

	
	

	

	
	

	

	
	
	
	
	

	
Master’s	Degree	

in	Economics	and	Finance	
	

	
Final	Thesis	

	
	

Artificial	Neural	Networks	
and	Deep	Learning	

for	stress	testing	a	banking	system	
	

	
	
	
	
	
	
	
	
	
Supervisor	
Ch.	Prof.	Antonella	Basso	
	
	
Graduand	
Krystyna	Tsaryk	
Matriculation	number	856865	
	
	
Academic	Year	
2019	/	2020	
	
	
	

	 	

	

Table	of	contents	
	

Introduction	..	1	

CHAPTER	1	..	5	

Artificial	Neural	Networks	..	5	
1.1	ANNs	characteristics	and	history	...	5	
1.2	Application	to	challenging	problems	..	7	
1.3	Biological	and	artificial	neurons	...	9	
1.4	Architectures	and	learning	paradigms	...	12	
1.5	A	simple	NN	model:	The	Perceptron	...	13	
1.6	From	Perceptron	to	ADALINE	and	MLP	..	16	
1.7	Other	popular	ANNs	...	37	
1.8	ANNs	compared	to	statistics	and	expert	systems	...	38	

CHAPTER	2	..	41	

The	development	of	an	ANN	..	41	
2.1	Steps	in	an	ANN	development	..	41	
2.2	Related	issues	and	possible	solutions	..	43	

CHAPTER	3	..	53	
Deep	learning	and	deep	neural	networks	..	53	

3.1	Deep	learning	characteristics	and	history	..	53	
3.2	Reasons	why	DNNs	are	difficult	to	train	..	56	
3.3	Convolutional	networks	...	60	
3.4	LSTM	networks	...	71	
3.5	Other	popular	Deep	learning	models	..	79	
3.6	Techniques	for	improving	training	..	83	

CHAPTER	4	..	89	

Banking	systems	..	89	
4.1	Systemic	risk	and	financial	stability	..	89	
4.2	Stress-testing	for	financial	stability	...	92	

CHAPTER	5	...	101	

Deep	Learning	applications	for	banking	systems	..	101	
5.1	Financial	applications	of	ANNs	and	DNNs	...	101	
5.2	Credit	risk	evaluation	and	credit	scoring	...	102	
5.3	Bank	insolvency	and	bankruptcy	prediction	..	105	
5.4	Financial	crisis	prediction	and	early	warning	systems	108	
5.5	Dynamic	balance	sheet	stress-testing	...	110	

CHAPTER	6	...	113	
Application	to	dynamic	balance	sheet	stress-testing	...	113	

6.1	Data	collection	and	pre-processing	..	113	
6.2	Model	development	and	hyperparameters	tuning	..	119	

Conclusions	and	closing	remarks	...	137	

Bibliography	...	139	

Appendix	A	..	145	
A	list	of	the	codes	for	the	case	study	..	145	

A.1	Outliers’	detection	and	scaling	choice	...	145	
A.2	Initial	trial	..	147	
A.3	Learning	curve	for	the	training	set	size	..	149	
A.4	Learning	curve	for	the	batch	size	..	151	
A.5	Learning	curve	for	the	learning	rate	..	153	
A.6	Learning	curve	for	the	number	of	hidden	neurons	...	156	
A.7	Learning	curve	for	the	weight	decay	...	158	
A.8	Choice	of	the	momentum	..	160	
A.9	Choice	of	the	dropout	probability	...	162	
A.10	Choice	of	the	dropout	probability	with	L2	regularization	165	

	
	

	 1	

	
	
Introduction	
	

The	aim	of	this	thesis	is	to	review	how	artificial	neural	networks	and	deep	learning	

techniques	can	be	applied	for	solving	different	types	of	financial	problems	that	can	

be	encountered	by	banks	and	regulatory	authorities.	In	particular,	a	broad	review	

about	neural	networks	and	an	introduction	to	stress-testing	concepts	is	provided,	

together	with	a	final	case	study	analysis	to	put	into	practice	the	notions	learnt.	

	

Stress	tests	are	widely	used	by	regulatory	authorities	to	assess	the	financial	stability	

of	 the	 single	 institutions	 and	 the	whole	 financial	 system,	 as	well	 as	by	banks	 for	

internal	risk-management	and	self-assessment	purposes.	They	are	important	risk-

management	tools	carrying	essential	information	on	the	health	of	the	system	and	on	

the	vulnerabilities	to	extreme	but	plausible	events.	After	the	global	financial	crisis	

of	2007	and	2008,	stress	tests	became	a	crucial	component	of	the	supervisory	and	

financial	 stability	 toolbox	of	central	banks.	Both	 the	European	Banking	Authority	

and	 the	 European	 Central	 Bank	 conduct	 periodically	 these	 tests	 to	 assess	 the	

individuals’	banks	resilience	and	the	system	wide	impact	of	the	adverse	shocks.	

The	 financial	 health	 of	 banks	 during	 an	 adverse	 shock	 depends	 on	 several	

factors,	 such	as	 capital	 adequacy,	 asset	quality,	management	 capability,	 earnings,	

liquidity	and	sensitivity.	After	the	lessons	learnt	from	the	financial	crisis,	the	Basel	

Committee	 on	 Banking	 Supervision	 improved	 its	 regulatory	 standards	 and	

guidelines	 contained	 in	 the	 Basel	 frameworks.	 The	 supervisory	 authorities	 and	

regulators	follow	these	standards	closely	as	a	guidance	for	an	adequate	capital	and	

liquidity	 allocation	 and	 monitor	 the	 banks	 so	 that	 they	 can	 withstand	 possible	

systemic	shocks.	

	

Several	real-world	financial	problems	have	a	non-linear	behavior,	which	is	difficult	

to	capture	with	classical	statistical	tools.	For	this	reason,	a	growing	interest	has	risen	

in	machine	learning	techniques	and	especially	in	artificial	neural	networks.	

	 2	

ANNs	 are	 computational	 modelling	 tools	 inspired	 by	 biological	 nervous	

systems.	 They	 are	 composed	 by	 a	 set	 of	 processing	 units	 that	 are	 highly	

interconnected	 and	 able	 to	 perform	 complex	 parallel	 computations,	 while	 both	

acquiring	 and	 keeping	 new	 knowledge.	 From	 the	 simplest	 architecture	 of	 the	

Perceptron	made	of	only	one	neuron,	more	complex	networks	were	developed	in	

the	recent	years.	These	are	called	deep	neural	networks	and	are	characterised	by	a	

multi-layered	 architecture	 comprising	 two	 or	 more	 hidden	 layers	 and	 several	

hidden	neurons	in	each	layer.	Multilayer	ANNs	are	powerful	tools,	able	to	discover	

complex	and	nonlinear	functional	mappings.	They	are	built	of	multiple	processing	

layers	 that	 are	 able	 to	 learn	 data	 representations	 by	 using	 multiple	 levels	 of	

abstraction	that	describe	the	degree	of	complexity.	All	 these	characteristics	make	

ANNs	clearly	appealing	when	dealing	with	financial	problems.	This	work	reviews	

the	 possible	 financial	 applications,	 with	 a	 particular	 focus	 on	 stress-testing	 for	

which	 there	 is	 still	 limited	 empirical	 researche	 and	 future	 investigations	 can	 be	

prompted.	ANNs	could	offer	significant	advantages	if	they	were	used	in	conjunction	

with	the	classic	stress-testing	tools	to	support	the	supervisory	activity.	They	could	

increase	the	predictive	accuracy	of	the	estimates	by	recognizing	complex	mappings	

in	the	dataset	that	classic	statistical	tools	may	not	be	able	to	grasp.	

	

The	present	thesis	is	structured	as	follows.	

Chapter	 1	 provides	 a	 broad	 review	 about	 artificial	 neural	 networks,	with	 a	

particular	 focus	 toward	 their	 key	 characteristics	 and	 their	 similarities	 with	

biological	neural	systems.	Some	popular	and	simple	models,	such	as	the	Perceptron,	

the	ADALINE	and	the	Multilayer	Perceptron,	are	discussed	in	order	to	have	a	clear	

understanding	of	their	functioning.	The	last	section	of	the	chapter	is	dedicated	to	a	

comparison	of	neural	networks	with	 statistics	and	expert	 systems,	 together	with	

some	suggestions	on	the	choice	of	the	adequate	tool.	

Chapter	 2	 deals	 with	 presenting	 and	 discussing	 the	 methodology	 and	 the	

required	steps	that	have	to	be	followed	in	order	to	develop	a	new	ANN	project.	Many	

issues	relating	to	the	dataset,	the	architecture	and	the	training	of	the	model	have	to	

be	accounted	for,	when	developing	an	ANN.	A	summary	of	the	issues	and	possible	

solutions	is	presented	in	the	second	section	of	the	chapter.	

	 3	

Chapter	3	 is	dedicated	 to	analysing	deep	 learning	and	 the	potential	of	deep	

neural	networks.	The	main	characteristics	that	differentiate	deep	architectures	from	

shallow	ones	are	also	discussed.	The	following	sections	reason	on	why	deep	neural	

networks	are	hard	to	train	and	how	researchers	can	address	this	issue.	Two	popular	

architectures,	namely	convolutional	neural	networks	and	long	short-term	memory	

networks	are	presented	in	the	last	sections.	

Chapter	4	introduces	two	important	subjects	related	to	banking	systems.	The	

first	 part	 of	 the	 chapter	 discusses	 the	 issue	 of	 systemic	 risk	 and	 its	 impact	 on	

financial	stability.	The	second	part	illustrates	stress-testing	as	a	tool	for	assessing	

the	financial	stability	of	a	banking	system.	

Chapter	 5	 discusses	 how	 the	 use	 of	 artificial	 neural	 networks	 can	 improve	

several	real-world	financial	applications	that	have	a	non-linear	behaviour.	Some	of	

the	 most	 important	 areas	 of	 application	 of	 ANNs	 and	 deep	 learning	 to	 banking	

systems	are	presented,	namely	credit	scoring,	bankruptcy	prediction,	financial	crisis	

prediction	and	stress-testing.	

Chapter	6	 contains	 a	 final	 case	 study	 analysis	 in	which	 the	 application	of	 a	

neural	network	to	dynamic	balance	sheet	stress-testing	is	performed	by	using	real	

US	data.	At	the	same	time,	the	choice	of	a	suitable	architecture	and	hyperparameters	

is	 examined	 with	 the	 purpose	 of	 enhancing	 the	 model’s	 generalization	 and	

predictive	capabilities.	

	 	

	 4	

	 	

	 5	

	

	
	

CHAPTER	1		
Artificial	Neural	Networks	
	

This	thesis	aims	at	investigating	the	possible	applications	for	the	banking	sector	of	

artificial	 neural	 networks,	 which	 comprise	 several	 empirical	 modelling	methods	

that	 show	 an	 excellent	 performance	 with	 real-world	 data	 and	 can	 dramatically	

outperform	classical	 statistical	 tools.	These	methods	are	more	challenging	 to	use	

and	understand	than	statistical	tools.	For	this	reason,	the	first	chapter	is	dedicated	

to	 a	 rich	 overview	of	ANNs	 that	will	 ensure	 a	 sound	knowledge,	 essential	 to	 the	

comprehension	of	more	complex	deep	networks	that	will	be	presented	and	applied	

to	financial	problems	in	the	following	chapters.	

The	 present	 chapter	 will	 present	 a	 broad	 review	 about	 artificial	 neural	

networks,	 with	 a	 particular	 focus	 toward	 their	 key	 characteristics	 and	 their	

similarities	with	biological	neural	systems.	Some	popular	and	simple	models,	such	

as	the	Perceptron,	the	ADALINE	and	the	Multilayer	Perceptron,	will	be	discussed	in	

order	to	have	a	clear	understanding	of	their	functioning.	A	practical	application	for	

solving	simple	classification	problems	using	ADALINE	and	MLP	will	be	also	shown	

together	with	their	related	codes	that	can	be	used	in	R.	The	last	section	of	the	chapter	

will	 be	 dedicated	 to	 a	 comparison	 of	 neural	 networks	with	 statistics	 and	 expert	

systems,	together	with	some	suggestions	on	the	choice	of	the	adequate	tool.	

	

	

1.1	ANNs	characteristics	and	history	
	

Artificial	 neural	 networks	 (ANNs)	 are	 computational	modelling	 tools	 inspired	by	

biological	nervous	systems	and	are	able	to	solve	many	complex	problems	of	the	real	

world.	An	ANN	is	a	structure	composed	by	a	set	of	processing	units	(called	artificial	

	 6	

neurons,	nodes	or	units)	that	are	highly	interconnected	and	able	to	perform	complex	

parallel	computations.		

The	 ability	 to	 process	 information,	 while	 both	 acquiring	 and	 keeping	 new	

knowledge,	 is	 the	 basis	 of	 several	 characteristics	 concerning	 nonlinearity,	 high	

parallelism,	robustness,	fault	and	noise	tolerance,	learning	and	adaptation,	handling	

imprecise	and	fuzzy	information	and	their	capability	to	generalize.	Better	fitting	of	

the	data	can	be	achieved	with	a	non-linear	model,	an	increased	processing	speed	is	

reached	with	high	parallelism,	a	more	accurate	prediction	even	in	case	of	uncertain	

or	 erroneous	measures	 can	 be	 achieved	 with	 insensitivity	 to	 noise,	 the	 internal	

structure	can	be	easily	modified	when	the	external	environment	changes	when	the	

system	is	able	to	learn	and	the	model	can	be	applied	to	unknown	information	due	to	

its	generalization	capability.	

The	learning	ability	is	the	most	distinctive	characteristic	of	a	neural	network	

and	 it	 can	 be	 defined	 as	 an	 iterative	 adjustment	 of	 its	 internal	 architecture	 as	 it	

receives	different	external	stimuli.	This	adjustment	enables	the	system	to	acquire	

knowledge	by	experience	and	thus	to	able	to	handle	noisy	information	with	good	

accuracy	and	to	estimate	solutions	so	far	unknown	(Basheer	and	Hajmeer,	2000).	

	

The	first	step	toward	ANNs	was	made	in	1943	by	McCulloch	and	Pitts.	They	

constructed	 the	 first	 network	 with	 electrical	 circuits,	 based	 on	 a	 mathematical	

model	inspired	by	biological	neurons.	A	few	years	later,	in	1949	Hebb	proposed	the	

first	 method	 for	 training	 an	 artificial	 neural	 network.	 This	 rule,	 named	 Hebb’s	

learning	rule,	was	based	on	the	observation	of	biological	neuron’s	synapse	

At	 the	 same	 time,	 during	 the	 1950s	 it	 became	 possible	 to	 model	 theories	

concerning	human	thought	thanks	to	computer	advancements.	Between	1957	and	

1958	 the	neurophysiologist	Rosenblatt	 at	Cornell	University	was	 inspired	by	 the	

operation	of	the	eye	of	a	fly	and	developed	the	first	successful	neurocomputer	called	

Mark	I	Perceptron,	able	to	perform	simple	character	recognition.	

In	1959	Widrow	and	Hoff	at	Stanford	University	developed	two	models	called	

ADALINE	 and	 MADALINE,	 which	 were	 based	 on	 adaptive	 linear	 elements.	 The	

learning	of	those	models	was	based	on	the	Delta	rule,	rather	than	the	Hebb’s	rule	

used	with	the	Perceptron.	MADALINE	was	the	first	ANN	to	be	addressed	to	a	real-

world	problem	and	it	was	utilized	as	a	filter	to	eliminate	echoes	on	phone	lines.	

	 7	

The	 earlier	 success	 caused	 an	 excessive	 hype	 about	 neurocomputing,	

particularly	considering	the	limitations	in	the	computers	available	at	that	time.		This	

hype	suffered	a	major	slowdown	with	the	publication	of	 the	book	Perceptrons	by	

Minsky	and	Papert	 in	1969	 in	which	 they	overexaggerated	 the	 limitations	of	 the	

Perceptron	and	their	inability	to	solve	nonlinear	classification	problems.	Following	

this	publication,	researches	on	neural	networks	were	greatly	reduced,	due	 to	 the	

lack	of	funding.	

Few	 important	 studies	were	made	during	 the	1980s	and	caused	a	 renewed	

interest	in	the	field.	In	1980	Grossberg	developed	the	Adaptive	Resonance	Theory	

network,	in	1983	Kohonen	formulated	the	self-organized	maps	and	in	1984	Hopfield	

introduced	 recurrent	 networks	 based	 on	 energy	 functions,	 called	 Hoppfield	

networks.	 In	 1986	 Rumelhart,	 Hinton	 and	 Williams	 brought	 to	 light	 the	

backpropagation	 algorithm,	 that	 performed	 weights	 adjustment	 for	 multilayer	

networks.	 The	 comeback	 of	 ANNs	was	 clear	when	 in	 1987	 the	 first	 annual	 IEEE	

International	 ANNs	 Conference	 was	 created.	 Shortly	 after	 the	 International	 NN	

Society	was	formed	and	their	started	publishing	their	own	journal.	

In	recent	years	many	new	researches	have	been	made	and	brought	to	some	

important	theoretical	advancements	and	practical	applications	to	the	real	world.	

To	 learn	 further	 about	 the	 historical	 digression,	 see	 Anderson	 and	McNeill	

(1992),	Basheer	and	Hajmeer	(2000)	and	Da	Silva	et	al.	(2017).	

	

	

1.2	Application	to	challenging	problems	
	

Artificial	 neural	 network	 models	 are	 empirical,	 however,	 due	 to	 their	 learning	

ability,	 they	 provide	 accurate	 and	 robust	 solutions	 for	 both	 precisely	 and	

imprecisely	 formulated	 problems.	 For	 this	 reason,	 they	 have	 been	 employed	 in	

several	problems.	The	potential	application	areas	range	from	pattern	classification,	

clustering,	modelling,	forecasting,	optimization,	association	and	control.	

	

The	application	categories	in	detail	are:	

- Pattern	classification	or	recognition	is	utilized	for	associating	unknown	input	

patterns	to	one	of	the	several	previously	defined	classes,	based	on	properties	

	 8	

common	to	the	related	class.	Typical	examples	are	image,	writing	and	speech	

recognition;	

- Data	 clustering	 goal	 is	 to	 detect	 similarities	 and	 dissimilarities	 between	

several	 input	patterns	based	on	 their	 intercorrelations	and	 to	group	 them	

accordingly.	Example	applications	include	data	mining	and	automatic	class	

identification;	

- Modelling	 (function	 approximation)	 aim	 is	 to	 approximate	 the	 functional	

relationship	between	inputs	and	outputs	starting	from	a	meaningful	set	of	

known	values.	Usually	it	is	used	to	map	processes	for	problems	where	it	is	

not	 feasible	 to	use	 traditional	methods	or	when	a	 theoretical	model	 is	not	

available	at	all;	

- Forecasting	 involves	 the	 prediction	 of	 future	 values	 for	 a	 process	 from	

several	previous	historical	observations.	Typical	applications	can	be	found	

for	 time	 series	 prediction,	 stock	 prices	 movements	 and	 forecast	 about	

weather	conditions;	

- Optimization	aims	to	maximize	or	minimize	an	objective	function	obeying	to	

a	 set	 of	 constraints.	 ANNs	 are	 especially	 efficient	 instruments	 for	 solving	

complex	nonlinear	optimization	problems	and	are	 frequently	employed	 in	

constrained	optimization	problems	and	dynamic	programming;	

- Association	 is	 concerned	 with	 training	 a	 model	 which	 is	 able	 to	 classify,	

recover	and	correct	corrupted	or	partially	missing	data,	after	it	has	learned	

to	classify	data	free	of	noise.	Typical	applications	relate	to	image	processing,	

transmission	of	signals	and	identification	of	characters;	

- Control	 relates	 to	 devising	 a	 network	 that	 works	 in	 conjunction	 with	 an	

adaptive	control	system	in	order	to	produce	control	inputs	that	will	meet	a	

set	 of	 specific	 requirements.	 Examples	 pertain	 to	 airplanes,	 robotics	 and	

satellites	functioning1.	

	

	

	

1	For	further	details	about	ANN	applications	see	Basheer	and	Hajmeer	(2000)	and	Da	Silva	et	al.	
(2017)	

	 9	

1.3	Biological	and	artificial	neurons	
	

The	human	nervous	system	consists	of	more	than	10	billion	interconnected	neurons	

functioning	together	and	manged	by	the	brain.	The	human	brain	is	responsible	for	

executing	 cognitive	 (acquiring	 knowledge),	 emotional	 (language	 ability	 and	

identification	of	faces)	and	control	(movement	of	the	body	and	functioning	of	the	

organs)	tasks.	It	is	able	to	handle	computationally	demanding	activities	by	using	a	

highly	 parallel	 structure,	 which	 allows	 the	 brain	 to	 process	 imprecise	 and	

incomplete	pieces	of	information.	

The	 fundamental	 cell	of	 the	nervous	 system	 is	 the	neuron	and	 its	 role	 is	 to	

receive,	 process	 and	 conduct	 information	 in	 the	 form	 of	 electrical	 impulses	 or	

stimuli	by	using	biochemical	reactions.	

	

	

	

The	biological	neuron	can	be	divided	into	three	main	functional	units,	as	can	

be	seen	in	Figure	1.1:	dendrites,	soma	(or	cell	body)	and	axon.	The	dendrites	are	

responsible	 for	 receiving	 and	 passing	 over	 impulses	 from	 other	 neurons	 or	 the	

external	 environment	 to	 the	 soma.	 The	 soma	 contains	 the	 cell	 nucleus	 and	 is	

responsible	 for	 processing	 the	 information	 and	 for	 generating	 an	 activation	

potential.	The	axon	 is	 responsible	 for	guiding	 the	 impulses	 from	the	soma	 to	 the	

dendrites	of	neighbouring	neurons	through	synaptic	terminals	or	synapses.		Electric	

Source:	Abraham	(2015)	

Figure	1.1.	Schematic	of	biological	neuron	

	 10	

signals	 are	 transmitted	 through	 a	 complex	 chemical	 process.	 Specific	

neurotransmitters	are	released	from	the	synapses	in	order	to	change	the	electrical	

potential	of	the	receiving	cell	and	propagation	is	triggered	if	the	potential	threshold	

is	reached	(Abraham,	2015).	

	

ANNs	 were	 developed	 as	 abstractions	 or	 generalizations	 of	 mathematical	

models	 of	 their	 biological	 counterparts	 in	 order	 to	 mimic	 the	 computational	

properties	 of	 the	 human	 brain,	 such	 as	 information	 processing	 and	 knowledge	

acquisition.	 The	 idea	 behind	 the	 artificial	 networks	 is	 not	 the	 replication	 of	 the	

operations	of	the	biological	nervous	system,	but	rather	employing	its	efficiency	in	

solving	complex	problems.	

	

The	basic	processing	units	or	computational	components	of	an	artificial	neural	

network	are	the	neurons,	called	also	nodes.	In	the	simplified	model	shown	in	Figure	

1.2,	it	can	be	seen	the	functioning	of	an	artificial	neuron:	the	neuron	receives	input	

signals	{𝑥#, 𝑥%, … , 𝑥'	}	from	the	external	environment,	each	with	a	different	intensity	

based	 on	 the	 connection	 (or	 synaptic)	 weights	 {𝑤#, 𝑤%, … ,𝑤'	}	 representing	 the	

synapses.	The	weighted	sum	of	the	input	signals	is	computed	by	a	linear	aggregator	

in	order	to	form	the	net	𝜉.	Then	the	net	is	compared	to	the	threshold	(or	bias)	and	

the	result	will	be	the	activation	potential	𝑢.	If	the	threshold	is	reached,	the	neuron	

will	 become	 activated	 and	 it	will	 produce	 an	 output	 signal	𝑦,	 applying	 a	 specific	

activation	(transfer)	function		𝑓	to	the	result.	

	

	

	

Figure	1.2.	Architecture	of	an	artificial	neuron	

Source:	Abraham	(2015)	

	 11	

Activation	functions	are	important	for	limiting	and	scaling	the	final	output	in	

order	 to	 control	 for	 its	 scale.	 Table	 1	 presents	 some	 commonly	 used	 transfer	

functions	 that	 I	 summarized	 from	Da	 Silva	 et	 al.	 (2017).	 In	 this	 table	𝑔()	 is	 the	

activation	function	and	it	is	applied	to	the	activation	potential	𝑢.	

	
Table	1.1.	Common	activation	functions	
	

Activation	function	 Input/output	relation	 Graph	

Step	 𝑔(𝑢) = &
1, 𝑖𝑓	𝑢	 ≥ 0
0, 𝑖𝑓	𝑢 < 0 	

	

Bipolar	step	 𝑔(𝑢) = /
1, 𝑖𝑓	𝑢	 > 0
0, 𝑖𝑓	𝑢 = 0

−1, 𝑖𝑓	𝑢 < 0
	

	

Symmetric	ramp	 𝑔(𝑢) = /
𝑎, 𝑖𝑓	𝑢 > 𝑎
𝑢, 𝑖𝑓 − 𝑎 ≤ 𝑢 ≤ 𝑎

−𝑎, 𝑖𝑓	𝑛𝑒𝑡	 < −𝑎
	

	

Logistic	(sigmoid)	 𝑔(𝑢) = 	
1

1 + 𝑒89	

	

Hyperbolic	tangent	

(sigmoid)	
𝑔(𝑢) = 	

1 − 𝑒89

1 + 𝑒89	

	

Linear		 𝑔(𝑢) = 𝑢	

	

	 12	

Hard	 limit,	 bipolar	 step	 and	 symmetric	 ramp	 are	 all	 partially	 differentiable	

activation	 functions.	 On	 the	 other	 hand,	 logistic,	 hyperbolic	 tangent	 and	 linear	

functions	are	fully	differentiable	on	their	entire	domain	of	definition.	

	

1.4	Architectures	and	learning	paradigms	
	

ANNs	 can	 be	 classified	 in	many	 different	ways	 depending	 on	 the	 set	 of	 features	

considered.	A	first	distinction	can	be	done	according	to	the	type	of	problem	that	the	

network	is	devised	to	handle.	Section	1.2	described	the	possible	applications,	such	

as	pattern	classification,	clustering	and	modelling.	

	

A	second	distinction	 is	 related	 to	 the	degree	of	 connectivity	between	 the	various	

neurons.	They	can	be	fully	connected	so	that	every	node	is	connected	to	the	other	

nodes	or	they	can	be	partially	connected.	

	

Another	distinction	can	be	based	on	the	direction	in	which	the	information	flows,	

which	can	be	feed-forward	or	recurrent.	In	a	feed-forward	network,	signals	flow	in	

a	 single	 direction	 from	 the	 input	 to	 the	 output	 and	 thus	 no	 feedback	 is	 present.	

Recurrent	networks	on	the	other	hand	are	dynamic	systems	in	which	the	output	at	

any	given	time	depends	on	the	inputs	but	also	on	previous	outputs.	

	

The	type	of	learning	algorithm	is	also	an	important	feature	to	consider.	It	represents	

a	set	of	ordinated	steps	and	systemic	equations	that	adjust	weights	and	thresholds	

of	the	network	and	updates	the	internal	structure	of	the	network	until	the	outputs	

obtained	are	close	enough	to	the	desired	values.	Some	important	learning	rules	such	

as	 Hebb’s	 learning	 rule,	 Delta	 rule	 and	 Backpropagation	 learning	 rule	 will	 be	

discussed	 in	 section	 1.5	 and	 1.6	 in	 relation	 to	 the	 Perceptron,	 ADALINE	 and	

Multilayer	Perceptron.	

	

In	relation	to	the	learning	algorithm	it	must	be	also	specified	the	learning	rule,	which	

is	its	primary	factor.	The	learning	rule	defines	the	specific	procedure	to	follow	for	

adjusting	 the	network	weights	between	each	epoch	 (a	 successive	 training	 cycle).	

There	are	four	types	of	rules.	The	first	is	the	error-correction	learning	(ECL)	rule,	

	 13	

which	takes	the	arithmetic	difference	in	each	epoch	between	the	obtained	outputs	

and	desired	values.	The	error	computed	in	this	way	is	used	to	adjust	the	weights	and	

to	gradually	reduce	the	overall	error.	The	second	rule	is	the	Boltzman	learning	(BL)	

rule,	 a	 stochastic	 rule	 derived	 from	 thermodynamic	 theory.	 In	 this	 setting,	 the	

outputs	 generated	 are	 based	 on	 a	 Boltzman	 statistical	 distribution	 and	 the	

difference	between	the	probability	distributions	of	the	system	is	taken	rather	than	

the	difference	between	desired	and	generated	outputs.		The	learning	is	much	slower	

than	with	the	ECL	rule.	The	third	rule	is	the	Hebbian	learning	(HL)	rule,	based	on	

neurobiological	experiments.	In	this	case	learning	is	performed	locally	by	adjusting	

weights	based	on	activity	of	neurons.	If	two	neurons	are	active	at	the	same	moment,	

their	 interconnection	 should	 be	 strengthened.	 The	 fourth	 and	 final	 rule	 is	 the	

competitive	 learning	 (CL)	 rule,	 in	which	all	 neurons	 compete	among	 themselves.	

Only	one	neuron	will	be	activated	in	each	iteration	and	its	weights	will	be	adjusted.	

	

The	last	feature	to	take	into	account	is	the	degree	of	learning	supervision	needed,	

that	 can	 be	 supervised,	 unsupervised	 or	 reinforcement	 learning.	 Supervised	

learning	involves	presenting	to	the	ANN	both	the	input	vector	together	with	a	set	of	

desired	responses	(or	target	outputs).	The	difference	between	the	target	and	ANN	

solution	is	then	used	to	adjust	the	weights.	Unsupervised	learning	does	not	require	

to	 be	 fed	 a	 priori	 with	 the	 target	 outputs.	 The	 system	 will	 develop	 its	 own	

representation	of	the	stimuli,	through	an	examination	of	the	underlying	structure	

and	 the	 correlations	 in	 the	 dataset	 and	by	 organizing	 the	 examples	 into	 clusters	

based	on	their	similarity.	Reinforcement	learning	is	a	form	of	supervised	learning,	

however	the	system	is	not	provided	with	a	desired	response,	but	a	numerical	reward	

signal.	The	ANN	thus	will	discover	 the	combination	of	weights	giving	 the	highest	

reward	by	a	trial	and	error	search	(Basheer	and	Hajmeer	2000).	

