelled points per sense, the higher the overall accuracy and smaller
the standard deviation. The accuracy curve follows a logarithmic growth i.e. the
variation of the number of labels has a relevant role when they are few, whereas,
with more than 6–7 labelled points per class, the accuracy starts converging.

4.1 Performances with modern DNN

The scores obtained replacing Faster R-CNN as label extractor and ResNet101 as
base for the caption generator are reported in Table 4.3. In some cases, both the
mean accuracy and the overall standard deviation have been reduced resulting in a
more stable score. On the other hand, in some other cases, both the mean and the
standard deviation increased. Thus, the scores are aligned to the ones obtained with
standard PRED.

ModernPRED Verb type
Textual

VIS (CNN)
Concat (CNN+)

O C Combined (O+C) Object (O) Captions (C) Combined (O+C)

Paper results
PAMI 2019

Motion 65.1 54.9 61.6 58.3 72.6 63.6 66.5
Non-Motion 59.0 64.3 65.0 56.1 63.8 66.3 66.1

1 label
Motion 70.55 ± 5.1 70.92 ± 5.0 71.98 ± 4.6 73.33 ± 5.9 72.22 ± 4.4 74.52 ± 4.0 73.78 ± 4.2
Non Motion 71.92 ± 3.6 70.19 ± 4.1 71.17 ± 3.3 64.39 ± 6.6 71.53 ± 4.4 70.55 ± 3.8 71.12 ± 3.5

2 label
Motion 73.63 ± 4.4 76.19 ± 4.8 76.62 ± 5.7 78.83 ± 4.6 74.68 ± 5.0 77.44 ± 4.6 77.82 ± 4.9
Non Motion 83.94 ± 3.6 80.58 ± 3.9 81.98 ± 3.0 80.80 ± 4.0 83.10 ± 2.9 80.32 ± 4.1 81.77 ± 2.9

3 label
Motion 74.55 ± 5.3 77.01 ± 2.9 77.67 ± 2.9 81.44 ± 4.3 76.45 ± 5.3 78.33 ± 2.3 78.66 ± 2.7
Non Motion 87.70 ± 2.4 87.27 ± 2.8 88.06 ± 2.6 87.60 ± 2.2 87.00 ± 2.3 87.07 ± 3.1 87.30 ± 3.1

4 label
Motion 76.45 ± 3.5 77.67 ± 3.2 77.81 ± 3.0 83.80 ± 4.5 78.15 ± 5.1 79.47 ± 3.9 79.67 ± 3.6
Non Motion 88.50 ± 2.4 86.71 ± 2.3 88.17 ± 1.6 87.57 ± 2.4 87.97 ± 2.8 87.13 ± 2.2 87.94 ± 2.0

5 label
Motion 76.52 ± 4.2 79.39 ± 3.8 79.31 ± 3.9 85.57 ± 4.1 78.86 ± 6.0 80.44 ± 4.0 80.43 ± 4.3
Non Motion 89.57 ± 2.6 87.60 ± 2.0 89.57 ± 1.9 87.62 ± 2.3 88.78 ± 2.9 88.17 ± 2.8 89.17 ± 2.2

6 label
Motion 76.97 ± 3.3 80.05 ± 4.1 79.25 ± 4.1 86.83 ± 3.3 79.49 ± 6.2 81.30 ± 3.9 81.31 ± 3.9
Non Motion 89.88 ± 2.8 88.08 ± 2.3 89.07 ± 2.6 88.40 ± 3.0 89.42 ± 2.7 88.57 ± 3.0 90.13 ± 3.1

7 label
Motion 79.73 ± 4.3 85.96 ± 3.6 86.03 ± 3.2 91.60 ± 1.5 82.10 ± 5.1 87.92 ± 2.4 88.19 ± 2.7
Non Motion 92.57 ± 3.0 90.41 ± 2.4 91.50 ± 2.4 90.07 ± 2.8 91.66 ± 3.0 90.68 ± 2.6 91.66 ± 3.1

8 label
Motion 78.86 ± 4.3 87.39 ± 2.8 85.89 ± 3.3 91.97 ± 1.5 83.25 ± 4.4 88.56 ± 2.2 88.49 ± 2.6
Non Motion 91.78 ± 3.0 90.78 ± 2.3 92.10 ± 2.4 90.76 ± 3.0 91.09 ± 3.0 91.40 ± 2.4 92.77 ± 3.3

