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Abstract

Feature selection techniques are essentially used in the data analysis tasks,
one is frequently dealt with many features. It is computationally expensive
to optimize these features that are both redundant and irrelevant. A ton
of methods approach to this technique, however, they still have their own
limitations. In this thesis, dominant-set clustering and multidimensional
interaction information (MII) method are considered to select the most
informative features from original input features set. MII not only takes
into account a pairwise relation, but also examines higher order relations.
Utilization of dominant-set clustering, the most informative features are
selected in each dominant set. This narrows the space for higher order
relation searching. As a result, the increasing of redundancy is eliminated in
particular feature combinations. In this thesis, using the above method for
feature selection with high dimensional data as well as comparing with other
methods.
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Chapter 1

Introduction

Feature selection is the process of picking out a group of features (or
variables) that minimizes redundancy and maximize relevance.  These
features occur in high-dimensional datasets which are a significant challenge
for pattern recognition and machine learning. The data set practically exists
hundreds, even thousands, features, but many of them are either redundant
or irrelevant. They will enhance the overfitting problem and computational
burden. There is a ton of methods having been used to narrow these issues.
Researchers commonly use mutual information as a good way of measuring
the relevance between two features to figure out the feature selection problem.
There are a lot of feature selection criteria based on mutual information.

For instance, Battiti [3] suggested Mutual Information-Based
Feature Selection (MIFS) Criterion where feature f 1is selected as
the one that maximizes I(C;f;)) — D cql(f.5). Peng at al
[4] developed the Maximum-Relevance Minimum-Redundancy(MRMR)
criterion which is equivalent with MIFS with [ = % Yang and
Moody’s [5] proposed Joint Mutual Information (JMI) finding the
information between a joint random Variable and the targets, given by

Z;i I(Xo XY = I1(X,,Y) - =50 (X, Xy) — I(Xn; Xi|Y)]. Kwak
and Choi [6] proposed an 1mpr0vement to MIFS, called MIFS-U. It is more
suitable to solve the problem that the information is distributed uniformly in

the input features. The criterion is I(X,;Y) — 3>, _ iIHX;‘(’Y[(Xn,Xk). In

practice, using the optimal value of § = 1. Fleuret [7] has developed one
of the best criteria, based on Conditional Mutual Information Maximization
ming [[(X,; Y[ Xy]] = [(Xn;Y) — maxy [[(X,; Xi) — 1(Xp; Xk|Y)].  On the
other hand, in the Computer Vision literature, Lin and Tang [8] developed
Conditional Infomax Feature Extraction; and Vidal-Naquet and Ullman [9]
proposed Informative Fragments criterion.

However, there are two considerable limitations among these criteria.



First, the features are only considered as variance. They are completely
independent to the target class. In other words, the features will be
correlated with target class if it is relevant. Second, the significant limitation
is that most criteria only consider the pairwise feature interaction. They do
not find out the influence of other features. An advanced solution for the
problem above will be introduced in this thesis, so called multidimensional
interaction information (MII) [1]. In this case, the dominant-set clustering
is used to select subsets of relevant features, thus each cluster has a small
set of features. Much feature selection space will be limited, since most
informative features can be grouped by dominant-set clustering based on
similarity measure. For each dominant set, calculating the multidimensional
interaction information between feature vector F' = f1, ..., f,, and target class
C by I(F;c) = I(f1, f2y -y fn; C). The Pazen window method will be used to
estimate the input distribution. Finally, the method introduced in this thesis
will be applied to select the feature that maximizes the multidimensional
mutual information.



Chapter 2

Background Concept

2.1 Entropy and Mutual Information

Entropy (introduced by Shannon) is used to measure the unpredictability
of information. In other words, how much information of a random
variable uncertainty is produced. Suppose a finite set ) defines a random
variable Y with possible values {yi,...,y,} and probability mass function
p(y) = Pr(Y =y),y € Y. The normalization condition has to be satisfied:

> ply) =1 (2.1)

yeY

The entropy H(Y) of the random variable Y is defined by Shannon as:

=—> p(y)log, ply (2.2)

yey

where ylog, y = 0 when y — 0, and the entropy is denoted in bits.

Intuitively, the entropy is the information which is missed during
the process: the larger the entropy, the less a priority information
is received from the random variable value. “Note that entropy is
a function of the distribution of Y. It does not depend on the
actual values taken by a random variable Y, but only on the probabilities” [11].

Let consider the random variables Y and X are dependent. The
conditional entropy (an amount of the information’s unpredictability) is
obtained on variable Y if the variable X is given. In other words, it is a



measure of the degree of dependence between two such random variables.
The conditional entropy H(Y|X) is defined as

H(Y[X) == p(z) Y plylz)log, p(ylz) (2.3)

reX yey

where p(y|x) is the conditional probability distribution for the random
variable Y given random variable X. It can be calculated based on Bayes’
theorem:

p(y,x) _ p(zly)p(y)
p(ylz) = = (2.4)
px px
Before presenting mutual information, Let inspect the distance between
two distributions, called relative entropy or Kullback-Leibler distance. It is
defined as

D(pllg) = p(y)log, y) (2.5)
yeY y

where p(y) and ¢(y) are two probability mass functions, and there is a
convention when p(y) or ¢(y) is equal zero that Olog, 3 = 0, 0log, #'y) =0,

and 0log, I% = 00.

