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Abstract

A number of critical factors arises when a complex 3D scene has to be re-
constructed by means of a large sequence of different views. Some of them
are related to the ability of identifying the projection of each observed 3D
point. Others are tied to the reliability of the pose estimate of each view. In
particular, accurate intrinsic and extrinsic calibration of capturing devices is
a crucial factor in any reconstruction scenario. This task becomes even more
problematic when we are dealing with a large number of cameras, in fact we
can be unable to observe the same object from all the viewpoints or we can
suffer from unavoidable displacement of cameras over time.
With this thesis we propose a method which tries to solve these problems at
the same time, while also be inherently resilient to outliers. We propose a
game-theoretical method that can be used to simultaneously select the most
reliable rigid motion between cameras together with the projections on the
image planes of the same 3d feature, which position in 3D space is recovered
by means of triangulation.
The original inception then has been further refined to address a wider range
of scenarios, as well as to offer a reduced memory consumption and compu-
tation complexity. By exploiting these enhancements, we were able to apply
this technique to a large scale setup involving several hundreds of view points
and tens of thousands of independent observations.
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Chapter 1

Introduction

The main purpose of Computer Vision is the attempt to extract information
and knowledge from images using various, heterogeneous tools that come
from Mathematics, Physics, Computer Science and so on. Such techniques
can be applied to a wide range of different scenarios, involving both practical
and theoretical issues. To this end, it is very difficult to produce an unique
definition for this discipline since it is very multifaceted. We can say that, in
general, Computer Vision’s principal goal involves the interpretation of the
world by automatic image analysis. The tools needed in order to reach such
goal involve imaging hardware for acquiring and storing data, algorithms for
processing the images and several precautions that must be adopted to make
these activities reliable and effective.
These methods are designed with the purpose of letting a computer perform
some tasks that come natural for an human: immediate examples are image
feature recognition and segmentation.

Whenever a problem is addressed using Computer Vision methods, the
main hurdle that arises is the loss of information which will inevitably result
from the imaging process itself. Such loss of information is both semantic, as
objects from the real world are translated to intensities values on a discrete
imaging plane, and syntactic, as projective geometry involves an inherent
dimensionality reduction and spatial deformation.
The main goal of any method proposed in Computer Vision literature is
indeed to recover from these kind of hindrances in order to fit a model as
accurate as possible with respect to the real world and to extract some se-
mantics from it.
A simple example is background separation from a sequence of frames [52],
where the objective is to recognize which pixels belong to the background
and to separate them from the rest (this is often a preliminary step to per-
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form further activities). From a human point of view this problem is trivial
since our cognitive system can immediately recognize the scene and give a
meaning to it. Differently, this results to be a dunting task to be addressed
in a perfectly reliable manner by an automated system. Even with a good
stable camera and providing a perfect illumination, this simple task is subject
to large inaccuracies and lack of repeatability that have been only partially
addressed by the several approaches proposed in literature during the last
decades.

The problem addressed with this thesis is in the field of multiview 3D
reconstruction. This kind of structure recovery problem includes at least two
sub-tasks. The former one is directly related to the reconstruction of 3D
geometry from 2D projections, the latter aims at finding the correct corre-
spondences between different projections of the same 3D entity across several
different cameras.
3D geometry recovery tackles the fundamental problem of estimating the
depth of an observed material point with respect to the capturing camera.
In fact, such information has been completely lost during the imaging process
and a special technique must be adopted to recover it.
Some of these techniques are able to work with only one camera, still, all
such approaches are usually difficult to apply and exhibit a rather low accu-
racy. The process becomes a lot easier if two or more cameras are available,
since a wide range of triangulation methods can be exploited to reconstruct
the scene. For such operation to be feasible, however, the correspondence
between features observed from different points of view must be known, and
this happens to be a difficult task by itself.
This thesis introduces a novel a method to solve both steps at once. The
method is general enough to work with any number of cameras and can be
applied also to dynamic networks.

1.1 The imaging process

The imaging formation process [57] consists in capturing through a camera a
portion of a scene. The goal of the process is to get intensity images, which
are the familiar pictures that we are used to see; these images are 2D arrays
which encode light intensity acquired by cameras.
Intensity images measure the amount of light which hit a photosensitive sen-
sor and encode the information as an array of numbers.
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In human visual system, the light rays that come from outside hit the
photoreceptors in the retina, which will transmit the intensity information
to the brain. In the digital image formation we have the same principle.
There are a variety of physical parameters involved in image formation, like
the optical parameters of the lens which characterize the sensor’s optics; the
photometric parameters which model the light energy reaching the sensor
after being reflected by object in the scene; and geometric parameters which
determine where a 3D point is projected.

Figure 1.1: Simple pinhole camera model. Here we have that the origin of
the Euclidean axes of the world reference frame is aligned to the camera
reference frame. Centre of focus C corresponds to origin O.

The most simple geometric model of an intensity camera is the pinhole
model [24]. This model is formed by an image plane and a 3D point C called
the centre of projection. In the simplest case C corresponds to the origin O
of the Euclidean coordinate system which is the origin in the world coordi-
nate system.

Light rays in the the real world are emitted in many directions, conse-
quently they can be reflected by physical objects in many directions. In
pinhole model the rays enter from a single aperture point and then they are
projected on the image plane, which is orthogonal with the z axis.
Since for each physical point we have only one ray that enters the camera, we
have a one-to-one correspondence between visible points and image points.
In this way all the points at any distance are in focus in the image plane.
The distance between the centre of projection C and the image plane is called
focal length f and the perpendicular line which connects them is the optical
axis. The optical axis meets the image plane in the principal point.
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A simple representation with an aligned reference system is shown in fig-
ure 1.1.

Exposure time of a pinhole camera is rather long since it allows only few
light to enter through the aperture, so it needs more time in order to regis-
ter the image. For this reason real cameras are much more complex: they
include a lens system which allow to have a much larger aperture (instead of
a really small one) and a shorter exposure time.

We now move to the geometric aspect of image formation. In this part
we are interested in how the position of a scene point is connected with its
corresponding image point. In the following part we analyse the model of
geometric projection performed by the sensor.

The most common geometric model is the perspective or pinhole model
that we already described. As shown in figure 1.1, p is the point at which
the line through O and the correspondent real point P intersects the image
plane.
Let P = (X, Y, Z)T and p = (x, y, z)T in the 3D reference frame in which O
is the origin. Then, the two points are linked by the following fundamental
equations

x = f
X

Z
; y = f

Y

Z
(1.1)

Since the image plane is orthogonal to the z axis, its equation is z = f .
All image points lay on the image plane, so the third component of the image
point p is always equal to the focal length. The coordinates of p in fact can
be written as p = (x, y, f)T .

The above relations work in one camera reference frame, but most of the
time we have that the camera reference model is located with respect to some
other reference frame, called world reference frame. Moreover, in a digital
image only the pixel coordinates are directly available, so we need a method
to obtain the image points in the camera reference frame. These issues can
be modelled if we assume the knowledge of some characteristics of the cam-
era: these are known as intrinsic and extrinsic parameters.

Intrinsic parameters are values needed to compute pixel coordinates of an
image point from the corresponding coordinates in the 3D scene, expressed
in the camera reference frame.
Extrinsic parameters define the location and orientation of the camera refer-
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ence frame with respect to a known world reference frame of another camera
in case we have more than one.

In the following part we define the basic equations that allow us to define
extrinsic and intrinsic parameters. The problem of estimating the values of
these parameters is called camera calibration and we will discus about it later.

Intrinsic Parameters

Intrinsic parameters are defined as the set of values needed to parametrize
the characteristic imaging model of the viewing camera.

Recalling the pinhole camera model, we defined the principal point as the
point in which the centre of projection C meets the image plane in a perpen-
dicular way. In real cameras this point is rarely aligned with precision, so
we need two parameters to encode the information of its displacement: these
values are indicated as cx and cy.

The optics in real cameras often introduce image distortion, which is
more evident at the periphery of the image. Distortion can be modelled
rather accurately as a radial distortion with the following equations

x = xd(1 + k1r
2 + k2r

4)

y = yd(1 + k1r
2 + k2r

4)
(1.2)

Where (xd, yd) are the coordinates of the distorted point and r2 = x2d+y2d.
The distortion is a radial displacement of the image points: it is zero at image
centre and increases as the points are further from the centre. k1 and k2 are
two additional intrinsic parameters and are usually very small. In the follow-
ing equations we do not consider distortion parameter since they are ignored
when high accuracy is not required in all regions of the image. Moreover,
distortion can always be removed by applying the inverse of equations 1.2 to
the captured image.

Once a 3D point is projected through the ideal pinhole, we must trans-
form its coordinates according to the relative position of the sensor with
respect to the origin.
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For this purpose we can define the camera calibration matrix K, which
contains the intrinsic or internal parameters of the camera.

K =

fx 0 cx
0 fy cy
0 0 1

 (1.3)

While f is the focal length as defined before, here we introduce fx and fy
because we assume independents focal lengths in x and y dimensions.

In order to estimate the intrinsic parameters of a camera, we could use
some targets with known geometry [63] and take different pictures of the ob-
ject in different positions. By identifying the target features in every image
we are able to compute the intrinsic parameters by solving a linear system.

Extrinsic Parameters

The camera reference frame is often unknown, and we have a common refer-
ence frame called world reference frame. Figure 1.2 shows this situation. A
frequent problem is determining the location and orientation of the camera
frame with respect to some known world reference frame.

Figure 1.2: The world reference frame does not correspond with the camera
reference frame (left). Rotation and translation information are needed in
order to align the reference frames.

Extrinsic parameters are defined as any set of parameters that can uniquely
identify the transformation between the unknown camera reference frame and
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a known reference frame. Typically the transformation is described using two
factors: translation and rotation.
A translation is represented as a 3D vector T which describes the relative
position of the origin of the two reference frames. Rotation is expressed as a
3×3 matrix R, an orthogonal matrix that contains the rotation which aligns
the corresponding axes of the two frames.
Recall the observed point P and let Pc and Pw to be its coordinates respec-
tively in camera reference frame and world reference frame. Their relation
is

Pc = R(Pw −T) (1.4)

We can combine the extrinsic parameters in a 3×4 roto translation matrix
RT just adding vector T to the matrix R as the fourth column.

