
Ca’ Foscari University of Venice

Department of Environmental Sciences, Informatics
and Statistics

Master’s Degree Programme in Computer Science

Master’s Thesis

Analyses of the fishing effort and of

the underwater noise for a sustainable

exploitation of the northern Adriatic Sea

Candidate:

Giulia Rovinelli - 867381

Supervisors:

Dr. Alessandra Raffaetà
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Chapter 1

Introduction

The secret of getting ahead is getting started.

– Mark Twain

The area of the northern Adriatic Sea has a high productivity rate regarding

the őshing activities and it is recognised as one of the most exploited areas of

the Mediterranean Sea. In order to make őshing activities sustainable and to

guarantee a productive and healthy ecosystem, there is a strong need to develop

effective őshery management plans for constant monitoring and for prediction. For

this reason, it is of fundamental importance to analyse the data relating to the

movements of őshing vessels and their catch.

The thesis builds on previous studies about the őshing activity in the northern

Adriatic Sea [73, 74, 14] and aims at exploring two different ascpects: the forecast of

the őshing effort, that is an essential indicator for monitoring the őshing pressure on

an area of interest over time, and the underwater noise modelling. Both the őshing

effort and the underwater noise propagation model are of fundamental importance

to improve the knowledge of the spatial-temporal aspects of őshing activities in

order to reduce unsustainable exploitation. These two goals have been proposed by

the ecologists and they allow us to experiment different analysis techniques in the

same conceptual framework, based on a particular kind of semantic trajectories,

namely Multiple Aspects Trajectories [57]. Hence, this work reveals the potentialities

of the framework which has been proved to be ŕexible and adequate to cope with

the representation and analyses of various phenomena.

Starting from the AIS data, we reconstruct and enrich the trajectories by

1



2 CHAPTER 1. INTRODUCTION

assigning to each segment the activity carried out by the boat (in port, entering

to/exiting from the port, navigation and fishing). In this way, considering only the

portions of the trajectory in which the vessel is őshing, we compute the őshing effort.

By partitioning the northern Adriatic Sea with a regular grid of 3×3 kilometers, we

distribute the őshing effort over the entire grid. Subsequently, we enrich the initial

dataset with daily environmental factors, such as sea surface temperature, spectral

signiőcant wave height, wind speed and sea salinity, downloaded from Copernicus1,

an European Union’s Earth observation programme which offers information services

that draw from satellite Earth Observation and in-situ (non-space) data. After

enriching our initial dataset with the environmental data, a variety of prediction

methods are used in order to assess their prediction ability related to the őshing

effort. Since the őshing effort is real-valued and continuous, the prediction task can

be formulated as a regression problem where the output of the regression model is

the őshing effort value for a time period and a grid cell.

In order to make the őshing effort forecast for 2019, we consider three different

training datasets, increasing their size by adding a year of data each time. In

particular, we initially consider only the year 2018, then 2017 and 2018 and őnally

2016, 2017 and 2018. This method for splitting the data is chosen due to the

sequential nature of the data, for which random sampling is not suitable. The

machine learning methods employed for regression modelling are: Random Forest,

Extra Trees, XGBoost and Multi-layer Perceptron. Model hyperparameters for

each method were chosen by performing random searches on the hyperparameter

space and taking the best scoring settings. Finally, to compare the performance of

the regressor models, we use the Mean Absolute Error (MAE), Root Mean Squared

Error (RMSE), and the Coefficient of Determination (R2).

The issue of designing predictive methods to forecast őshing effort is challenging

because the dataset contains multivariate and spatio-temporal aspects to cope with.

In fact, spatio-temporal data has two unique attributes: spatial properties, which

consist of a geographical hierarchy and distance, and temporal properties, that

consist of closeness, period and trend [96].

Concerning the northern Adriatic Sea exploitation, another fundamental aspect

is the underwater noise generated by vessels, which has a signiőcant short and long

term impact on animal species. Using the trajectories and the characteristics of the

boats, we build a model for the propagation of underwater noise based not only on

the technical characteristics of the őshing boats’ engine but also on environmental

1https://marine.copernicus.eu/
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factors that vary in each season, such as sea surface temperature, sea salinity, depth

of the sea and sea water potential of Hydrogen (pH). In particular, we used the

reconstructed trajectories to overcome the problem of the non-homogeneity of the

AIS data transmission. In fact, we get the positions of all the őshing vessels at the

same time instants, i.e. every 30 seconds. Then we use these points to calculate

the sound propagation radius, (i.e. the distance at which the noise generated by

the őshing vessel is no longer perceptible) with respect to the horsepower of the

boat, if it is őshing, and the environmental conditions of the cell to which the point

under analysis belongs to. Again we partition the northern Adriatic Sea into a

regular grid, each cell having a size of 1× 1 kilometer, smaller than before because

this dimension allows us to better model the effect of the propagation. To measure

the noise level we consider the centroid of the cells as listening points. By taking

a boat in a precise instant of time and the corresponding propagation radius, we

distribute the sound in the cells that are within the calculated radius.

Having this model we can make several analyses. First, using the QGIS Time-

Manager it is possible to generate animations in which, by selecting the vessels

and the number of information per frame, we can visualize these vessels moving in

the northern Adriatic Sea and, at the same time, the underwater noise generated

by these vessels. Secondly, we can aggregate the sound propagation of individual

boats to produce underwater noise maps that are useful for identifying areas where

underwater noise can damage the marine environment, even permanently.

The novelty of this model is related to the fact that, instead of taking underwater

noise measurements with physical listening points (hydrophones in the water) as

it is done in all the works relating to the same topic, see for instance [64, 5, 1],

we take łvirtualž listening points (the cells centroids), at a distance of 1 kilometer

from each other, and using the semantic trajectories of the őshing boats and their

characteristics, we propagate the sound produced by vessels.

To accomplish this project we use MobilityDB [98], a moving object database

that extends the type system of PostgreSQL2 and PostGIS3 with abstract data

types for representing moving object data, such as temporal types. Such data types

represent the evolution on time of values of some element type, called the base type

of the temporal type. We also use Python and in particular Scikit-learn library to

perform the experiments using machine learning models for regression. Furthermore,

using the QGIS open source software, we create maps to display, in a simple and

clear way, the őshing effort forecast, its prediction, and the areas in the northern

2https://www.postgresql.org/
3https://postgis.net/



4 CHAPTER 1. INTRODUCTION

Adriatic Sea characterised by the most intense noise pollution. In particular, we

use the QGIS TimeManager4 which adds time controls to QGIS: using these time

controls, we can animate vector features based on a time attribute.

The rest of this work is organized as follows. In Chapter 2 we present some

relevant papers related to őshing activities forecast and underwater sound propa-

gation. Moreover, we set up the preliminaries of our work: őrst we introduce the

concept of trajectory and its extension to multiple aspect trajectories, and then we

describe how they are represented in MobilityDB. Chapter 3 presents the őshing

effort forecast: the creation of the dataset for the prediction, the machine learning

models, the choice of hyperparameters, the evaluation metrics and the results. In

Chapter 4 we describe the creation of a model for the underwater noise propagation

starting from the characteristics of the vessels, their semantic trajectories, the

physical models for underwater sound propagation and the daily environmental

data. Finally, Chapter 5 concludes this thesis and gives some directions for future

work.

4https://plugins.qgis.org/plugins/timemanager/



Chapter 2

Related works and Background

Education is the most powerful weapon you can use

to change the world.

– Nelson Mandela

2.1 Related works

The northern Adriatic Sea is one of the most exploited areas of the Mediterranean

Sea, causing an over-exploitation of the ősh resources. Having a clear representation

and understanding of the main factors driving such phenomenon is of paramount

importance both for ecologists and for local policymakers [14]. In this way, they

can generate plans to make őshing activities sustainable and identify speciőc areas

where it is necessary to reduce the navigation of vessels that can damage the marine

environment. In this setting, we can identify two main tasks with the goal of

improving the knowledge on the exploitation of the northern Adriatic sea. The őrst

one is the computation of the őshing effort, an essential indicator for monitoring

the őshing pressure on an area of interest over time, and in particular its forecast,

which allows to study the most őshing exploited areas and protect our seas from

overőshing. The second one is the underwater noise generated by vessels which has

a signiőcant short and long term impact on animal species [89].

2.1.1 Fishing activities forecast

In the literature there are many works on őshing activities forecast. From a ősh-

ing management view, works like [27] propose a seasonal forecasting decision support

5
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tool that is updated automatically on a daily basis and accessible from a tailored

website to predict tuna distribution. The work in [42] shows the performance of

Convolutional Neural Networks (CNNs) models to forecast 1-month ahead monthly

anchovy catches considering only anchovy catches in previous months as inputs to

the models. CNNs models are being applied in different őelds and usually provide

very promising results. Recently, CNNs have been largely applied to time series fore-

casting, although there are not many studies developed in ősheries sciences [50, 16].

In particular, authors in [16] developed time series based neural network and fuzzy

logic models for ősh recruitment analysis using ősh stockśrecruitment data incorpo-

rating environmental information. In [20] the authors examined the relationship

between sea surface temperature and chlorophyll-a concentration thanks to the

integration of satellite data and statistical models output. In [51, 52] the authors

focus on mapping dredge gear őshing grounds using complementary data to assess

the spatio-temporal distribution and intensity of őshing activity. Similarly to [27]

and [20], the work proposed in this thesis uses environmental data for the forecast.

Also, similarly to [42] and [14], in this work we exploit the information relating to

the őshing activities. In particular, we use the őshing effort to predict the areas

that will be the most exploited by őshing activities, instead in [42, 14] the authors

use catch information to predict future catches.

From a viewpoint that considers the geolocation technology used to track ships,

some works use Vessel Monitoring System (VMS). For example, [54] combines this

infomation with catch data (that are used for modelling species presence) for the esti-

mation of őshing effort. Other works use satellite images [20] or AIS [25, 33, 22, 87]

that could be a good alternative option, especially working at a regional scale.

Initially, the AIS was designed primarily as a support and aid for navigation to

avoid collisions between boats, as it allows their detection. The International Mar-

itime Organization1 (IMO) requires AIS transmission for ships with gross tonnage

equal to or greater than 300 tons, for all passenger ships and for all boats over

15 meters in length. Nowadays AIS is also used as a primary resource to obtain

useful data for the study of őshing-related activities, probably due to their free

display. Furthermore, AIS provides the possibility for ships to exchange, in near

real time, state vectors (position, speed, course, rate of turn, etc.), static (vessel

identiőers, dimensions, ship-type etc.), and voyage related information (destination,

ETA, draught, etc.) [77]. In [33] the suitability of AIS data was tested to assess

bottom trawl őshing activity in the Mediterranean Sea over three years. Most of

1https://www.imo.org/
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the works that consider the geolocation technology focus on training models to

forecast when a vessel performs a őshing activity. Finally, in [14] the authors use

AIS data to reconstruct vessels multiple aspect trajectories and exploit the domain

knowledge from experts to determine the activity of vessels (e.g., őshing or not)

on their trajectory segments. Based on the knowledge of ranges of őshing speed

for different types of őshing gears (e.g., trawlers, long-liners, etc.), they encode

the speciőc rules to detect vessel activities. By exploiting this information, they

compute the area swept by vessels while őshing, in order to estimate the Catch Per

Unit Effort (CPUE).

From the viewpoint of the analysis of models for time-series forecasting, many

studies used the Autoregressive Integrated Moving Average [13] (ARIMA), e.g., [6,

47, 56, 67, 94] that has been popular and widely chosen for modelling ősheries

science’s time series data [42, 82], and the Seasonal version (SARIMA), e.g., [4, 66].

In [95] the authors use őshing locations data of two years and derive chlorophyll-a

and sea surface temperature from satellite data to determine potential őshing

grounds of the commercial Indian mackerel using a presence-absence data model,

Generalized Additive Model (GAM) and presence-only data model, maximum en-

tropy (Maxent). In [84] correlative models were performed for the determination of

potential őshing grounds of small-scale őshery combining VMS and environmental

variables. In particular, they used Generalized Linear/Additive/Boosting Models,

Classiőcation Tree Analysis, Artiőcial Neural Network, Surface Range Envelope,

Flexible Discriminant Analysis, Multiple Adaptive Regression Splines, and Random

Forest. Also, the authors in [97], based on the knowledge of őshing chronology

among trawlers, design a CNN to predict the short-term őshing effort distribution.

The works discussed in this section use different methods for various purposes.

Our goal is to study and use machine learning models to predict the őshing effort

as described in Chapter 3. Our approach uses the same datasets employed in [14]

for the forecasting (although in our work we forecast the őshing effort rather than

the CPUE), but unlike that work, in which the dataset is split used a standard

5-fold cross-validation, we consider the year 2019 for testing and all other previous

available years for training. This data splitting was chosen because when data is

time-stamped, cross-validation should be avoided as it will not be sensitive to latent

concept drift almost always present in real data.



