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Abstract

In the last 20 years, online social networks have revolutionized many sectors. Poli-

tics, advertising, job search, commerce (from the multinational to the local shop),

economics, social interactions and information are all fields that have undergone

profound permanent changes, thanks to the advent of social media platforms. This

thesis aims to validate behaviors observed in past studies on online social networks

focusing on two opposite communities of users: pro-science and pseudo-science. In

particular, we perform a quantitative analysis of 100,000 Twitter posts, measuring

users’ polarization and studying the communities in terms of network structure.

Moreover, we investigate users’ response to debunking content in the two commu-

nities, trying to confirm the expected behavior among users and the performance

of the community networks described by previous studies. Our results shows that

1.2% of the conspiracy community moved to the scientific community, while only

0.2% made the opposite shift, but this shift doesn’t occur with the same timing:

in fact, it took in average 25 months for conspiracists and only 10 months for those

in the scientific community.
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Introduction

Social networks in recent years are changing the way people interact with each

other and the way people create, consolidate or break relationships with other

individuals; two-thirds (64%) of teens who have made a new friend online say

they have met new friends on a social media platform and nearly all (94%) say

they spend time with friends on social media [1]. Social media have helped people

keep in touch with friends and to stay informed about the latest world news and

share it with others; this behaviour has been documented in many situations, in

a recent study has been reported that in 2018 (as in 2017) about two-thirds of

American adults (68%) say they at least occasionally get news on social media,

even though most people (57%) expect the news they see on social media to be

largely inaccurate [2].

A recent report in 2021 by Censis, an italian institute, revealed that as many as

14 million Italians (30%) use Facebook to keep themselves informed, along with

other media; however, as many as 4.5 million Italians inform themselves solely via

social networks [3].

The availability of a lot of news, opinions and viewpoints in social networks allow

them to play a key role in the development of people’s opinions and the exchange

of information due to its wide use [4, 5, 6]. This dynamic certainly brings great

benefits to people, as they can share news and stay in touch much more easily

than before, however it has been observed how people should be better informed

and at the same time how people seek and avoid information in social networks

[7].

The current online ecosystem is polluted with different types of non-genuine in-

formation, the so-called dis-, mis-, and mal- information [8] are very problematic

for social dynamics as it fuels the population’s rate of misinformation, creating

opinions that greatly influence the population’s thinking and can create unjusti-

fied popular discontent with economic, social, environmental policies; the World
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Economic Forum has listed massive digital misinformation as one of the main risks

for the modern society [9].

A first step in counteracting this type of information was taken by using search

strategies and customised search engines within social media aiming to help users

in retrieving information which is relevant with respect to their interests [10].

Recently, social network companies such as Facebook and Twitter are developing

algorithms that try to prevent the dissemination of such information or share

action by the user who has only read the scandalous headline without even having

opened the article; however, many past studies have attempted to develop efficient

algorithms for preventing the spread of misinformation [11, 12].

One of the most relevant means of transmission of information is certainly the

presence of bots, i.e. accounts that automatically republish news, share it and

sometimes comment on it. Although they follow very simple behaviours and are

easy for an experienced user to spot, but they still manage to reach a segment of

the population that interacts with them, commenting on posts and sharing them

again. It has been observed that automated accounts diffusing fake news are much

more active than the automated accounts diffusing other types of news; in addition,

these super-spreaders may also use more sophisticated methods to increase their

credibility, such as commenting on celebrity news (tagging them multiple times to

exploit their visibility) or tend to target users with a higher median number of

followers and lower variance [13]. In this way bots expose influential people, such

as journalists and politicians, to a claim, creating the appearance that it is widely

shared and the chance that the targets will spread it [14]. It has also been observed

that social media real users had indirect exposure to bots (i.e. through account

following) compared to direct interaction (i.e. by actively sharing, mentions and

commenting on news) [15].

This type of account has always been opposed by social networks because they are

not commercially profitable and reduce the possibility of expanding the network

of people (this is one of the reason of the recent cancellation of Elon Musk’s

acquisition of Twitter [16]), yet it is not usual to question them for their ability to

spread disinformation.

On the other hand, social networks are increasingly discouraging the dissemination

of information from journalistic sources, in fact it has been seen that the reduced

link exposure suggests that Twitter’s algorithm may impede users’ goal of retriev-

ing news on the platform. While news may still circulate in the absence of external
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links, the reduced connections to the provenance of information in credible primary

sources could hinder users’ ability to assess information quality [17].

Recent work has shown how the increased exposure of users to unverified rumours

leads them to become more credulous like in [18] where they highlight a higher

level of commitment of consumers of conspiracy news neglected by main stream

media and scientific news, consequently it very difficult to verify. This behaviour

opens to interesting about the pervasiveness of unsubstantiated rumors in online

social media; in an another study they find out that users with strong preferences

for alternative information sources, perhaps motivated by the will to avoid the

manipulation played by mainstream media controlled by the government, are more

susceptible to false information [19] and this could be very harm full for modern

society.

In recent years, people are increasingly exposed to an ever-increasing amount of

information, in the work, social and entertainment fields. Companies adopt ag-

gressive advertising campaigns both in real life through billboards, magazines and

flyers and, more recently, on the Internet and in online social networks. The latter

are also adapting to this type of advertising, creating social networks that give less

space to the user in the construction of their news feed and the choice of content

is more algorithm-driven (the "for you" section of TikTok is the most striking

example), with suggestion algorithms targeted at individual users, but also with

increasingly pervasive and insistent advertising [20]. Every commercial entity tries

to get our attention and, due to the fact that the human attention span is limited

[21], it is not possible to widen this window of attention and they are therefore

forced to be more and more competitive with each other.

Social networks are adapting to suggest similar and less heterogeneous content [22]

in order to build user loyalty to a specific of them.

Twitter, which is the social network of reference in this study, has a very interesting

algorithm for suggesting friends called the Who-to-follow system. In 2015 it has

been observed that this algorithm based on personal interactions allows the circle

of friends to be considerably enlarged, thus creating a chain effect as soon as the

person registers for the first time (more than 35% of new users use this the first

day) and it has a direct impact on Twitter’s growth and quality of user engagement;

each month, it leads to the creation of more than 500 million new connections and

15% of Twitter’s active users use this system at least once a month [23].

People tend to socialise with individuals they consider similar to them or with
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interests or topics in common: examples in real life are associations and clubs,

which in social networks are translated into groups and pages; sometimes these

may be closed and private, but very often they are public and seek to include

as many people as possible. Just to give an example, according to data released

by Facebook [24], of the 2.9 billion registered users, 1.8 billion use the groups

function every month; there are tens of millions of active communities. This user

communities that are created within social networks can be seen as closed boxes

where the users within them share the same preferences and style of language.

They also generate worldviews of society that are prone to the collective vision

of the community itself: in fact, polarized users reinforce their preexisting beliefs

by leveraging the activity of their like-minded neighbors, and this trend grows

with the user engagement suggesting how peer influence acts as a support for

reinforcement seeking [25].

In this study, we defined a polarized user as the individual who which their like

activity (positive feedback) is almost (95%) exclusively on the pages of one category

of people, according to the definition given in [26, 18].

However, there are many other methods of measuring user polarization, such as

in the study by [27] that proposes a measure, different from a one-subject calcula-

tion, which simultaneously measures homophily and antagonism between groups,

this new approach focus on the existence (or absence) of antagonism between the

groups. It considers nodes’ decisions towards connecting to users who belong to

the other (potentially opposing) group, in comparison to connect to members of

its own group. Furthermore, they have shown that polarized networks tend to

exhibit a low concentration of high-degree nodes in the boundary between two

communities [27].