RT = [R|T] (1.5)

Projection and Homogeneous Coordinates

Points in 3D are often expressed in homogeneous coordinates [24]. We add
an extra coordinate to each point and represent such points by equivalence
classes of coordinates.
A point in a 2-dimensional space (x, y) can be represented by the equivalence
class (kx, ky, k) with k 6= 0. For example the point (2x, 2y, 2) in homoge-
neous coordinates is equivalent to (x, y, 1). If we want to get the original
coordinates from a point (kx, ky, k), we just need to divide each of its com-
ponents by k.
In computer vision, projective space is used as a convenient way of rep-
resenting the real 3D world, extending the 3-dimensional space. As we dis-
cussed before, images are formed by projecting the world into a 2-dimensional
representation and so they are conveniently extended to be lying in the 2-
dimensional projective space. This homogeneous vector representation for
points will be used in our projective space.

Projection is simply a map from the 3-dimensional projective space into
the 2-dimensional projective space. If points are expressed as homogeneous
vectors, the mapping from a real world point to the corresponding point in
the image plane is obtained multiplying the 4-dimensional point vector with
the projection matrix P , defined as follows

P = K ∗RT (1.6)
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We have that matrix RT performs the transformation between the world
and the camera reference, while K performs the transformation between the
camera reference and the image reference frame.
If the world point is represented with the vector X = (X, Y, Z, 1)T , its pro-
jection on the image plane is

x = PX (1.7)

The resulting x is a homogeneous 3-dimensional vector (x, y, z)T . Since
it is homogeneous, we can compute its equivalent (x/z, y/z, 1) and the ratios
x/z and y/z are exactly the image coordinates.
The relation between X and x can be seen as a linear transformation from
the 3D real world projective space to the projective plane. The transforma-
tion is defined up to an arbitrary scale factor.

Once we have the formed image, we would like to filter the noise, extract
some semantic content from it or to operate on a reduced dimensionality.
Various approaches have been formulated and various techniques have been
proposed for each particular issue. In the following sections we describe some
known basic image processing tasks that can be performed as an initial step
in order to solve Computer Vision problems.

1.1.1 Feature Detection

In Computer Vision, the term image feature can refer to a global property
of an image (for instance the average grey level, the number of pixels and so
on) or to a part of the image with some special properties. In fact, given an
image we can extract some particular features from it: lines, edges, corners,
circles, other shapes and so on [55]. We can be particularly interested in
extracting lines and corners, since these elements are not distorted by the
image formation process and often they have a semantic meaning. If, for
example, we have a sphere to be detected in our scene, it will always be seen
as a circle no matter the angle from which we capture it.
Local image features should be meaningful: they must be associated with
interesting scene elements. Moreover they must be detectable, in such a way
that several algorithms which are able to extract them exist and are feasible.

Edge detection

Edges in an image are points where intensity changes in a very rapid way:
usually we are interested in studying them because they correspond to ob-
jects boundaries or other relevant image features. It is hard to define what
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changes we want to extract because we need high-level information to tell if
an edge is semantically relevant or not.

We can treat the image as a function I(x, y) which values are the recorded
intensity values. Given a function, the first derivative of it expresses the slope
in a certain point, so it is computed in order to extract the points where rapid
changes happen, which corresponds to high values.
Since I(x, y) is a discrete function in two variables, its slope and growth
direction can be computed as the gradient [13]

∇I =

(
∂I

∂x
,
∂I

∂y

)
(1.8)

Which is a vector that contains both partial derivatives of the image I.
The partial discrete derivative in x direction is defined as

∂I

∂x
≈ I(i+ 1, j)− I(i− 1, j) (1.9)

Computing this partial derivative for each pixel of the image is the same
as convolving the image using the kernel0 0 0

1 0 −1
0 0 0

 (1.10)

If we transpose the given kernel we can compute the partial derivative in
vertical direction.

If we compute the gradient magnitude (its norm) in each point of the
image, we will have a measure of how likely that point is part of an edge,
since the gradient magnitude will be higher where we have a rapid change of
light. In other words, we have a large gradient magnitude associated to sharp
changes in the image. In figure 1.3 we can see an example of the gradient
magnitude extracted from a grayscale image.
Once we have the gradient magnitude for each pixel, we can apply a thresh-
old in order to extract the final border points.

The gradient approach is actually the most simple (but very effective) one
for edge detection. Many techniques have been proposed in order to extract
edges from images: some use different filter like Laplacian of a Gaussian [38],
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Figure 1.3: Gradient magnitude values of an image. Note that it is stronger
in points where we have a large change in intensity in a particular direction.

other adopt different approaches [45].
Moreover, the theory of edge detection can be applied in a very wide range of
fields wherever a reliable image processing approach is needed, for example
in astronomy [58].

Lines and Shapes detection

Once we have some edges, we could be interested in extracting the straight
lines from them, maybe because we know we are observing a geometric ob-
ject, like a chessboard, and we are interested in extracting the grid lines.
For example, markers with a known geometric pattern are widely used in
order to calibrate cameras [63] or to detect and track some objects in the
scene [32].

One method to perform this task is using the Hough Transform, which
is a simple technique used to find lines but it could be easily generalized for
finding different shapes like ellipses [17] [7]. An example of application is
shown in figure 1.4, where we applied the following algorithm to figure 1.3.

In this approach we represent each line in a parametric space (d, θ) where
d is the distance from the line to the origin (or the radius) and θ is the angle
between that segment and the x axis. As a consequence of this parametriza-
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Figure 1.4: Lines extracted using the Hough transform starting from borders
extracted in figure 1.3.

tion, we have that a line in the original image corresponds to a point in the
transformed Hough space.
On the other hand, a border point (x0, y0) in spatial coordinates can be
crossed by an infinite number of lines, so the family of straight lines passing
through (x0, y0) becomes a sinusoid in the Hough space, because it includes
all possible couples (d, θ) that can pass through that point. The relation
between an image point (x0, y0) and the sinusoid in Hough space is given by
the following transform

d = x0cosθ + y0sinθ (1.11)

The algorithm takes each border point and represents it in the Hough
space, giving a vote for each possible (d, θ). An example of how the Hough
space looks like is given by figure 1.5. The parameters which received more
votes are classified as lines in the original picture.

We can extend this method in order to find more shapes. In particular,
we can have a multidimensional parametric space, where each dimension rep-
resents a parameter: if we want to find ellipses, we must use five parameters,
so instead of lines we obtain 5-dimensional curve surfaces to intersect in order
to get the most voted ellipses.
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Figure 1.5: Example of an instance of Hough space: note that the sinusoids
tend to intersect in particular points that will be the detected lines.

1.1.2 Image Segmentation

Image segmentation is the task of dividing a given image into regions which
are semantically separated [55]. The goal is to identify groups of pixels that
can be grouped together in such a way that they represents different objects
in the scene. We can have many ways to define such regions: for example we
can define a similarity measure and search for regions with high intra-region
consistency.

A classical approach is Normalized Cut [50], where the affinity between
two pixels is defined in terms of distance and colour similarity. The image
is represented as a weighted graph where each pixel is a node and on which
we define an affinity matrix A = (aij). The element aij represents the weight
between nodes i and j, which corresponds to the affinity function between
pixel i and pixel j.
When the complete graph is divided in two parts, a cut is created: it can be
seen as a partition which creates two sets of pixels from the original image.
The cut value is then defined as the sum of all the weights of edges that cross
the cut (which are edges that connect the two groups).
The goal of the algorithm is to find a partition that minimizes the cut value
in such a way that we have the maximum affinity inside both the divided
groups. Once we have the minimum weight cut, we can apply the algorithm
recursively in both parts in order to find additional partitions.
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Of course we can define the affinity between pixels in several ways ac-
cording to brightness, colour, texture or motion information in addition to
simple proximity. The general affinity function is defined with a Gaussian
kernel

aff(i, j) =

e
−(F (i)−F (j))2

σ2
I

+
−d(X(i),X(j))2

σ2
X if d(i, j) < r

0 otherwise
(1.12)

Where σI and σX are the scales for respectively the image feature and
point spatial distance and d(x, y) is the spatial distance between the two
points. The value r is the maximum distance to which two nodes are allowed
to be connected by an edge. For each pixel we have X(i) which is the spatial
location and the value F (i), which is a feature vector which can represent
several characteristics of that pixel.

If a segmentation based only on brightness is required we have that F (i)
is simply the intensity value of pixel i; if we want a segmentation based on
colour, F (i) can be the colour vector, represented in some particular colour
space like HSV [35], which is designed for such tasks. Another option is to
have F (i) as some filters at various scales and orientations, in case of texture
segmentation.
Figure 1.6 shows the original and segmented image obtained applying nor-
malized cut based on distance and colour similarity between pixels.

Figure 1.6: Example of image segmentation performed with normalized cut
algorithm.
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Other techniques have been developed for image segmentation, based on
graphs [19] or more dynamic ones, based on region growing techniques called
snake models [64] [62].

1.1.3 Background Subtraction

Given a sequence of frames which are usually part of a video, background
subtraction techniques try to divide the background from the foreground of
the images, in order to extract the relevant objects in the scene.
If we have a recording of an highway for example, we wish to extract only the
image portions which depict the cars, since we are not interested in the street
itself. Another common example is human body action recognition [40]: we
put a camera in a room and we want to detect only the people moving inside
of it, then once people are detected further processing can be done in order
to recover limbs for example.
This is a very difficult task because we could have fast changes in image lu-
minosity and of course the system may not know a priori which elements are
to be considered foreground. Moreover, we could have a repetitive motion in
the background or elements which change in very long time.

The simplest models we can think are based on mean or median filters:
in these approaches the background model is built in each pixel to be the
mean or the median of previous N pixels in the same position.
These approaches are simple and fast, moreover they change the model dur-
ing time, which is what we want, but the accuracy actually depends on the
velocity of objects and on frame rate: if we have very fast objects with re-
spect to the frame rate we have no good results; also we could have change
in luminosity as said before.