	

	

1.5	A	simple	NN	model:	The	Perceptron	
	

The	Perceptron	 is	 the	 simplest	 design	 of	 an	ANN	and	 it	 is	 composed	by	 a	 single	

artificial	neuron.	Figure	1.3	presents	the	Perceptron	network,	which	is	composed	of	

𝑛	input	signals	and	one	final	output.	

	 14	

	

	

The	neuron	receives	 input	stimuli	 from	the	external	environment	and	takes	

the	weighted	sum	of	inputs	to	form	the	net		𝜉 = 	∑ 𝑤5 ∙ 𝑥5'
57# 	,	where	𝑥5 	is	the	ith	input	

coming	from	the	signal	flow	𝑥#, 𝑥%, … , 𝑥'		and	𝑤5 	is	the	weight	associated	with	the	ith	

input.	The	neuron	then	compares	the	net	to	the	threshold	and	verifies	if	𝜉 ≥ 𝜃.	The	

activation	of	the	neuron	will	be	triggered	only	if	the	net	exceeds	the	threshold	and	

in	this	case	the	output	𝑦	will	be	1.	Otherwise,	the	output	resulting	from	the	activation	

function	will	be	0.	

From	a	formal	point	of	view,	this	inner	processing	can	be	described	as:	
	

:	
		𝑢 = 𝜉 − 𝜃
	𝑦 = 𝑔(𝑢) 																																																																	(1.1)	

	

where	𝑢	 is	 the	activation	potential,	𝜃	 is	 the	 threshold,	𝜉	 is	 the	net	and	𝑔()	 is	 the	

activation	function.	

Typical	transfer	functions	used	for	the	Perceptron	are	the	step	and	bipolar	step	

functions.		In	case	of	the	step	function,	output	𝑦	can	be	written	as:	
	

𝑦 = :1, 𝑖𝑓			𝑢	 ≥ 	0
0, 𝑖𝑓			𝑢	 < 	0																																														(1.2)	

	

The	 separation	between	 input	 classes,	made	by	 the	Perceptron,	 can	be	 seen	also	

from	a	different	point	of	view.	The	Perceptron	behaves	as	a	pattern	classifier	and	is	

able	to	partition	linearly	separable	 input	classes	by	splitting	the	input	space	with	

Figure	1.3.	Perceptron	network	

Source:	Da	Silva	et	al.	(2017)	

	 15	

hyperplanes	into	different	regions.	The	decision	boundary	that	shatters	the	space	is	

given	by	the	equality:	
	

		∑ 𝑤5 ∙ 𝑥5 − 𝜃 = 0'
57# 																																																(1.3)	

	

In	case	of	two	inputs,	the	decision	boundary	is	a	straight	line	(one-dimensional),	for	

three	 inputs,	 it	 is	 represented	 by	 a	 plane	 (two-dimensional)	 and	 for	 higher	

dimensions	of	order	n,	it	will	be	a	hyperplane	(n-1-dimensional).	

The	simplest	case	can	be	seen	in	Figure	1.4,	where	the	decision	boundary	for	a	

neuron	with	two	inputs	classes	(class	A	and	class	B)	is	illustrated	as	a	straight	line	

given	 by	𝑤# ∙ 𝑥# + 𝑤% ∙ 𝑥% − 𝜃 = 0.	 Patterns	 belonging	 to	 class	 A	 will	 be	 located	

below	the	decision	boundary	and	patterns	belonging	 to	class	B	will	be	above	the	

boundary.	

	

	

	

	

The	training	process	of	the	perceptron	is	made	through	supervised	learning.	

Weights	and	threshold	are	adjusted	according	to	Hebb’s	learning	rule.	In	short,	the	

network	 is	 initialized	with	 random	weights	and	 threshold	and	an	 input	vector	 is	

selected	from	the	training	set.	If	the	output	coincides	with	the	desired	value,	weights	

and	threshold	remain	unchanged,	otherwise	if	it	is	different	from	the	desired	value,	

then	weights	and	threshold	will	be	adjusted	according	to:	

Figure	1.4.Decision	boundary	with	two	inputs	

Source:	Da	Silva	et	al.	(2017)	

	 16	

𝒘5
EFGGH'I = 𝒘5

JGHK5LFM + 𝜂 ∙ O𝑑(Q) − 𝑦R ∙ 𝒙5
(Q)																														(1.4)	

	

where	 𝒘 = [𝜃		𝑤#		𝑤% …	𝑤']W 	 is	 the	 vector	 containing	 current	 threshold	 and	

weights,	𝒙(𝒌) = [−1		𝑥#
(Q)		𝑥%

(Q) …	𝑥'
(Q)]W 	is	the	kth	training	sample,		𝑑(Q)	is	the	desired	

value	for	the	kth	training	sample,	𝑦	is	the	output	produced	by	the	Perceptron	and	𝜂	

is	 the	 learning	 rate.	 The	 change	 in	 the	 weight	 vector	 can	 be	 written	 from	 the	

previous	equation	as:	
	

		∆𝒘𝒊 = 𝜂 ∙ O𝑑(Q) − 𝑦R ∙ 𝒙(𝒌)																																														(1.5)	
	

The	learning	rate	defines	how	rapidly	the	training	process	will	converge	and	become	

stable.	Usually	it	is	a	number	within	the	range	0 < 𝜂 < 1.	The	adjustment	process	is	

repeated	sequentially	until	no	error	is	found	between	the	desired	and	actual	output	

values2.	

	

	

1.6	From	Perceptron	to	ADALINE	and	MLP	
	

ADALINE	network	
	

The	ADELINE	(adaptive	linear	element)	is	similar	to	the	Perceptron	in	its	structure,	

since	it	is	also	composed	by	one	artificial	neuron	that	receives	𝑛	input	signals	and	

produces	 one	 output.	 However,	 it	 is	 characterised	 by	 an	 essential	 improvement	

regarding	a	different	learning	algorithm,	which	is	the	Delta	rule.	

From	Figure	1.5	it	can	be	seen	that	the	operating	principle	of	the	ADALINE	is	

similar	 to	 the	Perceptron,	but	with	 the	addition	of	an	association	block,	which	 is	

responsible	 for	 producing	 an	 error	 signal	 during	 the	 training	 process.	 The	 error	

signal	 is	simply	the	difference	between	the	activation	potential	𝑢	and	the	desired	

output	𝑑.	

	

	

	

	

2	For	further	details	about	the	mathematical	analysis	of	the	Perceptron	see	Da	Silva	et	al.	(2017)	
pp.	29-40	

	 17	

	

	

The	weights	 and	 the	 threshold	 are	 adjusted	 applying	 the	Delta	 rule,	which	

belongs	 to	 the	 family	 of	 Gradient	 Descent	 (GD)	 learning	 rules.	 GD	 algorithms	

approach	the	minimum	of	a	function	by	taking	steps	in	the	opposite	direction	of	the	

gradient	 of	 the	 function.	 Delta	 learning	 uses	 the	 minimum	 of	 the	 error	 for	 the	

adjustment	process.	

To	 quantify	 the	 error	 and	 measure	 the	 appropriateness	 of	 the	 transfer	

function,	a	loss	function	is	considered.	In	detail,	the	squared-error	loss	function	is	

used,	because	it	is	a	convex	function	and	it	is	possible	to	find	its	minimum.	Since	the	

probability	 distribution	 of	 the	 loss	 function	 cannot	 be	 directly	 computed,	 the	

empirical	risk	(or	error)	is	estimated	based	on	the	training	sample.	The	objective	of	

the	network	is	to	converge	to	the	minimum	of	the	empirical	error	function	so	that	

the	squared	error	 is	as	small	as	possible	 for	all	𝑝	 training	samples	available.	The	

squared	error	can	be	formulated	as:	
	

𝐸(𝒘) 	= 	
1
2 ∙^

[𝑑Q − 𝑢Q]%
J

Q7#

=
1
2 ∙^[𝑑Q −^ (𝑤5 ∙ 𝑥5 − 𝜃)

'

57#
]%	

J

Q7#

													(1.6)		

	

To	 find	 the	minimum,	 the	 derivative	 (gradient)	 of	 the	 squared	 error	𝐸(𝒘)	 with	

respect	to	the	vector	𝒘	is	taken:	
	

	∇𝐸(𝒘) = ab(𝒘)
a𝒘

																																																			(1.7)	
	

	

Figure	1.5.	ADALINE	architecture	

Source:	Da	Silva	et	al.	(2017)	

	 18	

The	 variation	 ∆𝒘	 needed	 to	 update	 the	 weight	 vector	 will	 have	 the	 opposite	

direction	of	the	gradient,	according	to:	
	

∆𝒘 = −𝜂 ∙ ∇	𝐸(𝒘) = 𝜂 ∙ O𝑑(Q) − 𝑦R ∙ 𝒙5
(Q)																													(1.8)	

	

The	weights	and	the	threshold	will	be	thus	adjusted	according	to:	
	

𝒘5
EFGGH'I = 𝒘5

JGHK5LFM + 𝜂 ∙ O𝑑(Q) − 𝑦R ∙ 𝒙5
(Q)																														(1.9)	

	

where	 𝒘 = [𝜃		𝑤#		𝑤% …	𝑤']W 	 is	 the	 vector	 containing	 current	 threshold	 and	

weights,	𝒙(Q) = [−1		𝑥#
(Q)		𝑥%

(Q) …	𝑥'
(Q)]W 	is	the	kth	training	sample,		𝑑(Q)	is	the	desired	

value	for	the	kth	training	sample,	𝑦	is	the	output	produced	by	the	ADALINE	and	𝜂	is	

the	learning	rate.	

Weights	are	adjusted	until	the	process	converges	to	the	optimal	configuration	

of	the	internal	parameters.	The	convergence	criterion	employs	the	mean	squared	

error	𝐸f(𝒘)	with	respect	to	all	training	samples	and	can	be	computed	as:	
	

𝐸f(𝒘) = 	
1
𝑝 ∙^

[𝑑Q − 𝑢Q]%
J

Q7#

																																									(1.10)		

	

The	 stopping	 criterion	 is	 based	 on	 the	 difference	 between	 the	 current	 and	 the	

previous	mean	squared	error	as	follows:	
	

g𝐸f(𝒘EFGGH'I) − 𝐸fO𝒘JGHK5LFMRg ≤ 𝜀																																	(1.11)	
	

When	this	difference	becomes	lower	than	the	required	precision	𝜀,	convergence	will	

be	reached.	

	

The	ADALINE	and	the	Perceptron	will	provide	different	results,	since	they	are	

based	on	 two	different	 learning	 rules.	The	Perceptron	decision	boundary	will	 be	

different	each	time	the	model	is	trained,	considering	that	the	weight	vector	strongly	

depends	on	its	random	initial	values.	The	ADALINE,	however,	will	always	reach	the	

same	optimal	configuration	since	the	configuration	of	the	optimal	parameters	has	

the	minimum	error.	For	all	 those	reasons,	ADALINE	is	a	more	robust	model	with	

respect	to	eventual	noise	elements	in	the	sample3.	

3	For	further	details	about	the	mathematical	analysis	of	the	ADALINE	see	Da	Silva	et	al.	(2017)	
pp.	41-54	

	 19	

	

Coding	the	ADALINE	in	R	
	

It	is	possible	to	write	a	code	in	R	to	implement	a	simple	classification	task	in	which	

a	single	input	variable	𝑥#	produces	an	output	belonging	to	the	set	{0,1}.	The	set	of	R	

functions	 in	 Listing	 1.1	 contains	 the	 activation	 function,	 the	 ADALINE	 training	

function	returning	as	a	result	the	optimal	weights	and	threshold,	the	ADALINE	test	

function	classifying	new	examples	and	a	final	function	performing	training	on	given	

training	 and	 test	 sets.	 The	 codes	 presented	 in	 this	 section	 are	 based	 on	 the	

algorithms	presented	in	De	Mello	and	Ponti	(2018)4.	

The	 weight	 and	 the	 threshold	 are	 randomized	 at	 the	 beginning,	 then	 the	

network	adjusts	them	performing	the	Gradient	Descent	method	on	an	example	basis	

with	an	iterative	procedure	until	the	SSE	converges	to	0.	The	expected	and	produced	

outputs	 are	 shown	 for	 the	 training	 set	 in	 addition	 to	 the	 optimal	 weight	 and	

threshold.	

	
Listing	1.1.	ADALINE.r	code	

define the activation function (a step function)

g <- function(net) {

 if (net > 0) {

 return(1)

 }else{

 return(0)

 }

}

define the function to train the ADALINE

eta and epsilon assume default values, but can be

changed to desired values

ADALINE.train <- function(train.table, eta = 0.15,

 epsilon = 0.1) {

 # define number of input variables (nVars)

 nVars = ncol(train.table)-1

 cat("Randomizing weights and theta in range [−0.6, 0.6]\n

 ")

4	To	deepen	the	knowledge	about	the	codes,	see	De	Mello	and	Ponti	(2018)	pp.	28-52

	 20	

 # randomize weights and theta

 weights = runif(min = -0.6, max = 0.6 , n = nVars)

 theta = runif(min = 0.6, max = 0.6 , n = 1)

 # initialize the sum of errors that will contain all training errors

 # when the error falls below the precision rate, learning stops

 sumSquaredError = 2*epsilon

 # learning iterations

 while (sumSquaredError > epsilon) {

 # initialize the SSE as zero to start counting

 sumSquaredError = 0

 # iterate along all examples contained in train.table

 for (i in 1:nrow(train.table)) {

 # example (x_i)

 x_i = train.table[i, 1:nVars]

 # target output class (y_i)

 y_i = train.table[i, ncol(train.table)]

 # outup produced by ADALINE (hat_y_i)

 # applying activation function with current weights and theta

 hat_y_i = g(x_i %*% weights - theta)

 # compute error

 Error = y_i-hat_y_i

 # compute the partial derivative of the squared error

 # using Gradient Descent method on an example basis

 dE2_dw1 = Error * x_i

 dE2_dtheta = Error * -1

 # find new weights and theta

 weights = weights + eta * dE2_dw1

 theta = theta + eta * dE2_dtheta

 # accumulate SSE to define stop criterion

 sumSquaredError = sumSquaredError + Error ^2

 }

 cat("Sum of squared errors = " , sumSquaredError , "\n")

 }

 # return final weights and theta as solution

 ret = list ()

 ret$weights = weights

	 21	

 ret$theta = theta

 return(ret)

}

define the function to test ADALINE over unseen examples

ADALINE.test <- function(test.table , weights , theta) {

 # print target and produced outputs

 cat("#yi\that_yi\n")

 # define the number in inputs

 nVars = ncol(test.table)-1

 # compute network outputs with weights and theta previously found

 for (i in 1:nrow(test.table)) {

 # example i

 x_i = test.table[i, 1:nVars]

 # target class for example i

 y_i = test.table[i, ncol(test.table)]

 # produced output for example i

 hat_y_i = g(x_i %*% weights - theta)

 cat(y_i, "\t", hat_y_i, "\n")

 }

}

define a function to run a simple example

ADALINE.run.simple <- function() {

 # training table

 train.table = matrix(c(0.00, 0,

 0.05, 0,

 0.10, 0,

 0.15, 0,

 0.20, 0,

 0.25, 0,

 0.30, 0,

 0.35, 0,

 0.40, 0,

 0.45, 0,

 0.50, 0,

 0.55, 1,

 0.60, 1,

	 22	

 0.65, 1,

 0.70, 1,

 0.75, 1,

 0.80, 1,

 0.85, 1,

 0.90, 1,

 0.95, 1,

 1.00, 1),

 nrow=21,

 ncol=2,

 byrow=TRUE)

 # test table

 # target outputs are shown but non used in testing stage

 test.table = matrix(c(0.025, 0,

 0.075, 0,

 0.125, 0,

 0.175, 0,

 0.225, 0,

 0.275, 0,

 0.325, 0,

 0.375, 0,

 0.425, 0,

 0.475, 0,

 0.525, 1,

 0.575, 1,

 0.625, 1,

 0.675, 1,

 0.725, 1,

 0.775, 1,

 0.825, 1,

 0.875, 1,

 0.925, 1,

 0.975, 1),

 nrow=20,

 ncol=2,

 byrow=TRUE)

 # train ADALINE to find weights and theta

 training.result = ADALINE.train(train.table)

 # test the ADALINE with the final weights and theta

	 23	

 ADALINE.test(test.table, training.result$weights,

 training.result$theta)

 return(training.result)

}

	

The	source	code	for	ADALINE.r	must	be	loaded	in	the	R	Statistical	by	typing	

source(“ADALINE.r”) into	the	command	line	and	only	thereafter	the	function	

ADALINE.run.simple() can	be	executed.	

The	 textual	 output	 obtained	 will	 be	 similar	 to	 Listing	 1.2.	 Notice	 that	 the	

predicted	output	nearby	0.5	may	be	wrong,	since	this	is	the	transition	value	between	

the	two	classes.	

	
Listing	1.2.	text	output	produced	by	ADALINE.run.simple()	

> ADALINE.run.simple()
Randomizing weights and theta in range [−0.6, 0.6]

 Sum of squared errors = 2

Sum of squared errors = 2

Sum of squared errors = 2

Sum of squared errors = 2

Sum of squared errors = 2

Sum of squared errors = 2

Sum of squared errors = 2

Sum of squared errors = 2

Sum of squared errors = 2

Sum of squared errors = 2

Sum of squared errors = 2

Sum of squared errors = 2

Sum of squared errors = 2

Sum of squared errors = 1

Sum of squared errors = 0

#yi hat_yi

0 0

0 0

0 0

0 0

0 0

0 0

0 0

	 24	

0 0

0 0

0 0

1 0

1 1

1 1

1 1

1 1

1 1

1 1

1 1

1 1

1 1

$weights

[1] 0.8226181

$theta

[1] 0.45	
	

It	is	worth	also	to	visualize	how	the	ADALINE	separates	the	input	space.	The	

function	ADALINE.simple.hyperplane.plot()	 shown	in	Listing	1.3	can	be	

executed	to	plot	the	hyperplane	with	the	weight	and	threshold	obtained	from	the	

network.	

	
Listing	1.3.	Hyperplane	plotting	

Define the function that plots the hyperplane for the problem

considering a single input variable x_1

ADALINE.simple.hyperplane.plot <- function(weight, theta,

 # Variables range.start and range.end define the

 # interval of values for the single input variable

 range.start = 0,

 range.end = 1) {

 # Number of variables is 1

 nVars = 1

 # Define the same range for the input variable

 # containing 100 discretized values

 range_of_every_input_variable =

 seq(range.start, range.end, length = 100)

 x_1 = range_of_every_input_variable

	 25	

 # Compute the net for every input value of variable x_1

 all_nets = cbind (x_1, -1) %*% c(weight, theta)

 # Compute the outputs produced by the ADALINE

 # applying the activation function

 hat_y = rep(0, length(all_nets))

 for (i in 1:length(all_nets)) {

 hat_y[i] = g(all_nets[i]) }

 # Construct the hyperplane matrix

 # containing input values of x_1 and the produced output

 hyperplane = cbind(x_1, hat_y)

 # Plot the hyperplane found by the ADALINE

 plot(hyperplane, xlab = "input (x1)", ylab = "output classes")

 return(hyperplane)

}

	

The	resulting	plot	of	 the	hyperplane	will	be	similar	 to	the	one	 illustrated	 in	

Figure	1.6.	

	

	

	

	

Figure	1.6.	Separation	of	the	input	space	

	 26	

The	MLP	network	
	

The	Perceptron	and	the	ADALINE	provide	accurate	results	only	with	classes	that	are	

linearly	separable.	For	nonlinear	problems	additional	layers	of	several	neurons	are	

needed	in	order	to	build	a	multilayer	perceptron	(MLP)	architecture,	which	is	the	

most	famous	and	widely	employed	ANN.	The	MLP	is	composed	by	the	input	layer	

that	receives	signals	from	the	external	environment,	at	least	one	hidden	layer	that	

extracts	patterns	and	features	by	processing	the	data	and	codifying	it	and	the	output	

layer	that	produces	several	final	outputs.	As	shown	in	Figure	1.7,	the	signal	of	each	

input	is	propagated	layer	by	layer	towards	the	final	layer	and	always	flows	in	one	

direction.	The	number	of	hidden	layers	and	the	corresponding	number	of	neurons	

depends	on	many	factors,	such	as	the	class	of	the	problem	considered	and	the	initial	

values	of	the	training	parameters.		

The	training	process	of	an	MLP	network	is	made	by	using	the	Backpropagation	

(BP)	 algorithm,	 also	 known	 as	 generalized	Delta	 rule.	 The	 special	 feature	 of	 this	

algorithm	is	the	way	in	which	the	error	is	calculated:	the	error	is	computed	for	the	

output	layer,	then	it	is	propagated	to	the	hidden	layers	and	finally	to	the	input	layer.	

	

	

	

The	error	is	computed	as	a	function	of	the	network	weights	and	BP	algorithm	

searches	 the	 error	 surface	 using	 Gradient	 Descent	 for	 the	 global	minimum.	 This	

process	is	iterated	many	times	and	each	iteration	is	formed	by	two	stages:	forward	

activation	 and	 backward	 propagation.	 The	 forward	 activation	 stage	 involves	

Figure	1.7.	MLP	architecture	with	2	hidden	layers	

Source:	Da	Silva	et	al.	(2017)	

	 27	

entering	one	training	example	into	the	network	in	order	to	obtain	a	solution	to	the	

fed	example	with	 the	current	weights	and	 thresholds.	 In	 the	backward	stage,	 the	

responses	produced	by	the	network	are	compared	to	the	desired	responses	and	the	

difference	 between	 ANN	 and	 target	 outputs	 is	 used	 to	 adjust	 the	 weights	 and	

thresholds,	starting	from	the	output	layer,	next	all	the	hidden	layers	and	finally	to	

the	 input	 layer.	 These	 stages	 are	 performed	 repeatedly	 until	 the	 error	 meets	 a	

prespecified	stopping	criterion.	

The	weight	change	can	be	written	as:	
	

∆𝑤j5k = 𝜂 ∙ 𝛿jk ∙ 𝑥5km# + 𝜇 ∙ ∆𝑤j5
k(JGHK5LFM)																														(1.12)	

	

where	∆𝑤j5k 		is	the	incremental	change	in	the	weight	residing	in	the	interlayer		𝑙	and	

connecting	node	𝑗	of	the	interlayer	𝑙	with	node	𝑖	of	the	preceding	interlayer							𝑙 − 1,		

𝑥5km#	 is	 the	 input	coming	 from	 interlayer	 	 𝑙 − 1	 and	 integrated	by	node	 𝑗,	𝜂	 is	 the	

learning	rate,	𝛿jk 	is	the	local	gradient	related	to	node	𝑗	in	the	interlayer	𝑙	,		𝜇	is	the	

momentum	 coefficient	 and	∆𝑤j5
k(JGHK5LFM)	 is	 the	 incremental	 change	 in	 the	weight	

residing	in	the	interlayer		𝑙	and	connecting	node	𝑗	of	the	interlayer	𝑙	with	node	𝑖	of	

the	preceding	interlayer		𝑙 − 1	of	the	previous	observation.	

To	 fully	 understand	 the	 mathematical	 formulation	 of	 Equation	 1.11,	 it	 is	

important	to	reason	about	the	way	in	which	the	neurons	in	one	layer	get	activated	

in	relation	to	the	activation	of	the	neurons	in	the	previous	layer,	since	every	neuron	

in	 layer	 𝑙	 is	 connected	 by	 interlayer	 connections	 to	 all	 neurons	 in	 layer	 𝑙 − 1.	

Considering	this	relationship	between	the	neurons,	plus	for	notation	purposes,	the	

interlayer	𝑙	is	defined	as	the	area	between	two	successive	layers	and	it	comprises	

the	connection	weights	inside	this	area	and	only	the	neurons	of	the	upper	layer,	as	

can	 be	 seen	 from	 Figure	 1.8.	 In	 this	 way	 the	 net	 produced	 by	 neuron	 𝑗	 in	 the	

interlayer	𝑙	can	be	computed	according	to:	
	

𝜉jk = 	 ^ 𝑤j5k
q:;<

57#

∙ 𝑥5km#																																																		(1.13)	

	

where	𝜉jk 	is	the	net	produced	by	neuron	𝑗	in	the	interlayer	𝑙,	𝑥5km#	is	the	signal	coming	

from	the	ith	neuron	in	interlayer	𝑙 − 1	and	𝑤j5k 	is	the	weight	connecting	neuron	𝑗	to	

neuron	𝑖.	

	 28	

The	net	is	then	compared	to	the	threshold	by	the	neuron	and	the	result	is	used	

to	compute	the	output	by	applying	the	activation	function.	This	output	signal	is	sent	

to	the	neurons	of	the	following	layer	as	an	input	signal	and	the	process	is	repeated	

until	the	signal	reaches	the	output	layer5.	

	

	

To	 summarize,	 in	 a	 backpropagation	 ANN	 the	 data	 is	 fed	 unidirectionally	

without	any	feedback	and	the	neurons	in	each	layer	can	be	fully	or	only	partially	

interconnected	 to	 the	other	 layers.	 If	 the	network	has	 enough	hidden	 layers,	 the	

learning	process	of	the	MLP	will	be	able	to	approximate	any	nonlinear	function	with	

good	 accuracy,	 efficiency	 and	 speed.	 While	 the	 mathematical	 expression	 of	 the	

algorithm	is	quite	complex,	it	gives	an	intuitive	and	natural	interpretation	of	how	

changes	in	weights	and	threshold	will	affect	the	network’s	behaviour	and	it	provides	

an	 insight	on	 the	 impact	of	 each	 input	on	 the	 final	 output.	 For	 all	 those	 reasons,	

backpropagation	 is	 one	 the	most	 widely	 used	 learning	 algorithms	 and	MLP	 is	 a	

versatile	and	flexible	model	that	is	used	in	many	applications	like	data	modelling,	

forecast,	 classification,	 image	 compression,	 pattern	 identification	 and	 speech	

recognition.	 For	 example,	 one	 popular	 application	 is	 the	 classification	 of	

handwritten	 digits,	 a	 task	 that	 the	 MLP	 performs	 with	 better	 than	 98	 percent	

accuracy	(Nielsen,	2015).	

5	For	further	details	about	the	mathematical	analysis	of	the	MLP	and	the	backpropagation	algorithm	
see	Da	Silva	et	al.	(2017)	pp.	55-115	and	Basheer	and	Hajmeer	(2000)	

Figure	1.8.	Notation	and	index	labelling	for	the	interlayers	

Source:	Basheer	and	Hajmeer	(2000)	

	 29	

Coding	the	MLP	in	R	
	

MLP	networks	can	be	used	to	solve	simple	XOR	problems	that	both	Perceptron	and	

ADALINE	are	not	able	 to	handle.	 In	 this	 type	of	problem,	 two	 input	variables	are	

considered.	The	neuron	will	be	activated	and	produce	an	output	equal	to	1	only	if	

the	two	inputs	have	different	values,	otherwise	the	output	will	be	0.	The	training	

sample	considered	is	shown	in	table	1.2	in	which	each	pair	of	 inputs	𝑥#	and	𝑥%	 is	

attached	to	the	target	output.	
	

Table	1.2.	Training	sample	for	the	XOR	problem	

Input	𝒙𝟏	 Input	𝒙𝟐	 Output	

0	 0	 0	

0	 1	 1	

1	 0	 1	

1	 1	 0	

	

The	code	used	to	solve	this	problem	shown	in	Listing	1.4	was	taken	from	De	

Mello	 and	 Ponti	 (2018)6.	 The	 set	 of	 R	 functions	 in	 this	 Listing	 contains	 the	MLP	

sigmoid	activation	function,	a	function	that	builds	up	the	network	architecture	by	

specifying	the	number	of	neurons	in	each	layer,	a	function	that	produces	the	output	

after	being	 fed	with	 the	 inputs,	 a	 function	 that	 performs	 the	 training	 and	adapts	

weights	and	thresholds,	a	function	that	tests	the	MLP,	a	function	that	produces	a	plot	

with	the	two	hyperplanes	cutting	the	input	space	and	a	final	function	responsible	

for	training	the	XOR	problem	with	the	training	set	presented	in	Table	1.2.	The	MLP	

architecture	 is	 composed	of	 two	neurons	at	 the	 input	 layer	corresponding	 to	 the	

input	 variables	𝑥#	 and	𝑥%,	 two	neurons	 at	 the	hidden	 layer	 corresponding	 to	 the	

hyperplanes	and	one	single	neuron	at	the	output	layer	providing	the	final	answer	as	

a	0	or	1.	