This mechanism, which recognizes the homophily in the interaction networks, to-

gether with the bias in the information diffusion toward like-minded peers make

up the two ingredients to quantify what scientist defined a echo chamber [28].

The special feature of echo chambers is their ability to feed themselves through the

confirmation bias [29], which is the tendency to favor information that reinforces

existing beliefs. Users belonging to an echo chamber feel more and more a part of

it because they find feedback in what they think, supported by other like-minded

users. In social networks, thanks to the communities that form, individuals can

find confirmation in many other people who validate their ideas. Already in 2014,

scientist had come to these conclusions, stating that even on the internet (there
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was not yet such distinct talk of social networks) opinion-reinforcing information

is a more important predictor and promotes news story exposure while opinion-

challenging information makes exposure only marginally less likely [30].

The existence of these echo chambers has been questioned several times [31, 32]

however, most recent studies confirm their existence and they have described their

most peculiar properties and effects[29].

Several echo chamber studies have revealed how political manipulation can influ-

ence how people vote in real life from political orientation [33] to U.S. and French

presidential elections [34]. A relevant study performed on the extent to which

echo chambers can influence political opinion showing that the spreadability of

users (i.e. the efficiency of single users to disseminate information) is strongly

correlated with their political orientation: information sent by pro-impeachment

individuals spreads throughout the network much better than messages sent by

other users, thus confirming the fact that conspiracy news spreads faster than

others. Furthermore, they discover that users with larger spreadability are able

to reach individuals with more diverse sentiments, actually escaping their echo

chamber [35].

In more recent studies [36, 37], it has been seen that there is a link between the

spread of misinformation and polarization; certain studies state that online misin-

formation and fake news polarized society developing an interesting 3-stage model

(creation, spreading, polarizing) that illustrate how fake news polarized society;

they also identify the catalyst and barriers that have an impact on polarization

process, like cognitive biases (i.e. systematic error of judgement because they

based their judge only from their perception of the input), incentives and online

discussion [36]. Finally they try to formulate different solution or remedies to the

spreading of fake news such as making people more aware and educated in order

to identify sources of spreading disinformation [36]. Other researchers claim that

it is polarization that fosters the spread of misinformation; they use a classifier

that try to predict future fake news topics on social media [37]. In any case, both

agree that there is a link between polarization and spread of misinformation.

In particular, the communities we are going to analyse in this study are commu-

nities that have been much studied [26, 18] in recent years and they are one the

opposite of the other: pro-science community and conspiracy community.

While the pro-science community constitutes the majority of the population and

is therefore the predominant one in social networks, the conspiracy community is
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the community that is found in social networks and that carries out an intense net-

working activity. One of the things that most distinguishes the two communities

in the content with which they interact is that the former (pro-science) make use

of verified scientific articles published by established scientists or recognised or-

ganisations, while conspiracists spread news that is ’neglected’ by the mainstream

media, effectively making it impossible to identify the sources. Another character-

istic of conspiracists is the tendency to simplify all scientific, social and economic

explanations in order to spread the message as widely as possible, to create buzz,

basically to bring the community into the limelight [38].

This work, wants at first retrace the path of past studies, thus identifying the

two types of communities examined (pro-science and conspiracy), what types of

interaction patterns develop within them and how people are connected to each

other. An analysis will be conducted concerning the relationship that different

communities have with the various types of interaction provided by the social

network (in our case the social network is Twitter which has 3 type of interaction:

likes, retweets and replies). Finally, we conducted a quantitative study on the

interaction of these two communities in the common field of debunk news: what

we went to analyse was the presence or absence of patterns that can identify the

behaviour of pro-science users from conspiracy users and vice versa, identifying

what they have in common and what they differ from each other. A study was

therefore conducted to see if it is possible to say that debunk news actually works

and depolarizes conspiracy-minded users, leading them to more moderate and

conciliatory positions; it has been shown that online debunking campaigns create

a backfire effect in usual consumers of conspiracy stories [18], however, we want to

find new feedback and understand more precisely whether there is a threshold of

interaction with debunk news such that users tend to depolarize.

Chapter 1 the first part introduces some fundamental concepts of Graph Theory,

reporting the most important definitions, theorems and algorithms that give

context to the research carried out, then the second part wants to describe

in detail all the methods and tools that have been used in the project;

Chapter 2 describes the final results of applying the methods described in the

previous chapter;
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1 | Foundations of Network Science

The purpose of this chapter is to introduce the theoretical concepts of what is

called Graph Theory, a field of mathematics developed to study the interactions

between subjects and objects, on which Social Network Analysis is based.

Starting from the definitions of the basic elements that make up a network, we

then pass to formalize the main properties, its measurement methods and models

of known networks.

Graph Theory has been applied for years to many fields of study such as biology,

chemistry, sociology, electronics and telecommunications; in recent years the def-

initions have been generalized in such a way that they could also be suitable for

the field of computer science.

The application of these graph models to the real world (they are called networks)

allows us to define their characteristics and study their present behaviors, trying

to predict the growth of the network and the interaction between the subjects that

belong to.

1.1 Graph and Network

A graph can be described as the set of multiple components (called nodes or

vertices) that relate to each other through some connections (called edges).

Usually the components of the node are graphically represented by a dot, while

the edges are represented as straight lines (except in the case in which the same

edge must reconnect to the same starting node). Before going any further, it is

necessary to make a distinction between two types of graphs: undirected graphs

and directed ones.

Undirected graphs has edges without a specific direction, consequently the nodes

will be connected to each other in both ways. Directed graphs, on the other hand,
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specify the direction of the relationship by limiting it.

In the real world, an example of an undirected graph can be represented by a

social network of friendship of an individual, while for a directed graph it can

be represented by the number of links that a certain web page has: therefore all

internet pages that lead to this web page (edges with the arrow pointing to the

page) are called in-degree links, while all the links of the page that lead to other

internet pages are called out-degree links.

A graphical example of these two types of graphs are shown in Figure 1.1.

Using a formal notation, we give the definition of graph in the following way:

Definition 1.1.1 (Graph). A graph G consists of a collection V of vertices and

a collection edges E, for which we write G = (V,E). Each edge e ∈ E is said to

join two vertices, which are called its end points. If e joins u, v ∈ V , we write

e = ⟨u, v⟩.
Vertex u and v in this case are said to be adjacent. Edge e is said to be

incident with vertices u and v, respectively.

Figure 1.1: An example of undirected and directed graph

To indicate the set of vertices of the graph we use the writing V (G), while to

indicate the set of edges we use E(G).

Another important set in graph theory is the neighboring vertices; given a vertex

v, we define with N(v) the set of vertices that are connected by an edge to the

vertex v. More formally, this set can be defined as follows:

Definition 1.1.2 (Neighbor Set). For any graph G and vertex v ∈ V (G), the

neighbor set N(v) of v is the set of vertices (other than v) adjacent to v, that:

N(v)
def
= {w ∈ V (G) | v ̸= w,∃e ∈ E(G) : e = ⟨u, v⟩}
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In order to work mathematically on graphs it is necessary to represent the nodes

and the connections between them through an ideal data structure, also because

generally the size of the graphs is very large.