More complex techniques have been proposed in order to address this
task; some of them are based on a probabilistic model which try to adapt
itself by learning on-line some distribution parameters which better adapt
to background pixels [52] [30] [29]. In this approaches we use a mixture of
K Gaussians for each pixel in order to learn the background model: at each
step we can adjust the means and the standard deviations of the distribu-
tions in order to fit the background colour. The distributions are ordered by
some weights and their variance: the smaller is the variance and the higher
is the weight, the more probability we have that the distribution represents
a background pixel.
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The probability of a pixel Xt observed at time t to be in the background
is

P (Xt) =
B∑
i=1

ωiN (Xt|µi,Σi) (1.13)

Where ωi, µi and Σi are respectively the weight, mean and covariance ma-
trix of the i-th Gaussian. B is the number of Gaussians selected to represent
the background model.

1.2 Recovering the Scene Structure

The focus is now put on the spatial properties that can be reconstructed
from acquired images. Until now the images have been examined as they are
presented, like 2-dimensional items. In previous section the interest was only
in detecting some relevant features from images like lines, edges or particular
objects.
Now some possible approaches that can be exploited to recover the full three-
dimensional scene information are analysed.
We already discussed that when an intensity image is captured (e.g. only the
intensity of light is measured), all the information about the spatial location
of the observed items is lost. In other words, the depth of the scene elements
is unknown, consequently methods to recover this information are needed.
This loss leads to a paradox, known as reconstruction paradox: actually an
external observer is not able to tell if a real 3D object is captured by a camera
or if the same camera is capturing a simple picture of the same real object,
which technically is just a plane item in the real world. The image formation
process in fact produces the same result but the camera is not observing the
same thing. This paradox is well depicted in figure 1.7.

More ambiguities like proportions have also to be faced: objects near to
the camera seem to be bigger than objects which are far away. For an human
brain is simple to recognize the correct dimensions but a computer system
can not tell because it has no spatial or semantic information.
In this and the following sections different solutions for the 3D reconstruction
and location problem are analysed. Section 1.3 puts the focus on multi-view
approach, since it is the principal subject of this thesis.

If other fields beyond simple intensity images are explored, more sophis-
ticated tools can be used in order to recover information about spatial depth
of observed objects in the scene. This is the case of range images, which can
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Figure 1.7: Reconstruction paradox: the two cameras produce the same
image but one comes from a real vase, the other from a picture of the same
vase. Looking at the captured images, a machine is not able to tell which
one is from a real vase and which is not.

encodes shape and distance information of the scene, rather than intensity
of light.
These images are acquired using special sensors like sonars or laser scanners:
these devices are able to directly acquire the 3D structure of the environment.
Of course, several specific Computer Vision techniques have been developed
in order to work with this kind of images [15] [16].

1.2.1 3D Reconstruction

Algorithms that aim to reconstruct the 3D structure of a scene or to locate
a point in 3D space need a set of equations to link the actual 3D points in
space with the coordinates of their corresponding captured image points [24]
[57]. These equations need to know the characteristics of the cameras and
their parameters are intrinsic and extrinsic parameters.
Even knowing all camera parameters, when we detect a 2D point on image
plane we have an infinite set of 3D points which could match that observa-
tion. In other words, if we want to solve the inverse of equation 1.7 given the
2D point x we find infinite solutions which all lie on the line that starts in
the centre of projection and passes through point x. Figure 1.8 is a graphical
representation of this typical situation.
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Figure 1.8: Possible 3D points given a 2D point on image plane.

When these problems are considered, two main approaches could be
adopted: in the single view approach one single camera is exploited in order
to reconstruct the scene; in the second approach two or more cameras are
used in a combined way in order to locate the items. In the following part
single view techniques are discussed and then in the next section multiple
view techniques are explained.

In a single camera configuration different approaches have been proposed,
in which the aim is to recover the depth position of a given image point.

Depth From Defocus

One possible solution which involves a single camera system is called Depth
From Defocus [54] [53].
In order to obtain sharp images, all rays coming from the same scene point
must converge to a single point on image plane: in this case we say that the
point is on focus. If a point is not on focus the image is spread over a disc
centred on that point.
As said before, in practice cameras are not pinhole: in this basic model we
have only one plane which is perfectly on focus because only one ray from a
given point enters the camera. A real camera uses lenses instead, in order to
change the focus plane. As a consequence, when we change the focus plane
working with lenses, we can focus on points at different levels of depth from
the camera image plane.
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In this approach A× F pictures are captured, with A different apertures
{α1, ..., αA} and F focus settings {f1, ..., fF}. The goal is to compute for each
pixel its in-focus setting. The correct focus value is found when the aperture
value of camera is not relevant. Once the correct focus plane is recovered for
a pixel, the depth of that pixel can be easily computed.
This method uses only one camera and could be made more automatic em-
ploying some specialized hardware. On the other hand, it has several short-
comings: a high number of pictures of the same still scene are needed, so
this method can not be used with some moving objects. Moreover, highly
textured objects are needed because if the scene includes an item with only
plain colours (like a completely white statue) the system is not able to tell
which parts are in focus and which are not. Also, very good hardware is re-
quired. For these reasons this technique is not very used since it leads most
of the time to poor results.

Other single camera techniques are actually combined solutions which use
a kind of additional sensor to the classical camera.

Time Of Flight

In general, time of flight describes a variety of methods that measure the
time needed for an object to travel a distance through a medium. In this
particular approach light is used.

Time-of-flight camera is a range imaging camera system that computes
distance based on the known speed of light, measuring the time of flight of
a light signal between the camera and the subject.
In this configuration a light source is mounted near the camera. This source
emits a pulsed signal and then measures the time needed for the reflection of
the light signal to come back; since the overall time depends directly on the
distance between the emitter and the object hit, it is possible to compute
the spatial distance.
This method is extremely fast and could easily be used in a wide range of
real-time applications [14] [21]. A practical example are car safety applica-
tions [18].
In general this approach produces reasonably dense features and it is sup-
ported by most of hardware. There are also a lot of drawbacks: with partic-
ularly small objects it is not very accurate and could produce a lot of noise,
moreover it works poorly on dark or distant objects so it is not suitable where
we require a precise and robust method.
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Laser Scanning

Other approaches involve the use of a laser plane to detect the position of
surfaces [34] [61].
Laser is known to be very accurate so that the reconstruction is feasible and
very precise but requires a lot of images. Figure 1.9 shows a simple example
of the system configuration.
Different setups can be proposed, for example the object could be put on
a turntable and then it is reconstructed by joining all the cilindric profiles.
Another technique consists in a fixed object and a moving laser light.

Figure 1.9: Laser scanning process involves a laser plane emitted from a
source L which is calibrated with the camera.

1.3 Multiple View Reconstruction

Stereo vision is referred to the ability to infer on the 3D structure and distance
of a scene from two or more images taken from different viewpoints.
A stereo system has to solve two problems:

• Correspondence: is the problem of determining which item from one
view corresponds to which in the other view;

• Reconstruction: conversion of the observed points to a 3D map of the
viewed scene.
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The way in which a stereo system determines the position of a point in
space is triangulation: the rays defined by centres of projection and the im-
ages of the correspondent points are intersected and the 3D coordinates are
recovered. Of course triangulation depends highly on the correspondence
problem.
In order to have a working stereo system to perform triangulation, calibra-
tion of some parameters is needed: the intrinsic parameters for each camera
which characterize the transformation mapping an image point from camera
to pixel coordinates, and the extrinsic parameters which describe the relative
position and orientation of the two cameras.

In a basic multiview setting, two cameras can see the same portion of
the scene. This assumption is quite strict and not plausible, in fact in real
applications there are many cases with occlusions or partial coverage of the
scene in one or more cameras.
Assume for now that both cameras are able to see the same object: first
there is the need to find the correspondence between the two observations.
Correspondences could be found in different ways, for example using struc-
tured light patterns projected directly on the objects or exploiting directly
the scene features.

1.3.1 Triangulation

Once the correspondences between the pair of images are available and if
both extrinsic and intrinsic parameters are known, the 3D reconstruction
problem can be solved by easily compute the 3D coordinates of the feature
with respect to a common world reference by means of triangulation.

In Geometry, triangulation identifies the process of computing the third
point coordinates of a triangle knowing the other two points and the two
angles.
In Computer Vision the problem is analogous, in fact it is defined as the pro-
cess of determining a point position in the 3D world starting from its images
in two cameras and from the camera parameters [24] [57]. Figure 1.10 is a
graphical representation of the scenario.

Let point P be the point projected in both camera image plans and its
projections pl and pr. Note that P lies at the intersection of the two rays
from Ol and Or that pass respectively through pl and pr.



1.3. MULTIPLE VIEW RECONSTRUCTION 23

Figure 1.10: Process of triangulation: both cameras detect the same point
and compute its 3D coordinates.

Since rays are known, the intersection could be computed, but the camera
parameters and points position are approximated measures so the two rays
do not really intersect in space. We can have only an estimation of the point
position by computing the point of minimum distance from both rays.

We express all vectors and coordinates referred to the left camera refer-
ence frame and define the equations for both the rays. We denote apl with
a ∈ IR as ray l through Or (case a = 0) and pl (case a = 1). Let also
T + bRTpr with b ∈ IR be the ray r with pr expressed in the left camera
reference frame.
The vector orthogonal to both l and r is w = pl ×RTpr. We call w the line
through apl and parallel to vector w: its equation is apl + cw with c ∈ IR.

If we fix two values a0 and b0, the endpoints of the segment from a0pl to
T + b0R

Tpr can be easily computed solving the linear system of equations

apl − bRTpr + c(pl ×RTpr) = T (1.14)

In the same way we can define the segment s belonging to the line parallel
to w that joins l and r. We can determine the endpoints of s in the same
way and the triangulated point P′ is the midpoint of segment s. The system
has a unique solution if and only if the two rays l and r are not parallel.



24 CHAPTER 1. INTRODUCTION

1.3.2 Camera networks

In general, two points of view are enough to reconstruct 3D information
from 2D projections. Nevertheless, in many practical scenarios the adoption
of multiple independent cameras to acquire the scene is the best choice in
order to reduce errors. In fact, in most of real-world applications we would
like to perform an accurate tracking or reconstruction.
This is the case, for instance, when people are to be tracked in large areas
for security reasons [31] and strong resilience to occlusion is required.
A collection of different points of view can also result from dynamic scenar-
ios, where cameras are mounted on drones [26] or images are collected by
different users on social networks or online services [1].
Camera networks can also be helpful when the phenomenon we want to study
is complex and difficult to analyse from just one point of view. We have many
computer vision applications where this is required: human action recogni-
tion [48], video surveillance [59] and object tracking [41].
The adoption of multiple cameras could finally lead to improved accuracy
with image-based surface reconstruction [20] especially when dealing with
complex artefacts [6].