Mutual information (MI) of two random variables is a measure of
the amount of information that obtained about one random variable based
on about another. It is considered as the reduction in certainty about
a random variable on account of the knowledge of the other. Higher
mutual information, larger reduction in uncertainty or more relevant between
two random variables. Lower mutual information, smaller reduction in
uncertainty or less related between two random variables Let p(y, z) is a joint
probability distribution of two random variables Y and X, p(y) and p(x) are
two marginal probability distributions.

The mutual information I(Y,X) is defined as the Kullback-Leibler
distance between the product of two marginal probability distributions and
joint probability distribution:

=> Y ply.z)log, (()p()) (2.6)

yeY zeX

The relation between the entropy and mutual information is illustrated
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Figure 2.1: Relation between entropy and mutual information

in figure 2.1. Mutual information is a relative entropy, thus it should be
greater than or equal zero (I(Y,X) > 0). When the equality is present, it
indicates that two random variables are completely irrelevant. Since these
such properties of mutual information are really useful in selection feature
context, and how to apply the mutual information in this prospect will be
mentioned in the next chapters.

2.2 Basic Graph-Theoretic Definitions and Con-
cepts

Conceptually, a graph is the relationship between nodes (called vertices) and
lines (called edges). These vertices are connected by edges as figure 2.2 shows

—
>

'
Figure 2.2: A graph example '

Let V is a finite set of vertices, and E is a set of edges. A simple graph
G is a pair of sets (V, F). In the graph, the vertices and the edges represent



the objects and the relationship among these objects respectively. A measure
of edge value is called edge weight.

There are various types of graphs, they depend on the measure of edge
weights and the direction of edges. An edge is a bi-directed pairwise vertex
(or no direction), called an undirected graph; whereas a directed graph is a
graph that there exists an ordered pair of vertices, in other words, a directed
edge. When the measure of edge weight is a value of either 0 or 1, called an
unweighted graph, put differently, there exists edge or not between a pair of
vertices. On the other hand, a graph is given a numerical edge weight, called
a weighted graph. There exists an edges between a vertex and itself, this
graph is a self-loop graph.

In the context of this thesis, the undirected edge-weighted graph
without self-loop will be assumed as a graph G = (V, F,w) where V is the
finite set, called a vertex set with possible value {1,...,n}, E CV x V is the
edge set, and w is the weighted function with domain £ — R*. There are
several useful concepts which, related to graph theory, should be known to
understand more about graph.

Firstly, a clique is a subgraph of a simple graph G = (V, F) with a
vertex subset S C V such that every two vertices in .S is adjacent each other.
It means there exists a maximal complete subgraph where all vertices are
connected.

A Maximal Clique of a graph G is a clique that cannot extend or
add more vertices. In other words, it is a clique with the largest size (the
number of vertices of a graph) given in a graph. The number of vertices in
the largest clique of graph G, called the clique number of the graph G.

2.3 Cluster analysis

Everitt (1980) stated that “A cluster is a set of entities which are alike, and
entities from different clusters are not alike”. In other words, cluster analysis
(clustering) is a process of dividing objects into groups (clusters) where
objects will be relevant if they are contained in the same cluster, whereas
they will be irrelevant if objects are outside such cluster or in the other
clusters. Cluster analysis is a significant role in numerous areas: machine
learning, biology, pattern recognition, statistics, data mining...

The goal of cluster analysis is to partition the given input into
meaningful and (or) useful groups from the given input data which can be
presented as a n X m matrix where, m is the number of variables, or feature
while n is the number of observation or samples of given data. In general,



there are two variations of the cluster analysis problem, including: central
clustering, and pairwise clustering. It depends on what type of data set
which need to cluster. For example, figure 2.3 will show clustering using
graph-theoretic method.

1.5

0.5}

-1.5 L L L L L
-1.5 -1 -0.5 o 0.5 1 1.5

Figure 2.3: An example of graph-theoretic clustering

2.3.1 Central clustering

Central clustering is also known as feature based clustering where the objects,
need to be clustered, represented as the feature vector. In other words, a
multidimensional space of data points will be clustered in this context. One of
the most popular algorithm is used in central clustering is K-mean algorithm.

Assume that the data set X = x; for all i = 1, .., n is the D-dimensional
variable with n samples, K is the number of clusters which are grouped from
a given data set. Intuitively, the distance between points inside a cluster will
be smaller than the distance between inside points and outside points. The
goal of K-mean algorithm is find the minimizing Euclidean distance, called
sum of squared errors (SSE), between variable z; and mean of k™ cluster p;



in order to optimize the partitioned cluster. The SSE is defined as

n K
SSE =33 llai — pul 2.7)

i=1 k=1
The basic clustering algorithm for iterative procedure of K-mean as
belows:
1. Choose the initial k-partition to take action as a cluster centroid.
2. Assign each data point to the nearest cluster.
3. Compute the cluster center based on the current cluster.
4. Repeat step 2 and 3 until the cluster centroids are no change.
As the figure 2.4 shown, the center of black circles is the cluster

centroid. It will be recomputed until all objects are clustered, on other words,
the centers is stable.

Figure 2.4: A K-mean algorithm example



2.3.2 Graph-theoretic clustering

In many applications, the first step is clustering to extract or select features
from the huge data sets. It is useful to cut down problem from the groups
of variables in a multidimensional feature space. Such algorithm, K-mean
algorithm, is the most common method to solve this issue.

