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INTRODUCTION 
 

This work focuses on the spatial changes in semi-natural grasslands habitats over the 

past 60 years in the Dolomiti Bellunesi National Park, Italy. Semi-natural grasslands have 

been created and maintained over the centuries by human activities, resulting in biodiversi-

ty-rich landscape mosaics, but the progressive abandonment of traditional grassland man-

agement activities such as extensive grazing and haymaking after World War II resulted in a 

widespread phenomenon of forest expansion, declining biodiversity and shrinking or disap-

pearance of grassland areas.  

To understand how the abandonment of traditional mountain activities and the change 

of grassland management practices has impacted semi-natural grassland ecosystems, and 

above all for developing measures to mitigate these changes, it is crucial to be able to map 

and monitor land cover changes efficiently over large geographic areas and long periods of 

time (K. P. Price, Guo, & Stiles, 2003). Monitoring mountain areas, however, poses consider-

able difficulties because of the complexity of the terrain, which makes direct access and field 

monitoring problematic. In this respect, Remote Sensing technologies and Geographic In-

formation Systems (GIS) represent invaluable tools for understanding the dynamics of this 

phenomenon. Through the integration of remote sensing and GIS techniques, it is possible to 

classify the land cover pattern and to analyze its changes over a long time period and at the 

scale of interest (Boyd & Foody, 2011; Fichera, Modica, & Pollino, 2012; Rocchini et al., 2012).  

Land cover data can be obtained from satellite imagery and aerial photography, and GIS 

software improves image processing, data organization and quantitative analysis of multi-

temporal remote sensing datasets.  

This is fundamental for providing support for decision-making and nature conservation 

management, an aspect of fundamental importance for semi-natural ecosystems because 

they require active management to sustain their ecosystem services. 

 

In the first part of this work, high-resolution distribution maps of semi-natural grassland 

habitats within the Dolomiti Bellunesi National Park (Italy) were created based on two aerial 

imagery datasets: the 1954 GAI flight  (the oldest available photographic record of the study 

area, dating back to before the start of mountain abandonment) and the 2012 TELAER flight. 

The distribution maps were created through the visual interpretation of aerial photographs 
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and manual digitization of grassland polygons with the aid of GIS software. The two distribu-

tion maps were subsequently combined and compared to assess the spatial distribution and 

magnitude of changes over the 58-years time period.  

The second part of the study explores the potential of mapping the extent of semi-

natural grassland habitats and studying their evolution by using Landsat satellite images, 

employing supervised pixel-based methods for classification and change detection and vege-

tation indices to increase the separability between different vegetated surfaces. First, a sea-

sonality study was carried out to identify the most suitable period for ensuring maximum 

land cover separability during the vegetative season; for this purpose, five Landsat 5 TM im-

ages from 2005 (May-October) were used for the creation of several different classification 

scenarios,  and the resulting classification accuracies were compared.  

Based on the best date identified by the seasonality study, two Landsat images (from the 

beginning and the end of Landsat TM data availability period) were chosen for NDVI calcula-

tion and NDVI differencing change detection. In this type of change detection procedure, the 

NDVI values of the two images are subtracted pixel-by-pixel, resulting in a change image that 

can be classified by setting an appropriate threshold to distinguish significant changes (in-

crease or decrease of vegetation cover) from situations where there was no detectable 

change. 

 

 

1. THE EVOLUTION OF EUROPEAN MOUNTAIN GRASSLANDS 
 

‘Grassland’ in its broader sense can be defined as any area where the dominant vegeta-

tion is composed by grasses or grass-like plants, with little or no tree cover, despite the dif-

ferences related to the occurrence of grasslands within a physiognomic continuum between 

forests and deserts, and the difficulty in characterizing their limits (Dixon, Faber-Langendoen, 

Josse, Morrison, & Loucks, 2014; FAO, 2005). 

Most of Europe’s grasslands have been modified to some extent by human activity or 

have been created and maintained by agricultural practices, so they fall into the category of 

“semi-natural grasslands”, although their plant communities are natural. Grasslands repre-

sent some of Europe’s most species-rich plant communities, and their biological diversity is 

high in relation to other taxonomic groups as well, in particular butterflies and other inver-
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tebrates such as grasshoppers (European Commission, 2008; Poschlod & WallisDeVries, 

2002; WallisDeVries, Poschlod, & Willems, 2002). 

In the case of the alpine region, montane grasslands and shrublands located above the 

tree line, commonly known as alpine tundra, occur naturally due to altitudinal and climatic 

factors; conversely, nearly all the mountain grasslands below the tree line (subalpine and 

montane grasslands) are semi-natural (European Commission, 2008). European mountain 

regions, especially in the subalpine and montane belt, are dominated by semi-natural eco-

systems whose evolution has been driven by the coexistence and interaction of natural and 

anthropogenic disturbance regimes for the past thousands of years (Niedrist, Tasser, Luth, 

Dalla Via, & Tappeiner, 2009). Traditional low-intensity agricultural practices, such as coppic-

ing, grazing and mowing, have fostered the development of complex and highly biodiverse 

mosaics of open areas, sparse and dense forests, that are important sources of plant diversi-

ty and provide food and habitat for many grassland and ecotone animals, therefore support-

ing a range of species much wider than the one found in the original natural climax vegeta-

tion. As a consequence, land use is considered the most important driving factor for land-

scape change in the Alps (Garbarino, Sibona, Lingua, & Motta, 2014; Tasser, Walde, 

Tappeiner, Teutsch, & Noggler, 2007).  

Starting from the end of 19th century, but especially following World War II, traditional 

mountain grassland management across Europe underwent a radical change, driven by deep 

socio-economic transformations (Mottet, Ladet, Coqué, & Gibon, 2006). Immigration to-

wards urban areas, the intensification of agriculture and the limited possibilities of mechani-

zation offered by mountain areas resulted in extensive depopulation and marginalization of 

mountain territories (MacDonald et al., 2000). Even just considering the period between 

1980 and 2000, 40% of all farm holdings in the European Alps have been abandoned, and 

among the farms that are still in operation today, almost 70% represent only a secondary 

source of income (Tasser et al., 2007).  

As a consequence, widespread encroachment of woody vegetation onto meadows, pas-

ture patches and other open areas through secondary succession has been observed in the 

throughout Europe following the abandonment of extensive farming practices, and is leading 

to the progressive fragmentation and ultimately disappearance of these highly biodiverse 

areas (European Commission, 2008; Garbarino et al., 2014; MacDonald et al., 2000; Poschlod 

& WallisDeVries, 2002; Sitzia, Semenzato, & Trentanovi, 2010). The forest expansion process 
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in many cases can be remarkably swift: for example, a study by Garbarino & Pividori (2006) 

showed how in a mountain area of the Val Grande National Park, Italy, forests recolonized 

about 71% of the former open areas in the span of 50 years.  

This trend of extensive natural forest recovery has been observed everywhere in the Ital-

ian alpine region, both in the Western (Garbarino & Pividori, 2006; Garbarino et al., 2014; 

Höchtl, Lehringer, & Konold, 2005; Vacchiano, Garbarino, Lingua, & Motta, 2006) and Ea-

stern Alps (Giupponi, Ramanzin, Sturaro, & Fuser, 2006; Sgarbossa, 2010; Tattoni, Ciolli, 

Ferretti, & Cantiani, 2010; Urbinati, Benetti, Viola, & Ferrari, 2004), as well as in other moun-

tainous or marginal rural areas of the country (Agnoletti, 2007; Mancino, Nolè, Ripullone, & 

Ferrara, 2014). The same situation has been observed in most parts of the Alpine region as a 

whole (Tasser et al., 2007), such as in Switzerland (Gellrich & Zimmermann, 2007; Stanga & 

Zbinden, 2004) and France (Didier, 2001), and in other mountainous regions across Europe, 

for example Norway (Olsson, Austrheim, & Grenne, 2000), Germany (Poschlod & 

WallisDeVries, 2002), and the Pyrenees region (Améztegui, Brotons, & Coll, 2010; Mottet et 

al., 2006; Poyatos, Latron, & Llorens, 2003; Roura-Pascual, Pons, Etienne, & Lambert, 2005). 

Only in some regions, most notably western Austria, parts of Switzerland, and South Ty-

rol, this trend has not prevailed, mostly thanks to governmental intervention and subsidies 

(Niedrist et al., 2009). 

Once forest expansion begins, internal feedbacks (tree-tree or tree-soil interactions) can 

reinforce the shift to a woodland state (Kremer, Halpern, & Antos, 2014). This secondary 

succession generally ends in the climax stage of the vegetation adapted to the site, and the 

pattern of vegetation change is determined by local factors related to elevation, aspect, in-

clination and water and nutrient regimes and by the land use type existing before abandon-

ment (Tasser & Tappeiner, 2002). 

Even though the reforestation process has some positive effects on the environment, 

such as the increase in the rate of carbon sequestration, soil stabilization and reduced risk of 

landslides and avalanches (MacDonald et al., 2000), and improved water quality and reten-

tion (Tasser et al., 2007), the decrease of landscape heterogeneity and mosaic features de-

riving from this process also translates not only into fragmentation and loss of biodiversity-

rich habitats, but also into the irreversible loss of cultural landscapes that are part of the lo-

cal history and heritage, and in a decrease of the aesthetic value of the landscape itself 

(Gellrich, Baur, Koch, & Zimmermann, 2007; MacDonald et al., 2000; Sitzia et al., 2010). 
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2. REMOTE SENSING AND GIS FOR LAND COVER CHANGE ASSESSMENT 
 

Remote sensing is “the science and art of obtaining information about an object, area, or 

phenomenon through the analysis of data acquired by a device that is not in contact with 

the object, area, or phenomenon under investigation” (Lillesand, Kiefer, & Chipman, 2004).  

The rapid advancement over the past two decades of remote sensing systems and of the 

techniques for analyzing remotely sensed data, as well as the large amount of data that has 

become available from earth observation satellites, have greatly increased the capacity to 

observe and monitor land cover change at different scales. Global land cover data allows for 

global change assessments, while more detailed land classifications for change assessment 

and management have been created at the regional and local scale (Di Gregorio & Jansen, 

2005; Turner II, Lambin, & Reenberg, 2008). 

The combination of land cover data deriving from different remote sensing technologies 

(such as aerial photography and satellite images), together with terrain and other ancillary 

data (historical land cover maps, surveys, etc.), is of fundamental importance for land cover 

change studies, as it can be used to 1) identify the pattern of land-cover change (the areas 

where change is taking place); 2) investigate the extent and/or quantity of land cover change 

and 3) analyze the temporal pattern at which the change occurs (Morgan, Gergel, & Coops, 

2010; Pelorosso, Leone, & Boccia, 2009). 

 

 

2.1 Basic Remote Sensing principles 

 

2.1.1 The electromagnetic spectrum 

 
Electromagnetic energy is the vehicle through which information is transmitted from the 

feature or phenomenon of interest to the remote sensor. Variations in the quality and quan-

tity of the electromagnetic energy measured by remote sensors allow for the interpretation 

and the extraction of information regarding various aspects of such feature or phenomenon. 

Electromagnetic energy travels in a harmonic, sinusoidal fashion, and electromagnetic 

waves are generally categorized according to their wavelength λ (the distance from one 

wave peak to the next), which is located within the electromagnetic spectrum (Figure 1). The 
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preferred unit to measure wavelength along the spectrum is the micrometer μm (1 x 10-6 m). 

The spectrum ranges from cosmic rays (about 10–6 μm) to television and radio waves (about 

109 μm). Different remote sensing technologies and sensors (cameras, scanners, radar, LIDAR, 

etc.) are designed to operate in different regions of the electromagnetic spectrum, so even 

though there is no clear-cut dividing line between one nominal spectral region and the next, 

the electromagnetic spectrum is commonly divided into discrete bands or regions (Paine & 

Kiser, 2012).  

The visible portion of the electromagnetic spectrum, that is to say the range of spectral 

sensitivity of the human eye, extends from about 0,4 μm to 0,7 μm, so it represent a very 

limited part of the entire spectrum. The most common remote sensing systems operate in 

one or several of the visible, IR or microwave portions of the spectrum. 

 

 
Figure 1: the electromagnetic spectrum (from Paine & Kiser, 2012) 

 

Although the sun is the most obvious source of electromagnetic energy for remote sen-

sors, all matter at temperatures above absolute zero (0 K, or -273°C) continuously emits 

electromagnetic radiation, which varies in relation to the surface temperature of the object. 

The maximum of radiative energy from the earth's surface, whose ambient temperature is 

about 300 K (27°C), occurs at a wavelength of about 9,7 μm. Because this radiation corre-

lates with the heat of surfaces, it is called "thermal infrared" energy, and can be recorded 

with thermal sensors such as radiometers and scanners. By comparison, the sun’s energy 
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peak occurs at about 0,5 μm, a wavelength to which the human eye and photographic sup-

ports are sensitive.  

Some sensors, such as radar (RAdio Detection And Ranging) and LiDAR (Light Detection 

and Ranging) systems, make use of their own source of energy to hit the target, and then the 

sensor detects and measures the radiation that is reflected or backscattered. These systems 

are defined active systems, in contrast to passive systems, such as optical aerial photography 

and satellite sensors, that sense naturally available energy emitted or reflected by the ob-

jects of interest (Lillesand et al., 2004). 

 

 

2.1.2 Interactions between electromagnetic energy and matter 

 
Electromagnetic energy can only be detected when it interacts with matter. Four fun-

damental energy interactions are possible: reflectance, absorptance, transmittance and re-

fraction. 

Reflectance is the ratio of the energy reflected from an object to the energy incident up-

on the object. Absorptance occurs when electromagnetic energy is absorbed by the surface 

and converted to another form of energy, such as heat. Absorbed wavelengths that are con-

verted to heat may later be emitted and can be detected by a thermal detector. Within the 

visible portion of the spectrum, differences in absorptance and reflectance qualities of an 

object result in in the visual effect called color. For example, an object is seen as "red" when 

it absorbs all visible wavelengths and reflects in the red spectral region.  

Transmittance is the propagation of energy through a medium. When entering and leav-

ing a medium of different density, transmitted wavelengths are refracted. Refraction is the 

bending of transmitted electromagnetic energy caused by its change in velocity as it passes 

from one medium to another (Paine & Kiser, 2012).  

The energy flow between source and sensor begins at the source (typically the sun), is 

transmitted through space and the atmosphere, is reflected by objects on earth surface, and 

is finally detected by a sensor. This implies that the characteristics of the energy that even-

tually reaches the sensor depend both on the interaction with the atmosphere and with the 

objects. 
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Regardless of its source, all radiation detected by remote sensors passes through some 

distance, or path length, of atmosphere. The effects of the atmosphere on the intensity and 

spectral composition of radiation manifest themselves through the mechanisms of atmos-

pheric scattering and absorption, and are related to the path length, which in turn varies in 

relation to the position of the sensor: satellite optical imagery, for example, results from 

sunlight that passes through the earth's atmosphere twice on its journey from source to sen-

sor, so it is strongly affected by atmospheric interference.  

Atmospheric scattering is reflectance within the atmosphere caused by small particles of 

dust and moisture. The most common type of scatter is Rayleigh scatter, which occurs when 

radiation interacts with atmospheric particles that are much smaller in diameter than the 

radiation’s wavelength. As a consequence, there is a much stronger tendency for short 

wavelengths to be scattered by this mechanism than long wavelengths. “Haze” effects, 

which diminishes the contrast of an image, are mainly caused by Rayleigh scatter, and in col-

or photography this results in a bluish-gray cast, especially when the image is taken from 

high altitude (Lillesand et al., 2004). In addition, not all energy that reaches the sensor is re-

flected from objects on the earth surface, because some of it derives from atmospheric scat-

tering, which forms the so-called background noise. The total amount of scattered energy 

increases with an increase in flying altitude (Paine & Kiser, 2012). 

Another important type of interaction occurring in the atmosphere is absorption, which 

results in a loss of energy. Water vapor, carbon dioxide, and ozone are the most efficient ab-

sorbers of solar radiation among atmospheric constituents: these gases tend to absorb elec-

tromagnetic energy in specific wavelength bands, and as a consequence the majority of en-

ergy in these wavelengths does not reach the earth surface. Conversely, the portions of the 

electromagnetic spectrum where the electromagnetic energy originating from the sun or 

from an active sensor are transmitted through the atmosphere are referred to as atmos-

pheric windows. An example of this is represented by the wavelengths in the visible range 

(Lillesand et al., 2004).  

Remote sensing data acquisition is limited to the atmospheric windows. For example, 

multispectral scanners sense simultaneously through multiple, narrow wavelength ranges 

that can be located at various atmospheric windows in the visible and IR spectral region 

(Figure 2).  (Lillesand et al., 2004; Paine & Kiser, 2012).  
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Figure 2: the spectral characteristics of a) the primary sources of electromagnetic energy (the sun and the earth’s surface), 

b) the atmospheric windows through which source energy may be transmitted, and c) the spectral sensitivity of the most 

common remote sensing systems. The wavelength scale is logarithmic. From (Lillesand et al., 2004) 

 

The selection of the sensor to use for a remote sensing task therefore depends on (1) 

the presence or absence of atmospheric windows in the spectral range(s) of interest, (2) the 

spectral sensitivity of the sensors available, and (3) the source, magnitude, and spectral 

composition of the energy available in these ranges. These choices however are ultimately 

subordinated to the spectral reflectance properties of the features of interest.  

 

The proportion of energy reflected, absorbed, and transmitted by a surface varies de-

pending on a) the material and condition of the feature of interest, and b) the wavelength of 

incident energy. In other words, even within a given feature type the proportion of reflected, 

absorbed, and transmitted energy will vary between different wavelengths, and features 
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that may result indistinguishable in one spectral range may appear clearly separable in an-

other. The amount of spectral separability between features of interest determines the pos-

sibility of successfully identifying, mapping and studying Earth surface features of interest on 

the basis of their spectral characteristics.  

A graph of the spectral reflectance of an object as a function of wavelength is called 

spectral reflectance curve; its configuration shows the spectral characteristics of an object, 

and can be used to choose the wavelength region(s) in which remote sensing data should be 

acquired for the study of that specific feature (Lillesand et al., 2004). 

 

 

2.2 Optical Remote Sensors 

 

Optical remote sensing employs passive sensors that operate in the part of electromag-

netic spectrum spanning from the visible wavelengths to the near infrared (NIR) region, up 

to thermal infrared (TIR). Sensors belonging to this category can be divided into non-

scanning and scanning imaging systems; the former includes film-based photographic cam-

era systems, generally mounted on airborne platforms, while the latter includes digital scan-

ning systems, that can be mounted either on airborne or satellite platforms (Figure 3). The 

operating principles of scanners mounted on space platforms are essentially identical to 

those operating from airborne systems (Lillesand et al., 2004). Among the various types of 

remote sensing data used for the assessment and mapping of landscape change, satellite 

images and aerial photographs are the most widely used (Kadmon & Harari-Kremer, 1999).  

The images resulting from optical sensors can be either analog or digital. Film-based aer-

ial photographs are analog images while aerial and satellite images acquired using electronic 

sensors are digital images. Digital images offer the advantage of real-time transmission of 

the remotely sensed data to a ground station for immediate computer-assisted analysis and 

interpretation. Conversely, analog photography needs to be converted into digital format 

with a scanning device in order to be used with computer systems. 

The quality of remote sensing imagery is largely determined by their resolution. There 

are four types of resolution that characterize any particular remote sensor: spatial, spectral, 

radiometric and temporal. 
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Figure 3: Classification of sensors (Lillesand et al., 2004) 

 

The spatial resolution of an image is can be thought of as the size of the smallest object 

that can be distinguished on the image itself. In the case of digital sensors the finest unit of 

resolution is represented by uniform pixels, whose size is determined by the sensors’ instan-

taneous field of view (IFOV). The IFOV is essentially the ground area through which the sen-

sor is receiving the electromagnetic radiation signal and is determined by height and angle of 

the imaging platform (Lu, Li, & Moran, 2014). For film-based (analog) photographs the spa-

tial resolution depends on the clusters of grains within the emulsion, which tend to be irreg-

ularly sized and unevenly distributed (Lillesand et al., 2004; Morgan et al., 2010).  

Spectral resolution denotes the ability of the sensor to resolve different bands within the 

electromagnetic spectrum. The spectral resolution is determined by the number of bands 

being scanned and their size. In panchromatic imaging systems, the sensor is a single chan-

nel detector sensitive to radiation within a broad wavelength range. The physical quantity 

being measured is the apparent brightness of the earth surface, so the spectral information 

or "color" of the targets is lost. This is the case of black and white aerial photographs, as well 

as of the panchromatic bands of satellite sensors such as Landsat ETM+ and Landsat OLI/TIRS. 
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Multispectral imaging systems can sense in more bands (3-10) over a greater range of wave-

lengths. This results in a multiband image where each layer is sensed simultaneously from 

the same geometric vantage point but in different bands of the spectrum, and thus retains 

both the brightness and spectral (color) information of the observed objects. The LANDSAT 

sensors are examples of such systems (Lillesand et al., 2004). Finally, hyperspectral imaging 

systems acquire images in about a hundred or more very narrow and contiguous spectral 

bands. The precise spectral information contained in a hyperspectral image enables better 

characterization and identification of targets (Campbell & Shin, 2011). Since spectral signa-

ture is a critical feature for land cover classification, data with high spectral resolution have 

the potential to better separate different land cover types, especially when the signals rec-

orded in the multiple bands are analyzed in conjunction with each other.  

Radiometric resolution refers to the sensitivity of the sensor to variations in brightness 

and specifically denotes the number of grayscale levels that can be imaged by the sensor. A 

sensor with an 8-bit resolution for its bands, for example, can record a range of values for 

each pixel that goes from 0 to 255 (Lu et al., 2014). 

Finally, temporal resolution (also called revisit time) is the amount of time between each 

image collection. This is mainly applicable to satellite system, which have a fixed temporal 

resolution that is determined by the repeat cycle of the satellite’s orbit. 

There are some unavoidable trade-offs among the quality of spatial, spectral, and radi-

ometric properties of a sensor. Increases in spatial and spectral resolution, for example, both 

result in a decrease in the energy available to be sensed. High spatial resolution means that 

each detector is receiving energy from a smaller area, while high spectral resolution means 

that each detector is receiving energy in a narrower range of wavelengths.  

 

 

2.2.1 Aerial photography 

 

Aerial photography is the collection of photographs of the surface of the earth using an 

airborne camera that can be triggered remotely or automatically. Platforms used in aerial 

photography include fixed-wing aircrafts, helicopters, drones, balloons, rockets and others 

(Campbell & Shin, 2011; Paine & Kiser, 2012). 
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Aerial photography represents the largest and most valuable source of information for 

long-term assessment of land cover change and vegetation dynamics. Fine-scale (1:40000 

and larger) historical aerial photographs are available for many areas, in particular in Europe 

and North America, and many date back to the early 20th century, long before the advent of 

satellite-based remote sensing, making them a fundamental historical data archive 

(Anderson & Cobb, 2004; Strand, Dramstad, & Engan, 2002). They represent the only source 

of information that can combine high spatial resolution, relatively large spatial extent, and 

long-term coverage (Kadmon & Harari-Kremer, 1999; Morgan et al., 2010). The detail and 

coverage of these images makes them suitable for mapping small ecosystems and fine-scale 

landscape features (Brandt, Bunce, Howard, & Petit, 2002; Hussain, Chen, Cheng, Wei, & 

Stanley, 2013), for retrieving high-resolution land-cover data in areas not historically sam-

pled using ground-based techniques, and for carrying out quantitative analyses of land cover 

changes over time (Anderson & Cobb, 2004).  

Photographs are a representation of the reflectance characteristics recorded onto pho-

tographic film or in digital format. Aerial photographs are captured most commonly as pan-

chromatic (black and white), natural color, or false-color infrared; the range of electromag-

netic energy recorded by the film camera and is generally limited to the 0.4 to 0.9 mm re-

gion, only slightly wider than the range of human vision (Lillesand et al., 2004; Paine & Kiser, 

2012).  

The most common type of cameras used in aerial photography are single-lens frame 

cameras, with lenses designed to provide high geometric quality and minimize distortions. 

Regardless of the geometric quality of camera lenses, however, they always add a certain 

amount of curvature to the images, which becomes progressively more pronounced moving 

away from the center of the photo and is especially pronounced in images acquired with 

older cameras (Lillesand et al., 2004).  

Another source of potential error in an aerial photograph is relief displacement, which 

derives from the three-dimensionality of terrain features and manifests itself in the form of 

vertical objects apparently “leaning away” from the center point of an aerial photograph. 

This error is evident with trees and multistory buildings and is especially problematic when 

dealing with very steep terrain features, such as in mountain areas.  

Digital vertical photographs can be geometrically corrected to remove distortions caused 

by topographic relief, lens distortion, and camera tilt through a process called orthorectifica-
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tion, and are termed ortophotographs or orthoimages (Campbell & Shin, 2011). The scale of 

an ortophotograph is uniform, and the image has the same lack of distortion as a map, so it 

can be used to measure true distances, because it is an accurate representation of the 

Earth's surface. Orthorectification can be conducted on film-based photographs as well, af-

ter scanning to convert them into digital format. If the images are needed for photogram-

metric work, photogrammetric scanners are generally used, but other types of scanners can 

still provide digital products suitable for visual interpretation needs. The drawback of these 

second-generation products, however, is that they may not have the same level of detail 

found in the original, because scanning photographs can cause the loss of radiometric or to-

nal detail and of spatial resolution. The spatial and radiometric scanning resolution should 

therefore be chosen with the aim of creating an accurate representation of the original aeri-

al photograph, but the resulting images are often very demanding in terms of file size and 

memory requirements. The resolvable scanning resolution (expressed in dots per inch) is 

mainly limited by the physical characteristics of the film and by the scale of the aerial photo-

graph, but other factors, such as the presence of atmospheric haze and scene contrast, can 

affect it as well (Morgan et al., 2010). 

 

 

2.2.2 Satellite images 

 
The modern era of remote sensing began in 1972 with the launch of the first Landsat 

mission, which provided for the first time a consistent and uniform set of images of nearly 

the entire Earth surface with frequent revisiting time (Hussain et al., 2013), from which land 

cover information could be easily extracted and updated. The importance of satellite image-

ry in mapping vegetation has been increasing over the past two decades and is by now well 

established; following the Landsat acquisition program, other long term remote sensing pro-

grams have been launched, such as SPOT and AVHRR.  These programs have been providing 

repetitive and synoptic observations of the Earth for the past 30–40 years, allowing for time 

series analysis for long term change studies over large and often inaccessible areas (Hussain 

et al., 2013; Rogan, Franklin, & Roberts, 2002; Simonetti, Simonetti, & Preatoni, 2014; Vittek, 

Brink, Donnay, Simonetti, & Desclée, 2013). 
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Spatial resolution of satellite sensors ranges from high (e.g., QuickBird, Worldview, with 

sub-meter pixel size), to medium (e.g., 30 m for Landsat images) and coarse (between 250 m 

to 1000 m, e.g., MODIS, AVHRR) (Lu et al., 2014). The spatial resolution of a sensor influ-

ences the thematic information that can be extracted from images, as well as the represen-

tation of landscapes: large errors can arise as landscapes are represented at increasingly 

coarse scale. In most pixel-based classifications, each pixel is classified according to the spec-

tral properties of the dominant land cover type: consequently, with the increase of pixel size 

the proportion of land cover types which occur in small patches may be underestimated be-

cause they will not dominate the reflectance characteristics of the pixel.  

This also implies that the appropriate spatial resolution of the sensor also depends on 

the landscape under analysis (Verburg, Neumann, & Nol, 2011). At a continental or global 

scale, coarse spatial resolution sensors such as AVHRR, MODIS and SPOT VEGETATION are 

the most suitable choice because of their large swath width and frequent revisiting time, 

which give the advantage of frequent coverage and therefore increase the chances to collect 

a cloud-free multitemporal dataset for the detection of broad scale land cover features 

(Hostert, Röder, & Hill, 2003; Vittek et al., 2013), but limits their ability of supplying data in 

spatially complex landscapes (Senf, Leitão, Pflugmacher, van der Linden, & Hostert, 2015),  

mainly due to the mixed pixel problem that makes it difficult to extract changed features 

from coarse spatial resolution data (Lu et al., 2014). 

For applications at the regional scale, medium spatial resolution data such as TM and 

SPOT are generally used. Moreover, the existence of different kinds of sensors providing 

medium spatial resolution images gives more choices for data collection for a specific study 

area and thus the opportunity to integrate multi-sensor data to improve classification and/or 

change detection (Lu et al., 2014). High spatial resolution satellite sensors (QuickBird, IKO-

NOS, OrbView, Worldview), are becoming important data sources at the local scale for moni-

toring fine-scale landscape features and for use as reference data, partially replacing ground 

surveys or high resolution aerial photography, also thanks to their decreasing acquisition 

cost (Coppin, Jonckheere, Nackaerts, Muys, & Lambin, 2004; Hussain et al., 2013; Lu, Mausel, 

Brondízio, & Moran, 2004). Improvements in radiometric resolution (e.g., from 6 bits in 

Landsat MSS to 8 bits in Landsat TM to 12 bits in Landsat 8) further increased the potential 

of satellite data, as they can now provide better separability between different land cover 

types (Lu et al., 2014). 
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Other significant features of a satellite sensors include the satellite’s coverage area and 

revisit period (time between successive coverages), that depend on the satellite’s orbit. The 

orbit is defined by altitude, period, inclination, and equatorial crossing time (Figure 4). For 

most Earth observation satellites, the orbit is approximately circular, with altitudes higher 

than 400 km above the Earth's surface.  The inclination of a satellite's orbit is the angle at 

which the orbit crosses the equator. Near-polar orbits are those with an inclination close to 

90°, so called because the satellite passes near the north and south poles on each orbit. A 

special case are sun-synchronous orbits, which combine orbital period and inclination in 

such a way that the extra mass near the equator causes the plane of the orbit to rotate slow-

ly about the Earth's axis. A satellite on that orbit keeps pace with the sun's westward pro-

gress as the earth rotates, and consequently it always crosses the equator at the same local 

sun time.  

 
Figure 4: Elements of a circular, near-polar and sun-synchronous orbit (for Landsat 4-7) 

 

A frequent revisit cycle is important especially for certain time-sensitive applications, 

such as monitoring the effects of flooding, fires, and other natural disasters (Lillesand et al., 

2004).  
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In general, satellite remote sensing data offer the best possibility to monitor changes in 

land cover through time if compared to survey, census data and even classifications derived 

from aerial photography, which tend to be infrequent and/or inconsistent in relation to 

sampling schemes and definitions. Time series based on remote sensing have some draw-

backs as well, however, because they can suffer from inconsistencies due to the improved 

spatial and spectral resolution of new generations of sensors, and sometimes from sensor 

failure (such as the scan line corrector failure on the Landsat 7 ETM+ sensor, that has been 

impacting data acquisition since May 2003). Cloud cover may also cause significant problems 

in the acquisition of usable images, especially when near-anniversary images are needed (Lu 

et al., 2014; Strahler et al., 2006; Verburg et al., 2011). 