8 CHAPTER 2. RELATED WORKS AND BACKGROUND

2.1.2 Underwater noise

Underwater noise from human activities is known to have a number of adverse

effects on aquatic life [61, 78, 90]. These can range from acute effects such as

permanent or temporary hearing impairment [55, 79], to chronic effects such as

developmental deőciencies [21, 60] and physiological stress [93, 92, 72]. For these

reasons it is of fundamental importance to model the underwater noise produced by

boats and provide ecologists with sound maps. In [19] the authors try to summarize

the status regarding continuous underwater radiated noise from shipping in Euro-

pean waters to provide recommendations on possible future activities. In particular,

the work is focused on four main topics: characteristics and quantiőcation of noise

sources from various ship types, impacts on marine fauna, existing policies, including

guidelines, decisions, resolutions and regulations and mitigation measures for the

abatement of ship noise and noise-related impact. The work in [64] shows two

acoustic surveys conducted at 40 listening points distributed along the three inlets

that connect the Venice lagoon to the sea, in order to characterize the local noise

levels and evaluate the ősh spatial distribution by means of its sounds. The study

in [5] aimed to determine noise intensity and frequency of traditional őshing boats.

In particular, they found out that the variation of traditional őshing boats equipped

with various engine types inŕuenced the characteristics of the noise emitted, and

that noise intensity based on frequency can be detected at a certain distance with

a decreasing pattern: the higher the frequency, the faster the disappearance of the

intensity along with increasing distance.

Unlike previous works, authors in [23] developed a real-time low-cost Passive

Acoustics Monitoring (PAM) system tailored to assess anthropogenic noise in ma-

rine environments. The so called “COntrollo Rumore MArino” (CORMA) project2

is not limited at the already important real-time detection and transmission of

the underwater noise coefficient, but it combines a complex and sophisticated

mathematical model that intercepts the position of large ships (equipped with

AIS, Automatic Identiőcation System), acquires their noise footprint and creates

propagation in the water, taking into account the depth and morphology of the

seabed. Another approach of real-time monitoring is based on cabled seaŕoor

technologies [59, 1, 32]. Cabled observatories can take advantage of several beneőts

such as the availability of direct power supply and the possibility to transfer data

via a wired link that allows high bandwidth and throughput. Like the previous

work, also [24] is based on AIS data and a simple sound transmission model. The

2http://www.corma.info/
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difference is that in this case the authors try to derive a large-scale noise map which

provides an accurate picture as a starting point to identify areas where noise is likely

to be and likely not to be a problem for the underwater world. Modelled large-scale

maps of shipping noise have been produced for several regions [7, 76]. Differently

the aim of [30] is to carry out a multi-site validation of a large-scale shipping

noise map constructed using a generic shipping noise model. More recently, the

project SOUNDSCAPE 3 produces an estimate of the spatio-temporal distribution

of noise levels generated by human activities at sea, aggregating multiple sources,

and assessing short, mid and long term source contributions to the global noise őeld.

Summing up, many of the works presented try to reconstruct underwater sound

using hydrophones and listening points for its measurement. To the best of our

knowledge, no work in the literature, starting from AIS data and the reconstruction

of multiple aspect trajectories, aims to create an underwater sound propagation

model by distinguishing even when a vessel is sailing from when it is őshing. This

is exactly the goal of our work, which is described in detail in Chapter 4.

2.2 Background

Moving objects are objects that change their position and can modify some

associated characteristics or properties over time. Such objects can be, for example,

people, animals, vehicles, boats, etc. The dissemination of location devices and IoT

(Internet of Things) technologies has led to the collection of huge amounts of data

describing the temporal evolution of these objects. This creates an opportunity

to build applications on this data, which require the creation of a Moving Object

Database System (MOD) [44].

2.2.1 Multiple aspect trajectories

A trajectory represents the evolution of the position of an object moving in

space during a certain time interval in order to reach a certain goal [81]. Moving

objects are characterised by continuous movement over time, while their position

can only be updated at discrete moments due to the limitation of acquisition,

storage and processing technologies [58]. Therefore, starting from a discrete set of

spatio-temporal points, it is fundamental to reconstruct the continuous movement

of the object, thus obtaining a trajectory, called raw trajectory, since it is limited

to space and time [63]. These trajectories are suitable for applications that aim

3https://www.italy-croatia.eu/web/soundscape
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only at locating a moving object or at calculating some statistics on the space-time

characteristics of the trajectories. However, most applications require to integrate

these trajectories with additional information related to the application context.

A trajectory that has been enriched with annotations and/or one or more com-

plementary segmentations is called a semantic trajectory [80]. The enrichment of

trajectories with other data is called semantic enrichment process. In this way the

trajectories are integrated with additional data called annotations. An annotation

is any additional data that is related to the entire trajectory or with some of its

sub-parts. For example, recording the length of a boat’s journey is an annotation

at the trajectory level; instead, recording the different activities of the boat during

its trip is an annotation that changes within the same trajectory.

A semantic trajectory becomes a complex object with numerous complex data

dimensions that are contextual to the movement and heterogeneous in the form.

In particular, we consider the MASTER (Multiple Aspects Trajectory) [57] model

because it is more ŕexible and expressive than other model in the literature. This

model is based on the concept of aspect. An aspect consists of ła real-world fact

that is relevant for the trajectory data analysisž [57]. There are different kinds of

aspects:

• volatile aspects are associated with the points of the trajectory since they

vary during the movement of the object;

• long-term aspects do not change during an entire trajectory and therefore are

related to it;

• permanent aspects characterize the entire life of an object, thus they are

connected to the moving object.

Based on this notion, a multiple aspect trajectory is deőned as a sequence of spatio-

temporal points of a moving object with a (possibly empty) set of long-term aspects.

Each point can have a set of volatile aspects and the moving object can be related

to a set of permanent aspects.

These types of data (moving objects and semantic trajectories) can be easily

modeled with the MobilityDB database.

2.2.2 MobilityDB

MobilityDB [98], which uses the MOD abstract datatype approach [43], is an

open source extension of PostgreSQL and PostGIS that supports temporal types and
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space-time operators to manage moving objects. MobilityDB deőnes abstract data

types (ADTs) for representing data of moving objects [8]. In particular, it provides

the following temporal data types: tbool, tint, tfloat, ttext, tgeompoint and

tgeogpoint. These temporal types are based, respectively, on the basic types bool,

int, float and text provided by PostgreSQL and on geometry and geography

provided by PostGIS (limited to 2D or 3D points). The time type on the other hand

can be timestamp, timestampset, period, or periodset. Every combination of

a base type and a time type deőnes one temporal type. The types are supported

with spatiotemporal index access methods by extending GiST (Generalized Search

Tree) and SP-GiST (Space Partitioning GiST) [99].

MobilityDB was created on the concept of trajectory to allow the reconstruction

and processing of moving objects starting from coordinates or points in space

obtained from modern GPS systems or other tracking systems. Consequently, in

MobilityDB it is possible to reconstruct the trajectories starting from a set of

points (lon, lat, t), where lon represents the longitude, lat the latitude and t the

instant in time in which that particular object is in that speciőc position (lon, lat).

By grouping the spatial coordinates and associated time instants, we can build

a tgeompoint, that is a sequence of points (lon, lat, t) that belong to a single

trajectory using the following functions:

tgeompointseq ( array _ agg ( tgeompointinst (ST_ Transform (

ST_ SetSRID (ST_ MakePoint (lon , lat ), 4326) , 5676) , t)

ORDER BY t))

In particular:

• ST_MakePoint constructs a point starting from the speciőed longitude (lon)

and latitude (lat);

• ST_SetSRID sets the SRID of the point to 4326, which is the standard WGS

84 GPS coordinates;

• ST_Transform transforms GPS spherical coordinates into planar coordinates;

• tgeompointinst creates a temporal point taking as arguments the associated

temporal points and instants;

• array_agg stores in an array all the temporal points belonging to a particular

trip and sorts them based on the time instant (as speciőed by the ORDER BY

clause);
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• tgeompointseq takes as argument the array of temporal points and returns

a temporal point whose duration is expressed by the sequence time value.

A sequence represents the evolution of a value during a sequence of time instants

in which the values between these instants are obtained with piecewise or linear

interpolation.

Finally, the trajectories can be reconstructed using the function trajectory [99]

which requires the sequence of temporal points just created as argument (a

tgeompoint):

trajectory ( tgeompoint ): geometry ( line )

This function returns a geometry which allows the visualization of the trajectory

in its spatial reference system (Figure 2.1).

Figure 2.1: Representation of the trajectories after their reconstruction.

The ADT model implemented in MobilityDB encapsulates the complete tra-

jectory within an object, which can be stored in a single attribute. To limit the

number of instants within the trajectories in the MobilityDB, we can use various

functions, for example:

startInstant ( ttype ) : ttypeinst

endInstant ( ttype ) : ttypeinst

instantN ( ttype , int ) : ttypeinst

instants ( ttype ) : ttypeinst []
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In these functions, ttype is any temporal type, and the result given by the function

must have the same base type as the temporal type given as argument. These

functions allow us to access individual instants within the trajectory, choose a

speciőc instant or return them in an SQL array that allows random access, joining

and sorting.

Another important function that allows us to have the point in the trajectory

at the time instant given in input is valueAtTimestamp. It is deőned as follows:

valueAtTimestamp ( ttype , timestamptz ) : base

where ttype represents any temporal type and timestamptz represents an instant

in time. For example, the input of the function is the trajectory (of type geometry)

and a time instant (of type timestamp) and the output is the point of the trajectory

in that instant of time (of type geometry).

2.2.3 Previous work on fishing vessels in the northern Adri-

atic Sea

This thesis builds on the work we have done in [73, 74, 14]. The őrst objective

of that work was the reconstruction of the trajectories of őshing vessels in the

northern Adriatic Sea starting from AIS (Automatic Identiőcation System) data for

the years 2015-2018. The AIS data contains the position of the boat, the instant

in time of detection and other information such as the speed of the boat. After

the reconstruction of these trajectories, we have performed the enrichment of the

trajectories: the trajectories have been divided into segments and we have assigned

semantic annotations to each segment. In particular, we annotated each segment

with the activity carried out by the boat distinguishing between in port, entering to

and exiting from the port, navigation and fishing. Table 2.1 presents the activities

of the őshing vessels and their associated ID.

ID Fishing vessels activities

0 in port

1 exiting from port

2 entering to port

3 őshing

4 navigation

Table 2.1: Fishing vessels activities and associated ID.
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The in port, exiting from port and entering to port situations can be deduced

from the position of the extremes of the segment with respect to the port area. If

none of the previous cases applies, the fishing or navigation activities are established

on the basis of the average speed of the boat. More precisely, if the average speed

is in the range of the őshing speed of the gear the boat is equipped with, the boat

is assumed to be in a őshing phase, otherwise, it is assumed to be in a navigation

phase.

In this way it was possible to calculate, for each trajectory, the duration, the

length of the trip and the actual őshing activity. We had also a dataset containing

the daily landings (catch amounts in kilogram) for the őshing vessels obtained from

the Chioggia’s Fish Market. These daily landings were used to distribute the catch

using two different approaches. In particular, we used a uniform distribution and a

weighted one with respect to the number of boats in the same area. As expected,

the weighted distribution allowed us to identify őshing areas more precisely.

The reconstruction of the trajectories starting from the AIS data, and in

particular their enrichment, is of fundamental importance for the work developed

in this thesis. In particular, the segmentation of the trajectories with their activity

is useful for the calculation of the őshing effort and its prediction, which will

be described in Chapter 3. Similarly, also for the creation of the underwater

sound propagation model, which will be described in Chapter 4, it is of paramount

importance to know when the boat is őshing since, in this case, the sound is much

more intense. Consequently, before the construction of the model, we performed

the segmentation of the trajectories and their enrichment.



Chapter 3

Fishing Effort Forecast

The goal of forecasting is not to predict the future but

to tell you what you need to know to take meaningful

action in the present.

– Paul Saffo

Oceans and seas are essential components of the Earth’s ecosystem. Due to their

continuous exploitation by human activities, there is the need to develop strategies

to monitor the entire ecosystem ensuring its health and the availability of the

marine resources for the future generations. In this context, the analysis of őshing

effort data has long occupied ősheries researchers in deriving appropriate indices

of abundance for identifying changes in the size of ősh populations [12] in order

to ensure a healthy and productive ecosystem. In fact, őshing effort is a measure

that can be used by experts to understand whether the exploitation of the marine

environment and őshing activities are sustainable and do not damage the marine

world. For the aforesaid reasons, in [74, 14] we have used AIS data to reconstruct,

in time and space, the trajectories of the őshing vessels, and also to enrich the

resulting trajectories with additional information. Moreover, by considering the

daily ősh catch reports of the Chioggia ősh market, we have distributed the quantity

of ősh caught along the trajectories. Finally, using the spatio-temporal database

and some relevant environmental factors, we have tried to predict the Catch Per

Unit Effort (CPUE) using a variety of machine learning methods.

In this chapter, starting from the works described above, I will present the

őshing effort forecast, by őrst describing the creation of the dataset used for the

prediction, then the machine learning methods employed and őnally the results

15
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obtained with their limitations and future works. Figure 3.1 shows the main steps

we have carried out to be able to predict the őshing effort (which corresponds to

the bottom section of the Figure).