	
Listing	1.4	MLP.r	implementation	

Define the MLP sigmoid activation function

f <- function(net) {

 ret = 1.0 / (1.0 + exp(-net))

6	For	more	details	about	the	codes,	read	De	Mello	and	Ponti	(2018)	pp.	52-72

	 30	

 return(ret)

}

Define the function to build up the MLP architecture,

specifying the size of input, hidden and output layers

with their respective weights and thetas randomly

initialized in the interval [−1,1]

mlp.architecture <- function(input.layer.size = 2,

 hidden.layer.size = 2,

 output.layer.size = 1,

 f.net=f) {

 # Create a list to contain the layers information

 layers = list()

 # Construct the hidden layer matrix

 # The term "input.layer.size +1" refers to

 # the number of neurons in the input layer (a weight

 # per unit) plus an additional element to define theta

 layers$hidden = matrix(runif(min = -1, max = 1,

 n = hidden.layer.size * (input.layer.size+1)),

 nrow = hidden.layer.size,

 ncol = input.layer.size +1)

 # Construct the output layer matrix

 layers$output = matrix(runif(min = -1, max = 1,

 n = output.layer.size * (hidden.layer.size +1)),

 nrow = output.layer.size,

 ncol = hidden.layer.size +1)

 # Define a list to return:

 # − the number of units at the input, hidden and output layer

 # − layers information (including weights and thetas)

 # − the activation function used

 ret = list()

 ret$input.layer.size = input.layer.size

 ret$hidden.layer.size = hidden.layer.size

 ret$output.layer.size = output.layer.size

 ret$layers = layers

 ret$f.net = f.net

 return(ret)

	 31	

}

Define the function that produces the MLP output

after providing input values

The term "architecture" refers to the model

produced by function mlp.architecture()

The term "dataset" corresponds to the examples

used as input to the MLP

The term "p" is associated to

the identifier of the current example being forwarded

forward <- function (architecture, dataset, p) {

 # Organize the dataset as input examples x

 x = matrix(dataset[,1:architecture$input.layer.size],

 ncol = architecture$input.layer.size)

Organize the dataset as expected classes y associated to

input examples x

 y = matrix(

 dataset[,(architecture $input.layer.size +1) : ncol(dataset)],

 nrow = nrow (x))

Submit the p−th input example to the hidden layer

net_h = architecture$layers$hidden %*% c(as.vector(ts(x[p,])), 1)

f_net_h = architecture$f.net(net_h)

Organize Hidden layer outputs as inputs for the output layer

net_o = architecture$layers$output %*% c(f_net_h, 1)

f_net_o = architecture$f.net(net_o)

Define the list of final results produced by the MLP to be returned

ret = list ()

ret$f_net_h = f_net_h

ret$f_net_o = f_net_o

return (ret)

}

Define the function responsible for training

that adapts weights and thetas for every neuron by applying GD

method

backpropagation <- function (architecture, dataset,

 eta = 0.1, epsilon = 1e-3) {

	 32	

 x = matrix(dataset[,1:architecture$input.layer.size],

 ncol = architecture$input.layer.size)

y = matrix(

 dataset[,(architecture $input.layer.size +1) : ncol (dataset)],

 nrow = nrow(x))

 cat("Input data ...\n")

 print(x)

 cat("Expected output ...\n")

 print(y)

 cat("Enter to start running ... ")

 readline ()

 squared_error = epsilon * 2

 # Define a loop that will run until the average squared error

 # falls below a certain precision level

 while (squared_error > epsilon) {

 # Initialize the squared error to measure the loss for

 # all examples in the training set

 squared_error = 0

 for (p in 1:nrow(x)) {

 # Applying the input example at row p

 f = forward(architecture, dataset, p)

 # Use the results to adapt weights and thetas

 error = (y[p,] - f$f_net_o)

 # Compute the term "delta" for the output layer

 delta_o = error * f$f_net_o * (1-f$f_net_o)

 # Compute the squared error to be used as a stopping criterion

 # the term "sum(error ^2)" is used becuase the output

 # layer can have more than one neuron

 squared_error = squared_error + sum(error ^2)

 # Compute delta for the hidden layer

	 33	

 w_o = architecture$layers$output[,

 1:architecture$hidden.layer.size]

 delta_h = (f$f_net_h * (1 - f$f_net_h)) *

 sum(as.vector(delta_o) * as.vector(w_o))

 # Adapt weights and thetas at the output layer

 architecture$layers$output =

 architecture$layers$output + eta * delta_o %*%

 c(f$f_net_h, 1)

 # Adapting weights and thetas at the hidden layer

 architecture$layers$hidden =

 architecture$layers$hidden + eta * delta_h %*% c(x[p,], 1)

 }

 # Find the average (to be used as stopping criterion)

 # by dividing the total squared error by nrow

 # and print it

 squared_error = squared_error/nrow(x)

 cat("Squared error = " , squared_error , "\n")

 }

 # Returning the trained architecture, which can be now executed

 return(architecture)

}

Define the function to test the MLP

mlp.test <- function(architecture, dataset, debug = T) {

 # Organize the dataset as input examples x

 x = matrix(dataset[,1:architecture$input.layer.size],

 ncol=architecture$input.layer.size)

 # Organize the dataset as expected classes y

 # associated to input examples x

 y = matrix (

 dataset [,(architecture $input.layer.size +1) : ncol (dataset

)],

 nrow = nrow(x))

 cat("Enter to start testing ... ")

 readline()

	 34	

 output = NULL

 # For every example at index p

 for (p in 1:nrow(x)) {

 # Apply the input example at row p

 f = forward(architecture, dataset, p)

 # If debug is true, show all information regarding classification

 if (debug) {

 cat("Input pattern = ", as.vector(x[p,]) ,

 " Expected = ", as.vector(y[p,]) ,

 " Predicted = ", as.vector(f$f_net_o), "\n")

 }

 # Concatenate all output values as rows in a matrix

 # to be able to check them

 output = rbind(output , as.vector(f$f_net_o))

 }

 # Return results

 return(output)

}

Define the function to produce a discrete hyperplane to

shatter the input space of examples

discretize.hyperplane <- function(img, range = c(0.45, 0.55)

){

 ids_negative = which(img < range [1])

 ids_positive = which(img > range[2])

 ids_hyperplane = which(img >= range[1] & img <= range[2])

 img[ids_negative] = 0

 img[ids_positive] = 1

 img[ids_hyperplane] = 0.5

 img

}

Define the function to train and test a XOR problem

xor.test <- function(eta = 0.1, epsilon = 1e-3) {

	 35	

 # Load the dataset "xor.dat"

 dataset = as.matrix(read.table("xor.dat"))

 # Build up the MLP architecture with random weights and thetas.

 # There are 2 units at the input layer corresponding to number

 # of input variables, 2 units at the hidden layer corresponding

 # to the hyperplanes and 1 unit at the output layer to provide

 # the answer as values in range [0 ,1]

 model = mlp.architecture(input.layer.size = 2,

 hidden.layer.size = 2,

 output.layer.size = 1,

 f.net = f)

 # Train the architecture "model" to build up the "trained.model"

 trained.model = backpropagation(model, dataset, eta = eta,

 epsilon = epsilon)

 # Test the "trained.model" using the same XOR dataset

 mlp.test(trained.model, dataset)

 # Build up hyperplanes to plot

 x = seq (-0.1 ,1.1 , length =100)

 hyperplane_1 = outer(x,x,

 function(x,y) { cbind(x,y,1) %*%

 trained.model$layers$hidden[1,] })

 hyperplane_2 = outer(x,x,

 function(x,y) { cbind(x,y,1) %*%

 trained.model$layers$hidden[2,] })

 cat("Press enter to plot both hyperplanes ... ")

 readline ()

 # Plot the hyperplanes built at the hidden layer

 filled.contour(discretize.hyperplane(hyperplane_1) +

 discretize.hyperplane(hyperplane_2))

}

	

The	source	code	of	MLP.r	has	to	be	loaded	in	the	R	Statistical	Software	typing	

source(“MLP.r”),	the	working	directory	must	be	set	to	the	folder	containing	the	

training	data	table	saved	as	xor.dat	and	only	then	the	function	xor.test()	can	

be	run.	The	textual	output	in	Listing	1.5	shows	the	input	examples	and	the	related	

	 36	

outputs.	 Then	 by	 typing	 “enter”,	 training	 is	 performed	 and	 the	 average	 squared	

error	 is	shown	for	each	 iteration,	until	convergence	 is	reached.	By	 typing	“enter”	

again,	the	results	of	the	classification	task	are	shown.	The	predicted	outputs	are	not	

exactly	the	same	as	the	target	ones,	yet	they	are	sufficiently	similar.	One	could	set	a	

smaller	 precision	 rate	 (epsilon)	 to	 obtain	 a	 better	 approximation,	 depending	 on	

degree	of	precision	that	is	needed.	However,	this	choice	will	slow	down	learning.	

	
Listing	1.5.	Textual	output	of	the	MLP	

> xor.test()

Input data ...

 [,1] [,2]

[1,] 0 0

[2,] 0 1

[3,] 1 0

[4,] 1 1

Expected output ...

 [,1]

[1,] 0

[2,] 1

[3,] 1

[4,] 0

Enter to start running ...

.

.

.

Squared error = 0.001000326

Squared error = 0.001000248

Squared error = 0.00100017

Squared error = 0.001000092

Squared error = 0.001000014

Squared error = 0.0009999364

Enter to start testing ...

Input pattern = 0 0 Expected = 0 Predicted = 0.02902642

Input pattern = 0 1 Expected = 1 Predicted = 0.9668781

Input pattern = 1 0 Expected = 1 Predicted = 0.9668705

Input pattern = 1 1 Expected = 0 Predicted = 0.03100915

Press enter to plot both hyperplanes ...

	

	 37	

Typing	 “enter”	 once	 again	 a	 plot	 of	 the	 two	 inferred	 hyperplanes	 will	 be	

produced	as	shown	in	figure	1.9.	The	light	blue	region	between	the	two	hyperplanes	

contains	the	input	couples	that	produce	the	output	0,	while	the	pink	regions	outside	

the	hyperplanes	contain	the	input	couples	attached	to	the	output	1.	

	

	

	

1.7	Other	popular	ANNs	
	

A	vast	number	of	artificial	neural	networks	have	been	developed	for	many	different	

applications	in	addition	to	the	Perceptron,	ADALINE	and	MLP.	In	this	section	some	

of	the	most	frequently	used	networks	are	summarized.	

The	Hopfield	network	is	a	symmetric	fully	connected	recurrent	network,	with	

an	input	and	an	output	layer.	It	acts	as	a	non-linear	associative	memory	and	is	able	

to	 classify	 incomplete	 or	 noisy	 input	 signals	 by	 using	 its	 internally	 stored	

characteristics.	 However,	 it	 is	 appropriate	 only	 for	 binary	 inputs.	 The	 weights	

connecting	two	neurons	are	set	equal	to	the	product	of	their	inputs	and	learning	is	

done	by	implementing	an	energy	function.	

The	 adaptive	 resonance	 theory	 (ART)	 network	 is	 composed	 by	 two	 fully	

interconnected	 layers,	 a	 layer	 receiving	 input	 signals	 and	 an	 output	 layer.	 It	 is	

trained	with	unsupervised	learning	and	have	two	sets	of	weights:	the	feedforward	

weights	are	used	to	select	the	winning	output	neuron	and	keep	long-term	memory,	

Figure	1.9.	Plot	of	the	hyperplanes	cutting	the	input	space	

	 38	

while	the	feedback	weights	test	the	vigilance	and	keep	the	short-term	memory.	This	

type	of	training	allows	the	system	to	store	the	classified	characteristics	and	compare	

them	with	each	new	example	in	order	to	decide	if	it	is	dissimilar	enough	to	store	it	

as	a	new	characteristic	or	if	it	matches	the	existing	ones.	

Kohonen	 networks	 are	 composed	 by	 two	 layers	 that	 transform	 high-

dimensional	 inputs	 into	data	of	 lower	order.	They	are	 trained	with	unsupervised	

learning	and	group	data	into	clusters.	In	practice	they	are	used	for	compressing	data	

and	recognizing	patterns.	

Counterpropagation	 networks	 are	 used	 to	 create	 a	 self-organizing	 lookup	

table,	 by	 hybrid	 learning.	 Unsupervised	 learning	 is	 implemented	 to	 create	 a	

Kohonen	 map	 of	 inputs	 in	 order	 to	 group	 data	 into	 clusters.	 At	 the	 same	 time,	

supervised	learning	is	applied	to	this	map	in	order	to	associate	an	output	to	each	

point	on	the	map.	After	the	training	phase,	new	examples	are	classified	simulating	

the	lookup	table.	

Radial	 basis	 function	 (RBF)	 networks	 are	 MLP	 error-backpropagation	

networks	with	three	layers.	The	hidden	layer	function	is	to	cluster	the	inputs.	The	

activation	 function	 used	 is	 the	 Gaussian	 kernel	 and	 belong	 to	 the	 radial	 basis	

functions.	 In	practice	they	are	used	for	 function	approximation,	classification	and	

time	series	prediction	(Basheer	and	Hajmeer,2000).		

	

	

1.8	ANNs	compared	to	statistics	and	expert	systems	
	

It	is	worth	to	compare	ANNs	to	statistics	and	expert	systems	(ES),	given	that	they	

are	different	on	many	aspects	and	yet	they	share	plenty	of	similarities.	Basheer	and	

Hajmeer	(2000)	and	Anderson	and	McNeill	(1992)	discussed	this	matter	in	detail.		

	

Considering	the	comparison	with	statistics,	Basheer	and	Hajmeer	(2000)	noted	that	

some	 models,	 such	 as	 feedforward	 network	 with	 no	 hidden	 layers,	 are	 a	

generalization	of	statistical	models,	other	models	like	Hebbian	learning	are	related	

to	statistical	modelling	and	others,	such	as	Kohonen	networks,	have	no	similarities	

with	statistical	models.	Some	researchers	believe	that	ANNs	are	a	type	of	nonlinear	

statistical	 regression	or	a	generalization,	others	view	 them	as	superior	 tools.	For	

	 39	

classical	regressions,	the	mathematical	equation	and	independent	variables	must	be	

known	or	assumed	a	priori	and	the	function	relating	the	variables	is	a	set	of	linear	

operators.	The	internal	structure	of	an	ANN,	on	the	other	hand,	is	represented	by	a	

complex	function	combining	a	large	number	of	nonlinear	functions.	

The	 most	 important	 characteristic	 is	 that	 ANNs	 have	 a	 higher	 predictive	

accuracy	than	statistical	regression	and	the	accuracy	increases	as	the	dimensionality	

and	nonlinearity	of	the	problem	increases.	

Depending	on	 the	 type	of	problem	that	has	 to	be	solved,	one	model	will	be	

preferred	 to	 the	 other.	 When	 modelling	 data	 with	 only	 few	 dimensions	 or	

approximating	simple	functions,	statistical	techniques	should	be	chosen.	ANNs	will	

be	 used	 instead	when	 a	 high	 accuracy	 is	 needed	 or	when	 the	 problem	 has	 high	

dimensionality	and	complexity.	

	

Expert	 systems	 are	 computer	 programs	 that	 try	 to	 mimic	 the	 logical	 reasoning	

process	of	the	human	brain	and	rely	on	rules,	concepts	and	calculations.	An	ES	is	

composed	by	 an	 inference	 engine	 (a	 generic	 component)	 and	 a	 knowledge	 base,	

containing	 the	 information	 related	 to	 a	 specific	 problem	 and	 allowing	 the	

programmer	to	define	a	set	of	logical	(if-then)	rules.	The	engine	draws	conclusions	

and	provides	a	solution	based	on	the	rules	(Anderson	and	McNeill,	1992).	

ESs	 process	 information	 in	 a	 sequential	 manner	 and	 suffer	 from	 some	

limitations	due	to	their	high	sensitivity	to	incomplete	or	noisy	data.	This	is	because	

expert	systems	do	not	learn	by	themselves,	instead	they	follow	the	rules	that	were	

manually	defined	by	the	programmer	and	are	not	able	to	deal	with	incomplete	or	

noisy	data.	They	need	to	be	fed	with	accurate	and	consistent	data	with	respect	to	the	

rules	set.	In	addition,	when	the	complexity	of	the	system	increases,	it	will	become	

too	 slow	 and	 ask	 for	 too	 many	 computing	 resources.	 Moreover,	 not	 all	 kind	 of	

knowledge	can	be	expressed	in	terms	of	a	set	of	logical	rules.	

The	 choice	 between	ANNs	 and	 expert	 systems	 also	 depends	 on	 the	 type	 of	

problem.	Expert	systems	can	be	used	for	problems	in	which	data	and	theory	are	not	

adequate,	 by	 coding	 the	 information	with	 rules	 of	 thumb.	 Conversely,	 ANNs	 are	

preferred	for	solving	problems	where	plenty	of	data	is	available	but	no	clear	theory	

can	be	formulated.	For	further	details	see	Basheer	and	Hajmeer	(2000).	

	 	

	 40	

	

	 	

	 41	

	

	
	

CHAPTER	2		
The	development	of	an	ANN	
	

The	present	chapter	is	focused	on	presenting	and	discussing	the	methodology	and	

the	precise	steps	that	have	to	be	followed	in	order	to	develop	a	new	ANN	project.	

When	developing	an	ANN,	the	modeler	has	to	account	for	many	issues	relating	to	

the	dataset,	the	architecture	and	training	of	the	model.	A	summary	of	the	issues	and	

possible	solutions,	which	are	well	described	by	Basheer	and	Hajmeer	(2000),	will	be	

presented	in	the	second	section	of	the	chapter.	

	

	

2.1	Steps	in	an	ANN	development	
	

In	order	to	develop	an	ANN	project	from	scratch,	seven	steps	need	to	be	taken,	as	

shown	in	Figure	2.1.	The	first	step	requires	choosing	the	appropriate	model	outputs	

and	 a	 set	 of	 potential	 input	 variables	 from	 the	 available	 data.	 In	 this	 phase,	 the	

problem	has	to	be	defined	and	formulated.	It	is	important	to	understand	the	causal	

nexus	between	the	different	variables	and	to	assess	the	possible	benefits	over	other	

techniques,	such	as	statistics	and	expert	systems.	The	starting	point	is	to	collect	all	

possible	 variables	 that	 could	 help	 to	 explain	 the	 problem	 in	 question	 and	 then	

choose	 the	 inputs	 that	 will	 be	 used	 in	 the	model,	 based	 on	 prior	 knowledge	 or	

availability	of	data.	The	resulting	dataset	forms	the	selected	(unprocessed)	dataset.	

The	second	step	consists	in	pre-processing	all	the	variables	from	the	selected	

unprocessed	dataset,	 so	 that	 they	 can	be	 fed	 into	 the	network	 in	 an	 appropriate	

form.	The	resulting	dataset	forms	the	selected	(processed)	dataset.	

In	 the	 third	 step,	 the	 vector	 of	 appropriate	 inputs	 is	 selected.	 This	 is	 an	

important	 choice	 in	 the	 ANN	 development	 process,	 because	 the	 inclusion	 of	 too	

many	 correlated	 inputs	 will	 increase	 the	 training	 time	 and	 the	 overfitting	

	 42	

probability,	while	the	exclusion	of	important	variables	will	lead	to	a	model	that	is	

not	able	to	fully	explain	the	problem.	

The	fourth	step	relates	to	the	division	of	the	dataset	into	two	subsets	(training	

and	 test),	 which	 will	 be	 used	 for	 the	 model	 calibration	 and	 the	 performance	

evaluation	 phases.	 For	 networks	 that	 are	 prone	 to	 overfitting,	 usually	 cross-

validation	is	used	as	the	stopping	criterion	for	the	model	structure	selection	and	the	

training	 set	 is	 further	 randomly	partitioned	 into	 an	 in-sample	 set	 and	 an	 out-of-

sample	 (or	 validation)	 set	 of	 chosen	 length.	 The	 in-sample	 set	 is	 used	 to	 train	

different	candidate	models	that	have	diverse	architectures	in	order	to	estimate	the	

weights.	 The	 validation	 set	 is	 employed	 to	 decide	 which	 is	 the	 best	 parameters	

configuration	(e.g.	number	of	nodes	and	number	of	hidden	layers)	for	each	model,	

in	order	to	prevent	overfitting.	The	test	set	is	an	independent	dataset,	which	is	used	

to	evaluate	the	performance	and	generalization	capability	of	the	best	models.	There	

is	 a	 lot	 of	 confusion	 about	 the	 terminology	 used	 for	 the	 three	 subsets.	 Many	

industrials	and	academics	 invert	 the	meaning	of	 the	validation	and	 test	sets.	The	

same	confusion	arises	also	for	the	division	into	three	sets	rather	than	two.	In	this	

case,	the	in-sample	set	is	called	training	set,	while	the	validation	set	and	the	test	set	

preserve	their	meaning.	

The	 fifth	 step	 requires	 choosing	 a	 set	 of	 model	 architectures	 that	 will	 be	

developed,	 such	 as	 feedforward	 or	 recurrent.	 This	 will	 determine	 the	 overall	

structure	and	the	information	flow	of	the	model.	

The	sixth	step	consists	 in	selecting	the	best	model	structure	and	calibrating	

each	model	with	the	training	set.	The	biggest	issue	in	this	phase	is	to	select	the	right	

size	 of	 a	 network	 (layers	 and	 nodes),	 the	 learning	 rate,	 the	 number	 of	 training	

epochs	and	an	adequate	precision	rate.	All	these	elements	will	affect	the	design	and	

the	performance	of	the	network	and	it	is	recommended	to	try	and	design	a	set	of	

possible	 networks	 with	 different	 configurations	 in	 order	 to	 reach	 an	 optimal	

selection	 of	 the	 parameters.	 The	 selected	 models	 are	 calibrated	 using	 cross-

validation	in	order	to	obtain	the	optimal	parameters	for	each	model.	

The	seventh	step	relates	 to	model	 testing	 (or	performance	evaluation).	The	

calibrated	models	need	to	be	tested	using	an	independent	data	set	in	order	to	assess	

their	generalization	capability	and	accuracy	when	presented	with	unseen	examples.	

In	this	phase	it	is	possible	also	to	compare	the	performance	of	the	ANN	to	the	other	

	 43	

techniques	 cited	 in	 the	 first	 step.	 For	 further	 details	 see	 Basheer	 and	 Hajmeer	

(2000),	Maier	et	al.	(2010)	and	Wu	et	al.	(2014).	

	

	

	

	

2.2	Related	issues	and	possible	solutions	
	

When	developing	an	ANN	based	model,	a	series	of	issues	pertaining	to	the	database	

creation	 and	 processing,	 weight	 initialization,	 choice	 of	 the	 learning	 rate,	

momentum	coefficient,	convergence	criteria,	training	epochs,	size	of	hidden	layers	

and	many	others	have	to	be	addressed	before	staring	the	training	process.	

	

	

	

Figure	2.1.	Steps	in	developing	an	ANN	project	

Model	testing

Model	structure	selection	and	model	calibrarion

Model	architecture	selection

Data	splitting

Input	selection

Data	pre-processing

Choice	of	potential	inputs	and	appropriate	outputs

	 44	

Database	size	and	partitioning	
	

An	ANN	capability	to	generalize	will	highly	depend	on	the	size	of	the	database,	given	

that	they	are	utilized	as	interpolators	with	unseen	examples	and	the	size	must	be	

sufficiently	large	to	enclose	all	the	possible	deviations	inside	the	problem	domain.	

The	 training	 subset	 contains	 all	 the	 data	 relevant	 to	 the	 problem	 and	 it	 is	

employed	during	the	training	step	in	order	to	update	weights	and	thresholds.	The	

validation	 subset	 contains	different	data	 from	 the	 training	 subset,	but	 still	 in	 the	

domain	 boundaries	 of	 the	 problem.	 This	 set	 is	 used	 in	 the	 learning	 process	 for	

choosing	 the	 best	 parameter	 configuration.	 The	 validation	 subset	 includes	 data	

different	from	the	other	two	subsets	and	is	employed	to	select	the	optimal	structure	

and	check	its	accuracy	and	generalization	capability.	

No	precise	rules	govern	the	division	into	the	three	subsets,	however,	there	are	

some	rules	of	thumb	followed	by	many	researchers.		The	training	subset	could	be	

set	equal	to	at	least	the	number	of	weights	times	the	inverse	of	the	minimum	desired	

error.	 Other	 researchers	 propose	 to	 divide	 the	 dataset	 into	 65%	 for	 training,	

between	20%	and	30%	for	validation	and	around	10%	for	testing.	From	researchers’	

experience	this	division	gives	good	generalization	capability.	

	

Data	pre-processing,	balancing	and	enhancement	
	

The	dataset	usually	cannot	be	directly	inputted	into	the	network	but	has	to	be	pre-

processed	 in	order	 to	accelerate	convergence.	Some	of	 the	most	used	 techniques	

require	 removing	 noise,	 reducing	 the	 dimensionality	 of	 the	 inputs,	 transforming	

data,	treating	non-normally	distributed	data,	inspecting	data	and	deleting	outliers.	

	

For	 classification	problems,	 it	 is	 essential	 that	 the	 dataset	 is	well	 balanced,	

particularly	 the	 training	 subset	 should	 be	 divided	 evenly	 between	 the	 different	

classes,	otherwise	it	will	be	biased	towards	a	specific	class	that	is	overrepresented.	

Possible	 solutions	 are	 to	 remove	 completely	 or	 diminish	 the	 examples	 of	

overrepresented	classes,	alternatively	to	add	some	examples	to	the	classes	that	are	

inadequately	represented.	A	second	solution	is	to	duplicate	the	underrepresented	

input	plus	output	couples	and	add	some	random	noise	to	the	inputs.	

	

	 45	

Another	issue	relates	to	datasets	of	small	size,	that	are	difficult	to	subdivide	

into	 the	 three	subsets.	 If	possible,	new	data	should	be	added,	otherwise	 it	 is	 still	

possible	to	enrich	data	by	introducing	random	noise	to	existent	examples	to	produce	

new	ones.	This	technique	will	increase	model	robustness	and	diminish	prediction	

errors.	 If	 enriching	 data	 is	 not	 feasible,	 other	 techniques	 such	 as	 leave-one-out	

method,	grouped	cross-validation	and	bootstrap	can	be	applied.	

	

Data	normalization	or	scaling	
	

Another	 processing	 that	 the	 data	 has	 to	 undergo	 is	 the	 normalization	 or	 scaling	

within	a	uniform	range.	This	is	important	in	order	to	prevent	large	numbers	from	

overriding	small	numbers	and	to	avoid	premature	saturation	of	the	hidden	layers	

with	 a	 consequent	 slowdown	 in	 the	 learning	 rate,	 considering	 that	 real	 world	

numbers	are	not	uniform	and	are	distributed	on	a	quite	differing	range.		

A	 possible	 normalization	 approach,	 that	 is	 recommended	 by	 Basheer	 and	

Hajmeer	 (2000),	 consists	 in	 scaling	 input	 and	 output	 variables	𝑧5 	 in	 the	 interval	

[𝜆#, 𝜆%]	that	corresponds	to	the	range	of	the	activation	function:	
	

𝑥5 = 	 𝜆# + (𝜆% −	𝜆#) ∙ v
𝑧5 − 𝑧5w5'

𝑧5wxy − 𝑧5w5'
z																															(2.1)	

	

where	𝑥5 	is	the	scaled	value	of	𝑧5 	and	𝑧5wxy	and	𝑧5w5'	are	the	maximum	and	minimum	

values	of	𝑧5 	in	the	dataset.	

For	the	sigmoid	transfer	function,	it	is	recommended	to	choose	a	slightly	offset	

interval,	 such	 as	 [0.1, 0.9]	 to	 avoid	 premature	 saturation	 and	 slowdown	 in	 the	

learning	 process.	 In	 case	 that	 the	 range	 of	 original	 data	 is	 particularly	 large,	 the	

logarithm	can	be	taken	before	the	scaling	procedure.	

	

Data	representation	
	

The	representation	of	inputs	and	outputs	can	be	discrete,	continuous	or	a	mixture	

of	 the	 two.	 For	 classification	 problems	where	 binary	 inputs	 and	 outputs	 can	 be	

defined,	the	particular	representation	chosen	will	determine	the	dimensionality	of	

the	 vector	 of	 inputs	 or	 outputs.	 For	 example,	 if	 the	 network	 receives	 two	 input	

signals	and	the	result	generated	by	the	transfer	function	for	each	input	is	one	of	the	

	 46	

four	levels	of	activation	such	as	low,	medium,	high	and	very	high,	then	a	two	digit	

representation,	 that	 transforms	the	 input	vector	 into	 four	 inputs,	can	be	given	 to	

each	input	such	as	00,	01,	10	and	11.	As	an	alternative,	it	can	be	used	a	four	digit	

representation	such	as	0001,	0010,	0100	and	1000	in	which	the	position	of	1	defines	

the	level	of	activation.	In	this	case	the	input	vector	is	converted	into	eight	inputs:	

four	binary	numbers	for	the	first	input	and	four	also	for	the	second	input.		

Many	other	binary	representations	can	be	chosen	and	even	continuous	classes	

can	 be	 transformed	 into	 binary	 numbers	 by	 simply	 dividing	 the	 range	 into	 𝑛	

intervals	and	assigning	to	each	interval	a	class.	The	advantage	of	binary	data	relates	

to	the	derivation	of	rules	for	trained	networks.	

	

Weights	and	thresholds	initialization	
	

The	network	initialization	of	weights	and	thresholds	was	found	by	several	studies	

to	affect	the	speed	of	convergence.	This	mainly	depends	on	the	positioning	of	the	

weight	vector	on	the	error	surface	and	in	case	it	falls	in	a	flat	region,	convergence	

will	slow	down	or	even	stop	due	to	a	premature	saturation	of	the	neurons.	

In	 order	 to	 circumvent	 this	 issue,	 each	 weight	 and	 threshold	 is	 usually	

initialized	by	randomly	drawing	a	number	from	a	small	range	of	a	normal	or	uniform	

distribution	with	a	zero	mean.	Other	distributions	may	also	be	considered.	However,	

there	is	also	the	risk	of	choosing	a	range	that	is	too	small	and	consequently	to	slow	

down	the	learning	process.	

There	are	several	possible	approaches	 for	 the	choice	of	 initial	values.	Some	

suggest	choosing	random	weights	in	a	range	of	[−0.3, +0.3].	Others	suggest	a	neuron	

by	neuron	assignment	in	which,	for	each	neuron,	uniformly	sampled	numbers	are	

taken	from	the	interval	{− G
q=
, + G

q=
|	,	where	𝑟	is	a	real	number	subject	to	the	transfer	

function	and	𝑁j 	is	the	number	of	connections	delivering	signals	to	neuron	𝑗.	Another	

alternative	 is	 to	 consider	 an	 interlayer,	 rather	 than	 a	 single	 neuron.	 In	 this	 case	

weights	are	sampled	from	the	interval	�−3𝑀m<> ,			+ 3𝑀m<>�	,	where	M	is	the	number	

of	weights	to	be	assigned	for	the	interlayer.	

	

	

	 47	

Learning	rate	and	momentum	coefficient	
	

Two	 fundamental	 parameters	 in	 backpropagation	 neural	 networks,	 namely	 the	

learning	rate	𝜂		and	the	momentum	coefficient	𝜇,	must	also	be	set	carefully	to	reach	

convergence.	

The	learning	rate	defines	the	width	of	the	change	in	the	weight	vector	in	order	

to	reach	the	minimum	error	during	training.	If	𝜂	 is	small,	the	steps	taken	are	tiny	

and	the	learning	process	will	be	slow.	If	𝜂	is	large,	training	will	speed	up,	however	

the	 risk	 of	 over-shooting	 the	minimum	when	 it	 is	 in	 its	 proximity	 increases	 and	

convergence	may	never	be	reached	as	the	weight	vector	continues	to	oscillate	on	the	

error	surface.	

Some	authors	suggest	using	a	small	constant	learning	rate	between	[0.3, 0.6]	

or	[0, 1],	while	others	advise	an	adaptive	rate	that	takes	larger	steps	at	the	beginning	

of	the	training	and	smaller	steps	when	the	search	moves	closer	to	the	minimum.	