Moreover, satellite images are available only for the past four decades, which might not 

be enough for a complete assessment of land cover variation if the period before the 1970s 

needs to be considered as well. From the earlier period of the satellite era only coarse to 

medium resolution images are available, making them unsuitable for change detection at 

medium-to-high scale (Morgan et al., 2010). 

 

 

The Landsat satellites 

 
The Landsat program, originally developed by NASA with the cooperation of the U.S. De-

partment of the Interior, is recognized as key milestone in the evolution of remote sensing 

technology (Rogan & Chen, 2004). As of 2015, a total of 8 Landsat satellites have been 

launched (although Landsat 6 failed to achieve orbit and was lost), with Landsat 7 and 8 still 

operational today. The launch of Landsat 9 is planned for 2023 (Figure 5).  

Landsat imagery is often preferred for change detection applications because it offers 

the longest temporal resolution out of all the existing satellite programs, and its medium-

high spatial and spectral resolution and fairly frequent revisit time make it applicable to a 

wide range of situations (Xian, Homer, & Fry, 2009). With their 30 m spatial resolution and 

185 km swath, Landsat 4-8 imagery fill an important niche in land cover classification and 

change detection studies, because the swaths are wide enough for large area coverage, but 

at the same time the images are detailed enough to allow the identification of human-scale 

processes (Simonetti et al., 2014). Moreover, after the decision of the US Geological Survey 
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(USGS) of making all archived Landsat data freely available, the issue of data cost does not 

longer exist, establishing Landsat data as an irreplaceable resource for long term global 

change studies.  

Landsat 1, the first satellite in this family, was launched in 1972 and carried two sensors: 

the Return Beam Vidicom (RBV) and the Multi Spectral Scanner (MSS). RBV was a television 

camera, later replaced by the Thematic Mapper (TM) sensor in Landsats 4 and 5. Landsat 6 

failed to achieve orbit, while Landsat 7 (still operational) carries an Enhanced Thematic 

Mapper Plus (ETM+) sensor as well as a panchromatic one. The most recent satellite in the 

series, Landsat 8, has been launched on February 11, 2013 and carries two new sensors, the 

Operational Land Imager (OLI) and the Thermal Infrared Sensor (TIRS) (Simonetti et al., 2014; 

Ünsalan & Boyer, 2003). 

 
Figure 5: Landsat mission timeline showing satellite lifespans (Source http://www.nasa.gov) 

 

Each Landsat satellite passes over the same area on the Earth’s surface during daylight 

hours about 20 times per year. In reality the number of serviceable images is generally lower, 

depending on the amount of cloud cover, sun angle, and whether or not the satellite is in 

operation on any specific pass. Nevertheless, this still provides the opportunity for a given 

area to have Landsat images available for several dates per year.  

Landsat images are catalogued according to their location within the Worldwide Refer-

ence System (WRS). In this system each orbit within a cycle is designated as a path. Along 

these paths, the individual nominal sensor frame centers are designated as rows. Thus, a 

scene can be uniquely defined by specifying a path, a row and a date. The newer generation 

Landsat images have a different set of WRS paths from those for Landsat 1, 2, and 3, due to 
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the differences in coverage pattern. The WRS from Landsat 4 to 8 is composed of 233 paths 

numbered from 001 to 233, east to west. The same number of rows (60) as the previous 

WRS system is used (Lillesand et al., 2004). Table 1 summarizes the main characteristics of 

Landsat satellites and sensors, while Figure 6 and Table 2 show the differences between the 

bandwidth of Landsat 4-7 (TM/ETM+) and of  Landsat 8 (OLI/TIRS). Landsat 8 has a higher 

number of spectral bands and narrower bandwidths, resulting in differences between the 

spectral information (for example vegetation indices) that can be obtained from the latest 

sensor and its previous generations (Hang & Canh, 2014). 

 

 
Figure 6: comparison between OLI spectral bands and Landsat 7's ETM+ bands. Source: 

http://landsat.gsfc.nasa.gov/?p=3186 

 

  



23 

Satellite Period of 
operation 

Orbit (revisit 
time/height) Sensors Number of 

Bands 

Spatial  
resolution 

(m) 

Landsat 1 July 23,1972 - Janu-
ary 6, 1978 18 days/900 km RBV, MSS 4 (MSS) RBV 80; MSS 

60* 

Landsat 2 January 22, 1975 – 
July 27, 1983 18 days/900 km RBV, MSS 4 (MSS) RBV 80; MSS 

60* 

Landsat 3 March 5, 1978 – 
September 7, 1983 18 days/900 km RBV, MSS 5 (MSS) RBV 80; MSS 

60* 

Landsat 4 July 16, 1982 – June 
15, 2001 16 days/705 km MSS, TM 7 (TM), 4 

(MSS) 
TM 30; MSS 

60* 

Landsat 5 March 1, 1984 – 
June 5, 2013 16 days/705 km MSS, TM 7 (TM), 4 

(MSS) 
TM 30; MSS 

60* 

Landsat 6 October 5, 1993 
(failed to launch) 16 days/705 km ETM 8 (ETM) Pan 15; ETM 

30 

Landsat 7 April 15, 1999 – 
present 16 days/705 km ETM+ 8 (ETM+) Pan 15; ETM+ 

30 

Landsat 8 February 11, 2013 – 
present 16 days/705 km OLI, TIRS 9 (OLI), 2 

(TIRS) 
Pan 15; OLI 
30; TIRS 100 

Table 1: overview of Landsat missions characteristics. (*) The original MSS pixel size was 79 x 57 meters, but production 

systems now resample the data to 60 meters. Source: USGS (2015). 
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LANDSAT 4-7  LANDSAT 8 

Spectral bands Spatial resolution 
(m) 

Bandwidth 
(μm) Useful for Bandwidth 

(μm) 
Spatial resolution 

(m) Spectral bands 

- - - Coastal and aerosol studies 0.43 - 0.45 30 Band 1 (Coastal aerosol) 

Band 1 (Blue) 30 0.45 - 0.52 
Bathymetric mapping, distinguishing 
soil from vegetation and deciduous 

from coniferous vegetation 
0.45 - 0.51 30 Band 2 (Blue) 

Band 2 (Green) 30 0.52 - 0.60 Emphasizing peak vegetation, useful 
for assessing plant vigor 0.53 - 0.59 30 Band 3 (Green) 

Band 3 (Red) 30 0.63 - 0.69 Discriminating vegetation slopes 0.64 - 0.67 30 Band 4 (Red) 

Band 4 (NIR) 30 0.76 - 0.90 (TM) 
0.77 - 0.90 (ETM+) 

Emphasizing biomass content, 
shorelines and soil moisture 0.85 - 0.88 30 Band 5 (NIR) 

Band 5 (SWIR 
1) 30 1.55 - 1.75 

Discriminating moisture content of 
soil and vegetation; penetrating thin 

clouds 
1.57 - 1.65 30 Band 6 (SWIR 1) 

Band 7 (SWIR 
2) 30 2.08 - 2.35 (TM) 

2.09 - 2.35 (ETM+) 

Discriminating mineral and rock 
types, sensitive to vegetation mois-

ture content 
2.11 - 2.29 30 Band 7 (SWIR 2) 

Band 8 (Pan) 15 0.52 - 0.90 (ETM+ 
only) Sharper image definition 0.50 - 0.68 15 Band 8 (Pan) 

- - - Improved detection of cirrus cloud 
contamination 1.36 - 1.38 30 Band 9 - Cirrus 

Band 6 (TIR) 120/60 10.40 - 12.50 
Thermal mapping, estimated soil 
moisture and vegetation stress 

analysis 

10.60 - 11.19 100 Band 10 (TIR 1) 

11.50 - 12.51 100 Band 11 (TIR 2) 

Table 2: comparison between Landsat 4-7 (TM/ETM+) and Landsat 8 OLI/TIRS bands. 
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2.3 Geographic Information Systems (GIS)  

 

Geographic information Systems (GIS) are computer-based systems that can deal with virtually 

unlimited sources and types of biophysical and socioeconomic data, as long as they can be refer-

enced by geographical location. These systems are capable of handling both locational and attrib-

ute (descriptive characteristics) data about the features of interest. This ability to handle and spa-

tially interrelate multiple types of information stemming from a range of sources, easing their syn-

thesis, analysis, and communication, is perhaps the greatest advantage of using a GIS (Lillesand et 

al., 2004).  

 Multitemporal and multisource data is becoming increasingly easy to acquire, which makes a 

GIS a fundamental tool to manage the wealth of information about land units, attribute data, and 

temporal layers that are generally used for classification or change detection analysis. Through GIS 

software it is possible, for example, to compare sequences of temporal layers, display the category 

of change for every land plot and extract areal and positional data automatically in order to de-

scribe and quantify land cover changes, analyze patterns of long-term vegetation dynamics and 

vegetation changes along ecosystem boundaries over time and help in understanding the current 

situation and predicting future patterns of change (Bender, Boehmer, Jens, & Schumacher, 2005; 

Ciolli, Serafini, & Tattoni, 2007; Mast, Veblen, & Hodgson, 1997). Many image processing and data 

analysis software  are either integrated or compatible with GIS (Coppin et al., 2004). The incorpo-

ration of GIS technology in digital change detection methods also simplifies the development of 

maps of landscape change, that can be constructed by overlaying different temporal layers (not 

only remote sensing data, but also other types of data such as historical maps and surveys). This 

makes it easier to visualize and display changes, their characteristics and dynamics, to present da-

ta in map and other graphic formats and to update change maps, in a timely fashion and at scales 

that are consistent with ecosystem management objectives (Bender et al., 2005; Coppin et al., 

2004). Once the spatial and temporal extent of change has been determined, it can be combined 

with different type of data in order to study various aspects of the issue, thanks to the possibility 

offered by GIS software to link spatial data with non-spatial but more detailed attribute data (van 

Lynden & Mantel, 2001).  

Over the past decade, the development of well-designed and serviceable Open Source prod-

ucts such as QGis (QGIS Development Team, 2015), is providing researchers and users with valua-

ble and inexpensive resources for landscape analysis (Rocchini et al., 2012; Rocchini, 2004).  
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3. PRINCIPLES OF LAND COVER AND VEGETATION CLASSIFICATION 
 

Land cover has been defined as ‘‘the observed (bio) physical cover on the earth’s surface’’ (Di 

Gregorio & Jansen, 2005), and should not be confused with land use, which refers to the way in 

which people use these biophysical assets and describes human influence.  

Image classification is the interpretation of remotely sensed images for the production of 

thematic maps that show the spatial distribution of the land cover types or features of interest 

and provide an informative description of a given area (Simonetti et al., 2014). Classification pro-

cedures can be implemented either manually (through the visual interpretation of the image and 

on-screen digitization of the classes of interest), or with automated procedures (supervised or un-

supervised), that can either be pixel-based or object-based. 

Land cover information is a key dataset for both land use and land cover change (LUCC) stud-

ies, for the reason that land cover changes are the most obvious indication of environmental 

change, which can in many cases be related to land use change as well (Di Gregorio & Jansen, 

2005). 

 

 

3.1 Overview of land cover classification principles 

 

Because of its value as an environmental change indicator, information on land cover and land 

cover change should ideally be acquired through a common approach across countries and regions, 

especially considering the growing need for standardized datasets that are compatible with each 

other and for the necessity to map and monitor change over wide areas in a consistent manner. 

The reality, however, is that at global, continental and regional level, land cover type products can 

be very different in terms of their spatial cover, scale and class definition, in relation to the specific 

purposes for which they were created (Di Gregorio & Jansen, 2005; Gerard et al., 2010).  

When trying to harmonize different land cover datasets, or to create new ones based on exist-

ing or customized classification systems, it is crucial to take into account the possibility of having 

to cope with different conceptualizations of the landscape, not only in terms of data structure (e.g., 

raster vs. polygon vs. point), but also in terms of differences  in the objectives of the study and 

consequently the classification. This is necessary in order to avoid confusion, especially when the 
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datasets are nominally very similar but are difficult to compare or to integrate because they em-

body different views of the landscape (Comber, Fisher, & Wadsworth, 2005). 

The design or adoption of a classification system is crucial, given that a universally accepted 

land cover classification system that can possibly satisfy all environmental monitoring needs at dif-

ferent spatial scales doesn’t exist (Gerard et al., 2010). Therefore, a prerequisite of any study re-

lated to land cover classification and land cover change is the definition, in the least ambiguous 

way possible, of the land cover types of interest and of their distinguishing features, without for-

getting the necessity of producing data that can be compared with pre-existing datasets.  

The most successful attempts made so far at creating a standardized but flexible classification 

system that could be adopted  internationally are those by the Food and Agriculture Organization 

of the United Nations (FAO), most notably the Land Cover Classification System (Di Gregorio & 

Jansen, 2005) and the Global Forest Resource Assessment (FRA) (FAO, 2010). 

The FRA in particular has become the most widely recognized and used classification system 

for monitoring forest cover, both at the European and international level (Chirici & Martino, 2009; 

De Natale, Gasparini, Puzzolo, & Tosi, 2003; Marchetti, Bertani, Corona, & Valentini, 2012). In the 

past few years, studies have been increasingly conforming to the international FAO standard, ra-

ther than employing national or regional definitions, which complies with the increasing need of 

allowing for an easier comparison of forest cover data between countries for carbon accounting 

purposes (De Natale et al., 2003). Without a common framework, even just within the European 

Community substantial differences can be found in the definitions of forest applied in the national 

forest inventories. For example, threshold values for minimum crown cover range between 10 and 

30%, minimum width ranges between 9 m and 50 m, and minimum area between 0.05 ha and 2 ha 

(Traub, Kohl, Paivinen, & Kugler, 1998). However, in the case of non-forested land cover types 

such as grassland, a standardized set of classifiers is not equally easy to find.  

As for Italy, some attempts have been made at integrating national-based surveys related to 

land cover and land use change into an international framework, as shown by INFC (Inventario Na-

zionale delle Foreste e dei serbatoi di Carbonio – National Inventory of Forests and Carbon Sinks) 

and IUTI (Inventario dell’uso delle Terre d’Italia - Inventory of land uses in Italy). Both of them de-

rive their classification criteria of forest from FAO’s guidelines, using a hierarchical classification 

scheme which can be modified based on different levels of available information and on the detail 

level of interest (Marchetti et al., 2012). The classification scheme is also compatible with IPCC’s 

Good Practice Guidance for Land Use, Land-Use Change and Forestry (GPG-LULUCF) (IPCC, 2003), 
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and to some extent with the European Union’s CORINE (Coordination of Information on the Envi-

ronment) Land Cover system; the latter however has been often criticized for its lack of internal 

consistency, ambiguous class definition and consequent overlap between different classes (Di 

Gregorio & Jansen, 2005). 

 

To conclude, it seems necessary to discuss briefly terms such as “reforestation”, “afforesta-

tion”, “forest expansion” and “forest recovery”, which have all been used somewhat interchange-

ably in literature to refer to the re-establishment of a forested landscape through the regeneration 

of woody vegetation (trees and/or shrubs) on disused agricultural lands, meadows and pastures 

following farm abandonment in regions where the potential natural vegetation is a forest (Hori, 

Hayashi, Matsubara, Awaya, & Iehara, 2007; Sitzia et al., 2010). In this work, however, a distinction 

is made between afforestation and reforestation, based on FAO’s guidelines. Both terms refer to 

establishment of trees on unforested land; however, reforestation is defined as the re-growth of 

forests after a temporary (< 10 years) condition with less than 10% canopy cover due to human-

induced or natural perturbations, while afforestation is the conversion from other land uses into 

forest, or the increase of canopy cover to the 10% threshold that identifies forests (FAO, 2010). In 

this work only afforestation processes have been taken into consideration. 

Another term frequently used in the literature related to the loss of grassland ecosystems due 

to the natural advancement and/or densification of trees or shrubs (either attributed to climate 

change or to changes in land-use practices) is forest “encroachment” or “invasion” (Améztegui et 

al., 2010; Briggs et al., 2005; Coop & Givnish, 2007; Didier, 2001; Halpern, Antos, Rice, Haugo, & 

Lang, 2010; Laliberte et al., 2004; Price & Morgan, 2008).  

 

 

3.2 Aerial photographs and visual photointerpretation 

 

Before the introduction of digital remote sensors, the only way to derive land cover infor-

mation from analog aerial images was visual interpretation, while nowadays digital processing 

techniques have established themselves as the preferred option (Anderson & Cobb, 2004). Given 

that the ultimate goal of land cover mapping is to obtain a description of the area of interest that 

is accurate, suitable for the user’s purposes and not cluttered by irrelevant information 

(Brandtberg, 1999), the replacement of a human interpreter with an automated system is not al-
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ways easy, and it can be met with varying degrees of success in relation to the characteristics of 

the image and to the needs of the end user.  

Visual interpretation and classification of aerial images requires the ability to observe and cor-

rectly interpret image features in order to define homogeneous areas of cover. This can be made 

either by tracing the boundaries separating different land cover units (Kadmon & Harari-Kremer, 

1999) or by point sampling. Nowadays both the delineation and the class assignation can be exe-

cuted through GIS software, which to a certain degree simplifies and speeds up the process. The 

result of a manual classification is typically a vector image where the features of interest are ex-

pressed as geometrical shapes: polygons for homogeneous areas of cover and points when a point 

sampling scheme is used. 

Visual interpretation, however, poses two major problems: the first is that the delineation of 

homogeneous vegetation units is not based on explicit measurement procedures, and as such, the 

information is not objective and difficult to replicate. Inconsistencies between- and within-

interpreters make it difficult to evaluate changes over time and to reconcile multiple maps of the 

same area. The second is that using large-scale photography or enlargements to extract infor-

mation at very fine scales over the entire area of interest can be prohibitively time-consuming and 

labor intensive, depending on the size of the area itself (Culvenor, 2002). Moreover, the planning 

and acquisition of aerial images is has substantial costs, especially when acquisition has to be re-

peated at different moments in time, either for change detection applications or for inventory 

purposes. Relying on visual interpretation and manual digitization of land cover units also makes it 

difficult to update existing maps quickly and efficiently (Kadmon & Harari-Kremer, 1999; Lillesand 

et al., 2004; Lu et al., 2004; Pouliot, King, Bell, & Pitt, 2002). 

Prompted by the rapid diffusion of remotely sensed data in digital format starting from the 

1980s, much research has been devoted to automating classification and data analysis procedures 

in order to reduce or eliminate the drawbacks associated with manual photointerpretation. Digital 

computer processing, in addition to offering consistent and repeatable results, can also take ad-

vantage of spectral features from the non-visible parts of the electromagnetic spectrum, which are 

impossible to fully evaluate by a human operator due to the limited ability of the eye to discern 

tonal values and the difficulty to simultaneously analyze numerous spectral images (Coppin et al., 

2004). 

The use of automated classification procedures with aerial photographs is not always possible 

or convenient. While the human eye has a limited ability to interpret spectral patterns and distin-
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guish between spectral signatures, computers are limited in their ability to evaluate spatial pat-

terns, making visual and digital techniques complementary in nature. A skilled interpreter analyz-

ing large-scale aerial photography generally produces more accurate results than an automated 

digital change detection method (Coppin & Bauer, 1996), because they can make full use of their 

experience and knowledge. There are several non-spectral features of an image that are useful for 

identification of land cover change through visual interpretation, like shape, size, pattern, tone, 

texture, shadows, site, association, and resolution (Lillesand et al., 2004). These elements can be 

used as a support in the decision-making process, but are not common in the digital change detec-

tion analysis yet because of the difficulty of extracting and interpreting them (Lu et al., 2004).  

For these reasons, careful consideration must be given to which approach (or combination of 

approaches) fits a specific application best (Lillesand et al., 2004), and manual interpretation is still 

an effective and widely adopted approach for classification and change detection, especially when 

dealing with historical material (Brandt et al., 2002). This is demonstrated by its use in several re-

cent studies (Coop & Givnish, 2007; Corona, Pompei, & Scarascia Mugnozza, 2005; Frate et al., 

2014; Gerard et al., 2010; Hori et al., 2007; Lega & Vincini, 2003; Sgarbossa, 2010; Urbinati et al., 

2004; Walton, Nowak, & Greenfield, 2008). The reasons behind the choice of this approach are 

varied; for instance, insufficient spatial or radiometric resolution (especially when using historical 

aerial photographs), tonal differences between areas with the same type of land cover at different 

elevations or aspects within the same photoset, or similarities between different types of land 

cover that could, without prior knowledge of the study area, be mistaken for each other (Coop & 

Givnish, 2007). Another factor that may significantly influence the classification process is the 

presence of shadows, typical when images are taken when solar elevation is not as close to direct-

ly overhead as possible, or in the presence of certain topographic features (for example narrow 

valleys), as in Sgarbossa (2010) and Ciolli, Serafini, & Tattoni (2007). In most cases the necessity of 

working with pre-existing and historical material gives no choice but to use images taken at sub-

optimal times (Whiteman & Brown, 1998). When using automated classification methods, shad-

ows are very likely to cause thematic errors; conversely, when using manual interpretation, the 

presence of shadows can offer to the photo-interpreter important clues, such as the height of 

trees (Bitelli et al., 2005).  
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3.3 Vegetation mapping through multispectral images and Vegetation Indices 

 

The first automated and semi-automated land cover classification techniques were pixel-

based methods, developed in the 1970s for analyzing Landsat MSS data. Pixel-based approaches 

take the image pixel as fundamental unit of analysis, using its spectral signature as the numerical 

basis for categorization to assign a land cover class to each individual pixel (Aplin & Smith, 2008). 

Pixel-based classification methods are the most commonly used, especially when coarse and me-

dium spatial resolution images are used (Lu et al., 2014).  

Multispectral remote sensing data can be effectively used to map vegetation and differentiate 

it from other land cover types on the basis of its spectral characteristics. Photosinthetically active 

vegetation is generally characterized by conspicuous absorption in the red and blue bands of the 

visible spectrum (up to 70 to 90% of the incident radiation) in relation to its chlorophyll content, 

and by high reflectance in the green and especially in the NIR bands (Jackson & Huete, 1991). In 

the NIR part of the spectrum, differences in reflective properties of plant species are more pro-

nounced than in the visible region. There is however a distinctive variability between different 

vegetation types, determined by parameters such as leaf shape, size and biochemical constituents, 

overall plant shape, leaf water content, background soil type and density of vegetative cover 

(Figure 7).  

 
Figure 7: Depending on the vegetation type and density, vegetated areas can absorb different amounts of visible light and reflect 

different amounts of NIR light. 
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The differentiation between different vegetation types can rarely be based only on the inter-

pretation of spectral properties alone, however, because their spectral characteristics change sig-

nificantly within the vegetative period and can be very similar to each other in some parts of the 

growing season and very different in others (Esch, Metz, Marconcini, & Keil, 2014). For this reason, 

spectral data from multispectral remote sensors is often aggregated to create vegetation indices 

(Simonetti et al., 2014).  

Vegetation indices (VI) are mathematical transformations (usually ratios or linear combina-

tions) of reflectance values measured in different spectral bands (especially the visible and NIR 

ones), based on the differences in the reflectance patterns between green vegetation and other 

surfaces (Payero, Neale, & Wright, 2004). Over the years several vegetation indices have been 

proposed, ranging from very simple to very complex band combinations.  

The main advantages in using vegetation indices instead of single-band radiometric responses 

lies in their ability to synthesize the information contained in the spectral bands, reducing the data 

volume for processing and analysis but also providing information that is not available in any single 

band. The ideal vegetation index should be highly sensitive to vegetation dynamics and not sensi-

tive to soil background and atmospheric variations (Lyon, Yuan, Lunetta, & Elvidge, 1998; Singh, 

1989), but no single vegetation index can completely summarize the information contained in a 

multidimensional spectral data space, and a certain amount of information loss may be expected 

(Simonetti et al., 2014). In addition, indices considered suitable for a specific analysis may not be 

appropriate in another context (Coppin et al., 2004).  

One of the most widely used vegetation indices is the Normalized Difference Vegetation Index 

(NDVI)(Turner, Cohen, Kennedy, Fassnacht, & Briggs, 1999). NDVI is a ratio-based index, and is cal-

culated dividing the NIR band by the red band of the image according to this equation: 

NDVI= (NIR-RED) / (NIR+RED) 

NDVI values range from -1 to +1. Higher values indicate a larger difference between the red 

and NIR radiation recorded by the sensor, which is associated with highly photosynthetically-active 

vegetation. For growing green vegetation, the reflectance in the NIR is greater than in the visible, 

while dead or stressed vegetation reflects more in the red and less in NIR part of the spectrum. 

Values between +0,6 and +0,9 typically represent dense forest stands or crops at their peak 

growth stage, while sparse vegetation such as shrubs and grasslands may show intermediate NDVI 

values, for example between +0,2 to +0,5 (Simonetti et al., 2014). Low NDVI values mean there is 

little difference between the red and NIR signals; this happens when there is little or no photosyn-
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thetic activity, like on non-vegetated surfaces such as bare soils and rocks, that have NDVI values 

close to 0. Clouds, water and snow have higher visible reflectance than NIR reflectance, thus they 

are characterized by negative index values (Jelinski & Wu, 1996; Lillesand et al., 2004). NDVI has 

been found to be highly correlated with crown closure, leaf area index (LAI), and other vegetation 

parameters (Hayes & Sader, 2001). 

Using ratio-based indices such as NDVI can emphasize differences in brightness values of the 

spectral response curves of different features and help suppressing differential solar illumination 

affects due to topography and aspect, as well as normalizing differences in brightness values when 

using multiple date images. The popularity of NDVI in vegetation mapping studies is mainly due to 

its ability to compensate for changing illumination conditions, surface slope, and viewing angle 

(Campos, Lawrence, McGlynn, & Gardner, 2011; Nordberg & Evertson, 2005; Simonetti et al., 

2014). 

There are however some limitations in the use of NDVI; the first is that when the index is used 

for environments with a high percentage of bare ground and exposed rock, the characteristics of 

the soil surface can influence its values by a large degree: the presence of dry, light colored soils 

lowers NDVI values, while when wet or darker soils are present this effect is less detectable (Huete 

& Jackson, 1988). 

The second limitation in using NDVI is that, beyond a certain biomass density it asymptotically 

approaches a saturation level, at which point the index becomes insensitive to different densities. 

This saturation effect is typical of multilayer vegetation such as forests or agricultural crops (Gu, 

Wylie, Howard, Phuyal, & Ji, 2013; Mašková, Zemek, & Květ, 2008; D. P. Turner et al., 1999). In ad-

dition to this drawback, NDVI does not eliminate atmospheric effects. In order to avoid these 

problems, indices such as the Enhanced Vegetation Index (EVI) have been proposed. EVI allows for 

improved sensitivity in high biomass regions and improved vegetation monitoring capability 

through the de-coupling of the canopy background signal and the reduction in atmospheric influ-

ences. EVI is calculated according to this equation: 

EVI = G * (NIR – RED) / (NIR + C1 * RED – C2 * BLUE + L) 

where NIR/RED/BLUE are atmospherically-corrected or partially atmospherically corrected (for 

Rayleigh effect and ozone absorption) surface reflectances, L is the canopy background adjust-

ment coefficient, and C1, C2 are the coefficients of the aerosol resistance term, which uses the 

blue band to correct for aerosol influences in the red band.  
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A significant drawback of vegetation indices like EVI, that include terms not expressed as a 

band ratio (like the constant term L), is their sensitivity to topographic effects. In these instances, 

topographic correction should be carried out before calculating the indices, unlike NDVI which 

doesn’t strictly require topographic correction because the topographic effect is eliminated or 

weakened (Matsushita, Yang, Chen, Onda, & Qiu, 2007). 

The values of a vegetation index collected over a long period of time can be averaged to ob-

tain the "normal" growing conditions in a region for a given time of year, while plotting time-series 

vegetation index data produces a temporal curve that summarizes the various stages that green 

vegetation undergoes during a complete growing season. This curve can be used to extract key 

phenological variables such as the start, the peak and end of the growing season (Simonetti et al., 

2014). 

 

 

4. LAND COVER CHANGE DETECTION  
  

Change detection, defined by Singh (1989) as “the process of identifying differences in the 

state of an object or phenomenon by observing it at different times’’ is based on the use of mul-

titemporal datasets of the same area to distinguish changes between different dates of imaging in 

order to qualitatively and quantitatively analyze the temporal effects of phenomena. Change de-

tection is one of the main applications of remotely sensed data in fields such as bio-physics, envi-

ronmental monitoring and land use/land cover change analysis (Hussain et al., 2013; Lillesand et 

al., 2004).  

The purpose of land cover change detection studies is to identify the spatial and temporal pat-

terns of land cover change in respect to their extent, quantity and characteristics (Morgan et al., 

2010) by analyzing remote sensing images of the same geographical area taken at different times 

(Radke, Andra, Al-Kofahi, & Roysam, 2005). It can be applied to a wide variety of problems, such as 

urbanization, monitoring of shifting cultivation, deforestation assessment, changes in vegetation 

phenology, crop stress detection, and other environmental changes, and the results are useful to 

assess environmental impacts and risks (Singh, 1989). Change detection assessments provide a 

fundamental input for environmental studies, planning and management, because they can im-

prove the knowledge of the magnitude of the problem in terms of its areal extent and intensity 

(Serra, Pons, & Saurì, 2003; Whiteman & Brown, 1998). In particular, studying long-term vegeta-
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tion changes is necessary to understand the ecology of plant successions, the effects of climate 

change on vegetation, the impacts deriving from land use, and as a predictive tool in ecosystem 

science and management (Anderson & Cobb, 2004). 

A complete change detection assessment should provide the following information: a) wheth-

er a change has occurred or not, b) the nature of the change (the change trajectories of land-cover 

types), c) the areal extent and the rate of the change, and d) the spatial pattern of the change. In 

addition, it is fundamental to provide an accuracy assessment of change detection results (Lu et al., 

2004).  

The major data sources for land cover change detection applications during the past decades 

have been optical airborne- and satellite-based sensors (Lu et al., 2004; Morgan et al., 2010). Re-

mote sensing data are used for digital change detection based on two assumptions (Coppin & 

Bauer, 1996; Hussain et al., 2013; Singh, 1989): the first is that different land cover types have 

their own spectral signatures, so changes in land cover must result in variation of spectral signa-

tures. Any radiance variation over time for a particular area can be associated with an alteration in 

its reflective/emissive characteristics, which in turn can be related to changes in the biophysical 

properties of the surface. Land cover change can therefore be detected through the comparison of 

the spectral signatures of two moments in time using a suitable algorithm (Lu et al., 2004). The 

second assumption is that changes in the object of interest alter the spectral behavior (reflectance 

value or local texture) of the object itself in a way that that is distinguishable from changes caused 

by other factors such as differences in atmospheric conditions, illumination (sun angle), back-

ground conditions (for example the differences in soil moisture), and sensor calibration. This 

means that variations in radiance caused by land cover change between the time periods consid-

ered must be large compared to radiance variations arising from external factors.  