9 label
Motion 86.22 ± 2.2 88.72 ± 0.8 88.71 ± 1.0 92.44 ± 1.6 87.44 ± 1.8 89.71 ± 0.9 89.75 ± 1.1
Non Motion 94.79 ± 1.6 91.25 ± 1.5 92.68 ± 2.3 93.47 ± 2.8 94.71 ± 1.6 92.03 ± 1.8 93.48 ± 1.9

10 label
Motion 87.19 ± 2.5 89.13 ± 0.6 88.70 ± 1.0 92.51 ± 1.6 88.11 ± 1.3 89.56 ± 0.9 89.73 ± 0.8
Non Motion 95.05 ± 1.6 91.49 ± 1.9 92.70 ± 2.4 94.28 ± 1.7 95.06 ± 1.6 92.37 ± 1.9 93.15 ± 2.2

11 label
Motion 87.68 ± 2.4 89.50 ± 0.5 89.30 ± 1.0 93.16 ± 0.9 88.79 ± 1.4 90.18 ± 0.7 90.27 ± 0.9
Non Motion 94.90 ± 1.8 93.30 ± 1.2 94.13 ± 1.7 94.51 ± 1.7 94.90 ± 1.7 93.53 ± 1.4 94.00 ± 1.7

12 label
Motion 89.02 ± 2.1 91.09 ± 0.5 90.80 ± 0.8 94.21 ± 1.0 90.60 ± 1.1 91.72 ± 0.5 91.81 ± 0.5
Non Motion 94.95 ± 1.8 93.22 ± 1.3 94.64 ± 1.8 94.43 ± 1.7 94.89 ± 1.8 93.22 ± 1.3 94.46 ± 1.8

13 label
Motion 89.45 ± 2.2 91.34 ± 0.5 91.14 ± 0.5 94.51 ± 0.9 91.47 ± 0.7 91.79 ± 0.3 91.90 ± 0.3
Non Motion 95.39 ± 1.7 93.42 ± 1.5 95.03 ± 1.8 94.65 ± 1.8 94.92 ± 1.8 93.49 ± 1.5 94.67 ± 1.9

Table 4.3: Results considering Faster R-CNN and a modern DNN for PRED textual
setting.

this means that VGGNet is still a worth feature extractor with respect to ResNet.
The use of an object detector did not affect the label extraction process much.
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4.2 Baseline heuristics

In Gella et al 2019, to evaluate the disambiguation algorithm, their method has been
compared with two typical NLP baseline heuristics:

• First Sense heuristics (FS): For each verb to disambiguate, the first verb
sense listed in a knowledge-base is returned. In this case such information
is retrieved from OntoNotes. This approach aims to use information which
is independent of the current data. Exploiting a semantic network; Usually,
senses are listed by frequency. Such an approach for VerSe dataset performed
an accuracy of 70.8% for motion verbs and an accuracy of 80.6% for non-
motion verbs.
With respect to the transductive approach, such baseline is overcome only
with one label per class for motion verbs and two labels per class for non-
motion verbs. However such statement is valid only if standard deviations are
dropped. When they are taken into account, to be sure that such baseline is
outperformed it is necessary to have 3 labels for motion verbs and 3–4 labels
for non-motion verbs especially if PRED setup is considered.

• Most Frequent Sense heuristics (MFS): For each verb to be disambiguated,
the most frequent sense of that verb appearing in dataset ground truth is
used. This technique requires full knowledge of dataset labels; in fact, it is
considered as a supervised heuristics. Such an approach is quite similar to
FS heuristics, but in this case, the evaluation is biased by the dataset, being
dependent on it. This approach applied to VerSe dataset produced an accuracy
of 86.2% for motion verbs and an accuracy of 90.7% for non-motion verbs.
In this case, the relatedness of data points from the same dataset affected a
lot the sense assignment. This means which is likely that in VerSe the sense
distributions tend towards senses which are not the most common.
This heuristics is quite hard to be overcome by the transductive approach. In
fact, for motion verbs 7–8 labels per class are needed whereas, for non-motion
verbs, 9 labels might not be enough if standard deviations are considered.
Nevertheless as said at the beginning, MFS is considered as a supervised
learning approach, which theoretically should always act as an upper bound
for a semi-supervised approach, which should lie between its unsupervised
and supervised counterparts.
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Conclusions & Future Work