	

The	purpose	 of	 the	momentum	 coefficient	 is	 to	 help	 the	 search	not	 getting	

stuck	in	a	local	minimum	and	to	reduce	the	possibility	of	search	instability.	When	a	

small	𝜂	tends	to	slow	down	learning,	the	term	𝜇	speeds	up	the	updating	process	of	

the	weights.	Although,	a	too	high	𝜇	suffers	from	the	risk	of	overshooting	as	does	a	

high	𝜂	and	a	too	low	𝜇	will	lead	to	slow	training.	

Different	 solutions	 have	 been	 proposed	 in	 regard	 to	 the	 choice	 of	 the	

momentum.	Recommended	values	range	from	0	to	1	or	as	an	alternative	momentum	

and	learning	rate	are	constrained	together	to	the	sum		𝜇	 + 	𝜂 = 1.	Other	approaches	

consist	 in	 decreasing	𝜇	 as	 learning	 speeds	 up	 or	 changing	𝜇	 based	 on	 the	 error	

gradient	 information.	 Researchers	 usually	 start	with	 one	 of	 those	 recommended	

values	and	then,	depending	on	the	problem	considered,	they	will	find	the	optimal	

parameters	by	a	trial	and	error	procedure.	

	

Convergence	criteria	
	

The	error	function	𝜌	represents	the	deviations	of	network	outputs	from	the	target	

values	and	the	training	process	moves	forward	until	the	error	reaches	a	required	

precision	 (𝜀	 or	𝛿).	 For	 the	weight	 adjustment	 process,	 it	 is	 essential	 to	 define	 a	

proper	error	function	and	a	precision	rate.	

	 48	

The	 error	 can	 be	measured	 in	many	 different	ways	 (Wu	 et	 al.,	 2014).	 The	main	

categories	are:	

- squared	errors,	which	are	based	on	the	square	of	the	difference	between	the	

target	and	predicted	outputs.	They	include	the	mean	square	error	(MSE),	the	

root	mean	square	error	(RMSE)	and	the	sum	of	squared	errors	(SSE);	

- absolute	 errors,	 which	 are	 based	 on	 the	 absolute	 difference	 between	 the	

target	and	predicted	outputs.	They	include	the	mean	absolute	error	and	the	

sum	of	absolute	errors;	

- relative	 errors,	 which	 indicate	 the	 magnitude	 of	 the	 differences	 between	

target	and	predicted	outputs	relative	to	the	target	outputs.	They	include	the	

average	absolute	relative	error,	the	mean	percentage	error	and	the	relative	

bias;	

- information	 criteria,	 such	 as	 AIC	 (Akaike	 information	 criterion)	 or	 BIC	

(Bayesian	information	criterion).	

	

The	most	common	way	to	measure	the	error	function	is	through	the	sum	of	squared	

errors	 (SSE)	 and	 it	 can	 be	 computed	 both	 for	 the	 in-sample	 and	 the	 validation	

subsets	or	for	the	training	sample,	depending	on	the	initial	division	into	subsets.	It	

can	be	estimated	according	to:	
	

𝑆𝑆𝐸 = 	^^(𝑑j5 − 𝑦j5)%
�

57#

q

j7#

																																												(2.2)	

	

where	𝑑j5 	is	the	target	solution	of	the	ith	output	neuron	on	the	jth	example,	𝑦j5 	is	the	

ANN	output	produced	by	ith	neuron	for	the	jth	example,	N	is	the	number	of	examples	

and	M	is	number	of	output	nodes.	

	

There	 are	 different	 convergence	 criteria	 that	 can	 be	 applied	 to	 stop	 the	 training	

process	and	three	examples	are	presented	next.	In	the	first	two,	overfitting	is	not	

viewed	as	a	problem	and	thus	the	training	set	does	not	have	to	be	split	up	into	two	

sets.	It	is	sufficient	to	train	and	test	the	network.	For	the	third	case,	overfitting	is	a	

serious	issue	and	cross-validation	is	needed	to	find	the	optimal	network	structure.	

For	 models	 such	 as	 the	 Perceptron,	 learning	 stops	 when	 the	 difference	

between	 the	 current	 and	 the	 previous	 error	 reaches	 the	 required	 precision.	 The	

	 49	

error	belongs	to	the	absolute	error	category	and	can	be	computed	for	example	as	

the	mean	absolute	error.	

For	models	like	the	ADALINE,	the	objective	is	to	minimize	the	squared	error.	

Learning	will	depend	on	the	gradient	of	the	squared	error	function	and	convergence	

is	 reached	 if	 the	difference	between	 the	 current	 and	 the	previous	mean	 squared	

error	 becomes	 lower	 than	 the	 precision	 rate	 according	 to	 g𝐸f(𝒘EFGGH'I) −

𝐸fO𝒘JGHK5LFMRg ≤ 𝜀,	as	was	shown	in	the	previous	chapter.	

Models	with	more	layers	and	nodes	have	numerous	parameters,	thus	the	risk	

of	overfitting	is	very	high.	It	is	not	easy	to	find	the	optimal	structure	of	the	model	

and	for	this	reason,	 it	can	be	applied	the	cross-validation	of	 the	error	 function	 in	

order	to	find	the	optimal	number	of	hidden	nodes	or	the	number	of	training	cycles.	

This	 criterion	 is	more	 reliable	 and	prevents	overfitting,	 but	 it	 is	 computationally	

complex	and	necessitates	a	large	amount	of	data.	

The	training	set	is	divided	into	the	in-sample	and	the	validation	sets.	The	cross-

validation	method	 involves	training	the	network	on	the	 in-sample	set	 in	order	to	

minimize	 the	 error	 function	 and	 to	 find	 the	 optimal	 weights	 according	 to	 the	

stopping	rule	chosen,	as	it	is	usually	done	for	the	Perceptron	and	the	ADALINE.	The	

validation	 data	 is	 then	 fed	 into	 the	 network	 having	 the	 optimal	weights	 and	 the	

validation	error	is	computed.	This	procedure	is	repeated	by	increasing	each	time	the	

number	of	hidden	nodes	or	the	number	of	training	cycles.	The	training	error	and	the	

validation	 error	 are	 monitored	 together	 for	 each	 addiction	 and	 the	 optimal	

architecture	chosen	will	be	the	one	right	before	the	beginning	of	the	increase	in	the	

error	curve	for	the	validation	subset.	Adding	any	other	nodes	or	training	cycles,	will	

only	lead	to	overfitting.	

The	idea	behind	the	cross-validation	is	shown	in	Figure	2.2.	For	the	training	

subset	 the	 error	 decrease	 indefinitely	when	 the	 number	 of	 hidden	 nodes	 or	 the	

training	 cycles	 are	 increased.	 The	 initial	 decline	 in	 error	 comes	 from	 learning,	

however,	the	further	reduction	is	due	to	memorization	or	overtraining	rather	than	

generalization	when	the	process	is	trained	for	too	many	cycles	and	overfitting	when	

too	many	hidden	nodes	are	present.	The	error	of	the	validation	subset	on	the	other	

hand	 initially	decreases	and	 then	 increases	when	 the	network	 loses	 its	 ability	 to	

generalize.	

	 50	

	

	

For	classification	problems,	in	which	the	output	is	a	discrete	value,	a	different	

error	metric	is	used.	Usually	the	convergence	criterion	depends	on	the	proportion	

of	examples	classified	in	a	correct	and	incorrect	way,	called	a	hit-or-miss	rate.	

	

Training	modes	
	

The	update	of	weights	and	thresholds	can	be	performed	in	two	different	ways	by	a	

network:	example	by	example	training	(EET)	and	batch	training	(BT).	

In	the	first	type	of	training,	the	weights	and	thresholds	are	updated	every	time	

that	an	example	is	fed	into	the	network.	The	chosen	learning	algorithm	is	applied	to	

the	first	example	until	the	desired	error	is	obtained	and	this	procedure	is	repeated	

for	one	example	at	a	time	until	the	last	training	example	has	been	learned.	The	main	

advantage	of	this	mode	is	that	it	requires	only	a	small	storage	for	saving	the	weights	

vector.	It	is	also	efficient	in	the	stochastic	search	of	the	optimal	solution	and	does	

not	get	stuck	on	a	local	minimum.	The	major	problem,	however,	is	the	dependence	

of	the	final	result	on	the	first	example,	which	could	be	misleading	and	lead	the	search	

in	the	wrong	direction.	

In	batch	training,	on	the	other	hand,	all	training	examples	are	fed	together	into	

the	network	and	the	weights	are	updated	afterwards.	The	error	is	averaged	across	

all	 the	 examples	 and	only	 then	 the	 learning	algorithm	can	be	applied	 to	 find	 the	

minimum	error.	This	procedure	is	iterated	many	times,	in	which	all	the	examples	

Figure	2.2.	Cross-validation	to	select	the	optimal	architecture		

Source:	Basheer	and	Hajmeer	(2000)	

	 51	

are	presented	again	to	the	network	in	a	random	way	for	each	epoch.	With	respect	to	

EET,	batch	training	provides	a	better	estimate	of	 the	gradient	of	 the	error,	which	

allows	to	compute	a	precise	measure	for	the	change	in	weights.	The	disadvantage	is	

the	large	storage	requirement	for	the	weights	and	the	higher	risk	to	get	stuck	in	local	

minima	and	it	requires	a	much	longer	training	time.	

The	choice	between	the	training	modes	will	depend	on	the	type	of	problem	

that	is	addressed,	the	amount	of	data	and	the	storage	capacity.	

	

Hidden	layer	size	
	

The	most	crucial	task	in	designing	an	ANN	system	is	to	assess	the	proper	number	of	

hidden	 layers	 and	 hidden	 nodes	 in	 each	 layer.	 For	 input	 and	 output	 layers,	 the	

number	 of	 nodes	 is	 defined	 by	 the	 input	 and	 output	 variables	 specified	 for	 the	

problem	 in	question.	Yet,	 there	 is	no	 clue	 about	hidden	 layers’	 size	 and	number.	

Researchers	usually	employ	rules	of	thumbs	or	a	trial	and	error	procedure.	

If	an	ANN	has	too	few	hidden	nodes,	it	will	not	be	able	to	distinguish	complex	

patterns	 and	 if,	 on	 the	 other	 hand,	 it	 has	 too	many	 nodes,	 it	will	 not	 be	 able	 to	

distinguish	noisy	data	leading	to	poor	generalization.	Another	issue	to	consider	is	

that	 learning	 slows	 down	 with	 many	 hidden	 nodes	 and	 training	 can	 become	

extremely	time	consuming.	

The	optimal	size	of	the	hidden	layers	can	be	related	to	the	inputs	and	outputs	

number,	the	size	of	the	training	set	or	to	the	nonlinearity	issue.	Many	rules	of	thumbs	

relating	the	number	of	hidden	nodes	𝑁�q	to	the	number	of	input		𝑁�q�	and	output	

𝑁��W 	 nodes	 exist.	 The	number	of	 hidden	nodes	 can	be	 computed	 for	 example	 as	

𝑁�q ≈ �𝑁�q� ∙ 𝑁��W 	 ,	where	 the	number	of	hidden	nodes	 is	 approximated	 to	 the	

closest	 integer	 to	 the	 result	 of	 the	 square	 root	 or	 it	 can	 be	 determined	 from										

𝑁�q ≤ 𝑁�q� + 1.	 Another	 approach	 is	 to	 relate	𝑁�q	 indirectly	 to	 the	 size	 of	 the	

training	 set	 𝑁W�q	 through	 the	 total	 number	 of	 weights	 𝑁�	 according	 to																			
q?
q@AB

≤ 𝑁W�q ≤
q?
q@AB

log% �
q?
q@AB

�	 and	 to	 choose	 𝑁�q	 in	 order	 to	 respect	 this	

inequality.	

For	problems	with	complex	nonlinearities,	however,	those	rules	of	thumb	are	

not	enough	and	typically	a	trial	and	error	procedure	must	be	followed.		

	 52	

This	section	presented	several	parameters	that	have	to	be	chosen	carefully	when	

designing	 an	 ANN	 system.	 Most	 of	 them	 are	 selected	 through	 a	 trial	 and	 error	

procedure	 and	 mainly	 depend	 on	 the	 type	 of	 the	 problem	 and	 its	 degree	 of	

nonlinearity.	 Table	 2.1	 summarizes	 the	 main	 parameters	 seen	 in	 this	 chapter	

together	with	the	possible	issues	coming	from	the	choice	of	a	too	small	or	too	large	

value.	

	
Table	2.1.	Effect	of	extreme	values	of	system	parameters	on	convergence	and	generalization	
capability	

System	parameter	 If	too	large	(high)	 If	too	small	(low)	

	
Number	of	hidden	nodes	
(𝑁DE)	

	
Overfitting	and	bad	
generalization	

	
Underfitting	and	inability	to	
find	the	underlying	rules	

Learning	rate	(𝜂)	 Overshooting	of	the	optimal	
solution	

Slow	training	

Momentum	coefficient	(𝜇)	 Increased	risk	of	overshooting	
the	optimal	minimum	

Slow	learning	

Number	of	training	cycles	 Bad	generalization	ability	(the	
system	memorizes	data)	

Inability	to	represent	the	data	
characteristics	

Size	of	training	set	(𝑁HIE)	 Good	recalling	and	
generalization	capability	

Inability	to	fully	explain	the	
problem	and	limited	
generalization	

Size	of	the	test	set	(𝑁HJH)	 Generalization	capability	can	
be	confirmed	

Generalization	capability	
cannot	be	adequately	
confirmed		

	

Source:	Basheer	and	Hajmeer	(2000)	

	 53	

	
	
CHAPTER	3	
Deep	learning	and	deep	neural	
networks	
	

The	present	chapter	is	devoted	to	analysing	deep	learning	and	the	great	potential	of	

deep	neural	networks.	The	main	characteristics	that	differentiate	deep	architectures	

from	shallow	ones	will	be	discussed.	The	following	sections	will	reason	on	why	deep	

neural	networks	are	hard	to	train	and	how	researchers	addressed	this	issue.	New	

architectures,	such	as	convolutional	neural	networks	and	long	short-term	memory	

networks,	were	created	and	new	training	techniques	were	implemented.	

	

	

3.1	Deep	learning	characteristics	and	history	
	

Deep	 learning	 is	 a	 machine	 learning	 technique	 that	 makes	 use	 of	 deep	 neural	

networks	and	is	based	on	learning	complex	data	representations	by	examples.	Deep	

neural	networks	(DDNs)	are	networks	characterised	by	a	multi-layered	architecture	

and	comprise	two	or	more	hidden	layers.	They	differ	from	shallow	networks,	which	

contain	only	a	single	hidden	layer.		

Multilayer	 ANNs	 are	 able	 to	 discover	 complex	 and	 nonlinear	 functional	

mappings,	if	they	are	provided	with	enough	data	and	computational	resources.	The	

advantage	in	their	use	is	the	reduction	of	large	amounts	of	manual	work	together	

with	an	outstanding	performance	when	they	are	fed	with	unstructured	and	high-

dimensional	data.	Considering	the	complexity	of	a	deep	network,	it	can	be	defined	

as	black	box	system,	since	the	user	has	no	understanding	of	the	internal	working	of	

the	model,	which	can	only	be	viewed	in	terms	of	its	inputs	and	outputs.	Black	box	

systems	are	different	from	white	box	systems	in	which	the	internal	structure	of	the	

model	is	known	(Sengupta	et	al.,	2020).		

	 54	

DNNs	 are	 built	 of	 multiple	 processing	 layers	 that	 are	 able	 to	 learn	 data	

representations	(how	the	data	is	structured)	by	using	multiple	levels	of	abstraction	

that	describe	the	degree	of	complexity.	This	is	an	important	characteristic	for	deep	

learning	techniques:	representation	learning	allows	the	system	to	be	inputted	with	

raw	data	and	to	discover	automatically	(so	not	designed	by	engineers)	the	proper	

internal	representation	or	a	feature	vector	from	which	the	network	can	detect	or	

classify	input	patterns.	Starting	from	raw	inputs,	each	hidden	layer	in	the	network	

transforms	the	representation	into	a	more	complex	abstract	level	and	after	all	the	

transformations,	the	network	will	be	able	to	learn	highly	complex	functions.	

Higher	layers	of	representation	are	essential	for	classification	tasks,	since	they	

increase	 both	 selectivity	 and	 invariance	 of	 the	 representation.	 Aspects	 that	 are	

important	 for	 discrimination	 are	 amplified	 (selectivity),	 whereas	 irrelevant	

variations	are	suppressed	(invariance).	

To	better	understand	 the	 abstraction	mechanism,	 consider	 for	 example	 the	

application	 of	 object	 identification	 in	 images,	 which	 involves	 visual	 pattern	

recognition.	An	image	is	formed	by	an	array	of	pixels	and	the	network	is	responsible	

for	breaking	down	a	complicated	task,	such	as	detecting	if	the	image	shows	a	human	

face,	 into	 very	 simple	 tasks	 that	 can	 be	 answered	 at	 the	 level	 of	 each	 pixel.	 For	

instance,	the	first	layer	could	learn	to	recognize	edges	at	particular	orientations	and	

locations	in	the	image,	the	second	layer	could	recognize	particular	arrangements	of	

edges	such	as	triangles	or	rectangles,	the	third	layer	could	detect	even	more	complex	

combinations	 of	 shapes	 and	 so	 on.	 Later	 layers	 will	 thus	 build	 up	 a	 complex	

hierarchy	of	abstract	concepts.	

It	 is	 important	 to	 notice	 that	 shallow	 networks	 are	 not	 able	 to	 distinguish	

between	relevant	and	irrelevant	variations	of	inputs	on	their	own	and	instead	the	

feature	 extractors	 need	 to	 be	 hand	 designed	 by	 the	 programmer.	 Variations	 in	

background,	surrounding	objects,	orientation,	pose	or	illumination	are	irrelevant	in	

an	 image.	 On	 the	 other	 hand,	 some	 particular	 minute	 details	 are	 the	 key	 to	

distinguish	between	two	similar	objects,	such	as	images	of	two	dog	breeds.	

Deep	neural	networks	implement	extremely	intricate	functions	and	are	able	to	

solve	 problems	 of	 image	 recognition	with	 a	much	 higher	 accuracy	 than	 shallow	

architectures.	For	further	details	see	LeCun	et	al.	(2015)	and	Nielsen	(2015).	

	 55	

Multilayer	ANNs,	such	as	the	MLP,	were	known	for	many	years.	However,	they	

have	gained	substantial	attention	of	academics	and	professionals	only	in	the	recent	

years.	Interest	in	deep	neural	networks	was	revived	in	2006	when	Hinton	proposed	

a	new	architecture	called	deep	belief	network	(DBN)	and	a	new	training	method	

called	layer-wise-greedy-learning.	This	method	involves	pre-training	an	unlabelled	

dataset	with	unsupervised	learning	before	the	subsequent	layer-by-layer	training	in	

order	to	extract	the	relevant	features.	The	features	extracted	are	then	exported	to	

the	next	layer,	all	the	samples	are	labelled	and	the	network	is	fine-tuned	with	the	

labelled	 data	 using	 the	 standard	 backpropagation	 method	 to	 further	 adjust	 the	

weights.	 Using	 this	 approach,	 the	 dimensionality	 of	 the	 dataset	 can	 be	 greatly	

reduced	and	a	 compact	 representation	 is	 obtained.	The	main	advantages	 are	 the	

mitigation	 of	 the	 overfitting	 problem,	 a	 better	 reach	 of	 local	 minima	 and	 faster	

convergence	(Liu	et	al.,	2017).	

In	 the	 past	 decade	 the	 research	 on	 deep	 learning	 gained	 a	 great	 deal	 of	

attention.	Sengupta	et	al.	(2020)	provide	s	summary	of	the	factors	that	supported	

their	rise	in	popularity:	

- Recent	rise	in	the	availability	of	large	labelled	data	sets;	

- Advent	 of	 fast	 graphics	 processing	 units	 (GPUs),	 progress	 in	 parallel	

computing	capabilities	and	multi-core	implementations;	

- Creation	 of	 software	 platforms	 that	 permit	 a	 smooth	 integration	 of	 the	

architectures	 into	 a	 GPU	 computing	 framework	 in	 order	 to	 decrease	 the	

complexity	of	environment	setup;	

- Introduction	of	better	regularization	techniques	to	avoid	overfitting	and	to	

improve	 performance,	 such	 as	 L1	 and	 L2	 regularization,	 dropout,	 batch	

normalization,	data	augmentation	and	early	stopping.	These	techniques	will	

be	analysed	in	detail	in	section	3.6;	

- Implementation	of	robust	optimization	algorithms	that	provide	near-optimal	

solutions,	such	as	stochastic	gradient	descent.	

	

Deep	learning	approaches	have	been	applied	in	many	different	fields	over	the	years.	

They	are	suitable	also	for	analysing	big	data	and	are	commonly	used	in	computer	

vision,	 pattern	 recognition,	 speech	 recognition,	 natural	 language	 processing	 and	

recommendation	systems.	

	 56	

	

	

3.2	Reasons	why	DNNs	are	difficult	to	train	
	

Deep	neural	networks	were	at	 first	 trained	using	the	backpropagation	algorithm,	

however	they	did	not	perform	much	better	than	shallow	architectures	and	in	some	

cases,	they	performed	even	worse.	This	is	a	strange	result,	since	adding	additional	

layers	 should	 allow	 the	 network	 to	 learn	more	 complex	 functions	 and	 achieve	 a	

greater	level	of	abstraction.	The	problem	is	that	the	backpropagation	algorithm	is	

not	 able	 to	 find	 the	 optimal	 weights	 and	 biases,	 when	 it	 is	 used	 for	 deep	

architectures.	

In	a	deep	network,	different	layers	learn	at	extremely	different	speeds.	When	

later	layers	in	a	network	learn	faster	than	early	layers,	the	early	layers	will	often	get	

stuck	during	training	and	will	 learn	almost	nothing.	On	the	other	hand,	when	the	

early	 layers	 learn	 faster,	 the	 later	 layer	will	get	stuck.	This	 is	due	 to	 the	 intrinsic	

instability	 that	 is	 associated	 to	 backpropagation	 learning	 by	 gradient	 descent	 in	

multilayer	 networks.	 The	 fundamental	 problem	 (namely	 the	 unstable	 gradient	

problem)	is	that	the	gradient	in	early	layers	is	the	product	of	terms	from	all	the	later	

layers.	All	the	layers	could	learn	at	the	same	speed	only	if	all	those	products	of	terms	

balanced	out.	It	is	very	unlikely	that	this	balancing	will	occur	by	chance	and	for	this	

reason	there	is	an	intrinsic	instability.	

Consider	the	simplest	deep	neural	network	having	three	hidden	layers	and	one	

single	neuron	in	each	layer,	as	shown	in	figure	3.1.	Here		𝑤5 	are	the	weights,		𝜃5 	are	

the	thresholds	and	𝐸(𝒘)	is	the	loss	function.	

		

	

	

	

	

As	 an	 example,	 the	 explicit	 expression	 for	 the	 gradient	 of	 the	 threshold	

associated	to	the	first	hidden	neuron	can	be	written	as:	
	

𝜃# 𝜃% 𝜃� 𝜃�
𝑤# 𝑤% 𝑤� 𝑤�

	𝐸(𝒘)

Figure	3.1.	Simple	network	with	3	hidden	layers	and	1	neuron	per	layer		

	 57	

𝜕𝐸(𝒘)
𝜕𝜃#

= 	𝑔�(𝑢#) ∙ 𝑤% ∙ 𝑔�(𝑢%) ∙ 𝑤� ∙ 𝑔�(𝑢�) ∙ 𝑤� ∙ 𝑔�(𝑢�) ∙
𝜕𝐸(𝒘)
𝜕𝑦 														(3.1)	

	

where	𝑔′(𝑢5)	is	derivative	of	the	sigmoid	activation	function,	𝑢5 	is	the	weighted	input	

to	neuron	i,	𝑦	is	the	output	produced	by	the	network	and	ab(𝒘)
a�

	is	the	loss	function	at	

the	end.	This	expression	is	a	product	of	terms	in	the	form	𝑤5 ∙ 𝑔′(𝑢5).		

	

The	vanishing	gradient	problem	
	

The	vanishing	gradient	problem	arises	when	later	layers	in	a	network	learn	faster	

than	 early	 layers.	 In	 this	 case	 the	 gradient	 tends	 to	 get	 smaller	 as	 the	 algorithm	

moves	backward	from	the	output	layer	through	the	hidden	layer,	meaning	that	the	

adjustment	in	weights	in	early	layers	is	much	smaller	and	the	search	moves	slowly	

towards	the	minimum.	

Consider	again	the	gradient	associated	with	the	first	hidden	neuron	defined	in	

equation	3.1.	The	derivative	of	the	sigmoid	function	reaches	its	maximum	at	𝑔�(0) =

1/4.	If	weights	are	randomly	initialised	in	a	range	between	[-1,1]	using	the	standard	

approach,	 the	 terms	 𝑤5 ∙ 𝑔′(𝑢5)	 will	 usually	 satisfy	 |𝑤5 ∙ 𝑔′(𝑢5)| < 1/4	 and	 the	

product	of	many	such	terms	will	tend	to	rapidly	decrease.	The	more	are	the	hidden	

layers,	 the	 smaller	 this	 product	will	 be.	 For	 later	 thresholds	 the	 gradient	 shares	

some	 terms	 with	 respect	 to	 the	 first	 threshold,	 but	 the	 expression	 is	 shorter.	

Consider	for	example	the	gradient	for	the	threshold	in	the	third	layer:	
	

𝜕𝐸(𝒘)
𝜕𝜃�

= 𝑔�(𝑢�) ∙ 𝑤� ∙ 𝑔�(𝑢�) ∙
𝜕𝐸(𝒘)
𝜕𝑦 																																	(3.2)	

	

In	this	case,	having	less	products,	the	gradient	will	not	be	as	small	as	the	first	one	

and	for	this	reason	learning	will	be	faster	for	later	layers.	This	is	the	fundamental	

reason	 for	which	 the	vanishing	gradient	problem	occurs	and	 it	 is	 intrinsic	 to	 the	

backpropagation	algorithm	and	the	random	initialization	of	the	weights.	

It	is	possible	to	visualize	the	effects	of	this	problem	on	the	speed	of	learning	

during	the	training	phase	of	a	network.	Figure	3.2	shows	the	learning	speed	of	three	

different	networks	having	 two,	 three	and	 four	hidden	 layers.	The	 learning	 speed	

change	was	recorded	over	500	epochs	of	training.	For	the	network	with	two	layers,	

learning	 starts	 at	 different	 speeds	 and	 the	 speed	 drops	 very	 quickly	 before	

	 58	

recovering	for	both	the	layers.	It	can	be	clearly	seen	that	the	first	hidden	layer	learns	

far	more	slowly	than	the	second	layer	during	all	the	500	epochs	of	training.	A	similar	

behaviour	occurs	for	the	other	two	networks	and	early	hidden	layers	learn	much	

slower	than	later	layers.	

	

	

		

	

The	exploding	gradient	problem	
	

The	exploding	gradient	problem	arises	when	 the	early	hidden	 layers	 learn	 faster	

than	the	later	hidden	layers.	The	gradient	in	this	case	will	grow	dramatically	as	the	

algorithm	 moves	 backward	 through	 the	 layers.	 Consider	 again	 the	 gradient	 in	

equation	3.1:	 if	 the	weights	 grow	during	 training	 and	become	 large	 enough,	 it	 is	

Figure	3.2.	Learning	speed	of	networks	with	2,3	and	4	hidden	layers	

Source:	Nielsen	(2015)	

	 59	

possible	that	the	terms	𝑤5 ∙ 𝑔′(𝑢5)	in	the	product	will	no	longer	satisfy	|𝑤5 ∙ 𝑔′(𝑢5)| <

1/4	and	will	get	larger	than	1.	This	will	lead	to	an	exploding	gradient.	

	

Deep	neural	networks	are	hard	 to	 train	not	only	because	of	 the	 instability	of	 the	

gradient-based	learning.	Other	factors	can	also	have	a	significant	impact:	

- the	choice	of	the	activation	function	should	be	done	by	finding	alternatives	

to	 sigmoid	 activation	 functions,	 which	 cause	 problems	 and	 slow	 down	

training;	

- the	weights	should	be	initialized	with	a	different	approach	from	the	standard	

random	initialization;	

- the	learning	by	gradient	descent	should	be	implemented	by	using	a	different	

learning	algorithm,	such	as	the	stochastic	gradient	based	learning	algorithm;	

- the	network	architecture	and	 the	other	parameters	should	also	be	chosen	

carefully7.	

	

The	stochastic	gradient	descent	(SGD)	is	a	popular	optimization	algorithm	used	for	

training	deep	neural	networks.	During	the	training	phase	the	network	is	fed	with	a	

small	 batch	 of	 examples	 for	 which	 it	 computes	 the	 outputs	 and	 the	 errors.	 The	

average	 gradient	 is	 computed	 for	 those	 examples	 and	 the	 weights	 are	 adjusted	

accordingly.	 This	 process	 is	 repeated	 for	 many	 small	 sets	 of	 examples	 taken	

randomly	 from	 the	 training	 set	 until	 the	 average	 of	 the	 objective	 function	 stops	

decreasing.	The	result	is	a	noisy	estimate	of	the	average	gradient	over	all	examples	

given	 by	 each	 small	 batch.	 SGD	 is	 quicker	 to	 converge	 than	 the	 classic	

backpropagation	algorithm	since	it	reduces	the	computational	complexity.	The	main	

disadvantage,	however,	is	that	it	is	difficult	to	find	the	global	minimum	when	having	

noisy	estimates.	

	

During	the	recent	years,	researchers	proposed	different	architectures	and	training	

techniques	that	address	the	difficulty	of	training	in	deep	neural	networks.	In	section	

3.3	and	3.4	two	well-known	architectures,	namely	convolutional	neural	networks	

7	For	further	details	about	the	unstable	gradient	problem	and	the	other	issues	related	to	the	
training	of	deep	neural	networks,	see	Nielsen	(2015)	chapter	5	available	at	
http://neuralnetworksanddeeplearning.com/chap5.html	

	 60	

and	 long	 short-term	 memory	 networks,	 will	 be	 discussed.	 Section	 3.6	 will	 be	

dedicated	to	exploring	the	most	widely	used	training	techniques.	