However, in other contexts, it is only possible to obtain a pairwise
similarity information between objects. For instance, in several fields, the
input data just present the relevance between objects. Thus, it is so difficult
to apply the K-mean algorithm in this case. But there is a possible way to
measure the similarity or relevance between data points, in other words, the
pairwise clustering method will be utilized in this situation.

A graph-theoretic clustering approach considers the similarity (affinity)
matrix as an input data. According to the affinity matrix, the method will
base on several criteria to group the input data into different clusters. There
exist various algorithms in this situation, including Normalized Cut, and
Dominant-set clustering introduced more detail in chapter 3.

Before interpreting dominant-set clustering, Let check out the
Normalized Cut [13] method first. In this scheme, suppose the graph G as the
graph is presented in section 2.2 with the affinity matrix W. This method
will cut the graph G into two subgraph X and Y where, X UY =V and
X NY =0, as shown in figure 2.5. The edges, connect X and Y, will be
removed and the cost of this process is defined as:

cwtX,Y)= Y W(uv) (2.8)

ueX,veyY

The goal is to minimize the subgraph cut while the main graph G is
grouped. However, minimizing the value of cut will cause the isolated node
problem. This means that there exist nodes which do not belong G any
more. To deal with this problem, the value of cut will be divided by the total
weight of connections between the nodes X and Y to all the nodes in the
graph G, this calculation is called Normalized Cut given as below:

cut(X,Y)  cut(X,Y)
asso(X,V) = asso(Y,V)

Neut(X,Y) =

where asso(X,V) Z W(u,v), asso(Y,V) Z W(u,v).

Thus the main goal of N ormalized Cut is to minimize the N cut(X ,Y). When
the minimal Ncut(X,Y) is detected, two subgraphs, regions, or cluster X



and Y will be separated where have less edge weight between them and high
internal edge weights.

NCut

New Graph :

Figure 2.5: A Normalized cut algorithm example
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Chapter 3

Dominant-set Clustering

3.1 Overview

In the pairwise data clustering problem, dominant sets [2]| are expressed as a
graph-theoretic concept generalized as a maximal clique to the graph that
is undirected edge-weighted without self-loop as the graph G = (V, E,w) in
section 2.2. Vertices in the graph represent the neighborhood relationship
between two features. An edge-weigh reflects similarity between pairs of
connected vertices. And then the graph G represents a similarity matrix
n x n where the value of the matrix is the edge-weights denoted a;;. If there
exist edges between two vertices (or i and j € E), such value a;; = w(i, j);
Otherwise it is zero. According to the definitions given by Massimiliano
Pavan and Marcello Pelillo [2]:

Definition 1:

“Let S CV be a non empty subset of vertices and i € S is a vertex in subset S.
The (average) weight degree of a vertex i with respect to S is defined as a sum
of edge weights connecting i to all the points in S divided by the cardinality of
S. It is denoted by awdegs(i) and mathematically defined as:”

awdegg(i) = ﬁzai‘j (3.1)

jeS

Note that the average weight degree of ¢ is equal to zero if the
corresponding subset only contains node i. Furthermore, let consider vertex j
is not belong to subset S, the relative similarity between two vertices ¢ and
J (6s(i, 7)), with respect to the average similarity between vertex i and its

11



neighbors in subset S, is defined as the difference between the edge-weight
between two vertices and the average weight degree of vertex i:

¢s(i,j) = ai; — awdegg(i) (3.2)

From the equation 3.2, it is clear that the measure of relative similarity
can be positive or negative depend on the value of two terms in the equation.

10 2 g
@ (®)
®

Figure 3.1: An example edge-weighted graph

For example, referring figure 3.1, we have
vV ={(1,2,3,8,),(4,5,6,7), (A1, A2, A3, A4), (J1,J2,J3,J4,J5)}

Let S be a subset of V including {1, 2,3}, the weight degree of vertex 1
in subset S is:

awdegg(1) = 3(10 4+ 12) = 7.33

Vertex {8} is not belong to S, we have the similarity between {1} and
{8}:
¢s(1,8) = a1 3 — awdegg(l) =5 — 7.33 = —2.33

As stated by definition 1, it is possible to allocate a weight to a node.
The following recursive definition will interpret this issue in more detail.

Definition 2:

“Let S CV be a non-empty subset of vertices and i € S. The weight of i with
respect to S is:”

1 if |9 = 1.

ws(i) = Z (bg\{i}(i,j)wg\{i}(j), if Otherwise. (3.3)
jes\{i}

12



Intuitively, the weight of ¢ w.r.t. S is the measure of the similarity
between node ¢ and the nodes in subset S\ {i}.

“Moreover, the total weight of S is defined to be:”

W(S) =Y W.(i) (3.4)

€S
Observe that wy; j3(j) = wi;in () = ay, Vi, j € V(i # 7).

For example, as of figure 3.la, it shows that wg(3) > wg(2),
and wg(2) > wg(1). Figure 3.1c shows that wyi j2,y3.74,75(J5) < 0 and
wy1,y2,73,.4,55(J2) > 0. This can be intuitively achieved by observing the
amount of edge-weight connected to node Jb5 is considerably smaller than
subset {J1,J2,J3}. Whereas the measure of edge-weight connected to node
J2 is considerably larger than subset {J1, J4, J5}.

3.2 Dominant-set clustering

The concept of a dominant set (cluster) will be represented by the following
definition.