The best data structure is the matrix and we can distinguish mainly two types:

• Adjacency Matrix: encode the relation of vertex-vertex pairs; it is an i × j

matrix (where i and j are the number of vertices) such that:

Aij =

1 if there is an edge between vertices i and j

0 otherwise

• Incident Matrix: encode the relation of vertex-edge pairs; it is an an n×m

matrix (where n and m are respectively the number of vertices and edges)

such that:

Bnm =

1 if the vertex is connected to the edge

0 otherwise

These data structures are also functional for weighted graphs, i.e. graphs that

have a weight attributed to each edges. In that case it will be enough to modify

the value 1 with the weight of the edge.

1.1.1 Properties of Graph

Degree of a Graph

The most important property of graphs is certainly the definition of the degree of

a graph, as it allows us to study the structure of the network, identifying the most

important nodes and the most evident connections on a very large network. Fur-

thermore, this concept is the basis of many measurements that will be formalized

later on. The degree of a graph is defined as follows:

Definition 1.1.3. The number of edges incident with a vertex i is called the

degree of i, denoted as ki (or in some cases with δ(i)). Loops are counted twice.

The first important theorem concerning the degree of a graph is the following1:

Theorem 1.1.4. For all graphs G, the sum of the vertex degrees is twice the

number of edges, that is, ∑
i∈V (G)

ki = 2 · L

1from now on, we report |E(G)| with the letter L
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Consequently to Theorem 1.1.4 it is possible to calculate the number of links L in

an undirected network with the following formula:

L =
1

2

N∑
i=1

ki

where ki is the degree of the ith node of the network

Another important property related to the definition of degree is that of the average

degree, where for an undirected network it is calculated with the following formula:

⟨k⟩ = 1

N

N∑
i=1

ki =
2L

N

While if we are using directed network, we must distinguish two types of average

degree; one for the incoming degree (kin), and one for the outgoing degree (kout).

Degree Distribution

The notions just mentioned are important to understand the definition of the

degree distribution of a network; this is certainly very useful to figure out the

general structure of the network we are looking at.

As we will see later, the network conformation which are based on relationships

between people (especially on internet, but also in real world) follow a certain

trend in terms of growth of the network and interaction between users. Finally we

can state that degree distribution determines many network phenomena, from the

robustness of a network to the dissemination of information; for now we will limit

ourselves to stating the definition:

Definition 1.1.5. The degree distribution, pk, provides the probability that a

randomly selected node in the network has degree k. Since pk is a probability,

it must be normalized i.e.
∞∑
k=1

pk = 1

For a network with N nodes the degree distribution is the normalized histogram,

given by:

pk =
Nk

N

where Nk is the number of degree-k nodes.
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Finally, if the degree distribution pk of a network is known, it is possible to obtain

the average degree of the network with the following formula:

⟨k⟩ =
∞∑
k=0

k · pk

Clustering Coefficient

The clustering coefficient is another parameter that is usually calculated when

analyzing a graph, and it measures the network’s local link density; considered a

node i, it represents the degree of connection between the neighbors of the nodes

i. More formally, for a node i of degree k, the local clustering coefficient is defined

as follows:

Ci =
2Li

k(ki − 1)

where Li represents the number of links between the ki neighbors of node i.

We can therefore state that the more densely interconnected the neighborhood of

node i, the higher is its local clustering coefficient.

Finally, we can represent the degree of clustering of the entire network using the av-

erage clustering coefficient ⟨C⟩ calculated on the average of all the local clustering

coefficients of all the nodes of the network:

⟨C⟩ = 1

N

N∑
i=1

Ci

1.1.2 Sparsity of Large Network

One of the distinguishing properties of a large network graph is its sparsity, which

is an indication of the extent of its deviation from a fully connected graph. The

more the deviation the higher is the sparsity [39].

Consequently, when we say that a network is sparse, it implies that also its ad-

jacency matrix is sparse, thus creating problems in terms of information storage.

When approaching a real large network, it is better to keep a list of node links

with respect to the adjacency matrix, since an overwhelming fraction of the matrix

elements are zero.

In graph theoretic literature, sparsity is a measure of the extent of a graph’s

deviation from the corresponding fully connected graph. But in many applied

fields like signal processing or economics or sociology, sparsity is a measure to
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indicate relative diversity among related entities with respect to a certain quantity

of interest [39].

In accordance with the results reported in [39], we report the formula and the

consequent explanation of the best sparsity index of a network, that is the GINI

index.

This concentration index is defined as the ratio between the area between the Line

of Equality and the Lorenz curve (A) and the total area under the Line of Equality

(A + B). Figure 1.2 can help identify such areas. It follows that:

GINI index =
A

(A+B)

If a representation is made up of a small number of entities that hold most of the

total quantity, then the GINI index will tend to the value 1, indicating a sparse

representation; vice versa if the distribution of real quantities approaches that of

the Line of Equality, the GINI index will tend towards the value 0.

Figure 1.2: GINI Index calculating respect to Lorenz Curve and the line of perfect

equality; this index was originally thought to be applied in economic field, but find

some application also in social network analysis [40].

1.1.3 Bipartite Network

A bipartite graph is one of the most common types for representing large graphs

whose nodes can be divided into two disjonted sets. This representation is used to

display links between nodes belonging to the same set indirectly passing through

the second set.
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Figure 1.3: Bipartite visualization of a simple graph and projection of V set [41]

We can take the Hollywood actors’ network as an example; each actor (who belongs

to set A) has acted in one or more films (set F) and consequently will have one or

more connections with the nodes of set F.

By visualizing the network as a bipartite graph it is possible to see which actors

have acted in the same films and therefore which actors have been in contact.

An example of a bipartite graph visualization can be seen in Figure 1.3. As you

can see, the nodes belonging to the same set do not communicate directly with

each other; this allows us to create a second type of visualization, eliminating one

of the two sets and thus transforming the indirect links between the elements into

direct links.

1.2 Random Networks

Random networks are a category of graphs that until the last century remained

unknown and not very detailed due to the little interest they aroused. When

researchers discovered that many natural or social phenomena could be explained

(and simulated) through the use of random networks, they began to study them

and formalize their properties.

1.2.1 The Random Network Model

In 1950 the two Erdős-Rènyi researchers developed a model that can be formalized

in the following way:

Definition 1.2.1. An Erdős-Rènyi model of a random network on n vertices,

also referred to as an ER random graph, is an undirected graph Gn,p in which
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each two (distinct) vertices are connected by an edge with probability p. For a

given number M of edges, the ER random graph Gn,M is an undirected graph

in which each of the M edges is incident to randomly chosen pairs of vertices.

For each vertex u of an ER network there are at most n − 1 vertices that can

be neighbors of u, consequently there are n−1
n

possibilities to choose k different

vertices adjacent to it.

The probability of having exactly j vertices (i.e. the degree of the node of a certain

value) is equivalent to pj · (1− p)n−1−j, so that

P [δ(u) = j] =

(
n− 1

j

)
pj(1− p)n−1−j

We can conclude that the degree distribution of an ER network is binomial.

For completeness, we state the theorem concerning the clustering coefficient:

Theorem 1.2.2. The clustering coefficient of any ER(n, p) is equal to p.

1.3 Small World Property

The small world property (also known as Six degree of separation [42]) is one of

the most important properties that characterize modern social networks. Its name

derives from research carried out in past years on the average path by asking to a

person to send letter to another person in the world. To their surprise, they found

that on average 5.5 hops were needed to deliver the letter.

As you can expect, this property is even more important and marked in social

networks, where the number of friendships and above all the possibility of getting

in touch with people who are geographically very distant is certainly greater.

The researchers therefore tried to replicate this property also on an artificially

generated Random Network (such as the ER-Model); Watts and Strogatz were

the first to propose a similar model, now collectively referred to as small-world

networks.