	

	

3.3	Convolutional	networks	
	

A	convolutional	neural	network	(CNN)	is	a	particular	type	of	multilayer	feedforward	

network	 that	 consists	 of	 two	 different	 types	 of	 layers	 (convolution	 and	 pooling	

layers)	connected	alternatively.	CNNs	were	initially	inspired	by	the	organization	of	

the	visual	cortex	of	animals	and	are	designed	to	process	two-	or	three-dimensional	

data	in	a	grid	form,	such	as	images	and	videos.	For	example,	a	colour	image	can	be	

seen	as	a	grid	composed	by	pixel	intensities	in	the	three	primary	colour	channels	

(red,	blue	and	green)	as	 inputs.	The	network	breaks	down	the	 image	 in	 terms	of	

simple	properties	(colour,	textures,	edges,	contours,	strokes,	orientation)	and	learns	

them	as	representations	in	different	layers.	

The	classical	feedforward	architectures	have	fully	connected	layers	and	they	

do	not	take	into	account	the	spatial	structure	of	an	image.	CNNs	were	created	to	take	

advantage	of	the	spatial	structure	of	images	by	implementing	three	key	ideas:	local	

receptive	fields,	shared	weights	and	pooling.	

	

Local	receptive	fields	
	

The	input	layer	in	a	convolutional	net	consists	of	a	matrix	of	neurons	whose	values	

correspond	to	the	pixel	intensities,	rather	than	a	single	vector	of	neurons.	The	input	

pixels	 are	 connected	 to	 the	 first	 layer	 of	 hidden	 neurons,	 however	 each	 hidden	

neuron	is	connected	only	to	a	small	and	localised	region	of	the	input	neurons,	called	

local	receptive	field.	Each	hidden	neuron	learns	to	analyse	its	specific	local	receptive	

field	and	for	each	field	there	is	a	different	neuron	in	the	first	hidden	layer.	

Figure	3.3	shows	the	relation	between	the	two	layers:	the	first	neuron	in	the	

first	 hidden	 layer	 is	 connected	 to	 the	 receptive	 field	 (5x5	 region)	 in	 the	 top-left	

corner	 of	 the	 input	 matrix	 (28x28	 matrix)	 and	 the	 second	 hidden	 neuron	 is	

connected	to	the	local	receptive	field	that	is	obtained	by	moving	the	5x5	square	by	

one	pixel	to	the	right	and	so	on	for	all	the	other	neurons.	The	first	hidden	layer	as	a	

	 61	

result	will	be	a	24x24	matrix.	It	is	possible	also	to	experiment	with	different	stride	

lengths	and	move	 the	 local	 receptive	 field	by	 two	or	more	pixels	 to	 the	 right	 (or	

down).	

	

	

	

	
	

Local	 receptive	 fields	 are	 used	 because	 usually	 close	 values	 are	 highly	

correlated	and	form	distinctive	local	motifs	that	can	be	easily	detected.		

	

Shared	weights	and	thresholds	
	

Considering	the	representation	in	figure	3.3,	each	hidden	neuron	has	one	threshold	

and	5x5	weights	connected	to	 its	 local	receptive	 field.	All	 the	neurons	 in	the	 first	

hidden	 layer	 have	 the	 same	 weights	 and	 bias	 and	 they	 detect	 exactly	 the	 same	

feature,	but	at	different	locations	in	the	input	image,	which	is	essential	for	increasing	

both	the	invariance	and	the	selectivity	of	the	representation.	

Figure	3.3.	Local	receptive	fields	and	related	hidden	neurons	

Source:	Nielsen	(2015)	

	 62	

Each	hidden	layer	can	be	called	a	feature	map	and	the	shared	weights	and	bias	

related	to	a	feature	map	are	called	kernel	(or	filter).	For	image	recognition	problems	

usually	 several	 feature	maps	and	 thus	hidden	 layers	are	needed.	A	set	of	 feature	

maps	 forms	 a	 convolutional	 layer	 and	 usually	 a	 network	 has	 more	 than	 one	

convolutional	 layer.	 The	 role	 of	 each	 convolutional	 layer	 is	 to	 detect	 local	

combinations	 of	 features	 from	 the	 previous	 layer.	 Notice	 that	 the	 hidden	 layers	

forming	a	convolutional	layer	are	not	connected	one	to	the	other,	since	they	detect	

different	features.	

	

Pooling	layers	
	

In	addition	to	convolutional	layers,	a	CNN	usually	contains	also	pooling	layers,	which	

are	 responsible	 for	merging	 semantically	 similar	 features	 into	 one,	 reducing	 the	

dimension	 of	 the	 representation	 and	 creating	 invariance	 to	 small	 shifts	 and	

distortions.	A	pooling	layer	is	positioned	immediately	after	each	convolutional	layer	

and	 it	 simplifies	 the	 information	 enclosed	 in	 the	 output	 coming	 from	 the	

convolutional	 layer	 by	 preparing	 a	 condensed	 set	 of	 feature	maps.	 This	 helps	 to	

greatly	reduce	the	number	of	parameters.	

A	 common	 procedure	 for	 pooling	 is	 max-pooling,	 where	 the	 pooling	 unit	

outputs	the	maximum	activation	for	each	condensed	receptive	field	in	a	feature	map.	

Figure	3.4	shows	the	pooling	procedure	for	the	first	feature	map.	Each	max-pooling	

unit	summarizes	the	output	from	the	24x24	first	hidden	layer	by	using	a	region	of	

2x2	neurons	and	taking	the	maximum	activation	in	this	region.	The	resulting	layer	

will	be	a	12x12	matrix.	

	

Figure	3.4.	Pooling	procedure	

Source:	Nielsen	(2015)	

	 63	

	

Another	popular	pooling	technique	is	L2	pooling,	in	which	the	information	is	

condensed	by	taking	the	square	root	of	the	sum	of	the	squares	of	activations	in	the	

2x2	region	instead	of	the	maximum.	

	

The	simplest	architecture	will	be	similar	to	the	one	showed	in	Figure	3.5.	The	input	

layer	 encodes	 the	 pixel	 intensities	 of	 the	 image.	 This	 layer	 is	 followed	 by	 a	

convolutional	layer	composed	of	three	feature	maps,	each	responsible	for	detecting	

a	 specific	 feature	 across	 the	 entire	 image	by	 sliding	 its	 local	 receptive	 fields	 and	

finding	the	shared	weights	and	the	bias.	The	result	of	this	layer	is	passed	through	

the	pooling	layer	and	condensed.	A	final	fully	connected	layer	connects	every	neuron	

from	the	pooled	layer	to	each	one	of	the	output	neurons.	

	

	

A	 typical	 CNN	 network	 can	 have	 many	 convolutional	 and	 pooling	 layers	

stacked	one	after	the	other.	This	will	depend	on	the	complexity	of	the	image	to	be	

analysed	and	on	the	degree	of	abstraction	needed.	This	type	of	network	can	be	still	

trained	with	the	classic	backpropagation	algorithm.	The	major	advantages	of	a	CNN	

are	 the	minimal	 pre-processing	 required	 and	 the	 smaller	 number	 of	 parameters	

needed	to	get	the	same	performance	as	a	fully	connected	model.	This	results	in	faster	

training	and	it	helps	to	mitigate	the	unstable	gradient	problem,	to	reduce	overfitting	

and	to	produce	more	accurate	results8.	

8	For	further	details	about	CNNs,	see	Nielsen	(2015)	chapter	6	available	at	
http://neuralnetworksanddeeplearning.com/chap6.html

Figure	3.5.	CNN	architecture	with	a	convolutional	and	a	pooling	layer	

Source:	Nielsen	(2015)	

	 64	

The	major	applications	for	which	CNNs	have	been	used	are	speech	recognition,	

document	reading,	handwriting	recognition,	object	detection	and	face	recognition	

in	images	and	videos.	They	also	brought	a	revolution	in	computer	vision	and	became	

the	dominant	approach	for	recognition	and	detection	tasks.	In	the	recent	years,	they	

are	being	used	in	the	development	of	new	technology	applications,	for	example	in	

the	 vision	 system	 of	 self-driving	 cars	 and	 real-time	 vision	 applications	 in	

smartphones	and	cameras	(LeCun	et	al.,	2015).	

	

Coding	a	CNN	network	in	Matlab	
	

CNN	 networks	 are	 powerful	 tools	 for	 image	 classification	 purposes.	 It	 is	 both	

possible	to	create	a	new	network	from	scratch	and	train	it	on	a	large	set	of	images	

or	to	use	a	pretrained	network	to	learn	new	tasks	from	the	already	learnt	features.	

The	second	approach	is	faster	and	easier	to	implement.	The	Deep	Learning	Toolbox	

in	Matlab	offers	the	possibility	to	deploy	many	pretrained	networks	with	an	intuitive	

interface	and	will	be	used	for	coding	the	examples	in	this	chapter9.	In	this	section,	

two	 simple	 examples	 about	 image	 classification	 with	 pretrained	 networks	 are	

presented.	

	

Classifying	an	image	using	GoogLeNet	
	

It	 is	possible	to	classify	an	image	into	an	object	category	using	a	pretrained	CNN,	

such	 as	 GoogLeNet	 just	 in	 a	 few	 seconds.	 GoogLeNet	 is	 twenty-two	 layers	 deep	

network	trained	on	ImageNet	(a	 large	visual	database	of	over	14	million	 images)	

and	is	able	to	classify	images	into	1000	object	categories.	The	code	written	in	Listing	

3.1	 shows	 the	 steps	 needed	 to	 load	 and	 classify	 an	 image	 in	 .jpg	 format	 using	

GoogLeNet.	The	network	takes	the	image	as	an	input	and	will	output	a	label	for	the	

object	analyzed	together	with	the	probability	of	belonging	to	each	object	category.	

	
Listing	3.1.	Image	classification	using	GoogLeNet	

% load the pretrained model GoogLeNet network
net = googlenet;

% read the image to be classified (.jpg format)

9	For	further	details	about	the	Deep	Learning	Toolbox	installation	and	usage	in	Matlab	see	
https://www.mathworks.com/products/deep-learning.html		

	 65	

I = imread("dog2.jpg");

% Adjust the size of the image to 224x224x3 (input size of network)
sz = net.Layers(1).InputSize;
I = imresize(I,[sz(1) sz(2)]);

% Classify the image using GoogLeNet
[label,scores] = classify(net,I);
label

% Show the image and the predicted probability of the label
% classNames contains the names of the classes learned by GoogLeNet
classNames = net.Layers(end).ClassNames;
figure(1)
imshow(I)
title(string(label) + ", " + num2str(100*scores(classNames ==
label),3) + "%");

% Display Top 5 predicted labels and associated probabilities
[~,idx] = sort(scores,'descend');
idx = idx(5:-1:1);
classNamesTop = net.Layers(end).ClassNames(idx);
scoresTop = scores(idx);

figure(2)
barh(scoresTop)
xlim([0 1])
title('Top 5 Predictions')
xlabel('Probability')
yticklabels(classNamesTop)
	

	

Figure	3.6	shows	the	possible	classification	and	related	probability	when	the	image	

of	a	dog	is	fed	into	the	network.	The	network	distinguishes	also	between	different	

types	of	dog	breeds.	

	

miniature pinscher, 45.6%

Figure	3.6.	Classification	of	a	dog	image	

	 66	

Since	many	categories	considered	by	GoogLeNet	are	similar,	it	is	useful	to	look	at	

the	top	five	predicted	labels	accuracy,	as	shown	in	Figure	3.7.	The	label	prediction	

for	similar	objects	is	not	always	totally	accurate	as	revealed	by	the	histogram,	but	it	

can	be	still	satisfactory,	depending	on	the	purpose	of	classification.	

	

	

	

Training	an	image	category	classifier	using	resnet50	
	

A	pretrained	network	can	be	used	not	only	to	classify	a	new	image,	but	also	as	a	

feature	extractor	for	training	an	image	category	classifier	by	leveraging	the	features	

extracted	by	 the	network.	 In	 this	example	 the	dataset	 considered	 is	 the	Example	

Food	 Images	 dataset	 containing	 photographs	 of	 food	 belonging	 to	 nine	 different	

classes.	The	dataset	can	be	found	on	the	Mathworks	website.	The	network	used	is	

the	resnet50,	a	 fifty	 layers	deep	network	able	 to	classify	 images	 into	1000	object	

categories.	

The	Listing	3.2	shows	the	steps	necessary	to	train	the	image	category	classifier	

for	the	Example	Food	Images	dataset.	The	dataset	needs	to	be	loaded	and	adjusted	

so	that	the	number	of	images	in	each	category	is	the	same.	The	pretrained	network	

is	 then	 loaded	and	 the	 images	are	 resized	 to	have	 the	 same	size	 required	by	 the	

network.	Now	 it	 is	possible	 to	extract	 the	 relevant	 training	 features	 from	a	deep	

Top 5 Predictions

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Probability

black-and-tan coonhound

kelpie

Doberman

toy terrier

miniature pinscher

Figure	3.7.	Histogram	of	the	top-five	predicted	labels	and	their	probabilities	

	 67	

enough	layer	of	the	network	and	to	train	a	multiclass	SVM	(support	vector	machine)	

classifier	using	those	features.	The	test	features	are	also	extracted	using	the	network	

and	 are	 then	 passed	 to	 the	 classifier	 to	 predict	 the	 labels	 for	 the	 test	 set.	 The	

accuracy	of	the	trained	classifier	can	be	eventually	measured	by	using	a	confusion	

matrix	and	displaying	the	mean	accuracy.	In	the	last	step,	one	image	from	the	test	

set	is	taken	and	the	classifier	is	applied	to	it.	The	actual	and	the	predicted	labels	for	

the	image	are	then	shown.	

Listing	3.2.	Image	category	classification	using	resnet50	

%% unzip the dataset folder and load the image dataset
unzip('ExampleFoodImageDataset.zip')

imds = imageDatastore('ExampleFoodImageDataset', 'LabelSource',
'foldernames', 'IncludeSubfolders',true);

% summarize the number of images per category
tbl = countEachLabel(imds)

% Determine the smallest amount of images in a category
minSetCount = min(tbl{:,2});

% Limit the number of images to reduce the time it takes to run this
% example (limit to minSetCount)
maxNumImages = 100;
minSetCount = min(maxNumImages,minSetCount);

% Use splitEachLabel method to split the set into labels of the
% same size
imds = splitEachLabel(imds, minSetCount, 'randomize');

% Notice that each set now has exactly the same number of images
tbl_new = countEachLabel(imds)

%% load the pretrained ResNet-50 network

% Load pretrained network
net = resnet50();

% prepare training and test image sets
[trainingSet, testSet] = splitEachLabel(imds, 0.3, 'randomize');

%% pre-process the images for the CNN

% resize training and test sets to make them compatible with the
% input size required by the network
imageSize = net.Layers(1).InputSize;
augmentedTrainingSet = augmentedImageDatastore(imageSize,
trainingSet, 'ColorPreprocessing', 'gray2rgb');
augmentedTestSet = augmentedImageDatastore(imageSize, testSet,
'ColorPreprocessing', 'gray2rgb');

%% extract training features using the CNN

	 68	

% extract features from a deeper layer using the activations method
% use the layer right before the classification layer
% (named 'fc1000')
featureLayer = 'fc1000';
trainingFeatures = activations(net, augmentedTrainingSet,
featureLayer, ...
 'MiniBatchSize', 4, 'OutputAs', 'columns');

%% Train A Multiclass SVM Classifier Using CNN Features

% Get training labels from the trainingSet
trainingLabels = trainingSet.Labels;

% Train multiclass SVM classifier using a fast linear solver and set
% 'ObservationsIn' to 'columns' to match the arrangement
% used for training features
classifier = fitcecoc(trainingFeatures, trainingLabels, ...
 'Learners', 'Linear', 'Coding', 'onevsall', 'ObservationsIn',
'columns');

%% Evaluate Classifier

% Extract image features from the test set using the CNN
testFeatures = activations(net, augmentedTestSet, featureLayer, ...
 'MiniBatchSize', 4, 'OutputAs', 'columns');

% Pass CNN image features to trained classifier
predictedLabels = predict(classifier, testFeatures, 'ObservationsIn',
'columns');

% Get the known labels
testLabels = testSet.Labels;

% Tabulate the results using a confusion matrix and display
% results in a chart
confMat = confusionmat(testLabels, predictedLabels);

% Convert confusion matrix into percentage form and show results
confMat = bsxfun(@rdivide,confMat,sum(confMat,2))

figure(1)
confusionchart(testLabels, predictedLabels);

% Display the mean accuracy
mean_accuracy = mean(diag(confMat))

%% Apply the Trained Classifier on one test image

testImage = readimage(testSet,1);
testLabel = testSet.Labels(1)

% Create augmentedImageDatastore to automatically resize the image
% when image features are extracted using activations
ds = augmentedImageDatastore(imageSize, testImage,
'ColorPreprocessing', 'gray2rgb');

% Extract image features using the CNN
imageFeatures = activations(net, ds, featureLayer, 'OutputAs',
'columns');

	 69	

% Make a prediction using the classifier
predictedLabel = predict(classifier, imageFeatures, 'ObservationsIn',
'columns')
	

The	results	will	be	similar	to	the	ones	shown	in	Listing	3.3.	Here	tbl	summarizes	

the	number	of	images	per	category	in	the	uploaded	dataset,	while	tbl_new	shows	

that	after	the	adjustment	the	size	is	the	same	for	all	the	labels.	The	next	result	is	the	

confusion	 matrix	 (or	 error	 matrix),	 which	 shows	 in	 percentage	 terms	 the	

relationship	 between	 the	 predicted	 (row)	 and	 the	 actual	 (column)	 classes.	 The	

diagonal	 terms	 represent	 the	 correct	 classifications,	while	 the	off-diagonal	 terms	

show	 the	 wrong	 classifications.	 The	 mean	 accuracy	 is	 then	 computed	 using	 the	

diagonal	 terms.	 Finally,	 the	 test	 and	 the	 predicted	 labels	 are	 shown	 for	 the	

application	on	one	test	example.	
	

Listing	3.3.	Results	for	the	image	category	classification	using	resnet50	

tbl =

 9×2 table

 Label Count

 _____________ _____

 caesar_salad 26

 caprese_salad 15

 french_fries 181

 greek_salad 24

 hamburger 238

 hot_dog 31

 pizza 299

 sashimi 40

 sushi 124

tbl_new =

 9×2 table

 Label Count

 _____________ _____

 caesar_salad 15

 caprese_salad 15

 french_fries 15

 greek_salad 15

	 70	

 hamburger 15

 hot_dog 15

 pizza 15

 sashimi 15

 sushi 15

confMat =

 0.9000 0 0 0 0 0 0 0 0.1000

 0 1.0000 0 0 0 0 0 0 0

 0 0 1.0000 0 0 0 0 0 0

 0.1000 0 0 0.9000 0 0 0 0 0

 0 0 0.1000 0 0.4000 0 0.4000 0.1000 0

 0 0 0.1000 0 0.3000 0.6000 0 0 0

 0 0 0.1000 0 0 0 0.9000 0 0

 0 0 0 0 0.2000 0 0.1000 0.4000 0.3000

 0 0.1000 0 0 0.1000 0 0 0 0.8000

mean_accuracy =

 0.7667

testLabel =

 categorical

 caesar_salad

predictedLabel =

 categorical

 caesar_salad

	

It	is	also	useful	to	depict	the	confusion	matrix	as	a	chart	to	better	visualize	the	

classification	errors.	This	chart	will	be	similar	to	the	one	shown	in	figure	3.8.	The	

rows	correspond	to	the	predicted	classes	and	the	columns	correspond	to	the	true	

classes.	The	numerical	terms	simply	represent	how	many	images	were	classified	as	

each	specific	class.	

	 71	

	

	

3.4	LSTM	networks	
	

Recurrent	 neural	 networks	 are	 even	 harder	 to	 train	 than	 deep	 feedforward	

networks	because	gradients	are	not	only	propagated	backwards	through	layers,	but	

also	through	time,	making	the	gradient	extremely	unstable	and	impeding	learning.	

To	solve	this	issue	related	to	recurrent	networks,	it	is	possible	to	incorporate	long	

short-term	memory	 (LSTM)	units	 into	 the	RNN	architecture	 and	 to	 augment	 the	

network	with	an	explicit	memory	that	remembers	inputs	for	a	long	time.	These	units	

were	 first	 introduced	 by	 Hochreiter	 and	 Schmidhuber	 in	 1997	 to	 address	 the	

unstable	gradient	problem.	

A	typical	LSTM	architecture	consists	of	a	set	of	recurrently	connected	subnets,	

called	memory	blocks.	Each	block	contains	one	or	more	self-connected	memory	cells	

and	three	multiplicative	units	(input,	output	and	forget	gates).	The	gates	allow	to	

store	and	access	information	over	long	periods	of	time.	

To	better	understand	the	functioning	of	the	network	it	is	useful	to	look	at	the	

functioning	of	a	LSTM	memory	block	with	a	single	cell,	which	is	shown	in	figure	3.9.	

The	three	gates	are	nonlinear	summation	units	 that	collect	activations	 from	both	

inside	and	outside	the	block	and	control	the	activation	of	the	node	by	which	they	are	

multiplied	(the	multiplication	is	represented	by	a	black	circle).	In	detail,	the	input	

caesar_salad

caprese_salad

french_fries

greek_salad

hamburger
hot_dog

pizza
sashimi

sushi

Predicted Class

caesar_salad

caprese_salad

french_fries

greek_salad

hamburger

hot_dog

pizza

sashimi

sushi

Tr
ue

 C
la

ss

1

1

1

1

1

4

3

2

1

6

4

1

1

4

1

3

9

10

10

9

9

8

Figure	3.8.	Histogram	of	the	top-five	predicted	labels	and	their	probabilities	

	 72	

and	output	gates	are	multiplied	by	the	input	node	and	the	output	of	the	cell,	while	

the	 forget	 gate	 multiplies	 the	 previous	 state	 of	 the	 cell	 (or	 internal	 state).	 The	

activation	of	these	gates	is	determined	by	a	logistic	sigmoid	activation	function	(𝑓).	

If	the	result	of	the	activation	is	1,	the	gate	is	opened	and	the	flow	from	the	multiplied	

node	is	passed	through,	otherwise	if	the	value	is	0,	the	gate	stays	closed	and	the	flow	

is	cut	off.	The	input	and	output	nodes	are	also	passed	through	activation	functions	

(𝑔	and	ℎ)	in	order	to	have	the	final	output	of	each	cell	in	the	same	dynamic	range.	

Usually	the	activation	functions	chosen	are	tanh	or	logistic	sigmoid.	The	weighted	

peephole	connections	from	the	internal	state	of	the	cell	to	the	gates	are	represented	

with	 the	 dashed	 lines,	 while	 all	 the	 other	 connections	 have	 a	 fixed	weight	 of	 1,	

ensuring	that	 the	gradient	can	pass	across	many	time	steps	without	vanishing	or	

exploding.	The	final	output	resulting	from	the	memory	block	comes	from	the	output	

gate	multiplication.	

	

	

	

In	practice,	new	information	enters	the	memory	block	from	the	input	node	and	

is	run	through	the	activation	function	𝑔.	The	result	is	passed	to	the	input	gate,	which	

decides	if	this	information	needs	to	be	stored	in	the	cell	and	passed	on	to	the	self-

Figure	3.9.	LSTM	memory	block	with	a	single	cell	

Source:	Graves	(2012)	

	 73	

connected	memory	cell.	The	memory	cell	acts	like	an	accumulator,	since	it	copies	its	

own	real-valued	state	and	accumulates	the	external	signal.	This	self-connection	is	

multiplied	 by	 the	 forget	 gate,	 which	 controls	 the	 amount	 of	 information	 to	 be	

retained	from	previous	time	steps	and	when	it	is	necessary	to	clear	the	content	of	

the	 memory.	 The	 result	 is	 run	 through	 the	 activation	 function	 ℎ	 and	 is	 passed	

forward	to	the	output	gate,	which	controls	the	final	output.	

The	 final	 LSTM	 network	 can	 be	 composed	 of	 many	 recurrently	 connected	

memory	blocks.	A	simple	example	is	shown	in	figure	3.10.	This	network	consists	of	

four	input	units,	a	hidden	layer	composed	of	two	single-cell	memory	blocks	and	five	

output	units.	Notice	that	each	block	is	fed	with	four	inputs,	but	it	produces	only	one	

output.	The	outputs	from	the	two	blocks	are	then	passed	to	the	final	output	layer,	

which	 produces	 the	 final	 result	 of	 the	 network.	 Only	 some	 of	 the	 connections	

resulting	 from	 the	 second	 input	 are	 shown	 in	 order	 to	 keep	 the	 representation	

simple	 and	 understandable.	 Looking	 at	 this	 picture,	 one	 can	 already	 grasp	 the	

complexity	of	the	connections	between	the	nodes	even	in	a	network	composed	by	

only	two	memory	blocks.	

	

	

	

Figure	3.10.	LSTM	network	with	two	memory	blocks	

Source:	Graves	(2012)	

	 74	

Since	the	introduction	of	the	original	LSTM	network,	several	variations	have	

been	proposed	and	it	increased	in	popularity	over	the	recent	years.	LSTM	networks	

have	 shown	 a	 superior	 ability	 to	 learn	 long-range	 dependencies	 as	 compared	 to	

simple	RNNs	and	they	provide	more	accurate	results.	They	have	been	widely	applied	

to	web	document	retrieval	applications,	translation	of	text	into	different	languages,	

sentence	 generation	 to	 describe	 photographs	 (or	 image	 captioning)	 and	

handwriting	 recognition.	 LSTM	networks	 can	 also	 answer	questions	 that	 require	

complex	inference.	In	one	test	example,	the	network	is	shown	a	15-sentence	version	

of	the	The	Lord	of	the	Rings	and	correctly	answers	questions	such	as	“where	is	Frodo	

now?”	 (LeCun	 et	 al.,	 2015).	 For	 further	details	 about	 LSTM	networks	 see	Graves	

(2012)	and	Lipton	et	al.	(2015).	

	

	

Coding	a	LSTM	network	in	Matlab	
	

The	Deep	Learning	Toolbox	in	Matlab	can	be	also	used	for	forecasting	a	time	

series	using	a	LSTM	network.	When	forecasting	future	time	steps	of	a	sequence,	it	is	

possible	to	define	the	target	outputs	by	shifting	the	training	sequence	by	one	time	

step	to	the	right.	The	network	predicts	the	time	steps	one	at	a	time	and	updates	the	

memory	cell	at	each	prediction.	

In	this	example	the	time	series	of	closing	daily	prices	of	the	S&P	500	over	four	

years	is	considered.	The	dataset	is	loaded	and	transformed	into	a	row	vector.	It	is	

then	partitioned	into	the	training	and	test	subsets	and	it	is	standardized	to	prevent	

divergence.	The	target	output	vector	for	the	training	subset	is	specified	by	shifting	

the	training	sequence	by	one	time	step.	Next	the	LSTM	architecture	is	defined.	There	

will	be	one	unit	in	the	input	layer,	200	hidden	units	in	the	LSTM	layer	and	one	final	

output.	The	network	is	then	trained	over	200	epochs.	The	tuned	network	is	used	to	

forecast	the	future	time	steps	using	the	test	dataset.	The	network	predicts	the	time	

steps	one	at	a	time	and	updates	its	state	after	each	prediction.	

	
Listing	3.4.	Time	Series	Forecasting	using	a	LSTM	network	

%% load sequence data

fileExtension = ".csv";

% Setup the Import Options

	 75	

opts = delimitedTextImportOptions("NumVariables", 7);

% Specify range and delimiter

opts.DataLines = [2, Inf];

opts.Delimiter = ",";

% Specify column names and types

opts.VariableNames = ["Var1", "Var2", "Var3", "Var4", "Var5",

"AdjClose", "Var7"];

opts.SelectedVariableNames = "AdjClose";

opts.VariableTypes = ["string", "string", "string", "string",

"string", "double", "string"];

opts = setvaropts(opts, [1, 2, 3, 4, 5, 7], "WhitespaceRule",

"preserve");

opts = setvaropts(opts, [1, 2, 3, 4, 5, 7], "EmptyFieldRule", "auto");

opts.ExtraColumnsRule = "ignore";

opts.EmptyLineRule = "read";

prices_data = readtable("^GSPC.csv", opts);

data = table2array(prices_data)'; % a row vector is needed

clear opts

% plot the data

figure(1)

plot(data)

xlabel("Day")

ylabel("Adjusted closing prices")

title("Daily adjusted closing prices of S&P500")

% partition training and test data

numTimeStepsTrain = floor(0.9*numel(data));

dataTrain = data(1:numTimeStepsTrain+1);

dataTest = data(numTimeStepsTrain+1:end);

% standardize data

mu = mean(dataTrain);

sig = std(dataTrain);

dataTrainStandardized = (dataTrain - mu) / sig;

	 76	

% prepare predictors and responses

XTrain = dataTrainStandardized(1:end-1); % input values (xt)

YTrain = dataTrainStandardized(2:end); % desired output values (xt+1)

%% Define LSTM Network Architecture (layers)

numFeatures = 1;

numResponses = 1;

numHiddenUnits = 200;

layers = [...

 sequenceInputLayer(numFeatures)

 lstmLayer(numHiddenUnits)

 fullyConnectedLayer(numResponses)

 regressionLayer];

% specify the training options (options)

options = trainingOptions('adam', ...

 'MaxEpochs',200, ...

 'GradientThreshold',1, ...

 'InitialLearnRate',0.005, ...

 'LearnRateSchedule','piecewise', ...

 'LearnRateDropPeriod',125, ...

 'LearnRateDropFactor',0.2, ...

 'Verbose',0, ...