Figure 3.1: Overview of the framework for predicting the fishing effort.

3.1 Computation of the fishing effort over the grid

After the creation of the multiple aspect trajectories, we proceed with the

computation of the őshing effort, an essential indicator for monitoring őshing

pressure on an area of interest over time. First of all, we partition the Northern

Adriatic Sea into a regual grid where each cell has a size of 3× 3 kilometers. The
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őshing effort for a spatio-temporal cell is deőned as the ratio between the area

of the cell łsweptž by vessels while őshing during the associated time period and

the total area of the cell itself [14]. The swept area depends on the employed gear

which can be obtained from a speciőc dataset where each vessel, identiőed by its

MMSI, is associated with its gear (small and large bottom otter trawl, mid-water

pair trawl and Rapido).

Let c be a spatio-temporal cell and g a gear. The fishing effort with respect to

the gear g in the cell c is deőned as follows:

fe(c, g) =
(
∑︁

tr∈T,gear(tr)=g len(tr ∩ c))× gear_width(g)

area(c)
(3.1)

where T is the set of multiple aspect trajectories, len(tr ∩ c) returns the sum of the

lengths of the őshing segments of trajectory tr falling in the spatio-temporal cell c,

gear_width(g) is the width of the net of gear g and area(c) is the total area of the

spatial component of the cell c.

At this point, we have computed the total őshing effort in each spatio-temporal

cell c by summing up the őshing effort for each gear. Moreover, for the evaluation

of őshing exploitation by environmental experts, we have also built őshing effort

annual maps. In Figure 3.2 there are the őshing effort of 2018 (Figure 3.2(a)) and

2019 (Figure 3.2(b)). From the two őgures we can easily see how the most exploited

areas are the same for both years.

(a) 2018. (b) 2019.

Figure 3.2: Annual fishing effort.
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3.2 Dataset

In order to predict the őshing effort, it was őrst necessary to create a dataset

with environmental, spatial and temporal information presented in Table 3.1. In

particular, the spatial information are the longitude and latitude grid cell centre,

considering a grid size of 3× 3 kilometers. As temporal variables, we consider the

day of the year, the month of year, the week of the year and the season, converted

to four binary features using one-hot encoding. Hot-encoding essentially transforms

categorical into numeric attributes. Finally, environmental information was obtained

thanks to the Copernicus Programme of the European Union1 which provides regular

and systematic reference information on the physical and biogeochemical ocean

and sea-ice state for the global ocean and the European regional seas [53]. As

suggested by environmental experts, for the environmental features we took into

consideration the daily sea surface temperature (expressed in degrees celsius), the

daily spectral signiőcant wave height (in meters), the monthly average wind speed

(in m/s) and the daily sea salinity (expressed in psu, Practical Salinity Units).

These environmental factors can affect őshing activities on a daily basis.

Attribute description Type Unit

Environmental daily sea surface temperature ŕoat celsius

daily spectral signiőcant wave height ŕoat meter

monthly average wind speed ŕoat m/s

daily sea salinity ŕoat psu

Spatial longitude of the grid cell centre ŕoat degree

latitude of the grid cell centre ŕoat degree

Temporal day of the year (1-365) int

month of the year (1-12) int

week of the year (1-53) int

season (1-4) int

Table 3.1: Features used for fishing effort forecast.

Copernicus Marine Service environmental data are organized as follows:

• longitude of the grid cell centre;

• latitude of the grid cell centre;

1https://marine.copernicus.eu/
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• value of the environmental feature considered.

Clearly the size of the regular grid of the environmental data downloaded from

Copernicus is not the same as ours. For example, the information relating to

the spectral signiőcant wave height is characterized by a squared grid size of one

kilometer, or the sea surface temperature by cells with a larger size (about four

kilometers). For this reason, we őrst made a correction of the data in order to have

the environmental information associated with each cell of the grid characterized

by a given dimension (in our case 3 km× 3 km).

In particular, if the grid with the environmental data, in Figure 3.3 the temper-

ature in black, is larger than the 3 km× 3 km grid used, we took the centroids of

the 3× 3 kilometers cells (the yellow points in the Figure) and we assigned to each

centroid the temperature value equal to the one of the cell in which it is contained.

If a point was exactly on the intersection of two temperature cells (as shown in the

enlargement of Figure 3.3), to assign the correct value to the centroid, we computed

the average of the temperature cells that intersect the centroid analyzed. Eventually,

each 3 km× 3 km cell has the same environmental features as its centroid.

Figure 3.3: Representation of the temperature grid (black) and the centroids of the
squared grid (yellow) where each cell hase a size 3× 3 kilometers.

Since the őshing effort is real-valued and continuous, the prediction task can be

formulated as a regression problem where the output of the regression model is the

value of the őshing effort for a time period p and a grid cell c. In order to make the

őshing effort forecast for 2019, three different training datasets were considered,
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increasing their size by adding a year of data each time. In particular, the training

and testing datasets and their dimensions are illustrated in Table 3.2. This method

for splitting the data is chosen due to the sequential nature of the data, for which

random sampling is not suitable.

Year Size

Training 2018 77577

2017 - 2018 152766

2016 - 2017 - 2018 243080

Testing 2019 83539

Table 3.2: Training and testing datasets size.

Some machine learning methods (explained in Section 3.3) were applied to these

three different training datasets to try to understand whether, and to what extent,

more information from previous years could have a positive impact on the forecast

and therefore an increase in model reliability.

3.3 Machine Learning Methods

Starting from the work done in [14], four Machine Learning methods were used

to predict the őshing effort rather than the CPUE. These methods, each of which

was part of Scikit-learn software package [62] (an open-source machine learning

library for Python2), are:

• Random Forest [15];

• Extremely randomized Trees (Extra Trees) [38];

• eXtreme Gradient Boosting (XGBoost) [17];

• Multi-layer Perceptron [75].

All the machine learning algorithms used to forecast the őshing effort are described

in detail below.

3.3.1 Random Forest

Random Forest (RF) is an example of ensemble method. An ensemble for

classiőcation is a composite model, made up of a combination of classiőers: the

2https://www.python.org/
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individual classiőers vote, and a class label prediction is returned by the ensemble

based on the collection of votes [45]. Therefore, RF is an ensemble tree-based

machine learning algorithm [15]. When used for classiőcation, a Random Forest

obtains a class vote from each tree, and then classiőes using majority vote. When

used for regression, the predictions from each tree are simply averaged [46]. The

trees are created by drawing a subset of training samples through replacement (a

bagging approach). This means that the same sample can be selected several times,

while others may not be selected at all [9].

Random Forest is a modiőcation of the standard tree growing algorithm that

works as follows:

• Bagging is exploited to improve accuracy of single decision trees.

• Trees are fully grown until pure leaves. Bagging does not reduce bias, therefore

we need accurate (low bias) trees.

• Random input selection is used: each node is built on a small random subset

of the feature set.

Aside from being simple to use, RF is generally recognized for its accuracy and its

ability to deal with small sample sizes and high-dimensional feature spaces. At the

same time, it is easily parallelizable and has therefore the potential to deal with

large real-life systems [10].

3.3.2 Extremely Randomized Trees

Extra Trees (ET) is a tree-based ensemble method for supervised classiőcation

and regression problems [38]. ET and RF have a lot in common, but they have also

some differences. Both of them are composed of a large number of decision trees,

and the output is obtained by considering each tree. In particular, for regression

problems, it is calculated as the average of outputs of individual regression trees,

while for classiőcation problems it is obtained by majority vote. The main difference

between the two is how the randomness is introduced during the training. To train

an ET, multiple trees are trained: each tree is trained on all training data. Similar

to the Random Forest the best split at a node is found by analyzing a subset of all

available features, but instead of searching for the best threshold for each feature, a

single threshold for each feature is selected at random [41].

Experiments in [38] show that this method is most of the time competitive with

Random Forest in terms of accuracy, and sometimes it achieves better results. Since

it removes the need for the optimization of the discretization thresholds, it has also

a clear advantage in terms of computing times and ease of implementation [39].
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3.3.3 eXtreme Gradient Boosting

XGBoost is a tree-based ensemble method, proposed by Chen and Guestrin,

which is an improved version of gradient boosting with higher computation efficiency

and better capability to deal with over-őtting problems [17]. XGBoost aims to

prevent over-őtting but also optimize the computation resources [28]. The processes

of additive learning in XGBoost is the following: the őrst learner is őtted to the

entire space of the data given in input, and a second model is then őtted to these

residuals to improve the performance of a weak learner. This őtting process is

repeated a few times until the stopping criterion is met. Then an aggregation of

outputs of all the models is considered to be the őnal output.

The success of XGBoost is largely due to its scalability in all scenarios. The

system runs more than ten times faster than existing popular solutions on a

single machine and scales to billions of examples in distributed or memory-limited

settings [17]. Moreover, it performs parallel computing and has the merit of

optimally using memory resources and effectively taking care of missing values

during the training process [48].

3.3.4 Multi-layer Perceptron

The Multi-layer Perceptron (MLP) consists of a system of simple interconnected

neurons, or nodes, representing a nonlinear mapping between an input vector and

an output vector [37]. The neurons are organized in layers which are connected by

weights. The MLP has one or more hidden layers between its input and output

layers, and the information ŕows unidirectionally from the input layer to the output

layer, passing through the hidden layers [11]. Perceptrons for the same layer have

the same activation function. In general, it is a sigmoid for the hidden layers.

Depending on the application, the output layer can also be a sigmoid or a linear

function [83]. Learning for the MLP is the process to adapt the connections weights

in order to obtain a minimal difference between the network output and the desired

output. The algorithm used for this purpose is the so called Back-propagation

algorithm which is based on gradient descent techniques [68]. MLP can be applied

to complex non-linear problems and it works well with large input data.

3.4 Model Hyperparameters

Model hyperparameters for each method were chosen by performing random

searches on the hyperparameter space and taking the best scoring settings. Specif-
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ically, a Randomized Grid Search was performed on the combination of different

values for hyperparameters, and the values that resulted with the highest coefficient

of determination score were selected. Models hyperparameters and their selected

values will be discussed below.

Random Forest

As speciőed in Section 3.3, for the implementation of the őshing effort prediction we

used the Scikit-learn3 library. In particular, for Random Forest machine learning

model the RandomForestRegressor was used. Hyperparameters that are selected

via random search are as follows.

• n_estimators speciőes the number of trees in the RF.

• min_samples_split is the minimum number of samples needed to split a

node.

• min_samples_leaf speciőes the minimum number of samples required to be

at a leaf node.

• max_features corresponds to the number of features that the algorithm

considers when looking for the best split.

• max_depth speciőes the maximum depth of each tree.

Table 3.3 speciőes Random Forest hyperparameters, their searched values and the

best value for each training dataset.

Best value

Parameter 2018 2017-18 2016-17-18 Searched values

n_estimators 1000 1000 300 100, 200, 300, 500, 1000

min_samples_split 8 10 8 8, 10, 12

min_samples_leaf 3 4 3 3, 4, 5

max_features auto auto auto auto, sqrt, log2

max_depth 150 150 200 80, 90, 100, 150, 200

Table 3.3: Random Forest hyperparameters.

3https://scikit-learn.org/stable/
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Extremely Randomized Trees

In order to forecast the őshing effort we used the Scikit-learn library. In partic-

ular, for Extra Trees machine learning model the ExtraTreesRegressor was used.

Hyperparameters, that are selected via random search, are the same used for the

Random Forest (described in the previous paragraph). Table 3.4 speciőes Extra

Trees hyperparameters, their searched values and the best value for each training

dataset.

Best value

Parameter 2018 2017-18 2016-17-18 Searched values

n_estimators 200 300 1000 100, 200, 300, 500, 1000

min_samples_split 8 8 8 8, 10, 12

min_samples_leaf 3 4 4 3, 4, 5

max_features auto auto auto auto, sqrt, log2

max_depth 150 100 100 80, 90, 100, 150, 200

Table 3.4: Extremely Randomized Trees hyperparameters.

eXtreme Gradient Boosting

As speciőed in Section 3.3, for the implementation of the őshing effort prediction

we used the Scikit-learn library. In particular, for eXtreme Gradient Boosting

machine learning model the GradientBoostingRegressor was used. Hyperparameters

that are selected via random search are as follows.

• n_estimators is the number of boosting stages that will be performed.

• min_samples_split corresponds to the minimum number of samples required

to split an internal node.

• max_depth is the maximum number of nodes in the tree.

• learning_rate corresponds to how much the contribution of each tree will

get smaller.

Table 3.5 speciőes eXtreme Gradient Boosting hyperparameters, their searched

values and the best value for each training dataset.
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Best value

Parameter 2018 2017-18 2016-17-18 Searched values

n_estimators 500 600 600 500, 600, 700

min_samples_split 5 5 6 5, 6

max_depth 6 6 4 4, 5, 6

learning_rate 0.1 0.1 0.1 0.001, 0.01, 0.1, 0

Table 3.5: eXtreme Gradient Boosting hyperparameters.