3.2.1 Definition 3 (Dominant Set):

“A non-empty subset of vertices S TV such that W (T') > 0 for any non-empty
T C S, is said to be dominant if:”

1. ws(l) > 0, VieS.
2. Wgu{i}(i) <0, Vi ¢ S.

For example, in figure 3.1c, set {J1,J2,J3} is dominant. Definition 3
highlights that dominant set express main cluster properties that the vertices
in the same subset are more similar to each other than to the other subsets.
This is intuitively obtained by the matter that the edge weights connecting
them are considerably higher than the others. This fact is the reason why a
dominant set is studied as a cluster.

In the feature selection context [1], suppose that a data set with N
observations and 5 feature vectors. For an example on dominant set,
the graph G = (V,FE) is created with vertex set V including 5 nodes
({F1,....,F5}), E is the edge set, the similarity matrix W contains the

13



edge-weight with possible value from 0 to 1. In this case, the edge presents
the relative information of pairwise features, the edge-weight between two
features represents a measure of relevance between a pairwise feature. As of
figure 3.2, it turns out that the subset features {F3, Fy, F5} is the dominant
set because the edge-weighted values inside subset is considerably greater
than the total of the amount of edge weights between the inside features and
outside features, the value is 0.5,0.7,0.9) and (from 0.05t00.26) respectively.

@‘/ 0.70 \@

Figure 3.2: The dominant set of subset {Fy, F, [}

3.2.2 The Algorithm

Mathematically, the dominant set is located by a quadratic equation of which
the solutions are to maximize:

fla) = ga" W (3.5)

subject to x € A

where A is a standard simplex, A={zx € R":x>0and >  z; =1},
and W is the relevance weight matrix between features.

Solving the quadratic equation requires lots of effort. According to [2],
to reduce the complexity, an equivalent formula can be used:

el (3.6)

where x;(t) represents the feature vector i at a time ¢ in updating state.

14



Pavan and Pelillo [2] have proved that the dominant set is very useful
in term of clustering based on pairwise affinities between the features. The
“Dominant-set clustering algorithm” is with the assumption that the input
data set of feature vector will be represented by the graph which is without
self-loop and bi-directed edge weights as the graph G = (V,E,w) in the
section 3.1. The algorithm is presented as follows:

e Initial the empty dominant set

e Repeat

Using replicator dynamics to iteratively find out a dominant set of
features (the vertices of the graph)

Remove these vertices from the graph.

e Until there is no vertex in the graph.

As the results, the clusters will be obtained as dominant sets. As far as
discussing above, the features in the same dominant set are highly relevant,
whereas they are highly irrelevant between external features and the features
outside the dominant set. In other words, the measure of similarity among
the feature inside the dominant set is significantly larger than comparable
with the total similarity between the outside features and features inside.

15



Chapter 4

Applying Dominant-Set
Clustering On Feature Selection

4.1 An Overview

Before thinking more about the algorithm, let take a look at what is the
feature selection (attributes or variable selection). This is a process of
picking up features in the given input data, such that these features are
the most appropriate for our purposes. In general, feature selection is like
dimensionality reduction. They both finding a way to cut down the quantity
of features (or columns of a matrix) in the input data set.

However, these methods are mathematically different. In feature
selection context, selecting the features is useful and meaningful, in other
words, include and exclude features from the input, but they are not changed
while in the dimensional reduction field, combining features to build the new
one.

Feature selection help to increasing the accuracy of model since the
redundant and irrelevant features will be detected and taken out from
the input. Thus the model is less complex and more straightforward to
comprehend and interpret. Isabelle Guyon [14] stated that:

“The objective of variable selection is three-fold: improving the predic-
tion performance of the predictors, providing faster and more cost-effective
predictors, and providing a better understanding of the underlying process that
generated the data.”

These features ussually take place in high-dimensional datasets which
are a significant challenge for pattern recognition and machine learning.

16



There are a variety of methods having been used to tackle the high-dimension
feature selection. One of the most widely known methods is that PCA which
used for dimensional reduction based on subset of input features.

Nevertheless, the sets of features, are extracted by PCA, only account
for features variances. Thus this leads to poor performance in classification
problem. Therefore, it is significant to consider a method for selecting a
small group of informative features to deal with clustering and classification
problems.

Recently, Researchers commonly use mutual information as a good
way of measuring the relevance between two features to figure out the
high-dimension feature selection context.  Several popular criteria, are
mentioned in the introduction, will be expressed as following:

MIF'S

The criterion has been proposed as:

J=1(.C) = 83 I(fu fy) (4.1)

fo€V

Greedy method is used to select k features which are the most relevant
from input K features. The drocedure of the algorithm is that initialization
of a feature sets V. And then detecting the maximizing relevant degree
between feature f; and the class I(f;, C') until empty feature set V.

However, the method does not account for the mutual information
between the output target and the set of selected features. The overlap

information between possibility feature and a set of selected features will be
computed by the second term (5 I(f;, f,)) in 4.1.

The value of g plays a significant role in this method, if it is too large
the redundancy will overestimate. However, the value of § is a problem which
needs to be studied more by researchers.

As a result, the method only examines maximizing between the features
and target class without considering the dependency. Thus the MIFS
algorithm may not turn out an optimal set of features, as it is able to select
the unrelated features.