 'Plots','training-progress');

%% Train LSTM Network

net = trainNetwork(XTrain,YTrain,layers,options); % x = inputs, y =

outputs

% Forecast Future Time Steps (using a the standardized

% version of the test set)

dataTestStandardized = (dataTest - mu) / sig;

XTest = dataTestStandardized(1:end-1);

YTest = dataTest(2:end);

% Update Network State with Observed Values

% having the actual values of time steps between predictions,

% we can update the network state with the observed values

% initialize the network state by predicting on the training data

net = predictAndUpdateState(net,XTrain);

	 77	

% predict on each time step

% (For each prediction, predict the next time step using the

% observed value of the previous time step)

YPred = [];

numTimeStepsTest = numel(XTest);

for i = 1:numTimeStepsTest

 [net,YPred(:,i)]=

predictAndUpdateState(net,XTest(:,i),'ExecutionEnvironment','cpu');

end

% Unstandardize the predictions using the parameters calculated earlier

YPred = sig*YPred + mu;

% Calculate the RMSE from the unstandardized predictions

rmse = sqrt(mean((YPred-YTest).^2))

% Plot the training time series with the forecasted value

figure(2)

plot(dataTrain(1:end-1))

hold on

idx = numTimeStepsTrain:(numTimeStepsTrain+numTimeStepsTest);

plot(idx,[data(numTimeStepsTrain) YPred],'.-')

hold off

xlabel("Day")

ylabel("Closing daily prices")

title("Forecast")

legend(["Observed" "Forecast"])

% Compare the forecasted values with the test data

figure(3)

subplot(2,1,1)

plot(YTest)

hold on

plot(YPred,'.-')

hold off

legend(["Observed" "Predicted"])

ylabel("Closing daily prices")

title("Forecast with Updates")

subplot(2,1,2)

stem(YPred - YTest)

	 78	

xlabel("Day")

ylabel("Error")

title("RMSE = " + rmse)

	

Figure	3.11	shows	the	plot	of	the	observed	time	series	used	for	the	training	phase	

together	with	the	forecasted	values	obtained	with	the	test	subset.	Figure	3.12	looks	

in	detail	 to	 the	 test	 subset	and	shows	 the	plot	 comparing	 the	 forecasted	and	 the	

target	values	and	the	plot	showing	the	error	at	each	time	step	(computed	simply	as	

the	difference	between	predicted	and	target	value)	 together	with	the	RMSE	(root	

mean	square	error).	The	RMSE	assesses	how	well	the	network	learns	and	it	can	be	

a	useful	metric	when	comparing	the	performance	of	different	models.	

	

	

0 200 400 600 800 1000 1200
Day

1800

2000

2200

2400

2600

2800

3000

3200

3400

C
lo

si
ng

 d
ai

ly
 p

ric
es

Forecast

Observed
Forecast

Figure	3.11.	Plot	of	observed	and	predicted	time	series	

	 79	

	

	

	

	

3.5	Other	popular	Deep	learning	models	
	

The	Restricted	Boltzman	Machine	
	

The	 Restricted	 Boltzman	Machine	 (RBM)	 is	 a	 type	 of	 stochastic	 neural	 network	

characterized	by	the	ability	to	learn	the	probability	distribution	with	respect	to	its	

inputs	both	in	a	supervised	and	unsupervised	manner.	As	can	be	seen	from	Figure	

3.13,	the	neurons	are	restricted	to	form	a	bipartite	architecture,	composed	of	two	

layers,	a	visible	and	a	hidden	layer.	There	is	full	and	undirected	connection	between	

visible	and	hidden	units,	while	 there	 is	no	connection	between	units	of	 the	same	

layer.	The	network	is	trained	to	maximize	the	expected	probability	of	the	training	

samples.	RBMs	were	at	first	proposed	to	simplify	the	topology	of	the	network	and	

increase	its	efficiency.	

0 10 20 30 40 50 60 70 80 90 100
2800

2900

3000

3100

3200

3300
C

lo
si

ng
 d

ai
ly

 p
ric

es
Forecast with Updates

Observed
Predicted

-100

-50

0

50

100

Er
ro

r

RMSE = 26.4523

0 10 20 30 40 50 60 70 80 90 100
Day

Figure	3.12.	Plot	comparing	the	forecasted	and	target	values	and	resulting	error	

	 80	

	

	

	

	

The	Deep	Belief	Network	
	

The	Deep	Belief	Network	(DBN)	is	a	generative	model	composed	of	multiple	layers	

of	stochastic	and	latent	variables,	which	represent	the	hidden	features	present	 in	

the	input	observations	and	are	typically	binary.	DBNs	are	constructed	by	stacking	a	

series	of	RBMs	in	order	to	further	explore	the	dependencies	between	the	hidden	and	

visible	variables.		

	

	

	

Figure	3.14.	DBN	with	x	inputs	and	3	hidden	layers	

Source:	Sengupta	et	al.	(2020)	

Figure	3.13.	RBM	with	m	visible	and	n	hidden	units	

Source:	Sengupta	et	al.	(2020)	

	 81	

	

As	can	be	seen	from	figure	3.14,	every	two	adjacent	layers	form	a	RBM,	the	visible	

layer	 is	 connected	 to	 the	 hidden	 layer	 of	 the	 previous	 RBM	 through	 directed	

connections	in	a	top-down	manner	and	the	top	two	layers	are	non-directional.	Being	

a	generative	model,	 the	network	learns	the	distribution	of	the	data	and	is	able	to	

generate	a	sample	based	on	its	likeliness	to	happen.	This	means	that	the	layers	are	

trained	sequentially:	 the	 lower	RBMs	are	 trained	 first,	 then	 the	higher	 layers	are	

trained.	The	 lowest	RBM	 learns	 the	distribution	of	 the	 input	data,	while	 the	next	

RBM	 block	 learns	 the	 high	 order	 correlation	 between	 the	 hidden	 units	 of	 the	

previous	hidden	 layer	by	sampling	 the	hidden	units.	This	process	 is	 repeated	 for	

each	hidden	layer	until	the	top.	

The	training	is	done	in	two	stages	(a	pretraining	stage	and	a	fine-tuning	stage)	

by	 using	 the	 layer-wise-greedy-learning.	 In	 the	 pre-training	 stage,	 unsupervised	

training	is	carried	out	for	feature	extraction	in	the	down-up	direction.	In	this	phase	

the	initial	weights	are	learned	from	the	structure	of	the	input	data.	The	fine-tuning	

stage	consists	of	a	supervised	learning	in	the	up-down	direction	to	further	adjust	the	

network	parameters.	

The	pretraining	phase	provides	a	good	set	of	initialised	weights	that	are	closer	

to	 the	 optimal	 weights	 compared	 to	 the	 randomly	 initialised	 weights	 and	 this	

improves	 the	 performance	 of	 the	 network,	 avoids	 overfitting	 and	 underfitting	

problems	and	effectively	processes	unlabelled	data.	DBNs	have	been	used	in	many	

applications	 like	 phone	 recognition,	 computer	 vision,	 speech	 recognition	 and	 for	

pretraining	DNNs	and	deep	CNNs.	

	

The	autoencoder	
	

The	autoencoder	is	a	three-layer	neural	network,	that	is	used	to	efficiently	code	and	

reconstruct	a	dataset	in	order	to	reduce	the	data	dimensionality.	As	can	be	seen	from	

Figure	3.15,	the	input	and	output	layer	in	this	architecture	contain	the	same	number	

of	 neurons,	 while	 the	 hidden	 layer	 contains	 less	 units,	 since	 its	 purpose	 is	 to	

represent	the	inputs	in	a	more	compact	form.	

	 82	

	

	

	

	

The	 autoencoder	 is	 trained	 like	 a	 feedforward	 network	 by	 using	 the	

backpropagation	 algorithm	 and	 the	 training	 process	 is	 divided	 into	 two	 phases	

(encoding	and	decoding).	 In	the	encoding	phase,	the	network	tries	to	convert	the	

inputs	into	an	abstract	(or	hidden)	representation	with	unsupervised	learning	and	

in	 the	 decoding	 phase,	 it	 reconstructs	 the	 same	 input	 from	 the	 hidden	

representation	using	supervised	learning	and	it	adjusts	weights	at	each	layer.	The	

reconstruction	accuracy	is	measured	according	to	the	minimization	of	the	average	

mean	square	error	of	the	reconstruction	between	the	inputs	and	the	reconstructed	

outputs.	 The	main	 purpose	 of	 the	 autoencoder	 is	 to	 continuously	 extract	 useful	

features	and	filter	useless	information	in	order	to	enhance	efficiency	of	the	learning	

process.	 The	 encoded	 features	 of	 the	 autoencoder	 can	 effectively	 reflect	 the	

transformation	invariant	property.	As	an	example,	the	autoencoder	can	be	applied	

in	image	recognition	to	extract	local	features	within	a	limited	window	of	viewing	in	

order	to	understand	if	a	feature	is	present	with	certain	probability	and	to	pretrain	

CNNs.	For	further	details	see	Liu	et	al.	(2017)	and	Sengupta	et	al.	(2020).	

	

	

Source:	Sengupta	et	al.	(2020)	

Figure	3.15.	Autoencoder	with	3	neurons	in	the	hidden	layer	

	 83	

3.6	Techniques	for	improving	training	
	

The	major	problem	for	neural	networks	is	overfitting	and	it	is	especially	severe	for	

deep	 networks	 having	 a	 large	 number	 of	 weights	 and	 biases.	 Techniques	 for	

detecting	and	reducing	the	effect	of	overfitting	are	needed.	Several	regularization	

techniques,	 such	 as	 L1	 and	L2	 regularization,	 dropout,	 batch	normalization,	 data	

augmentation	and	early	stopping,	have	been	developed	for	this	purpose	and	are	now	

widely	used10.	

	

L1	and	L2	regularization	
	

The	 idea	 behind	 L1	 and	 L2	 regularization	 is	 to	 add	 an	 extra	 term,	 called	

regularization	term,	to	the	loss	function	in	order	to	make	the	network	prefer	to	learn	

small	weights,	all	other	things	being	equal.	Large	weights	are	allowed	only	if	they	

considerably	improve	the	first	part	of	the	loss	function.	

If	the	loss	function	is	not	regularized,	the	size	of	the	weight	vector	is	likely	to	

grow	 and	 the	 length	 can	 become	 very	 large	 over	 time.	 The	 result	 is	 a	 higher	

probability	of	getting	stuck	and	pointing	in	the	same	direction	of	the	loss	space	after	

each	 weight	 adjustment.	 The	 direction	 can	 be	 wrong	 and	 stray	 away	 from	 the	

optimal	minimum.	

Another	issue	is	that	an	unregularized	network	can	use	large	weights	to	learn	

a	complex	model	carrying	a	lot	of	information	about	the	noise	in	the	training	data	

and	it	will	respond	with	a	large	change	in	its	behavior	in	response	to	small	changes	

in	the	input.	The	risk	for	an	unregularized	network	is	to	memorize	the	training	data	

set	without	being	able	to	generalize	the	information.	On	the	other	hand,	a	network	

with	small	weights	is	forced	to	ignore	the	effects	of	local	noise	in	the	dataset	and	to	

respond	 only	 to	 patterns	 often	 seen	 across	 the	 training	 set	 by	 building	 simple	

models	that	have	a	good	generalization	capability.	

In	the	L2	regularization,	the	regularization	term	added	to	the	loss	function	is	

the	sum	of	the	squares	of	all	the	weights	in	the	network.	The	sum	is	scaled	by	a	factor	

10	For	further	details	about	the	regularization	techniques,	see	Nielsen	(2015)	chapter	3	available	at	
http://neuralnetworksanddeeplearning.com/chap3.html

	 84	

�
%'
	where	𝜆 > 0	is	the	regularization	parameter	and	𝑛	is	the	size	of	the	training	set.	

The	L2	regularized	loss	function,	can	be	written	as:	
	

𝐸'H� = 𝐸LG5�5'xk +
𝜆
2𝑛^ 𝑤%

�
																																				(3.3)	

	

The	regularization	can	also	be	seen	as	a	compromise	between	finding	small	

weights	and	minimizing	the	original	 loss	 function.	The	relative	 importance	of	 the	

two	factors	depends	on	the	value	of	𝜆,	so	that	when	𝜆	is	small	the	minimization	is	

preferred	and	when	𝜆	is	large	small	weights	are	preferred.	

The	bias	terms	are	not	included	in	the	regularization	formula,	because	having	

a	large	bias	may	be	desirable	since	it	allows	flexibility	in	the	network	behavior.		

L1	regularization	requires	the	addiction	of	the	sum	of	absolute	values	of	the	

weights	to	the	original	loss	function	according	to:	
	

𝐸'H� = 𝐸LG5�5'xk +
𝜆
𝑛^ |𝑤|

�
																																				(3.4)	

	

This	 technique	 also	 penalizes	 large	weights	 and	makes	 the	 network	 prefer	

small	weights.	It	tends	to	concentrate	the	weights	in	a	relatively	small	number	of	

high	important	connections,	while	the	other	weights	are	driven	to	0.	

	

Dropout	
	

Dropout	is	a	fundamentally	different	regularization	technique.	It	does	not	rely	

on	 modifying	 the	 loss	 function	 and	 instead	 it	 modifies	 the	 network	 itself.	 The	

training	process	using	dropout	is	done	as	follows.	Part	of	the	hidden	neurons	are	

randomly	and	 temporarily	deleted	with	probability	𝑝	 (usually	𝑝 = 0.5	 for	hidden	

layers	and	𝑝 = 0.8	 for	the	input	layer)	from	the	network	as	can	be	seen	in	Figure	

3.16.	The	inputs	are	then	forward	propagated	through	the	modified	network	and	the	

result	is	backward	propagated	also	through	the	modified	network	for	a	mini-batch	

of	examples	in	order	to	update	the	weights	and	the	thresholds.	Subsequently,	the	

process	is	repeated	by	first	restoring	the	dropped	neurons	and	then	by	choosing	a	

new	 random	 subset	 of	 hidden	 neurons	 to	 delete	with	 the	 same	 probability.	 The	

training	process	is	done	for	a	different	mini-batch	in	order	to	update	the	weights	

and	the	thresholds.	This	process	is	repeated	over	and	over	so	that	the	network	will	

	 85	

learn	a	final	set	of	weights	and	thresholds.	During	each	iteration,	the	weights	and	

thresholds	are	updated	only	 for	 the	neurons	that	are	active	during	that	 iteration.	

This	will	ensure	that	there	will	be	no	co-adaptation	(in	which	some	neurons	highly	

depend	on	other	neurons)	between	the	hidden	neurons	in	one	layer	and	will	force	

each	neuron	to	learn	robust	features	alone.	

When	 actually	 running	 the	 full	 network	 for	 the	 test	 phase,	 the	 activations	

should	be	scaled	by	multiplying	them	by	the	probability	of	keeping	the	neurons	(𝑞 =

1 − 𝑝)	 so	 that	 the	 output	 at	 the	 test	 time	matches	 to	 the	 expected	 output	 at	 the	

training	 time	 and	 the	 activations	 do	 not	 get	 too	 large.	 Having	𝑞 = 0.5,	 twice	 the	

neurons	in	the	test	phase	will	be	active	and	the	activations	for	each	neuron	are	cut	

in	half	to	compensate	for	that.	

The	dropout	 technique	can	be	 implemented	 in	a	 simpler	and	 faster	way	by	

using	inverted	dropout.	 In	this	case	the	activations	are	scaled	during	the	training	

phase,	so	that	no	changes	 in	the	network	architecture	are	needed	during	the	test	

phase.	The	activations	are	scaled	by	the	 inverse	of	 the	keep	probability	1/𝑞	after	

training	each	mini-batch	in	order	to	prevent	the	activations	from	getting	too	large.	

	

	

	

	

	

The	dropout	procedure	forces	the	network	to	learn	more	robust	features	and	

to	be	less	affected	by	the	loss	of	any	individual	connection	in	the	network.	Dropout	

Figure	3.16.	Dropout	of	half	of	the	hidden	neurons	in	a	network	

Source:	Nielsen	(2015)	

	 86	

can	also	be	viewed	as	training	different	neural	networks	and	averaging	their	effects.	

The	different	networks	will	overfit	 in	different	ways	and	 the	net	effect	will	be	 to	

reduce	overfitting	for	the	whole	network.	

To	 have	 even	 more	 accurate	 results,	 the	 dropout	 technique	 is	 utilized	 in	

combination	with	rectified	linear	units	(ReLu),	which	can	be	applied	to	the	output	

of	a	layer	before	or	after	dropout.	A	ReLu	is	a	unit	which	employs	a	rectifier.	The	

rectifier	 is	a	non-linear	activation	 function	and	 it	 computes	𝑓(𝑧) 	= 	max(0, 𝑧).	 In	

practice	 it	 sets	 to	 0	 the	 neurons	 having	 a	 negative	 activation.	 Dahl	 et	 al.	 (2013)	

illustrate	the	benefits	of	using	dropout	and	ReLu	to	train	a	deep	neural	network.	

	

Batch	normalization	
	

Batch	normalization	is	a	popular	technique	that	aims	at	improving	the	training	of	a	

deep	neural	network	by	stabilizing	the	distribution	over	a	mini-batch	of	inputs	to	a	

given	 network	 layer	 during	 training.	 This	 is	 achieved	 by	 introducing	 additional	

network	layers	that	control	the	mean	and	variance	of	each	activation	to	be	zero	and	

one	respectively.	Then	the	normalized	inputs	are	also	scaled	and	shifted	based	on	

the	trainable	parameters.	

The	 key	 motivation	 for	 the	 development	 of	 batch	 normalization	 was	 the	

reduction	of	the	internal	covariance	shift	(ICS).	The	ICS	refers	to	the	change	in	the	

distribution	of	activations	in	one	layer	caused	by	updates	to	the	preceding	layers.	

Such	continual	 change	negatively	 impacts	 training	and	 leads	 to	overfitting.	Batch	

normalizations	aims	at	reducing	ICS.	

New	researches	have	found	that	batch	normalization	might	not	even	reduce	

the	ICS	and	instead	it	impacts	the	training	process	in	a	different	fundamental	way.	

This	technique	makes	the	error	landscape	significantly	smoother	and	ensures	that	

the	gradients	are	more	predictive	and	stable,	allowing	for	faster	convergence	and	

for	the	use	of	much	higher	learning	rates	without	the	risk	of	divergence.	For	further	

details	see	Ioffe	and	Szegedy	(2015)	and	Santurkar	et	al.	(2018).	

	

Data	augmentation	
	

Having	a	large	training	data	set	will	considerably	enhance	the	network	performance.	

However,	in	practice	there	is	a	limit	on	the	quantity	of	data	that	one	can	retrieve.	A	

	 87	

possible	 solution	 is	 to	 artificially	 expand	 the	 training	 data	 and	 this	 approach	 is	

widely	used	especially	 in	 image	and	speech	recognition	applications	 for	which	 is	

easy	to	modify	the	existing	samples.	

When	 analyzing	 images,	 the	 most	 popular	 augmentation	 techniques	 are	

flipping	images	vertically	or	horizontally,	scaling	or	cropping	by	cutting	out	a	region,	

rotating	 it	 by	 different	 angles,	moving	 the	 object	 in	 different	 parts	 of	 the	 image,	

adding	gaussian	noise	to	distort	the	features	and	skewing	the	image.	

When	 analyzing	 audios,	 it	 is	 possible	 to	 enrich	 the	 dataset	 by	 adding	

background	 noise,	 speeding	 up	 or	 slowing	 down	 the	 audio,	 changing	 pitch	 and	

shifting	time	by	some	seconds.	

The	general	principle	to	follow	is	to	expand	the	dataset	by	applying	operations	

that	 reflect	 real-world	variations	and	 think	about	 the	human	ability	 to	 recognize	

images	and	sounds	even	in	presence	of	different	distortions.	

	

Early	stopping	
	

Overfitting	 can	 also	 arise	 from	 a	 too	 high	 number	 of	 training	 epochs.	 The	most	

popular	approach	to	prevent	this	issue	is	early	stopping,	which	allows	to	identify	the	

number	of	training	epochs	that	can	effectively	improve	the	model	performance.	This	

strategy	consists	in	computing	the	classification	accuracy	for	the	validation	subset	

at	the	end	of	each	epoch	and	keep	track	of	how	it	changes.	The	classification	accuracy	

simply	 measures	 the	 number	 of	 correct	 predictions	 over	 the	 number	 of	 total	

predictions.	

Training	is	continued	until	there	is	enough	confidence	that	the	accuracy	of	the	

validation	 set	 has	 saturated.	 The	 saturation	 takes	 place	when	 the	 accuracy	 is	 no	

longer	 improving.	There	 is	not	a	precise	rule	 for	choosing	when	 to	stop	 training,	

since	training	can	improve	by	a	little	amount	for	many	epochs.	The	identification	of	

the	epoch	in	which	the	accuracy	saturates	depends	on	the	modeler	judgement.	

	

	 	

	 88	

	

	

	 	

	 89	

	
	
CHAPTER	4	
Banking	systems	
	

The	present	chapter	briefly	introduces	two	important	subjects	related	to	banking	

systems.	The	 first	part	of	 the	chapter	discusses	 the	 issue	of	 systemic	 risk	and	 its	

impact	on	financial	stability.	The	second	part	illustrates	stress-testing	as	a	tool	for	

assessing	the	financial	stability	of	a	banking	system.	This	will	help	to	clarify	the	key	

concepts	which	 are	 essential	 for	 the	 comprehension	 and	 the	 application	 of	 deep	

learning	to	banking	systems	and	in	particular	to	stress	tests	that	will	be	presented	

in	the	following	chapters.	

	

	

4.1	Systemic	risk	and	financial	stability	
	

Systemic	 risk	 is	 defined	by	 IMF,	 FSB	 and	BIS	 (2009)	 as	 the	 risk	 of	 disruption	 to	

financial	 services	 that	 is	 caused	by	 an	 impairment	of	 all	 or	parts	 of	 the	 financial	

system	and	has	 the	potential	 to	 have	 serious	negative	 consequences	 for	 the	 real	

economy.	 All	 types	 of	 financial	 intermediaries,	 markets	 and	 infrastructure	 can	

potentially	be	systemically	important	to	some	degree	and	negative	externalities	can	

emerge	from	a	disruption	or	failure	in	one	of	them.	

Modern	 banking	 systems	 and	 more	 generally	 financial	 systems	 are	

characterized	by	 intricate	 linkages	of	claims	and	obligations	between	the	balance	

sheets	 of	 banks	 and	 other	 financial	 institutions.	 The	 emergence	 of	 sophisticated	

financial	 products,	 such	 as	 credit	 default	 swaps	 (CDS)	 and	 collateralized	 debt	

obligations	(CDOs),	has	increased	the	complexity	of	balance	sheet	connections	even	

further	(Gai	and	Kapadia,	2010).	

The	global	financial	crisis	of	2007	and	2008	revealed	the	intertwined	nature	

of	the	financial	markets	and	the	complexity	of	linkages.	The	initial	troubles	in	the	US	

subprime	 mortgage	 market	 rapidly	 escalated	 and	 spilled	 over	 to	 debt	 markets	

	 90	

across	 the	 world	 after	 the	 bankruptcy	 of	 Lehman	 Brothers.	 Due	 to	 fear	 and	

uncertainty,	investors’	risk	appetite	greatly	diminished.	Banks	became	less	willing	

to	lend	money	and	started	accumulating	liquidity.	As	the	short-term	lending	market	

run	dry,	interbank	lending	rates	started	to	rise,	causing	a	credit	crunch	(Allen	and	

Babus,	2008).		

This	 financial	 crisis	 can	 be	 explained	 by	 the	 presence	 of	 numerous	

interdependencies	 that	 facilitated	 amplified	 responses	 to	 shocks	 to	 the	 financial	

system	 and	 impaired	 the	 assessment	 of	 the	 potential	 contagion	 under	 distress.	

These	 interdependencies	 are	 present	 in	 the	 balance	 sheets	 of	 the	 different	

institutions	 and	 they	 can	 arise	 from	 both	 the	 asset	 and	 the	 liability	 side.	 As	 an	

example,	asset	linkages	can	result	from	holding	similar	portfolio	exposures	acquired	

in	the	interbank	market	and	liability	linkages	result	from	sharing	the	same	mass	of	

depositors.	When	 the	 system	 faces	 large	 shocks,	 denser	 interbank	 liabilities	will	

facilitate	contagion	and	propagate	the	shocks.	For	this	reason,	 financial	networks	

are	robust	yet	fragile	systems:	the	resilience	of	the	system	to	the	insolvency	of	any	

individual	bank	is	enhanced	because	risks	get	reallocated	and	shared,	however	the	

connections	create	instability	and	systemic	risk	in	case	of	large	shocks	(Acemoglu	et	

al.,	2015).	

Another	 issue	 for	 which	 the	 financial	 system	 became	 vulnerable	 is	 the	

increased	 homogeneity	 due	 to	 similar	 diversification	 strategies.	 Risk	 became	 a	

commodity	and	it	could	be	sold	sliced	and	bundled.	Securitization	and	derivatives	

were	 the	 most	 popular	 instruments	 to	 pass	 the	 risk	 between	 the	 different	

participants.	 Credit	 became	 structured	 and	 the	 length	 of	 credit	 chains	 increased	

dramatically.	The	 interconnections	multiplied	and	 it	became	nearly	 impossible	to	

track	back	the	precise	source	and	location	of	the	underlying	claims.	Banks’	balance	

sheets	 and	 their	 risk	management	 strategies	 grew	 alike.	 All	 these	 diversification	

strategies	by	individual	institutions	generated	a	lack	of	diversity	across	the	system	

as	 a	 whole.	 The	 complexity	 together	 with	 homogeneity	 lead	 to	 fragility	 and	

increased	the	probability	of	a	collapse	(see	Gai	et	al.	2011	and	Haldane	2013).	

	

The	structure	of	 linkages	between	the	different	 institutions	can	be	captured	by	a	

network	 representation,	 which	 comprises	 a	 set	 of	 nodes	 and	 the	 links	 between	

them.	The	nodes	represent	the	banks	and	their	size,	while	the	links	are	directed	to	

	 91	

represent	 the	 mutual	 exposures	 of	 the	 assets	 and	 the	 liabilities.	 The	 network	

approach	 is	 important	 for	 assessing	 the	 financial	 stability	 and	 for	 capturing	 the	

potential	externalities	over	the	entire	system	coming	from	a	single	institution.	It	is	

essential	to	understand	the	network	externalities	in	order	to	facilitate	the	macro-

prudential	 financial	 supervision	 and	 to	 evaluate	 the	 resilience	 or	 fragility	 to	

contagion	depending	on	the	structure	of	the	network	(Allen	and	Babus,	2008).	

Considering	the	network	approach,	it	is	possible	to	identify	different	sources	

of	shock	propagation	in	the	banking	system.	In	a	simple	model	proposed	by	Haldane	

and	May	(2011),	an	external	shock	hits	a	single	bank	and	wipes	out	part	of	its	illiquid	

external	assets	(total	loans	made	to	ultimate	investors	representing	the	total	size	of	

the	flow	of	funds	from	savers	to	investors	through	the	banking	system)	and	if	this	

shock	exceeds	the	capital	reserve,	the	bank	will	fail.	The	shock	will	then	propagate	

to	 the	 other	 connected	 nodes.	 A	 first	 source	 of	 propagation	 is	 given	 by	 liquidity	

shocks,	arising	from	a	generalized	loss	in	the	value	of	banks’	external	assets	caused	

by	 a	 fall	 in	 market	 prices	 or	 a	 rise	 in	 expected	 defaults	 or	 fire	 sale	 actions	 at	

extremely	 low	 prices.	 Another	 mechanism	 of	 propagation	 comes	 from	 funding	

liquidity	 shocks.	 There	 is	 a	 diminished	 availability	 of	 interbank	 loans,	 as	 banks	

hoard	liquidity	for	fear	of	 lending	to	infected	banks.	The	liquidity	hoarding	was	a	

key	feature	of	the	global	financial	crisis.	

	

Financial	stability	is	defined	by	the	World	Bank	as	the	resilience	of	financial	systems	

to	 stress	 and	 economic	 shocks.	 The	 system	 efficiently	 allocates	 resources	 and	

manages	the	financial	risks.	When	it	is	stable,	it	will	absorb	the	shocks	through	self-

corrective	mechanisms,	preventing	disruptive	effects	on	the	economy11.	There	are	

several	public	policy	interventions	that	can	be	made	to	reach	the	financial	stability	

and	the	resilience	of	the	system.	

A	 key	 aspect	 of	 financial	 regulatory	 intervention	 resides	 in	 setting	 higher	

requirements	 for	banks’	capital	and	 liquid	assets	 in	order	to	reduce	 idiosyncratic	

risks	to	the	balance	sheets	of	individual	banks	and	to	limit	the	potential	spillovers	in	

the	system.	The	objective	is	strengthening	the	financial	system	as	a	whole.	Setting	

higher	capital	buffers,	strengthens	the	absorptive	capacity	of	each	bank	to	external	

11	See	the	complete	explanation	of	World	Bank	at
https://www.worldbank.org/en/publication/gfdr/gfdr-2016/background/financial-stability	

	 92	

shocks.	 Regulatory	 requirements	 on	 liquidity	 ratios	 aim	 at	 avoiding	 systemic	

liquidity	spillovers	arising	from	liquidity	and	funding	liquidity	shocks.	

Another	 possible	 intervention	 relates	 to	 systemic	 regulatory	 requirements.	

Banks	that	are	too	big,	connected	or	important	to	fail	have	higher	buffers	of	capital	

and	liquid	assets	and	they	contribute	in	greater	proportion	to	the	overall	systemic	

risk.	For	this	reason,	they	should	have	higher	regulatory	requirements.	

It	is	also	essential	to	regulate	the	derivatives	market.	The	rapid	growth	in	this	

market	size	and	complexity	contributed	to	the	destabilization	of	the	financial	system	

during	the	crisis.	The	complex	web	of	interactions	can	be	diminished	by	centralizing	

the	trading	and	clearing	these	instruments.	Robust	central	counterparties	interpose	

themselves	between	every	bilateral	transaction	to	reduce	complexity	and	risk.	The	

dimensionality	of	derivatives	 contracts	 can	be	 reduced	by	eliminating	 redundant	

trades	 and	 by	 netting	 (offsetting	 multiple	 payment	 obligations	 into	 a	 single	 net	

payable	or	receivable).	

The	 topology	of	 the	 financial	network	has	 fundamental	 implications	 for	 the	

systemic	risk	and	should	be	also	taken	into	account.	Regulatory	incentives	should	

promote	diversity	across	the	system	in	terms	of	aggregate	balance	sheets	and	risk	

management	models.	A	modular	structure	of	the	system	is	also	important	to	prevent	

contagion.	According	to	this	system	configuration,	too	big	banks	should	be	split	to	

limit	their	size	or	their	activities	(Haldane	and	May,	2011).	

	

	

4.2	Stress-testing	for	financial	stability	
	

Central	banks	widely	use	stress	tests	for	assessing	financial	stability.	The	output	of	

stress	tests	carries	essential	information	on	the	health	and	the	vulnerabilities	of	the	

system	or	the	entity	considered.	In	addition,	the	reliability	of	the	results	influences	

the	credibility	of	the	authorities	involved	(Enoch	et	al.,	2013).	