The model works as follows:

Algorithm 1.3.1 (Watts-Strogatz). Consider a set of n vertices v1, v2, . . . , vn

and an (even) number k. In order to ensure that the graph will have relatively

few edges (i.e., it is sparse), choose n and k such that n≫ k ≫ ln(n)≫ 1.
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1. Order the n vertices into a ring and connect each vertex to its first k/2 left-

hand (clockwise) neighbors, and to its k/2 right-hand (counterclockwise)

neighbors, leading to graph G.

2. With probability p, replace each edge ⟨u, v⟩ with an edge ⟨u,w⟩ where w

is a randomly chosen vertex from V (G) other than u, and such that ⟨u,w⟩
is not already contained in edge set of(the modified) G.

1.4 The 80/20 rule

The 80/20 rule (also called the Pareto principle, so named in honor of who for-

mulated this principle, Vilfredo Pareto, an Italian economist scientist who lived in

the 19th century) highlights a characteristic to which many networks are prone;

he observed that a small amount of people earned most of the money, while the

majority of the population earned rather small amounts.

This trend has also been seen on the Internet (most links point to a small percent-

age of sites), or 80 percent of article citations go to 38 percent of scientists, etc.

This principle only points out that most networks follow what is referred to as

Power Law distribution, which we will formalize later.

1.5 Scale-Free Networks

The Watts-Strogatz model is generally considered to be the model that manages

to reproduce the phenomenon of the small world. In 1999 Barabasi and Albert

developed a model that best replicates the behavior evidenced by the Pareto prin-

ciple, that is, that there are a few high-degree nodes, but that the number of nodes

with a high degree decreases exponentially [43].

It has become common practice to call a network scale free if the distribution

of vertex degrees follows a power law. Roughly speaking, this means that the

probability that an arbitrary node has degree k is proportional to (1/k)α for some

number α > 1 called the scaling exponent. In mathematical terms, P [k] ∝ k−α.

For most real-world scale-free networks, it turns out that 2 < α < 3 [44].

For convenience, the power law distribution is reported in a log-log plot, thus

resulting:

logP [k] ∝ −α log k
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1.5.1 Preferential attachment

What most characterizes the Barabasi-Albert model (hereinafter abbreviated as

BA model) is the way in which the network grows; unlike other models, the network

grows both in the number of nodes and in that of edges, connecting these new

nodes following the principle of preferential attachment. This principle consists

in privileging the connection of new nodes with nodes that already have many

connections.

This practice can be summarized in the phrase "Rich get richer" as this mechanism

auto-feeds the growth (exponentially) of nodes with more links, at the expense of

those with few links. The algorithm works as follows:

Algorithm 1.5.1 (Barabàsi-Albert). Consider a (relatively small) ER random

graph G with n0 vertices V0. At each step s > 0:

1. Add a new vertex vs to Vs−1 (i.e., Vs ← Vs−1 ∪ {vs}).

2. Add m ≤ n0 edges to the graph, each edge being incident with vs and a

vertex u from Vs−1 chosen with probability

P[select u] =
δ(u)∑

w∈Vs−1
δ(w)

that is, choosing a vertex u is proportional to the current vertex degree of

u. Vertex u must not have been previously chosen during this step.

3. Stop when n vertices have been added, otherwise repeat the previous two

steps.

A consequence of the principle of preferential attachment, which clearly distin-

guishes the conformation of a scale-free network from a random network, is pre-

cisely the constitution of hubs. With the term hub we indicate all the nodes of

the network that have many connections (high-degree nodes); it has been proven

that if two networks (one scale-free and one random) with the same average degree

and number of nodes are compared, those nodes in the first are several orders of

magnitude larger than the biggest node in a random network [41].

We can therefore conclude that while in a random network hubs are not conceived

as many nodes have a comparable degree, as the size of the network grows polyno-

mially (and the size of the largest nodes grows logarithmically or in any case more

slowly than the number of nodes) , in scale-free networks the size of hubs grows
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exponentially and consequently it is very important that they exist and that they

are studied.

This chapter will deal with the procedural and executive part of the project, start-

ing with the tools used (with definitions and theoretical concepts necessary to

understand the workflow), the software used and what kind of data was collected

and how it was manipulated.

However, it is necessary to make a single premise: the type of data we will be

dealing with are continuous variables, remarking the definition2:

Definition 1.5.2 (Discrete and Continuous variables). A discrete random vari-

able is an random variable whose possible values constitute either a finite set

or a countably infinite set (e.g., the set of all integers, or the set of all positive

integers).

A random variable is continuous if both of the following apply:

1. Its set of possible values consists either of all numbers in a single interval

on the number line (possibly infinite in extent, e.g., from −∞ to ∞) or

all numbers in a disjoint union of such intervals (e.g., [0, 10] ∪ [20, 30]).

2. No possible value of the variable has positive probability, that is, P (X =

c) = 0 for any possible value c.

1.6 Statistical Methods

This section describes all the tools used to analyse the degree distribution (for

more details see Chapter 1.1) of the data collected concerning interactions with

posts (likes, retweets and replies).

The first important thing that characterises a random variable (continuous) is

the probability distribution function, which gives the probability that a random

variable X takes on a certain value in a specific interval. More formally:

Definition 1.6.1 (Probability density function). Let X be a continuous random

variable. Then a probability distribution or probability density function (PDF)

of X is a function f(x) such that for any two numbers a and b with a ≤ b,

P (a ≤ X ≤ b) =

∫ b

a

f(x) dx

2All definitions and formal theoretical concepts of Section 1.6 and 1.6.1 are taken by [45]
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That is, the probability that X takes on a value in the interval [a, b] is the area

above this interval and under the graph of the density function, as illustrated

in Figure 1.4. The graph of f(x) is often referred to as the density curve.

Figure 1.4: P (a ≤ X ≤ b) = the area under the density curve between a and b

Another important tool used in the project is certainly the Comulative Distribution

Function (CDF), which describes the probability that the random variable X takes

from −∞ to a certain value x; as the name implies, you have a graph obtained by

cumulating the probabilities prior to the value. The formal definition is as follows:

Definition 1.6.2 (Cumulative distribution function). The cumulative distri-

bution function F(x) for a continuous random variable X is defined for every

number x by

F (x) = P (X ≤ x) =

∫ x

−∞
f(y) dy

For each x, F(x) is the area under the density curve to the left of x. This is

illustrated in Figure 1.5, where F (x) increases smoothly as x increases.

Figure 1.5: A PDF and associated CDF

In the project, we calculated the PDF of polarized users to see how users were

distributed along all possible values of the polarity index.
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If you would like to read more about how the polarity index is calculated for users,

see Section 2.1 of this chapter.

The last tool we will use to represent the distributions is the Complementary

Cumulative Distribution Function (CCDF), which is simply calculated as

1−F (x) (where F (X) is the CDF mentioned in 1.6.2); it is used to better visualise

the behaviour of empirical heavy-tailed distributions (by projecting the CCDF in

a log-log plots).

Figure 1.6 shows the relationship between CDF, CCDF and CCDF in a log-log

plot.

Figure 1.6: Comparison between a CDF, its CCDF and the CCDF in a log-log

plot.

The CCDF (in log-log plot) came in handy to visualise the trend of the empir-

ical distribution of total interactions, compared to the CCDFs of the individual

classes of interactions (like, retweet, reply) for the community of pro-science and

conspiracy users.

1.6.1 Known distributions

In this section, we will introduce two of the most popular common distributions

related to Social Network Analysis; as we will see later, they have properties that

are very close to the empirical distribution of user interactions in social networks.