As stated before, image based 3D reconstruction relies on two principal
factors: the ability to match observations from different cameras and the
knowledge of the relative pose between cameras.
Both problems have been widely analysed over the last decades, and a large
number of solutions have been proposed.

1.3.3 Calibration and Pose Estimation

For any of these applications to be feasible we first need to perform intrinsic
and extrinsic calibration: the geometry of cameras must be known, at least
with a given precision. This is a fundamental step if we want to initialize our
system in such a way that it works well.

A lot of calibration methods that can be used to recover intrinsic and
extrinsic parameters have been proposed. Classical approaches use artificial
targets with known geometry [63] to compute intrinsic parameters and si-
multaneously assess the relative pose of each camera [25]. These methods
give an initial permanent configuration of the system. We also have dynamic
methods, which consist in adapting camera parameters and structure recon-
struction exploiting some scene features that could be artificial markers or
simply particular objects [36].
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Other methods perform pairwise calibrations that can be made consistent
with respect to a common reference world [44] [56]. Other techniques pro-
pose to calibrate a whole camera network at the same time [8].

Regardless the chosen method, any calibration procedure will always re-
sult in some degree of inaccuracy. In addition, even very accurate calibrations
could deteriorate over time due to external environmental factors or as con-
sequence of camera movements we could have slight changes in the network
topology or drift of intrinsic parameters.

Some pose estimators adopt special calibration targets characterized by
a known geometrical model such as squares and circles. Such approaches are
only feasible when dealing with fixed cameras that can be calibrated offline
in a preparation phase.
Self calibration methods allow to exploit directly the observed features in or-
der to compute the parameters. Usually these methods minimize the overall
reprojection error of feature points triangulated under the estimated poses.
Self calibration is particularly useful when addressing scenarios including
multiple cameras organized in a network or a sequence of frames generated
by an unknown camera motion.

When dealing with self calibration, points labelling and pose estimation
are tightly correlated tasks so we would introduce uncertainty on point lo-
calization and wrong feature labelling: these errors lead to a large pose es-
timation error because the function that we want to minimize has wrong
assumptions.
An inaccurate pose estimation could block any attempt to evaluate corre-
spondences. Many solutions have been proposed to deal with this problem.

1.3.4 Correspondences

Structured light

The basic idea of structured light approach is to project some light patterns
directly onto the scene we want to reconstruct, then each camera has to
recognize and label each point in the same way so that at the end of the
process point correspondences between all viewpoints are provided and can
be triangulated.
In the naive approach just one small point at time is projected on the scene
and all cameras register that point with the same identifier. The process goes
on until all possible points have been projected. This approach works but
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it is very expensive in terms of time, in fact even with a very fast system,
it can take hours to register all possible points allowed by projector resolution.

A more efficient technique consists in creating some codes made by the
light patterns. In figure 1.11 a simple code is shown: we assume that light
codes a one and the absence of light codes a zero.
Initially we project stripes of an alternate 0/1 pattern with the maximal res-
olution available. Each camera records the black and white points and the
correspondent value is saved as the less significant bit in that point coding
information.
In the following steps exactly half stripes than before are projected, and cam-
eras code the zeros and ones as the second less significant bit. The process
continues until the last pattern is formed by only two parts. At the end
of this coding phase, each point in each view will have a unique identifier
and couple of points with the same identifier can be triangulated to recover
the 3D structure of the scene. Figure 1.11 shows the sequence of projected
patterns.

Figure 1.11: Sequences of binary patterns projected on the scene in struc-
tured light approach. Black codes a zero and white codes a one.

Further improvements can be obtained if the number of patterns to be
projected is reduced: we can do this by increasing the number of different
intensity levels in the stripes encoding. Examples could be stripes with mul-
tilevel grey colours instead of binary, or coloured stripes [27].
Many techniques have been proposed in order to achieve more accuracy or to
solve some known problem which can be related to projection, for example
in the presence of surface points which are not reached by the light source [4].

The advantages that can be achieved with this method is that we have an
high accuracy in recovering the pixel correspondences, the procedure is also
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faster compared with the laser scanning approach. Moreover different pat-
terns could be chosen according to the scene we want to reconstruct: some
patterns could be more suitable than others and a calibrated light source is
not needed like in other approaches.

There are also some shortcomings: the performances are not good with
shiny objects like metals which reflect the light, it is not suitable for large
areas and the technique can not be used if we already have an images collec-
tion from which we have to extract the 3D structure, for example a sequence
of pictures collected by cameras mounted on a structure.

Image Features

Another kind of approach is to extract some image features directly by pro-
cessing the pictures. Techniques described in previous sections could be used
to extract some image features and then a similarity function between them
could be defined in order to detect the possible correspondences.

Figure 1.12: Feature matching on edges of a cube with different colours.

To obtain a good feature, it must satisfy two properties: repeatability and
distinctiveness. Repeatability assigns that the feature should be available in
different views and its position should be well recognizable. Distinctiveness
ensures that each feature descriptor can be clearly distinct from another if
the material point is not the same.

A simple method is to extract image corners [23] and analyse surrounding
pixels. This approach has several problems, since the quality of corners is
really connected to the kind of image.
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If we have some particular, geometrical features corners offer a good
match, but in other common situations the corner extractor does not find
only the real corners, but simply points in which the intensity changes in all
the directions.

Figure 1.13: Corners extracted with Harris detector: some corners from the
building are correct but many corners form the tree are not actual corners.

A more sophisticated approach consists in local descriptors. In fact corre-
spondences between images can be found by exploiting the local appearance
of the scene, by means of descriptors which are able to capture such infor-
mation.

SIFT (Scale Invariant Feature Transform) [37] is the most common. It
offers invariance with respect to scale, rotation, illumination and in some
cases also to deformation. The image content is transformed into local feature
coordinates.
The algorithm that produces SIFT descriptors involves many steps: first it
runs a linear filter (difference of Gaussians) at different resolutions of the
same image in order to find the corners at different scale level.
An efficient function is to compute the Difference of Gaussian pyramid [12].
Then, some corner keypoints are extracted and thresholded.
In order to ensure invariance to orientation for each feature, local orientation
is computed by finding the strongest second derivative direction, then each
element is rotated so that orientation points up.
Figure 1.14 shows a practical example of how SIFT feature descriptors can
be used to match image features when we are dealing with the same image
with a different scale and rotation.
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Figure 1.14: SIFT feature descriptors allow to recognise the same image
feature when we have different rotation and scale.

Many similar techniques have been proposed, as SURF [9], GLOH [39],
BRISK [33], FREAK [2] and some others.

This kind of approach works with existing photographic material, unlike
structured light, and can be use in a very wide range of problems.
Some applications of local descriptors include: composing panorama picture
from SIFT descriptors correspondences [10], unsupervised object recognition
[11], 3D scene reconstruction and many others.

All these descriptors try to ensure good repeatability and distinctiveness
properties but they are still prone to lead to false matching due to noise or
similarity in appearance of objects.
Correspondence reliability could be improved using high-level matching frame-
works accounting for multi-feature consistency or by discarding photometric
descriptors substituting them with more robust identification methods in-
cluding structured light or artificial markers, where it is possible.
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Chapter 2

Selection of Orientations and
Features

In this thesis we propose a consensus-based approach to select the most reli-
able set of extrinsic parameters that can be used to perform triangulation and
feature selection given the existing calibration. The key idea of the consensus
approach is to adopt a game-theoretical validation of mutually consistent ob-
servations so that we obtain a simultaneous selection of camera orientations
and corresponding feature projections over the network.

In order to do this we do not propose a new calibration technique, and
we are neither interested in how the network calibration has been performed;
we assume that a possibly large set of cameras is available and that some
previous process assessed their extrinsic positions up to its best accuracy.
Our goal is not to enhance the existing calibration or to correct the precision,
but to select the best set of poses and features.

Our initial approach consists in selecting paths of rigid transforms con-
necting cameras observing the same physical point and choosing the paths
such that the triangulation error between every couple of cameras is mini-
mized.
After that, a further optimized method is proposed: it operates directly on
the point images and not on their triangulations as before, reducing the
number of total hypothesis and improving the performances. This enhanced
approach permits to work on unlabelled points and to find correspondences
between observations. Finally, if we are able to compute a compatibility
function between observations, it can be used to reduce probability of mis-
match.
The general approach is dynamic and depends on several factors like the po-

31
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sitions of material points, the quality of observed features and of course the
quality of initial extrinsic estimation.

In what follows intrinsic camera calibration refers to all parameters needed
to convert the image acquired by cameras to normalized image plane as cap-
tured by an ideal pinhole imaging process.
Differently, the term extrinsic calibration is used to define the rigid transfor-
mations relating the camera reference frame to a common world frame.

2.1 General Scenario Description

C1

C3

C2

C4

M13

M34

M12

M43

M24

C3 C4

O4
1

O3
2

O3
1

M14
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Figure 2.1: Overview of scenario. Multiple cameras are nodes of a partially
incomplete graph of extrinsic transformation. A physical point is observed
by several cameras with a random positional noise and a possibly wrong
labelling.

The general scenario we are working with is well represented in figure 2.1,
where a small version of extrinsic graph G = (C,M) is represented.

We are dealing with a network of cameras C = {C1, C2, ..., Cn} each re-
ferred by a unique label Ci, with i = 1..n.
The size of this network can range from a few to several tens of independent
devices and they can be located in the same restricted area or spread in a
wider environment.
As said before, we assume that cameras have been previously calibrated and
that we already have intrinsic and extrinsic parameters.
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Extrinsic calibration process has been modelled as a set of rigid trans-
formations M = {M11,M12, ...,Mnn} where Mij is a 4 × 4 roto-translation
matrix which transforms points expressed in the reference world of Cj to a
point expressed in the reference frame of Ci.
In this model we assume Mii = I but we are not assuming other matrices to
be transitively consistent, in fact the calibration method that produced set
M is considered to be pairwise so in general we have that Mij 6= Mji because
we have no assumptions on calibration process. Consequently we have that
Mij 6= MikMkj and so on for every possible concatenation of the matrices.