Stress-testing	 is	 an	 important	 risk-management	 tool	 comprising	 various	

techniques	for	assessing	resilience	to	extreme	but	plausible	events.	Traditionally	it	

was	employed	 to	determine	how	a	crisis	scenario	would	affect	 the	value	of	asset	

portfolios	 and	 later	 it	 has	 been	 applied	 to	 whole	 banks,	 banking	 systems	 and	

financial	systems	(Cm ihák,	2007).	

	 93	

Stress	 tests	 are	 used	both	by	banks	 for	 internal	 risk-management	 and	 self-

assessment	purposes	and	by	public	authorities	for	assessing	performance	and	risk	

profiles	 under	 adverse	 conditions	 and	 for	 determining	 appropriate	 regulatory	

requirements	on	capital	and	liquidity.		

	

Stress	tests	can	be	divided	into	two	main	categories	depending	on	the	nature	of	the	

assessment	 and	 the	 consequences	 of	 the	 results.	 The	 first	 category	 refers	 to	

microprudential	stress	tests,	which	are	forward-looking	supervisory	tools	to	assess	

the	adequacy	of	individual	banks’	capital	(or	liquidity)	depending	on	their	portfolio	

risks.	They	are	also	 important	management	 instruments	providing	indications	on	

the	reliability	of	the	internal	systems	designed	for	measuring	their	risks.	The	second	

category	refers	 to	macroprudential	 stress	 tests,	which	are	 focused	on	 the	overall	

financial	 stability	 rather	 than	on	 a	 single	 financial	 institution.	 These	 tests	 aim	at	

assessing	financial	vulnerabilities	(such	as	high	leverage,	mispricing,	concentration	

of	 risk	 and	 liquidity	 mismanagement)	 that	 can	 trigger	 systemic	 risks	 and	

compromise	the	financial	stability	of	the	whole	economy	(Adrian	et	al.,	2020).	

	

Considering	 the	 microprudential	 perspective,	 Schuermann	 (2014)	 argues	 that	

stress	 tests	 provide	 a	 useful	 indication	 on	 how	 much	 capital	 and	 liquidity	 is	

necessary	for	a	bank	to	absorb	losses	and	to	support	its	risk-taking	activities	in	case	

of	 a	 shock	 or	 to	 endure	 deteriorating	 economic	 conditions.	 Capital	 adequacy	

addresses	the	right	side	of	the	balance	sheet	(net	worth)	and	liquidity	refers	to	the	

left	side	(share	of	assets	that	can	be	readily	converted	into	cash).	According	to	the	

“Principles	for	sound	stress	testing	practices	and	supervision”	by	Basel	Committee	

(2009),	stress	tests	are	also	important	for	the	risk	governance	of	a	bank	by:	

- providing	forward-looking	assessments	of	risk;		

- overcoming	limitations	of	models	and	historical	data;		

- supporting	internal	and	external	communication;		

- feeding	into	capital	and	liquidity	planning	procedures;		

- informing	the	setting	of	a	banks’	risk	tolerance;	

- facilitating	the	development	of	risk	mitigation	or	contingency	plans	across	

a	range	of	stressed	conditions.	

	

	 94	

	

	

Considering	the	macroprudential	perspective,	there	are	two	main	approaches	that	

translate	macroeconomic	shocks	and	scenarios	into	financial	sector	variables.	In	the	

bottom-up	 approach,	 the	 authorities	 (central	 banks	 or	 supervisory	 authorities)	

define	the	macroeconomic	shock	to	be	considered	and	the	banks	are	requested	to	

evaluate	its	impact	on	their	balance	sheets.	The	results	are	then	aggregated	by	the	

authorities	in	order	to	get	the	overall	effect.	The	second	approach	is	called	top-down.	

Here	 the	 authorities	 design	 and	 calculate	 on	 their	 own	 the	 test	 for	 the	 banking	

system	as	a	whole.	According	to	the	EBA	(2018),	bottom-up	stress	tests	have	the	

following	characteristics:	

- they	are	carried	out	by	institutions	using	their	own	internally	developed	

models;	

- they	are	based	on	institutions'	own	assumptions	or	scenarios;	

- they	 are	 based	 on	 the	 institution’s	 own	 data	 and	 high	 level	 of	 data	

granularity;	

- they	concern	particular	portfolios	or	the	institution	as	a	whole,	producing	

detailed	 results	 on	 the	 potential	 impact	 of	 exposure	 concentrations,	

institution	 linkages	 and	 contagion	 probabilities	 to	 the	 institution’s	 loss	

rates.	

On	the	other	hand,	top-down	stress	tests	have	the	following	characteristics:	

- they	 are	 carried	 out	 by	 competent	 authorities	 or	 macroprudential	

authorities;	

- they	are	based	on	general	or	systemic	assumptions	or	scenarios	designed	

by	competent	authorities	and	applicable	to	all	relevant	institutions.	These	

authorities	 manage	 the	 process	 and	 calculate	 the	 results	 with	 less	

involvement	of	 the	 institutions	 than	 in	 the	 case	of	 the	bottom-up	 stress	

test;	

- they	 are	 based	 mostly	 on	 aggregate	 institution	 data	 and	 less	 detailed	

information,	depending	on	the	assumptions	of	the	stress	test;	

- they	 enable	 a	 uniform	 and	 a	 common	 framework	 and	 comparative	

assessment	 of	 the	 impact	 of	 a	 given	 stress	 testing	 exercise	 across	

institutions.	

	 95	

	

After	the	financial	crisis	stress	test	became	a	crucial	component	of	the	supervisory	

and	 financial	 stability	 toolbox.	 The	 European	 Banking	 Authority	 (EBA)	 is	

responsible	 for	 ensuring	 the	 proper	 functioning	 of	 financial	 markets	 and	 it	 is	

mandated	to	monitor	and	asses	market	developments	and	potential	vulnerabilities.	

The	 primary	 supervisory	 tool	 utilized	 is	 the	 biennial	 EU-wide	 stress	 test.	 It	 is	

initiated	 and	 coordinated	 by	 the	 EBA	 and	 it	 is	 an	 important	 input	 for	 the	 ECB’s	

macroprudential	policies.	EU-wide	stress	tests	are	conducted	in	a	bottom-up	fashion	

and	 they	 assess	 individual	 banks’	 resilience	 to	 adverse	 events12.	 The	 European	

Central	Bank	(ECB)	assures	that	the	outcomes	of	bottom-up	stress	tests	are	credible	

by	confronting	banks	with	independent	model-based	estimates.	It	does	so	by	taking	

a	 macroprudential	 perspective	 and	 performing	 top-down	 stress	 tests,	 which	

measure	 the	 system-wide	 impact	 of	 adverse	 shocks	 on	 the	 banking	 sector	 as	 a	

whole13.	

Stress	tests	are	also	run	by	international	organizations	to	foster	global	growth.	

The	International	Monetary	Fund	(IMF)	uses	macroprudential	stress	tests	in	order	

to	monitor	and	secure	the	global	financial	stability.	The	IMF	assesses	the	resilience	

of	 financial	 systems	 and	 provides	 policy	 advices	 through	 the	 Financial	 Sector	

Assessment	Program	(FSAP)	to	its	member	states.	

The	 supervisory	 authorities	 frequently	 use	 the	 international	 CAMEL	 rating	

system	 to	 determine	 the	 financial	 health	 of	 banks	 during	 an	 adverse	 shock.	 The	

factors	affecting	the	performance	are	capital	adequacy,	asset	quality,	management	

capability,	earnings,	liquidity	and	sensitivity.	As	a	guidance	for	an	adequate	capital	

and	 liquidity	 allocation	 by	 banks,	 the	 Basel	 Committee	 on	 Banking	 Supervision	

issued	a	set	of	regulatory	standards	and	guidelines	contained	in	the	Basel	I,	II	and	III	

frameworks.	

	

The	Basel	III	framework	is	the	most	recent	and	it	builds	on	Basel	II	by	introducing	

important	 reforms	 to	 enhance	 risk	 coverage	 after	 the	 lessons	 learnt	 from	 the	

12	For	further	details	about	EU-wide	stress	tests	done	by	the	EBA,	see	https://eba.europa.eu/risk-
analysis-and-data/eu-wide-stress-testing	
	
13	For	more	information	on	the	macroprudential	stress	testing	performed	by	the	ECB,	see	
https://www.ecb.europa.eu/press/key/date/2019/html/ecb.sp190904_2~4c8236275b.en.html	

	 96	

financial	crisis	(Basel	Committee,	2011).	It	is	essential	that	banks’	risk	exposures	are	

backed	by	a	high-quality	capital	base,	hence	the	framework	promotes	the	build-up	

of	adequate	buffers	above	the	minimum	that	can	be	drawn	in	periods	of	stress.	The	

main	capital	requirements	measures	proposed	by	Basel	III	are	the	common	equity	

tier	 1	 (CET1)	 ratio	 and	 the	 capital	 adequacy	 ratio	 (CAR).	 The	 CET1	 ratio	 can	 be	

defined	as:	
	

𝐶𝐸𝑇1	𝑟𝑎𝑡𝑖𝑜 = 	
𝐶𝐸𝑇1
𝑅𝑊𝐴𝑠																																																			(4.1)	

	

This	ratio	should	be	at	least	4.5%.	A	great	focus	is	put	on	CET1,	because	the	common	

equity	represents	the	highest	quality	components	of	a	banks’	capital.	

The	CAR	can	be	expressed	as:	
	

𝐶𝐴𝑅 = 	
𝑇𝑖𝑒𝑟	1	𝑐𝑎𝑝𝑖𝑡𝑎𝑙 + 𝑇𝑖𝑒𝑟	2	𝑐𝑎𝑝𝑖𝑡𝑎𝑙

𝑅𝑊𝐴𝑠 																																		(4.2)	
	

where	𝑅𝑊𝐴𝑠	are	the	risk	weighted	assets	(off-balance-sheet	exposures	weighted	by	

risk).	This	ratio	must	be	at	least	at	a	level	of	8%.	The	numerator	comprises	both	the	

Tier	1	and	2	capital	to	account	for	the	coverage	of	potential	losses	and	for	protecting	

the	depositors.	

Strong	buffers	of	capital	are	necessary	to	enhance	the	risk	coverage	but	are	not	

sufficient	 only	 by	 themselves.	 A	 bank	 needs	 a	 strong	 liquidity	 base	 as	well.	 The	

framework	 establishes	 minimum	 liquidity	 requirements	 to	 achieve	 two	

complementary	objectives.	The	first	is	to	promote	short-term	resilience	by	ensuring	

that	the	bank	has	enough	liquid	assets	to	survive	an	acute	shock	of	short	duration.	

The	liquidity	coverage	ratio	(LCR)	measures	the	amount	of	liquid	assets	needed	and	

can	be	computed	as:	
	

𝐿𝐶𝑅 = 	
ℎ𝑖𝑔ℎ	𝑞𝑢𝑎𝑙𝑖𝑡𝑦	𝑙𝑖𝑞𝑢𝑖𝑑	𝑎𝑠𝑠𝑒𝑡𝑠

𝑡𝑜𝑡𝑎𝑙	𝑛𝑒𝑡	𝑐𝑎𝑠ℎ	𝑓𝑙𝑜𝑤 																																					(4.3)	

	

The	second	objective	is	to	promote	long-term	resilience	by	incentivizing	a	bank	to	

fund	its	activities	with	stable	funds. The	Net	Stable	Funding	Ratio	(NSFR)	measures	

the	 long-term	 resilience	 and	 it	 requires	 a	minimum	 amount	 of	 stable	 sources	 of	

funding.	It	can	be	computed	as:	
	

	 97	

𝑁𝑆𝐹𝑅 = 	
𝑎𝑣𝑎𝑖𝑙𝑎𝑏𝑙𝑒	𝑎𝑚𝑜𝑢𝑛𝑡	𝑜𝑓	𝑠𝑡𝑎𝑏𝑙𝑒	𝑓𝑢𝑛𝑑𝑖𝑛𝑔
𝑟𝑒𝑞𝑢𝑖𝑟𝑒𝑑	𝑎𝑚𝑜𝑢𝑛𝑡	𝑜𝑓	𝑠𝑡𝑎𝑏𝑙𝑒	𝑓𝑢𝑛𝑑𝑖𝑛𝑔 																										(4.4)	

	

where	the	available	stable	funding	is	defined	as	the	portion	of	capital	and	liabilities	

expected	to	be	reliable	over	the	time	horizon	considered	by	the	NSFR,	which	extends	

to	one	year.	The	amount	of	the	required	stable	funding	of	a	specific	institution	is	a	

function	of	the	liquidity	characteristics	and	residual	maturities	of	the	various	assets	

held	by	 that	 institution	 as	well	 as	 those	of	 its	 off-balance	 sheet	 (OBS)	 exposures	

(Basel	 Committee,	 2014).	 Both	 LCR	 and	 NSFR	 ratios	 must	 be	 at	 least	 100%	

according	to	Basel	III.	

The	 framework	 introduces	 also	 leverage	 requirements	 in	 order	 to	 prevent	

excessive	 balance	 sheet	 leverage	 in	 the	 banking	 system	 that	 could	 amplify	 the	

downward	pressure	on	asset	prices	during	a	crisis.	The	leverage	ratio	must	be	at	

least	equal	to	3%	and	it	can	be	computed	as:	
	

𝑙𝑖𝑞𝑢𝑖𝑑𝑖𝑡𝑦	𝑟𝑎𝑡𝑖𝑜 = 	
𝑇𝑖𝑒𝑟	1	𝑐𝑎𝑝𝑖𝑡𝑎𝑙
𝑡𝑜𝑡𝑎𝑙	𝑒𝑥𝑝𝑜𝑠𝑢𝑟𝑒𝑠																																										(4.5)	

	

	

When	a	 shock	materializes,	 its	 impact	 is	 transmitted	directly	or	 indirectly	 to	 the	

financial	sector.	For	banks,	the	main	sources	of	risks	can	be	broadly	categorized	as	

credit	risk,	market	risk,	liquidity	risk	and	operational	risk	(ECB,	2006).	Credit	risk	

represents	the	largest	source	of	risk	for	banks	and	it	can	be	defined	as	the	risk	of	a	

loss	due	to	the	borrower’s	failure	to	meet	its	obligations	and	repay	a	loan.	Since,	the	

lending	 activity	 is	 the	 core	 of	 the	 traditional	 banking	 business,	 credit	 risk	 has	

received	closer	attention	in	central	bank	stress	tests.	The	EBA	defines	market	risk	

as	 the	 risk of	 losses	 in	 on-	 and	 off-balance	 sheet	 positions	 arising	 from	 adverse	

movements	in	market	prices.	The	main	types	of	market	risk	are	interest	rate,	equity,	

currency	and	commodity	risk.	The	liquidity	risk	represents	the	chance	for	a	bank	to	

not	be	able	to	meet	its	short-term	obligations.	Operational	risk	is	defined	by	Basel	

Committee	(2004)	as	the	risk	of	a	loss	resulting	from	inadequate	or	failed	internal	

processes,	 people	 and	 systems	 or	 from	 external	 events.	 All	 those	 risks	 are	

considered	 in	 the	Basel	 framework	and	are	 important	 for	defining	 the	minimum	

capital	 and	 liquidity	 requirements	 discussed	 above.	 Moreover,	 they	 are	 key	

components	for	the	stress-testing	procedure.	

	 98	

	

As	a	final	consideration,	it	is	useful	to	define	a	simple	structure	with	the	main	steps	

that	are	usually	followed	when	designing	a	stress	test,	as	can	be	seen	from	Figure	

4.1.	

	

	

	

The	first	step	is	to	design	a	scenario	and	an	initial	shock	or	several	shocks	(e.g.	

a	decline	in	GDP,	a	rise	in	interest	rates,	a	crash	in	equity	markets	or	a	spike	in	oil	

prices).	 The	 initial	 shocks	 are	 collected	 in	 a	 scenario,	 which	 can	 be	 historical,	

hypothetical,	 probabilistic	 or	 reverse-engineered.	 Historical	 scenarios	 replicate	

significant	market	events	that	happened	in	the	past	(such	as	the	1987	stock	crash,	

the	 1998	 emerging	 markets	 crisis	 or	 the	2000	 tech	 bubble	 burst).	 Hypothetical	

scenarios	do	not	match	historical	events	and	aim	to	capture	plausible	events	that	

have	not	occurred	yet.	Probabilistic	scenarios	are	constructed	on	the	basis	of	 the	

empirical	 distribution	 of	 the	 relevant	 risk	 variable,	 corresponding	 to	 extreme	

Evaluation	of	the	risk-bearing	capacity

Measurment	of	the	shock	impact	

Assessment	of	risks	affecting	banks'	portfolios

Impact	on	the	macroeconomic	environment

Choice	of	the	initial	shock	(triggering	event)

Figure	4.1.	A	simple	structure	of	a	stress	test	

	 99	

percentiles	 in	 the	 distribution.	 Reverse-engineered	 scenarios	 are	 constructed	 to	

match	a	predefined	amount	of	losses	to	be	endured	by	the	financial	sector.	The	key	

point	 for	 having	 meaningful	 stress	 scenarios	 is	 to	 incorporate	 plausible	 low-

probability	 shocks,	 which	 represent	 extreme	 realizations	 of	 the	 underlying	 risk	

factor.		

The	 second	 step	 is	 to	 describe	 the	 impact	 of	 the	 initial	 shock	 on	 the	

macroeconomic	environment.	A	macroeconomic	model	that	links	external	shocks	to	

key	macroeconomic	variables,	such	as	GDP,	interest	rates,	exchange	rate,	and	other	

variables	is	chosen.	This	will	provide	an	internally	consistent	representation	of	the	

full	economy	under	stress.	

The	third	step	consists	in	addressing	the	different	types	of	risks	that	affect	a	

bank’s	portfolio,	such	as	credit	risk,	market	risk,	liquidity	risk	and	operational	risk.	

The	choice	can	fall	on	a	single	risk	or	a	combination	of	two	or	more	risks.	

The	 fourth	 step	 requires	 to	measure	 the	 impact	 of	 the	 shock	on	 the	bank’s	

balance	sheet.	This	can	be	done	by	linking	the	macroeconomic	variables	to	banks’	

asset	quality	using	a	satellite	model.	

In	the	fifth	step,	the	output	of	the	stress	test	can	be	combined	with	other	pieces	

of	information	to	assess	the	strength	of	the	bank	or	the	banking	sector.	The	impact	

on	the	single	banks	can	be	expressed	in	terms	of	a	variable	such	as	capital	adequacy	

or	capital	injection	as	a	percent	of	GDP.	For	further	details	see	ECB	(2006)	and	Cm ihák	

(2007).		

	

	
	 	

	 100	

	 	

	 101	

	
	
CHAPTER	5	
Deep	Learning	applications	for	
banking	systems	
	

The	present	chapter	discusses	how	the	use	of	artificial	neural	networks	can	improve	

several	real-world	financial	applications,	which	often	have	a	non-linear	behaviour.	

Banks	 and	 regulatory	 authorities	 can	 benefit	 from	 the	 implementation	 of	 both	

simple	artificial	neural	networks	and	more	complex	deep	neural	networks	in	several	

areas,	such	as	credit	scoring,	bankruptcy	prediction,	financial	crisis	prediction	and	

stress-testing.	 The	 importance	 of	 these	 applications	 for	 the	 banking	 system	 is	

addressed	and	some	outstanding	researches	are	briefly	presented.	

	

	

5.1	Financial	applications	of	ANNs	and	DNNs	
	

Many	 real-world	 financial	 applications	 have	 a	 nonlinear	 and	 uncertain	 financial	

behaviour	which	changes	over	time.	These	problems	stimulated	a	growing	interest	

in	machine	learning	techniques	and	especially	in	artificial	neural	networks.	Several	

researches	show	that	the	accuracy	of	these	methods	in	many	cases	 is	superior	to	

traditional	 statistical	 methods	 (parametric	 and	 nonparametric)	 in	 dealing	 with	

financial	problems,	especially	regarding	nonlinear	patterns.	What	makes	multilayer	

ANNs	truly	appealing	is	their	ability	to	capture	complex	and	nonlinear	interactions	

among	 the	 variables.	 The	more	hidden	 layers	 are	 in	 a	 neural	 network,	 the	more	

complex	is	the	interaction	effect	that	can	be	modeled	(Bahrammirzaee,	2010).	

Financial	 prediction	 problems	 are	 of	 keen	 interest	 both	 for	 practical	 and	

theoretical	purposes.	Financial	prediction	problems,	such	as	design	and	pricing	of	

securities	and	construction	of	portfolios	and	risk	management,	often	involve	large	

data	sets	with	complex	data	interactions	that	are	difficult	or	impossible	to	specify	in	

a	full	economic	model.	Deep	learning	methods	can	detect	and	exploit	complex	non-

	 102	

linear	interactions	in	the	data	that	are	invisible	to	any	existing	financial	economic	

theory	and	could	produce	more	accurate	predictive	outputs	than	standard	methods	

(Heaton	et	al.,	2016).	

The	 following	 sections	 will	 present	 some	 of	 the	 most	 important	 areas	 of	

application	 of	 ANNs	 and	 deep	 learning	 to	 banking	 systems:	 credit	 scoring,	

bankruptcy	prediction,	financial	crisis	prediction	and	stress-testing.	

	

	

5.2	Credit	risk	evaluation	and	credit	scoring	
	

The	assessment	of	credit	risk	became	the	major	focus	of	the	banking	industry	after	

the	 global	 financial	 crisis	 and	 the	 stricter	 capital	 requirements	 of	 the	 Basel	 III	

framework.	Credit	risk	is	still	the	largest	risk,	difficult	to	manage	and	to	evaluate.	

The	ability	to	discriminate	good	customers	from	bad	ones	is	crucial	for	all	credit-

granting	institutions,	such	as	commercial	banks	and	certain	retailers.	The	need	for	

reliable	models	that	predict	accurately	the	possibility	of	default	is	crucial	so	that	the	

interested	parties	can	take	either	preventive	or	corrective	action.	Consequently,	an	

accurate	 prediction	 of	 credit	 risk	 is	 very	 important	 for	 sustainability,	 profit	 of	

enterprises	 and	 a	more	 efficient	 use	 of	 economic	 capital	 in	 business.	 The	major	

advantage	for	the	bank	relates	to	sounder	lending	decisions,	which	in	turn	can	result	

in	significant	savings	(Yu	et	al.,	2008).	

An	 improvement	 in	default	prediction	accuracy	of	even	a	small	amount	can	

lead	 to	 large	 savings.	 In	 addition	 to	 avoiding	potentially	 troubled	borrowers,	 the	

credit	risk	evaluation	can	help	in	estimating	a	fair	value	of	the	interest	rate	of	a	loan	

that	reflects	the	creditworthiness	of	the	counterparty	and	in	carefully	assessing	the	

credit	risk	of	the	loans	portfolio.	The	credit	risk	assessment	in	practice	requires	the	

computation	 of	 a	 loss	 level	 for	 which	 there	 is	 a	 probability	 of	 1%	 that	 the	 loss	

incurred	 in	 the	portfolio	will	 exceed	 that	 level	 in	 a	 particular	 time	period	 (Atiya	

2001).	

Financial	 institutions	and	their	portfolios	of	 loans	 increased	considerably	 in	

scale	and	complexity	over	the	past	years.	At	the	same	time,	advances	in	information	

technology	 have	 lowered	 significantly	 the	 costs	 of	 acquiring,	 managing	 and	

analyzing	large	amounts	of	data	and	it	became	possible	to	build	more	robust	and	

	 103	

efficient	techniques	for	credit	risk	management	(Pacelli	and	Azzollini,	2011).	Credit	

scoring	models	have	been	developed	for	the	credit	granting	decision	with	the	aim	of	

assigning	credit	applicants	to	one	of	two	groups:	a	good	credit	group	that	is	likely	to	

repay	 the	 financial	obligation,	or	a	bad	credit	group	 that	should	be	denied	credit	

because	of	a	high	likelihood	of	defaulting	on	the	financial	obligation	(West,	2000).	

Models	based	on	credit	scoring	can	be	used	to	predict	the	potential	risk	of	a	

credit	 portfolio.	 Banks	 evaluate	 credit	 both	 for	 corporations	 and	 individual	

consumers.	Credit	scoring	is	divided	into	two	distinct	types.	The	first	is	application	

scoring,	for	which	the	task	is	to	classify	credit	applicants	into	good	or	bad	risk	groups	

depending	 on	 their	 probability	 of	 default.	 The	 data	 used	 for	modeling	 generally	

consists	 of	 financial	 information	 and	 demographic	 information	 about	 the	 loan	

applicant.	 The	 second	 type	 is	 behavioral	 scoring	 and	 it	 is	 used	 for	 existing	

customers.	 Payment	 history	 information	 is	 also	 used	 here	 along	 with	 other	

information	 by	 taking	 into	 account	 the	 customer’s	 payment	 pattern	 on	 the	 loan	

(Khashman,	2010).	

The	traditional	approach	is	based	on	statistical	models.	The	most	popular	ones	

are	the	linear	discriminant	analysis	(LDA)	technique	and	the	logistic	regression	(LR)	

approach.	They	use	financial	statement	data	and	financial	ratios.	

	

The	principal	concern	of	credit	scoring	applications	is	the	necessity	to	increase	the	

scoring	accuracy	of	the	credit	decision.	An	improvement	in	accuracy	of	even	a	small	

amount	can	translate	into	considerable	future	savings.	For	this	reason,	novel	models	

have	been	explored.	ANNs	were	found	to	be	efficient	methods	for	credit	scoring	and	

they	 have	 outperformed	 in	 many	 cases	 the	 traditional	 methods.	 Their	 strength	

resides	in	their	non-linear	nature,	which	is	particularly	useful	in	modelling	complex	

non-linear	 relationships	 between	 the	 dependent	 and	 independent	 variables.	 The	

multi-layer	perceptron	is	the	most	frequently	used	architecture.	

Several	researches	have	tested	the	employment	of	ANN	models.	West	(2000)	

explores	 the	 credit	 scoring	 accuracy	 of	 five	 different	 network	 models	 and	

benchmarks	the	results	against	LDA	and	other	traditional	methods.	It	compares	the	

performance	of	 the	multilayer	perceptron	 to	other	networks	 like	 the	radial	basis	

function	and	fuzzy	adaptive	resonance	in	order	to	explore	if	there	are	more	efficient	

networks	 than	 the	 MLP.	 The	 author	 uses	 two	 real-world	 datasets	 containing	

	 104	

examples	 of	 loan	 applications	 of	 individuals,	 the	 German	 credit	 dataset	 and	 the	

Australian	 credit	 dataset.	 For	 each	 applicant,	 a	 set	 of	 variables	 describes	 credit	

history,	account	balances,	loan	purpose,	loan	amount,	employment	status,	personal	

information,	age,	housing	and	job.	The	paper	employs	a	data	mining	strategy,	using	

all	 the	variables	as	 raw	data.	The	 final	output	given	by	 the	network	 is	 a	number	

representing	the	credit	score.	The	results	suggest	that	all	the	neural	network	models	

considered	achieved	improvements	in	accuracy	with	respect	to	traditional	ones.	The	

classic	MLP,	however,	 is	not	the	most	accurate	and	it	 is	suggested	to	try	different	

architectures	and	topologies	depending	on	the	available	data.	

Another	 more	 recent	 research	 that	 explores	 credit	 scoring	 models	 for	

individual	loans	is	the	work	in	Khashman	(2010).	The	dataset	employed	is	again	the	

German	credit	dataset.	The	paper	describes	a	credit	risk	evaluation	system	that	uses	

a	 multilayer	 perceptron	 with	 one	 hidden	 layer	 based	 on	 the	 back-propagation	

learning	algorithm.	The	paper	investigates	the	impact	of	change	in	size	of	the	hidden	

layer,	different	learning	rates	and	the	training-to-test	ratio	on	the	final	result.	

Several	 other	 studies	 concentrate	on	 corporate	 credit	 scoring.	Atiya	 (2001)	

develops	a	bankruptcy	prediction	model	using	the	classic	MLP	network.	The	author	

tackles	the	problem	of	the	inputs	to	be	used	and	he	introduces	a	novel	set	of	input	

indicators	 extracted	 from	 the	 stock	 price	 of	 the	 firm	 in	 addition	 to	 the	 financial	

ratios.	The	reason	is	that	a	problem	faced	by	a	firm	will	typically	be	reflected	in	the	

stock	price	well	before	it	shows	up	in	its	balance	sheet	and	income	statement.	The	

stock-price-based	indicators	considered	are	the	volatility,	the	change	in	price	and	

the	 price-cashflow	 ratio.	 The	 comparative	 advantage	 of	 the	 financial	 ratio	 and	

equity-based	system	over	the	financial	ratio	system	is	tested	on	historical	data	from	

solvent	and	defaulted	US	firms	and	it	is	found	that	the	addition	of	the	new	indicators	

improves	the	prediction	considerably.	

Angelini	et	al.	(2008)	describe	an	application	of	neural	networks	to	the	credit	

risk	 assessment	 of	 Italian	 small	 businesses.	 They	 develop	 two	 neural	 network	

systems,	one	with	a	standard	feed	forward	network,	while	the	other	with	a	special	

purpose	architecture.	The	inputs	used	are	financial	ratios	drawn	from	the	balance	

sheet	 of	 the	 firm,	 ratios	 calculated	 by	 analyzing	 the	 credit	 positions	 with	 the	

supplying	 bank	 and	 ratios	 representing	 the	 overall	 Italian	 Banking	 System.	 The	

output	y	of	the	network,	which	is	a	real	value	in	the	range	[0,1],	 is	interpreted	as	

	 105	

bonis	if	y	<	0.5	and,	otherwise,	the	example	is	classified	as	default.	The	application	

is	tested	on	real-world	data	and	it	is	shown	that	both	neural	networks	can	be	very	

successful	in	learning	and	estimating	the	default	tendency	of	a	borrower,	provided	

that	careful	data	analysis,	data	pre-processing	and	training	are	performed.	