For each of these distributions, work was carried out to find the parameters that

best fit our empirical distribution (for both the science community and the con-

spiracy community).
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Lognormal distribution

The log-normal distribution is a right skewed continuous probability distribution

is used extensively in engineering, medical and financial analysis.

It is defined by the definition:

Definition 1.6.3 (Lognormal distribution). A nonnegative random variable

X is said to have a lognormal distribution if the random variable Y = ln(X)

has a normal distribution. The resulting PDF of a lognormal random variable

when ln(X) is normally distributed with parameters µ (mean) and σ (standard

deviation) is

f(x;µ, σ) =


1√

2πσx
e−

[ln(x)−µ]2

2σ2 x ≥ 0

0 x < 0

It is very important to point out that the parameters µ and σ are not the mean

and standard deviation of X but of ln(X).

Finally, for the sake of completeness, we state that the mean and variance of a

lognormal random variable can be shown to be:

E(X) = eµ+
σ2

2 V ar(X) = e2µ+σ2 · ( eσ2 − 1)

Various examples of lognormal distributions with different values of the mu and

sigma parameters can be seen in Figure 1.7.

Figure 1.7: Various examples of lognormal distribution; we can easly see the right-

skewness of the distribution as µ and σ tends to be equal to 1
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Power law distribution

The power-law distribution, as stated in Chapter 1.5, is the distribution that

the scientific literature has decreed as the best type of distribution that can ap-

proximate the degree distribution of a social network (or, in general, a scale free

network).

It has become common practice to call a network scale free if the distribution of

vertex degrees follows a power law3.

Roughly speaking, this means that the probability that an arbitrary node has

degree k is proportional to (1/k)α for some number α > 1 called the scaling

exponent. In mathematical terms,

P [k] ∝ k−α (1.1)

For most real-world scale-free networks, it turns out that 2 < α < 3 [44].

For convenience, the power law distribution is reported in a log-log plot, thus

resulting:

logP [k] ∝ −α log k

However, it is important to remember as written in [41] that in real systems we

rarely observe a degree distribution that follows a pure power law. Instead, for

most real systems pk has two recurring features as displayed in Figure 1.8:

• Low-degree saturation is a common deviation from the power-law behav-

ior. Its signature is a flattened pk for k < ksat. This indicates that we have

fewer small degree nodes than expected for a pure power law.

• High-degree cutoff appears as a rapid drop in pk for k > kcut, indicating

that we have fewer high-degree nodes than expected in a pure power law.

We can therefore reformulate our initial Formula (1.1) as follows:

P [k] ∝ (k + ksat)
−αe

− k
kcut (1.2)

1.6.2 Testing Goodness of Fit (GoF)

Once both distributions that best approximate the empirical distribution have

been found, we can then proceed to compare them.
3Obviously, the rank of a node (in our case a tweet), is given by the number of interactions

that generated that tweet.

22



Figure 1.8: Example distribution that makes evident the two major problems in

real distributions

Two-side p-value

Before introducing the concept of a two-sided p-value test, the definition of a test

statistic and p-value must first be stated4.

The test statistic T is a random variable constructed from two other random

variables (mean X̄ and sample standard deviation S) in the following way:

T =
X̄ − µ0

S/
√
n

Its value is subject to uncertainty prior to obtaining the sample data.

The last important thing is that if the population distribution is normal, Gosset’s

Theorem implies that when the null hypothesis is true, T has a t distribution with

n− 1 degrees of freedom.

Definition 1.6.4 (P-value). The P-value is the probability, calculated assum-

ing that the null hypothesis is true, of obtaining a value of the test statistic at

least as contradictory to H0 as the value calculated from the available sample.

The smaller the P-value, the more the data contradicts the null hypothesis, so

H0 should be rejected in favor of Ha if the P-value is sufficiently small.

More specifically, select a number α reasonably close to 0; then reject the null

hypothesis if P-value ≤ α and do not reject the null hypothesis if P-value > α.

The selected α is called the significance level of the test.

Usually the values of the significance level α are 0.05, 0.01 and 0.001. In this thesis

will be used always α = 0.05.

4The theoretical part of this section is taken from [46].
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Definition 1.6.5 (One sample T test). Consider testing the null hypothesis

H0 : µ = µ0 based on a random sample X1, X2, . . . , Xn from a normal population

distribution (the plausibility of the normality assumption should be checked by

examining a normal probability plot). The test statistic is

T =
X̂ − µ0

S/
√
n

The calculated value of this test statistic is t = x̂−µ0

s/
√
n
. The determination of the

P-value depends on the choice of Ha (see Table 1.1).

Alternative Hypotesis P-value

Ha : µ > µ0 Area under the tn−1 curve to the right of t

Ha : µ < µ0 Area under the tn−1 curve to the left of t

H0 : µ ̸= µ0 2 · (Area under the tn−1 curve to the right of |t|)

Table 1.1: Table summarising possible cases for the cal-

culation of the p-value.

As far as our thesis is concerned, we only calculated the two-sided p-value as it is

more suitable for our type of investigation, as we only need to find out whether or

not to reject the null hypothesis.

In order to be more explanatory with regard to the case we are going to analyse

(the third), in Figure 1.9 it is possible to see graphically what is meant by p-value

and all the elements involved.

Figure 1.9: Two-tailed (sided) test where Ha contains the inequality ̸=

Kolgomorov-Smirnov (K-S) Test Statistic

The first numerical measurement that was performed was the Kolgomorov-Smirnov

Test, carried out to see how far the lognormal or power law distribution deviates
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from the empirical one. Note that this test will also be used in estimating the best

power law distribution.

This test is formally defined as follows5: The K-S one-sample test compares the

CDF of empirical distribution against the chosen distribution; basically it finds

the point at which these two distributions show the largest divergence. Then, the

test uses the largest divergence to identify a two-tailed probability estimate p to

determine if the samples are statistically similar or different.

To perform a K-S test, we determine the relative empirical frequency distribution

based on the observed sample. We then calculate its midpoint M and its standard

deviation s as follows:

M =
xmax + xmin

2
s =

√∑
(fix2

i )−
(
∑

fixi)2

n

n− 1

where xmax and xmin are the largest and smallest values of the sample respectively,

xi is the ith value of the sample, fi is the frequency associated with the ith value

and n is the number of observed samples. We need these two elements to compute

the so-called z-scores to determine the probability associated with each sample

value. These p-values are the relative frequencies of the empirical CDF f̂r.

Finally, we find the relative values of the obseverd frequency distribution fr. Z-

scores and fr are computed with the following formula:

z =

∣∣∣∣xi −M

s

∣∣∣∣ fr =
fi
n

Since the Kolmogorov–Smirnov test uses CDF, both the relative empirical fre-

quency distribution and relative observed frequency distribution must be converted

into cumulative frequency distributions F̂xi
and Sxi, respectively. We then calcu-

late the absolute value divergence D̃ and D between the CDF:

D̃ =
∣∣F̂xi
− Sxi

∣∣ D =
∣∣F̂xi
− Sxi−1

∣∣
Then we use the largest divergence to calculate the K-S test statistic Z:

Z =
√
nmax(|D|, |D̃|)

Vuong’s Test

Without going into specific details, as the calculation method is very complex and

not functional for our purpose, the Vuong’s test is a likelihood ratio test for model
5The theoretical part of this section is taken from [46].
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selection using the Kullback-Leibler criteria. Importantly, the two models must

be non-nested6.