If the calibration method is global all elements in M would be transi-
tively consistent but we have no guarantees on the accuracy obtained since
it depends on the construction process. For example if they are built by in-
crementally chaining pairwise calibrations we have that errors easily sum up.
Usually global methods perform some averaging process or try to minimize
errors computing a priori optimal paths in the given graph. Our method
proposes the opposite approach: we keep the inconsistent graph G and then
we select the optimal weighted subset of paths from P(M).

We assume two or more cameras in C are able to observe the same physi-
cal point, but each camera could see only a subset of the points in the scene.
That will result in a number of points in image planes which are affected by
a random observation noise modelled as a Gaussian distribution. Moreover,
since we can have several features in the scene, the labelling process that
permits to identify the same feature in different cameras can fail, leading to
have wrong labelled features. Finally, the rigid transform between a pair of
cameras might not be available and of course could be subject to uncertainty.

In the following we will refer to the observation sequentially labelled a in
the camera Ci as Oa

i . In figure 2.1 (right) we can see an example: cameras C3

and C4 observed material point p and a single observation labelled O1
4 is re-

ported in camera C4. On the other hand, camera C3 reports two observations,
which are O2

3 and O1
3: one comes from the correct point p while the other

comes from the wrong labelling of p′ in which we are not interested. The goal
of proposed method is to select the best combination of camera orientations
and point projections to get the most reliable 3D reconstruction.
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2.2 Game Theoretical

Optimal Path Selection

Game Theory [43] was introduced in the 40’s by J. Von Neumann to model
the behaviour of entities with competing objectives. The original aim was to
create formal and simple description of the strategies adopted in economic
fields such as company competitions or consumer decisions using a mathe-
matical model characterized by a single objective function.
The theory was further developed by John Nash in postwar period through
the introduction of the Nash Equilibrium [42].

During the years, Game Theory had also been successfully applied in dif-
ferent fields as Biology [22], animal behaviour studies, social sciences [51],
Psychology, Philosophy, Computer Science and Logic.

With the Nash equilibrium, the emphasis shifts from the search of an
optimum shared by the population to the definition of equilibria between op-
posite forces. The main intuition behind Game Theory is that we can model
a competitive behaviour between agents - or players - as a game where a
finite number of predefined strategies are available and there is a fixed pay-
off gained by a player when all the other agents choose their strategies to play.

Evolutionary Game Theory [60] considers a scenario where pairs of indi-
viduals, each programmed with a strategy, are repeatedly drawn from a large
population to play a game. A selection process allows the best strategies to
grow while the others are driven to extinction.
The underlying idea of using Evolutionary Game Theory for selection is to
model each hypothesis as a strategy and let them be played one against the
other until a stable population emerges.

The basic assumption of Optimal Path Selection (OPS) [46] is that a
mostly correct labelling already exists, so correspondences are already estab-
lished and the optimal path can be selected independently for each point.
We will see that the hypotheses are made up of all possible triangulations,
including two paths and two observations.

Normal Form Game

A normal form game is composed of a set of players, also called agents
I = {1, 2, ..., n}. Each player has a finite set of actions Si = {1, 2, ...,mi}
where mi is the number of possible actions for player i and Si is the set of
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actions of player i. Such actions are called pure strategies.
A pure strategy profile is defined as S = S1 × S2 × ...× Sn.

A payoff function is defined as

π : S → IRn; π(s) = (π1(s), π2(s), ..., πn(s)) (2.1)

Where πi is the payoff function of player i. In other words, it is the utility
that player i gets when the pure strategy profile s is played.

If a simultaneous-move game is assumed, all players at a certain time
play one of their strategies with no knowledge of the other players’ strate-
gies. Once all actions have been decided, each player gets its own profit
according to its payoff function. The purpose of each player in the game is
to maximize its own payoff function, but of course the payoff depends on all
other strategies. In this way we build a system in which each agent is against
all the others. These games are also called non-cooperative since players can
not form any coalitions against the others.

We want now to define the behaviour of each player: as in real world,
there are strategies which are more common and others which are rarely
adopted. To model this fact mixed strategies are defined.
A mixed strategy xi for player i is a probability distribution over the set of
its strategies Si. It is a point in the standard simplex

∆i = {xi ∈ IRmi : ∀h = 1..mixih ≥ 0 and

mi∑
h=1

xih = 1} (2.2)

xi is a mi-dimensional vector where xih is the probability that player i
plays its pure strategy h. The support σ(xi) is the set of pure strategies
of player i with a positive probability. As we did with the pure strategies,
we can put together all the mixed strategies from all players and obtain a
mixed strategy profile x = (x1, x2, ..., xn) which lays in the multi-simplex
space Θ = ∆1 × ∆2 × ... × ∆n. Note that corners of the standard simplex
correspond to pure strategy because we have only one point different to zero:
so mixed strategies can be seen as a generalization of pure strategies.

Evolutionary Games

The conflict can be seen as a two players, symmetric game, in which players
behave according to their genetic pattern which is pre-programmed. Since
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each player always plays one predefined strategy, mixed strategies are in-
terpreted as the fraction of the population which play a strategy. In other
words, in evolutionary interpretation the individuals play a fixed strategy but
the whole population is partitioned in groups that play strategies according
to the mixed strategy.
We have a symmetric game with two players, this means that we do not
distinguish between player 1 and player 2 since they can be exchanged. The
game can be modelled with a symmetric matrix A, called payoff matrix. El-
ement aij corresponds to payoff value when one player plays strategy i and
the other plays strategy j.
In this case we can apply the Fundamental Theorem of Natural Selection
which states that for any doubly symmetric game, the average population
payoff xTAx is strictly increasing along any non-constant trajectory of repli-
cator dynamics.
The ideal goal is to reach an evolutionary stable strategy, which is a mixed
strategy resilient to invasion by new populations.
In order to simulate the evolutionary process we can apply replicator dy-
namics. The key idea in this approach is that when we have a strategy that
behaves better than the average, it is going to spread and if we have a strat-
egy worst of the average, it is going to disappear.

In order to adapt our approach to an evolutionary game definition, the
set of hypotheses is defined according to all possible camera paths and ob-
servations. Moreover, a payoff function is designed in order to represent the
mutual support of two hypothesis. The fundamental idea is that if two of our
hypotheses ”play well” together, then they can be part of the final population
selected by the replicator dynamic process.

2.2.1 Hypotheses

We define H = {H1, H2, ..., Hk} to be the set of all hypotheses. Each one
is a possible triangulation and includes two observations and the two paths
connecting the observing cameras to the world frame that we use as global
reference. We can assume that the world frame is aligned with C1 without
loss of generality.

Each hypothesis is a quadruple (M1x...Myi, O
a
i ,M1w...Mvj, O

b
j) whereM1x...Myi

and M1w...Mvj are paths that combine a sequence of rigid transformations
which transport respectively a point from camera Ci in camera C1 frame ref-
erence and an observation from camera Cj to camera C1. As already stated,
the accuracy of these transformations depend on the calibration algorithm.
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Observations Oa
i and Ob

j are hopefully two observations of the same physical
point observed from Ci and Cj.

Each hypothesis must contain two different cameras so that in previous
definition we have i 6= j; also the paths must not include cycles and are
shorter than a maximum length maxpath defined as parameter.
The correctness of each triangulation in an hypothesis depends on many
factors which can be related to either calibration process or observation la-
belling: we could have a misclassified point or Gaussian errors from calibra-
tion and image acquisition. For these reasons in general it is impossible to
state if an hypothesis is a valid candidate or not.

2.2.2 Payoff Function

As any hypothesis alone is completely non informative, we have to focus on
the definition of how two hypotheses support each other. This measure is
called payoff and it should be high if the two hypotheses support the same
3D point and low if they are discordant.
The payoff is defined as a real-valued function π(i, j) : H ×H → IR+ where
i and j are identifiers of hypotheses Hi and Hj. Since we can define a payoff
value for each pair of hypotheses, we can collect all values in a squared payoff
matrix Π = (πij) with πij = π(i, j).
From each hypothesis Hi it is possible to obtain an associated 3D point
x(Hi) through triangulation. The technique used for triangulation does not
affect our method since we add in the evaluation of the payoff the skewness
value s(Hi) which corresponds to the minimum distance between the two
rays used to recovered the point x(Hi). Coordinates of recovered points and
skewness values from both hypotheses are taken in account to compute the
payoff value. Two hypotheses are considered compatible is their triangulated
3D points are close: the closest the points are, the more compatible the two
hypotheses will be. Each pair can also contribute to the overall reliability
measure using the skewness in the same way. To simplify the model we can
consider these two measures as independent and approximate the similarity
between two hypothesis with a bidimensional Gaussian kernel:

π′(i, j) = e
− 1

2
(
(|x(Hi)−x(Hj)|)

2

σ2p
+
max(s(Hi),s(Hj))

2

σ2s
)

(2.3)

Where σp and σs are two parameters that represent respectively the ex-
pected standard deviation of points position and of the skewness.
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Note that (|x(Hi)−x(Hj)|)2 is a pairwise measure that needs both hypothe-
ses Hi and Hj to be computed; while the skewness measures s(Hi) and s(Hj)
are computed independently one from another so that to put them together
in the pairwise function π′ we need the max operator. We will exploit this
skewness property in the following improvement so that we will not need to
triangulate every pair of observations but still obtain the same results.

While π′ function expresses the degree of consensus between any two
hypotheses, we need to account for special cases where two hypotheses are
not compatible regardless the quality of the triangulation. For example, when
two hypotheses include two different observations from the same camera,
triangulate them is pointless because we are considering two different points
for sure. Another infeasible case consists in the presence of two different
paths from the same camera: if we assume that for different points we can
have different optimal paths, this is not the case of two different paths for
the same point on the same camera since it would break the common world
constraint. These special cases could be included explicitly in the payoff
function setting the value to zero in the final payoff.

π(Hi, Hj) = π((P u
α , O

a
α, P

u′

α′ , O
a′

α′), (P
v
β , O

b
β, P

v′

β′ , O
b′

β′)) =

=



0 if α = β ∧ (u 6= v ∨ a 6= b),

α′ = β′ ∧ (u′ 6= v′ ∨ a′ 6= b′),

α′ = β ∧ (u′ 6= v ∨ a′ 6= b),

α = β′ ∧ (u 6= v′ ∨ a 6= b′).