In this thesis, the suitability of an evolutionary game-theoretic model has been
shown in the task of multimodal verb sense disambiguation. A first overview of
the well-known word sense disambiguation task has been given. Then, it has been
shown how it has been transferred to multimodal data; circumscribing the task just
to verbs. After that, all the essential information about the reference paper has
been explored. Passing from the goals, dataset, the encodings and the algorithm.
Hence, the Graph Transduction Game algorithm has been introduced with a brief
explanation on evolutionary game theory fundamentals. Eventually, experimental
setups and their respective results have been described.

In this chapter, the main advantages and disadvantages of the discussed approach
will be resumed and discussed. After that, some possible future developments which
may enhance the work are listed.

Advantages and disadvantages of the method One of the main advantages of
the transductive method is that verb senses have been converted from entities to
labels. In Gella et al. 2019, since the learning approach is unsupervised and founded
on Lesk algorithm [15], there is the need to have dictionary definitions and images
crawled from the web and encode them to entities which represent verb senses.
Upon initial analysis, this implies a big effort in term of data gathering. Although,
once this process has been performed, the disambiguation part is quite simple.
However, an important fact is that the quality of such data can affect a lot the final
result. In fact, in a textual scenario, the dictionary examples could lead towards
a very specific context of usage of the verb, resulting in a biased representation.
Whereas, for the visual scenario, the web engine might retrieve wrong images,
resulting in data outliers which act as noise for the representation (which in certain
situations may also be worthy). All these incoveniences, are going to be avoided
by treating senses only as labels in the transductive approach. This means that the
learning approach moves from the fully unsupervised to the semi-unsupervised one.
The transductive approach has been selected for VerSe because it has already been
used in WSD. It has been applied in a fully textual scenario in a former research [24]
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scoring good results. Nevertheless, in such a paper, the payoffs depend also on
the similarity between senses of words appearing nearby the target word. That is
contextual information which is not available in this setup.

The power of the approach proposed in this thesis relies on the transductive
nature of the Graph Transduction Games which performs the inference for the sense
of a verb using not only on the similarity with the labeled samples but considering
also the unlabeled ones, leading to a more precise boundaries definition. The
similarity is measured across multimodal image representations which come from
the same dataset and not on sense-representing entities which come from knowledge
bases. This means that since they come from the same dataset, it is more likely that
similar elements belong to the same class. Whereas, with sense-data fetched with a
black box crawling approach (as in Gella et al. 2019), this is not valid.

A first disadvantage of the transductive approach is the computational time.
Starting both algorithms in equal conditions in which all the data has been aggre-
gated and encoded, a much more fast evaluation will be performed in Gella et al.
2019 approach. Such an algorithm only has to compute the dot product between
each image representation and sense representation and then extract the position of
maxima. In GTG sense entities are not present, however, Replicator Dynamics is a
loop in which matrix multiplication is performed and a convergence point has to be
reached.

Another disadvantage of the transductive process is that this approach relies
a lot on propagate information exploiting information coming from neighbouring
observations, rather than learning to classify objects as in generative and discrimina-
tive models. This can result in a lack of generalization. However, it can be easily
overcome through the training of a supervised classifier with the newly labeled
dataset (as explored in [25]).

Future works: Prior knowledge In Section 2.2.2.3 the initialisation of the prob-
ability space initialisation has been described as a uniform distribution among the
senses of the target verb. Such initialisation is the simplest and is good when no
external information about classes is available. However, other probabilities distri-
bution can be used. For instance in [24], a geometric distribution has been exploited
to rank senses using prior knowledge from labeled data. Another initialisation tech-
nique using geometric distribution could be based on First Sense heuristic extracted
from a knowledge base. It may work quite well due to the skewed nature of the verb
senses.

An interesting solution which could be implemented relying on the setup dis-
cussed in this thesis consists of the usage of encoded sense entities from Gella et
al. 2019. Since the cosine similarities between image representations and sense
representation already lie between 0 and 1. They can be converted to probabilities
in a way that their sum adds up to one. After that, standard Replicator Dynamics
can be run. In this thesis, such experiments could not be performed due to the hard
replicability of sense encoding performed in Gella et al. 2019.
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