The successful design and implementation of a digital change detection procedure depend on 

many factors related to the specific conditions of the study. A general scheme is comprised of the 

following steps: 1) definition of the change detection research problem; 2) selection of remotely 

sensed data; 3) application of preprocessing procedures to the images; 4) extraction of variables 

suitable for the assessment of the specific type of change detection problem; 5) selection of ap-

propriate change detection algorithms; and 6) evaluation of the results (Hussain et al., 2013; Lu et 

al., 2014, 2004). 
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4.1 Data selection 

 

The selection of the most appropriate satellite data for a change detection procedure is influ-

enced by three major factors, namely: a) the characteristics of the sensor, b) the temporal charac-

teristics of the remotely sensed imagery, and c) the characteristics of the study area. The ideal 

conditions (usually never met in practice) would be to have access to multitemporal images from 

the same sensor, with the same radiometric and spatial resolution, with no cloud cover and taken 

at anniversary or near anniversary acquisition dates (when considering changes occurring between 

different years) in order to minimize the effects of external sources such as sun angle, seasonal 

and phenological differences (Coppin & Bauer, 1996; Lu et al., 2004). 

 

 

4.1.1 Sensor characteristics 

 

The spectral, spatial, temporal, and radiometric resolutions of the sensor have a significant 

impact on the success of a change detection project, so the selection of suitable data sets and im-

age acquisition dates for a specific study is conditioned by the understanding of the strengths and 

weaknesses of different types of sensor in relation to the user’s needs, complexity of landscape, 

areal extent of the study area, and so on (Lu et al., 2014). This aspect has already been discussed 

in section 2.2.2 Satellite images. Even using imagery from the same sensor doesn’t guarantee that 

the sensor characteristics will be perfectly equal. Sensors degrade over time, causing a change in 

radiometric qualities and, in some cases, a partial loss of data. 

 

 

4.1.2 Temporal characteristics 

 

There are several temporal requirements to take into consideration when choosing dates for 

multitemporal satellite images for change detection. This problem has two dimensions: the tem-

poral resolution (the length of the interval between one image and the next) and the calendar ac-

quisition dates.  

The use of anniversary dates or anniversary windows (annual cycles or multiples thereof) min-

imizes differences in reflectance caused by different sun angles and seasonal vegetation changes 
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(Aldrich, 1979; Coppin et al., 2004). Plants undergo intra-annual variations or cycles (phenology) 

mediated by physical drivers such as temperature, solar radiation, and water availability. In higher 

latitudes, for example, plant cycles are principally driven by temperature and photoperiod, and 

during different stages of growth the same vegetation type can appear significantly different 

(Lunetta, Ediriwickrema, Johnson, Lyon, & McKerrow, 2002). Images acquired during the same 

time of the year and at the same time of the day belong to the same phenological stage of growth, 

but have also similar solar illumination angles, which ensures that shadowed ground areas, as well 

as brightly illuminated areas, will be similar in appearance for both early and late dates. This is of 

particular importance when the study area has an irregular topography. It is possible to normalize 

the effect of different illumination angles by using a DEM, but this approach has some limitations. 

Acquiring near-anniversary images from the same sensor can be difficult, however, especially in 

areas where it is extremely hard to find cloud-free images (Hussain et al., 2013). In this case, the 

use of multi-sensor images or non-anniversary dates is the only viable choice (Lu et al., 2014). 

The calendar acquisition date of the images is important because it is necessary to select a 

time of the year when the features of interest can be accurately differentiated from other features.  

The ideal season for change detection is still a controversial topic in literature, and varies ac-

cording to the geographical area and the type of land cover change to be detected. For forest 

change, for example, several authors recommend summer as the most suitable season because of 

their phenological stability. Imagery from the autumn, spring and winter periods is not suited for 

forest classifications due to the lower sun angles which cast shadows (Meyer, Itten, Kellenberger, 

Sandmeier, & Sandmeier, 1993). Choosing the driest period of the year (depending on local condi-

tions), also enhances spectral separability while minimizing spectral similarity, because surface 

wetness has a strong influence (Coppin & Bauer, 1996). For a semi-arid grassland environment, 

Langley et al. (2001) found that September was the best month, because of more distinct spectral 

responses for the target vegetation classes and fewer shadows in that geographic region at that 

time of year. In most cases herbaceous species, shrubs, and forests show contrasting seasonal var-

iations in vegetation activity. In temperate climates, the peak activity for herbaceous species and 

shrubs usually occurs in spring, while for forests in summer (Vicente-Serrano, Pérez-Cabello, & 

Lasanta, 2008). 

The use of inter-annual multi-seasonal imagery for classification of land cover has also been 

proved to be useful. For example, Yuan et al. (2005) found that by combining late spring and 

summer images, fields planted with annual crops could be distinguished more easily from forests, 
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because they respond as bare soil. When only a summer image is used, forests and some crops 

appear spectrally similar. However, the late summer image is needed to separate those same crop 

fields from urban areas with significant amounts impervious surfaces that are spectrally similar to 

bare soil in a spring image. Compared to the single dates, both the average and the minimum sep-

arability were increased by the combination of spring and summer images.  

It is also important to consider the dependency of the type of change sought on the temporal 

interval between dates of imagery: data collected within a short time interval might not show the 

change process, while data collected between temporal moments too far from each other might 

be prone to excessive omission error (Hussain et al., 2013).  

In many studies, however, the most important factor that influences the choice of periodicity 

of the data acquisition remains the availability of data of acceptable quality (Coppin & Bauer, 

1996), especially when the interest is on monitoring changes over a relatively short period of time. 

In the case of optical satellite images, data availability is heavily influenced by cloud cover, that 

needs to be minimal in order to avoid loss of information and no-data clusters in the final change 

map (Mihai, Savulescu, & Sandric, 2007). 

 

 

4.1.3 Environmental characteristics 

 
Different landscapes have different land cover composition features and spatial patterns, and 

this aspect has to be considered in the selection of remote sensing data and change detection 

techniques (Lu et al., 2014). Landscape heterogeneity and the size of homogeneous land cover 

classes affect change detection error because they determine the mixed pixels present in the da-

taset, meaning those pixels whose reflectances arise from more than one land-cover class. (Smith, 

Stehman, Wickham, & Yang, 2003). Less dominant land cover types tend to disappear as grain be-

comes coarser, but their pattern of spatial distribution influences the rate at which this infor-

mation loss occurs. Cover types that are dispersed in the landscape are lost more rapidly than 

clumped cover types (M. G. Turner, 1990). 

Classification and change detection are also especially challenging in mountain environments 

because of the highly fragmented landscape, steep terrain features and related shadows, oro-

graphically increased cloud cover and snow cover with rapid changes in its spatial extent (Gartzia, 

Alados, Pérez-cabello, & Bueno, 2013; Waser & Schwarz, 2006). Moreover, changes in mountain 

vegetation tend to be slow and can go undetected in the short term; for example, the speed of 
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shrub encroachment on subalpine grassland has been estimated at 2 m/year. As a consequence 

even small improvements in classification accuracy can be vital in detecting changes in this kind of 

environment (Gartzia et al., 2013).  

A further element of variability in phenological characteristics may be introduced by local pre-

cipitation and temperature variations, soil moisture, site characteristics, atmospheric conditions 

and plant species, even when the images are acquired at anniversary dates.  

Ensuring similar atmospheric conditions between two dates of imagery is complex because 

they tend to change on an hourly or daily basis and are not always homogeneous across an image. 

For this reason, the application of an atmospheric normalization procedure is in most cases con-

sidered necessary (Song, Woodcock, Seto, Lenney, & Macomber, 2001). Moreover, differences in 

soil moisture between images can affect the detected changes if soil represents a significant por-

tion of the signal. This is especially noticeable when using image bands that are sensitive to water, 

such as Landsat TM band 5. Soil moisture can also indirectly affect plant stress, thus altering the 

appearance of similar vegetation so that it may appear as if the vegetation composition has 

changed. Choosing anniversary dates can help to minimize the effects of different soil moisture 

conditions, however, precipitation records should be compared to further asses their similarity. 

 

 

4.2 Pre-processing procedures 

 

The goal of pre-processing procedures is to minimize the impact of sensor and external differ-

ences to make all images appear as if they were acquired with the same sensor, at the same time 

and under the same atmospheric conditions (Coppin & Bauer, 1996; Lillesand et al., 2004; Song et 

al., 2001). Moreover, considering that the aim of a change detection procedure is to detect signifi-

cant changes while rejecting non-significant ones, it is important to eliminate or filter out common 

types of non-significant changes (image noise) before undertaking the change detection process 

itself. Image pre-processing procedures include geometrical rectification and image registration, 

radiometric and atmospheric correction, and topographic correction if the study area is in moun-

tainous regions (Hussain et al., 2013; Lu et al., 2004; Radke et al., 2005). In some cases, it is also 

necessary to remove or mask irrelevant features (e.g. clouds) or land cover types not of interest 

(Coppin et al., 2004).  
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4.2.1 Geometric correction 

 
If individual digital or digitized images are acquired with no spatial reference, it must be added, 

and it is also necessary to correct their vertical and horizontal geometric displacement and remove 

geometric distortions (Lillesand et al., 2004). Geometric (positional) errors may alter the perceived 

location of features over a landscape, their size, or both. As a consequence, geometric distortions 

in the images must be removed before quantitative measurements can be made, especially when 

conducting a multitemporal study.  

The spatial distribution of positional error over the region of interest is rarely random or 

uniform. In many cases a distinct pattern can be recognized,  arising from either the sensor’s 

properties and/or the topography of the ground. Relief heterogeneity is one of the most im-

portant causes of distortion, especially for aerial photography, because it makes features at higher 

elevations appear larger than features of similar size located at lower elevations (Kadmon & 

Harari-Kremer, 1999; Rocchini & Di Rita, 2005). For this reason, mountainous environments are 

very challenging for achieving geographically accurate data (Rocchini et al., 2012). Rocchini (2004) 

demonstrated that if geometric distortions are corrected using an improper rectification method, 

changes in some land cover classes can be overestimated by up to double the occupied area. 

When using multitemporal datasets for change detection, both the geometric accuracy of 

each single image and the accuracy of the spatial registration of multidate imagery to a common 

spatial framework have to be considered (Foody, 2002; Townshend, Justice, Gurney, & McManus, 

1992). The positional error in the individual layers and the imperfect co-registration among each 

dataset has the effect of either masking or exaggerating change (Boyd & Foody, 2011; Verbyla & 

Boles, 2000), because land cover is evaluated at the wrong location between one time and anoth-

er, changing measurements and the ecological change estimates derived from them (Carmel, Dean, 

& Flather, 2001; Dai & Khorram, 1998; Rocchini & Di Rita, 2005; Serra et al., 2003; Townshend et 

al., 1992; Verbyla & Boles, 2000; Wang & Ellis, 2005). 

This is of particularly significance in the case of highly heterogeneous or fragmented 

landscapes (Foody, 2002; Morgan et al., 2010; Roy, 2000; Wang & Ellis, 2005), as demonstrated by 

Townshend et al. (1992) and Serra et al. (2003), who showed how in this type of landscape the ef-

fect of misregistration error is greater than in homogeneous areas. In addition, this affects steeper 

areas more than flatter areas (Lu et al., 2004; Van Niel, McVicar, Li, Gallant, & Yang, 2008). Dai & 

Khorram (1998) observed that the false changes added by misregistration are mainly distributed 
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spatially along the edges of the images, while the true changes removed by misregistration are 

spatially distributed away from edges.  

Geometric correction techniques can be divided between procedures that just assign horizon-

tal map (x, y) coordinates to digitized or digital images (georeferencing and rectification proce-

dures), and procedures that also add vertical map (x, y, and z) coordinates to images in order to 

accurately represent distances, angles, and areas (orthorectification) (Lillesand et al., 2004; 

Morgan et al., 2010; Rocchini et al., 2012). 

Despite the fact that rectification can correct several kinds of image distortion through the 

process of shifting (translating, transforming, warping/rubbersheeting, etc.) the pixel locations of a 

target image through the use of Ground Control Points (GCPs), it cannot correct relief displace-

ment, because no information regarding the elevation of GCPs is provided. In this case an or-

thorectification procedure is more suitable, because it can correct for image displacements due to 

sensor (camera) and platform (aircraft or satellite) characteristics and to terrain elevations. Local 

elevation is obtained from a digital elevation model (DEM) or from the elevation at each GCP 

measured by a GPS (Rocchini et al., 2012; Willneff & Poon, 2006). Rocchini & Di Rita (2005) 

demonstrated that given the same GCPs, in landscapes with high geomorphological complexity or-

thorectification is superior to simple rectification because it guarantees lower geometric dis-

placement, leading to the possibility of computing distances and areas more accurately, while on 

flat areas displacement error is similar for all transformations (Rocchini et al., 2012; Willneff & 

Poon, 2006).  

When using two or more spatial layers together, a frequently used term is co-registration, 

which indicates the process of accurately overlaying the layers onto each other (Rocchini et al., 

2012). When using two or more independently georeferenced or orthorectified datasets in change 

detection studies, it is commonly assumed that the images are co-registered with no error, so they 

can be compared directly (Coppin & Bauer, 1996; Foody, 2002). However, perfect co-registration 

of multi-temporal images is not possible, as there is always residual error in orthorectification 

models, and even residual misregistration at the sub-pixel level can lead to inaccuracies in the are-

al assessment of change at the change/no-change boundaries (Coppin & Bauer, 1996; Coppin et al., 

2004; Verbyla & Boles, 2000). Accurate geometric registration of multi-temporal imagery is one of 

the most important requirements in digital change detection methods, especially if change analy-

sis is performed on a pixel-by-pixel basis, as demonstrated by several studies such as (Dai & 

Khorram, 1998; Stow & Chen, 2002; Stow, 1999; Townshend et al., 1992; Verbyla & Boles, 2000). 
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To be able to compare separate layers pixel by pixel, the pixel grids of each layer must conform to 

the other layers in the database. Sub-pixel level geometrical registration accuracy is generally re-

quired, and becomes even more important when data is from different sensors and at different 

resolutions (Hussain et al., 2013; Jianya, Haigang, Guorui, & Qiming, 2008; Lu et al., 2004). If co-

registration of two or more images is considered not to be sufficiently accurate, the one believed 

to be the most accurate should be used as standard of location, and the others re-registered to fit 

it (Hori et al., 2007). It is also necessary to test the geometric accuracy of the images before ex-

tracting quantitative information from them, in order not to risk obtaining misleading results 

(Rocchini & Di Rita, 2005; Verbyla & Boles, 2000). 

Assessment of registration accuracy is usually calculated as the root mean square error (RMSE), 

which represents a measure of deviation of corrected GCP coordinate values from the original ref-

erence GCPs used to develop the correction, and that in turn depends on the transformation used 

to register the images (Brovelli & Minghini, 2012; Rocchini et al., 2012). RMSE values of 0,5 to 1,0 

pixels are normally considered adequate to minimize artificial change caused by positional error, 

and visually the results of overlaying two images with this level of misregistration are acceptable 

(Townshend et al., 1992; Verbyla & Boles, 2000). In some cases, however, even sub-pixel co-

registration error can lead to significant error in the quantification of land cover change, especially 

across the boundaries between different land cover classes (Coppin & Bauer, 1996; Townshend et 

al., 1992; Wang & Ellis, 2005) and in highly fragmented landscapes (Serra et al., 2003). Townshend 

et al. (1992) followed by Dai & Khorram (1998) demonstrated that to achieve errors of 10% in veg-

etation index values obtained from Landsat MSS images, a registration accuracy of 0,2 pixels or 

less is required, but this level of accuracy is hardly achievable in practice.  

 

 

4.2.2 Atmospheric correction 

 

The second critical requirement for successful change detection is to obtain a comparable 

spectral response from images acquired at different dates. Digital sensors record the intensity of 

electromagnetic radiation from the Earth’s surface in the form of a pixel digital number (DN), 

which is a linearly transformed representation of at-sensor radiance for a discrete resolved area of 

the Earth’s surface. The DN range of a sensor depends on its radiometric resolution, and DN values 

do not depend only on the properties of the observed objects, because they are influenced both 
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by sensor-induced and scene-related radiometric effects. Sensor-induced effects are caused by 

technical issues such as detector calibration, filtering, platform and system stability, while scene-

related effects include the influence of topography, atmosphere, viewing angle, adjacency effect, 

position of the sun and the reflectance properties of the objects of interest (Meyer et al., 1993). 

As a consequence, the spectral signature of a specific land cover is not comparable between 

different images if expressed as DN, so it is important to eliminate differences between image ac-

quisitions that are not related to the remotely sensed objects themselves (Coppin et al., 2004; 

Hussain et al., 2013; Morgan et al., 2010; Song et al., 2001; Xie, Sha, & Yu, 2008; D. Yuan & Elvidge, 

1996). The impact of some of these factors, such as those related to sun angle and phenology ef-

fects, may be partially reduced by selecting near-anniversary images from the same sensor (Serra 

et al., 2003). The most important factor, however, is the influence of the atmosphere, for which a 

variety of atmospheric correction techniques have been developed. 

These techniques can be broadly divided into absolute and relative atmospheric correction 

(normalization). Absolute correction aims at removing all atmospheric interference due to absorp-

tion and scattering in order to extract the reflectance values at the Earth’s surface from the origi-

nal DN values (Hussain et al., 2013; Xie et al., 2008). These procedures require knowledge of both 

the sensor spectral profile and the atmospheric properties at the acquisition time, which are diffi-

cult and time-consuming to acquire (Du, Teillet, & Cihlar, 2002; Xie et al., 2008). Examples  are 

Dark Object Subtraction (DOS) and atmospheric modelling (e.g. Second simulation of the satellite 

signal in the solar spectrum, 6S) (Hussain et al., 2013; Lu et al., 2004; Song et al., 2001).  

Relative radiometric correction on the contrary is based on the assumption of a linear rela-

tionship between image bands across time, implying that the spectral reflectance properties of the 

sampled pixels do not change during the considered time interval (Du et al., 2002). This requires 

the radiometric measurements of pseudo-invariant features (PIF) in the images, which are objects 

spatially defined and radiometrically stable (e.g. mature forest stands, clear deep lakes, etc.). This 

method allows the normalization of the image (the same DN values across all the normalized im-

ages represent the same reflectance, independently of what the actual surface reflectance value 

is), and is often preferred because it is easier to achieve compared to absolute radiometric correc-

tion (Hussain et al., 2013; Song et al., 2001; Xie et al., 2008). However, this type of radiometric 

normalization can lead to low levels of accuracy, because the result is dependent on the subjective 

selection of PIFs (Du et al., 2002; Singh, 1989).  
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Song et al. (2001) and Schroeder et al. (2006) compared the effectiveness of different absolute 

and relative radiometric correction procedures, and both concluded that all corrections improved 

change detection accuracy, regardless of their absolute or relative nature, and that more complex 

atmospheric correction methods did not necessarily lead to consistent improvements in classifica-

tion change detection and classification accuracies.  

In some cases atmospheric correction is not strictly necessary, for example when independent 

classifications are performed prior to the change detection analysis. However, when using band 

ratios rather that simple spectral bands, as in the case of NDVI, atmospheric correction has to be 

done, because atmospheric effects contaminate the NDVI signal in a non-linear way. Contributions 

from the atmosphere to NDVI can amount to 50% or more over thin or fragmented vegetation 

cover (MacDonald et al., 2000). 

 

 

4.2.3 Topographic correction 

 
Topographic effect is the variation in radiance that accompanies a change in orientation from 

a horizontal to an inclined surface of the same cover type, in response to a change in light source 

and sensor position (Matsushita et al., 2007). In terrains with high relief, topography effects may 

cause pixels belonging to the same land cover class to have different spectral values, and pixels be-

longing to different cover types to have similar ones. This can introduce significant errors, espe-

cially when change detection is performed by using methods based on spectral analysis of individ-

ual pixels (Fahsi, Tsegaye, Tadesse, & Coleman, 2000). For example, it has been demonstrated that 

terrain-induced illumination variations have made it difficult to distinguish between forests and 

non-forest background (Meyer et al., 1993). In mountainous or rugged study areas, topographic 

correction may be necessary to reduce the impact of topography on reflectance. 

The most common type of topographic corrections are slope-aspect ones, which should ideally 

remove all topographically induced illumination variation to ensure that two pixels with the same 

reflectance properties but different orientations have the same value; as a visible consequence of 

the correction, the three-dimensional relief impression of a scene gets lost and the image looks 

flat (Allen, 2000).  

The basic requirement of any topographic correction method is illumination, which is the pro-

portion of direct solar radiation that hits a pixel and varies with the cosine of the incidence angle. 

Due to atmospheric scattering, sun elevation is also important, because a surface perpendicular to 
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the sun at a low sun elevation will receive less radiation than a surface perpendicular to the sun at 

a high solar elevation (Ekstrand, 1996).  

Topographic correction methods can be further grouped in those that assume Lambertian 

conditions (the surface reflects incident solar energy uniformly in all directions, therefore reflec-

tance is independent on the observation angle) and those that consider directional reflectance. 

The simplest and most used approach belonging to the first category is the cosine correction, be-

cause it does not require external parameters. This method however tends to overcorrect the are-

as under low illumination conditions and to actually increase variance (Fahsi et al., 2000; Hantson 

& Chuvieco, 2011; Shepherd & Dymond, 2003). The cosine method is wavelength independent, 

meaning that it doesn’t take into account the difference between bands in diffuse irradiation. For 

this reason, algorithms including band dependent parameters have been proposed, the most used 

of which is the C-correction. In this method the diffuse irradiance is considered through a semi-

empirical estimation of the factor C, which should be determined for every band and land-cover 

separately for optimal results  (Hantson & Chuvieco, 2011; Meyer et al., 1993).  

Among the non-lambertian methods, the most used is the Minnaert correction, which models 

the non-lambertian behavior for every band and land cover separately. it makes use of a Minnaert 

constant k that depends on the nature of land-cover, topographic factor and wavelength, and 

helps avoiding overcorrection effects. The value of the Minnaert constant can vary between 0 and 

1, where a value of 1 means that the surface is considered as a perfect lambertian reflector. A 

drawback of this approach is that it is difficult to establish model parameters. The easiest way to 

perform a Minnaert correction is to use a single global k value for an entire image, even though 

this does not reflect reality because land cover variations and differences in topographic impacts 

on surface reflectance generate spatial variations in k values. Another type of approach uses mul-

tiple k values based on land cover, assuming that different types of land cover have different influ-

ences on reflectance (Allen, 2000; Hantson & Chuvieco, 2011; Lu et al., 2008), but even in that 

case different topographic slopes have different impacts on land-cover reflectance. Lu et al. (2008), 

developed a pixel-based Minnaert coefficient image for topographic correction of Landsat ETM+ 

images in mountainous regions based on the relationships between k values and slopes. This ap-

proach has shown more advantages in improving the topographic correction performance than a 

single k value or multiple k values, as it considers the interactions of k, land cover, and topographic 

conditions. 
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Hantson & Chuvieco (2011), after evaluating different topographic correction methods for a 

large number of images acquired at different periods of the year and under different terrain condi-

tions for the generation of radiometrically stable time series of Landsat imagery, found that the C-

correction method gave the best results, but only after the necessary parameters were estimated 

separately for different land cover classes. This was obtained by dividing the study area in two 

land-cover classes by a threshold in the NDVI to separate areas with a high portion of bare soil 

from vegetated areas.  

Richter et al. (2009) achieved the best results with the modified Minnaert method, closely fol-

lowed by C-correction. Vanonckelen et al. (2013) evaluated the effect of different atmospheric and 

topographic correction methods on land cover classification accuracy, which showed that the best 

overall classification results were achieved after combination of an atmospheric correction based 

on transmittance functions with pixel-based Minnaert or pixel-based C-correction. Another finding 

was that some land cover classes (coniferous and mixed forest classes) achieved much better clas-

sification accuracies after correction, while others (broadleaved forest, bare soil, grass and water) 

showed only a minor improvement. 

Although many different approaches have been used for topographic correction (see 

Vanonckelen et al. (2013) for an exhaustive list), an effective and universal approach to reduce 

topographic effects has not been developed yet (Balthazar, Vanacker, & Lambin, 2012; Lu et al., 

2008), because the simple topographic correction algorithms do not give satisfying result, while 

the more advanced ones are hard to generalize and not automatically applicable (Hantson & 

Chuvieco, 2011). However, since many studies suggest that the topographic component has a 

higher influence on classification accuracy than the atmospheric component, topographic correc-

tion is a fundamental step in a multi-temporal study (Vanonckelen et al., 2013). 

 

 

4.3 Change detection variables 

 

The variables that can be chosen for detecting changes between multi-temporal remote sens-

ing images range from simple spectral bands to band combinations and other variables such as 

vegetation indices, transformed images, textures, segments, sub-pixel features and classification 

results. They can be grouped in five types: 1) spectral features; 2) spatial information; 3) sub-pixel 

information; 4) thematic information; 5) biophysical attributes (Lu et al., 2014). Here only the 
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types relevant to this work will be discussed in more detail, specifically spectral features and the-

matic information. 

 

a. Use of remote sensing spectral features 

 

Spectral response is the most common variable used for detecting change, especially when 

the analysis is conducted on medium and coarse spatial resolution images. It is critical to identify 

the variables that can best represent the spectral difference between the features of interests and 

the others (Lu et al., 2014). The transformation of spectral data to vegetation indices may further 

improve change detection performance by enhancing some specific vegetation information and 

establishing a more direct connection between data and biophysical phenomena (Coppin et al., 

2004; Sant, Simonds, Ramsey, & Larsen, 2014).  

Lyon et al. (1998) compared the performance of seven vegetation indices based on (1) wheth-

er they produced similar results, (2) their statistical characteristics, and (3) whether they were fea-

sible for detection of change in the examined study area (State of Chiapas, Mexico). They found 

that among all the indices, only NDVI showed image histograms with normal distributions, and 

that the NDVI group was least affected by topographic factors in this study. Therefore the NDVI 

difference technique was considered the best vegetation change detection for the study area. 

Matsushita et al. (2007) also demonstrated that NDVI is not affected by topographic effects, even 

on non-Lambertian surfaces. Nordberg & Evertson (2003) compared NDVI and SAVI for the as-

sessment of change vs. no-change through image differencing in the low alpine region of Swedish 

mountains, and found that NDVI performed significantly better despite the presence of large 

patches of bare soil, even though that may be related to the specific reflectance properties of the 

soil in that area (Nordberg & Evertson, 2005).  

 

b. Use of thematic information 

 

One solution to avoid the impact of the variability found in spectral response due to external 

factors, is to conduct separate image classification for each date of imagery, and then to use the 

classified images to examine land cover change trajectories. In this sense, classification results be-

come the variable used to assess change. This type of change detection approach commonly de-

fined post-classification comparison. (Lu et al., 2014). 
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4.4 Change detection techniques 

 

There is no single approach of change detection from remotely sensed data that can be con-

sidered optimal and applicable to all cases, since different change detection algorithms have their 

own merits. The selection of the most appropriate change detection method for a given applica-

tion is still an active research topic, because it is influenced by several variables and can affect the 

qualitative and quantitative estimates of the change process in a significant way (Coppin & Bauer, 

1996; Lu et al., 2014, 2004). Each change detection method is affected differently by spatial, spec-

tral, temporal, and thematic constraints. Because of the impact of complex factors, different au-

thors often arrived at different and sometimes contrasting conclusions about the effectiveness of 

the same change detection technique. Even in the same environment different approaches may 

result in different change maps. This explains the large number of change detection techniques 

that have been developed in relation to specific requirements and conditions, and that continue to 

appear due to new thematic and accuracy needs and to the increasing availability of high-

resolution data  (Hussain et al., 2013; Lu et al., 2014). 

Most digital change detection methodologies combine both the procedures for change extrac-

tion (the change detection algorithm itself) and a decision function (the operation to produce a 

decision, i.e. change vs. no-change)  for change separation/labeling (Coppin & Bauer, 1996; 

Hussain et al., 2013). 

Based on the unit of image analysis, change detection techniques can be grouped into pixel-

based and object-based approaches (Hussain et al., 2013; Lu et al., 2004) (see Section 3.3 Vegeta-

tion mapping through multispectral images and Vegetation Indices). Another common way of 

broadly classifying change detection techniques is into pre-classification and post-classification 

techniques. Pre-classification methods apply change detection algorithms (for example image dif-

ferencing or image ratioing), directly to single or multiple spectral bands, vegetation indices or 

principal components of multiple dates of stacked satellite imagery. Post-classification methods, 

on the contrary, perform a comparative analysis of independently produced classifications of im-

ages from different dates (Coppin et al., 2004; Lu et al., 2004).   

The changes detected through a change detection procedure can belong to either of these 

two categories: change between classes (conversion of a land cover from one category to a differ-
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ent one, for example in the case of deforestation) and change within classes (modification of the 

condition of a land cover within the same category, like degradation, reforestation, shrub en-

croachment, etc.). Detection of vegetation conversion is relatively easy due to the significant dif-

ferences in spectral signatures between vegetation and non-vegetation types, while detection of 

vegetation modification is more complex (Lu et al., 2014).  

 

4.4.1 Overview of digital change detection methods 

 

Several reviews of digital change detection techniques for remote sensing data have been 

published in the literature (Coppin & Bauer, 1996; Coppin et al., 2004; Hussain et al., 2013; Lu et 

al., 2014, 2004; Singh, 1989), which thoroughly describe the main types of change detection tech-

niques. Most of these reviews cover pixel-based change detection techniques for coarse and me-

dium spatial resolution data such as MODIS, Landsat and SPOT, even if some recent works have 

focused on object-based approaches applied to high resolution data as well (Hussain et al., 2013; 

Im, Jensen, & Tullis, 2008; Willhauck, Schneider, De Kok, & Ammer, 2000).  

An analysis of change detection literature shows that, despite the many factors affecting the 

selection of suitable change detection methods, in practice image differencing and post-

classification comparison are the most commonly used, even if in recent years more advanced 

techniques such as Spectral Mixture Analysis (SMA), Artificial Neural Networks (ANN) and object-

based methods have been emerging as promising techniques for change detection applications as 

well (Lu et al., 2004). 

 

a. Image differencing 

 
This methods belongs to the pixel-based thresholding category, which includes all those tech-

niques that distinguish change from no-change using thresholding methods based on variables re-

lated to the spectral responses of the images (either spectral bands directly or, more commonly, 

derived images created by using vegetation indices and transform algorithms). 

In the case of image differencing, images from different dates are co-registered and mathe-

matically combined on a pixel-by pixel basis through a subtraction operation. The resulting pixel 

values usually follow a normal distribution, where the pixel that have not changed are centered 

around the mean (values equal or close to zero) and those that have changed are located at the 

tails of the distribution (positive and negative) (Singh, 1989). 
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This method is relatively simple, straightforward and easy to implement, but it cannot provide 

detailed information about land cover change trajectories; it can only show the spatial distribution  

and the magnitude of the change (Hussain et al., 2013; Singh, 1989; F. Yuan et al., 2005). For this 

reason they are often coupled with other techniques, or alternatively to create a mask to highlight 

areas that have undergone a change in order to apply more advanced change detection methods 

only to the changed areas.  

This category of techniques is very sensitive to scene-dependent effects, such as atmospheric 

effects, phenology and soil moisture, so it is necessary to carry out a radiometric normalization 

procedure in the pre-processing stage (Coppin & Bauer, 1996; Coppin et al., 2004).  Two other as-

pects are also critical for the quality of the change detection results: the selection of variables (im-

age bands or derived images) that can effectively identify the changes of interest and the selection 

of a suitable decision function to distinguish between change and no-change areas (Lu et al., 2004). 