Multi-layer Perceptron

In order to forecast the őshing effort we used the Scikit-learn library. In

particular, for Multi-layer Perceptron machine learning model the MLPRegressor

was used with Adam optimizer (a stochastic gradient-based optimizer proposed

by Kingma, Diederik, and Jimmy Ba [49]). Hyperparameters that are selected via

random search are as follows.

• learning_rate corresponds to how much we move in the direction opposite

to the gradient.

• hidden_layer_sizes corresponds to the number of hidden layers.

• activation corresponds to the activation function that we want to use for

hidden layers.

Table 3.6 speciőes Multi-layer Perceptron hyperparameters, their searched values

and the best value for each training dataset.

Best value

Parameter 2018 2017-18 2016-17-18 Searched values

learning_rate invscaling invscaling constant constant, invscaling,

adaptive

hidden_layer_sizes 40 40 20 10, 20, 30, 40, 50, 60,

70, 80, 100, 200, 300

activation tanh tanh tanh identity, logistic,

relu, softmax, tanh

Table 3.6: Multi-layer Perceptron hyperparameters.
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3.5 Evaluation metrics

In order to compare the performance of the regressor models, we use the Mean

Absolute Error (MAE), Root Mean Squared Error (RMSE), and the Coefficient of

Determination (R2). They are described in detail below.

3.5.1 Mean Absolute Error

The Mean Absolute Error is formally deőne as follows.

MAE =
1

n

n
∑︂

i=1

⃓

⃓ŷi − yi
⃓

⃓ (3.2)

where ŷ are the predicting values and y corresponds to the ground truth. In our

case the MAE is computed for each period (i.e., season) as the mean of the absolute

errors of the predicted average őshing effort for all cells in that period. Therefore,

n denotes the number of cells with a őshing effort value in the speciőed period p

and ŷi and yi correspond respectively to the predicted and the actual őshing effort

values for a given cell and a time period p. The MAE ranges between 0 and +∞,

where 0 is the best case.

3.5.2 Root Mean Squared Error

The RMSE is deőned as follows:

RMSE =

⌜

⃓

⃓

⎷

1

n

n
∑︂

i=1

(︁

ŷi − yi
)︁2

(3.3)

where ŷ and y are deőned as above. Also the RMSE is computed for each period

(i.e., season) as the mean of the errors of the predicted average őshing effort for

all cells in that period. The RMSE ranges between 0 and +∞, where 0 is the best

case.

3.5.3 Coefficient of Determination

The Coefficient of Determination (R2) is formally deőne as follows [29].

R2 = 1−

∑︁n
i=1

(︁

ŷi − yi
)︁2

∑︁n
i=1

(︁

yi − ȳ
)︁2 (3.4)
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where ŷ and y are deőned as above and ȳ is the mean of the observed data, i.e.

ȳ = 1
n

∑︁n
i=1 yi. The coefficient of determination can be interpreted as the proportion

of the variance in the dependent variable that is predictable from the independent

variables [18]. In our case, it is computed as the MAE and RMSE.

The Coefficient of Determination is deőned between 0 and 1 [29], where 1 is

the best-case scenario and any value lower than zero points out arbitrarily worse

results. The fact that positive values of the R2 range between 0 and 1 is one of

the main advantage of the Coefficient of Determination. For example, values like

R2 = 0.8 clearly indicate a very good regression model performance, regardless of

the ranges of the ground truth values and their distributions [18]. A value of MAE

or RMSE equal to 0.9 is less informative about the quality of the regression model

since these two measures are scale-dependent.

3.6 Results

After selecting machine learning methods hyperparameters and choosing the

evaluation metrics, we can proceed with the őshing effort forecast.

Training dataset ML model Execution Time

2018 Random Forest 283.75

Extra Trees 15.49

XGBoost 17.51

Multi-layer Perceptron 2.79

2017-2018 Random Forest 604.64

Extra Trees 53.86

XGBoost 203.01

Multi-layer Perceptron 4.57

2016-2017-2018 Random Forest 361.84

Extra Trees 387.69

XGBoost 249.22

Multi-layer Perceptron 4.93

Table 3.7: Training execution time (expressed in seconds) for each machine learning
method considering the three training datasets.

First, we need to train machine learning models with the selected hyperpa-

rameters. Table 3.7 shows the training execution time, expressed in seconds, for
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each machine learning method considering three training datasets. It is possible to

obeserve that the training execution time for the Multi-layer Perceptron is much

lower than the other algorithms and, by increasing the size of the dataset the

execution time remains almost the same (the increase is at most 1-2 seconds). This

is not the case for the other methods, where an increase in the dataset size also

results in an increase in the time required. In particular, Random Forest and

Extra Trees, considering three years of training, have an execution time of about 6

minutes. The fact that the execution time for Random Forest with two years as

training dataset is almost double that of three years as training dataset is due to the

number of trees in the RF. In fact, Table 3.3 speciőes the value of the n_estimator

hyperparameter which in the case of 2018 and 2017-18 is 1000, while for the dataset

that contains the years (2016-17-18) it is 300.

(a) Random Forest. (b) Extremely Randomized Trees.

(c) eXtreme Gradient Boosting. (d) Multi-layer Perceptron.

Figure 3.4: Permutation feature importance of the four machine learning models consid-
ering three years of training and one of testing.
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In order to understand the importance that features have in forecasting, we

considered the Permutation Feature importance method. This method measures

the importance of a feature as follows. It computes the baseline coefficient of

determination (R2) score (if we have a regression problem) by passing a validation

set through the machine learning method. Then it permutes the column values of a

single predictor feature and it passes all test samples back through the machine

learning method. Then it computes again the coefficient of determination, and

őnally the importance of that feature is deőned as the difference between the

baseline R2 score and the one obtained after permuting the column. The larger

this difference, the greater the importance of the feature.

In Figure 3.4 we can see the Permutation feature importance of the four machine

learning methods considering three years of training and one of testing. We can

observe how longitude and latitude are important features for the őshing effort

forecast in all algorithms except for the Multi-layer Perceptron. Other features

with high relevance for the forecast are temperature, week and wind. Features

importance considering one year or two years as training dataset can be found in

Appendix A.

ML model Season MAE RMSE R2

Random Forest 1 0.34288 0.59689 0.60993

2 0.23278 0.44007 0.71202

3 0.18499 0.33447 0.70299

4 0.29397 0.49519 0.67454

Extra Trees 1 0.34065 0.59862 0.60767

2 0.24192 0.45078 0.69782

3 0.18134 0.33225 0.70692

4 0.30244 0.51496 0.64804

XGBoost 1 0.34496 0.60383 0.6008

2 0.25722 0.48682 0.64757

3 0.18512 0.35155 0.67187

4 0.31094 0.52982 0.62743

Multi-layer Perceptron 1 0.51125 0.87958 0.15297

2 0.35011 0.62568 0.41785

3 0.22812 0.42971 0.50974

4 0.38251 0.63475 0.46524

Table 3.8: Results for each season using three years (2016-2017-2018) as training dataset.
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In Table 3.8 there are the results for the four machine learning models for each

season considering three years of training and one of testing with respect to all

the evaluation metrics examined (MAE, RMSE and R2). It can be easily seen

that Multi-layer Perceptron has a very low coefficient of determination score for

all seasons compared to the other three models which have a value around 0.65.

Furthermore, Random Forest has the best values for all seasons compared to the

other algorithms. Regarding MAE and RMSE evaluation metrics (for which the

best value is 0) we can make similar considerations. Multi-layer Perceptron achieves

the worst results while Random Forest remains the most accurate model also in this

case with a small difference compared to the other two models. Also in this case,

in Appendix A there are the results for the other two training datasets considering

all the evaluation metrics and each season.

Figure 3.5: MAE, RMSE and R
2 scores for each season considering three years of

training for the four machine learning models: RF (blue), ET (orange),
XGBoost (green) and MLP (red).

In Figure 3.5 it is possible to understand clearly the results presented in Ta-

ble 3.8. In particular, we can analyse in a better way the relashionship between

each machine learning method for each season and a given evaluation metric. For

example, if we consider the Coefficient of determination we can see that Random

Forest gets the best value, i.e. the closest to one, in all seasons except the third

one in which, however, there is not a big difference compared to the resulting value

obtained using Extra Trees. The same reasoning can be done for RMSE (where
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the best value is 0) and the coefficient of determination (where the best value is 1).

The bar charts considering one year and two years as training dataset, respectively,

can be found in Appendix A.

In order to compare the three different training datasets and understand whether,

and to what extent, more information from previous years could have a positive

impact on the forecast, Table 3.9 shows the average season results considering all

the machine learning methods and the three different training datasets used.

Training dataset ML model MAE RMSE R2

2018 Random Forest 0.277695 0.484947 0.648415

Extra Trees 0.292423 0.518442 0.599190

XGBoost 0.356368 0.588965 0.461297

Multi-layer Perceptron 0.467982 0.707218 0.199368

2017-2018 Random Forest 0.269230 0.468997 0.670283

Extra Trees 0.274450 0.479762 0.658693

XGBoost 0.272552 0.477483 0.659347

Multi-layer Perceptron 0.337900 0.596575 0.453630

2016-2017-2018 Random Forest 0.263655 0.466655 0.674870

Extra Trees 0.266588 0.474152 0.665112

XGBoost 0.274560 0.493005 0.636918

Multi-layer Perceptron 0.367997 0.642430 0.386450

Table 3.9: Average seasons results considering each training dataset.

We can observe that Randon Forest is the best machine learning algorithm for

our problem since all evaluation metrics get closer to the best case (0 for MAE

and RMSE and 1 for R2). Again for all three training datasets there is not much

difference between Random Forest, Extra Trees and XGBoost while the difference is

signiőcant compared to Multi-layer Perceptron. As we can also see from Figure 3.6,

in which there are the MAE, RMSE and R2 scores resulting from the models trained

only with 2018 (blue), 2017-2018 (orange), 2016-2017-2018 (green) datasets, it seems

that considering more years of data, Random Forest and Extra Trees increase their

accuracy in forecasting. Corcerning XGBoost and Multi-layer Perceptron, if we

consider two years instead of one as our training dataset, there is a signiőcant

improvement with respect to all evaluation parameters. However, this does not

happen if we consider one more year (2016).
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Figure 3.6: MAE, RMSE and R
2 scores resulting from the models trained only with

2018 (blue), 2017-2018 (orange), 2016-2017-2018 (green) datasets.

Figure 3.7 shows the őshing effort maps of the actual őshing effort values for

2019 and the prediced ones using the four machine learning models considering

three years as training dataset. In Figure 3.7(a) we can see the actual őshing values

for 2019 which corresponds to the ground truth. It is possible to observe that

using Random Forest and also Extra Trees the forecast is very close to the actual

őshing effort (Figure 3.7(b) and 3.7(c) respectively). In the rectangle delimited by

dashed lines (Figures 3.7(a), 3.7(b), 3.7(c)) we can see how both Random Forest

and Extra Trees are not so accurate in predicting values in areas where there is no

over-exploitation. XGBoost őshing effort map (Figure 3.7(d)) does not correctly

deőne the most exploited areas (or cells). Finally, using Multi-layer Perceptron

(Figure 3.7(e)) this phenomenon is even more accentuated since there is not a

marked difference between the various cells but the őshing effort seems to be spread

uniform over the entire grid. In fact, using Multi-layer perceptron as machine

learning model, in the predicted cells the value of the őshing effort never exceeds

7.624 (dark red cells), while in the actual őshing effort these cells (in which the

őshing effort value is greater than 7.624) are 65. Moreover, the number of cells in

the range between 3.038 and 7.624 are much fewer than the actual ones (the actual

ones are 326, while in the Multi-layer perceptron we have ony 10 cells in this range).

These results, especially those of Random Forest and Extra Trees, are considered

a good achievement because the problem is challenging, given the fact that the
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dataset contains multivariate and spatio-temporal aspects to cope with. In this

work, autocorrelation has not been exploited much. For example, we could include

among the dataset variables, the őshing effort in the surrounding areas, or in some

previous periods of time. In Chapter 5 we will discuss possible future works.

(a) Actual. (b) Random Forest. (c) Extra Trees.

(d) XGBoost. (e) Multi-layer Perceptron.

Figure 3.7: Fishing effort maps of the actual fishing effort values for 2019 and the
predicted ones using the four machine learning models considering three
years as training dataset.





Chapter 4

Underwater noise

Even in the most beautiful music, there are some

silences, which are there so we can witness the impor-

tance of silence. Silence is more important than ever,

as life today is full of noise. We speak a lot about

environmental pollution but not enough about noise

pollution.