The test statistic, R, is the ratio of the log-likelihoods of the data between the two

competing models. The sign of R indicates which model is better [48].

More formally, this statistic test this two hypotheses:

• H0: The two models are equally closed to the true data.

• H1: Model 1 is closer than model 2.

1.6.3 Correlation

After having thoroughly analysed the distributions of our network, we went on

to analyse whether there is a linear correlation between the different types of

interaction (like, retweet and reply). Of the many types of correlation, we chose

the Pearson Correlation7:

Definition 1.6.6 (Pearson Correlation). Let a and b be two zero-mean real-

valued random variables. The Pearson correlation coefficient (PCC) is defined

as

ρ(a, b) =
E(ab)

σaσb

where E(ab) is the cross-correlation between a and b, and σ2
b = E(b2) are the

variances of the signals a and b, respectively.

6Two models (or hypotheses) are said to be "non-nested" if neither can be obtained from

the other by the imposition of appropriate parametric restrictions or as a limit of a suitable

approximation. This is our case since power law distribution and lognormal distribution are

non-nested models [47].
7Definition taken from [49].
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2 | Measuring polarization on

Twitter: A case study

This chapter will deal with the elaborated plots and numerical results of the

project; the first part announces the results obtained from downloading the data

and what elements it consists of and in proportion, while the second part begins

with the results of fitting the distributions, leading to the results of the polarity

and finally the significant results we obtained in quantitatively studying the users

who interacted with the debunk news.

2.1 Polarity Index

The method used to identify polarised users is as simple as it is very effective:

once we have downloaded the additional information for each tweet (the second

dataset mentioned in Section 2.2.1), we identify a polarised user of a faction if of all

their interactions in our possession more than 95% are attributable to a particular

community.

More formally, let us assume that user u has performed x and y likes in science

and conspiracy posts, then

ρ(u) =
y − x

y + x

Thus, user u for whom ρ(u) = −1 is biased towards the scientific community,

whereas if ρ(u) = 1 he is biased towards the conspiracy community.

We define the polarisation of a user ρ ∈ [−1, 1] as the ratio of the difference in

interactions between conspiracy and proscience posts, divided by the total number

of interactions.
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2.2 Datasets

The tweets of the accounts we decided to download are essentially the most relevant

accounts of each community and were carefully hand-selected; therefore, being

highly polarised and popular accounts, we assumed that all posts made by these

accounts belonged to one of the three categories (Science, Conspiracy, Debunk).

The second clarification that needs to be made concerns the size of these three

communities on Twitter Italy; the community of pro-science people is clearly larger

than the conspiracy community (this is due to the fact that even in real life it is

possible to see that conspiracy people are just a small minority in society).

More in detail, we have chosen:

• 13 pro-science accounts (1.8 mln total followers)

• 13 conspiracy accounts (320 k total followers)

• 6 debunk news accounts (570 k total followers)

The account usernames for each category are reported in Table 2.1.

Science Conspiracy Debunk

RobertoBurioni MartinKeufaver Bufalenet

esaspaceflight Autismo_Vaccini Labbufala

valigiablu Pianetablunews iovaccino

le_scienze MinervaMCGrani1 disinformatico

oggiscienza a_meluzzi butacit

Focus_it MarcelloLyotard DavidPuente

dariobressanini PotereVerita

cicap dessere88

esa_italia piersar62

mediainaf byoblu

ASI_spazio sapereeundovere

wireditalia barbarab1974

gravitazeroeu Silvana_demari

Table 2.1: Table showing all the usernames of the ac-

counts taken into account and their category.

In conclusion, when analysing the results, the balance of importance between the

two communities must be taken into account.
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2.2.1 Tools and software

The software that was used in the information retrieval phase was mainly RStudio

and Python (the latter programming language through the interface of Anaconda

and Jupyter Notebook).

In fact, both tools contain external libraries that make it easy to interface with

Twitter’s API; in fact, the possibility of creating automatic scripts made it possible

to overcome the fact that Twitter only allows you to download 10 million posts per

month for each Academic account1, but most importantly the limit of 750 requests

every 15 minutes to retrieve information concerning the likes and retweets of the

downloaded posts (which corresponds to approximately 10,000 interactions every

15 minutes).

To give a time reference, in order to get all the tweets of 33 Twitter Account of

the last 4 years (gen 18 - gen 22) has been completed within about three months,

using two accounts with Academic Access and four other accounts without special

privileges (which were dedicated to retrieving tweet information such as likes and

retweets).

Dataset cleaning

The amount of data downloaded is very substantial, both in terms of the number

and the information that can be obtained for each tweet/user; I have only retained

the information necessary for the purposes of my research, eliminating superfluous

information.

The following information has been retained for each tweet:

Information Name Description

ID A numerical value that uniquely

identifies the individual tweet.

Conversation ID A numeric value that uniquely identifies

the tweet conversation.

Referenced_tweet_replyTo_ID A numeric value identifying the ID of

the tweet being replied to.

1Academic accounts are verified Twitter accounts that have researcher privileges: without

them, it is only possible to download tweets created within the last 30 days, and this type of

account also has higher rate limits and tweet caps.
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Information Name Description

Referenced_tweet_Retweeted_ID Numerical value identifying the ID of

the tweet that was retweeted.

Referenced_tweet_Quoted_ID Numerical value identifying the ID of

the tweet that was mentioned.

Author_ID Unique numeric value identifying

the author of the tweet.

Created_At Date of creation of the tweet.

Like_Count Number of likes the tweet received

when it was downloaded.

Quote_Count Number of quotes the tweet received

when it was downloaded.

Reply_Count Number of replies the tweet received

when it was downloaded.

Category It identifies at what community

the tweet belong (Science, Conspiracy, Debunk).

Table 2.2: Table showing all the information retrieved

for each tweet together with its description

The second dataset that was created concerns the interactions with each tweet

(likes and retweets); again, it was decided to keep only a few which are summarised

in the next table:

Information Name Description

ID_User_Action A numerical value that uniquely identifies

the individual user.

Follower_Count Number of followers the user has.

Following_Count Number of person who follows the user.

Tweet_Count Number of tweet the user has.

Author_Tweet_ID ID of the tweet that the interaction is referred.

Category It identifies at what community of users

the interaction belong.
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Information Name Description

Like_retw Variable that say if the interaction is a

retweet or like action.

Table 2.3: Table summarising all the information re-

trieved for each interaction (like, retweet) together with

its own description.

2.3 Dataset Overview

A total of 165.000 tweets and most of its iterations were downloaded, resulting in

approximately 24.2 million. All these iterations were generated by 928.000 distinct

users. In detail, the following were downloaded:

No. tweets No. interactions No. distinct users

Science 45,000 10 milions 550,000

Conspiracy 60,000 10,6 milions 163,000

Debunk 63,000 3,6 milions 215,000

Table 2.4: Table showing for each type of community,

the number of tweets, the number of interactions and the

number of distinct users that were retrieved.

It is necessary to point out that the number of distinct users is given by the users

who have interacted with the tweets of the 33 reference accounts, while in the our

analysis we consider the community made of polarized users that will be ranked.

In this regard, not of all this users were classified into one of the three categories;

in fact, about 40 K users were not given a category and were discarded from the

subsequent analyses as irrelevant for our purposes.

2.4 Elaboration

Once the datasets had been reorganised, the resulting volume of data was analysed

quantitatively.

The first type of analysis, that you could see in Figure 2.1, is usually performed to

observe the behaviour of the attention patterns of our networks through the CCDF

(Complementary, Cumulative Distribution Function, see Chapter 1.6 for detailed
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explanations about method and theory) of the number of total interactions, likes,

retweets and replies.