π′(i, j) otherwise

(2.4)

Where P u
α = M1w...Mqα is a path connecting camera Cα to the world

frame represented by camera C1.

2.2.3 Evolution

Once we have the hypotheses and the payoff function, we can perform the
evolutionary process needed to select all consistent triangulations.

Let x = (x1, ..., xn)T be a discrete probability distribution over the avail-
able strategies H, which are our hypotheses. This vector represents the
population vector and lies in the n-dimensional standard simplex ∆n = {x ∈
IRn : xi ≥ 0foralli = 1...n,

∑n
i=1 xi = 1}.
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The support of a population x ∈ ∆n is denoted by σ(x) and is defined as the
set of all elements of x with non zero probability: σ(x) = {i ∈ [1, n] : xi > 0}.

In order to find a set of mutually coherent hypotheses we are interested
in finding configurations of the population such that the average payoff is
maximized.
The total payoff obtained by hypothesis i within a given population x is

(Πx)i =
n∑
j=1

πijxj (2.5)

So if we consider all the hypotheses, the weighted average payoff over all
the hypotheses x is exactly

f(x) = xTΠx st x ∈ ∆n (2.6)

Which is an objective function from a standard quadratic programme; it
is not immediate to find the global optimum of f(x) in the standard simplex
but local maxima can be obtained using a class of evolutionary dynamics
called Payoff Monotonic Dynamics. A common evolutionary process starts
by setting an initial population x near the barycentre of the simplex and then
continue by evolving its values through the discrete-time replicator dynamic:

xi(t+ 1) = xi(t)
(Πx(t))i
x(t)TΠx(t)

(2.7)

Where xi is the i − th element of the population, Π the payoff matrix
and xi(t) denotes xi at time t. The sequence of population vectors that we
obtain is guaranteed to stay and to evolve inside the standard simplex and it
is ensured to converge to an equilibrium where the support does not include
strategies with mutual payoff equal to zero. This means that the constraints
introduced in equation 2.4 are actually enforced.
Usually, the equation 2.7 is iterated over the initial uniform population, then
it can be stopped when the differences between population values at time t
and at time t− 1 are smaller than a given threshold.
At the end of the process, when the equilibrium is reached, the density in
the final population vector can be used to assess the degree of participation
of each hypothesis in the support.

This approach has shown to be very successful in addressing a wide range
of problems, including feature based matching [3], medical images segmenta-
tion [28], rigid [5] and non-rigid [49] 3D object recognition.
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Figure 2.2: Example of the selection process applied to a small instance of
problem shown in figure 2.1. In this very simplified example the payoff matrix
is not perfectly accurate but the evolution process is computed accurately.
After few iterations the distribution converges to a local optimum.

In figure 2.2 a complete, small case is illustrated assuming the network
topology and observations shown in figure 2.1.
We assume that all pairwise extrinsic calibrations have been performed with
good accuracy, except for M14 which is characterized by a large error for
some reasons that we ignore. Observations O2

3 and O1
4 are correctly labelled,

but still subject to an unknown measurement error. Observation O1
3 is an

outlier and results from a wrong labelling.
The set of cameras is C = {C3, C4} and a total of four paths, two for each
camera. The set of paths is M = {M13,M14,M43,M14,M12,M24}. Conse-
quently we have a total of eight hypotheses, which are shown in figure.
Payoff matrix is shown with different colours in its entries: red is used to high-
light entries which have been set to zero due to the constraints from expres-
sion 2.4. For instance, hypotheses (M13, O

1
3,M14, O

1
4) and (M13, O

2
3,M14, O

1
4)

are not compatible since they include different observations from the same
camera. Another couple of non compatible hypotheses is (M13, O

1
3,M14, O

1
4)

and (M13, O
1
3,M12, O

1
4), which have zero consensus since they are connecting

camera C4 to the common world frame through different paths.
Hypotheses which received low mutual consistency due to geometrical incon-
sistencies are coloured in purple, and they have low payoff: basically they
include pairs affected by the wrong labelling of O1

3. Other pairwise payoffs
are assigned according to coherence between triangulations. Blue entries are
slightly lower that green ones due to the fact that they include the transfor-
mation M14, which is less accurate than the others.
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In the right side of figure 2.2 the actual evolution of the population through
replicator dynamics is shown. The process starts from a uniform distribu-
tion, where each hypothesis has the same possibility to dominate. After just
two iterations of equation 2.7, we can notice that hypotheses that come from
outliers start to decrease, due to they low average payoff value. After ten
iterations only feasible hypotheses survived.
Note that paths including the inaccurate transformation M14 are less repre-
sented in final population. The final distribution can be used to produce a
weighted average of the final 3D points, rather than just selecting the point
with the higher weight.

2.2.4 Shortcomings of OPS method

The principal shortcomings of OPS are due to the definition of the hypothe-
ses set H. These hypotheses contain by construction a triangulated point
computed from the two points, which value is used to compute the payoff
value. Since the method works by validating triangulations, it needs to know
in advance which projections to triangulate, so a candidate labelling method
must be provided as input.
We know from previous section that such labelling can be obtained in sev-
eral ways, but this strict requirement is a limitation for the utility of the
proposed method. With this restriction we can only select an optimal path
for each triangulation. We also know that the correspondences could be very
bad in some cases, thus poor feature associations could lead to an increment
of false positive observations and to an overall reduction of the algorithm
performance.

Another main drawback of Optimal Path Selection is related to its com-
plexity in terms of both memory and computational requirements. Each hy-
pothesis is based on a combination of two observations through two different
paths, even if we had a perfect labelling process in which every association is
exact, the number of hypothesis grows with the square of the possible paths.
This is due again to the ”double” structure of such hypotheses: they must
be created considering each possible couple of paths for each couple of ob-
servations with the same label.
The side of matrix Π is equal to the size of the hypotheses set |H| ' |P |2,
so each iteration of equation 2.7 is potentially O(|P |4). This is also true for
the size in memory of the hypotheses and of the matrix Π, albeit it is not
mandatory to actually store the entries of Π in memory since they can be
computed directly during the evolutionary process, but this will increase the
overall number of computations to perform.
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These problems could alter the performance of the method, moreover we
have a significant limitation on the number of hypotheses we can generate:
if we consider a very wide camera network and many labelled couples with
some uncertainty, we can have a significant loss both in computational time
and in quality of the result. Finally, assuming a huge dataset with longer
paths, the computation becomes infeasible.
In the following section we introduce a simple enhancement which can avoid
these problems in both terms of capabilities and scalability. The new formu-
lation can provide equally good results as in OPS method but at the same
time it excludes the above drawbacks.

2.3 Joint Path Selection and Feature Labelling

The key idea is that the preliminary triangulation in each hypothesis can be
totally avoided by adopting a simpler and less strict hypotheses set [47].
The proposed enhancement consists to base the selection process on a new
set H where each hypothesis is defined as the ray resulting from the combi-
nation of a possible path P and an observation O.
Since this new kind of hypothesis corresponds to a line in space rather to a
triangulated point, the defined payoff functions 2.3 and 2.4 need to be re-
arranged according to the new hypothesis formulation: in fact we can not
compute the Euclidean distance between triangulated points since we have
only one line in each hypothesis.

Before introducing the new payoff function, we have to redefine the set
of hypotheses H = {H1, H2, ..., Hk}. The new formulation of an hypothesis
is a couple (Pi, Oi), where Pi is a path which include, as usual, a sequence of
rigid transformations from camera Ci reference frame to camera C1 reference
frame, and Oi is simply an observation from camera i. Note that we half
the elements of the hypothesis and, for each camera we are able to build a
distinct hypothesis for each observed point. In this way we are not forced to
use labelling information simply because it is not required at this step.

We now introduce a reduced formulation of previous payoff function, sub-
stituting 2.3 with a function which only accounts for the skewness of the rays.

π′(Hi, Hj) = π′((P u
α , O

a
α), (P v

β , O
b
β)) = e

− 1
2
(
s(Hi,Hj)

2

σ2s
)

(2.8)
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Where s(Hi, Hj) is the skewness value between the two lines induced by
the two observations from the two hypotheses.

Of course this new measure is weaker than the first, since it is much easier
for two rays to exhibit low skewness by chance, in fact this happens for all
the rays lying in the same epipolar plane for each pair of cameras. However,
if we have a high number of cameras, for a large enough population of candi-
date rays, the probability of exhibiting a low skewness by chance among all
the possible pairs of cameras is much lower.

In this new formulation we reduce the size of the set H to the square
root of previous section. No early triangulation is performed between pairs
of observations so we can include more than one material point at the same
time in our candidates and let the evolutionary process selects the clusters
of rays belonging to the same bundle.
Note that the method which detected the observations could offer some a
priori information about the likelihood of two observations to be related.
For example if feature descriptors are used as observations we have a sim-
ilarity measure between them which can be used to assess the similarity of
two descriptors. Another example is when we have a tracking application
and features could be associated through rules derived from camera motion.
If such information can be provided from outside, a further improvement
can be introduced. Without loss of generality, a compatibility function C
can be defined, with C(Hi, Hj) : H × H → {0, 1}.This function indicates
the feasibility of the correspondence according to the a-priori information.
Consequently, the value of this function is zero when the two hypotheses are
not compatible, while it is one when they could be the same material point.

Exploiting this compatibility knowledge, the complete payoff function can
be defined as

π(Hi, Hj) = π((P u
α , O

a
α), (P v

β , O
b
β)) =

=

{
0 if C(Hi, Hj) = 0 or α = β

π′(Hi, Hj) otherwise
(2.9)

Where, in addiction to compatibility function C, two observations are
discarded if they came from the same camera.
Note that if an a-priori information about feature similarity is not provided,
the compatibility function can simply be set to return always one: in this
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way all possible couple of hypotheses are tested with each other.

The first iteration of the evolutionary process based on replicator dynam-
ics with the payoff function 2.9 will yield a single material point and the
same label can be applied to all supporting rays (e.g. rays which will be in
the support of the final population).
Once the first group is obtained, two actions must be undertaken:

• the final point must be triangulated according to the rays that are still
present in the final population. This can be done in several ways. In
the simpler approach the two rays with the higher density are trian-
gulated computing the closest 3D point to both rays. A more sensible
and generic approach is to find the point that minimizes the squared
distance from all the rays, weighted according to the population density
of each ray. In this latter approach all final rays are considered but if
some of them do not contribute in a significant way in the population
(for example, if an outlier is included), they will not alter the final point
computation.