17



MRMR

In this method, it replaces parameter § in the MIFS method by T|V| and V/
is the number of elements in a set of selected features V. It represents a
mean of the second term (redundancy term) in equation 4.1. The criterion
can be rewritten as:

J:I(fj,(])—% > IS f) (4.2)

| | fo€V

As a result, the MRMR method avoids the struggling in selecting
parameter 5 problem. Since inappropriate § will lead to unbalance result
between first term (relevance term) and the redundancy term in definition
4.1.

It is clear to see that the amount of redundancy term will increase when
the number of selected features become larger. If the relevance term is
insignificant compared with redundancy term, feature selection method bases
on minimizing redundancy term to pick up features. Thus, the results of
feature selection may be the irrelevant features. The MRMR method will
narrow this issue by replacing the parameter § by the average of redundancy
term.

In this method, each feature is supposed independence from target
class. In other words, the feature selection method is a first-order incremental
algorithm. Thus MRMR method has the same restriction that MIFS method
holds. The numerous irrelevant and redundant features will be selected in
this case.

JMI

The method considers the conditional mutual information to proceed feature
selection algorithm, it is defined as:

7= 1(f,,C) - % ST f) — 15 £,10)) (4.3)

vEV

The features are selected if they fetch the informative contribution to
a set of selected features. The JMI method is an effective algorithm to
discard redundant features. It expresses the similarity criterion as MRMR in
the dependent pairwise features which are selected while the set of selected
features increasing.

18



4.2 Feature Selection Algorithm

This chapter is the main part of the thesis, the feature selection problem will
be solved by a graph description of features, called dominant-set cluster. In
general, the algorithm has three steps:

e Firstly, the n x n relevant matrix W will be calculated. The relevance
value w;; of matrix W = w;; is derived from computing mutual
information.

e Secondly, in this step the variable vectors (features) will be grouped by
graph-theoretic clustering method (dominant-set clustering).

e Finally, utilizing multidimension mutual information, or multidimension
interaction information, criterion to select the features from each
dominant set. Figure 4.1 shows the flowchart of this method.

4.2.1 Deriving the Relevance Matrix

There are various methods to measure the relevant degree of features.
However, the different results can become out by different methods in term of
clustering analysis. “Euclidean distance” is one of the most common method
which is widely utilized to measure the distance between objects in clustering
problem.

Nevertheless, it only considers on objects with a specific distribution. In
term of functional similarity which consists positive and negative correlation
and interdependency, the method is not responsible for. On the other hand,
two methods, is proposed by Rao, which is able to take a measure of
linear dependency between features. They are called “Pearson’s correlation
coefficient (p)” and “Least square regression error (e)”. The first one (p) is
given as:

cov(f1, fa)
(var(fr)var(fa))/?

p(f1, f2) = (4.4)

where f; and f; are two features, var(-) is the variance of a feature,
and cov(f1, f2) denotes the covariance between two features f; and fo. It is
clearly that Pearson’s correlation coefficient measure the linear dependency
between two features based on the above formula. If the value of p(f, f2) is
small, this indicates that feature f; and f5 are highly irrelevant, whereas the
amount of p(fi, fo) is large, two features are highly relevant. Two features
are completely irrelevant if the measure of p(fi, f2) = 0.
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| Original Feature |

!

‘ Calculate relevance matrix |

Clustering
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Non-Dominant-set 1
Non-Dominant-set 2

Dominant-set

Figure 4.1: The flowchart of feature selection using dominant-set clustering [l

The method is possible to locate the positive and negative value of
correlation, Nonetheless, Pearson’s correlation coefficient is not suitable
to apply for the clustering method utilized in this thesis, dominant-set
clustering. Since it may allocate a high relevant degree to a low relevant
degree of pairwise features by reason that the method is not robust to
outliers. In addition, the different variances of two pairwise features may
come out the same measure of relevant degree since it is easily affected by
rotation and stable on scaling.

In terms of least square regression error (e), modeling the dependency
of two feature vectors f; and f, as a linear equation, fo = af; +b. Thus
the predicting of error function, from the linear equation, is able to take a
measure of the dependency degree between two feature vectors. Minimizing
the mean square error is able to obtain the values of @ and b of the linear
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model. The mean square error is defined as:

N

(fir F)? = 3¢ S () b= afy))? (4.5

=1

where a = “2ULEL b — (f,), and e(fi, f2) = var(f2)(1 = p(f1, £)?). Tt
is clear from the above definition that, the method uses the linear model to
measure the value of variance of f;. As a result that it is easily affected by

rotation and stable on scaling like p method.

As a result, utilization of mutual information to measure the relevant
degree is more suitable in dominant-set clustering. As the definitions in
section 2.1 about the entropy H(Y') of feature vector Y and the mutual
information (Y, X) of two feature vector Y and X.

The mutual information is represented in the relative information
between two feature vectors. It indicates that the feature vector X and Y are
highly relevant if the amount of relative information is large. Whereas the
mutual information is small, it means that the feature vector X and feature
vector Y are highly irrelevant. Especially, Two feature vectors are completely
irrelevant when the amount of mutual information equal to zero.

The fact is the reason why the relevant degree of two features will be
measured by mutual information in the feature selection context of this thesis.
Let consider the input data set with N feature vectors and M observations
(or training samples). The m! observation of n'* feature is denoted by f™.
Following this way, it is easy to obtain the vector F, = {f!,---, f™} of n'’
feature for M observations.