 The most common type of decision function is a threshold. Deciding where to place the 

threshold boundaries between change and no-change pixels is not an easy task, because a low 

threshold will exclude areas of change and a high one will include external influences caused by 

atmospheric conditions, Sun angle, soil moisture and phenological differences in addition to the 

real land-cover changes. This is true especially for unsupervised algorithms, when ground truth is 

not available to supply prior knowledge. The most common method used for the selection of 

thresholds is a statistical measure, where the threshold is obtained through the selection of a suit-

able standard deviation from the mean through interactive or manual trial-and-error procedure 

(Lu et al., 2004; Mancino et al., 2014; Singh, 1989).  

Despite the relative subjectivity in selecting suitable thresholds, this type of decision function 

is still the most extensively applied in detecting binary change and no-change information because 

of its simplicity and intuitiveness (Lu et al., 2004).  

In those cases where the identification of binary change/no-change dynamics is considered 

sufficient to fulfill the study’s requirements, image differencing has been widely used, and in a va-

riety of geographical environments (Coppin et al., 2004). Several change detection studies have al-

so shown that data enhancement using vegetation indices or data transforms prior to image dif-

ferencing considerably improves the identification of changes in vegetation properties compared 

to single band analysis, because it reduces data volume and captures information not available in 

any single band (Coppin & Bauer, 1996; Mas, 1999).  
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b. Post-classification change detection  

 
Classification-based change detection methods are perhaps the most commonly used in prac-

tice, because they can provide detailed from-to change information, instead of only indicating bi-

nary change/non-change (Hussain et al., 2013; Im et al., 2008). The most intuitive form of classifi-

cation-based change detection is the comparison of different images of the same areas classified 

independently, followed by comparison of classification results. This method is called post-

classification comparison or sometimes  "delta classification” (Serra et al., 2003; Singh, 1989). The 

separate classification of the two dates of imagery has the great advantage of minimizing the need 

for radiometric calibration to correct atmospheric and sensor differences between images, making 

it very useful when multi-sensor images are employed for change detection (Mas, 1999). It also 

provides a complete matrix of change direction information, and the possibility of selectively 

grouping or filtering out classes to analyze any subset of changes of interest, and can be used 

starting from either pixel-based or object-based classifications. (Hussain et al., 2013; Lu et al., 

2004; Singh, 1989). 

The classification process however is time consuming (especially if manual or supervised 

methods are used), and the quality of change detection results is fundamentally dependent on the 

classification accuracy of each date of imagery being considered, so the classification errors from 

the individual-date images will affect the final change detection accuracy (Lu et al., 2014), which 

can be further decreased by misregistration between the multidate images. Image transformation, 

vegetation indices, advanced classification methods, modelling, and integration of different data 

sources are often used to improve classification results, especially when dealing with historical im-

ages (Lu et al., 2004). 

This method is also not optimal for a) situations characterized by mixed pixel problems in 

coarse spatial resolution images or by high spectral variation in high spatial resolution images, and 

b) for detecting modifications and subtle changes within the same land cover class (Lu et al., 2014; 

Rogan et al., 2002). On the other hand, creating an independent classification of each date of im-

agery can be used to build a historical series that can be more easily updated and used for applica-

tions other than change detection (Yuan et al., 2005).  
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4.5 Accuracy assessment 

 

The accuracy assessment of remote-sensing-based classification and change detection proce-

dures is necessary to be able to express the level of confidence in the results and to ensure that 

the changes detected are not confused with errors. Many factors, already discussed in the previ-

ous sections, contribute to the error present in land cover change results, encompassing all the 

phases of data acquisition, pre-processing and analysis (Boyd & Foody, 2011). In brief, they include 

(1) the precision of geometric registration of and between multitemporal images, (2) the radio-

metric and atmospheric calibration (3) the complexity and fragmentation of the study area, (4) the 

change detection methods and algorithms used, (5) the chosen classification and change detection 

scheme, and (6) the analyst’s skills, experience and familiarity with the study area (Lu et al., 2004). 

When talking about accuracy assessment, the focus is mainly on thematic (or “classification”) ac-

curacy, which is the correspondence between the class label assigned through the classification 

process and the land cover observed in reality (Kadmon & Harari-Kremer, 1999; Rocchini, 2004). 

However, the other aspects should be taken into consideration as well as part of the accuracy as-

sessment process. 

The biggest challenge in the implementation of an accuracy assessment scheme for change 

detection results lies in the difficulty of collecting ground truth data for each date of the mul-

titemporal series, in particular past ones for which it is not always possible to find reference data 

for comparison. 

 Moreover, different change detection methods have different sources of uncertainty. Post-

classification approaches require very good accuracy in all the individual classifications because 

the classification accuracy of the change map is the product of the accuracies of the individual 

classifications and is subject to error propagation. All the errors that affect the classification of 

each individual image included in the multitemporal change analysis have a cumulative effect on 

change detection accuracy (Dai & Khorram, 1998; Hussain et al., 2013; Rocchini & Di Rita, 2005; 

Simonetti et al., 2014; Wang & Ellis, 2005). As a result, the final accuracy is very close to that re-

sulting from the multiplication of the accuracies of each individual classification. For example, the 

change map obtained from two images classified with 80 per cent accuracy might have only a 0.80 

x 0.80 x 100 = 64 per cent overall accuracy. Multiplying the accuracies of each individual classifica-

tion is not sufficient, however, because misregistration problems further decrease the accuracy 
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(Coppin & Bauer, 1996; Hussain et al., 2013; Mas, 1999; Serra et al., 2003; Singh, 1989; Townshend 

et al., 1992).  

The magnitude of classification and positional errors can be assessed separately using stand-

ard techniques, for example the overall accuracy or the kappa statistic for classification error, and 

the total RMSE for positional error, but evaluating their combined effect on land cover change es-

timates is not easy (Brandt et al., 2002).  

As for pre-classification approaches, most of these procedures provide little information about 

the specific nature of land cover changes. The selection of thresholds to differentiate change from 

no-change is usually a trial-and-error process, and it is not always possible to identify all changes, 

resulting in a less complete legend.  (Smits and Annoni 2000). Finally, misregistration between im-

ages remains a problem, and it is often not properly considered (Serra et al., 2003). 
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5. MATERIALS AND METHODS 
 

5.1 Research objectives and workflow description 

 

The overarching objective of this study is to assess the phenomenon of forest expansion on 

semi-natural grasslands from a quantitative point of view, and to evaluate the ability of different 

remote sensing mediums (specifically, aerial photographs and satellite images) and of different 

analysis techniques (manual and automated classification and change detection) to characterize 

the land cover dynamics within the study area. The study was therefore divided into two parts, ac-

cording to the type of remotely sensed data used and the techniques used for data processing and 

analysis.  

 

The first part of the work is dedicated to the analysis of aerial photography data in digital form, 

according to a traditional photointerpretive approach conducted with the aid of GIS software for 

on-screen digitization of land cover features. This choice is based on the type of photographic data 

available, whose low spectral and radiometric quality makes the use of automated or semi-

automated approaches rather difficult in practice, and doesn’t guarantee results with sufficient 

accuracy. The objective is to create two maps of grassland distribution, one for 1954, before the 

beginning of the abandonment of mountain activities and of the forest expansion process, and 

one for 2012 to document the current situation, and to compare them to assess the historical 

change of grassland extension over this 58-years long period of time. This can be obtained through 

the overlay of the distribution maps obtained and the creation of change maps and other thematic 

cartography in a GIS environment. From the combination of these layers, new information can be 

obtained about the quantitative land cover change (amount of areas subjected to reforestation), 

the spatial distribution of the phenomenon (areas where the most significant variations can be ob-

served) and some qualitative aspects (such as the presence of grassland habitats of outstanding 

conservation value in relation to the areas where the major changes have been taking place). 

 

The second part of the work focuses on the analysis of Landsat satellite imagery to explore the 

possibilities of mapping land cover and land cover change through the use of semi-automated pix-

el-based classification procedures that employ the spectral characteristics of different land cover 
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types. The purpose is to evaluate the possibility of obtaining complementary information on forest 

expansion through this type of data, that despite having a coarser spatial resolution may still be 

used to expand the knowledge about the dynamics of interest thanks to its greater spectral and 

radiometric resolution. The methodology is based on the assessment of the accuracy of different 

classification scenarios obtained from the classification of a)single-date Landsat scenes, b) VI com-

binations (NDVI and EVI) and c) VI and Landsat scene combinations. 

The creation of NDVI and EVI time series is used as support to identify the phenological profile 

of each land cover type over the course of the vegetative season, and evaluate whether this as-

pect can be helpful for the improvement of classification results.  
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Workflow of Part 1 
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Workflow of Part 2 
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5.2 Study area 

 

The Dolomiti Bellunesi Na-

tional Park (NW: 46° 19', 11° 46'; 

SE: 46° 1', 12° 15'), established in 

1993, occupies an area of approx-

imately 31000 ha (310 km2), en-

tirely comprised within the 

boundaries of the Belluno Prov-

ince in the Eastern Italian Alps 

(Figure 8).  

The territory within the Park’s 

boundary is almost entirely 

mountainous, with an elevation 

ranging between 400 and 2565 m 

a.s.l. The area is constituted mostly of sedimentary rocks (limestone or dolomite), with a limited 

presence of metamorphic facies that create different subsoil conditions that affect both the land-

scape forms and the floristic composition (Parco Nazionale Dolomiti Bellunesi, 2015). The hydro-

graphical network is complex, with the Cordevole, Mis, and Caorame rivers representing the main 

water courses. The two lakes present in the Park, Stua and Mis, are both artificial basins built for 

hydroelectric energy production. 

The climate is continental, with annual average rainfall of 1400 mm and average monthly 

temperatures ranging between -5°C in January and +23°C in July (Giupponi et al., 2006). 

The altitudinal zonation within the Park is not easy to define, because vegetation cover is 

strongly influenced by the complex topography and microclimate. The belt comprised between 

the valley floor up to 1000-1200 m a.s.l. (on the southern slopes) and to 700-800 meters m a.s.l 

(on the northern slopes) is characterized by deciduous forests, dominated by hornbeam (O. 

carpinifolia and C. betulus), ash (F. ornus, F. excelsior L.) and maple (A. pseudoplatanus). This area 

was historically the most heavily influenced by human activities, especially in terms of deforesta-

tion, coppicing, and creation of semi-natural pastures and hay meadows. Between 600-700 and 

1600-1700 m a.s.l., large forest stands are present with prevalence of beech (F. sylvatica), some-

times mixed with conifers; The upper belt, from 1500 (1200-1300 in the northern slopes) m a.s.l. 

Figure 8: Dolomiti Bellunesi National Park and its position in Italy 
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up to the upper forest line is comprised mostly of norway spruce (P. abies) and larch (L. decidua 

Miller), with extensive dwarf mountain pine (Pinus mugo) stands in the higher altitude zones 

(Andreatta, 2007). 

The most representative grassland habitats within the Park include, among others, some high 

conservation value Natura 2000 habitats of the Alpine bioregion (Habitat Directive 92/43, Annex I). 

The most widespread are alpine and subalpine calcareous grasslands (code 6170), typical of shal-

low calcareous soils, that host many vulnerable animal species ranging from invertebrates to al-

pine bird communities (European Commission, 2008), followed by siliceous alpine and boreal 

grasslands (6150), in particular Nardus-rich extensive alpine pastures. 

Another noteworthy semi-natural grassland type are semi-natural dry grasslands and scrub-

lands on calcareous substrates (Festuco-Brometalia, code 6210), which are of great floristic and 

conservation value, as they are important habitats for the conservation of orchid species 

(European Commission, 2008; Ziliotto, Andrich, Lasen, & Ramanzin, 2004).  These habitats were 

formed mainly through extensive grazing or mowing, and as such they are extremely susceptible 

to woody plant encroachment following the abandonment of land use activities. At lower altitudes, 

significant semi-natural grassland habitats are the extensively managed hay meadows of the sub-

montane zones (Code: 6510), that include both dry meadows as well as humid to wet meadows, 

with distinctive species such as Alopecurus pratensis and Sanguisorba officinalis.  

Most of the areas now belonging to the Park have been historically subjected to intense an-

thropic use. Deforestation of the lower part of many mountain slopes has been documented since 

the Middle Ages, but the period of highest exploitation of forest resources started under the Ve-

netian rule. In the 18th century, the population growth and the increasing need for firewood and 

coal for industrial purposes, as well as the need for pastureland, led to the deforestation of moun-

tain slopes at increasing altitudes (Andreatta, 2007). Starting from the 1950s, however, the wide-

spread abandonment of mountain settlements and the consequent decrease in the utilization of 

forest and grassland resources, which mirrors a pattern of socio-economic dynamics common to 

most alpine areas all over Europe, has reversed this trend, causing the natural revegetation of pre-

viously deforested areas the decline of semi-natural mountain grasslands habitats (Urbinati et al., 

2004). Therefore starting from the 1950s-1960s, the evolution of the landscape was determined 

mostly by natural dynamics of secondary succession (Ciolli et al., 2007).  The abandonment of agri-

cultural activities is not only limited to the Dolomiti Bellunesi National Park area, but represents a 

widespread phenomenon in most of the Belluno Province, due to the high morphological and en-
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vironmental variability of the terrain that limits the areas suitable for intensive agriculture 

(Giupponi et al., 2006).  

 

 

5.3 MATERIALS 

 

A preliminary phase of this study was devoted to searching and collecting all remotely sensed 

(aerial and satellite images) and cartographic data available for the study area that could be po-

tentially useful for the analysis of the land cover change process of interest. A preliminary screen-

ing of the available material was carried out on the basis of its availability (data cost, format and 

manner of acquisition), spatial and temporal coverage, pre–processing requirements, and resolu-

tion (depending on the level of detail needed for each phase of the grassland cover assessment 

and change detection).  

In land cover change detection studies, the use of data from different sources, especially of  

remotely sensed data from different sensors, is very frequent, as this choice is in many case una-

voidable when assessing changes over a long period of time. For studies that go back in time to be-

fore the 1970s, satellite images are not available, and in this case the integration with multi-source 

data such as aerial photographs, existing thematic maps and other ancillary data for the older 

dates is the only possibility (Petit & Lambin, 2001; Sankey & Germino, 2008). Differences in data 

format, structure, quality and resolution make this kind of assessment challenging, but the combi-

nation of data from different sources can increase the quality and quantity of information that can 

be extracted. 

 

 

5.3.1 Aerial photographs 

 

The first part of this study aimed at obtaining an assessment of the evolution of grassland hab-

itats with the highest possible accuracy and over a long period of time. Consequently, aerial pho-

tographs were chosen as the most suitable data source, as they combine high spatial and temporal 

resolution. Many studies of land cover change and forest expansion in mountain areas have em-

ployed aerial photographs for evaluating the phenomena of interest, both through the use of 



61 

manual and automated techniques, finding them especially suitable for this purpose (Ciolli et al., 

2007; Mognol, 2007; Sgarbossa, 2010; Urbinati et al., 2004).  

The screening of all the available aerial photography imagery led to the selection of two main 

datasets to use for the analysis: the GAI flight (1954-55) and the TELAER flight (2012). One addi-

tional datasets (IT2000 flight) was acquired to support the photointerpretation process. All aerial 

images were provided in digital format by the Veneto Region and the Dolomiti Bellunesi National 

Park. Their main characteristics are summarized in Table 3. 

The “GAI 1954-55” flight provides the first complete aerial coverage of the Italian territory, 

and as such it is one the most valuable sources of historical land cover information. The original 

project was undertaken by a consortium of private companies named GAI (Gruppo Aereo Italiano) 

and was completed between 1954 and 1955 (Berti, 2008; Lega & Vincini, 2003). In particular, the 

images covering the Dolomiti Bellunesi National Park area were acquired in July 1954. 

The original images are panchromatic black and white analogic photographs of standard size 

(23 x 23 cm) taken at a height ranging between 5.000 to 10.000 m, which corresponds to an ap-

proximate scale of 1:30.000 to 1:62.000. For the photographs of the area of interest the spatial 

scale is about 1:62.000 (due to the necessity of maintaining a higher flying height because of the 

mountainous terrain). Thanks to a project carried out by the Veneto Region (Regione del Veneto, 

2011), it was possible to acquire the photographs directly as orthorectified digital images (Figure 

9) .  

The  Flight “TELAER 2012”, which was carried out between 2009 and 2012 by the TELAER con-

sortium for the Italian “Agenzia per le Erogazioni in Agricoltura” is composed of digital color or-

tophotos, acquired directly in raster format. The images for the study area were taken in summer 

2012 (Figure 10). With a pixel size of 0.5 m, they represent the resource with the highest spatial 

resolution available. The "IT2000”™ (TerraITaly™1998/99) flight images by Compagnia generale 

Ripresearee S.pA. - Parma are color ortophotographs as well, acquired with a digital camera be-

tween 1998 and 1999. The spatial scale of the images is 1:10.000 with a pixel size of 1 m.  
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Figure 9: Orthorectified and mosaicked GAI 1954 photographs covering the Dolomiti Bellunesi National Park territory 

 

 

 
Figure 10: TELAER 2012 digital ortophotographs covering the Dolomiti Bellunesi National Park territory 
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Resource na-
me 

Original for-
mat 

Year of origi-
nal acquisi-

tion 

Scale and 
flight height 

Acquisition for-
mat 

Spatial 
resolution 

GAI 1954-55 
flight 

Analogic, pan-
chromatic 

b&w 
1954-1955 

1:30.000 – 1: 
60:000 

(5000-10000 
m) 

Original images 
scanned at 600 

dpi, orthorectified 
and mosaicked. 

Cut on the basis of 
the CTR 25000 

2 m 

TerraITaly™ 
"IT2000” 

flight 
Analogic, color 1998-1999 1:10000 

(6000 m) 

Digital images, or-
thorectified, mo-

saicked and cut on 
the basis of the 

CTR 10000 

1 m 

TELAER 2012 
flight Digital, color 2009-2012 1:10000 

(6000 m) 

Digital images, or-
thorectified, mo-

saicked and cut on 
the basis of the 

CTR 10000 

0.5 m 

Table 3: main features of selected aerial image datasets 

 

 

5.3.2 Satellite data 

 

Among the many existing satellite sensors, Landsat images were chosen for this study on the 

basis of their long time coverage, medium-high spatial resolution, and a spectral resolution higher 

than that of most higher-spatial-resolution satellites such as SPOT, IKONOS and Quickbird. Data 

accessibility is another major factor to consider, and the free availability of all the USGS archived 

and new Landsat data is of crucial importance for studies that require a high number of images 

such as multitemporal and multiseasonal studies.  

Landsat can provide more than 30 years of systematic Earth observations at a spatial resolu-

tion of 30 m or less. Despite Landsat’s nominal repeat cycle of 16 days, however, most areas are 

not imaged with such frequency, because Landsat data acquisition is scheduled based on seasonal-

ity, solar zenith angle, cloud cover and other factors (USGS, 2015b). Taking into account the cloud 

cover present in the imaged scenes, in practice data availability is drastically reduced, especially 

when two or more images are needed from the same year or consecutive years.  

All the Landsat images used in this study were acquired from the USGS Earth Resources Ob-

servation and Science (EROS) Centre archive (http://earthexplorer.usgs.gov/). Through the EROS 

center it is possible to acquire free of charge not only the original images, but also a series of de-

rived products like Surface Reflectance (SR) images (already atmospherically corrected to surface 
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reflectance), so all images were ordered through the EROS website and downloaded in this form, 

with a waiting time for processing small batches of images that was on average less than one day.  

About two million Landsat images over Europe and North Africa are stored by the European 

Space Agency (ESA) as well, as the European International Cooperator. Following the USGS, the 

ESA also adopted a free-of-charge Landsat data acquisition policy, but with limited viewing and 

product download options and stricter access requirements that include a brief project description 

and somewhat intricate registration procedures. Considering that the processing level and charac-

teristics of ESA and EROS Landsat images are different and therefore not directly comparable 

(Northrop, 2015) and that no significant amount of usable images was found for the time period of 

interest in the ESA archive, in this study only EROS images were utilized.  

 

The study area is entirely included into Path 192, Row 28 of Landsat’s WRS-2. The time frame 

considered was 1984 – present, that is to say from the beginning of Landsat TM acquisitions. The 

choice of images was limited to the TM and ETM+ sensor of Landsat 4-7. Landsat 7 images ac-

quired after 31/05/2003 were excluded, due to Landsat 7's failed scan-line corrector that limits 

their applicability for classification purposes. Landsat MSS images were excluded due to the diffi-

culty of integrating lower resolution (60 m) data into the analysis, while Landsat 8 have different 

band wavelength specifications compared to Landsat 4-7, which may be problematic for the com-

parison of classification results and vegetation indices. 

A  preliminary screening of Landsat images was conducted on the basis that a) the acquisition 

date of the images had to be included between May and October in order to avoid the presence of 

snow, and b) that the cloud cover over the study area had to be less than 10%. Considering that 

the study area covers only a small part of a full Landsat scene (0.9%), all images with cloud cover 

under 50% were examined (87 images), and those that at a first visual assessment didn’t appear to 

have a significant cloud cover over the study area were ordered and acquired from the EROS web-

site as Surface Reflectance (SR) data, that is to say atmospherically corrected to surface reflec-

tance using the Landsat Ecosystem Disturbance Adaptive Processing System (LEDAPS) algorithm 

(Masek et al., 2006).  

Landsat Surface Reflectance data are generated at 30-meter spatial resolution on a Universal 

Transverse Mercator (UTM) mapping grid. SR products from Landsat 4-7 TM and ETM+ contain, in 

addition to the atmospherically corrected images, some quality assessment files that help in the 

evaluation of image quality. In particular, the Quality Assessment band for clouds (sr_cloud_qa) 
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was clipped to the study area and used to calculate the percentage of the study area covered by 

clouds. The complete list of images with cloud cover < 10% (22 images) is shown in Appendix B. 

The availability of Landsat scenes over the area of interest and for the specified years and 

dates is on average very low, with only one image per year in most cases, and some years with no 

images of acceptable quality. The images chosen for the study were selected on the basis of this 

second screening, and also on the availability of higher resolution reference data for accuracy as-

sessment, which in this case are represented by aerial images and ancillary data such as the IUTI 

inventory. Five Landsat images from 2005 were employed for the seasonality assessment, due to 

the unusually high amount of images with acceptable cloud cover available for this year. For land 

cover change detection, two Landsat 5 images, one from 27/07/1987 and one from 18/07/2007 

were chosen. The 20-years gap between the two images should ensure the possibility of detecting 

land cover changes, and the choice of near-anniversary dates should help achieving similar envi-

ronmental and illumination conditions. 

 

 

5.3.3 Ancillary data 

 

The term ancillary data indicates all data from sources other than remote sensing, used in digi-

tal image processing to assist in the analysis and classification of the images, or to populate 

metadata and attributes. The ancillary data used in this study were obtained from the Veneto Re-

gion – Forest and Agriculture sector’s database, the Veneto Regional Geoportal and the Dolomiti 

Bellunesi National Park, and are listed in Table 4. 

 

Resource name Format Reference 
period Derived from Main features Source 

Forest area map 
GAI 1954-55 raster 1954-55 

object based semi-
automated classification 

of GAI 1954 images 

3 classes: Forest, 
Non Forest, 

Not classifiable 

Veneto  
Region 

Regional forest 
map 2006 

vector 
(polygon) 1998-1999 

Manual photointerpreta-
tion of IT2000 aerial im-

ages for forest unit delin-
eation, ancillary data and 
field surveys for thematic 

classification 

Scale 1:10000 
Forest areas mapped 
according to regional 
criteria but compati-
ble with FRA’s defini-

tions 

Veneto  
Region 

Map of “Natura 
2000” habitats 

vector 
(polygon) 

2006-2008 
(field sur-

vey) 

Field surveys with the 
support of IT2000 aerial 
images, CLC2000, and 
thematic cartography 

1:10000, 
Habitat classification 
according to the “In-
terpretation manual 

Dolomiti  
Bellunesi  

National Park 



66 

of European union 
habitats” 

DEM 5m/25 m ASCII 
(txt) 2006 IGM 1:25.000 map, CTR 

10000 map, field survey 

Contour lines and 
spot elevations ob-

tained from IGM 
1:25.000 map, from 

CTR 10000 and 
ARPAV relief survey, 

and then used to 
generate a TIN. ASCII 

files divided based 
on the CTR sections 

Veneto  
Region 

IUTI inventory vector 
(point) 

1990 – 2000 
– 2008 

TerraItaly 1988/89 
TerraItaly IT2000 
TerraItaly 2008  
aerial images 

Manual photointer-
pretation of aerial 
images from each 

date 

Ministero 
dell’ambiente 
e della tutela 
del territorio 
e del mare 
(MATTM) 

Table 4: List of ancillary data 

 

 

The IUTI Inventory 

 
IUTI (Inventario dell’Uso delle Terre d’Italia) is an Italian inventory created to support the Na-

tional Carbon Sink Accounting Register, and documents land use (or, more appropriately, land 

cover) for the years 1990, 2000 e 2008 by using a sampling scheme of geographically located 

points. Point-based sampling schemes cannot give a complete assessment of the land cover distri-

bution and land cover change dynamics, but at the same time do not suffer from the uncertainties 

related to the use of polygons and the consistency of their delineation over time, strongly reduc-

ing commission and omission errors. Therefore they are an alternative to wall-to-wall mapping, 

and allow to carry out fast land cover surveys that can be easily updated, compared and integrat-

ed with a variety of different land cover information sources and datasets. As such, the IUTI inven-

tory an important informative layer for the cross-validation and accuracy assessment of the land 

cover products created in this study. The IUTI points distribution is based on a systematic una-

ligned sampling, and the points have been manually classified through photointerpretation of aer-

ial orthophotographs, respectively: TerraItaly 1988/89 images for the 1990 points, IT2000 for the 

2000 points and TerraItaly 2008 for the 2008 points  (Marchetti et al., 2012).  

The IUTI inventory classifies the Italian territory according to a hierarchical system composed 

of six main land cover types: 1) forest land, 2) cropland, 3) grassland, 4) wetland, 5) settlements, 6) 

other lands. This level of the classification responds to the need of adhering to international 
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standards, in particular those set by FAO and IPCC (GPG-LULUCF).  Some of the Level I classes are  

further divided into II and III level sub-classes defined by IUTI, which relate to the specific needs of 

mapping the Italian territory. Table 5 shows classification levels I and II. The categories 1.1, 3.1, 3.2 

and 6 are the most relevant for this work, and the ones that were considered in the accuracy as-

sessment.  

 

LEVEL I – IPCC CATEGORY LEVEL II – IUTI CATEGORY 

1. Forest Land 

1.1 Forest land 

(corresponds to “forest land” in the FRA classification) 

1.2 Temporarily unstocked forest areas 

2. Cropland 
2.1 Arable land (herbaceous crops) 

2.1 Permanent crops (trees) 

3. Grassland 

3.1 Grasslands and pasturelands 

3.2 Other wooded lands: shrublands or sparse (5-10% cover) woodland 

(corresponds to “other forest land” in the FRA classification) 

4. Wetland 4. Water and wetlands 

5. Settlement 5. Urban areas 

6. Other Land 6. Bare or sparsely vegetated areas 

Table 5: IUTI classification levels 
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5.3.4 Software  

 

The software used for all the data processing and analysis operations is QGis 2.10 “Pisa” 

(Figure 11). QGIS is an official project of the Open Source Geospatial Foundation (OSGeo), and as 

such it is an Open Source GIS licensed under the GNU General Public License. 

Other than being available at no cost, QGIS is also cross platform and runs on Linux, Unix, Mac 

OSX, Windows and Android, making it available to a wider range of potential users than many oth-

er commercial GIS software. It also supports many different vector, raster, and database formats 

and functionalities. 

Among the reasons of QGIS’ growing popularity are its user-friendly interface that makes it 

easier to use compared to other open source GIS software, and the possibility to enormously ex-

pand its functionality through the integration with other open source GIS packages, including 

PostGIS, GRASS, and MapServer and the access to a constantly growing database of plugins from 

which users can download the ones best suited to their specific needs.  

Moreover, QGIS has an active volunteer developer group that provides help with the soft-

ware's functionalities, bug-fixing, and the solution of problems, as well as a thriving user-based 

community that ensures peer support for any issue related to QGIS and many web-based sources 

for tutorials and tips. 

 

 
Figure 11: an example of QGIS 2.10's interface  



69 

5.4 METHODS 
 

 

5.4.1 PART 1: Aerial images 

 

Obtaining an accurate classification from historical aerial photography with semi-automated 

classification methods is a daunting task, because of the limited spectral and radiometric depth 

produces poor results from pixel-based approaches (generally dependent on spectral characteris-

tics for the separation of land cover types) and is problematic with object-based approaches as 

well due to the low textural contrast and separability between image objects. This is further wors-

ened by the lack, in most cases, of ground truth data to validate the classification (Morgan et al., 

2010).  

In this case, since the focus of the study was only on a specific land cover and land cover 

change type, the change detection procedure is simpler because it is only necessary to develop a 

method to extract the land-cover type of interest without a complete land cover classification 

scheme. For this reason, it was decided to employ visual interpretation for the extraction of grass-

land polygons. The use of manual digitization of polygons when working with historical black and 

white photography is a common occurrence in literature; other studies conducted in the Italian 

territory, in particular, faced similar issues in the treatment of the GAI 1954-55 images for the 

classification of land cover features (Ciolli et al., 2007; Garbarino & Pividori, 2006; Lega & Vincini, 

2003; Salvadori, Pilli, & Anfodillo, 2006; Urbinati et al., 2004). Until the 1950s, aerial photography 

was generally collected used a non-metric camera with only black and white panchromatic film, so 

photogrammetric or digital image processing methods have limited applicability (Coop & Givnish, 

2007; Mast et al., 1997). After evaluating the different classification options, manual classification 

through visual photointerpretation and on-screen digitization of polygons was chosen for this part 

of the study, considering the greater ability of a human photointerpreter to make choices under so 

many constraints.  

Each temporal layer was photointerpreted separately, to obtain two maps representing the 

grassland distribution as it was at the time of the photos.  

In the case of the TELAER 2012 images, photointerpretation was generally easier due to their 

higher spatial and radiometric resolution and limited distortions. Even if in this case an automatic 

classifier would have been easier to apply, it was decided to use manual delineation of classes to 

ensure uniformity with the other temporal layer. When faced with situations of uncertain classifi-
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cation, the Natura 2000 Habitat Map was used as thematic support, as well as the IT2000 images 

(with caution, due to the gap between the two acquisitions), because the phenological differences 

between vegetation types here appear more evident due to the flight date (late summer/autumn).  

 

 

Pre-processing  

 

a. Image-to-image co-registration 

 

The accurate overlay of source rasters is fundamental to ensure the best possible accuracy in 

each classification and consequently, in the change map obtained by overlaying the two mul-

titemporal classifications.  