– Andrea Bocelli

As we have extensively discussed in Section 2.1.2 the ősh resources of seas and

oceans are often recognized to be over-exploited. In order to make őshing activities

sustainable and to guarantee a productive and healthy ecosystem, there is a strong

need to develop adequate monitoring systems, including the development of a model

for the propagation of underwater noise. In fact, the reconstruction of underwater

sound propagation of vessels is an important challenge for the preservation of the

marine environment, since it is known to be a primary contributor to anthropogenic

noise in the seas. For this reason, in this chapter, an underwater noise modelling

is presented. First of all, the underwater noise generated by a boat depending on

the characteristics of its engine will be analyzed, then we will describe in detail

the implementation of the model and the use of environmental features for the

propagation of underwater sound, and őnally we will discuss the results and we will

analyze the underwater noise maps.

35
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4.1 Engine noise from fishing vessels

Before implementing a model for the propagation of underwater sound, it is

necessary to understand the underwater noise generated by a boat depending on

the characteristics of its engine. There are many factors that inŕuence this noise,

such as, for example, the type of boat (trawler, gillnetter, tour boat, sailing boat,

motor boat, etc.), the power of the engine, the position of the engine under the

boat, the frequency considered, etc. Our AIS dataset includes only őshing boats

but with different characteristics such as the length overall (LOA) of the boat, the

horsepower of the engine and also the őshing gear used. Since we do not have the

information on the underwater noise generated by all őshing vessels, we started from

a őshing boat of which we know the horsepower, the LOA and the underwater noise

it generates. Table 4.1 shows the characteristics of the trawler taken as reference

boat (in Figure 4.1), a vessel that was used in the SOUNDSCAPE project [65].

Characteristics of the hull

Length 13.70m

Breadth 4.2m

Draught 1.8m

Building material wood

Type of hull monohull

Characteristics of the engine

Type of engine IVECO

Number of engines 1

HP and type of mounting 220 HP inboard diesel

Power 109 kW

Maximum speed/rpm 9.2kn/1900rpm (1:1.48 gearbox ratio)

Characteristics of the propulsion

Number of propellers 1

Number of blades 4

Type of propeller őxed

Speed/RPM during test runs

Cruising speed 7kn/1100rpm

High speed 7.1kn/1200rpm

Table 4.1: Characteristics of the trawler [65].
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Figure 4.1: Trawler used as reference fishing vessel [65].

In particular, we are interested in the horsepower of the boat which, in this case,

is 220 HP . As already mentioned, the noise depends on the frequency in which it

is measured, so the same object can generate a different noise depending on the

frequency. Since the European Marine Strategy Framework Directive (MSFD) uses

63 Hz and 125 Hz frequencies as standard, we consider these two frequencies for

the vessel noise measure. Table 4.2 shows the noise generated by the boat (source

level) for the two frequencies. In our model we used the source level (SL) total

correct (expressed in dB) with frequency 63 Hz, therefore we consider that this

őshing vessel generates 153.6 dB while sailing.

Cruising speed: 7kn High speed: 7.1kn

Frequency (Hz) 63 125 63 125

SL-Port - dCPA1 (dB) 150 146.6 149.6 146.7

SL-Starboard - dCPA1 (dB) 153 148 153.3 151.8

SL-Port - dCPA2 (dB) 155.4 147.9 157.7 147.8

SL-Starboard - dCPA2 (dB) 156.2 151.9 159.1 153.4

SL total correct (dB) 153.6 148.6 154.9 149.9

Table 4.2: Trawler source level with 63 Hz and 125 Hz at cruising speed and high
speed [65].

Since we have no measurements of the noise produced by the boats in our

dataset, we have made some assumptions. Clearly, as soon as we have precise

measurements of the noise produced, it will only be necessary to change the input

parameters in our model. Since the 69 different vessels in our dataset have a

horsepower (HP ) ranging from 146.9 to 1084.1 HP , we have decided to divide the
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vessels into four groups according to their horsepower and multiply the underwater

noise they generate by a multiplication factor that increases with the HP of the

vessels. The four groups correspond to different ranges for horsepower and they are

listed in Table 4.3 with the associated multiplicative factors and the sound level

expressed in dB.

HP range Multiplicative factor dB

0− 250 1 153.6

250− 500 1.04 159.744

500− 750 1.06 162.816

> 750 1.08 165.888

Table 4.3: Sound level for different horsepower ranges.

Furthermore, when the vessel is performing a őshing activity, the noise generated

is more intense since there is a greater effort of the engine due to the use of the

őshing gear, and also the őshing gear itself produces some noise. The őshing gear

used by őshing vessels are the following: small bottom otter trawl (SOTB), large

bottom otter trawl (LOTB), pelagic pair trawl (PTM) and rapido (RAP). The

ecological experts suggested some factors to weigh the increasing noise during the

őshing activity. In Table 4.4 the different types of őshing gear with the associated

multiplication factors are shown.

Gear types Multiplicative factor

SOTB 1.02

LOTB 1.04

PTM 1.02

RAP 1.06

Table 4.4: Sound level for different gear types.

For example, the boat named ADELINDA has horsepower equal to 276 HP and it

uses the RAP as őshing gear. Consequently, when it is sailing its source noise level

is assumed to be 159.74 dB, while when it is őshing, the source level is assumed to

be 169.33 dB.
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4.2 Regular grid with environmental features

In order to distribute the underwater sound produced by boats, it is necessary

to partition the northern Adriatic Sea into a regular grid. For this work, the cells of

the regual grid have a size of 1km× 1km, as we can see in Figure 4.2. The regular

grid is also necessary for the introduction of environmental data. In fact, the grid

is not only spatial but spatio-temporal: each cell for each day is characterized by

different environmental data that change on a daily basis.

Figure 4.2: Regular grid in which each cell has a size of 1× 1 kilometer.

Environmental information was obtained thanks to the Copernicus Programme of

the European Union, as we have already described in Chapter 3. The environmental

variables necessary to calculate the propagation of underwater sound in our model

(which will be presented in detail in Section 4.4) are the following:

• daily sea surface temperature (expressed in celsius);

• daily sea salinity (in psu, Practical Salinity Units);

• depth of the sea, which we consider as a constant (35 meters);

• sea water potential of Hydrogen (pH).
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The data of these environmental features downloaded from Copernicus are spatio-

temporal and, therefore, for each cell, we have different values for our features.

Clearly the size of the cells does not correspond to the one chosen for our work

(1km× 1km): for example, the information relating to the sea surface temperature

is characterized by a grid size of four kilometers. For this reason, we őrst made a

correction of the data in order to have all the daily environmental information on

the regular grid of the chosen size (as described in Section 3.2).

4.3 Propagation modelling

The basic objective of noise modelling is to assess how much noise a particular

activity will generate in the surrounding area [31]: the aim is to model the received

noise level (RL) at a given point (or points), based on the sound source level (SL)

of the noise source, and the amount of sound energy which is lost as the sound

wave propagates from the source to the receiver (transimission loss or propagation

loss, TL). The relationship between these quantities is encapsulated in the classic

sonar equation [86]:

RL = SL− TL (4.1)

This straightforward expression is fundamental to modelling underwater noise, and

its simplicity belies considerable complexity in the task of computing the transmis-

sion loss in order to estimate the received noise.

Sound propagation is profoundly affected by some factors such as the conditions

of the surface and bottom boundaries of the sea as well as by the variation of sound

speed within the ocean volume [26]. The most important acoustical variable in the

sea is sound speed. Air has a density 800 times lower than the density of water,

therefore a sound that propagates inside the water has a higher propagation speed,

equal to about 1500 m/s, against about 340 m/s of air [40]. Sound propagation

speed is inŕuenced by various chemical-physical factors such as temperature, salinity

and pressure [71], varying both during the day and with the seasons in the superőcial

part [69], and with depth. In particular:

• temperature is greatly inŕuenced by the solar radiation; an increase in tem-

perature of 1◦C determines an increase in the speed of sound of 3-4 m/s;

• salinity is inŕuenced by the supply of fresh water from rivers, lakes and the

melting of ice; the increase of one unit of salinity compared to the average

value of 35 psu (Practical Salinity Units) increases the speed of sound by
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1.1 m/s;

• pressure is linearly related to depth, as the increase of 100 m in depth (about

100 kPa) increases the speed of sound by 1.7 m/s.

The computation of the transmission loss considering all these parameters is not a

simple task and for this reason various models have been introduced.

Transmission loss

In the simplest scenario, transmission loss is often estimated using straightfor-

ward spreading laws of the form:

TL = N × log10(R) (4.2)

where R is the distance from the noise source in meters, and N is a scaling factor [31].

Clearly, this simplistic approach does not take into account all the environmental

characteristics that are fundamental for a more accurate estimation of transmission

loss, therefore it can only be used in uncomplicated propagation scenarios.

In more realistic models, what we want to consider are all the environmental

aspects that inŕuence the sound propagation underwater. In particular, instead of

considering only the distance R (in meters) and a scaling factor (N), [85] presents

a model for the calculation of the transmission loss that considers the absorption of

sound coefficient (α expressed in dB/km) to include environmental features in its

estimation:

TL = N × log10(R) + α×R (4.3)

In the literature there are three main models for predicting the absorption of sound

in sea water which retain the essential dependence on temperature, pressure, salinity,

acidity and other environmental features.

In the Francois and Garrison model [35] the general equation for the absorption

of sound in sea water, at a given frequency f (in kilohertz), is given as the sum of

contributions from boric acid, magnesium sulfate, and pure water (contributions

from other reactions are small and are not included):

α =
A1P1f1f

2

f 2
1 + f 2

+
A2P2f2f

2

f 2
2 + f 2

+ A3P3f
2 dB km−1 (4.4)

The őrst two terms represent chemical relaxation processes, the őrst for boric acid

and the second for magnesium sulfate. The third term represents the absorption
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from pure water. The pressure dependences are given by P1, P2, and P3 and the

relaxation frequencies are f1 and f2 (expressed in kHz). A1, A2 (both expressed in

dB km−1 kHz−1) and A3 (expressed in dB km−1 kHz−2) were originally intended

as constants but there is experimental evidence that they vary with water properties

[36]. The three contributions from boric acid, magnesium sulfate, and pure water

are computed as follows:

• Boric acid Contribution

A1 =
8.86

c
× 10(0.78pH−5)

P1 = 1

f1 = 2.8(S/35)0.5 × 10(4−1245/θ)

where c is the sound speed (m/s), given approximately by:

c = 1412 + 3.21T + 1.19S + 0.0167D

T is the temperature (◦C), θ = 273 + T , S is the salinity (‰) and D is the

depth (m).

• MgSO4 Contribution

A2 = 21.44×
S

c
× (1 + 0.025T )

P2 = 1− 1.37× 10−4D + 6.2× 10−9D2

f2 =
8.17× 10(8−1990/θ)

1 + 0.0018(S − 35)

• Pure Water Contribution

– for T ≤ 20◦C

A3 = 4.937× 10−4
− 2.59× 10−5T + 9.11× 10−7T 2

− 1.50× 10−8T 3

– for T > 20◦C

A3 = 3.964× 10−4
− 1.146× 10−5T + 1.45× 10−7T 2

− 6.5× 10−10T 3

P3 = 1− 3.83× 10−5D + 4.9× 10−10D2
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Fisher and Simmons [34] presented another equation for the computation of

sound absorption in sea water as a function of frequency, temperature, and pressure

based on laboratory data. Simmons showed that his results for absorption in Lyman

and Fleming sea water (i.e. S = 35 psu, pH = 8) due to MgSO4 agreed well

with those he calculated from data in [91] for absorption in natural sea water. As

in [35, 36] sound absorption in sea water may be considered as the sum of the

absorption due to boric acid, magnesium sulfate and water. When using water

other than the Lyman and Fleming standard, the Fisher and Simmons algorithm is

invalid. Assuming the three contributions are linearly additive, the total absorption

coefficient can be written as:

α =
A1f1f

2

f 2
1 + f 2

+
A2P2f2f

2

f 2
2 + f 2

+ A3P3f
2 m−1 (4.5)

where the Ai are atmospheric pressure values, the Pi describe the pressure depen-

dence of the Ai, f is the acoustic frequency and fi the relaxation frequency. In

particular, the values are calculated as follows:

A1 = 1.03× 10−8 + 2.36× 10−10T − 5.22× 10−12t2

f1 = 1.32× 10−3
× (T + 273.1)× e−1700/(T+273.1)

A2 = 5.62× 10−8 + 7.52× 10−10T

f2 = 1.55× 107 × (T + 273.1)× e−3052/(T+273.1)

P2 = 1− 10.3× 10−4P + 3.7× 10−7P 2

A3 = (55.9− 2.37T + 4.77× 10−2T 2
− 3.48× 10−4T 3)× 10−15

P3 = 1− 3.84× 10−4P + 7.57× 10−8P 2

where f and fi are in Hz, T in degree centigrade, P is in atm and Ai in sec m−1.

In order to convert α to dB/km, it is necessary to multiply it by 8.686.