• the non extinct rays must be removed from the hypotheses set H since
they have already been assigned to a material point.

Once H has been reduced, additional iterations of the evolutionary pro-
cess can be performed, until all the observation has been labelled or a satis-
fying number of material points has been reconstructed.



Chapter 3

Experimental Evaluation

In order to test both Optimal Path Selection (OPS) [46] and Joint Observa-
tion and Projection Selection (JOPS) [47] a set of synthetic camera networks
have been designed in such a way that they resemble typical real-world cam-
era network topologies. Testing in synthetic case allows to exclude all un-
predictable error sources and properly analyse the behaviour of the methods
with respect to erroneous observations and inaccurate extrinsic or intrinsic
calibrations.

Three different network topologies were generated: they are depicted in
figure 3.1.

Figure 3.1: The three topologies used for synthetic experiments. From left
to right: grid, hemisphere and line.

The first topology on the left is grid: it contains 15 cameras in an area
of 20 × 12, centred at the origin of world coordinate system and lying onto
the xy-plane. All cameras are rotated so that their z-axis points toward the

45
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network centre c = (0, 0, 10)T . For this graph we generated the exact relative
motion between all couples of cameras whose distance is less than 10 steps,
for a total of 88 graph edges.
The second topology (figure 3.1, centre) is called hemisphere and it includes
16 cameras disposed in the surface of a semi-sphere with centre c and radius
equal to 10. Origins of camera reference frames are placed with an uniformly
distributed angular azimuth and elevation and all point to the sphere centre.
A total of 90 edges describe the relative motions of camera pairs that are less
than 10 steps apart.
Last generated topology is line (figure 3.1, right); it is composed by 9 cameras
lying on the x-axis, uniformly spaced around the origin and oriented toward
c. A set of 30 edges links together the adjacent cameras.
For all three topologies intrinsic parameters were set with unitary focal length
and principal point lying at the origin. Camera C1 was placed so that its
reference frame corresponds to world reference frame.

From this ground truth, many different perturbated instances of the var-
ious topologies were generated. This displacement was computed generating
a normally distributed additive angular error applied to the rotation matrix
of rigid motions associated to each edge. The distributions have zero mean
and standard deviation σr. Various values of σr will be considered in order
to simulate very small errors or more significant ones.

3.1 Optimal Path Selection

The first experiment was designed in order to analyse the sensitivity of the
proposed method with respect to the parameters σp and σs, in payoff func-
tion defined in equation 2.3.
A random 3D point P was generated as ground truth in the neighbourhood
of c = (0, 0, 10) and the spatial distance between P and the reconstructed
3D point was computed for any possible couple of parameters σp and σs in
a certain range of values. The topology grid was used and an angular error
with σr = 9.1 ∗ 10−3 was applied.
Figure 3.2 shows the results for σs, σp ∈ [0.01, 0.2], respectively in x and y
axis. As expected, there exists a large area around σp = 0.08 and σs = 0.12
where the interplay between the two parameters leads to satisfactory results.
We have also an evidence that the skewness value, even if it is not a quantity
directly related to the reconstruction error, can help the effectiveness of the
payoff function in detecting the best hypotheses.
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Figure 3.2: Sensitivity analysis of payoff parameters σs and σp with respect
to the reconstruction error. We can notice an area (dark blue in the colour
scale) where the algorithm performed better.

In the second experiment we compared the reconstruction accuracy of
our approach against ”dual-quaternion” [56] and ”SBA” (Sparse Bundle Ad-
justment) [36] methods. The first exploits properties of dual quaternions to
diffuse the camera network error and it creates a new set of coherent motions
to a common reference frame. The latter is commonly used in structure from
motion applications to simultaneously optimize extrinsic camera parameters
and the reconstructed 3D points given their observations in each image plan.

Reconstruction error is evaluated for all grid, hemisphere and line topolo-
gies, varying the network graph angular error σr and observation error σo.
The observation error was applied to all the observation coordinates through
an additive zero mean Gaussian error with variance σ2

o .
All the tests were performed by reconstructing 10 points generated in a ran-
dom way around c = (0, 0, 10) as ground truth. Results for grid topology are
shown in figure 3.3.
Since dual-quaternion works only on the orientations of each camera in the
network, for this method we considered as measure of quality the best tri-
angulation in terms of reprojection error between all the graph paths with
less than three vertices each. Reprojection error is computed by projecting
the reconstruction of the 3D point back to image plans of all cameras and
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measuring the distance from the original observation.
In SBA approach, all the structure points were optimized at the same time.
We can observe that SBA, even if it has the advantage of recomputing the
camera poses while triangulating, mostly suffers from the observation errors
specially in the case of outliers. On contrary, our proposed approach dynam-
ically discards incoherent observations from the initial population, producing
structures that are less noisy and more reliable. A similar behaviour can be
observed for dual-quaternions method varying the standard deviation σr of
graph edge error. Since it can only diffuse rotation errors without discarding
the problematic edges, it suffers from large relative motion displacements
that may happen during the graph calibration phase.

Figure 3.3: Performances of OPS, SBA and dual-quaternion methods for the
grid topology. Triangulation error is computed while perturbing the graph
edges (top) and varying the observation errors (bottom).
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Overall, Optimal Path Selection can deliver the best of the two proposed
methods, being either able smooth the errors by averaging the triangulation
among many cameras while still being very effective when selecting a small
set of mutual reliable paths and observations.

As last experiment, we tested the behaviour of the algorithm in the case
of observations outliers. We computed the number of false positives and false
negatives.
A false positive is a wrong observation still included in the final population
and consequently, involved in the computation of the final 3D point. A false
negative is an observation which originally was part of the correct observa-
tions but it has been wrongly discarded so that it do not participate in the
point reconstruction. We can have false positive or false negatives for many
reasons which can be related to camera orientation errors or we can have a
bad initial labelling of the observed image features.
The number of false positives and false negatives are computed from the final
population for many different triangulations attempts, varying the observa-
tions outlier distribution in the grid network topology.

To this end, we generated each time as ground truth exactly one inlier
observation with a random uniform uncertainty of σo = 10−3, and one outlier
which was displaced from the ground truth observation by a factor of Kσo.
The more the parameter K is increased, the more the distance on the image
plan between inlier and outlier observations increases. A false positive was
counted every time an observation from the outlier point was included in the
final population, and a false negative was counted when an observation from
the correct point was excluded from the final population.
In figure 3.4 the results are plotted for false positives (left) and false negatives
(right). We can immediately notice that the relative number of both false
positives and negatives decrease proportionally with K. With K = 3, the
number of wrongly selected observations is almost zero. In a real-case sce-
nario, we expect two possible cases: if we have wrong observations very close
to the correct one, then they should not influence the final triangulation. If
they are more than 3 times the standard deviation far from the correct point,
they will be discarded from the final population.

In the next section performances of the improved method are presented
in order to prove that even using only the skewness value in the computation
of payoff, we are still able to correctly reconstruct one or more 3D points.
We will also introduce the feature selection process and set up a new test
configuration.
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Figure 3.4: Number of false positives (left) and false negatives (right) while
changing the parameter K. As K increases, the outlier point was shifted
further from the correct observation. We can notice an inverse linear relation
between K and the both the number of false positives and negatives.

3.2 Joint Optimal Path Selection

and Feature Labelling

Beside the reduced complexity, there is no technical or theoretical reason
that guarantees the proposed enhanced to perform better or at least on par
than the previous one.
The only sensible way to assess the properties and the advantages of this im-
provement is to perform an extensive and complete set of comparisons over
a various set of experimental conditions.

The final goal of each reconstruction technique is to accurately recover
the geometry of the observed scene regardless of the error sources. For this
reason in the next synthetic experiments we adopted as the measure of the
result quality the RMS (Root Mean Square) or Quadratic Mean. It is defined
as the square root of the arithmetic mean of the squares of a set of numbers,
in our case the errors for each reconstructed point.
Assume we have a set of ground truth points {x1, x2, ..., xn} and the set of
their estimated reconstruction is {x̃1, x̃2, ..., x̃n}. Their RMS is computed as
follows

RMS =

√√√√ 1

n

n∑
i=1

(xi − x̃i)2 (3.1)
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In all the following results, RMS error was computed between the gener-
ated ground truth model and the reconstructed set of points.
Note that some methods we compare against might change the reference
system due to modifications of camera poses. In order to be invariant with
respect to these effects, RMS has always been computed after a best-fit align-
ment between the obtained 3D points and and the original model. This qual-
ity measure is called Prms.

In order to be able to study different aspects of the proposed method, we
designed a general synthetic experimental framework which allows to control
a wide range of different hindrances that could affect the process in a real-
world scenario.
In a particular way it is critical the ability of controlling the density of gener-
ated material points, their visibility ratio from one or more different cameras,
the different noise sources, the amount and quality of the outliers. In fact, if
we are working in a real application we can have the cameras spread around
a wide area, so we need to model the portion of the scene that each camera
can detect. Moreover, if we have dynamical or static objects to track from
the environment, the presence of outlier is a common situation and we would
like to filter them out from the final solution.

A graphical overview of this simulated scenario is presented in figure 3.5,
where the different control parameters are also included.
The parameters that we modified during the experimental evaluation are the
following:

• Np (Number of points): the number of material points that have been
generated in the model which are observed by the cameras. Like in
the previous evaluation setup, such points are generated uniformly in
a cube box of side 10 around the centre c = (0, 0, 10);

• Vr (Visibility ratio): the ratio of material points that can be observed
from each camera. This parameter is added in order to model complex
networks, especially when we are dealing with motion scenarios, when
only a portion of the points are captured by each camera;

• σr (Orientation rotational error): this corresponds to the value from
the previous section, it is the standard deviation of the rotational noise
added to each camera in the network. We add only rotational noise
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Figure 3.5: Synthetic setup with the six principal factors that are included.

because we want to allow a single measure of noise while still addressing
the most influential factor;

• σo (Observation positional error): as before, it is the standard deviation
of the positional noise added to each observation in the image plans;

• Ir (Inlier ratio): the ratio of observed observations that can be classified
as inliers in each camera. Consequently, 1 − Ir can be thought as the
outlier ratio for each camera;

• Om (Outlier multiplier): the multiplier to be applied to σo in order to
amplify the positional error of outliers.