The first aspect to verify when using geographic data obtained from different sources, is that 

the coordinate reference system (CRS) is the same for all layers. The data acquired for this part of 

this study employ the former the Italian national system Roma40/Gauss-Boaga zone 1, also called 

Monte Mario zone 1 (EPSG:3003), of which several variants exist, so it is important to make sure 

that the projection’s parameters are correctly defined (see Appendix A). Despite the fact that in 

2012 ETRF2000 was adopted as the official CRS for Italy (D.L. 10 novembre 2011, “Adozione del 

Sistema di riferimento geodetico nazionale”) the geographic data acquired from the Veneto Re-

gion still adopt the old system. 

In the case of the data acquired for this study, however, the whole range of projection varia-

tions was present, including deprecated ones, so it was necessary to convert them into EPSG:3003, 

which is the official definition and also the only one that allows to correctly reproject to 

WGS84/UTM32N coordinate systems (needed in the second part, when working with Landsat da-

ta) without any shift. If the images are needed for visualization purposes only, different variations 

of the same CRS can be handled by QGIS’ “On-the-fly” reprojection feature (provided that the CRS 

definition is correct), but the use of geoprocessing tools requires all the input layers to be in the 

same CRS. 

 

After this preliminary check, co-registration accuracy was evaluated as well. Both the 1954 and 

2012 aerial image datasets were acquired in orthorectified form. The complexity of the orthorecti-

fication procedure of the GAI 1954 images, caused by the lack of the camera’s calibration certifi-
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cate, has been discussed in detail in the publication “L’evoluzione dei boschi veneti – Analisi delle 

dinamiche spaziali dei popolamenti forestali regionali” (Regione del Veneto, 2011). Despite the 

fairly accurate results obtained in that work (with a RMSE of about 5 m), when overlaying the 1954 

and 2012 images a noticeable shift could be detected in some areas, even if it didn’t appear to be 

the same throughout the image, most likely due to the differential distortions present in the 1954 

images. Considering the necessity of creating a high spatial detail classification, it was decided to 

attempt a re-registration procedure between the images to try and improve their spatial align-

ment. 

A  related issue was that the 1954 dataset is composed 10 non-overlapping images. One op-

tion was to mosaic the images first to obtain a single image and then carry out the co-registration 

procedure, while the other was to proceed to the registration of each image individually. Using a 

single image is easier to manage than a set of images, and individually georeferencing each image 

separately implies that, after the registration procedure, the corresponding features located at the 

borders of adjacent images may not match perfectly, or there may be spaces between one image 

and the other. On the other hand, individually registering smaller subsets of a dataset can give 

more accurate results than registering the whole dataset as a single image (Brovelli & Minghini, 

2012), especially considering the nature of the distortions present. This is the main reason why it 

was decided to work on the individual images, even at the price of sacrificing some metric and se-

mantic continuity. This can be considered acceptable, however, because the images are used as 

visual reference and not for quantitative assessment, and the main purpose was to ensure the 

maximum local positional accuracy. 

The procedure used for image-to-image registration comprises the following steps: a) identifi-

cation of ground control points (GCPs) on the 1954 images (input image) and their corresponding 

locations on the 2012 images; b) application of a transformation function and resampling of DN 

values of the pixels of the output image based on the values of the pixels of the input image; c) as-

sessment of residual positional error (Lillesand et al., 2004; Rocchini et al., 2012) 

 

Choice of GCPs and transformation function 

GCPs can be obtained from any type of reference layer (topographic maps, satellite imagery or 

orthophotographs), as long as  its spatial resolution is higher or at least equal to the resolution of 

the layer to register. The 2012 orthoimages, with their recent acquisition date, higher resolution, 
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and digital acquisition (that allows to avoid the scanning process and therefore the related distor-

tion problems) were chosen as the reference layer.  

GCPs are features easily identifiable on both the reference data and the uncorrected image, 

and should be distributed evenly over the entire image (or the area of interest within an image) to 

ensure optimal coverage and to registration errors due to the points being clustered (Morgan et 

al., 2010).  

Considering the lower spatial resolution of the GAI 1954 images and extremely poor radio-

metric contrast, it was not possible to identify GCPs with the same accuracy as on the 2012 images. 

Given that the time difference between the two datasets is almost of 60 years, it was also neces-

sary to find features that remained recognizable and mostly unchanged throughout this time 

frame, a challenging task in a sparsely urbanized and densely forested landscape which contains 

very few distinctive features to begin with. In most cases the chosen features were the center of 

road intersections, road bends with distinctive shapes that were retained through the years, cor-

ners of buildings or isolated rocks with unique shapes. Care was also taken to select points as 

more uniformly distributed as possible within the image, including edges, but also to choose addi-

tional ones close to grassland areas in order to ensure the best possible accuracy in the areas of 

main interest (this is especially important when using a local and exact transformation algorithm 

such as Thin Plate Spline, that warps the image locally around the GCP location).  

 

Transformation function 

Transformation functions define, for a given GCP, the transformation from the original 

coordinates of the point to its rectified coordinates; transformation algorithms can be classified 

into global versus local, and exact versus non exact. Global algorithms are based on transfor-

mations that are applied to the whole image in the same way and whose parameters are calculat-

ed based on the coordinates of all GCPs.  Local algorithms work on finite portions of the image, us-

ing each time a different set of GCPs, so that the parameters of the transformation have a local va-

lidity. Exact algorithms force the points on the input image to coincide exactly to the correspond-

ing GCPs in the reference image, while non exact algorithms don’t require the exact fitting of GCPs 

locations (Balletti, 2006; Brovelli & Minghini, 2012).  

The Georeferencer plugin offers several choices of transformation algorithms (“QGis 2.0 User 

Manual,” 2014): 

 Helmert transformation 
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 Projective transformation. 

 Polynomial algorithms (first, second and third order) 

 Thin Plate Spline (TPS) algorithm  

 

Helmert, polynomial and projective transformations are examples of global, non-exact algo-

rithms, while Thin Plate Spline is a local, exact algorithm. Choosing a type of transformation algo-

rithm depends on both the nature of the data and the desired final result. For example, if the aim 

is to obtain an image in which errors are globally distributed and no local effect is present, a global, 

non-exact algorithm represents the best choice. The most used among these is the family of poly-

nomial models  (Brovelli & Minghini, 2012;  Rocchini & Di Rita, 2005). The first order polynomial 

(also called affine transformation) allows only scaling, translation and rotation, while higher order 

polynomial models can correct for more complex and non-linear distortions.  

Thin Plate Spline can introduce local deformations in the data to match GCPs exactly, by 

providing a smooth interpolation between the set of GCPs. This algorithm is useful when low qual-

ity originals are being georeferenced, but can introduce significant distortions in the areas not 

close to any GCP, similarly to what happens when using higher order polynomial transformations 

(Brovelli & Minghini, 2012; Eberly, 2011).  

In this case, co-registration was initially attempted both with polynomial transformations of 

second and third order, which didn’t give a satisfactory result in all areas, especially those affected 

by the strongest distortions. Finally, TPS was chosen, with an improvement of registration accura-

cy. 

The minimum required number of GCPs is a function of the transformation algorithm used, 

but also of the roughness of the terrain and the entity of distortions present in the image (Neteler 

& Mitasova, 2008; Rocchini et al., 2012), and the GCP selection and repositioning is an iterative 

process, repeated several times until an acceptable result can be reached.  

In this case, given that each image was referenced separately, the number of GCP varied 

based on the position of the image: for some “corner” images, where only a small part of the im-

age itself lay within the Park’s boundaries, GCPs were chosen only in the area inside the park and 

in nearby locations, with as few as 6 points. For images lying entirely or almost entirely inside the 

Park, up to 16 GCPs were defined. The total number of all chosen GCPs was 119. 

Since it was not necessary to preserve the original radiometry of the pixel because no quanti-

tative analysis was going to be carried out on the images themselves, the resampling method used 
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was cubic convolution. Compared to other methods it provides sharper and less blurry images that 

are more suitable for visual photointerpretation, without the spatial offset of image features typi-

cal of simpler resampling methods like nearest neighbor. 

 

Evaluation of error 

The simplest way to evaluate of the quality of the chosen geometric transformation is a visual 

comparison between the output image and the reference data, for example through a semi-

transparent overlay of the layers.  

 

 
Figure 12: CP table and location 
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For quantitative assessment of registration accuracy,  the most common parameter is the root 

mean square error (RMSE), which represents a measure of the deviation of corrected GCP coordi-

nate values from the original reference GCPs. In turn, this depends on the transformation used to 

register the images, so in order to obtain unbiased estimates of RMSE, the calculation should be 

made by using independent GCPs (also called Check Points, CP) not used for the transformation 

(Rogan & Chen, 2004). This is especially recommended when implementing exact algorithms such 

as TPS, for which GCPs residuals are all equal to zero (Brovelli & Minghini, 2012; Serra et al., 2003). 

In order to give a measure of the geometric accuracy of the re-registered GAI 1954 dataset, 15 

new points that had not been used for implementing the transformation algorithm were chosen as 

CPs to test the performance of the georeferencing transformation (Figure 12).  

 

 

b. Radiometric correction/image enhancement 

 

Applying any radiometric correc-

tion procedure was not considered 

necessary, as the 1954 images have 

already been provided with correc-

tions after the scanning phase, and 

in the 2012 the presence of atmos-

pheric interference, especially of 

clouds, was not significant. A simple 

image enhancement operation of 

contrast stretching was applied to 

increase contrast between the im-

age features and facilitate their visu-

al interpretation. A serious issue 

with the 1954 images, however, was 

the widespread presence of shad-

owed areas due the rugged moun-

tain topography, that appeared uni-

formly dark and usually impossible to Figure 13: comparison between GAI 1954 orthorectified images showing 
shadows and distortions, and the corresponding location in the 2012 images. 
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interpret; in addition, the existence of severe distortions due to orthorectification, further in-

creased the areas for which it was impossible to identify the land cover type (Figure 13).  

This made it necessary to create a mask of these areas by manually digitizing each one of them 

and assigning the classes “shadows” and “distortions” according to their type.  

This mask was later applied to the 2012 classification in order to take into account, during the 

change detection phase, only of those areas that could be seen and interpreted clearly in the 1954 

images. The purpose of this step is to ensure the consistency between classifications, and avoid 

considering as “new” grassland areas those grasslands that were already present in 1954 but 

couldn’t be mapped due to the constraints discussed above.  

 

 

Definition of classification criteria and creation of  grassland distribution maps for 1954 and 

2012 

 

The choice of creating a land cover map through manual photointerpretation implies a certain 

level of subjectivity in the delineation of land cover units. For this reason it is necessary to ensure 

that this process is carried out in the most repeatable and unambiguous way possible, by estab-

lishing clear criteria for distinguishing land cover classes and defining a rigorous methodology to 

conform to. 

Given that the objective of this part of the study was the assessment of the temporal evolu-

tion of mountain grasslands in relation to woody plant encroachment, it was fundamental to de-

cide how to identify the forest-grassland boundary. Since the classification systems most widely 

used (see Section 3.1) for these land cover types employ classifications criteria based mainly on 

vegetation cover percentage and areal extension, it was decided to adopt such criteria as well for 

the definition of grassland areas and their boundaries in relation to forest and other land cover 

types. 

In the FRA guidelines, the term “forest” defines a land cover type with area wider than 0.5 ha 

(5000 m2), tree canopy cover higher than 10%, and trees higher than 5 m at maturity. Another 

class used in the FRA is “other wooded lands”, which includes areas of shrubs and bushes (height 

of less than 5 meters) where no trees are present and with a canopy cover of 10% or more. The 

latter is especially important in the context of this work, because it comprises some alpine tree 

vegetation types like Pinus mugo stands, very common in the study area.  
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It can be noted how these definitions are optimized for ground surveys, as it is not generally 

possible to easily identify tree height from digital remote sensing images (Chirici & Martino, 2009; 

De Natale et al., 2003). For the purpose of this study, however, no difference has been made be-

tween forests and shrublands, and both are considered as “not grassland” as long as wooded plant 

cover is higher than 10%. 

 

Considering that the FRA focuses on forested areas, grassland is not given an official definition, 

but rather falls into the general category of “Other land” which includes agricultural land, mead-

ows and pastures, built-on areas, barren land, etc. (FAO, 2010) and is therefore not suitable for 

this study. For the purpose of defining classification criteria that can be harmonized with interna-

tional standards, it is necessary to derive them “by difference” from other land covers’ classifica-

tion criteria. 

It was decided to use the IUTI definition, that, despite following the international FAO guide-

lines, also includes a separate grassland class (IUTI code 3.1, “grassland and pastureland”) identi-

fied by a minimum extension of 5000 m2 and defined as “any land occupied by natural pastureland, 

high altitude grassland, grassland-pastureland, areas deriving from the abandonment of agricul-

tural practices and in general any formation composed of spontaneous non-woody vegetation 

with cover higher than 40% and dominated by grasses (Marchetti et al., 2012).  

In conclusion, the definition of grassland employed for this phase of the study includes these 

criteria: 

 

 Minimum extension: 5000 m2,  

 Minimum cover of herbaceous vegetation: 40% 

 Maximum woody plant cover: 10% 

 

As a consequence, areas with bare rock/soil mixed with grassland were excluded if percentage 

of bare rock was higher than 60%. In the same way, areas with sparse trees/shrubs were excluded 

if their cover was higher than 10%. A vector grid with cell area of 5000 m2 was created and over-

laid to the images to help estimating tree density and facilitating the photointerpretation proce-

dure and the delineation of forest-grassland boundaries. 

After the delineation of polygons, a thorough topology check was conducted, and all the ge-

ometries that presented any problem were corrected. This is especially important because manual 



78 

digitization can create involuntary topology errors that are likely to cause errors when combining 

vector layers. 

 

 

Classification accuracy assessment  

 
Classification accuracy assessment is usually performed by creating an error (also called confu-

sion) matrix to observe the differences between the classified map and the reference data. The er-

ror matrix-based accuracy assessment technique is the most common method for assessing classi-

fication accuracy, and it is based on the selection of a sample of locations (the ground truth) that 

are used to determine the “real” land cover type using field observations and/or high resolution 

images. Error matrices will be discussed in more detail in section 5.4.2. 

The choice of reference data should be done considering several aspects, such as: a) data in-

dependence, meaning that the reference data cannot have been used for the creation of the clas-

sification or change map being assessed; b) source of reference data, that should be more accu-

rate than the predicted accuracy of the data being tested; c) number of sample points. Many 

standards require a minimum of 20 samples per ground cover class, with more (at least 30) being 

recommended; d) distribution of samples across the study area, that must represent the full varie-

ty of topography and land cover types present (Congalton & Green, 2009). 

For the 1954 images, it has not been possible to find any reference data against which to 

check the classification accuracy.  

In the case of the TELAER images, the IUTI inventory was chosen for the accuracy assessment, 

specifically the 2008 classification that is the closest in time to the date of acquisition of the 

TELAER images. No other available reference data with a higher accuracy than the classification 

performed in this study could be found. In this case, it was not possible to create a full error matrix 

because the TELAER images were classified only according to the presence/absence of grassland 

areas, so prior to the accuracy assessment procedure only the IUTI points falling within the 

mapped grassland areas were chosen. In order to have as much data as possible to work with, the 

full 2012 grassland distribution map was used, not only the areas not covered by the 1954 shad-

ows/distortions.  

The IUTI points overlapping the mapped areas were extracted by running a Spatial Query on 

QGIS. This yielded 119 points (out of 1237) (Figure 14), whose class code for 2008 was extracted 

and compared with the grassland classification. 
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Figure 14: IUTI points overlapping 2012 grassland areas 

 

Post-classification change detection 

 
A preliminary step was the rasterization of the two vector layers, assigning to both rasters the 

same spatial resolution of 2 m, equal to the coarser resolution of the 1954 images, and the same 

grid origin, in order to ensure their perfect overlay (Appendix A, A3. Rasterization of vector files). 

Considering how different pixel sizes and/or grid origins make the process of stacking layers for 

change analysis more complicated, as it introduces further positional error to the error already ex-

isting due to the imperfect alignment between the images, it is important to take care of these as-

pects before carrying out any comparison.  

The values of the two binary rasters representing grassland distribution at the two times were 

then combined using the Raster Calculator to give four possible change classes: 

 

0 : No change – areas not classified as grassland in both dates 

1 : Change –  grassland loss between 1954 and 2012 

2 : Change – grassland increase between 1954 and 2012 

3 : No change  – areas that remained grassland throughout the time period 
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A vector map was also created from this file, since it is more suitable for visualization purposes 

and for the overlay with other spatial or thematic data.  

 

 

Grassland loss by altitude range 

 

 
 

 

In order to locate and quantify the areas of grassland loss by altitudinal range, the 5 m DEM 

acquired from the Veneto Region Geoportal was employed. Since the DEM is divided in tiles ac-

cording to the CTR 10000 cuts, the single tiles were first merged into a single raster and clipped to 

the study area.  

QGIS does not offer a straightforward solution to extract zonal statistics between rasters and 

to do multi-class zonal statistics, so several steps (described in detail in Appendix A) had to be per-

formed before obtaining the final result.  

 First, the DEM’s pixel values, that originally ranged from 386 to 2564 m, were reclassified into 

11 altitudinal bands using the GRASS tool r.reclass, according to the classification system shown in 

Figure 15: Reclassified DEM 
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the legend of Figure 15. Then the resulting raster (Figure 15) was converted to vector through the 

“Polygonize” tool, and the shapefile obtained from this operation was merged by altitudinal class, 

in order to obtain only one polygon for each class. In addition, contour lines were extracted from 

the original raster as a visual aid. From the change classes raster map described in the previous 

section, three individual rasters (one for each class) were obtained, and each of these rasters was 

used to calculate zonal statistics for the corresponding class. The same operation was repeated for 

the original 1954 grassland raster map. 
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5.4.2 PART 2: Satellite images 

 

Five Landsat 5 images from 2005 (the year with the highest number of reasonably cloud-free 

scenes for the study area) were used to test for differences in classification results and accuracy by 

varying the Landsat dates used as input for the classifier and also through the calculation of vege-

tation indices. Since several high quality ancillary datasets are available as a support in the crea-

tion of training areas, a supervised classification was preferred over a non-supervised one. Specifi-

cally, a pixel-based semi-automated classification technique with a Maximum Likelihood Classifier 

(MLC) was employed.  

 For each image, all spectral bands were used except for the thermal band (band 6), because 

of its inferior spatial resolution and low sensitivity to the vegetation properties of interest. The list 

of images used in this study is shown in Table 6. 

 

 

 

 

 

 

The image dates are distributed throughout the vegetative season, so they should allow to 

evaluate how classification accuracy varies according to each phenological stage of development 

of the vegetation. When trying to distinguish between different vegetation land cover types 

through their spectral properties, it is necessary to make sure of selecting the optimal moment 

during the vegetative season for enhancing the spectral differences between the land cover types 

of interest (Esch et al., 2014; Nordberg & Evertson, 2005).  

In the case of the Dolomiti Bellunesi National Park study area, it was hypothesized that the 

late August/early September period may be the best option to obtain a good separability between 

vegetation types and to distinguish grassland areas, given that usually in this part of the year 

grasses are already starting to become senescent while shrub and trees are still green. This applies 

to areas above the treeline as well, where it should be possible to distinguish senescent grasses 

from evergreen dwarf mountain pine stands (Vettorazzo E., personal communication, June 28, 

2015). Boschetti et al. (2007) noted a decrease in biomass production from July to August in alpine 

grasslands, which could validate the choice of late August as an appropriate period to choose.  

Satellite/Sensor Landsat Scene Identifier Date Cloud cover 
L5/TM LT51920282005161KIS00 10/06/2005 0,99 
L5/TM LT51920282005209KIS00 28/07/2005 3,06 
L5/TM LT51920282005241KIS00 29/08/2005 8,11 
L5/TM LT51920282005273KIS00 30/09/2005 3,99 
L5/TM LT51920282005289KIS00 16/10/2005 0,61 

Table 6: Available Landsat images for the year 2005 with cloud cover less than 10% over the study area 
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Pre-processing  

 

a) Geometric rectification 

 

Landsat scenes from USGS are processed to Standard Terrain Correction (Level 1T “precision 

and terrain correction”) using the Level 1 Product Generation System (LPGS), which provides geo-

metric accuracy by utilizing both ground control points (GCP) and a digital elevation model (DEM). 

The GCPs used are obtained from the GLS2000 dataset, with a 90 m DEM. The expected error of 

the GLS2000 dataset is less than one pixel (25 meter RMSE on a per-image basis). The end result is 

a geometrically rectified product with no sensor, satellite and Earth-related distortions (e.g. view 

angle effects, Earth rotation and curvature, topographic relief). Landsat standard data products 

employ the World Geodetic System (WGS) 84 datum as the Earth model and the Universal Trans-

verse Mercator (UTM) map projection.  

The geometric correction accuracy given for each Landsat scene is generally high (less than 8 

m for the scenes of the study area, see Appendix B), and in addition a Verify Image File is included 

with the Landsat products, which displays a grid of verification points in various colors to repre-

sent the level of geometric accuracy of each part of the scene.  

Moreover, the co-registration accuracy between Landsat images and the TELAER 2102 or-

tophotographs was also assessed, by identifying 11 CPs in both images and computing the RMSE. 

In this case, RMSE was 0.42 pixel (corresponding to about 13 m), lower than the generally accept-

ed threshold of 0.5 pixel. Proceeding to the co-registration of the images was therefore not con-

sidered necessary. 

 

 

b) Atmospheric correction  

 

The availability at no cost of Landsat Surface Reflectance frees users from the task of having to 

apply atmospheric correction routines to the images, usually a necessary step to allow for an easi-

er detection and quantification of land surface change. These procedures, especially absolute cor-

rections based on atmospheric modelling, require knowledge of both the sensor spectral profile 

and the atmospheric properties at the acquisition time, which are difficult and time-consuming to 

acquire (Du et al., 2002; Xie et al., 2008). SR images are obtained from the processing of Level-1T 
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Landsat data through the Landsat Ecosystem Disturbance Adaptive Processing System (LEDAPS) 

(Masek et al., 2006), which applies MODIS absolute atmospheric correction routines to Landsat 

scenes in a three-step process: 1) conversion of DN to Top-Of-Atmosphere (TOA) reflectance; 2) 

detection of cloud pixels based on the TOA reflectance; 3) correction to surface reflectance from 

TOA reflectance and auxiliary data set (ozone, water vapor, geopotential height, aerosol optical 

thickness and a DEM) to correct for molecular scattering and absorption by atmospheric constitu-

ents (USGS, 2015a).  

The SR Landsat products were used for every step of this study; one aspect to keep in mind is 

that SR products (both the bands and the Vegetation Indices) have a scale factor of 0,0001, so the 

values shown here do not correspond to the real reflectance values. 

 

 

c)Topographic correction 

 

Topography-induced shading effects generally represent a major problem that affects the ac-

curacy of classifications obtained from satellite imagery in rugged mountain areas (Mihai et al., 

2007), and considering the steep terrain of the study area it was decided to carry out a topograph-

ic correction procedure on each image. As there is no universally accepted method for evaluating 

the performance of topographic correction (Balthazar et al., 2012), in this study both the corrected 

and the uncorrected images were classified and assessed for accuracy, and the classification accu-

racies for individual land-cover classes were compared to assess the existence of any significant 

improvement brought by topographic correction. 

The first step in the correction of shadows caused by topography is the calculation of the local 

illumination angle, based on solar geometry (Sun zenith and azimuth angles) of the time and loca-

tion where the satellite image was acquired and on the topographic slope and aspect angles. For 

Landsat TM/ETM+ data, a single set of angles can be assumed since the scenes are relatively small. 

To compute the slope gradient and aspect, a DEM with the same resolution of the images should 

be used (Balthazar et al., 2012; Richter et al., 2009). To obtain the necessary DEM, the 5 m DEM 

previously used was first converted to the WGS84/UTM ZONE 32N (EPSG:32632) CRS so as to have 

the same CRS as the Landsat images, and then resampled to a 30 m pixel size.  

QGIS offers the possibility of applying topographic correction to an image through the SAGA 

geoalgorithm “Topographic correction”. Among the available methods, the “Minnaert correction 
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with slope (Law & Nichol, 2004)” method was chosen, as the family of Minnaert correction meth-

ods has been shown to give generally acceptable results (Meyer et al., 1993; Richter et al., 2009; 

Vanonckelen et al., 2013). The values for solar azimuth and elevation were obtained from each 

Landsat image’s metadata file.  

The Minnaert constant k, which indicates to what extent a surface is Lambertian, was left to 

the default value of 0,5. The value of k can vary between 0 and 1, where 1 indicates a perfectly 

Lambertian behaviour and 0 a perfectly or non-Lambertian  behaviour, and therefore it is a meas-

ure of the roughness of the surface. Using this correction factor helps reducing the problem of 

over-correction in the areas facing away from the sun typical of methods such as the cosine cor-

rection (Law & Nichol, 2004). The topographic correction process is described in more detail in 

Appendix B. 

 

 

Cloud cover mask 

 

As it can be observed  in Table 6, all the images have variable amounts of cloud cover, which 

made it necessary to ensure that the same area was classified for each image in order for the clas-

sifications to be comparable. Therefore, the first step was to create a cloud mask for 2005 derived 

from the combination of the cloud 

cover quality assessment band of each 

image. In addition to this, considering 

how some preliminary classification 

trials showed a great degree of confu-

sion between the class “water” and 

other land cover classes, it was decided 

to mask out the water areas as well in 

order to simplify the classification pro-

cess and eliminate a source of uncer-

tainty. Within the Dolomiti Bellunesi 

National Park there are only two water 

bodies of significant extent (Stua and 

Mis lakes), so their boundaries were manually digitized. The resulting shapefile was rasterized and 

Figure 16: Cloud and water mask (light blue) applied to one of the Landsat 
5 images in the 2005 series. 
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added to the cloud cover mask. This final version of the mask was used to mask each 2005 Landsat 

scene, in order to keep only those areas that were cloud-free in each of the five dates (Figure 16), 

on which the classification was performed. 

 

 

Training area selection 

 

The tool used for image classification was the Semi-Automatic Classification Plugin (SCP) 

(Congedo & Munafò, 2012), whose functionalities allow to carry out every step of the classification 

process, from pre-processing to accuracy assessment.  

The first step in a semi-automated classification procedure based on the spectral properties of 

land cover types is the definition and selection of areas of homogeneous land cover, here called  

Regions of Interest (ROIs), for training the classifier. ROIs are used for the extraction of the spec-

tral signature belonging to each class, which in turn is used for the classification of the whole im-

age.  

The land cover categories chosen for the definition of ROIs were based on the IUTI inventory 

class definitions, which represent the reference data, in order to allow for an easier comparison of 

the datasets for accuracy assessment purposes (Table 7). Only the class “Forest” was initially di-

vided into two sub-classes (Conifer and Broadleaved) in order to see if their spectral signatures 

were separable, but in the classification phase the two subclasses were treated as one single class 

to conform to the IUTI classification. 

 In the SCP, the training ROIs 

can be delineated either manually 

or through an automated region 

growing algorithm with user-

defined parameters, where it is 

possible to set the interval which 

defines the maximum spectral dis-

tance between the seed pixel and the surrounding pixels (in radiometry units). Table 7 also shows 

the number of ROIs chosen for each class, which is a function of the spatial extension of the land 

cover class and of its perceived spectral separability. For example, the class “shrubs and sparse 

Table 7: Land cover classes for Landsat image classification and number of train-

ing ROIs chosen for each. 

Macroclass 
ID Land cover type Number of 

ROIs 
1 Grassland 120 
2 Shrubs and sparse trees 110 
3 Bare/sparsely vegetated areas 72 

4 
4.1 Conifer Forest 89 

4.2 Broadleaved Forest 107 
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trees” was easily confused by the classifier with other land cover types, while the class 

“bare/sparsely vegetated areas” showed better separability (in addition to being more limited in 

extent). The choice of ROIs was also guided by the need of capturing the variability present in each 

land cover category, especially considering that the same ROIs would be used for classifying imag-

es from different dates and therefore with different conditions, despite belonging to the same 

year. This aspect is also important to improve classification using the Maximum Likelihood algo-

rithm.  

The creation of ROIs was carried out through the region growing algorithm built into the SCP. 

A region growing algorithm is a region-based image segmentation method, which examines the 

neighboring pixels of initial seed points in order to decide whether to add them to the region or 

not. In this case, the region membership criterion is based on spectral signature similarity (adjust-

able by the user). The choice of seed points was based on: 

 The visualization of the Landsat image under different band combinations, which can high-

light different land cover features. The combination used were 3-2-1 (natural color image), 

4-3-2 (standard false color) and 4-5-1 (a different false color combination, useful to high-

light bare soil) (Figure 18). 

 Ancillary data: TELAER 2012 images and 2005 Habitat Map 

 

After selecting each ROI, the ancillary datasets were used again to evaluate the accuracy of 

each ROI’s attribution to a certain class, and all ROIs assigned to the wrong class, of uncertain at-

tribution, or covering more than one land cover type were deleted. 

The choice of appropriate ROIs 

to train the classifier is partly a tri-

al-and-error process, however, and 

in some cases even the training ar-

eas that are properly assigned to a 

land cover class (according to visual 

assessment) do not lead to a good 

classification result. For this reason, 

the training was supervised step-

by-step by means of classification 

preview generation in order to Figure 17: example of ROIs 
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avoid macroscopic errors. Every time the addition of a new ROI caused a detectable worsening of 

the classification quality, that ROI was deleted and/or re-defined.  In total, 498 ROIs were kept for 

the final classification (Figure 17). The resulting ROI shapefile was also topology-checked to make 

sure that there was no accidental overlap between ROIs belonging to different classes. 

  

 
Figure 18: a part of the study area shown in natural color (3-2-1), standard false color (4-3-2) and false color combination 4-5-1. 
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Vegetation Indices time series 

 

Vegetation Indices (VI), and in particular NDVI, have been widely used as an approximation of 

vegetation phenology, and several NDVI images obtained from different dates within the same 

year, or within a vegetative season, can be used to reconstruct the phenological profile of the land 

cover classes of interest. Plotting time-series vegetation index data produces a temporal curve 

that summarizes the various stages that green vegetation undergoes during a complete growing 

season, and that can be used to extract key phenological variables such as the start, the peak and 

end of the growing season (Simonetti et al., 2014). 

 In turn, this may be useful for evaluating whether there is a moment in the vegetative season 

that can be better suited for obtaining a higher classification accuracy due to a greater phenologi-

cal difference between vegetation types (Senf et al., 2015). The problem with classifying vegetated 

areas, however, is that the spectral signatures (and consequently VI values) of different vegetation 

classes can show some significant overlap, and differ according to the phenological stage of devel-

opment of each vegetation type, so classification results largely depend on the date chosen. Better 

classification results are often achieved by using two or more VI images as classification input, or 

combining satellite spectral bands with one or more VI derived from them (Gartzia et al., 2013). 

This is important for change detection as well, given how land cover with high inter-annual varia-

bility affects classification results and can also distort the baseline from which change is measured 

(Bradley & Mustard, 2005).  

The vegetation indices used in this study are NDVI and EVI, both obtained directly from the 

EROS website as part of the SR Landsat products. NDVI was chosen because it is the most com-

monly used VI for land cover classification and change detection, and also because it can compen-

sate for topographic effects, while EVI because it should be more sensitive than NDVI to differ-

ences in vegetation cover and not become so easily saturated in areas with high biomass. NDVI 

and EVI are computed for Landsat TM/ETM+ images as (USGS, 2015d):  

 

1) NDVI = (Band 4 – Band 3) / (Band 4 + Band 3). 