According to [15], the measure of relevance between two variable vectors
(feature vectors) F,; and F),; respectively, is defined as:

21(Fi, Fj)
H(F,;)+ H(F,;)

where [(F,;, F,;) is the mutual information between two variables
(Fhi, Frj), it can be computed by formula 2.6; H(F),;) and H(F,;) are entropy
of two variables, it can be computed by formula 2.2; ni and nj belong to N;
RD(F,;, F,;) is a element of relevance matrix W (F,;, F},;) mentioned above.

Note that the relevance matrix is symmetric, thus RD(F,;, F,;) =
RD(F,;, F,;); since the graph G considered in this scheme is no self-loop,
RD(F,;, F,;) = 0. More significantly, two features F,,;, F,; are more relevant,
if value of W(F,;, F,,;) is highly. Whereas two features will be completely
irrelevant when the W (F,;, F,;) is equal to zero.
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Last but not least, to calculate the value of entropy and mutual
information, the probability density function of these features has to be
estimated first. In this thesis, the Parzen- Rosenblatt window method will be
utilized since a measure of mutual information is more accurate, it leads to
better performance.

The input data set, there is M observations of feature y, the estimate
probability density function is given by the formula below:

ply) = % Z 3(y — yir ) (4.7)

where y; is the iy, observation; h is the window width; and §(y — y;, h)
is the Parzen- Rosenblatt window function. According to Parzen, the
estimate probability density p(y) will converge to probability density p(y)
if the window width A and window function are picked up appropriately.
Commonly, the window function is used as Gaussian kernel. In this case, the
window function will become:

Sy — yi, h) = W/thl‘z‘mexp <_<y—yz-) 2%; <y—yz-)) (4.8)

where d is the dimension of feature y; ) is the covariance of(y — y;).
The marginal density p(y) will be turned out if the value of dimension d = 1,
while d = 2, approximate joint probability density, between two features, will
be represented by p(y, z) or p(z,y).

4.2.2 Dominant Set Clustering

As discussion in chapter 3 and refer to the flowchart in figure 4.1, the input of
Dominant-set clustering algorithm is the relevance matrix which is computed
in section 4.2.1. According to relevance matrix, a dominant set is iteratively
derived from the mutual information computation. The dominant sets will be
gradually created the following way.

It is clear to see that they are hierarchically like figure 4.1 illustrates.
The algorithm is terminated when there are no features to group, in the other
words, all the features of the input data are clustered into dominant sets.

22



4.2.3 Deriving Key Features from each Dominant-set
Problem Statement:

The amount of information on output class, in the selected features, decides
the accurateness of feature selection algorithms.  According to Fano’s
inequality [11], the error estimate probability of class C' with input feature
vector F'is defined as:

PE2H(C|F)_1:H(C)_[(F’c)_1 (4.9)
log [C] log |C
where |C| is the number of classes in the data; H(C) and I(F,C) are
entropy and mutual information between classes and features. The aim is
that minimizing the error estimate probability 4.9. The fact that entropy of
class and class number is constant. If the mutual information between feature
and class [(F,C) is maximal, the measure of Pg will be minimized. Thus, to
obtain the accurate feature selection, the mutual information between feature
and class should be maximized.

However, minimizing mutual information I(F,C') to detect a feature
subset requiring a huge computation to locate on feature space. The more
significant problem is that the size of training observations is numerous so
that the higher order joint probability density can estimate with the high
dimensional kernel. The best solution to deal with these problems is that the
features are supposed to lower-order dependence.

For instance, each variable is supposed that independently affect
the class feature, thus the n'" feature (f,) is selected such that
P(fulfi, -, fue1,C) = P(fn]|C). In the hypothesis of second-order feature
dependence [16], Indicate that replacing the information I(F,C) with the
approximate I (F,C), it is able to detect relative information features. The
greedy algorithm will be used at the end to progressively pick up more
relevant features. The approximate I (F, () is defined as:

(F,C)~ I(F,C) = 1(fn,C) =Y > I(fus frn) + 2 > I(fur fl @)

n m>n n m>n

A brief algorithm of this approach, Let consider an input data that has
N features. The selected feature m (n < N) is derived from two steps.
Firstly, f/ .. of maximizing mutual information I(f’,C) is selected. Finally,
following this procedure to progressively select (n — 1) features where the

mutual information I(F,C) is maximized, for instance, the maximizing

I(f",C) = I(f", floe) L") fr .|C) to derive the feature f)

max max max*
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In this thesis approach, the input features are already clustered into
different subset by dominant-set algorithm. There is a small number of
features in each set, therefore, the multidimensional mutual information
(interaction information) I(F,C) is directly utilized to selects features, the
such approximation I (F,C') does not need to utilize in this case.

In practice, to perform the feature selection algorithm, firstly the
estimate probability function should be considered. In this scheme, the
Parzen-Rosenblatt window algorithm with a Gaussian kernel is considered.