According to this values, each camera can observe exactly NpVr material
points from the scene, which are chosen at random among the initial Np.
Among these visible points, the projections of exactly NpVrIr are subject to
an additive Gaussian positional error with zero mean and standard deviation
σo. The remaining points are considered outliers and their observations are
displaced by a larger positional error modelled as a zero-mean Gaussian with
a standard deviation equal to σoOm.
In figure 3.5 these positional errors are well represented with red and blue
dotted circles: red circles express more uncertainty in the position of the
observation since they represent outliers.
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We will work with the already described topology grid, hemisphere and
line. All presented evaluation have been computed by creating a ground
truth of points using the specified parameters and then averaging the Prms
obtained over the three topologies.
As with the previous method, we first performed an analysis of the sensitivity
of the method to its payoff parameter, then we compared the new technique
with the previous following the same baseline.

Unlike Optimal Path Selection, the Joint Observation and Projection Se-
lection method depends on a single payoff parameter σs. In order to test
the method with respect to this parameter, the average Prms was computed
for different values of σs with the following fixed experimental conditions:
Np = 10, Vr = 0.9, σr = 0.018, σo = 7 ∗ 10−3, Ir = 0.9 and Om = 10.

Figure 3.6: Average Prms changing the payoff parameter σs: when σs is above
a certain threshold, the reconstruction is not really influenced.

Results are shown in figure 3.6, where σs ranges from a value very close
to zero to one. We can notice that JOPS is not very sensitive to σs as in the
previous analysis where we had also σp. In fact, as long as σs is large enough
to avoid a too strict inlier selection we had almost the same result.
This behaviour is still similar to the one exhibit by OPS but as it depends
only by a single parameter we had a better tuning process.
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We can also notice that, while increasing the value of σs above about 0.5
has a limited effect on Prms, the shape of the final population could be very
different for different values of the parameter. In figure 3.7 the (ordered) final
population distribution is shown for two different values of σs. In the left plot
the value of σs is 0.1 and we see that only few candidates are selected by the
evolutionary process: note that they all have high probabilities associated.
In the right plot we have σs = 1: the final population is more numerous with
respect to the previous case, moreover all candidates have almost the same
probability.
Smaller values of σs are more restrictive, in fact they lead to a tighter selec-
tion with less remaining hypotheses. On the other hand, higher values of σs
are too permissive, allowing many hypotheses to enter in the final population
with equal probability.

Figure 3.7: Distributions of sorted final population values when σs = 0.1
(top) and σs = 1 (bottom)

When we have few hypotheses as result, we could have a less stable tri-
angulation because of the reduced number of samples contributing in the
average. Moreover, we could have a duplicate detection of the same physical
points because the remaining hypotheses could lead to the same result in a
new iteration of the replicator dynamics.
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For these reasons it is very important to tune properly the parameter σs,
since we want a good number of relevant rays in order to perform a good
reconstruction of the 3D point, but at the same time we do not want to in-
clude hypothesis which came from outliers or other points which could alter
the goodness of the result.

In the evaluation part, results of JOPS have been compared with the
previously introduced OPS, SBA (Bundle Adjustment) and dual quaternion
averaging.
Since other methods can not perform feature matching but they need to start
from some given correspondences, in order to compare JOPS with them for
now we have to reduce the scope of our method.
We thus define a labelling l according to the actually observed points and a
compatibility function from this labelling is used in JOPS. The compatibility
function C is defined as follows

C(Hi, Hj) =

{
1 if l(Hi) = l(Hj)

0 if l(Hi) 6= l(Hj)
(3.2)

In this way we have full compatibility if the given labels are the same,
and no compatibility if labels are different. Regarding the other methods,
they have been feeded directly with the correct matches.

The sensitivities to different error sources have been studied separately,
by exploring the obtained Prms varying only one error source and keeping all
the other parameters fixed as in the previous experiments.

Figures 3.8 and 3.9 are similar to figure 3.3. Several points have been
generated for each network topology then the average of the three config-
urations was computed. The already proposed methods are now compared
with JOPS as we increase levels of noise for the observation and for camera
orientations. Values from JOPS are on par with OPS and are better than
both SBA and dual quaternion methods.

Then we tested the performances of all four methods varying the Visi-
bility ratio Vr. The tests was done generating 10 points at random in all
different topologies. Visibility ratio Vr was increased starting from 0.3 (each
camera can detect only 3 randomly selected points) to 1 (all cameras are
able to see all 10 points). Results are shown in figure 3.10. We can see
that JOPS performances are aligned with OPS, performing better than the
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Figure 3.8: RMS values for all methods with respect to σr

other two methods. Note that SBA fails for values of Vr which are below 0.6:
this because this method requires several points to be observed in order to
compute its best approximation. This makes our method more effective in
large and sparse camera networks, where we could have a significant number
of occlusions and we need to reconstruct the scene.

In figure 3.11 the reconstruction precision is computed as the inlier ratio
Ir is decremented.
We first set a low value for the outlier multiplier Om: as before, the perfor-
mances of JOPS are very similar to performances of OPS and both are much
better than the other two methods. As the inlier ratio is decremented, SBA
method tend to perform very badly, because it is not resilient to outliers.
Also the standard deviations of both SBA and dual quaternions are very
large.
In the other plot we set a higher value for Om: we can see that JOPS and
OPS perform as usual except for very extreme values, dual quaternions of-
fers poor results and SBA does not even give a result because of the many
outliers.

Figures 3.10 and 3.11 highlight the shortcomings of SBA and dual quater-
nions with respect to the proposed OPS and JOPS. SBA method is unable
to reconstruct the original points where not enough correct observations are
available, while dual quaternions is unable to avoid outliers since it just deals
with camera orientation without considering observations.
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Figure 3.9: RMS values for all methods with respect to σo

The final and most important test has been designed to simulate a more
general scenario with about 200 cameras and a scene of about 1000 material
points producing unlabelled observations.

We assumed that the observations are characterized by an hypothetical
descriptor vector that can be used as an initial filter to detect unfeasible cor-
respondences. For this hypothetical descriptor we want to simulate different
levels of repeatability and distinctiveness.
In order to implement these features, a suitable compatibility function can
be defined in the following way:

C(Hi, Hj) =

{
Xr ∼ Ber(Rf ) if l(Hi) = l(Hj)

Xd ∼ Ber(1−Df ) if l(Hi) 6= l(Hj).
(3.3)

Where X ∼ Ber(p) means that X is a binary random variable modelled
as a Bernoulli distribution of parameter p, which corresponds to the proba-
bility that X = 1.
In the case that the labels given by l are equal, the compatibility will be
described by a binary random variable Xr having value 1 with a probability
Rf . On the other hand, if the given labels are not equal, compatibility will
be described by the binary random variable Xd that is 0 with probability Df
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Figure 3.10: RMS values for all methods with respect to visibility ratio Vr

and 1 with probability 1−Df .
Rf is the repeatability factor that models the probability that the descrip-
tors computed over two observations of the same physical points are equally
labelled. Thus, 1−Rf expresses the probability to be unable to recognize a
matching feature.
The value Df stands for distinctiveness factor and represent the probability
that the projections of two different material points are actually considered
non corresponding.
According to this parametrization, the exact compatibility function corre-
sponds to setting Rf = 1 and Df = 1. By contrast, if we set both to zero,
we will have a completely wrong descriptor.

Figure 3.12 shows the average Prms obtained with JOPS method for dif-
ferent combinations of Rf and Df values. We can observe that JOPS behaves
very well also with relative low values of Rf and Df , which rarely occurs if
we choose a well designed descriptor.
Moreover, when the repeatability is high enough, we can notice that distinc-
tiveness is less critical since, as long as we have correct correspondences in
the set of hypotheses H, outliers given by low values of Df can be easily
filtered out by the evolutionary process because of the lack of geometrical
consistency.
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Different outlier multipliers was used: small Om in left plot, high Om in the
right one.
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Chapter 4

Conclusions

In this thesis a dynamic path selection method has been introduced. This
method could be used to perform robust 3D reconstructions when dealing
with a camera network possibly suffering from inaccurate extrinsic calibra-
tions. To this end, we presented two different approaches.

The first proposed method performs point-wise reconstruction by dynam-
ically selecting the best possible set of camera poses and observations that
maximize the consistency of each pairwise triangulation. Each candidate in
this approach is composed by a couple of possible paths from two cameras
connecting them to the common world reference frame and by a couple of
observations that are triangulated using such paths.
The ability to locally exclude part of the graph or observations from the fi-
nal triangulation makes our method particularly effective in all the scenarios
when either a precise calibration can not be provided or only a poor local-
ization of targets is available.
Note that this approach is also reliable in the case of outliers, since they
are discarded by the game-theoretical evolutionary process. Notice finally
that the method also assumes to have an initial correspondences labelling
available as a starting point, albeit it exhibits some degree of tolerance with
respect to labelling errors.

The second approach is an improvement in terms of spatial and temporal
computation. It offers the same advantages of the first proposed method
but it is also able to perform the selection of correspondences between point
projections without an initial labelling. At the same time it still selects the
optimal camera orientations required to triangulate such observations.
This enhanced method can be adopted in more scenarios than the simple
Optimal Path Selection, such as large camera networks, sequences of frames
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or collection of images from the web.
In general, both approaches make no assumptions about the method used to
obtain the initial pose estimation between the cameras, neither they make
assumptions regarding the technique used to capture material point images.
However, if some kind of descriptor or similarity function is available, the
joint approach can easily exploit them in order to obtain a better reconstruc-
tion with the best precision available from the pose estimations.

The experimental evaluation of the method has shown that it is able to
offer a performance quality comparable to similar approaches which are ad-
dressed to a narrower application range and have major shortcomings.
Specifically, the novel approach is very resistant to outliers and very bad
edges. In fact, other methods just propose a kind of adjustment of the over-
all parameters and observations perform worse simply because they are forced
to include the very bad calibrated edge or the correspondence errors; while
in our methods if there is an hypothesis which is in stronger disagree with
all the others, it will be discarded in a very fast way and excluded from the
final result.

Finally, when adopted to solve the more general problems of simultane-
ous observations and paths selection, the JOPS method exhibited a strong
resilience even when dealing with feature descriptors characterized by low
distinctiveness and repeatability.
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