2) EVI = (Band 4 – Band 3) / (Band 4 + 6 * Band 3 – 7.5 * Band 1 + 1) 

 

A total of 10 VI files were used (5 for NDVI and 5 for EVI, corresponding to the five 2005 Land-

sat scenes). The VI bands first were masked, and then the NDVI/EVI values corresponding to each 
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land cover class were extracted from them using the training ROIs created in the classification step 

(Figure 19). VI statistics (pixel count, mean, minimum and maximum values) were computed for 

each ROI through the Zonal Statistics tool. Afterwards these statistics were aggregated on a per-

class basis, obtaining the mean, maximum and minimum NDVI and EVI values for each class and 

each date. These data were used to assess the range of NDVI/EVI values for each class and each 

date, and plotted to create phenological profiles of each vegetation type and observe their chang-

es during the vegetative season. 

 

 
Figure 19: schematic representation of NDVI values extraction 
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Classification procedure 
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Classification scenarios and signature extraction 

 

The five Landsat images for 2005 were used to create several “classification scenarios” (Table 

8), with the purpose of assessing the classification accuracy of 1) single-image classifications for 

each date and 2) multi-image classifications obtained combining two or more dates or VIs. 

For each scenario, a new spectral signature list was extracted for each land cover class, based 

on the ROIs previously created. Creating a new spectral signature for each scenario ensures that 

the classification results will not be affected by phenological differences. All the bands of the im-

ages/VIs used for each scenario were employed for signature extraction, in order to see if and how 

the different combinations of images and/or VIs could benefit classification accuracy.  

 For each scenario, the signature list so obtained was 

used to classify the image with the Maximum Likelihood al-

gorithm.  

In this classification algorithm, the pixels falling into the 

ROIs, as representative of each land cover class of interest, 

are used to estimate the class mean vector and covariance 

matrix, which are the key inputs to the function. After the 

class statistics are defined, each pixel is classified on the 

basis of which class the cell has the highest probability of 

being a member of. Since it is relatively simple but robust, 

MLC is one of the most widely employed classification 

methods. One of the reasons is that it uses means, vari-

ances and covariances of training site statistics, where 

most other decision rules are based on simpler statistics 

(Vanonckelen et al., 2013). MLC was also chosen because, 

unlike other available classifiers, it takes into account the 

spectral variability both between and within classes.  No classification threshold was defined, in 

order to avoid the creation of “unclassified” pixels that later need to be excluded from the accura-

cy assessment, further diminishing the area available for the cross-validation with IUTI. This is jus-

tified by the fact that the land cover classes chosen are representative of all the land cover types 

present in the study area, and other possible land cover types outside of the classification (in this 

case only water), have been masked out beforehand. 

SINGLE-IMAGE CLASSIFICATIONS 

1 2005/06/10 

2 2005/07/28 

3 2005/08/29 

4 2005/09/30 

5 2005/10/16 

MULTI-IMAGE CLASSIFICATIONS 

6 Landsat - Dates 2 - 5 

7 NDVI - All dates 

8 NDVI - Dates 2 - 5 

9 EVI - All dates 

10 EVI - Dates 2 -5 

11 Date 2, NDVI, EVI 

12 Date 2, NDVI 

Table 8: classification scenarios 
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In addition, to evaluate the effectiveness of the topographic correction both the topograph-

ically corrected images obtained with the Minnaert with slope algorithm and the original ones 

were classified using the same ROIs, but calculating spectral signatures independently. This pro-

cess was repeated for each of the 5 images used for the study on land cover classification results 

on 2005 images. 
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Classification accuracy assessment 

 

In this case, a full error matrix and therefore a complete accuracy assessment of the resulting 

classifications could be carried out using the IUTI inventory, again using the 2008 survey as it is the 

closest in time to the date of the Landsat images.  

The error (or confusion) matrix (Figure 20) is an effective way to represent the accuracy of a 

classification, because it allows to observe the differences between the change map and the refer-

ence data based on the number of sample units (i.e., pixels, clusters of pixels, or polygons) as-

signed to a category in the classification in relation to the actual category derived from the ground 

truth. The columns usually represent the reference data while the rows indicate the classification 

obtained from the remotely sensed data (Congalton, 1991; Foody, 2002; Smith et al., 2003). 

 

 

 

Through the error matrix it is possible to calculate several accuracy metrics, such as overall ac-

curacy, producer’s accuracy, user’s accuracy and Kappa coefficient. Overall accuracy is the per-

centage of cases correctly allocated, calculated as the sum of the major diagonal (corresponding to 

the correctly classified sample units) divided by the total number of sample units in the error ma-

trix. Overall accuracy is a synthetic and easy to interpret metric to express the accuracy of the clas-

sification as a whole. Producer’s accuracy is obtained by dividing the total number of correctly as-

signed units in a class by the total number of units for that class present in the reference data 

(column total), while user’s accuracy is calculated by dividing the total number of correctly as-

signed units in a class by the total number of units classified as that class (row total). It is im-

Figure 20: Example of confusion matrix and of the most common accuracy metrics that can be calculated from it. The highlighted 
elements represent the main diagonal of the matrix (correctly allocated units), while the off-diagonal elements contain the units 

where there is a disagreement between the classification and the reference data From Foody (2002). 
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portant to consider both of these metrics when evaluating the accuracy of a classification, because 

high producer’s accuracies often occur only because too much of the map has been classified as 

that particular land cover class. User’s accuracy on the contrary can show whether there is signifi-

cant confusion in the attribution of a land cover class, which indicates a problem of the classifier in 

discriminating between land cover classes. User and Producer’s accuracy give information on the 

two sub-types of error that can occur in a classification: inclusion (commission error) and exclusion 

(omission error). A commission error occurs when an area is included in an incorrect category, 

while an omission error occurs when an area is excluded from the category to which it belongs. 

(Congalton, 1991; Foody, 2002; Morgan et al., 2010). 

The Kappa coefficient is an alternative index of classification accuracy, and provides a more 

conservative but more robust estimation of accuracy than the simple percentage of cases correctly 

classified, because it takes into account the agreement between classification and the reference 

data that may occur by chance (Congalton & Green, 2009; Foody, 2002). 

Within the SCP it is possible to carry out the accuracy assessment and calculate the error ma-

trix with a dedicated tool (Post-processing  Accuracy). Before implementing the algorithm, it is 

necessary to make sure that the two datasets (classification and reference data) have the same 

thematic classes and code, expressed as a number. The IUTI codes were therefore changed to 

match those of the classified images (with values from 1 to 4 according to the classification shown 

in Table 7), and then the file (originally a vector file with point elements) was rasterized with a 30 

m pixel size, making sure that the grid of the new raster was aligned to that of Landsat images to 

minimize positional errors. The error matrix between each classification and the IUTI reference 

raster and the related statistics were subsequently computed through the SCP and compared. 

 

 

NDVI image differencing change detection  

 
The change information that can be obtained from a change detection technique can be divid-

ed in two main types (Lu et al., 2014): 

a) Binary change/non-change: provides information only about whether there a land cover 

change has occurred or not, together with the amount of changed areas and their spatial patterns 

within a study area for the change detection period considered. Threshold-based methods are 

commonly used to distinguish changed from non-changed areas. 
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b) ‘From-to’ change: usually obtained from a post-classification comparison approach, it can 

provide a complete change matrix. In this case, the definition of a land cover classification system 

and the accuracy of the classifications are critical to highlight meaningful change trajectories and 

to exclude apparent change due to misclassification and misregistration.  

 

Image differencing-based change detection methods belong to the change/non change category. 

When using NDVI bands as the images to difference, the difference image is calculated as:  

 

ΔNDVI[Date2Date1] = NDVI[Date2] – NDVI[Date1] 

 

The pixel values of the difference image in general follow a normal distribution, where pixels 

in the central region represent no change (near-zero differences) while those within the two tails 

of the distribution are characterized by significant changes in the vegetation’s properties. In the 

specific case of this study, where an increase in vegetation biomass and density is expected, sub-

tracting the older date from the most recent one should cause negative values in the difference 

image to indicate a decrease in green vegetation biomass, while positive values suggest an in-

crease. In the case of grassland to shrubs/trees conversion, an increase is expected (Mancino et al., 

2014).   

The images chosen for the change detection are the NDVI bands derived from the 27/07/1987 

and 18/07/2007 Landsat scenes, respectively. These dates and years were chosen because 

a)according to the classification and seasonality results, they represented the period with better 

separability between vegetation classes; b) among the usable images from the same period, they 

have the lowest cloud cover; c) they can provide the widest temporal gap (20 years), which should 

give a higher chance of detecting changes. 

Before the image differencing procedure itself, the images were pre-processed in order to en-

sure the best possible comparability. First, the images were masked for clouds (both the cloud 

cover present in 1987 and 2007) and for water. Second, all negative values were removed, on the 

basis that only positive values represent soil and vegetation, and moreover the outlying values 

present in the negative part of the image histograms could introduce artifacts in the difference 

image.  

Finally, the resulting images were normalized through a histogram matching procedure, in or-

der to ensure that the 10-day temporal shift between the images, as well as differences in season-
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al temperature/precipitation did not affect the results. After this, the images were subtracted with 

the raster calculator according to this formula: 

 

ΔNDVI[2007_1987] = NDVI[2007] – NDVI[1987] 

 

Identifying a threshold for detection of vegetation changes is the key issue in change detection 

methods based on image differencing. The standard deviation (σ) of the pixel values density func-

tion in the difference image is one of the most common threshold identification approaches, and 

has been applied successfully for different natural environments and different remotely sensed 

imagery (Coppin et al., 2004; Lu et al., 2004; Mancino et al., 2014; Singh, 1989).  

The threshold is used to separate three ranges in the normal distribution: (a) the left tail (ΔVI < 

μ - n·σ); (b) the right tail (ΔVI > μ + n·σ); and (c) the central region of the normal distribution (μ - 

n·σ < ΔVI < μ + n·σ), where μ represents the mean of the pixel values and n defines the range of 

dispersion around the mean (Mancino et al., 2014). The n value was be identified through a man-

ual trial-and-evaluation procedure, by testing different thresholds and evaluating the change de-

tection results. In the literature, n values generally vary between 1 and 2 (Lu et al., 2004; Singh, 

1989). Mancino et al. (2014) found that the optimal n value for a forest expansion change detec-

tion problem in a study area comparable to the one of this study was 1,5. In this work, a threshold 

of 1·σ was used. 
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6. RESULTS AND DISCUSSION 
 

6.1 Aerial photographs 

 

Co-registration results 

 
The mean error resulting from the check points was 0.86, which corresponds to less than one 

pixel, that is to say 1,7 m considering the GAI images’ pixel size of 2 m. This represents an im-

provement from the previous situation, even if it must be taken into account that, considered the 

distortions present in the images, the same level of accuracy cannot be expected in every part of 

the images. As noted before, the importance of the GAI 1954 images lies in the possibility of ob-

taining thematic information from a time period not generally covered by other data sources, ra-

ther than in the high spatial accuracy of the results. Despite their spatial and radiometric resolu-

tion being poorer compared to the more recent aerial imagery, and the significant distortions 

caused by the orthorectification process, it would not have been possible to exclude these images 

from the classification process, given their importance for outlining the situation of semi-natural 

grasslands land cover at the time preceding abandonment, and thus their role as the foundation 

on which a temporal series can be built.  

 

After undertaking the task of manually classifying the GAI 1954 images, the difficulties of han-

dling this dataset appeared even more evident, as was the necessity of resorting to a human pho-

tointerpreter rather than using an automated classification algorithm. This is especially true for 

the specific purpose of mapping grasslands, in particular in a complex terrain such as that of the 

study area. The low level of grey-scale contrast in the GAI 1954/55 images often makes grassland 

almost indistinguishable from light colored non-vegetated areas, which are common in the rocky 

mountainous landscape of the Dolomiti Bellunesi National Park; taking a decision about the classi-

fication of these areas and the placement of grassland boundaries, was not easy, and often re-

quired the comparison with more recent aerial images and  thematic cartography to identify the 

visual characteristics of areas with bare rock (Figure 21). 

Similarly, the relatively coarse pixel size and poor radiometric detail may not allow to easily 

distinguish grassland areas through texture-based classification algorithms, considering that grass-

lands and sparsely vegetated or rocky areas show similar textural properties as well. An object 

based classification was attempted in the Regione del Veneto (2011)’s study, but in that case the 
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target of the classification were forested areas, which have a higher textural contrast. Even in that 

case, however, it was necessary to employ an interpreter for the visual check of the automated 

classification’s accuracy. Yet another issue is related to the tonal differences among grasslands lo-

cated at different elevations and aspects within the same photo; in many cases, grasslands in 

shaded areas appear similar in tone to forests, making it difficult to determine the range of 

brightness values representing grassland cover in an unambiguous way. 

 

 

 

Figure 22: a)Distortions and shadows map based on GAI 1954 images; b)example of an area showing distortions (outlined in 
blue) and shadows (in purple) 

Figure 21: example of a case of uncertain attribution. The bright areas in the 1954 image can be mistaken for bare rock, while in 
the 2012 image they appear as grassland. 
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In addition to the classification problems encountered due to the tonal and radiometric char-

acteristics of the images, it is likely that the initial grassland extent for 1954 was underestimated 

mainly due to the presence of shadows and distortions, as shown in Figure 22. As it can be ob-

served in Table 9, shadows alone occupy almost one third of the study area, so the mapped grass-

land areas probably represent a conservative estimate of the grassland areas present at that time. 

 

Class Class Area (ha) % on total area 

Distortions (D) 3313,52 10,69 

Shadows (O) 9718,49 31,35 

Table 9: percentage of non-classifiable areas in the 1954 aerial images 

 

 

Grassland distribution maps and change detection results 

 

The cross-validation of the TELAER images with the IUTI inventory yielded a classification accu-

racy of 86%, corresponding to 102 of the 119 points used for the assessment. These points were 

classified as “grassland and pastureland” (code 3.1), while of the remaining 17, 8 were assigned to 

“other wooded land” (3.2), 5 to “arable land” (2.1), 2 to “forest land” (1.1) and one each for set-

tlement (4) and “other land” (6), respectively. 

This relatively low classification accuracy, however, is most likely due to the limited sample of 

IUTI points that could be used, and, even more importantly, to the differences intrinsic in a point 

sampling compared to a wall-to-wall mapping. Most of the IUTI points classified as “other wooded 

land”, for example, fell on small sparse shrub or tree stands that were typically enclosed into larg-

er grassland areas that according to the criteria used for the classification of the TELAER images, 

would have been correctly classified as grassland. 

 

The grassland distribution maps for 1854 and 2012 are shown in Figure 23 a and b, respective-

ly. Table 10 shows the areal extent of grassland habitats at the two times. Overall, about 1578 ha 

of grassland were lost over the 58-years period, corresponding to almost the 37% of the initial ar-

ea.  

As discussed above, these values do not represent the full extent of grassland habitats in ei-

ther 1954 or in 2012. The figures for 1954 represent only those grasslands that were not hidden by 
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shadows or image distortions, while the ones for 2012 represent the grassland areas existing only 

in the areas visible in both images. This implies that some grassland areas that could be seen in the 

2012 images were not included in the count, in order to ensure consistency in the assessment of 

grassland cover change, otherwise the magnitude of the process may be underestimated due to 

the greater amount of areas that can be interpreted for 2012. 

The pixel-based change detection procedure of combining the two raster distribution maps 

yielded the change map shown in Figure 24, while Table 11 presents the main statistics of each 

change class. 

 

 1954 2012 

Mapped grassland (ha) 4296,35 ha 2717,89 ha 

Percentage on total area 13,86 % 8,77 % 

Decrease on total area / - 1578,45 ha (5,09%) 

Decrease on initial grassland area / - 36,74 % 

Table 10: loss of grassland areas between 1954 and 2012 
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Figure 23: Distribution of mapped grassland areas for 1954 and 2012. 

 

From the change detection results, it can be observed how the amount of grassland that was 

lost between the two dates is actually higher than what emerged from the simple subtraction of 

2012 grassland area from 1954, 41,44% instead of 36,76%. This difference is due to a small 

amount of grassland increase registered for 2012 (4,71%). It is likely, however, that part of this fig-

ure may be caused by misregistration error or by small differences in the delineation of grassland 

polygons. Misregistration of the boundaries in the different classifications causes the presence of 

border pixels with false positive or negative changes. In vector format, this problem appears as 

narrow polygons, the so called “slivers”. 

In any case, these results show that inside the Dolomiti Bellunesi National Park’s territory no 

quantitatively significant phenomenon of grassland expansion is underway, especially if compared 

to the amount that has been lost since 1954. This can justify the choice of using only the areas in-

cluded into the original 1954 grassland extension as the basis for future change evaluations involv-

ing other time periods, as it has been demonstrated that the reforestation process are clearly 

prevalent. 
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Figure 24: Grassland change map between 1954 and 2012 

 

Change category (code) Area (ha) % on total area % of variation on 
1954 grassland 

Unchanged – no grassland/not classified (0) 26501,60 85,49 / 

Changed – grassland loss (1) 1780,29 5,74 - 41,44 

Changed – grassland increase (2) 202,24 0,65 + 4,71 

Unchanged – grassland (3) 2515,71 8,12 58,55 

Table 11: post-classification change detection results 
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Grassland decrease by altitudinal range 

 

From the stratification and comparison of the reclassified DEM and the raster maps  of grass-

land distribution and grassland change, it was possible to derive more specific information about 

the grassland dynamics within the study area and their distribution according to altitudinal bands 

(the areas that were not grassland in both of the two dates were not considered). 

Figure 25 shows the way 

grassland was distributed be-

tween altitudinal bands in 1954, 

expressed in percentage on to-

tal 1954 grassland area. It can 

be observed how the majority of 

grassland areas are included in 

the altitudinal band between 

1500 and 2100 m. This can be 

compared with Figure 26, which  

shows the percentage of in-

creased, unchanged and lost grassland by altitudinal band, calculated on the total area of each 

change class.  

 
Figure 26: Percentage of increased, unchanged and lost grassland by altitudinal band, calculated on the total area of that class (x 

axis shows values between 0 and 35 %). 
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Figure 25: percentage of grassland areas present in each altitudinal band in 1954 
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Figure 27: Percentage of increased, unchanged and lost grassland by altitudinal band. Each bar represents the absolute percent-

age of increase, loss or stability calculated on the initial grassland area, so the three bars do not add up to 100 (x axis shows val-

ues between 0 and 100 %). 

 

If the percentage is calculated relatively to the grassland area initially present in each altitudi-

nal band, however (Figure 27),  it becomes clearer how the grassland loss dynamics is prevalent on 

the lower altitudinal bands up to 1500 m, where the forest expansion process led to the disap-

pearance of over the 70% of grasslands. Only the 386-500 elevation band shows a slightly lower 

loss, with the preservation of a greater amount of grassland areas. This is probably related to the 

fact that these areas are typically close to the Park’s boundaries and to settlements, so they are 

still managed to some extent.  

Conversely, stable grasslands with lower rates of loss are typical of higher altitudes, where 

natural grassland above the tree line is prevalent (1700-2500). Even in this case, however, the per-

centage of grassland loss is significant, between 10 and 20%. 1700 m a.s.l. represents the average 

altitude of the treeline. As is common to most mountain regions, the treeline  has been artificially 

lowered by centuries of anthropic disturbance, therefore it is very likely that the reforestation 

process has been taking place in the areas above it as well, as observed in similar studies, for ex-

ample by Gellrich et al. (2007). Moreover, some studies show how the influence of climate change 

is likely to be contributing to the upward shift of the natural tree line as well, especially due to the 

expansion of alpine shrub species such as dwarf mountain pine (Dirnböck, Dullinger, & Grabherr, 

2003). On the whole, the percentage of grassland present in 1954 above 1700 m was almost 49% 

of the total grassland area, corresponding to an extent of 2098 ha. Of this, 351 ha, about 17%, had 

been lost in 2012. 
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Finally, grassland expansion is a very marginal phenomenon in most cases, and as discussed 

previously it is likely that a significant part of this perceived increase is due to difference in the de-

lineation of grassland polygons and to residual misregistration. The increase of grassland areas ap-

pears more marked at high altitudes (2100-2500 m), where it is higher than 10%. A possible expla-

nation for this is, once again, related to the difference in resolution between the two images: high 

altitude zones are dominated by areas with sparse grassland interspersed with bare rock, and 

these two land cover types appear almost identical to each other in the 1954 images, which may 

have led to an underestimation of the grassland present. The higher radiometric and spatial reso-

lution of the 2012 images allows for a more accurate delineation of the grasslands present in this 

zones, as previously shown in Figure 21. 
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6.2 Satellite data 

 

NDVI and EVI time series for 2005 

 

The biggest challenge in obtaining VI time-series from Landsat images is the collection of a 

cloud-free database covering key dates and seasons throughout the vegetative phase. As it has 

been shown in this case, it was possible to find enough cloud-free images to cover most of the 

vegetative season only for one year. Generally, however, the number of dates used for creating VI 

series is much higher, in order to have a better representation of phenological profiles. By using 

only 5 images, the resulting profiles were inevitably very coarse, but sufficient to broadly charac-

terize the behaviour of the land cover classes of interest. It is common to create or integrate NDVI 

time series from other satellite sensors, typically MODIS, which has a higher temporal resolution 

and therefore provides a greater amount of usable data. The drawback of using MODIS data is the 

coarse spatial resolution, which was not considered suitable to the scale of this study area and to 

the fragmentation of the landscape, especially when focusing on grassland areas.  

It should also be noted that factors such as climatic variability between years, slope aspect, 

soil depth and soil capacity of retaining moisture influence the beginning, end, and overall length 

of the vegetative season, so in order to draw more definitive conclusions about seasonal pheno-

logical profiles it would be necessary to compare VI time series across several years and obtain av-

erage values. In any case the creation of a VI time series, through showing the approximate period 

when the vegetative peaks of each land cover type of interest occur, is an essential tool to esti-

mate the most suitable period for classification, and in this case it was used, together with the re-

sults of the classification scenarios, for choosing the two images for the change detection proce-

dure. only one or few images are available. 

Figure 28 shows the mean NDVI and EVI values obtained by averaging the mean values calcu-

lated for each ROI, divided by class and by date. Although the two graphs are not directly compa-

rable, because the range of NDVI and EVI values are very different, NDVI values for all the vegeta-

tion classes (Grassland, Shrubs, Conifers and Broadland) are relatively close to each other, with a 

clear distinction only for the “Bare” class. EVI values, on the contrary, appear to be more spread 

out within their range, with the exception for the October image. In both cases, however, the av-

erage maximum and minimum vegetation peaks (calculated averaging the maximum and mini-

mum values for each date) occur in the July and October image, respectively (see Appendix C). In-
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dividual classes show essentially the same trend, with the only exception of the class “Broad-

leaved”, that has higher NDVI and EVI values in the June image. It can also be observed how the 

Broadleaved and Conifer classes show a very similar profile in the NDVI image, with relatively sta-

ble mean NDVI values from June to August, while their EVI values show a different behavior. All 

the other classes, most notably Grassland show a marked peak in July, followed by a constant de-

cline during the rest of the vegetative season. 

 

 
Figure 28: mean NDVI and EVI values for each land cover class, showing the seasonal variation. The values on the x axis repre-

sent each the 5 dates used. 
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Mean values, however, do not give a full picture of the behaviour of the land cover classes in 

respect to NDVI and EVI values. Figure 29 A-E show the average minimum and maximum values 

calculated for each date on a per-class basis, which can be compared with the mean NDVI values 

already shown in Figure 28, now showing also the standard deviation. In many cases, mean NDVI 

values display a considerable range of variation that causes the classes not to be easily separable 

according to their mean value. If the range between minimum and maximum mean values is con-

sidered as well, class variability becomes even higher, making the definition of NDVI intervals for 

the separation of vegetation classes even more difficult in practice. The only class that appears 

clearly separated from the other is, predictably, Bare soil, but even in this case a significant varia-

bility can be observed within each date, most likely due to the presence of sparse vegetation. 

However it should be noticed how in some cases, most notably in the July image, the distance be-

tween average maximum and minimum values (and therefore the standard deviation of the mean) 

is smaller than in others, so it can be speculated that the July image may be better for discriminat-

ing between land cover classes because of the smaller within-class variability. 

On the contrary, the minimum-maximum range for EVI values is remarkably close to the inter-

val of variability of EVI mean (Figure 30 A-E), and the standard deviation values are lower than 

NDVI, showing less within-class variability. Similarly to NDVI, however, EVI values for most land 

cover classes display the narrowest range between maximum and minimum values for the July im-

age, as can be noticed observing Figure 29A and Figure 30A. 
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LEGEND: 

 

 
Figure 29 A-E: for each land cover class, the average minimum and maximum NDVI values are shown, as well as the mean NDVI 

with its standard deviation. Y axis value range varies between the images. 
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LEGEND: 
 

 

 

Figure 30 A-E: for each land cover class, the average minimum and maximum EVI values are shown, as well as the mean EVI 

with its standard deviation. Y axis value range is 500-3000 for all land cover classes except Bare soil (200-3000). 
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Results of classification scenarios 

 

Based on the VI time series and on the results of the individual classifications of each 2005 

Landsat scene, different classification scenarios were investigated.  

 

  ACCURACY 

  GRASSLAND SHRUBS BARE SOIL FOREST 
Overall Kappa 

 Date  PA UA PA UA PA UA PA UA 

1 2005/06/10 

U 60,71 50,30 56,28 43,28 53,33 35,96 77,45 93,05 70,20 0,50 

C 62,86 50,00 55,74 44,93 58,33 38,46 77,89 93,25 70,96 0,51 

D 2,14 -0,30 -0,55 1,66 5,00 2,51 0,45 0,20 0,76 0,01 

2 2005/07/28 

U 62,86 65,67 47,54 33,59 60,00 25,17 70,77 91,55 65,09 0,44 

C 63,57 70,08 44,26 38,57 75,00 27,44 75,96 92,09 68,78 0,48 

D 0,71 4,41 -3,28 4,98 15,00 2,26 5,19 0,53 3,69 0,05 

3 2005/08/29 

U 58,57 54,30 57,92 31,45 48,33 28,71 65,28 94,02 62,16 0,41 

C 60,71 52,80 58,47 34,74 56,67 30,63 68,25 96,44 64,90 0,45 

D 2,14 -1,51 0,55 3,29 8,33 1,92 2,97 2,42 2,74 0,04 

4 2005/09/30 

U 58,57 52,90 60,11 25,52 35,00 24,42 51,86 90,89 53,22 0,31 

C 63,57 39,21 8,74 23,53 45,00 26,47 77,41 79,06 61,84 0,32 

D 5,00 -13,70 -51,37 -1,99 10,00 2,05 25,56 -11,83 8,62 0,01 

5 2005/10/16 

U 65,00 56,52 51,91 25,75 35,00 28,00 55,79 83,19 55,16 0,30 

C 65,00 68,42 54,10 25,32 35,00 25,93 56,68 84,51 56,10 0,32 

D 0,00 11,90 2,19 -0,43 0,00 -2,07 0,89 1,33 0,95 0,01 

            

6 Landsat - Dates 2 - 5 64,29 76,27 42,62 40,41 75,00 27,78 79,08 91,27 70,58 0,50 

7 NDVI - All dates 60,71 51,52 50,82 42,86 88,33 36,05 74,48 95,08 69,35 0,50 

8 NDVI - Dates 2 - 5 46,43 26,42 37,70 43,13 88,33 33,76 67,06 91,50 60,45 0,38 

9 EVI - All dates 58,57 58,99 27,32 37,31 86,67 28,73 79,67 89,05 68,21 0,46 

10 EVI - Dates 2 -5 52,14 23,93 30,60 29,63 85,00 24,06 39,61 76,07 42,29 0,18 

11 Date 2, NDVI, EVI 62,86 75,86 50,27 39,15 85,00 32,08 76,11 93,78 70,39 0,51 

12 Date 2, NDVI 63,57 72,95 48,63 43,41 86,67 32,10 79,23 94,01 72,28 0,54 
 

Table 12: Producer's Accuracy (PA) and User's Accuracy (UA) for each land cover class, calculated for each classification scenario. 

For individual images (1-5), the classification was performed on the original uncorrected (U) and topographically corrected (C) 

bands, and the Difference (D = C - U) is shown. The table also shows the overall accuracy and Kappa coefficient for each classifi-

cation.  

 

 

Table 12 shows the accuracy assessment results for each Classification scenario. Single-date 

classification (1-5) are obtained by classifying a single Landsat scene (bands 1-5 and 7), and were 
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run twice, the first time on the original image not corrected for topographic effects, and the sec-

ond time on the topographically corrected image. Classification 6 was created by stacking the July 

and October scenes (topographically corrected) and performing the classification on the 12 bands 

thus obtained. Classifications 7-10 are based solely on VIs, while Classifications 11-12 are based on 

the combination of the July image (topographically corrected) and VIs. In the case of classifications 

using two dates of imagery, the July and October images were used because they represent the 

vegetative maximum and minimum. Complete data for each classification are reported in Appen-

dix C. 

The results obtained from the classifications are not always easy to interpret, since they vary 

depending on the specific accuracy metric taken into account and often do not seem to follow a 

specific pattern. Differences in the average values of accuracy metrics between the original and 

corrected images are also shown (calculated as the difference between corrected – uncorrected), 

to help evaluating the performance of the topographic correction routine. 

As for overall accuracy, if the traditional threshold of 85% is considered as the minimum level 

of overall accuracy for evaluating the classifier’s performance, then none of the classifications can 

be considered satisfactory, given how the highest value (obtained for Classification 12) only reach-

es 72%. In general, however, it can be observed how using stacks of VIs (Classifications 7 and 9), 

stacked Landsat bands (Classifications 6) or combinations of one Landsat scene with VIs (Classifica-

tions 11 and 12) gives better results  than single date classifications both in terms of overall accu-

racy and of Kappa value. 

In the case of the Grassland class, which is the main focus of interest, Classification 6 gives the 

best results both in terms of PA and UA, followed by Classifications 11 and 12. High PA values are 

not necessarily significant, as they may mean simply that the classifier overestimated the extent of 

grassland areas, so it is important to have accompanying high UA values as well. Of the single band 

classifications, only the July image gives good results, that seem to have been further improved by 

topographic correction.  

As for the other classes, Shrubs and Bare soil are the most problematic, and in generally they 

exhibit very low accuracies. High PA values are likely to be the result of overestimation, consider-

ing how they are always accompanied by poor UA values. A look at the error matrices (Appendix C) 

shows a lot of confusion in the assignation of the Shrubs land cover class, which is often misclassi-

fied as Bare soil or Forest, suggesting that the training ROIs used for this class are not adequate to 

properly characterize this class, or that a spectral-based classification technique is not suitable for 
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mapping this class. Conversely, the class Forest shows high accuracies for almost all the classifica-

tions, with UA values above 90% in the majority of cases. The error matrix for Classification 6 (July-

October), the most accurate one, is shown in Table 13: 

 REFERENCE 

CLASSIFICATION Grassland Shrubs Bare Forest Total 

Grassland 90 14 0 14 118 

Shrubs 8 78 8 99 193 

Bare 38 51 45 28 162 

Forest 4 40 7 533 584 

Total 140 183 60 674 1057 
Table 13: error matrix for Classification 6 (July-October) 

A consideration of a different nature concerning classification accuracy is related to the refer-

ence data used. The IUTI inventory is based on point sampling, but in order to be able to carry out 

the accuracy assessment procedure, the original point was transformed into a 30 x 30 m pixel; this 

implies the possibility of introducing a source of error, especially in fragmented areas or at the 

boundary between different land cover types.  