Measure of Mutual Information by Parzen-Rosenblatt window:

In the feature selection context, the input data are normally continuous
features, but the class is discrete one. The multidimensional mutual
information of input features F' = fi,--- | f,, and the class C' can be given as:

P(fla"'vfn;c)
I(F;C)=I(f1, -, fn;C) = P(fi, -+, fasc)l
(F;C)=I(f1. -, fu:C) ;2(; (oo Jaie)log g =5 v ()
(4.10)

In other way based on Markov chain, the multidimensional interaction
information is represented as follows:

I(F;C) = H(C) — H(C|F) (4.11)

In this formula, the value of class entropy H(C) can be calculated by
2.2 easily since the class C' is discrete value. Whereas the condition entropy
H(C|F) is difficult to obtain because of estimating conditional probability
p(c|f). It is represented as:

IC|

H(C|F) = — / p(£) S plelf)logplelf)df (4.12)

In this thesis, the Parzen window method will be used to estimate the
probability density function. According to Bayesian rule, it is able to rewrite

plelf) as:

p(fle)p(c)
p(f)

The conditional probability density function can be estimated by
applying the Parzen-Rosenblatt window with the possible value of class

plclf) = (4.13)
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number is {1,2,---,|C|} and N, is the number of training samples in class c,
it is given as:

DI N (1.19)
€ iel,

where I, is the indices set of observations in class ¢. In fact, the sum of
conditional probability is equal to one, it is given that:

IC|

> p(nlf) =1, (4.15)

From the such formula and 4.13 equation, the equation of conditional
probability 4.14 is rewritten as:

plelf) — _ _ plep(flo)
S pelf) X1 pn)p(fIn)

Combining the such equation with the equation in 4.14, the conditional
probability estimation is:

plelf) = (4.16)

plelf) = 2ier, O0(f = fishe)
ZLC:H wer, O(F = fis ha)

where p(n) = N,/N.. When the equation 4.17 is utilized with the
Gaussian kernel, the conditional probability estimation p(c|f) becomes:

(4.17)

TSN
s, XD (_(f LTE N f)>

plelf) =
c — TR 1(f—fi
Sl Y, exp (_(f Ll f))

(4.18)

A measure of conditional entropy in equation 4.12 is rewritten as:

N |C|
H(C|F) = Z Z (cl f) log p(c| ) (4.19)

In this case, with N training observations, instead of using iteration, a
summation of training observations and assume that the probability is the
same at each observation.
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Greedy algorithm

The final step of feature selection criterion is that using the greedy algorithm
to select the key feature from each dominant set. There is the input features
of each dominant set F,; with and class C'. Locate the subset S; C F}; in each
dominant set to minimize the multidimensional interaction information. The
algorithm is briefly shown as below:

Start from the first dominant set I} of feature vectors.
Initialize the empty set Sy.

For all the features (f,,) belong to dominant set Fjy, calculate the
mutual information I(f,,,C') between feature and output class.

Assign the feature (f,,) that maximizes mutual information I(f,,,C) to
subset S, and remove this feature out of a dominant set Fj.

Using greedy strategy to select features until reaching desired feature
number.

— For all features f,, in the current dominant set F,, compute the
mutual information between features and output class I(f,,, Sq; C).

— Assign the feature f,, belongs to F; that maximize
multidimensional mutual information I(f,,,Sq;C), and then
remove the feature out of the dominant set.

The subset S, is turned out with the selected features.

Repeat the algorithm until there is no dominant set.
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Chapter 5

Experiments and Experimental
Results

In this chapter, there are six datasets are used for testing the algorithm,
including: five datasets from UCI Machine Learning Repository and one from
NIPS 2003. Table 5.1 will show a brief information about these dataset.

Data sets Data sources | Instances | Features | Number of classes
Iris UCI 150 4 3
Pima UCI 768 8 2
Australian UCI 690 14 2
Satimage UCI 4435 36 6
Breast cancer UCI 699 10 2
Madelon NIPS 2013 2000 500 2

Table 5.1: Data sets used for testing in the algorithm

In the context of this thesis, a feature selection method (mentioned
as DsetMII). The method highly groups relevant features into a different
dominant set (cluster) based on dominant-set clustering algorithm. And then
applying the criterion of multidimensional interaction information (MII) to
select useful features in each dominant set.

There are
“Fuclidean

Table 5.2 illustrates the results of dominant-set clusters.
several methods to compute the relevance matrix, including:
distance”, “Pearson’s correlation coefficient (p)”, and “Least square regression
error (e)”. In this thesis, the algorithm applied the mutual information to
calculate the similarity between features.
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Dominant sets | Iris Pima Australian Breast cancer
Dominant set 1 | {f1, fo, f3, fa} | {f1. fo, fo. fs} | {fs; fo} {fg,fihfﬁ,f%
fs, fo
Dominant set 2 {fss fa, f7} {fs, f7, fro, fu)l LJ1, fou [5, fro}
Dominant set 3 {fs} {f2, f3, fa, fo:
fi1, fi2, fis}
Dominant set 4 {fi}

Table 5.2: Dominant-set clustering results

When the clustering sets come out from such algorithm. It is easy to
apply the MII criterion to select features from each dominant set since the
number of features is significant smaller than original features set. Table 5.3
presents the results after applying feature selection criterion. It ranks from
the highest to lowest relevant degree.

Dominant sets | Iris Pima Australian Breast cancer

Dominant set 1 {fé7jﬁ,j}7jé} {fQJjévjbaji} {jé,fb} {jéajiaj%7j%7
Ja, fo

Dominant set 2 {fa, f3, fr} {fr0, fr, fss frafl {5, f2, fro, f1}

Dominant set 3

{/5} {fs: fo, J13, f2,

f47 f127f11}

Dominant set 4

{1}

Table 5.3: Selected features in each dominant set

In practice, The results of various methods demonstrated that the
method, is given in this thesis (DsetMII), has more advantages than
other methods (including: MIFS, MRMR, and JMI are mentioned in the
introduction) to select features in a higher dimension. Table 5.4 shows more
clearly these benefits. The “Pima” data set has 8 features, the methods show
the same results with selected features whereas the “Breast cancer” data set
has 10 features, there exist the different selections form third selected feature.