This distribution is very useful to understand the general community behaviour in

a social network; the cascading behaviour in log-log plot confirms that our network

possesses the same characteristics as Scale-Free networks (see Chapter 1.5 for more

details).

It is very clear that both communities exhibit similar behaviour, i.e. all distribu-

tions have heavy tails.
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Figure 2.1: Empirical CCDF of users’ activity (all activity, like, retweet, reply) for

tweets grouped by the categories of science (light blue) and conspiracy (orange).

The distributions are indicating heavy-tailed consumption patterns.

2.4.1 Goodness Of Fit (GoF) of the models

It was decided to further investigate the best distribution that can approximate

the behaviour of the two communities.

We know from the literature that the frequency distributions of interactions of

people can be approximated (in the general case) by a power-law distribution

because the distribution is very heavy-tailed. To further confirm this view, I

tried to see if another very popular type of distributions, such as the lognormal

distribution, could compete with a power-law distribution.
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We therefore proceeded to check the fitting of a lognormal distribution, checking

the goodness of fit graphically (see Figure 2.2)

Fitting Lognormal

As explained in Section 1.6.1, the lognormal distribution has two parameters,

which were estimated by means of a library function fitting this distribution to

the empirical data provided. The parameters of the two distributions and the K-S

test between the model and the empirical data are shown in Table 2.5, while in

Figure 2.2, one can see how the two distributions fit the data quite well; the

results of the K-S test are very low, probably too low, which makes us think it

might be an overfitting problem.

Mean St. deviation K-S test

Science 6.079 1.095 0.01003

Conspiracy 7.245 0.490 0.01100

Table 2.5: Summary table showing estimated parameters

for the two lognormal distributions.
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Figure 2.2: Fitting of lognormal distributions (blue line) in the two scientific and

conspiracy communities.
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Fitting Power law

The fitting of the power law distribution was much more complex; initially, the

values of K_min2 and alpha were estimated such that they fit the basic power law

(Formula 1.1). We want to find the best tuple which minimised the KS distance

D ; so we proceed calculating this distance for every possible tuple. In Figure

2.3 for Science community and in Figure 2.4 for Conspiracy community,

it can be seen graphically in graph A that the value of K_min was in the global

minimum of D, while in the second graph B we can see all the possible values

of alpha associated with each K_min; finally in the third graph C we can see

how the best distribution with the best parameters approximates the empirical

distribution in a log-log plot.

The values of both models are summarised in Table 2.6.

Fitting power law distribution for Science Community
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Figure 2.3: Finding the best K-min and alpha parameters (A and B) and fitting

the best distribution to the empirical data (C)

D α K_min

Science 0.0346 3.856 6823

Conspiracy 0.0490 6.095 3102

Table 2.6: Summary table of calculated parameters for

the first type of power law.

2since for any positive value of alpha the distribution diverges when k tends to zero, it is

normal to impose a minimum value K_min
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Fitting power law distribution for Conspiracy Community
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Figure 2.4: Finding the best K-min and alpha parameters (A and B) and fitting

the best distribution to the empirical data (C)

At this point, I moved on to find a fitting for the second power law distribution

Formula 1.2 stated in Section 1.6.1, in order to obtain the most generic possible

model for the empirical distribution.

The values of k_sat and k_cut were estimated as follows:

1. All possible tuples of k_min and k_max were computed (with the first

k_min computed as the lower bound);

2. At this point, for each pair, the KS distance D was computed and we select

the tuple which minimize D.

The final values of k_sat and k_cut thus correspond respectively to the values of

k_min and k_max that minimise D.

The values obtained for both communities are shown in Table 2.7, while in Figure

2.5 you can see the fitting of the new distribution in comparison with the first type

of power law and the lognormal distributions.

D α K_sat K_cut p-value

Science 8.5676 3.950 7129 7146 0.505

Conspiracy 0.01346 4.4423 1973 1974 0.620

Table 2.7: Summary table of calculated parameters for

the second type of power law.
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As can be seen from Table 2.7, the results of these new power laws are peculiar: the

values of the K-S distance D are rather low compared to the level of generalisation

we wanted to achieve, however α values are more in line with the type of network

we expect to analyse. The values of k_sat and k_cut are far too close to each

other, probably in order to obtain a result that best approximates the model,

we need to take into account not only the tuple with the lowest D, but also a

minimum distance between k_sat and k_cut. Finally, the p-value shows that the

null hypothesis cannot be rejected since p > 1%, and consequently our distribution

could be power law.

Comparison of all distributions processed so far
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Figure 2.5: Comparison of the lognormal distribution (in blue) and the powerlaw

distribution taking into account the cutoff and saturation (in red).

As can be seen from Figure 2.5, all distributions approximate our empirical

distribution very well, however in the case of the lognormal distribution there

is an overfitting problem that does not allow us to obtain a generally valid

model for every distribution of this kind.

Furthermore, we can observe how from the first power law the α value is very

high (even for the conspiracy community it reaches 6!), when theory tells us that

a Scale Free network value should settle 2 ≤ α ≤ 4 (see Chapter 1.5 for further

details) value.

Finally, another factor that makes us say that the simple power law suffers from

the problem of overfitting are the values of the K-S distance D which are far

too low.
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In conclusion, it is safe to say that the best model is the second power law with

k_sat and k_cut.

However, in order to obtain yet another numerical verification, we performed a

Vuong’s test and calculated the two-sided p-value, obtaining results which confirm

the superiority of the latter over the lognormal model. The values obtained are

the following:

• Science Community (Power law vs Lognormal):

– Vuong’s Test: 0.2023

– Two sided p-value: 0.043

• Conspiracy Community (Power law vs Lognormal):

– Vuong’s Test: 0.3217

– Two sided p-value: 0.035

The results of the Vuong’s test together with the two sided p-value show that in

both cases the best model is the power law distribution; in fact, the numerical

value of the Vuong’s test is positive, therefore preferring the first model, while the

two sided p-value is 0.01 < p-value ≤ 0.05 so we can reject the null hypothesis

and state that the test is significant (for a better understanding of the results see

Section 1.6.2 and 1.6.2).

These attention patterns and mathematical confirmation reveal how both echo-

chambers behave similarly and can be well approximated by a power-law distri-

bution (but taking only the specific case it could be approximated by a lognormal

distribution).

2.4.2 Correlation between different type of interaction

The next step was to check whether there is a correlation between the three dif-

ferent types of interaction; to do this, the most suitable Pearson Correlation was

used.

The graphs in Figures 2.6 and 2.7 show the correlation situation between the

following pairs of interactions: like-retweet, like-reply, retweet-reply.

Looking at the correlation value, we can see that there is no difference in correlation

between the two communities for the like-retweet pair, while the value is higher in

the conspiracy community in the other two pairs.
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Pearson Correlation on proscience community

R = 0.88, p < 2.2e−16
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Figure 2.6: The three graphs showing the correlation between pairs of interactions

(like, retweet, reply) for the proscience community

Pearson Correlation on conspiracy community
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Figure 2.7: The three graphs showing the correlation between pairs of interactions

(like, retweet, reply) for the conspiracy community

This gives us another very useful piece of information, namely that the conspiracy

community is more likely to retweet a piece of content by commenting on it (and

thus potentially create other subtopics from the same content).

The interaction of sharing (which is known to be more important for the spread

of tweets), is supported by a comment that reinforces the shared content and thus

the affiliation of the person in the community.
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Figure 2.8: Probability density function (PDF) of the bias of all users counted

against the total number of downloaded interactions.