Finally, Ainslie and McColm [2] presented a simpliőed expression for viscous

and chemical absorption in sea water. Ocean sound is attenuated by two main

mechanisms: chemical relaxation effects (due to boric acid at low frequency and

magnesium sulphate at intemediate frequencies up to a few 100 kHz) and viscous

absorption, which is signiőcant at high frequency. In order to simplify the Francois

and Garrison model [35, 36], Ainslie and McColm set temperature, salinity and

acidity to reference values of T = 0◦C, S = 35 ppt (parts per thousand), and

pH = 8 respectively. This immediately simpliőes the boric acid and magnesium
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sulphate relaxation frequencies (in kHz):

f1 = 0.78(S/35)1/2eT/26 (4.6)

f2 = 42eT/17 (4.7)

for boron and magnesium respectively. Applying a similar analysis to the coefficient

terms, the authors obtained the following value for the absorption coefficient in sea

water in dB/km (at a given frequency f in kHz, a depth z in km and a temperature

T expressed in ◦C):

α = 0.106
f1f

2

f 2 + f 2
1

e(pH−8)/0.56

+ 0.52

(︃

1 +
T

43

)︃(︃

S

35

)︃

f2f
2

f 2 + f 2
2

e−z/6 (4.8)

+ 0.00049f 2e−(T/27+z/17)

This simpliőed formula retains reasonable accuracy (to within 10% of Francois

and Garrison model between 100 Hz and 1 MHz) for the following oceanographic

conditions:

• −6 < T < 35◦C (S = 35 ppt, pH = 8, D = 0 km)

• 7.7 < pH < 8.3 (T = 10◦C, S = 35 ppt, D = 0 km)

• 5 < S < 50 ppt (T = 10◦C, pH = 8, D = 0 km)

• 0 < D < 7 km (T = 10◦C, S = 35 ppt, pH = 8)

In order to calculate how the sound propagates underwater, we use the Francois

and Garrison model since it does not make any assumptions on the parameters

and it provides a good approximation of the underwater sound even in different

scenarios.

4.4 Underwater sound propagation model

Before describing in detail the implementation of the underwater sound propa-

gation model, in this section we want to discuss the formulas for calculating the

noise received at a given distance and the fundamental role that background noise

plays in water. The received noise level (RL) at a given point is computed starting
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from Equation (4.1). The problem is that the background noise, which is present

in the marine environment, is not taken into account in this formula. In fact, when

the noise generated by a source is the same as that of the background, this noise is

no longer distinguishable and, consequently, it is no longer perceived. The formula

for calculating the received noise level (RL) then becomes the following:

RL = SL− TL− AN (4.9)

where SL is the sound source level, TL the transmission loss and AN the ambient

noise. In [70] the authors measure the ambient noise in the Mediterranean Sea, and

in Table 4.5 their measurements (expressed in dB) for each month with respect to

two frequencies (63 and 125 Hz) are reported.

Month 63 Hz 125 Hz

January 97.9 100.3

February 101 101.8

March 103.3 103.7

April 101.1 102.6

May 98.3 101.7

June 99.17 102.2

July 103.3 103.6

September 103.1 103.9

October 101.8 103.3

November 100.4 101.7

December 98.4 100.4

Average 100.7 102.3

Table 4.5: Monthly average evolution of the mean of the 1/3 octave bands at 63 and
125 Hz of ambient noise measurements expressed in dB [70].

The month of August is not present in Table 4.5, because of the őshing ban

that was in force during that time.

At this point we know all the parameters needed to compute the sound received

at a given distance following Equation (4.9). The source level SL changes according

to the vessel considered and whether it is sailing or őshing. The ambient noise

changes depending on the month, and őnally the transmission loss is computed

according to Equation (4.3), considering the Francois and Garrison model (discussed
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in Section 4.3).

4.5 Model implementation

The development of a model for underwater sound propagation requires the

construction of multiple aspect trajectories starting from the AIS data. Hence,

the previous reconstruction and enrichment of trajectories performed in [74, 14]

turns out to be fundamental also in this context. In particular, in [74, 14] we őrst

reconstructed all the trajectories of the őshing boats starting from their AIS data.

Subsequently, we segmented the trajectories and then moved on to their enrichment.

In particular, we are interested in assigning vessel’s activity: in port, entering

to/exiting from the port, őshing or navigation (as described in Section 2.2.3). This

is of fundamental importance for the underwater sound propagation model we want

to develop, because when a boat is őshing it produces a much more intense sound.

For the underwater noise propagation model we take the AIS data of 2019 and

2020, so we used the model developed in [74] to construct the multiple aspect

trajectories using these new years of data. AIS data is not transmitted at regular

intervals: there may be an interval of a few seconds to a few minutes between two

AIS transmissions. Furthermore, analyzing the trajectories, we have noticed how

in certain cases, due either to a malfunction of the transmission or to a voluntary

interruption, between one transmission and another there was a time interval of

more than half an hour (in some cases even a few hours).

(a) AIS data. (b) Points every 30 seconds.

Figure 4.3: Part of the trajectory 389 carried out by the CARLO ALBERTO II boat with
the AIS transmissions and the reconstruction of the points every 30 seconds
of the same trajectory.

Since the sound propagates continuously in the water, to solve the problem of
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the non-homogeneity of the AIS data transmission, we considered the reconstructed

trajectories of the őshing boats and we got their position every 30 seconds. In

Figure 4.3 we can see how the AIS data of part of the trajectory 389 carried out

by the CARLO ALBERTO II boat are not homogeneous (Figure 4.3(a)), while in

Figure 4.3(b) the reconstruction of the same trajectory with the points every 30

seconds allows for greater continuity in the movement of the boat during its trip.

In Table 4.6 there are the number of vessels, the number of trips, the number of

AIS data and the number of points resulting after splitting the trajectory every 30

seconds. As expected, the points we are going to use for the sound propagation

model are plenty more than the simple AIS data (6, 588, 990 points more for 2019

and 8, 339, 289 more for 2020).

Year Vessels Trips AIS data Points every 30 seconds

2019 69 6, 570 16, 627, 201 23, 216, 191

2020 66 5, 285 10, 385, 742 18, 725, 031

Table 4.6: Number of vessels, trips, AIS data and points relative to the position of the
boat every 30 seconds for the years 2019 and 2020.

The partition of the trajectory into points every 30 seconds is possible thanks

to the function valueAtTimestamp deőned in the MobilityDB1 (described in Sec-

tion 2.2.2). Once we have these new points, we need to assign to each point the

segment it belongs to. This is of fundamental importance in order to be able to

detect the activity carried out by each vessel at that point. In fact, once a point is

associated with the segment, it is possible to trace the activity of the őshing vessel.

For the noise propagation, however, we are only interested in distinguishing when

the vessel is őshing or navigating. Consequently, in addition to attributing the

correct segment to the point under consideration, if in that segment the boat is

őshing (light blue segments in Figure 4.4(b)), then also all points on that segment

are labeled with the őshing activity, otherwise the points are assigned as navigation

(segments in red in Figure 4.4(a)).

Each point belongs not only to a segment but also to a cell (1km× 1km) of the

regular spatio-temporal grid, therefore it was necessary to assign each point to the

corresponding cell. This is of paramount importance because each cell has different

environmental characteristics every day. As described in Section 4.2, each cell has

the environmental features that are used to compute the coefficient of absorption α

1https://www.mobilitydb.com/
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(a) Points belonging to segments labeled with
a navigation activity.

(b) Points belonging to segments labeled with
a fishing activity.

Figure 4.4: Points belonging to segments of a trip of the CARLO ALBERTO II boat.

of Equation (4.3). This means that, before being able to compute the underwater

sound propagation for each point, we have to calculate this coefficient for each cell

and for each day, because it will be used for the transmission loss computation.

At this point we can calculate the propagation of underwater sound given a

noise source (the őshing boat). In particular, given a point of a trajectory, we want

to understand what is the sound propagation radius, i.e. what is the distance at

which the noise generated by the őshing vessel is no longer perceptible (or rather,

it is no longer possible to distinguish it from the background noise). To calculate

this distance (the radius R expressed in meters) we used Equation (4.9), where the

received noise (RL) is equal to 0:

0 = SL− TL− AN (4.10)

The source level (SL) and the ambient noise (AN) are two constants, then the

transmission loss (TL) is given by Equation (4.3), so we will have:

SL− AN = TL (4.11)

= N × log10(R) + α×R

The greatest contribution to the calculation of the transmission loss is given by

N × log10(R), since the coefficient of absorption α is a very small number (on the

order of 10−7). For this reason, for the calculation of the radius R we will have:

N × log10(R) = SL− AN (4.12)
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and őnally the radius is given as follows:

R = 10(SL−AN)/N (4.13)

where N = 20 [85]. For example, the NUOVA TIRRENIA boat, while it is sailing in

the month of June, in which we have a background noise equal to 99.17 dB and

the noise of the source is equal to 159.744 dB, the maximum distance in which the

sound generated by the boat is still perceptible is 1068.3173 meters.

Since we want to distribute the noise on a regular grid, the centroids of the

cells of the grid have been considered as listening points (we have 4, 195 of these

points), and consequently the noise łperceivedž by a centroid is then the same

that is considered in the cell at that instant of time. Therefore, for each point we

compute the sound propagation radius R (as previously described) and we construct

the circle of radius R. All the centroids within the considered circle correspond to

points where the noise generated by the boat is still perceptible. In Figure 4.5(a) we

can see an example of the maximum spread of sound propagation and the centroids

of the grid where the sound generated by the vessel is still distinguishable and

therefore are points within the circle. At this point we consider only the cells

corresponding to those centroids inside the circle to compute the sound inside

the cells (as we can see in Figure 4.5(b)), since in the other cells of the grid the

perceived noise is zero (or indistinguishable from the background noise).

(a) Circular region in which the underwater
sound generated by a vessel propagates.

(b) Regular grid in which the underwater sound
generated by a vessel propagates.

Figure 4.5: Regions in which the sound generated by a vessel propagates underwater,
considering the circle with the maximum propagation radius and the cells of
the regular grid in which the sound will then be distributed.

After őnding the cells in which the vessel’s underwater sound propagates at that
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instant of time, we can compute the noise received in each cell with Equation (4.9).

The transmission loss is calculated according to Equation (4.3). Since we have to

compute the logarithm of the radius R, without loss of generality, we assume that

if the radius is less than 1, the transmission loss will be 0 (otherwise we would have

a negative value, and this is unfeasible).

Figure 4.6: Underwater sound propagation in an instant of time of the boat CARLO

ALBERTO II which is carrying out a fishing activity.

In Figure 4.6 we can see an example of the underwater sound propagation.

The őshing boat CARLO ALBERTO II at a time instant ‘2019-09-09 00:00:00’ is

carrying out a őshing activity with the gear RAP. It is possible to observe how the

sound is clearly more intense in the cells closest to where the őshing boat is and

the sound becomes less and less intense as the distance from the boat increases.

Using the QGIS TimeManager it is possible to generate animations in which,

by selecting the vessels and the number of information per frame, we can visu-

alize these vessels moving in the northern Adriatic Sea. Figure 4.7 shows the

sequence of this animation, in which the movements of the őshing vessel CARLO

ALBERTO II can be seen every 30 seconds (starting from ‘2019-01-30 01:02:30’

to ‘2019-01-30 01:06:30’). The őshing vessel is represented with a light blue dot

if it is őshing (from Figure 4.7(f) to Figure 4.7(i)), red otherwise (from Figure 4.7(a)

to Figure 4.7(e)). Moreover, from Figure 4.7 we can easily observe how the noise

generated by the őshing boat when it is őshing is much more intense than when it

is sailing, and consequently the sound propagates much more.

In order to understand how the sound generated by all őshing vessels propagates

during the day, a more adequate visualisation is the one in Figure 4.8. This őgure

depicts a time instant of an animation produced with QGIS TimeManager, in which

we can see all the vessels labeled with a light blue dot when they are őshing, red
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(a) ‘2019-01-30 01:02:30’. (b) ‘2019-01-30 01:03:00’. (c) ‘2019-01-30 01:03:30’.

(d) ‘2019-01-30 01:04:00’. (e) ‘2019-01-30 01:04:30’. (f) ‘2019-01-30 01:05:00’.

(g) ‘2019-01-30 01:05:30’. (h) ‘2019-01-30 01:06:00’. (i) ‘2019-01-30 01:06:30’.

Figure 4.7: Propagation of the underwater noise of the CARLO ALBERTO II fishing vessel
while it is navigating (red dot) or fishing (light blue dot) every 30 seconds.

otherwise. Furthermore, the noise generated by a boat is considered in isolation,

i.e. the simultaneous presence of two boats in the same cell and in the same time

instant does not affect on the underwater sound propagation of the single boat.

Only when we build the sound propagation map for each time instant and cell, if

two boats are in the same cell in the same time instant, the sound perceived by the

listening point of that cell is the sum of the noise produced by each boat.

In Figure 4.8 we can observe the different underwater noise propagation between

the various őshing vessels. In particular, the two boats highlighted by circles A and

B in orange, are both őshing, have the same horsepower (590.9 HP ) but they use

different gears: the boat in A uses the LOTB gear, while the one in B the RAP.