In addition, when the higher dimension is taken into account that the
results are considerable differences among the methods. Table 5.5 illustrates
this point on 500 features data set.

The reason why DsetMII has more advantage in high dimension is that
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Method Breast cancer Pima

DsetMII {f37f77f87f67f4} {f27f8;f6;f17f4}
MIFS | {fs, fr, f1, fio, fo} | {f2r fs, fo, f7, f5)
MRMR | {f3, f7, fs, fo, fo} | {fos fss Jo, fr, [5)
JMI Ufs, fr fso fu, 1} | {f2, fo fso f1, fa)

Table 5.4: Selected features on different methods

Method Madelon dataset

DsetMIL | { fuz6, foaz, [303, fo5, fas7}
MIFS { faz6, fa9, [izs, fi31, faor }
MRMR. | {fare, fa9, [178, f209, fao1}
JMI {fu76, f339, foa2, f154, fosa}

Table 5.5: Selected features from higher dimension

dominant-set clustering using the mutual information to compute the relative
information between features, so the most relevance features will be will be
selected. Secondly, after clustering, each dominant set utilizes multidimension
interaction information to select the feature, therefore, the class and features
are examined by higher order. This is considered as an optimized feature
subset. And the final one is that the pMII method tends to consider a
pairwise of class and features, therefore, all the features relationship could
not be checked. Throwback table 5.4 and 5.5, it is clearer to see that
other methods, including: MIFS, MRMR, and JMI criteria tend to consider
pairwise features and class, therefore, the results are significantly different
with the higher order method.

And then Scatter Separability Criterion is applied to measure the
selected featuers quality. On this criterion, S, is the within class scatter
matrix which measures the scatter of observation from the mean of cluster
and S, is the between class sacatter matrix which measures scatter of cluster
means are from the total mean. They are defined as,

cL

ZWZE{ (X = i) (X — pq) ‘Wl Zﬂ'l i

:Zm i — E{X}) (i — E{X}"

Where cL is the cluster number, X is feature vectors, m; is the probability of
a sample in cluster w;, j; is the sample mean vector of cluster i*", ¥, is a
sample covariance matrix of cluster i'*, and E{Z} is expected value. And the
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J value measures the selected feature discrimination is proposed by Devijiver
and Kittler, defined as:

cL

Sw+ S
J(X) = 'SL’)’ =@+
v i=1

where \;,;7 = 1,--- ,cL are the eigenvalues of matrix S&_I)Sb. where X is the
feature set and |S| is the diagonal sum of elements of S. Table 5.6 shows the
results of the comparison between the such methods.

Method | Breast cancer | Pima | Madelon

DsetMII 2.718 1.190 1.0353
MIF'S 1.0065 1.0329 | 1.0316

MRMR 2.5059 1.0329 | 1.0312
JMI 1.0065 1.190 1.0189

Table 5.6: Comparison of J values of different methods

Last but not least, after capturing the key features. The classification
algorithm is applied to evaluate these features accuracy. The algorithm is
utilized in this experiment is a perceptron with 10-fold cross-validation. As
shown in table 5.7, 5.8, and 5.9, the accuracy of classification is compared by
various methods with the number of selected features are 5, 4, 3 respectively.

As the results shown, the MII feature selection using dominant-set
clustering method performs better than other methods, including: MIFS,
MRMR, and JMI. It is significant the performance obtains around 85%
when 5 selected features are used with DsetMII method and keep going
the identical accuracy with 3 and 4 selected features (Australian data set).
However, the results, are obtained with the Pima data set, tend to have the
same accuracy because of less dimension. It indicates that there are several
informative features used to deal with classification problem.

Method | Australian | Pima
DsetMII 85.1% 62.76%
MIFS 67.25% 61.20%
MRMR 57.25% 61.20%
JMI 57.24% 61.72%

Table 5.7: The classification accuracy comparison with 5 features selected by
4 methods
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Method | Australian | Pima
DsetMII | 84.20% | 64.84%
MIF'S 67.54% | 63.67%
MRMR 43.33% | 63.67%
JMI 84.20% | 64.84%
Table 5.8: The classification accuracy comparison with 4 features selected by
4 methods
Method | Australian | Pima
DsetMII | 84.35% | 63.93%
MIFS 55.22% | 63.93%
MRMR 49.28% | 63.93%
JMI 84.35% | 63.93%

Table 5.9: The classification accuracy comparison with 3 features selected by
4 methods

The reasons why the DsetMII is effective in term of feature selection
comparison with others is that the method measures the relevance between
features based on mutual information, hence, the most relative information
between features and class are selected. More significant, the selected
feature subset examines informative present for each feature together with
the correlation between features, therefore, it is effectively able to locate the
potential information about input features.
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Chapter 6

Conclusion

In this thesis, we presented the multidimension interaction information
criterion using dominant-set clustering for feature selection based on greedy
strategy which is a ”pick-one-feature-at-a-time” method. In this method,
dominant-set clustering uses mutual information to calculate the relative
information of features, in other words, relevance matrix is computed, for
that reason, the most informative information of features will be clustered
in the order dominant sets. On the other hand, the method considers high
order dependencies of class and features, hence, it is able to deal with "the
problem of overestimated redundancy”. The result of this method shows that
the higher measure of mutual information between features, higher ranking in
the selected features.
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