Concerning the evaluation of the best period for classification when no multi-season images 

are available, the results seem to indicate that the end of July (Date 2) can give the best results 

both in terms of overall accuracy and for the identification of grassland areas, and that the classifi-

cation is significantly improved by adding both NDVI and EVI (or alternatively, just NDVI) to the 

Landsat bands used for the classification. Topographic correction prior to classification has a posi-

tive effect on classification accuracy as well. The addition of VIs to the Landsat image bands im-

proves grassland classification accuracy only marginally, but in general it has a positive effect on 

each class’ accuracy, leading to a higher overall accuracy (+3,5%) and especially to an improve-

ment of the classification of the “problematic” classes Shrubs and Bare soil. 

 

 

 

 

 

 

 

 GRASSLAND 

CLASSIFICATION PA UA Percentage % Area (ha) 

2012 Grassland 100,00 86,00 7,67 2381,13 

July-October 64,29 76,27 11,31 3039,66 

July+NDVI 63,57 72,95 12,06 3244,05 

July+NDVI+EVI 62,86 75,86 11,33 3046,05 

July 63,57 70,08 12,19 3278,52 

Table 14: Percentage and area of grassland habitats as mapped by the semi-automated classifi-

ers and by the manual classification 
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Table 14 shows the extent of grassland areas mapped by the four classification with the high-

est accuracy in respect to this class, and the extent of grassland calculated from the manual classi-

fication performed on the TELAER 2012 images. The values shown here for 2012 represent the full 

mapped extent, (including the areas previously excluded because they corresponded to unclassifi-

able areas in 1954), but masked for clouds like the 2005 Landsat images in order to be comparable 

with the latter. The percentages show that, despite the efforts in improving classification accuracy, 

the classifier still significantly overestimates grassland areas.  

Moreover, the classification results showed a lot of noise, resulting in a salt-and-pepper effect. 

To try to reduce this effect, the raster resulting from the July-October classification was filtered to 

eliminate the small areas (1 or 2 pixels wide) that are most likely the result of misclassification. 

This was accomplished using the utility gdal_sieve, which allows to filter out small clusters of pixel 

by using four (diagonal pixels are not considered directly connected) or eight (diagonal pixels are 

considered directly connected) connectedness to determine polygons. It is also possible to set a 

threshold value which defines the minimum number of pixels a cluster must have to be preserved, 

otherwise it will be merged with the neighboring clusters. Several trials were made by using four 

and eight connectedness and 2, 3 and 4 pixels as a threshold, respectively. Using 4 connectedness 

yielded better results than eight, and the results of the accuracy assessment conducted on each of 

the three filtered classifications are presented in Table 15. 

 2 pixels threshold 3 pixels threshold 4 pixels threshold 

Overall accuracy [%] 72,19 73,04 73,04 

Overall Kappa 0,53 0,54 0,54 

Grassland PA 63,57 63,57 62,14 

Grassland UA 78,07 77,39 76,32 

Shrubs PA 45,36 44,81 45,36 

Shrubs UA 42,78 44,57 45,11 

Bare Soil PA 78,33 81,67 80,00 

Bare Soil UA 30,13 31,82 31,79 

Forest PA 80,71 81,90 82,20 

Forest UA 91,74 91,39 91,12 
Table 15: accuracy assessment results of 4x4 filtered classifications (PA: Producer's Accuracy; UA: User's Accuracy). 

 

“Cleaning” the raster did bring some improvements, especially in terms of overall accuracy 

and overall kappa (70,58% and 0,50 respectively in the original classification).  The filtering using a 
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2 pixel threshold also showed the best results in improving grassland’s UA (76,27% in the original 

classification. 

Figure 31 shows the full classification obtained from the stack of July and October Landsat 

bands before and after the application of a 4x4 sieve with 2 pixel threshold, while in Figure 32 only 

the grassland areas are shown for both, and the 2012 grassland areas superimposed to them in 

order to give an idea of the amount of misclassification from the automated classifier. The red ar-

eas correspond to the pixels classified as grassland by the semi-automated classification but not by 

the photointerpreter, while the green areas are those classified as grassland by both.  
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Figure 31: Land cover classification obtained from Classification 6 (July and October Landsat images) 
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Figure 32: comparison between grassland areas mapped by the July-October classification and by manual photointerpretation. 
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Effect of topographic correction 

 

An example of the images resulting from the Minnaert topographic correction is shown in Fig-

ure 33. The first image shows a part of the uncorrected July scene, while the second image the 

topographically corrected area from the same date. This can be further compared to the third im-

age, taken from the corrected October scene. The images are shown in false color composite (RGB 

bands 4-3-2) for easier visual interpretation, because the effect of topographic correction appears 

more evident in near- and middle-IR bands. It can be observed how in the July image the Minnaert 

algorithm achieved a good topographic correction effect (at least visually), that appears as a “flat-

tening” of the relief. In general, only the most deeply shadowed areas that exhibited almost no re-

flectance were not improved by topographic correction, and some artifacts were introduced along 

the mountain ridges, corresponding to pixels in self-shadow being divided by zero. This is most 

likely due to the use of a single default k value, that doesn’t take into account the variability of the 

terrain and of the land cover present in the image. Considering one single Minnaert constant value 

for the entire dataset is unrealistic, since the terrain is not uniform and thus reflects solar energy  

differently. For a more accurate topographic correction, a specific k value for each band 

should be computed, and a separation between land cover types should be considered as well to 

further improve correction results. Successful applications of the Minnaert correction employed 

different k values based both on land cover types and on topographic slopes (Lu et al., 2008), but 

this requires a priori knowledge of the land-cover and increases the complexity and time required 

for image processing.  

Another factor to consider is that semi-empirical methods such as the Minnaert correction 

and the other methods available in QGIS consider only direct solar irradiance, and it is also likely 

that more evident topographic effect due to the lower sun angle may contribute to the lower qual-

ity of the classification in the later images. The poor results of the Minnaert correction can be ob-

served in the October image, which shows many uncorrected shadows and artifacts); and have 

been previously reported in the case of images taken when solar elevation angles are lower than 

40◦ (Hantson & Chuvieco, 2011). The effects of poor topographic correction on classification accu-

racy, however, are harder to assess. Positive effects of topographic correction can be observed es-

pecially for the first three dates, while for the last two images there doesn’t seem to be a recog-

nizable pattern. 
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Figure 33: a portion of the study area shown for the July scene before (image a) and after (image b) the application of topograph-

ic correction. The topographically corrected October image is shown for comparison (image c). 
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NDVI image differencing change detection results 

 

Figure 34 shows the histograms of the NDVI images for 1987 and 2007. As it can be observed, 

the 1987 has higher mean values compared to the 2007. The mean of the 1987 image is 7079, 

while the mean of the 2007 image is 6791. Through the histogram matching procedure, the 2007 

histogram was “shifted” to match the 1987 one (Figure 34, bottom right). 

 
1987 

 
2007 

Figure 34: 1987 NDVI image histogram (top), 2007 NDVI image histogram before (left) and after (right) normalization 
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After the preprocessing phase, the 1987 NDVI image was subtracted from the 2007, to give 

the difference image. As expected, the resulting values are normally distributed.  

The mean and standard deviation were calculated to obtain the threshold for classification, 

obtaining a value of 0 for the mean and of 777 for the standard deviation. By using a n value equal 

to 1, the distribution of values of the difference image were reclassified into three classes: 

 

NDVI decrease (ΔNDVI < μ - n·σ) ΔNDVI < -777 
NDVI stability (μ - n·σ < ΔNDVI < μ + n·σ) -776 < ΔNDVI < 777 

NDVI increase (ΔNDVI > μ + n·σ) ΔNDVI > 778 

 
 
The reclassified image is shown in Figure 35. 

 

 
Figure 35: result of the reclassification procedure of the difference image, showing NDVI increase and decrease. 
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Contrarily to expectations, however, it was not possible to observe a clear correlation be-

tween the areas of NDVI increase and the areas of forest expansion. Shows a detail of the reclassi-

fied difference image with the 1954 polygons superimposed to it.  

 
 

According to the anticipated results, it should be possible to observe a NDVI increase along the 

borders of the grassland polygons where forest expansion has been taking place, but in reality it is 

not so. This may be due to the fact that in 1987, when the oldest Landsat scene was taken, the re-

forestation process was already too advanced to be clearly observed at the spatial resolution of 

the Landsat images. Given how it was not possible to find any data source that could provide in-

formation on the grassland cover in the period between 1954 and the 1980s at the scale of inter-

est, it is difficult to define the evolution of land cover, but it can be presumed that the greatest 

amount of change may have taken place in this period. A similar kind of fast recolonization dynam-

ics following abandonment of grassland management has been reported in other studies 

(Garbarino & Pividori, 2006; Roura-Pascual et al., 2005; Urbinati et al., 2004). 
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An interesting consideration that can be made observing the difference image, however, is 

how a lot of the NDVI increase (and consequently of the vegetation increase) can be observed in 

the areas above the treeline (about 1700 m). This could suggest an increase related to the effects 

of climate change, which has been reported in several studies carried out in the alpine region. This 

was not the topic of this study, however, so the phenomenon has not been analyzed further. 

 

 
Figure 36: Detail of the reclassified difference image where the the areas with elevation above 1700 m are highlighted. 

  



125 

CONCLUSIONS 
 

This work has tried to characterize and quantify, through the use of different types of remote 

sensing data, a land cover change phenomenon that is of primary importance not only within the 

Dolomiti Bellunesi National Park but also, as other studies have shown (Giupponi et al., 2006), in 

the entire Belluno Province. As shown in this study, the disappearance of grassland areas following 

forest expansion has been advancing at a rapid pace, and this evolutionary trend is destined to 

continue, considering both the dependence of semi-natural grasslands on active management and 

the still uncertain threats posed by climate change. 

While other studies have been previously carried out about the land cover change dynamics in 

this area, their focus was mainly on forest extension and expansion, while the present study, by 

focusing explicitly on grassland decrease allowed for a more in-depth evaluation of the magnitude 

of the problem and the most critical areas of change.  

Overall, it was possible to obtain a significant amount of information, in particular thanks to 

the use of multi-sensor and multi-source data. This implies several drawbacks as well, such as the 

impossibility of collecting clear images (either cloud-free, in the case of satellite images, or free 

from distortions, in the case of historical aerial images), or the limited possibilities offered by me-

dium-resolution data such as Landsat images. Considered the various issues involved in long time 

series analyses such as this one, the use of a GIS to interrelate both the original data and the ones 

created in the course of the study was fundamental to have an overview of the characteristics and 

dynamics of the phenomenon of interest. This represents the basic tool that can be used for future 

evaluations and to aid in the definition of priority areas where to focus conservation and man-

agement efforts. 

Protected areas such as the Dolomiti Bellunesi National Park play a fundamental role in biodi-

versity conservation, and therefore it is important to reconstruct the evolution of the landscape 

and its biodiversity-rich habitats in order to create a quantitative framework to support conserva-

tion planning and restoration activities at different spatial scales (Ciolli et al., 2007). Understanding 

land-use change dynamics is a requirement for making informed decision about management and 

conservation activities in relation to the different functions carried out by semi-natural grassland 

habitats, and mountain ecosystems as a whole: not only biodiversity conservation, but also 

preservation of the local cultural heritage and aesthetic beauty, and the productive activities 

based on the utilization of these functions and resources.  
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Traditionally, these habitats have been influenced by human activities, and it was the complex 

interaction between human and natural systems that shaped those aspects that are now consid-

ered worth preserving. This is the reason why, in such an environment, or at least in some parts of 

it, anthropic activities must be taken into account when developing conservation strategies, mak-

ing sustainable landscape management itself a conservation tool. This aspect has already been 

recognized by the Dolomiti Bellunesi National Park, through the development of programs for the 

revitalization of traditional mountain activities, in particular extensive livestock systems (Parco 

Nazionale Dolomiti Bellunesi, 2003).  

As it is often the case when dealing with formerly managed semi-natural environments char-

acterized by high conservation and/or aesthetic value, the choice of whether to restore or main-

tain a situation of low-level anthropic disturbance or to leave the area to its natural evolution to-

wards true “wilderness”  can be a matter of debate. While it is true that the landscape mosaic cre-

ated by traditional mountain activities fosters higher biodiversity levels than a uniform extent of 

forest, it is also true that forests represents the climax stage of natural successions in most subal-

pine mountain areas. 

At the same time, however, it is not possible to disregard the potentialities offered by the 

conservation of the existing landscape mosaic in supporting local economy, in particular regarding 

the sustainable tourism sector.  For this reason, striving to keep a balance between letting succes-

sional processes shape the environment towards a more natural state and maintaining landscape 

diversity in those areas where habitat loss may cause a significant loss of biodiversity and of at-

tractiveness, seems to be the best course of action, at least in the case of protected areas such as 

the Dolomiti Bellunesi National Park, where conservation is seen as an objective to reach also 

through the preservation of the harmonious relationship that once existed between the moun-

tains and the people who depended on them for their livelihood. 
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APPENDIX A.  AERIAL PHOTOGRAPHS 
 

All the operations described in this and in the following section have been carried out using QGIS 

version 2.10. 

N.B.: it is advisable to change the default language to English through Settings  Options  Lo-

cale  Override system locale, because the majority of the documentation and tutorials are avail-

able in English, and having the interface in a different language can be confusing. 

 

 

A. PROCESSING AND ANALYSIS OF AERIAL IMAGES 

 

A1. A note on the reference systems used in Italy 

 

The geodetic system (datum) used for most of the Italian cartography (and for the majority of the 

data acquired in this study) is ROMA40/Gauss–Boaga. The grid system is based on the Roma 1940 

datum, whose origin lies at Monte Mario near Rome. The projection is split into a western (EPSG 

3003) and eastern zone (EPSG 3004). The western zone, used in this study, is used for the areas 

west of the 12 °E longitude, and is also referred to as Monte Mario / Italy zone 1 or Rome 1940 / 

Italy zone 1 (source: http://www.epsg-registry.org/). 

In QGIS, several projection definitions all corresponding to Monte Mario/Italy zone 1 are available: 

 

1) Monte Mario/Italy zone 1 (EPSG:3003) 

+proj=tmerc +lat_0=0 +lon_0=9 +k=0.9996 +x_0=1500000 +y_0=0 +ellps=intl 

+towgs84=-104.1,-49.1,-9.9,0.971,-2.917,0.714,-11.68 +units=m +no_defs 

 

2) Monte Mario/Italy zone 1 (EPSG:102091) 

+proj=tmerc +lat_0=0 +lon_0=9 +k=0.9996 +x_0=1500000 +y_0=0 +ellps=intl 

+units=m +no_defs 

 

QGIs may not recognize EPSG:102091 as it is not, in fact, an official EPSG definition but an ESRI one, 

and set it as a custom SR, like so: 

Generated CRS for telaer: user 100000 

 +proj=tmerc +lat_0=0 +lon_0=9.000000000000002 +k=0.9996 +x_0=1500000 

+y_0=0 +ellps=intl +units=m +no_defs 
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The only difference between EPSG:3003 and EPSG:102091 is that the first one has a datum shift 

for conversion to WGS84 (+towgs84) defined in the projection, while the second doesn’t. 

EPSG:102091 is generally associated to files produced with ESRI software, where datum shifts are 

not written into projection definitions, but kept separate. With QGIS it is advisable to use the first 

one, especially if the data need to be reprojected on-the-fly or converted to a CRS using WGS84, 

like WGS84/UTM zone 32N (EPSG: 32632) for Italy. Using the projection without datum shift caus-

es a shift of up to 100 m between the input image and the target image.  

 

3) Monte Mario (Rome)/Italy zone 1 (deprecated) EPSG:26591  

+proj=tmerc +lat_0=0 +lon_0=-3.45233333333333 +k=0.9996 +x_0=1500000 

+y_0=0 +ellps=intl +towgs84=-104.1,-49.1,-9.9,0.971,-2.917,0.714,-11.68 

+pm=rome +units=m +no_defs 

(deprecated by EPSG because associated with incorrect datum resulting in map projection longi-

tude being incompatible with prime meridian). 

 

In these cases, it is better to open the layer in QGIS, use Right click Set Layer CRS, then save un-

der another name. For raster files, a better option is to use Raster  Conversion  Translate 

(gdal_translate), which allows not only to set the CRS but also the compression parameters to 

avoid overly big files. 

 

Useful links: 

http://paologis.blogspot.it/2009/06/sistemi-di-riferimento-un-po-di-teoria.html 

http://blog.spaziogis.it/2007/10/06/persi-nel-mare-dei-sistemi-di-coordinate/ 

http://gis.stackexchange.com/questions/102541/any-difference-between-epsg3003-and-

epsg102091 

http://www.rigacci.org/wiki/doku.php/tecnica/gps_cartografia_gis/gauss_boaga_wgs84  

http://spatialreference.org/ 

http://docs.oracle.com/cd/B19306_01/appdev.102/b14255/sdo_cs_concepts.htm#CIHGEICG 

 

 

A2. Data conversions  
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One of the most common operations that is executed on digital data is conversion. They may be 

format conversions, SR conversions, data type conversions, resolution conversions, and so on. 

Sometimes conversions are associated to merging, as it is the case when processing batches of da-

ta to create image mosaics. For raster data QGIS offers many conversion options through GDAL. 

GDAL (Geospatial Data Abstraction Library) is an open source library for reading and writing raster 

geospatial data formats. The GDAL Tools plugin is integrated in QGIS to offer a GUI to the collec-

tion of tools in the GDAL library. 

 

Some useful Gdal utilities are: 

 

gdal_translate: can be used to convert raster data between different formats, performing some 

operations like subsettings, resampling, and rescaling pixels in the process. 

(http://www.gdal.org/gdal_translate.html) 

 

gdal_warp: image mosaicing, reprojection and warping utility. The program can reproject to any 

supported projection, and can also apply GCPs stored with the image if the image is "raw" with 

control information. 

(http://www.gdal.org/gdalwarp.html) 

 

gdal_merge: This utility will automatically mosaic a set of images. All the images must be in the 

same coordinate system and have a matching number of bands, but they may be overlapping, and 

at different resolutions. In areas of overlap, the last image will be copied over earlier ones. 

N.B.: gdal_merge does not support projection conversions, so it is not possible to merge a batch of 

rasters and to change their projection at the same time.  

(http://www.gdal.org/gdal_merge.html) 

 

All three are accessible from the Raster menu of QGIS, or from Processing  Toolbox  

GDAL/OGR. From the processing toolbox more options are available, but the command line is not 

editable manually, while from the raster menu it can be edited, so the latter ends up being the 

best choice to customize the output results. If working in batch mode, however, the command line 

will not be editable. 
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Some of the most frequently used options: 

 

-of format 

Selects the format to create the new file as. GeoTIFF is the default. The list of all format codes can 

be listed with the --formats switch. Only formats list as "(rw)" (read-write) can be written. 

The .ecw (Enhanced Compression Wavelet) format, for example, commonly used for aerial and 

satellite images, is a proprietary compression image format, and as such can only be read but not 

written. 

 

-ot type 

Assigns the indicated data type to the output bands. Data type can be defined as 

Byte/Int16/UInt16/UInt32/Int32/Float32/Float64/CInt16/CInt32/CFloat32/CFloat64. Data type 

definition is extremely important, because the default is often Float32 or Float64, which is exces-

sive for most data types and can lead to problems when executing raster operations (for example 

with the Raster Calculator). 

 

-a_nodata value: 

Assigns a specified nodata value to the output bands. Can be set to none to avoid setting a nodata 

value to the output file if one exists for the source file. If the input dataset has a nodata value, this 

does not cause pixel values that are equal to that nodata value to be changed to the value speci-

fied with this option.  

 

-co NAME=VALUE 

Optional creation options that vary depending on the chosen output format. In the case of the 

GeoTIFF format (which is the one most common in practice), the creation options can be used to 

control compression, and whether the file should be tiled or not 

 

-a_srs SRS 

Specifies the coordinate system of the output file. 

 

-r resampling_method 

Allows to select the resampling method. 
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Useful links: 

http://docs.qgis.org/2.2/en/docs/user_manual/plugins/plugins_gdaltools.html 

http://www.gdal.org/gdal_utilities.html 

http://www.geos.ed.ac.uk/~smudd/TopoTutorials/html/tutorial_raster_conversion.html 

 

 

A3. Rasterization of vector files 

 

This operation can be executed through Raster  Conversion  Rasterize (gdal_rasterize) 

Some examples of the conversions used for the files in this work: 

 

a. To convert the vector distribution map of grassland in 1954 images to a binary raster containing 

the values 1 (for grassland) and 0 (no grassland): 
gdal_rasterize -burn 1 -te 1713966.4223998808301985 5102780.3500143056735396 

1751609.1579887964762747 5134454.5267424853518605 -tr 2.0 2.0 -ot Int16 -l Cata-

stoPratiPascoli_1954_prati 

J:\TesiNuovo\02_ProducedData\PerimetrazioniPrati_150820\CatastoPratiPascoli_1954

\CatastoGAI54_pratiMergedFINAL\CatastoPratiPascoli_1954_prati.shp 

J:/TesiNuovo/02_ProducedData/PerimetrazioniPrati_150820/CatastoPratiPascoli_1954

/CatastoGAI54_pratiMergedFINAL/CatastoGAI54_finalRASTER/Prati1954raster.tif 

 

b. Conversion of point vector (IUTI inventory) to raster: 
gdal_rasterize -a COD08_new -te 1713966.4223998808301985 

5102780.3500143056735396 1751609.1579887964762747 5134454.5267424853518605 -tr 

2.0 2.0 -ot Int16 -l iuti_3003_2012AA 

J:/TesiNuovo/02_ProducedData/IUTI/Iuti_3003_2012Accuracy/iuti_3003_2012AA.shp 

J:/TesiNuovo/02_ProducedData/IUTI/Iuti_3003_2012Accuracy/iuti_3003_2012AAraster.

tif 

 

-burn 1: all pixels inside the vector will be assigned the value “1”. This is useful to override vector 

attribute values, or when the vector’s attributes are not important because only one class exists, 

like in the first example. 
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-a COD08_new: in this case, the pixels of the new raster will be assigned the value corresponding 

to the column called “COD08_new” in the original vector’s attribute table. This can be used when 

the attribute value needs to be passed on to the raster file. 

N.B.: it is necessary to be careful about the original data type of the attribute value, For example, 

the original data type for IUTI codes was String, even if expressed by a numerical code like 3.1, 3.2, 

etc… If the data type is not changed beforehand, however, the resulting raster values will be 3 for 

both 3.1 and 3.2, resulting in a loss of thematic information.  

 

-a_nodata: it is possible to assign a no data value. If -a_nodata is omitted, gdal_rasterize will give 

the value 0 to what is outside the vector geometries, but it will not be read as nodata. This choice 

depends on the kind of operations that have to be performed with the raster. In the case of the 

1954 grassland raster, the nodata value was not assigned because a 0 value was needed to com-

bine it with the 2012 grassland raster in the Raster Calculator and create the change map. 

 

-te 1713966.4223998808301985 5102780.3500143056735396 1751609.1579887964762747 

5134454.5267424853518605: this set georeferenced extent, so that the new raster will align with 

a base raster defined by the user. If not defined, the raster grids will not be aligned, which is a 

problem for calculations involving more than one raster, like change detection. In this case, the ex-

tent of the original GAI 1954 images was chosen for all rasterized files. 

 

-tr 2.0 2.0: sets pixel resolution (in georeferenced units, in this case meters). 2 m was used be-

cause it is the resolution of the coarser images (GAI 1954). 

 

After rasterizing, it is necessary to clip the raster to the study area (unless it is a rectangle), be-

cause otherwise the extension of the output raster is that of the bounding box of the study area 

itself). Use Raster  Extraction  Clipper (gdalwarp) 

A problem with the gdalwarp clipper is that it doesn’t deal with compression well and creates ras-

ter files with huge sizes. A solution is to clip first then use gdal_translate for compression. 

It is also possible to gdalwarp to a .vrt (virtual raster) first, which is faster, with the option -of 

vrt, then use gdal_translate to convert to GeoTIFF with the -co COMPRESS=LZW option for com-

pression. 
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N.B.: Any operation using gdalwarp or the raster calculator with bring a compressed raster back to 

its original huge file size, and possibly also assign an inappropriate data format, so the transfor-

mation may have to be applied several times. 

 

An alternative to gdal_rasterize is Processing toolbox  Saga  shapes to grid , which also allows 

to set the extent of the rasterized layer according to the user’s needs). 

 

A4. Raster reclassification 

 

Example: working with the 5m DEM downloaded from the Veneto Region’s Geoportal 

- Ascii format (.txt) 

- Cut on CTR 10000 sections (25 separate files for the study area) 

- No assigned coordinate system 

 

First, Raster  Miscellaneous  Build virtual raster was used to create a virtual raster (.vrt) where 

all the single rasters appear as one. 

 

Then the .vrt was converted to GeoTIFF and assigned to the EPSG:3003 CRS with gdal_translate: 

gdal_translate -a_srs EPSG:3003 -a_nodata -9999 -ot Int16 -of GTiff -co 

COMPRESS=LZW J:/TesiNuovo/All_AncillaryData/DTM5m/DTM5m_catalogo.vrt 

J:/TesiNuovo/All_AncillaryData/DTM5m/DTM5m_merged.tif 

 

Finally, the raster was clipped to the study area. The DEM values range from 386 to 2564 m, but 

they need to need to be reclassified to obtain discrete values so it will be possible to polygonize 

the raster into altitudinal bands.  

 

The reclassification of a raster’s pixel values can be performed by using GRASS through the Pro-

cessing  Toolbox  GRASS commands  Raster  r.reclass module. 

GRASS user manual on how to use r.reclass:  

https://grass.osgeo.org/grass64/manuals/r.reclass.html 

 

Important: 
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r.reclass only works on an integer input raster map; if the input map is floating point data, r.reclass 

will round the raster values down to the next integer.  

r.reclass does not generate any new raster map layers, but instead creates a reclass table which is 

used to reclassify the original raster map layer each time the reclassed map name is requested. If 

the original raster map layer is removed, r.reclass map layer will no longer be accessible unless it 

had been converted to a raster beforehand. 

 

Reclassification rules .txt file used for the DEM: 

386 thru 499 = 1 

500 thru 699 = 2 

700 thru 899 = 3 

900 thru 1099 = 4 

1100 thru 1299 = 5 

1300 thru 1499 = 6 

1500 thru 1699 = 7 

1700 thru 1899 = 8 

1900 thru 2099 = 9 

2100 thru 2299 = 10 

2300 thru * = 11 

 

N.B.: the option “open output file after running algorithm” MUST BE DISABLED because otherwise 

GRASS inexplicably gives an error message and the reclassified raster is not created. The reclassi-

fied file can be added manually afterwards. 

 

The reclassified raster was then polygonized, and the polygons thus obtained were dissolved (Vec-

tor  Geoprocessing Tools  Dissolve) in order to obtain one polygon for each altitude class. 

 

Unfortunately, it seems like an option to make QGIS calculate zonal statistics divided by raster 

class (ex. calculating how many pixels of EACH class fall into a given polygon) doesn’t exist yet. The 

output result is always calculated on all pixels falling inside the shapefile, regardless of their value.  

Therefore it is necessary to use a workaround, creating a separate raster for each class of interest 

first. In this case, luckily only 3 classes were involved. From the change classes raster, the change 

class of interest can be extracted using the Raster Calculator with a simple expression of this kind:  

filename@1 = 1 
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This extracts all pixels with value 1 (corresponding to the Class “grassland loss”) to a new raster 

defined by the user.  

From this raster it is possible to extract the zonal statistics needed with Raster  Zonal Statistics, 

setting as polygon containing the zones the altitudinal band shapefile previously created. 

In this specific case, only the pixel count was extracted, because other statistics would be mean-

ingless. 

 

 

A5. Useful plugins for working with vector files 

 

These plugins have to be downloaded manually from the plugin repository, but are very useful for 

expanding QGIS possibilities in working with vector files and modify/export attributes. 

N.B.: when doing vector operations (e.g. clipping, difference, etc.) make sure the CRS is the same. 

Reprojecting the files to the same CRS with on-the-fly is not enough. 

 

QuickmultiAttributeEdit  assigns the same attribute value to a chosen attribute field of selected 

geometries in a vector file. 

 

TableManager: info on attributes’ data type and possibility of moving columns. 

(Retrieving information about vector files can be done also through the Processing Toolbox  OGR 

Miscellaneous  Information) 

 

XY Tools: export attribute table to csv and other formats 

 

GroupStats: makes it easy to calculate statistics for feature groups in a vector layer and export 

them. Tutorial: http://anitagraser.com/2013/02/02/group-stats-tutorial/ 

 

  



150 

APPENDIX B. LANDSAT IMAGES 
 
B1. Landsat specifications 

 

 

 
Figure 37: List of Landsat specifications for SR products and differences between Landsat 4-7 and Landsat 8. From (USGS, 2015a) 

 

  



151 

B2. List of Landsat 4-7 images with cloud cover < 10% 

 

 

 

B3. Visualization 

 
Each Landsat image is formed by 7 spectral bands (in this case 6, since band 6, thermal infrared, 

was not used). To visualize the scene as a single image and be able to create band combinations, 

the most convenient and memory-saving option is to create a multi-spectral virtual raster.  

Raster  Miscellaneous > Build Virtual Raster (catalog) ; the Landsat bands have to be selected in 

according to their band order, and the “Separate” option must be checked, so that the bands will 

not be fused together to give a singleband image. From the Properties menu of the virtual raster it 

is possible to create band combinations, for example 3-2-1 for natural color and 4-3-2 for standard 

false color.  

 

 

B4. Geometric accuracy of Landsat-TELAER 2012 co-registration 

Satellite/Sensor Landsat Scene Identifier Date % cloud cover 
L5/TM LT51920281986221AAA03 09/08/1986 3,65 
L5/TM LT51920281987208AAA02 27/07/1987 1,86 
L4/TM LT41920281989205XXX01 24/07/1989 3,41 
L4/TM LT41920281991227AAA02 15/08/1991 3,67 
L5/TM LT51920281994195AAA02 14/07/1994 2,66 

L7/ETM+ LE71920282000236EDC00 23/08/2000 10,46 
L7/ETM+ LE71920282001238EDC00 26/08/2001 6,90 
L7/ETM+ LE71920282002209EDC00 28/07/2002 4,32 
L7/ETM+ LE71920282002225NSG00 13/08/2002 2,05 

L5/TM LT51920282005161KIS00 10/06/2005 0,99 
L5/TM LT51920282005209KIS00 28/07/2005 3,06 
L5/TM LT51920282005241KIS00 29/08/2005 8,11 
L5/TM LT51920282005273KIS00 30/09/2005 3,99 
L5/TM LT51920282005289KIS00 16/10/2005 0,61 
L5/TM LT51920282006212MOR00 31/07/2006 7,46 
L5/TM LT51920282006244MOR00 01/09/2006 2,35 
L5/TM LT51920282007199MOR00 18/07/2007 0,62 
L5/TM LT51920282009204MOR00 23/07/2009 5,71 
L5/TM LT51920282010191MOR00 10/07/2010 7,79 
L5/TM LT51920282010223MOR00 11/08/2010 4,86 
L5/TM LT51920282010255MOR00 12/09/2010 5,35 
L5/TM LT51920282011178MOR00 27/06/2011 7,59 
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Table with CP positions and residuals obtained from the assessment of the registration accuracy 

between Landsat images and TELAER 2012 ortophotographs.  