The boats using the RAP gear generate a much more intense noise (Table 4.4), in

fact the cells in which the noise is propagated for the boat using the RAP gear (B)

are 94, while for the one using LOTB are 44 (A). Conversely, there may be boats

that are őshing, use the same gear but their engines have different horsepower. This
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Figure 4.8: Propagation of underwater noise of fishing vessels in the northern Adriatic
Sea on the 30th of January 2019 at 08:40. Vessels are shown with a light
blue dot if they are fishing, red otherwise.

is precisely the case for boats in circles C and D (in light purple), and therefore

the only difference between the two boats is the power of the engine: boat in C has

an engine with 1084.1 HP , while the one in D with 296.1 HP . We can see how

the sound propagates in a different way according to the different horsepower of

the engine (the cells in which the noise is propagated for the boat in C are 196,

while for the one in D are 43), and therefore the more horsepower, the more the

sound will propagate underwater (Table 4.3). Finally, in circles E and F (in blue)

there are respectively two boats that have the same number of horsepower but

one is őshing (the one in E) while the other is not (in F ). Also in this case the

difference is considerable: if the boat is őshing the sound propagates more (in this

case the cells in which the sound is perceptible are 44), otherwise the sound is

limited in the region in which the boat is navigating (the cells in which the sound

propagates are 4). Using this visualization we can observe how the underwater

sound propagation is different when the boats are őshing or sailing, and also the

dissimilarity of underwater sound propagation between vessels that are őshing but

use a different őshing gear or, while using the same gear, they have more/less

horsepower and, consequently, the propagation is more/less widespread.
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4.5.1 Underwater sound propagation maps

After the creation of a simple underwater sound propagation model, it is of

fundamental importance for environmental experts to be able to study and analyze

underwater sound propagation maps in order to understand how noise can impact

marine fauna. Consequently, we have built two different types of maps. In particu-

lar, Figure 4.9 reports the peak maps for each month: each cell is characterized

by the maximum noise detected in that cell (the peak of the month in the cell).

Figure 4.10 reports the average underwater noise value measured in each cell for

all the months of 2019. The average value for a cell is calculated by summing up

the underwater noise measured every 30 seconds in that cell and dividing it by the

number of measurements.

In order to perform a more quantitative analysis based on the maps in Figure 4.9

and 4.10, Tables 4.8 and 4.10 show, for each month, the number of cells for each

category. In particular, as regards the peak and average maps, the categories

are divided by range of underwater noise measured, expressed in decibel (dB), as

depicted in Table 4.7. Table 4.9 and 4.11 show, for each month, the percentages

of cells characterized by a value in the various noise ranges for the peaks and the

averages respectively.

Range (dB)

Symbol Peak Average

0− 10 0− 2.5

10− 25 2.5− 3.5

25− 35 3.5− 4.5

35− 45 4.5− 5.5

> 45 > 5.5

Table 4.7: Underwater noise range for maps and analysis of peaks and averages.

First of all, from the underwater noise maps it is possible to observe the area of

the northern Adriatic Sea where the őshing boats carry out their őshing activities.

The maps in Figure 4.9 show that there are evident temporal differences with the

areas characterized by very high noise peaks: in the months of January, May, June

and December there are many areas with a high concentration of noise, while in

the months of March, July and September these areas decrease, and therefore in

these months there are fewer areas characterized by intense noise peaks. Table 4.9

underlines the latter observation.
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(a) January. (b) February. (c) March.

(d) April. (e) May. (f) June.

(g) July. (h) September. (i) October.

(j) November. (k) December.

Figure 4.9: Underwater noise peak maps for each month of 2019.
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(a) January. (b) February. (c) March.

(d) April. (e) May. (f) June.

(g) July. (h) September. (i) October.

(j) November. (k) December.

Figure 4.10: Underwater noise average maps for each month of 2019.
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(a) January. (b) February. (c) March.

(d) April. (e) May. (f) June.

(g) July. (h) September. (i) October.

(j) November. (k) December.

Figure 4.11: Monthly fishing effort for 2019.
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(a) January. (b) February. (c) March.

(d) April. (e) May. (f) June.

(g) July. (h) September. (i) October.

(j) November. (k) December.

Figure 4.12: Underwater noise peak maps for each month of 2020.
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(a) January. (b) February. (c) March.

(d) April. (e) May. (f) June.

(g) July. (h) September. (i) October.

(j) November. (k) December.

Figure 4.13: Underwater noise average maps for each month of 2020.
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In fact, if we focus on the percentage of cells that are characterized by a high

peak value in the months of January, May, June and December, they are 21.3%,

15.8%, 15.3% and 17.1%, while in the months of March, July and September they

are 6.8%, 6.5%, 7.7% respectively.

Number of cells per category

Month 0− 10 10− 25 25− 35 35− 45 > 45 Number of cells

January 1731 1539 1388 2146 1843 8647

February 1499 2224 2037 2536 1045 9341

March 1735 2306 2044 2132 604 8821

April 1785 1990 1870 2398 952 8995

May 1863 1722 1695 2124 1391 8795

June 2142 1714 1523 2186 1363 8928

July 2103 2142 1711 1486 518 7960

September 1378 1545 1175 1278 447 5823

October 1658 1399 1552 2240 827 7676

November 1423 1788 1530 1693 961 7395

December 2334 1840 1250 1874 1510 8808

Table 4.8: Number of cells per category of the underwater noise peak maps 2019.

Percentage of cells per category

Month 0− 10 10− 25 25− 35 35− 45 > 45

January 20 17.8 16.1 24.8 21.3

February 16 23.8 21.8 27.2 11.2

March 19.7 26.1 23.2 24.2 6.8

April 19.8 22.1 20.8 26.7 10.6

May 21.2 19.6 19.3 24.1 15.8

June 24 19.2 17 24.5 15.3

July 26.4 26.9 21.5 18.7 6.5

September 23.7 26.5 20.2 21.9 7.7

October 21.6 18.2 20.2 29.2 10.8

November 19.2 24.2 20.7 22.9 13

December 26.5 20.9 14.2 21.3 17.1

Table 4.9: Percentage of cells per category of the underwater noise peak maps 2019.
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Furthermore, from the same maps, it can be observed that in the months of

July, September and November the noise is more intense near the coast rather than

offshore. In the months of January and December there are areas offshore (on

the Croatian border line) where the peak values are very high (> 45 dB). These

well-deőned areas, characterized by high sound peaks, correspond to the areas of

greatest exploitation of the catch in 2019. Figure 4.11 shows the monthly őshing

effort maps for 2019 (with a square grid in which each cell has a size of 3 × 3

kilometers). By analyzing these maps and those of the peaks, it is evident how they

are related. In particular, this correlation is most visible in the months of January,

February, July, September, November and December. This correlation is justiőed

by the fact that, while the vessel is őshing, the underwater noise generated is much

more intense than that produced when the boat is simply sailing (as previously

described in Section 4.1).

Another consequence of the fact that while the boat is őshing it produces a

greater underwater noise, is that, in the maps in Figure 4.9, the cells in the areas

where the boats are entering or exiting from the ports (the lines that go from the

offshore towards the coast) are characterized by very low noise peaks since they are

simply in navigation.

Number of cells per category

Month 0− 2.5 2.5− 3.5 3.5− 4.5 4.5− 5.5 > 5.5 Number of cells

January 1684 1400 2813 2077 673 8647

February 1425 1421 3364 2378 753 9341

March 1461 1346 2944 2140 930 8821

April 1585 1421 3015 2166 808 8995

May 1721 1507 2818 1996 753 8795

June 1876 1421 2754 1997 880 8928

July 1542 1241 2378 1872 927 7960

September 1159 995 1737 1335 597 5823

October 1399 1135 2668 1913 561 7676

November 1316 1343 2434 1678 624 7395

December 2079 1355 2620 1946 808 8808

Table 4.10: Number of cells per category of the underwater noise average maps 2019.

Finally, by comparing Figures 4.9 and 4.10, we can observe that the maps with

the average values are very different from those of the peaks. First of all, we see
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that the noise distribution on the northern Adriatic Sea is much more uniform if

we consider the average values. There are no cells with very high average values

close to cells with an almost zero average value: we can observe a propagation of

underwater sound with areas in which the noise is more intense and gradually it

becomes weaker. Furthermore, there are not many areas with a high average value

(> 5.5 dB), but on average the monthly noise in the cells is around 3.5-4.5 decibel.

In fact, in Table 4.11, the percentage of the number of cells is higher in this range

(almost 1/3 of all cells).

Percentage of cells per category

Month 0− 2.5 2.5− 3.5 3.5− 4.5 4.5− 5.5 > 5.5

January 19.5 16.2 32.5 24 7.8

February 15.2 15.2 36 25.5 8.1

March 16.6 15.2 33.4 24.3 10.5

April 17.6 15.8 33.5 24.1 9

May 19.6 17.1 32 22.7 8.6

June 21 15.9 30.8 22.4 9.9

July 19.4 15.6 29.9 23.5 11.6

September 19.9 17.1 29.8 22.9 10.3

October 18.2 14.8 34.8 24.9 7.3

November 17.8 18.2 32.9 22.7 8.4

December 23.6 15.4 29.7 22.1 9.2

Table 4.11: Percentage of cells per category of the underwater noise average maps 2019.

Figure 4.14 represents the percentage of underwater noise for each month in

each category, considering the peaks (Figure 4.14(a)) and the average values (Fig-

ure 4.14(b)). Thanks to Figure 4.14 we can easily analyze the distribution of

underwater sound. In particular, as regards the average values, the noise distribu-

tion is uniform for all months, with about 7% of cells with average values above

5.5 dB and 32% of cells with values around 3.5-4.5 dB. In Figure 4.14(a) we can

notice that the peak values vary greatly depending on the months of the year and

they are not as uniform as the average values. In particular, the percentage of

intense peaks (> 45 dB) are very high in the months of January, May, June and

December and much lower (about 10% less) in the months of March, July and

September (as previously described in the analysis of the maps related to Figure 4.9).
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With the recent availability of AIS data also for the year 2020, we have recon-

structed the trajectories, enriched them and built underwater sound propagation

maps using the same model described above in this chapter. This allows us to

compare the underwater noise of 2019 with that of 2020 characterized by the coron-

avirus disease 2019 (COVID-19) and, consequently, by several containment measures

adopted by governments. In Italy, a lockdown period was imposed from March to

May 2020, during which many activities had to close or limit their business. All of

this caused a strong reduction in seafood requests and consequently, a decrease in

őshing activities.

(a) Percentage of cells divided by category considering the maps of the under-
water noise peak values in Figure 4.9.

(b) Percentage of cells divided by category considering the maps of the under-
water noise average values in Figure 4.10.

Figure 4.14: Percentage of cells divided by category of the underwater noise maps for
each month of 2019.

In Figure 4.12 we can visualize the peak maps for each month: each cell is

characterized by the maximum noise that we have detected in that cell (the peak of

the month in the cell). In Figure 4.13 we can observe the average underwater noise
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value that we have measured in each cell for all the months of 2020. Moreover, for

a more detailed quantitative analysis of these maps, Tables 4.12 and 4.14 show, for

each month, the number of cells for each category (deőned in Table 4.7). Table 4.13

and 4.15 show, for each month, the percentages of cells characterized by a value in

the various noise ranges for the peaks and the averages respectively.

Number of cells per category

Month 0− 10 10− 25 25− 35 35− 45 > 45 Number of cells

January 1754 1872 1713 2433 1808 9580

February 1740 1986 1927 2430 1120 9203

March 1494 2651 1801 1206 277 7429

April 1542 1612 970 678 181 4983

May 1678 1809 1438 1592 808 7325

June 1736 1662 1363 1695 950 7406

July 1151 1421 1543 1563 492 6170

September 899 1443 1244 1192 383 5161

October 1369 1263 1327 1706 631 6296

November 1627 1810 1717 1957 884 7995

December 1899 1671 1408 1829 1132 7939

Table 4.12: Number of cells per category of the underwater noise peak maps 2020.

Percentage of cells per category

Month 0− 10 10− 25 25− 35 35− 45 > 45

January 18.31 19.54 17.88 25.40 18.87

February 18.91 21.58 20.94 26.40 12.17

March 20.11 35.69 24.24 16.23 3.73

April 30.94 32.35 19.47 13.61 3.63

May 22.91 24.70 19.63 21.73 11.03

June 23.44 22.44 18.40 22.89 12.83

July 18.66 23.03 25.00 25.33 7.98

September 17.42 27.96 24.10 23.10 7.42

October 21.74 20.06 21.08 27.10 10.02

November 20.35 22.64 21.47 24.48 11.06

December 23.92 21.05 17.73 23.04 14.26

Table 4.13: Percentage of cells per category of the underwater noise peak maps 2020.
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Number of cells per category

Month 0− 2.5 2.5− 3.5 3.5− 4.5 4.5− 5.5 > 5.5 Number of cells

January 1722 1383 3341 2401 733 9580

February 1528 1433 3154 2223 865 9203

March 1246 1364 2193 1709 917 7429

April 1206 945 1187 930 715 4983

May 1464 1301 2217 1603 740 7325

June 1350 1398 2326 1508 824 7406

July 947 940 2094 1610 579 6170

September 801 856 1771 1334 399 5161

October 1163 900 2229 1490 514 6296

November 1465 1307 2629 1848 746 7995

December 1781 1155 2369 1805 829 7939

Table 4.14: Number of cells per category of the underwater noise average maps 2020.