2.4.3 Polarized Users

At this point, after analysing the tweets of the most influential users of each com-

munity (which we selected by hand), and after analysing what type of interaction

users have with them, we move on to the phase of identifying the polarised users

for each community.

The following graph in Figure 2.8 shows the probability density function (PDF)

for the polarisation of all the users in the dataset; as can be seen, most of the users

show a very clear polarisation towards the two extremes, while only a very small

proportion are not polarised to one side or the other.

Finally, this graph gives us yet another confirmation of how the community of

pro-science users is much larger in number than that of conspiracists.

Once the polarised users were identified, the first analysis I thought it was necessary

to see in percentage terms how the two types of iterations were distributed between

the two communities.

The first graph in Figure 2.9 shows how in absolute terms pro-science users

performed the most interactions compared to conspiracy users.

It is possible, however, to notice a consistent percentage difference between the
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likes and retweets made by conspiracists; against 17% of likes, the percentage

of retweets is considerably higher (21%). This could be a first clue as to why the

conspiracy phenomenon sometimes appears larger than it is: conspiracy users tend

to interact with information more by sharing than by liking.

This practice not only reinforces the dissemination of information in general in the

social network, but also strengthens the loyalty of the conspiracy user.

Figure 2.9: Graph comparing the two types of interaction (like and retweet) and

the percentage of use in the two communities.

A very interesting fact concerns the number of users of the two communities who

interacted with a tweet from a debunk profile: we can see that of 500,000 distinct

users polarised in the scientific community, 117,000 interacted (corresponding to

23.4%), while of 119,000 users polarised in the conspiracy community, only 10,313

users interacted (corresponding to 8.7%). We can therefore state, as repeatedly

confirmed by other publications in the past, that the scientific community is the

largest consumer of debunk posts.

Interaction with debunking

This subsection is dedicated to investigating the behaviour of users of both anal-

ysed communities when interacting in the common field of debunk pages; the

purpose of debunk pages should be to debunk fake news and rise above the debate

to say what is objectively true from what is not.

We therefore took the users who had interacted with these posts from our dataset

and calculated:
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• the number of interactions they had with these posts;

• how much time (calculated in months) passed from the first interaction with

a post on a debunk page to the last;

• calculate the polarity index before/after the first/last interaction with a de-

bunk post.

At this point, we calculate the frequency of interaction respect to the the number of

months and the difference in polarisation between before and after the interactions;

these information came in handy for the representations in Figure 2.10 and 2.11.

Before looking at the results, it is good to remember that the difference in the

polarisation index goes from -2 to +2, so when there are points in the graph with

these values of coordinate, it will mean that the users have shifted their polarisation

(they go from conspiracists to pro-science and vice versa).
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Figure 2.10: Binned scatter plot showing the distribution of users polarity among

the months that has been passed from the first interaction on debunk news posts

to the last. Above and below the red dashed lines there are the users who shift its

polaritazion.

The first graph in Figure 2.10 aims to highlight a possible correlation between the

users’ shift of polarisation and how long they have been interacting with debunk

news; it can be seen that the interaction that lasted the longest is more performed

by people who shift their polarisation towards the conspiracy community, while

those who veered towards the scientific community had an interaction that lasted

much less.

This result is very interesting as it could give us information on the exposure of

debunk posts in the long run, or it could confirm once again how conspiracists are
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Figure 2.11: Binned scatter plot showing the distribution of the users taking into

account the difference in bias and the frequency with which they interacted with

debunking posts over time. Above and below the red dashed lines there are the

users who shift its polaritazion.

more determined to defend their ideas by interacting in spaces that do not belong

to their community.

Observing this result, I then proceeded to check whether this trend also existed in

relation to the frequency with debunk posts; indeed, Figure 2.11 reveals another

important piece of information: there are few users who comment on debunk posts

over a long period of time, yet those who do so during the time recorded a bias

towards the conspiracy community.

As a final analysis, I wanted to analyse how users behaved in quantitative terms,

i.e. to see if there was a shift in polarisation from one side to the other throughout

this observation period (which would justify the role that debunk pages play, i.e.

to depolarise the debate and downsize the community of conspiracy-mongers who

use fake news). The results are not encouraging as we cannot see a consistent

movement of people.

More in detail (people with neutral polarisation are not considered as they are

perfectly split between the two communities):

• of the 37936 people polarised towards the scientific community, only in 110

we observe a shift in their polarisation (the 0.2% of people);

• of the 5031 people polarised towards the conspiracy community, in 60 users

we observe a shift of their polarisation (the 1.2% of people).
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These users are all contained above and below the red dotted horizontal lines

positioned in the graphs at y = 1 and y = −1 respectively.
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Figure 2.12: Box plot showing the behaviour of users who changed bias in terms

of time spent interacting with debunk pages and number of interactions.

The last result that was processed concerns the users where we observe a shift in

their polarisation; we wanted to see if they had any behaviour (on a quantitative

level) that differentiated them. We noted that users who switched from conspiracy

community to science community had a higher interaction time (about 25 months

on average) than those who made the opposite switch (10 months on average).

Finally, the average number of interactions is very similar, leading us to exclude

this factor.

Pausing to think about the final results, we could see that a larger proportion

of the conspiracy community changed their bias than the other side; however, to

make this change on average takes more than twice as long to interact with these

debunk pages.
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Conclusions

It was recently demonstrated in [36] and [37] that there is a link between the

polarization of users in social networks and the spread of disinformation (through

the sharing of fake news). Furthermore, the existence and main characteristics of

echo chambers have been studied in depth.

In this study, we investigated various models that could approximate the inter-

actions between users of two communities (scientific and conspiracy) in order to

apply them in other contexts. Also in relation to the two communities, a study was

carried out on the correlations between the different types of interaction possible

on Twitter, showing that the conspiracy community uses the sharing tool much

more than the others (in fact amplifying the capacity for spreading the fake news

that is the basis of the community itself).

Finally, the polarization index of users was studied, first showing the general dis-

tribution, and then going on to see how the polarization index changes over time

when users interact in a common field that is the debunk pages. Quantitative

parameters were calculated that could motivate this change in polarization such

as the number of interactions or the frequency of them over time, showing how

conspiracy users interact much more frequently and for longer periods with such

debunk posts. Finally, the flows of people who moved from one community to

another were analysed, finding that 1.2% of the conspiracy community moved to

the scientific community, while only 0.2% made the opposite shift.

However, this shift did not occur with the same timing: while the average time of

interaction with the debunk pages before the change of polarization was 25 months

for conspiracists, it took only 10 months for those in the scientific community, with

the same average number of interactions.
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This result is certainly positive from a numerical point of view, as we can say that

the conspiracy community has decreased by 1% in these 4 years, however, the shift

of polarized users to the scientific community should be monitored, as it took them

less than half the time to switch to the other side.

Future Work

This work can certainly be further developed by conducting this type of analysis on

other type of social networks, opposing types of communities, or other nationalities

(our Italian case in fact may not be representative of the European case or even

compared to the world/general case), comparing the results with this one. It is

certainly possible to associate this type of quantitative study with a qualitative

one concerning the texts produced by the users and the quality of the interactions

made (e.g. to understand which users may be bots, and which are the hubs and

authorities of each community). With regard to the development of the part

concerning the effectiveness of fake news, the network of pages could be better

analysed, understanding which articles in particular have been most effective in

depolarizing users and which have only exacerbated the debate and created ill-

feelings on both sides.
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