Some points had to be individuated outside of the study area due to the lower spatial resolution of 

Landsat images, that didn’t allow the identification of enough points inside of the Dolomiti Bel-

lunesi National Park’s boundaries. The operation was therefore carried out before clipping the 

Landsat images to the study area’s extent.  

 

 

 
 

 

B5. Topographic correction of Landsat images 
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To create the 30 m DEM in EPSG:32632 from the original 5 m DEM (EPSG: 3003) gdalwarp can be 

used to reproject and resample to 30 m at the same time, making sure that the new DEM’s grid is 

aligned to that of the Landsat images: 
gdalwarp -overwrite -s_srs EPSG:3003 -t_srs EPSG:32632 -te 

713925.0000000000000000 5102745.0000000000000000 751575.0000000000000000 

5134425.0000000000000000 -tr 30 30 -ot Int16 -r cubic -dstnodata -9999 -of GTiff 

-co COMPRESS=LZW -multi J:\TesiNuovo\02_ProducedData\DTM5m\DTM5m_merged_clip.tif 

J:/TesiNuovo/02_ProducedData/DTM5m/DTM_forLandsat/DTM5m_merged_clip32632gdalwarp

.tif 

 

The “Topographic correction” utility is available from the Processing Toolbox  SAGA  Terrain 

Analysis – Lighting Topographic correction. The available topographic correction methods are: 

[0] Cosine Correction 

[1] Cosine Correction  

[2] Minnaert Correction 

[3] Minnaert Correction with Slope  

[4] Minnaert Correction with Slope (Law & Nichol, 2004) 

[5] C Correction 

[6] Normalization  

 

The Azimuth and Elevation parameters needed were obtained from each Landsat scene’s metada-

ta, and are shown in  Table 16: 

 

DATE SCENE_CENTER_TIME SUN_AZIMUTH SUN_ELEVATION 

10/06/2005 09:45:52.3210560Z 135,86 61,24 

28/07/2005 09:46:16.2680560Z 137,31 56,89 

29/08/2005 09:46:28.1410630Z 146,46 48,81 

30/09/2005 09:46:26.8090190Z 155,67 38,27 

16/10/2005 09:46:23.9390000Z 158,97 32,70 

Table 16: Solar Azimuth and Elevation of the Landsat scenes used 

 

 

B6. Creation of cloud and water mask for Landsat 2005 images 
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Each cloud cover band is a binary file containing the values 0 (no data) and 255 (cloud pixels). 

These files can be combined into a single file with Processing Toolbox  Grass r.series , using 

“maximum” to extract the maximum cell value. In this way, the resulting file is a raster with the 

value 0 (no data) when all the files have the value 0, and 255 where at least one of the cloud cover 

files has the value 255. The option “propagate nulls” must be unchecked. 

https://grass.osgeo.org/grass70/manuals/r.series.html?page=manuals/html70_user/r.series.html 

The rasterized water mask file was added to the mask in the same way.  

N.B: It is important to pay attention that all files have the same number set as null value. 

 

Each Landsat image was masked with the tool bandcalc included in the Semi Automated Classifica-

tion Plugin: 
np.where("CloudAndWaterMASK_32float" == 255, 0, 

"clipPNDB_LT51920282005209KIS00_sr_band1") 

np.where("CloudAndWaterMASK_32float" == 255, 0, 

"clipPNDB_LT51920282005209KIS00_sr_band2") 

np.where("CloudAndWaterMASK_32float" == 255, 0, 

"clipPNDB_LT51920282005209KIS00_sr_band3") 

np.where("CloudAndWaterMASK_32float" == 255, 0, 

"clipPNDB_LT51920282005209KIS00_sr_band4") 

np.where("CloudAndWaterMASK_32float" == 255, 0, 

"clipPNDB_LT51920282005209KIS00_sr_band5") 

np.where("CloudAndWaterMASK_32float" == 255, 0, 

"clipPNDB_LT51920282005209KIS00_sr_band7") 

Enable “use no data value = 0” to set all the masked areas as “no data”, so that they will not be 

considered in the classification. 

 

 

B7. Training ROIs and Classification with SCP 

 

After loading the multiband image that will be used for the classification and before starting the 

training ROI selection, it is necessary to define the band set used as input and set the center wave-

length of each band, which is required for spectral signature calculation. The center wavelength 

depends on the type of data used, and for the most common satellite data can be chosen directly 

from the “quick wavelength settings” dropdown menu in SCP’s “Band Set” window. 
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This was followed by the creation of Training ROIs using the region growing functionality and using 

TELAER 2012 ortophotographs and the Natura 2000 habitat map as reference data to check the al-

gorithm’s accuracy. The masked Landsat images were used even in the ROI definition stage, in or-

der not to choose any ROI falling partially or completely into the areas made not classifiable by the 

presence of clouds. 

It is possible to run classification previews during ROI selection, which allow to quickly assess the 

classification accuracy and to delete or modify any ROI giving abnormal results.  

Land cover class spectral signatures are extracted from the training ROIs previously created, and 

can be plotted to assess the differences between class signatures. The SCP also calculates three 

different types of distance between spectral signatures: Jeffries-Matusita Distance, Euclidean Dis-

tance, Spectral Angle and Bray-Curtis similarity, that are useful to evaluate the separability of the 

Land cover classes chosen. 

 

After running the Maximum Likelihood classifier, the classification obtained will have “0” values, 

corresponding to unclassified areas (the areas corresponding to the mask and those outside of the 

Park’s boundaries). Since the presence of this “class” interferes with the accuracy assessment pro-

cess, it is necessary to remove it by setting 0 as the no data value using gdal_translate. After this, 

the accuracy assessment and creation of the error matrix can be carried out using the rasterized  

IUTI points. 

This process was repeated using the Landsat scene after it had been corrected for topological ef-

fects with the Minnaert correction. After obtaining a classification map and an error matrix for 

both the topologically corrected and uncorrected image for each data, the results were compared.  

 

Excellent tutorials on how to use the Semi Automatic Classification Plugin for all the steps de-

scribed above can be found at  http://fromgistors.blogspot.com/, so they were not described in 

detail here. 
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APPENDIX C.  RESULTS 
 

C1. NDVI and EVI time series 

 

NDVI 

 

ID DESCRIPTION VALUE 2005_06_10 2005_07_28 2005_08_29 2005_09_30 2005_10_16 

11 GRASSLAND 

NDVImin_mean 4907,98 6926,11 5527,43 5224,72 4340,38 
NDVImax_mean 7408,20 8144,48 7718,53 6941,70 5930,59 
NDVI_MEAN 6285,71 7645,80 6960,84 6189,71 5166,42 
NDVI σ 1005,43 489,62 622,40 578,15 747,15 

21 SHRUBS 

NDVImin_mean 4992,64 6286,44 5602,77 5191,25 4262,57 
NDVImax_mean 7382,15 7825,00 7910,65 7773,32 7212,14 
NDVI_MEAN 6404,20 7193,59 7036,43 6654,19 5974,61 
NDVI σ 740,50 472,83 710,90 604,98 811,39 

31 BARE SOIL 

NDVImin_mean 1636,56 2263,49 2011,67 1579,74 1234,36 
NDVImax_mean 4325,69 5105,89 4971,86 4825,97 4486,19 
NDVI_MEAN 2784,45 3519,73 3361,45 3084,29 2774,10 
NDVI σ 715,12 850,15 844,25 907,86 845,54 

41 CONIFERS 

NDVImin_mean 6866,56 7172,97 6968,60 6049,35 4790,48 
NDVImax_mean 8409,30 8325,90 8580,79 8223,16 7550,15 
NDVI_MEAN 7807,06 7878,12 7963,97 7395,34 6401,21 
NDVI σ 431,86 264,01 356,97 606,58 780,92 

42 BROADLEAVED 

NDVImin_mean 7140,93 7519,20 7082,67 5702,63 3896,53 
NDVImax_mean 8869,21 8713,89 8912,64 8577,71 7390,19 
NDVI_MEAN 8404,52 8323,24 8329,54 7636,35 5990,12 
NDVI σ 301,60 269,47 371,91 543,75 795,37 

 

NDVI_mean sum 6337,19 6912,09 6730,45 6191,98 5261,29 
NDVImin_mean 
sum 5108,93 6033,64 5438,63 4749,54 3704,86 

NDVImax_mean 
sum 7278,91 7623,03 7618,89 7268,37 6513,85 

 

 

EVI 

 

ID DESCRIPTION VALUE 2005_06_10 2005_07_28 2005_08_29 2005_09_30 2005_10_16 

11 GRASSLAND 

EVImin_mean 1427,33 2208,74 1595,55 1266,33 1068,38 
EVImax_mean 2448,07 2766,67 2483,84 2106,59 1800,66 
EVI_MEAN 1901,01 2495,34 2105,30 1713,21 1471,19 
EVI σ 437,41 298,30 478,53 381,33 334,21 

21 SHRUBS EVImin_mean 1063,85 1311,31 934,26 640,48 538,91 
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EVImax_mean 1681,29 1788,10 1685,03 1423,50 1324,66 
EVI_MEAN 1349,30 1553,58 1337,86 1038,80 954,11 
EVI σ 278,30 338,62 428,88 452,14 466,16 

31 BARE SOIL 

EVImin_mean 511,57 750,21 536,51 381,43 343,11 
EVImax_mean 1318,43 1595,68 1514,58 1264,44 1158,56 
EVI_MEAN 889,27 1125,99 1004,85 771,05 703,96 
EVI σ 185,52 257,23 282,79 323,58 344,87 

41 CONIFERS 

EVImin_mean 1472,89 1529,61 1230,49 793,35 573,35 
EVImax_mean 2286,07 2052,75 1989,46 1699,42 1435,89 
EVI_MEAN 1862,64 1798,45 1636,76 1278,77 1028,13 
EVI σ 363,59 338,55 415,63 487,90 435,97 

42 BROADLEAVED 

EVImin_mean 1848,55 1991,51 1503,12 839,96 435,96 
EVImax_mean 2963,41 2584,74 2507,06 2196,24 1615,03 
EVI_MEAN 2500,04 2303,50 2076,64 1597,78 1046,27 
EVI σ 501,97 498,18 648,47 694,65 556,56 

  EVI_mean sum 1700,45 1855,37 1632,28 1279,92 1040,73 

  EVImin_mean sum 1264,84 1558,28 1159,99 784,31 591,94 

  EVImax_mean sum 2139,45 2157,59 2035,99 1738,04 1466,96 
 

  

 

C2. Classification scenarios results and Accuracy Assessment  

 

For each classification scenario based on single date Landsat images, the results presented are: a) 

class extension and error matrix for the classification conducted on the SR bands without topo-

graphic correction (“original bands”); and b) class extension and error matrix for the classification 

conducted on the bands with Minnaert topographic correction (“topographically corrected 

bands”).  

 

Classes used for the classification: 

Class 1: Grassland 

Class 2: Shrubs and sparse trees 

Class 3: Bare soil and rocks 

Class 4: Forest (includes the sub-classes Conifer and Broadleaved, not separated) 
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IMAGE 1 – 2005/06/10 

 

A) ORIGINAL BANDS 

 

Spatial extent of each land cover class 
Class PixelSum Percentage % Area (ha) 

1 48655 16,29 4378,95 
2 73365 24,56 6602,85 
3 24017 8,04 2161,53 
4 152728 51,12 13745,52 

 
Error Matrix      

 Reference (IUTI 2008) 
Classification 1 2 3 4 Total 

1 85 28 2 54 169 
2 18 103 23 94 238 
3 30 23 32 4 89 
4 7 29 3 522 561 

Total 140 183 60 674 1057 
 
Overall accuracy [%] = 70.20     
Class 1 producer accuracy [%] = 60.71  user accuracy [%] = 50.30 Kappa hat = 0.43 
Class 2 producer accuracy [%] = 56.28  user accuracy [%] = 43.28 Kappa hat = 0.31 
Class 3 producer accuracy [%] = 53.33  user accuracy [%] = 35.96 Kappa hat = 0.32 
Class 4 producer accuracy [%] = 77.45  user accuracy [%] = 93.05 Kappa hat = 0.81 
Kappa hat classification = 0.50     
 
 
B) TOPOGRAPHICALLY CORRECTED BANDS: 
 
Spatial extent occupied by each land cover class 
Class PixelSum Percentage % Area_ha 

1 46499 15,56 4184,91 
2 66862 22,38 6017,58 
3 26884 9,00 2419,56 
4 158520 53,06 14266,8 

 
Error Matrix           

 Reference (IUTI 2008) 
Classification 1 2 3 4 Total 

1 88 30 4 54 176 
2 20 102 17 88 227 
3 29 20 35 7 91 
4 3 31 4 525 563 

Total 140 183 60 674 1057 



159 

 
 
Overall accuracy [%] = 70.96     
Class 1.0 producer accuracy [%] = 62.86  user accuracy [%] = 50.0 Kappa hat = 0.42 
Class 2.0 producer accuracy [%] = 55.74  user accuracy [%] = 44.93 Kappa hat = 0.33 
Class 3.0 producer accuracy [%] = 58.33  user accuracy [%] = 38.46 Kappa hat = 0.35 
Class 4.0 producer accuracy [%] = 77.89  user accuracy [%] = 93.25 Kappa hat = 0.81 
Kappa hat classification = 0.51     
 
 
 
IMAGE 2 - 2005/07/28 

 
A) ORIGINAL BANDS 
 
Spatial extent occupied by each land cover class 
Class PixelSum Percentage % Area_ha 

1 39405 13,19 3546,45 
2 76450 25,59 6880,5 
3 42020 14,06 3781,8 
4 140890 47,16 12680,1 

 
Error Matrix 

     
 Reference (IUTI 2008) 

Classification 1 2 3 4 Total 
1 88 15 1 30 134 
2 10 87 20 142 259 
3 35 47 36 25 143 
4 7 34 3 477 521 

Total 140 183 60 674 1057 
 
Overall accuracy [%] = 65.09 

  Class 1 producer accuracy [%] = 62.86  user accuracy [%] = 65.67 Kappa hat = 0.60 
Class 2 producer accuracy [%] = 47.54  user accuracy [%] = 33.59 Kappa hat = 0.20 
Class 3 producer accuracy [%] = 60.0  user accuracy [%] = 25.17 Kappa hat = 0.21 
Class 4 producer accuracy [%] = 70.77  user accuracy [%] = 91.55 Kappa hat = 0.77 
Kappa hat classification = 0.43 

   
 
B) TOPOGRAPHICALLY CORRECTED BANDS: 
 
Spatial extent occupied by each land cover class 

Class PixelSum Percentage % Area_ha 
1 36428 12,19 3278,52 
2 62490 20,92 5624,1 
3 46562 15,58 4190,58 
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4 153285 51,31 13795,65 
 
Error Matrix      

 Reference (IUTI 2008) 
Classification 1 2 3 4 Total 

1 89 13 0 25 127 
2 8 81 10 111 210 
3 39 54 45 26 164 
4 4 35 5 512 556 

Total 140 183 60 674 1057 
 
Overall accuracy [%] = 68.78 

  Class 1.0 producer accuracy [%] = 63.57  user accuracy [%] = 70.08 Kappa hat = 0.65 
Class 2.0 producer accuracy [%] = 44.26  user accuracy [%] = 38.57 Kappa hat = 0.26 
Class 3.0 producer accuracy [%] = 75.0  user accuracy [%] = 27.44 Kappa hat = 0.23 
Class 4.0 producer accuracy [%] = 75.96  user accuracy [%] = 92.09 Kappa hat = 0.78 
Kappa hat classification = 0.48 

   
 
 
IMAGE 3 - 2005/08/29 

 

A) ORIGINAL BANDS 
 
Spatial extent occupied by each land cover class 
Class PixelSum Percentage % Area_ha 

1 44396,00 14,86 3995,64 
2 89343,00 29,91 8040,87 
3 29565,00 9,90 2660,85 
4 135450,00 45,34 12190,5 

 
Error Matrix 

 Reference (IUTI 2008) 
Classification 1 2 3 4 Total 

1 82 24 2 43 151 
2 25 106 24 182 337 
3 31 32 29 9 101 
4 2 21 5 440 468 

Total 140 183 60 674 1057 
 
Overall accuracy [%] = 62.16     
Class 1 producer accuracy [%] = 58.57  user accuracy [%] = 54.30 Kappa hat = 0.47 
Class 2 producer accuracy [%] = 57.92  user accuracy [%] = 31.45 Kappa hat = 0.17 
Class 3 producer accuracy [%] = 48.33  user accuracy [%] = 28.71 Kappa hat = 0.24 
Class 4 producer accuracy [%] = 65.28  user accuracy [%] = 94.02 Kappa hat = 0.83 
Kappa hat classification = 0.41     



161 

 
B) TOPOGRAPHICALLY CORRECTED BANDS: 
 
Spatial extent occupied by each land cover class 
Class PixelSum Percentage % Area_ha 

1 43501,00 14,56 3915,09 
2 86350,00 28,90 7771,5 
3 34275,00 11,47 3084,75 
4 134628,00 45,06 12116,52 

 
Error Matrix 

 Reference (IUTI 2008) 
Classification 1 2 3 4 Total 

1 85 30 3 43 161 
2 24 107 21 156 308 
3 30 32 34 15 111 
4 1 14 2 460 477 

Total 140 183 60 674 1057 
 
Overall accuracy [%] = 64.90     
Class 1 producer accuracy [%] = 60.71  user accuracy [%] = 52.80 Kappa hat = 0.46 
Class 2 producer accuracy [%] = 58.47  user accuracy [%] = 34.74 Kappa hat = 0.21 
Class 3 producer accuracy [%] = 56.67  user accuracy [%] = 30.63 Kappa hat = 0.26 
Class 4 producer accuracy [%] = 68.25  user accuracy [%] = 96.44 Kappa hat = 0.90 
Kappa hat classification = 0.45     
 
 
 
IMAGE 4 - 2005/09/30 

 
A) ORIGINAL BANDS 
 
Spatial extent occupied by each land cover class 
Class PixelSum Percentage % Area_ha 

1 46080 15,43 4147,2 
2 121428 40,67 10928,52 
3 26654 8,93 2398,86 
4 104433 34,97 9398,97 

 
Error Matrix 

 Reference (IUTI 2008) 
Classification 1 2 3 4 Total 

1 82 28 4 41 155 
2 21 110 29 271 431 
3 31 22 21 12 86 
4 6 23 6 349 384 

Total 140 183 60 673 1056 



162 

 
Overall accuracy [%] = 53.22     
Class 1 producer accuracy [%] = 58.57  user accuracy [%] = 52.90 Kappa hat = 0.46 
Class 2 producer accuracy [%] = 60.11  user accuracy [%] = 25.52 Kappa hat = 0.10 
Class 3 producer accuracy [%] = 35.0  user accuracy [%] = 24.42 Kappa hat = 0.20 
Class 4 producer accuracy [%] = 51.86  user accuracy [%] = 90.89 Kappa hat = 0.75 
Kappa hat classification = 0.31     
 
 
B) TOPOGRAPHICALLY CORRECTED BANDS: 
 
Spatial extent occupied by each land cover class 
Class PixelSum Percentage % Area_ha 

1 61936 20,74 5574,24 
2 23069 7,73 2076,21 
3 29141 9,76 2622,69 
4 184449 61,77230027 16600,41 

 
Error Matrix 

 Reference (IUTI 2008) 
Classification 1 2 3 4 Total 

1 89 43 4 91 227 
2 6 16 3 43 68 
3 31 26 27 18 102 
4 14 98 26 521 659 

Total 140 183 60 673 1056 
 
Overall accuracy [%] = 61.84     
Class 1.0 producer accuracy [%] = 63.57  user accuracy [%] = 39.21 Kappa hat = 0.30 
Class 2.0 producer accuracy [%] = 8.74  user accuracy [%] = 23.53 Kappa hat = 0.07 
Class 3.0 producer accuracy [%] = 45.0  user accuracy [%] = 26.47 Kappa hat = 0.22 
Class 4.0 producer accuracy [%] = 77.41  user accuracy [%] = 79.06 Kappa hat = 0.42 
Kappa hat classification = 0.32     
 
 
 
IMAGE 5 - 2005/10/16 

 
A) ORIGINAL BANDS 
 
Spatial extent occupied by each land cover class 
Class PixelSum Percentage % Area_ha 

1 44582 14,92 4012,38 
2 101725 34,05 9155,25 
3 24267 8,12 2184,03 
4 128158 42,90 11534,22 

 



163 

Error Matrix 

 Reference (IUTI 2008) 
Classification 1 2 3 4 Total 

1 91 24 1 45 161 
2 10 95 19 245 369 
3 26 20 21 8 75 
4 13 44 19 376 452 

Total 140 183 60 674 1057 
 
Overall accuracy [%] = 55.16     
Class 1 producer accuracy [%] = 65.0  user accuracy [%] = 56.52 Kappa hat = 0.50 
Class 2 producer accuracy [%] = 51.91  user accuracy [%] = 25.75 Kappa hat = 0.10 
Class 3 producer accuracy [%] = 35.0  user accuracy [%] = 28.0 Kappa hat = 0.24 
Class 4 producer accuracy [%] = 55.79  user accuracy [%] = 83.19 Kappa hat = 0.54 
Kappa hat classification = 0.30     
 
 
B) TOPOGRAPHICALLY CORRECTED BANDS: 
 
Spatial extent occupied by each land cover class 
Class PixelSum Percentage % Area (ha) 

1 36774 12,31 3309,66 
2 105822 35,42 9523,98 
3 24643 8,25 2217,87 
4 131493 44,02 11834,37 

 
Error Matrix 

 Reference (IUTI 2008) 
Classification 1 2 3 4 Total 

1 91 15 0 27 133 
2 14 99 26 252 391 
3 25 22 21 13 81 
4 10 47 13 382 452 

Total 140 183 60 674 1057 
 
Overall accuracy [%] = 56.10 

  Class 1 producer accuracy [%] = 65.0  user accuracy [%] = 68.42 Kappa hat = 0.64 
Class 2 producer accuracy [%] = 54.1  user accuracy [%] = 25.32 Kappa hat = 0.1 
Class 3 producer accuracy [%] = 35.0  user accuracy [%] = 25.93 Kappa hat = 0.21 
Class 4 producer accuracy [%] = 56.68  user accuracy [%] = 84.51 Kappa hat = 0.57 
Kappa hat classification = 0.32 
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MULTIDATE/MULTI-IMAGE CLASSIFICATION SCENARIOS 
 
DATE 2 (JULY) + DATE 5 (OCTOBER)   

(topographically corrected bands of Landsat scene) 
 
Spatial extent occupied by each land cover class 
Class PixelSum Percentage % Area (ha) 

1 33774 11,31 3039,66 
2 61199 20,49 5507,91 
3 45310 15,17 4077,9 
4 158449 53,04 14260,41 

 
Error Matrix 

 Reference 
Classification 1 2 3 4 Total 

1 90 14 0 14 118 
2 8 78 8 99 193 
3 38 51 45 28 162 
4 4 40 7 533 584 

Total 140 183 60 674 1057 
 
Overall accuracy [%] = 70.5771050142    Kappa hat classification = 0.50 
Class 1.0 producer accuracy [%] = 64.29  user accuracy [%] = 76.27 Kappa hat = 0.73 
Class 2.0 producer accuracy [%] = 42.62  user accuracy [%] = 40.41 Kappa hat = 0.28 
Class 3.0 producer accuracy [%] = 75.0  user accuracy [%] = 27.78 Kappa hat = 0.23 
Class 4.0 producer accuracy [%] = 79.08  user accuracy [%] = 91.27 Kappa hat = 0.76 

 
    

 
 
 
NDVI STACK CLASSIFICATION - ALL DATES 

 
Spatial extent occupied by each land cover class 
Class PixelSum Percentage % Area (ha) 

1 43678 14,62 3931,02 
2 64375 21,55 5793,75 
3 42408 14,20 3816,72 
4 148286 49,64 13345,74 

 
Error Matrix 

 Reference (IUTI 2008) 
Classification 1 2 3 4 Total 

1 85 32 2 46 165 
2 8 93 4 112 217 
3 40 40 53 14 147 
4 7 18 1 502 528 
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Total 140 183 60 674 1057 
 
Overall accuracy [%] = 69.35     
Class 1.0 producer accuracy [%] = 60.71  user accuracy [%] = 51.51 Kappa hat = 0.44 
Class 2.0 producer accuracy [%] = 50.82  user accuracy [%] = 42.86 Kappa hat = 0.31 
Class 3.0 producer accuracy [%] = 88.33  user accuracy [%] = 36.05 Kappa hat = 0.32 
Class 4.0 producer accuracy [%] = 74.48  user accuracy [%] = 95.08 Kappa hat = 0.86 
Kappa hat classification = 0.50     
 
 
 
NDVI – DATES 2 AND 5 

 
Spatial extent occupied by each land cover class 
Class PixelSum Percentage % Area (ha) 

1 62081 20,78 5587,29 
2 49253 16,49 4432,77 
3 47110 15,77 4239,90 
4 140303 46,96 12627,27 

 
Error Matrix 

 Reference (IUTI 2008) 
Classification 1 2 3 4 Total 

1 65 43 2 136 246 
2 17 69 5 69 160 
3 37 50 53 17 157 
4 21 21 0 452 494 

Total 140 183 60 674 1057 
 
Overall accuracy [%] = 60.45 

  Class 1.0 producer accuracy [%] = 46.43  user accuracy [%] = 26.42 Kappa hat = 0.15 
Class 2.0 producer accuracy [%] = 37.70  user accuracy [%] = 43.13 Kappa hat = 0.31 
Class 3.0 producer accuracy [%] = 88.33  user accuracy [%] = 33.76 Kappa hat = 0.30 
Class 4.0 producer accuracy [%] = 67.06  user accuracy [%] = 91.50 Kappa hat = 0.77 
Kappa hat classification = 0.38 

   
 
 
EVI STACK CLASSIFICATION - ALL DATES 

 
Spatial extent occupied by each land cover class 
Class PixelSum Percentage % Area (ha) 

1 36980 12,38 3328,20 
2 35241 11,80 3171,69 
3 55223 18,48 4970,07 
4 171303 57,34 15417,27 
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Error Matrix 

 Reference (IUTI 2008) 
Classification 1 2 3 4 Total 

1 82 17 1 39 139 
2 17 50 3 64 134 
3 30 65 52 34 181 
4 11 51 4 537 603 

Total 140 183 60 674 1057 
 
Overall accuracy [%] = 68.21     
Class 1 producer accuracy [%] = 58.57  user accuracy [%] = 59.00 Kappa hat = 0.53 
Class 2 producer accuracy [%] = 27.32  user accuracy [%] = 37.31 Kappa hat = 0.24 
Class 3 producer accuracy [%] = 86.67  user accuracy [%] = 28.73 Kappa hat = 0.24 
Class 4 producer accuracy [%] = 79.67  user accuracy [%] = 89.05 Kappa hat = 0.70 
Kappa hat classification = 0.46     
 
 
 
EVI – DATES 2 AND 5 

 
Spatial extent occupied by each land cover class 
Class PixelSum Percentage % Area (ha) 

1 83642 28,00 7527,78 
2 50144 16,78 4512,96 
3 61783 20,68 5560,47 
4 103178 34,54 9286,02 

 
Error Matrix 

 Reference (IUTI 2008) 
Classification 1 2 3 4 Total 

1 73 15 1 216 305 
2 11 56 5 117 189 
3 14 73 51 74 212 
4 42 39 3 267 351 

Total 140 183 60 674 1057 
 
Overall accuracy [%] = 42.29     
Class 1 producer accuracy [%] = 52.14  user accuracy [%] = 23.93 Kappa hat = 0.12 
Class 2 producer accuracy [%] = 30.6010928962  user accuracy [%] = 29.63 Kappa hat = 0.15 
Class 3 producer accuracy [%] = 85.0  user accuracy [%] = 24.06 Kappa hat = 0.19 
Class 4 producer accuracy [%] = 39.6142433234  user accuracy [%] = 76.07 Kappa hat = 0.34 
Kappa hat classification = 0.18     
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DATE 2 (JULY) + NDVI + EVI   

(topographically corrected bands of Landsat scene) 
 
Spatial extent occupied by each land cover class 
Class PixelSum Percentage % Area (ha) 

1 33845 11,33 3046,05 
2 71649 23,98 6448,41 
3 45661 15,28 4109,49 
4 147610 49,41 13284,9 

 
Error Matrix 

 Reference (IUTI 2008) 
Classification 1 2 3 4 Total 

1 88 12 1 15 116 
2 9 92 7 127 235 
3 40 49 51 19 159 
4 3 30 1 513 547 

Total 140 183 60 674 1057 
 
Overall accuracy [%] = 70.39     
Class 1 producer accuracy [%] = 62.86  user accuracy [%] = 75.86 Kappa hat = 0.72 
Class 2 producer accuracy [%] = 50.27  user accuracy [%] = 39.15 Kappa hat = 0.26 
Class 3 producer accuracy [%] = 85.0  user accuracy [%] = 32.08 Kappa hat = 0.28 
Class 4 producer accuracy [%] = 76.11  user accuracy [%] = 93.78 Kappa hat = 0.83 
Kappa hat classification = 0.51     
 
 
 
DATE 2 (JULY) + NDVI  

(topographically corrected bands of Landsat scene) 
 
Spatial extent occupied by each land cover class 
Class PixelSum Percentage % Area (ha) 

1 36045 12,06 3244,05 
2 62369 20,88 5613,21 
3 47003 15,73 4230,27 
4 153348 51,33 13801,32 

 
Error Matrix 

 Reference 
Classification 1 2 3 4 Total 

1 89 14 1 18 122 
2 9 89 6 101 205 
3 39 50 52 21 162 
4 3 30 1 534 568 

Total 140 183 60 674 1057 
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Overall accuracy [%] = 72.28     
Class 1.0 producer accuracy [%] = 63,57  user accuracy [%] = 72,95 Kappa hat = 0.69 
Class 2.0 producer accuracy [%] = 48.63  user accuracy [%] = 43,41 Kappa hat = 0.32 
Class 3.0 producer accuracy [%] = 86,67  user accuracy [%] = 32,10 Kappa hat = 0.28 
Class 4.0 producer accuracy [%] = 79.23  user accuracy [%] = 94,01 Kappa hat = 0.83 
Kappa hat classification = 0.54     
 