Percentage of cells per category

Month 0− 2.5 2.5− 3.5 3.5− 4.5 4.5− 5.5 > 5.5

January 17.97 14.44 34.88 25.06 7.65

February 16.60 15.57 34.27 24.16 9.40

March 16.77 18.36 29.52 23.00 12.35

April 24.20 18.97 23.82 18.66 14.35

May 19.99 17.76 30.27 21.88 10.10

June 18.23 18.88 31.41 20.36 11.12

July 15.35 15.23 33.94 26.10 9.38

September 15.52 16.59 34.31 25.85 7.73

October 18.47 14.30 35.40 23.67 8.16

November 18.32 16.35 32.88 23.12 9.33

December 22.43 14.55 29.84 22.74 10.44

Table 4.15: Percentage of cells per category of the underwater noise average maps 2020.

From the maps of 2020 (Figures 4.9 and 4.12), we can easily observe that in

March (when restrictions have been imposed) there is a noteworthy decrease in the

areas affected by őshing activities. In fact, this difference can be seen in the months

of March, April, July and October, while in the months of January and February
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we can observe how the őshing areas of the őshing boats are very extensive even

in 2020. In order to better understand the differences over the two years, we have

deőned a percentage difference d, according to the following equation:

d =
v2020 − v2019

v2019
× 100 (4.14)

where v corresponds to the value of which we want to analyze the difference. For

example, if we want to calculate the percentage difference with respect to the

number of cells between January 2019 and 2020, the value v will be the number of

cells in the two months and, therefore, 8647 and 9580 respectively. In Figure 4.15

we can see this difference for each month.

Figure 4.15: Percentage difference on the number of cell.

As we can see from Figure 4.15, except for the months of January and November,

the areas affected by őshing activities have decreased signiőcantly. In particular,

in the month of April 2020 we have 44.6% fewer cells than in the same month of

2019, while for the months of March, May, June and July we have about 15-20%

fewer cells. The decrease in őshing areas reŕects the lockdown imposed by the

government and the period of uncertainty that has led őshermen to stay closer to

the coast or reduce the length of their trips.

Using Equation (4.14) we calculate the percentage difference for underwater

noise peak and average maps for each category and each month. In Figure 4.16

there are the percentage differences for underwater noise peak maps.
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Figure 4.16: Percent difference on peak maps.

In particular, we can observe a decrease in the number of cells for peaks greater

than 45 dB and also for peaks between 35 and 45 dB, even if this difference

becomes less and less noticeable in the categories where the peaks have lower

values. This phenomenon is due to the fact that the number of boats carrying out

őshing activities were fewer than those before COVID-19, and consequently their

concentration in the same areas (cells) has decreased. Since the noise perceived by

the virtual listening points of the cells is given by the sum of the noise produced by



4.5. MODEL IMPLEMENTATION 67

the individual boats, the lower the concentration of the boats in the same cell is,

the lower the resulting peak is, because it is calculated considering the contribution

of fewer boats.

Figure 4.17: Percentage difference on the maps of the averages.

In Figure 4.17 there are the percentage differences for underwater noise on the

maps of the noise average values. Also from these graphs we can observe how

there is a decrease even with respect to the average noise generated by boats. This

difference is clearly visible for values below 2.5 dB and between 3.5 and 5.5 dB. For
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example, for the month of April (which is also characterized by a strong decrease

in peaks values) we have 60% fewer cells characterized by an average value between

3.5 and 5.5 dB.

From Figures 4.16 and 4.17 it is possible to observe how during the COVID-19

pandemic there was a strong decrease in underwater noise in the northern Adriatic

Sea. The sound propagation model developed in this work is able to capture

these differences and it can help environmental experts to understand how certain

circumstances can affect the marine environment and animal species.



Chapter 5

Conclusions and future works

Every trail has its end, and every calamity brings its

lesson!

– James Fenimore Cooper, The Last of the Mohicans

In this work we wanted to tackle two hot topics related to the monitoring of the

exploitation of the seas: the prediction of the őshing effort and the modelling of the

underwater noise produced by vessels. We have started with a deep investigation of

the literature in these two settings, by pointing out the main approaches and the

differences with respect to our proposal. Then we have focused on the two tasks

separately. First of all, taking as basis the work already carried out in [74, 14, 73] we

have processed the dataset of the years 2019 and 2020: starting from the AIS data,

we have reconstructed the trajectories and introduced semantic attributes capable

of unveiling interesting information and aspects of the original data themselves.

Thus, we have concentrated on őshing effort: we have computed it over a square

grid with a size of 3× 3 kilometers for each day. Then, we have enriched such a

grid with environmental data that change on a daily basis. After the creation of

this dataset, we have built predictive models. In particular, to forecast the őshing

effort we have used four different Machine Learning models: Random Forest, Extra

Trees, XGBoost and Multi-layer Perceptron. The results are based on three metrics,

including error-based (MAE and RMSE) and coefficient of determination. The best

machine learning method for our problem is Random Forest which achieves a score

of about 0.67 out of 1 for R2. The result is considered a good achievement because

the problem is challenging, given the fact that the dataset contains multivariate

and spatio-temporal aspects to cope with, but it can be improved. For example,

69
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we could include among the dataset variables, the őshing effort in the surrounding

areas, or in some previous periods of time. So, as future work, we would like to

study and use Statistical, Machine Learning and Deep Learning spatio-temporal

models to improve the prediction. Environmental spatio-temporal data are usually

characterized by spatial, temporal, and spatio-temporal correlations and capturing

these dependencies is an extremely important task [3]. Deep learning has achieved

remarkable success in this type of problems due to the powerful ability in auto-

matic feature representation learning [88], because of its capability to automatically

extract features both in the spatial domain (with Convolutional Neural Networks)

and in the temporal domain (with the recurrent structure of Recurrent Neural

Networks) [3].

As far as the underwater noise modelling is concerned, to avoid the problem

of the non-homogeneity of the AIS data transmission, we have considered the

positions of the őshing vessels every 30 seconds. As in the previous analysis we

have partitioned the northern Adriatic Sea into a regular grid where each cell

has a smaller size, namely 1× 1 kilometer, because in this way we can distribute

the underwater noise more accurately since, with smaller cells, we consider more

listening points. Then we enriched the grid with environmental data that change

on a daily basis. At this point we have calculated the propagation of underwater

sound given a noise source. The noise source corresponds to a vessel: the higher

the horsepower of the engine is, the more intense is the noise produced by the boat,

and with the same horsepower, if the boat is őshing it emits more noise. Using

this underwater sound propagation model we are able to understand how the single

boat produces underwater noise depending on the activity it is carrying out. We

have also generated maps relating to the sound peaks perceived by the listening

points in each month and the monthly average noise in each cell.

By using this underwater noise propagation model we have analysed the őshing

vessels for the years 2019 and 2020. This allows us to compare the underwater noise

generated by the vessels in two completely different scenarios: the year 2019 before

the COVID-19 pandemic emergency and 2020, characterized by several containment

measures adopted by the government and the őnancial and economic crisis. It

turns out that considering the peaks we have, on average, 12.6% less cells for each

category, while for the average noise values we have, on average 11.3% less cells

considering each category. Furthermore, the areas characterized by őshing activities

have decreased by 12.5% (in 2020).

This model for the propagation of underwater noise, based on the technical
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characteristics of the őshing boats’ engine and on some environmental factors, can

be reőned in several directions. First of all, the computation of the noise could be

improved by considering other environmental factors such as sediments, bathymetry

and more accurate measurements of the noise generated by őshing vessels. Moreover,

we should consider possible interaction between the noise produced by the őshing

vessels since at the moment they are taken in isolation.

Another aspect that can lead to the improvement of both the őshing effort

forecast and the underwater sound propagation is the semantic trajectories enhance-

ment. Ecologists are interested in speciőc movements made by the őshing vessels

during their trips. For instance, trawlers make circular movements when őshing.

Representing this event as a pattern would be very important to better localize

the places where vessels are őshing. Therefore, one objective is to deőne mining

algorithms to detect recurrent patterns and classify them according to the activity

the vessels are performing. It is also worthwhile to detect routine traffic of vessels

and abnormal vessel behaviour.

Finally, it is important to remark that in this work we have used the AIS data

and the environmental variables from the northern Adriatic Sea because the Italian

Coast Guard VII Department-ITC and Traffic Monitoring has provided the raw

AIS data for that area. Nevertheless, the proposed framework is general because it

could be applied in all contexts in which we have the AIS data and the required

environmental variables.





Appendix A

Forecast results

This appendix contains some results obtained in the őshing effort forecast

described in Section 3.6

A.1 Feature Permutation Importance

(a) Random Forest. (b) Extremely Randomized Trees.

(c) eXtreme Gradient Boosting. (d) Multi-layer Perceptron.

Figure A.1: Permutation importance of the four machine learning models considering
one year of training and one of testing.
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(a) Random Forest. (b) Extremely Randomized Trees.

(c) eXtreme Gradient Boosting. (d) Multi-layer Perceptron.

Figure A.2: Permutation importance of the four machine learning models considering
two years of training and one of testing.

Figures A.1 and A.2 show the Permutation feature importance for the four

machine learning algorithms used for őshing effort forecast for 2019, using one year

(2018) and two years (2017-2018) as training dataset respectively. It is possible to

notice how, by adding information to the initial dataset, the most relevant features

are the longitude, latitude and wind for RF and ET for all training datasets.

Regarding XGBoost machine learning model, the most important features are the

longitude, salinity, wind and temperature. Finally for the Multi-layer perceptron

the three most relevant features, in all training datasets, are the month, week and

temperature.

A.2 Evaluation metrics results

Tables A.1 and A.2 present the results for each season using one year (2018)

and two years (2017-2018) as training dataset respectively.
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ML model Season MAE RMSE R2

Random Forest 1 0.34082 0.60134 0.60409

2 0.26311 0.48206 0.65443

3 0.19944 0.34858 0.67739

4 0.30741 0.50781 0.65775

Extra Trees 1 0.35159 0.62057 0.57837

2 0.28375 0.52513 0.58993

3 0.19126 0.35784 0.66003

4 0.34309 0.57023 0.56843

XGBoost 1 0.35884 0.64295 0.54741

2 0.30364 0.54059 0.56541

3 0.34454 0.50443 0.32443

4 0.41845 0.66789 0.40794

Multi-layer Perceptron 1 0.38032 0.56692 0.64812

2 0.58788 0.91161 -0.23581

3 0.30231 0.30231 0.5048

4 0.60142 0.91846 -0.11964

Table A.1: Results for each season using one year (2018) as training dataset.

Figure A.3: MAE, RMSE and R
2 scores for each season considering one year of training

for the four machine learning models: RF (blue), ET (orange), XGBoost
(green) and MLP (red).
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ML model Season MAE RMSE R2

Random Forest 1 0.33835 0.59006 0.61881

2 0.234 0.43804 0.71467

3 0.2 0.34634 0.68153

4 0.30457 0.50155 0.66612

Extra Trees 1 0.34579 0.60755 0.59588

2 0.253 0.46356 0.68045

3 0.18149 0.31919 0.72951

4 0.31752 0.52875 0.62893

XGBoost 1 0.34371 0.60031 0.60545

2 0.23739 0.44528 0.70514

3 0.19504 0.34324 0.68721

4 0.31407 0.5211 0.63959

Multi-layer Perceptron 1 0.37003 0.64349 0.54665

2 0.31479 0.56218 0.53002

3 0.24147 0.47843 0.3923

4 0.42531 0.7022 0.34555

Table A.2: Results for each season using two years (2017-2018) as training dataset.

Figure A.4: MAE, RMSE and R
2 scores for each season considering two years of training

for the four machine learning models: RF (blue), ET (orange), XGBoost
(green) and MLP (red).
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The őrst thing that we can observe is that using Multi-layer Perceptron ma-

chine learning algorithm considering one year as training dataset, the coefficient

of determination assumes even a negative value for season 2 and 4. This means

that using this method we do not achive good results. We can easily observe this

phenomenon also from Figure A.3. Corcerning the other algorithms, using Random

Forest we get the best values with respect to all the evaluation metrics. Also Extra

Trees works well, while XGBoost does not achieve good reults. From Figure A.3 we

can very easily see the behaviour of each machine learning algorithm in each season

and understand that using the Random Forest the results that we get are good.

From Table A.2 and Figure A.4 it is possible to understand the behaviour of

the four machine learning methods in each season considering two years as training

dataset. Also in this case Random Forest performs better than the other models

except for season 3 where Extra Trees achieves better results (even if there is not

much difference between the two). XGBoost evaluation metrics are closer to the ones

that are considered as the best values, and this means that, by adding information

to the initial dataset (and therefore adding also the year 2017), XGBoost increases

its reliability. Finally, Multi-layer Perceptron still does not provide good results.
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