There	 are	 several	 problems	with	 financial	 data	of	 this	 kind	 that	have	 to	be	

considered,	as	real-world	data	is	often	noisy	and	incomplete.	Angelini	et	al.	(2008)	

also	 investigate	 in	 detail	 the	 problems	 that	 one	 could	 encounter	 and	 what	 pre-

processing	 operations	 should	 be	 carried	 out.	 When	 there	 are	 missing	 or	 wrong	

values	it	is	useful	to	replace	them	with	other	values,	such	as	the	arithmetical	mean	

of	the	field	or	the	upper	 limit	of	 the	normalization	interval.	Fields	with	too	many	

missing	or	wrong	values	should	be	erased	from	the	dataset.	The	data	set	should	be	

normalized	 with	 an	 appropriate	 technique.	 The	 authors	 suggest	 using	 the	

logarithmic	formula,	since	it	is	more	flexible	than	a	simple	linear	transformation.	A	

correlation	analysis	between	the	different	ratios	should	also	be	performed	and	the	

strongly	correlated	variables	should	be	removed.	

In	 relation	 to	 the	 normalization	 issue,	 Khashman	 (2010)	 explains	 that	 the	

numerical	 input	 values	 representing	 the	 attributes	 of	 a	 credit	 applicant	 vary	

marginally	in	value,	and	if	a	simple	normalization	process	is	applied	to	the	whole	

dataset,	as	an	example	by	dividing	each	value	in	the	set	by	the	largest	recorded	value,	

then	much	information	would	be	lost	across	the	different	attributes.	Therefore,	the	

normalization	of	credit	application	input	data	should	be	carefully	performed,	while	

maintaining	the	meaning	of	each	attribute.	

	

	

5.3	Bank	insolvency	and	bankruptcy	prediction	
	

The	prediction	of	bankruptcy	for	financial	firms	and	especially	for	banks	has	been	

widely	 investigated	 since	 the	 late	 1960s.	 Stockholders,	 senior	 management,	

creditors	and	auditors	are	all	interested	in	predicting	bankruptcy	because	it	affects	

similarly	 all	 of	 them.	 The	 health	 of	 a	 bank	 in	 a	 highly	 competitive	 business	

environment	 relies	 on	 how	 financially	 solvent	 it	 is	 at	 the	 beginning;	 its	 ability,	

flexibility	and	efficiency	 in	creating	cash	 from	 its	operations;	 its	access	 to	capital	

markets;	and	its	financial	capacity	and	resilience	when	faced	with	unplanned	short	

	 106	

falls	in	cash.	As	a	bank	or	firm	becomes	more	and	more	insolvent,	it	gradually	enters	

a	danger	zone	and	changes	must	be	made	to	its	operations	and	capital	structure	in	

order	to	keep	it	solvent	(Kumar	and	Ravi,	2007).	

	

Artificial	neural	networks	have	been	successfully	employed	as	well	 for	predicting	

bankruptcies.	 Al-Shayea	 et	 al.	 (2010)	 aim	 to	 predict	 bank	 insolvency	 before	 the	

occurrence	of	bankruptcy	using	neural	networks	 in	order	 to	enable	all	parties	 to	

take	promptly	corrective	action.	The	model	works	as	an	early	warning	system	and	

monitors	solvency.	A	dataset	of	financial	ratios	of	Spanish	banks	is	inputted	into	a	

two-layer	 feed-forward	network	with	 sigmoid	 hidden	neurons	 and	 linear	 output	

neurons.	 The	 financial	 ratios	 chosen	 measure	 liquidity,	 self-financing	 capability,	

ability	 to	make	profits	and	 to	produce	positive	cash	 flows.	The	results	 show	that	

even	a	simple	model	with	a	limited	amount	of	data	like	this	has	a	good	ability	to	learn	

the	patterns	corresponding	to	the	financial	distress	of	a	bank.	

The	 more	 recent	 work	 of	 Cerchiello	 et	 al.	 (2017)	 attempts	 to	 incorporate	

textual	information	of	financial	news	in	addition	to	numerical	data	with	the	purpose	

of	enhancing	the	performance	of	classifiers	of	bank	distress.	Understanding	bank	

distress	is	an	area	of	research	where	textual	data	holds	promising	potential	due	to	

the	frequency	and	information	richness	of	financial	news.	Indeed,	central	banks	are	

starting	to	recognize	the	utility	of	textual	data	in	financial	risk	analytics.	The	authors	

construct	a	dataset	containing	both	numerical	(information	on	bank-level	balance	

sheet	and	income	statement	data,	as	well	as	country-level	banking	sector	and	macro-

financial	data)	and	textual	(news	articles	from	Reuters	online	archive)	information	

by	matching	the	news	dates	to	the	numerical	data.	As	can	be	seen	from	figure	5.1,	

the	 framework	 processes	 textual	 data	 through	 an	 unsupervised	 neural	 network	

model	 converting	 the	 documents	 sentences	 into	 sentence	 vectors.	 The	 retrieved	

sentence	vectors	are	then	joined	with	the	financial	numerical	data	in	a	unique	input	

vector	 and	 fed	 to	 a	 three-layer	 fully	 connected	 feedforward	neural	network.	The	

network	produces	a	distress	signal	as	an	output.	The	experimental	results	confirm	

that	the	integration	of	numerical	and	textual	data	amplifies	the	prediction	capability	

of	the	model	compared	with	textual	data	alone.	

	 107	

	

	

	

The	use	of	textual	disclosures	in	ANN	models	has	raised	interest	also	in	predicting	

corporate	 bankruptcies.	 Mai	 et	 al.	 (2019)	 introduce	 a	 deep	 learning	 model	 for	

corporate	bankruptcy	forecast	using	textual	disclosures,	a	form	of	unstructured	and	

qualitative	 data.	 Textual	 data	 plays	 an	 important	 role	 in	 how	 information	 is	

conveyed	to	the	public.	For	example,	a	vast	proportion	of	public	firm’s	annual	filings	

to	 regulatory	 agencies	 are	 textual	 disclosures.	 Also,	 policymakers	 and	 market	

participants	consume	a	 large	amount	of	 financial	reports	and	news	articles	every	

day.	As	a	large	amount	of	unstructured	data	is	injected	into	the	market	every	day,	

investors,	 regulators	 and	 researchers	 demand	more	 intelligent	 models	 to	 digest	

such	information.	

The	authors	construct	a	comprehensive	bankruptcy	database	of	11,827	U.S.	

public	 companies.	 The	 database	 consists	 of	 numeric	 variables	 generated	 from	

accounting	and	stock	market	data	that	may	reflect	the	company’s	liability,	liquidity	

and	 profitability	 status.	 In	 addition,	 textual	 data	 is	 taken	 from	 the	Management	

Discussion	and	Analysis	(MD&A)	section	of	the	10-K	SEC	filing.	The	SEC	mandates	

public	companies	to	include	an	MD&A	section	in	their	annual	reports.	This	section	

contains	a	narrative	explanation	of	the	firm’s	operations	in	a	way	that	an	average	

investor	can	understand.	It	also	serves	as	a	qualitative	disclosure	for	investors	to	

make	more	accurate	projections	of	future	financial	and	operating	results.	A	natural	

language	 processing	model	 is	 used	 to	 pre-process,	 simplify	 and	 extract	 relevant	

Figure	5.1.	Structure	of	the	framework	

Source:	Cerchiello	et	al.	(2017)	

	 108	

features	from	the	textual	 information.	The	deep	learning	system	designed	for	the	

prediction	 task	 is	 a	 feedforward	model	 that	 maps	 the	 inputs	 (numeric	 and	 text	

features)	 to	 a	 binary	 output	 (bankruptcy	 or	 not).	 The	model	 is	 trained	with	 the	

stochastic	gradient	descent.	The	final	result	shows	that	deep	learning	models	yield	

superior	 prediction	 performance	 in	 forecasting	 bankruptcy	 using	 textual	

disclosures	 in	 conjunction	 with	 traditional	 accounting-based	 ratio	 and	 market-

based	variables.	

	

	

5.4	Financial	crisis	prediction	and	early	warning	systems	
	

A	 global	 financial	 crisis	 can	 arise	 from	 a	 series	 of	 local	 market	 shocks	 and	

subsequently	evolve	into	a	worldwide	economic	crisis	due	to	the	interconnections	

of	the	financial	markets.	In	other	instances,	a	crisis	can	start	from	a	single	economy	

whose	size	 is	 large	enough	 to	generate	 instability	also	 in	 the	other	 countries.	An	

example	is	the	subprime	crisis	that	started	in	the	United	States	and	evolved	into	a	

sovereign	debt	crisis	in	several	European	countries	(Chatzis	et	al.,	2018).	

There	are	 several	 shapes	and	 forms	 that	 a	 financial	 crisis	 can	 take,	 such	as	

currency	 crises,	 sudden	 stops,	 debt	 crises	 and	 banking	 crises.	 A	 currency	 crisis	

involves	a	speculative	attack	on	the	currency	that	can	result	in	a	devaluation	or	force	

the	authorities	to	defend	their	currency	by	expending	large	amount	of	international	

reserves	or	sharply	raising	interest	rates.	A	sudden	stop	can	result	from	a	large	and	

unexpected	 fall	 in	 international	 capital	 inflows	 or	 a	 sharp	 reversal	 in	 aggregate	

capital	flows	to	a	country.	A	debt	crisis	is	associated	with	adverse	debt	dynamics	for	

which	a	country	is	not	able	to	honor	its	domestic	or	foreign	obligations.	A	banking	

crisis	 involves	 bank	 runs	 and	 failures	 that	 can	 induce	 the	 banks	 in	 a	 system	 to	

suspend	 the	 convertibility	 of	 their	 liabilities	 or	 to	 ask	 for	 the	 intervention	 of	

government	to	extend	liquidity	and	capital	assistance	on	a	large	scale	(IMF,	2013).	

Early	 Warning	 Systems	 (EWSs)	 are	 models	 that	 produce	 clear	 and	 timely	

signals	 of	 the	 occurrence	 of	 an	 economic	 crisis.	 They	 are	 valuable	 tools	 for	

policymakers	in	their	effort	to	contain	the	contagion	risk	and	to	anticipate	a	global	

economic	crisis.	Hence,	EWSs	can	help	the	policy	makers	in	uncovering	the	possible	

	 109	

vulnerabilities	of	the	economy	and	taking	preemptive	actions	to	diminish	those	risks	

(Chatzis	et	al.,	2018).	

	

Artificial	 neural	 networks	 have	 been	 recently	 applied	 to	 solve	 also	 this	 type	 of	

prediction	problem.	Fioramanti	(2008)	develops	an	early	warning	system	to	predict	

a	sovereign	debt	crisis	in	a	set	of	developing	countries.	He	uses	a	large	panel	dataset	

for	46	emerging	countries	of	internal	(GDP	growth,	inflation,	interest	rate),	external	

(US	treasury	bill	 interest	rate,	overvaluation,	exchange	rate	agreement,	degree	of	

openness)	and	debt-related	explanatory	variables	(average	maturity,	total	external	

debt,	short-term	external	debt,	interest	on	external	debt).	A	country	is	defined	to	be	

in	 a	 debt	 crisis	 if	 it	 is	 classified	 as	 being	 in	 default	 by	 Standard	&	Poor’s	 or	 if	 it	

receives	 a	 large	non-concessional	 IMF	 loan.	This	definition	 is	used	 to	 specify	 the	

crisis	 episodes	 used	 to	 define	 the	 dependent	 variable.	 The	 data	 is	 fed	 into	 a	

multilayer	perceptron	having	a	hidden	layer	of	three	neurons.	The	output	produced	

is	a	binary	number	predicting	if	there	will	be	a	debt	crisis	or	not.	The	final	result	

shows	 that	 the	MLP	 can	 improve	 the	performance	of	EWSs	and	 it	 could	be	used	

together	with	traditional	methods	to	make	the	final	judgment.	

Aydin	 and	 Cavdar	 (2015)	 develop	 an	 early	 warning	 system	 to	 predict	 a	

financial	crisis	in	Turkey.	They	use	seven	key	monthly	macroeconomic	and	financial	

indicators	of	 the	Turkish	economy	as	 inputs	(US	Dollar,	gold	prices,	 Istanbul	100	

Index,	wholesale	 price	 index,	money	 supply,	 domestic	 debt	 stock	 and	 composite	

leading	economic	indicators	index).	The	data	is	fed	into	a	feedforward	ANN	with	two	

hidden	layers.	The	final	output	consists	of	the	prediction	of	the	seven	indicators	after	

the	next	24	months.	The	results	show	that	this	simple	model	has	a	good	ability	to	

learn	the	patterns	corresponding	to	a	financial	crisis.	

Chatzis	 et	 al.	 (2018)	 investigate	 the	 use	 of	 different	 machine	 learning	

techniques	 for	 forecasting	 a	 stock	 market	 crisis.	 They	 construct	 a	 database	

containing	various	financial	indicators	(such	as	the	yield	of	the	10-year	government	

bond,	the	exchange	rate	against	the	US	dollar,	oil	price,	gold	price	and	VIX	index)	

focusing	 on	 liquid	 markets,	 where	 the	 transmission	 of	 extreme	 events	 is	 better	

depicted	in	the	pricing	patterns.	Several	countries	are	included	to	cover	the	three	

most	important	financial	markets,	namely	America,	Asia	and	Europe.	The	authors	

also	 identify	 all	 crisis	 events	 for	 each	 country.	 A	 significant	 global	 crisis	 event	

	 110	

happens	if	the	return	of	the	Stock	Index	is	below	the	first	percentile	of	the	associated	

empirical	distribution	of	returns.	They	created	two	binary	dependent	variables,	one	

pertaining	to	a	one-day	predictive	horizon	and	one	pertaining	to	a	20-day	predictive	

horizon.	A	series	of	models	including	classification	trees,	support	vector	machines,	

random	 forests,	 neural	 networks,	 extreme	 gradient	 boosting	 and	 deep	 neural	

networks	are	applied	to	the	dataset	and	their	performance	is	compared.	Deep	neural	

networks	with	five	hidden	layers	consistently	outperform	the	rest	of	the	employed	

approaches	and	can	be	a	good	starting	point	for	developing	an	early	warning	system.	

	

	

5.5	Dynamic	balance	sheet	stress-testing	
	

Financial	stability	is	a	central	aspect	for	the	economic	prosperity	of	countries	and	

individuals.	 Regulatory	 authorities	 and	 international	 organizations	 performed	

stress	testing	exercises	to	assess	the	resilience	of	the	banking	system	long	before	

the	financial	crisis	of	2007	but	failed	to	predict	the	unprecedented	economic	turmoil	

after	Lehman’s	default.	After	that,	more	rigorous	stress	testing	exercises	have	been	

developed.	Yet,	the	current	stress	testing	frameworks	are	usually	composed	of	a	feed	

forward	shock	engine,	which	is	not	able	to	capture	the	relationships	nexus	of	the	

highly	 interconnected	 financial	 system	 and	 the	 associated	 feedback	 loops	 in	 the	

macro	environment.	

The	EBA	EU’s	wide	stress-testing	is	a	bottom	up	exercise,	which	covers	only	

specific	risks	on	individual	banks’	balance	sheets	based	on	a	macro	scenario	with	

simplified	assumptions.	One	of	 the	major	weaknesses	 in	EBA	methodology	 is	 the	

static	 balance	 sheet	 assumption,	 which	 requires	 assets	 and	 liabilities	 to	 remain	

constant	 over	 the	 horizon	 considered	 without	 acknowledging	 for	 management	

actions	 or	 new	 loans.	 Macroeconomic	 feedback	 effects,	 such	 as	 the	 impact	 of	 a	

significant	 institution	becoming	 insolvent	 in	 the	macro	 economy,	 usually	 are	not	

considered	in	these	frameworks.	Stress	tests	under	this	structure	serve	to	challenge	

the	 recovery	 plans	 of	 banks	 and	 to	 assess	 their	 viability.	 However,	 they	 are	

inadequate	to	provide	early	warning	signals.	Another	 issue	of	stress	tests	 is	their	

reliance	 on	 regulatory	 ratios	 like	 capital	 adequacy	 ratio,	 which	 in	 turn	 is	 highly	

dependable	on	the	estimation	of	risk	weighted	assets	(RWAs).	Relying	on	the	risk	

	 111	

weights	applied	internally	by	the	financial	institutions	under	the	Basel	Framework	

can	lead	to	an	underestimation	of	the	capital	needs,	since	RWAs	are	not	able	capture	

the	hidden	risk	in	the	complex	portfolio	structure	of	a	bank	and	there	is	significant	

variability	in	the	type	of	internal	models	used	(Petropoulos	et	al.,	2019).	

A	significant	amount	of	granular	information	on	banks	has	been	collected	after	

the	 crisis	 by	 regulators,	 however	 they	 have	 yet	 not	 explored	 machine	 learning	

techniques	in	order	to	extract	more	information	regarding	the	risks	in	their	banking	

systems.	Petropoulos	et	al.	(2019)	give	the	first	contribution	to	this	field	with	the	

application	of	deep	learning	to	a	dynamic	balance	sheet	stress-testing	framework.	

Financial	 or	macroeconomic	 shocks	 are	 propagated	 to	 banks’	 balance	 sheets	 by	

simultaneously	training	a	deep	neural	network	with	macro	and	financial	variables.	

The	model	is	capable	of	capturing	more	information	hidden	in	a	big	dataset	and	it	

accounts	 for	 complex	 non-linear	 relationships	 that	 materialize	 under	 adverse	

macroeconomic	 conditions	 and	 financial	 distress.	 This	 framework	 independently	

assesses	the	banking	system	without	relying	on	the	single	banks’	estimations.	Only	

publicly	available	data	is	used	and	the	model	is	developed	in	a	uniform	way	making	

the	 process	 of	 validation	 and	 error	 correction	 more	 feasible	 to	 be	 performed	

centrally	by	regulators.	

The	authors	compare	the	performance	of	the	deep	learning	approach	to	other	

well-known	stress	testing	frameworks,	such	as	the	constant	balance	sheet	approach	

and	 the	dynamic	balance	sheet	approach	with	satellite	modelling.	The	prediction	

error	 of	 the	 Capital	 Adequacy	 Ratio	 (CAR)	 drops	 significantly	 under	 the	 deep	

learning	approach,	due	to	its	better	performance	in	simulating	the	one	year	ahead	

profit	 and	 loss	 evolution	 of	 the	 financial	 institutions.	 For	 this	 reason,	 the	 deep	

learning	framework	can	become	a	powerful	tool	for	macro	prudential	stress-testing	

and	can	improve	the	signaling	power	of	an	early	warning	system	in	order	to	predict	

future	financial	crises	and	individual	bank’s	failures.	

	

	 	

	 112	

	

	 	

	 113	

	
	
CHAPTER	6	
Application	to	dynamic	balance	sheet	
stress-testing	
	

The	present	chapter	deals	with	a	final	case	study	analysis,	in	which	the	application	

of	a	neural	network	to	dynamic	balance	sheet	stress-testing	is	performed	by	using	

real	 US	 data.	 The	 first	 section	 illustrates	 how	 the	 data	 was	 collected	 and	 pre-

processed,	while	the	second	section	explains	how	the	model	was	designed,	giving	an	

overview	about	the	choice	of	a	suitable	architecture	and	hyperparameters	in	order	

to	enhance	the	model’s	generalization	and	predictive	capabilities.	

	

	

6.1	Data	collection	and	pre-processing	
	

This	case	study	analysis	was	inspired	by	the	work	of	Petropoulos	et	al.	(2019),	which	

was	presented	in	the	previous	chapter.	Instead	of	predicting	nine	output	variables	

that	capture	the	profitability	structure	of	a	bank,	this	analysis	focuses	on	a	simpler	

problem	and	tries	to	predict	only	the	one-year	ahead	CAR	ratio,	which	is	a	key	ratio	

that	regulators	monitor	closely	when	determining	the	financial	health	and	solvency	

of	a	bank.		

In	 order	 to	 solve	 the	 prediction	 problem	 of	 the	 CAR	 ratio,	 quarterly	

information	of	various	financial	and	macroeconomic	indicators	was	collected	from	

different	 sources	 and	 databases.	 The	 relevant	 stress	 financial	 variables	 for	

simulating	 the	 profitability	 and	 the	 risk	weighted	 assets	 of	 each	 active	 financial	

institution	 were	 collected	 from	 the	 database	 of	 the	 Federal	 Deposit	 Insurance	

Corporation	(FDIC),	an	independent	agency	created	by	the	US	Congress	in	order	to	

maintain	the	stability	and	the	public	confidence	in	the	financial	system	(Petropoulos	

et	al.,	2019).	The	relevant	macro-economic	variables	were	collected	from	Federal	

Reserve	 Economic	 Data	(FRED)	 database,	 supported	 by	 the	 Research	 division	 of	

	 114	

the	Federal	 Reserve	 Bank	 of	 St.	 Louis.	 Macro-economic	 variables	 have	 to	 be	

considered	in	the	model,	since	shocks	can	propagate	from	the	macro	economy	into	

the	financial	institutions’	business	models	through	non-linear	channels.	The	dataset	

covers	a	nine	years’	period	from	2010	to	2018	with	quarterly	information	for	a	total	

of	more	than	27000	records.	In	order	to	capture	the	unique	characteristics	of	each	

financial	entity,	3-year	lags	are	also	included	for	each	variable,	for	a	total	of	80	input	

variables.		

	

Two	 of	 the	model	 variables	 have	 to	 be	 computed	 by	 hand	 using	 other	 variables	

found	 in	 the	 database.	 The	 risk	 weight	 density	 is	 computed	 according	 to	 the	

definition	of	Basel	Committee	(2016)	as:	
	

𝑟𝑖𝑠𝑘	𝑤𝑒𝑖𝑔ℎ𝑡	𝑑𝑒𝑛𝑠𝑖𝑡𝑦 = 	 kHKHGx�H	GxI5L
W5HG	#	µxJ5Ixk

∗ 𝑟𝑖𝑠𝑘	𝑤𝑒𝑖𝑔ℎ𝑡𝑒𝑑	𝑎𝑠𝑠𝑒𝑡𝑠																		(6.1)	
	

The	S&P	500	quarterly	returns	are	computed	from	the	monthly	prices	of	S&P	

500	Total	Return	Index	according	to:	
	

𝑟I = ln ¸
𝑃I
𝑃Im�

º																																																											(6.2)	

	

	

The	financial	and	macro-economic	variables	are	summarized	in	Table	6.1.	

	

	

	

	

	

	

	

	

	

	

	

	

	

	 115	

Table	6.1.	Description	of	the	model	variables	
	

Variable	 Description	 Type	

net_loan	 Net	loans	and	leases	exposure	 Financial		

dep	 Total	deposits	 Financial	

loss_allow	 Loss	allowance	to	loans	 Financial	

yield_ea	 Yield	on	earning	assets	 Financial	

fundc_ea	 Cost	of	funding	earning	assets	 Financial	

inc_aa	 Noninterest	income	to	average	assets	 Financial	

CAR	 Total	risk-based	capital	ratio	 Financial	

tot_asst	 Average	total	assets	 Financial	

tot_eq	 Average	total	equity	 Financial	

tot_loan	 Average	total	loans	 Financial	

risk_dens	 Risk	weight	density	 Financial	

GDP_growth	 Gross	Domestic	Product	growth	 Macro-economic	

export_growth	 US	real	exports	of	goods	and	services	growth	 Macro-economic	

debt_GDP	 US	public	debt	to	GDP	 Macro-economic	

govex_GDP	 US	government	expenditure	to	GDP	 Macro-economic	

inflat	 Implicit	price	deflator	as	a	measure	of	US	inflation	 Macro-economic	

HPI_growth	 House	Price	Index	growth	 Macro-economic	

unemp	 Unemployment	rate	(age	15-64)	 Macro-economic	

yield_10Y	 10-year	US	sovereign	bonds	yields	 Macro-economic	

S&P500_ret	 S&P	500	quarterly	returns	 Macro-economic	

	

	

The	second	step	is	to	split	the	dataset	into	training,	validation	and	test	sets.	The	rule	

of	thumb	followed	here,	is	to	divide	the	set	into	60%	for	training	(from	year	2010	to	

2014),	20%	for	validation	(years	2015	and	2016)	and	20%	for	testing	(years	2017	

and	2018).		

	

	 116	

The	 following	 step	 when	 developing	 an	 ANN,	 is	 to	 carefully	 perform	 outliers’	

detection	 and	data	 pre-processing	 in	 order	 to	 avoid	premature	 saturation	 of	 the	

neurons	and	to	improve	the	convergence	speed.	

It	 is	 not	 simple	 to	 decide	 which	 values	 can	 be	 considered	 as	 outliers.	 The	

dataset	contains	samples	of	both	small	and	big	banks.	It	is	important	to	not	exclude	

big	banks	who	have	extreme	values	for	the	financial	variables,	especially	since	they	

are	systematically	important	banks	and	have	to	be	monitored	closely	for	ensuring	

the	financial	stability	of	the	system.	To	find	potential	outliers	in	a	dataset,	one	could	

check	for	missing	or	wrong	values.	However,	having	collected	the	data	from	two	US	

governmental	agencies,	it	can	be	safely	assumed	that	the	data	went	through	careful	

inspection	before	being	published.	After	these	considerations,	what	can	be	done	is	

to	plot	the	scatter	plot	for	each	independent	variable	against	the	dependent	variable	

and	check	if	there	are	values	far	away	from	the	others.		

Figure	6.1	shows	the	scatter	plot	of	the	CAR	ratio	at	time	t-3	against	the	CAR	

ratio	at	time	t+1.	The	three	points	circled	in	red	are	far	away	from	the	others	and	

can	be	considered	as	outliers.	Checking	 the	performance	of	 the	 three	banks	over	

time,	 it	was	 found	 that	 they	 failed	 the	next	 quarter	 after	 showing	 these	 extreme	

values.	It	is	reasonable	then	to	exclude	these	points	from	the	dataset.	

	

	 117	

	

	

As	for	the	data	pre-processing,	it	is	essential	to	scale	the	variables	into	a	common	

scale	since	the	variables	have	quite	different	ranges.	There	exist	several	methods	of	

scaling.	In	this	analysis,	two	of	these	methods	are	compared,	namely	standardization	

and	robust	scaling.	The	formula	for	standardization	is	as	follows:	
	

𝑥5� = 	
𝑥5 − 𝜇
𝜎 																																																									(6.3)	

	

where	𝜇	is	the	mean	and	𝜎	is	the	standard	deviation.	

The	robust	scaling	can	be	computed	as:	
	

𝑥5� = 	
𝑥5 − 𝑄%
𝑄� − 𝑄#

																																																							(6.4)	

	

where	𝑄#, 𝑄%, 𝑄�	are	the	25th,	50th	and	75th	percentiles.	

It	should	be	noted	that	the	mean,	standard	deviation	and	percentiles	should	be	

estimated	only	on	the	training	dataset	and	then	applied	also	to	the	validation	and	

test	 sets	 in	 order	 to	 avoid	 data	 leakage.	 If	 on	 the	 other	 hand,	 the	 estimates	 are	

computed	 on	 the	 overall	 dataset,	 they	 will	 carry	 also	 information	 about	 the	

Figure	6.1.	Scatter	plot	of	CAR	ratio	at	t-3	against	CAR	ratio	at	t+1	

	 118	

validation	and	test	sets.	The	model	will	learn	that	information	during	training	and	it	

will	result	in	an	overestimated	prediction	accuracy.		

In	order	to	choose	the	optimal	method,	it	is	possible	to	plot	the	distribution	of	

each	variable	and	 to	examine	how	 it	 changes	after	 the	 two	methods	are	applied.	

Figure	6.2	shows	as	an	example	the	histogram	of	the	CAR	ratio	at	time	t.	It	can	be	

seen	 that	 both	 scaling	 technique	 do	 not	 change	much	 the	 shape	 of	 distribution.	

However,	the	standardization	method	compresses	the	values	into	a	smaller	range	

and	this	could	help	to	improve	further	the	convergence	speed.	For	this	reason,	the	

choice	falls	on	the	standardization	method.	

	

	

	

no scaling

CAR ratio

Fr
eq

ue
nc

y

0 100 200 300 400 500

0
40

00
80

00

mean normalization

CAR ratio

Fr
eq

ue
nc

y

0 5 10 15 20 25 30

0
40

00
10

00
0

robust scaling

CAR ratio

Fr
eq

ue
nc

y

0 10 20 30 40

0
40

00
10

00
0

Figure	6.2.	Histogram	of	CAR	ratio	at	t	for	different	scaling	techniques	

	 119	

6.2	Model	development	and	hyperparameters	tuning	
	

The	problem	in	question	is	a	regression	problem,	in	which	the	one-year	ahead	CAR	

ratio	is	predicted	as	a	function	of	the	financial	and	macro-economic	variables	at	time	

t,	 t-1,	 t-2	 and	 t-3.	 In	 order	 to	 do	 so,	 an	 initial	 ANN	 characterized	 by	 a	 simple	

architecture	and	a	common	choice	of	parameters	is	developed.		

As	an	initial	 trial,	a	 feedforward	neural	network	with	only	one	hidden	layer	

composed	 by	 55	 hidden	 neurons	 is	 developed.	 For	 the	 choice	 of	 the	 number	 of	

hidden	neurons,	a	simple	rule	of	thumb	is	followed,	so	that	the	number	of	hidden	

neurons	equals	to	two	thirds	of	the	input	neurons.	The	activation	function	chosen	

for	 the	 hidden	 nodes	 is	 ReLu,	 which	 is	 a	 non-linear	 activation	 function	 and	 it	

computes	𝑓(𝑧) 	= 	max(0, 𝑧).	 ReLu	 is	 a	 popular	 choice	 and	 it	 is	 typically	 used	 in	

conjunction	 with	 the	 dropout	 regularization	 technique	 to	 improve	 the	 model	

performance.	The	optimization	method	chosen	is	the	stochastic	gradient	descent,	as	

it	converges	faster	than	the	classic	gradient	descent.	The	final	output	node	computes	

and	 optimizes	 the	 root	 mean	 squared	 error	 (RMSE)	 loss	 during	 the	 backward	

propagation	 and	 it	 outputs	the	 forecasted	 value	during	 the	 forward	 propagation.	

The	other	parameters	are	also	set	to	common	values,	 in	particular	the	number	of	

training	epochs	is	set	to	500,	the	batch	size	is	set	to	200,	the	learning	rate	is	set	to	

1e-3,	while	the	weight	decay	(L2	regularization	coefficient)	and	the	momentum	are	

set	to	0	for	now.		

It	is	important	also	to	initialize	properly	the	weights	and	the	thresholds.	For	

ReLu	activations,	a	slight	modification	of	Glorot	and	Bengio	(2010)	formula	is	used.	

The	weights	are	initialized	from	a	uniform	distribution	in	the	interval:	
	

½−¾
12

𝑛5' + 𝑛LFI
	 , +¾

12
𝑛5' + 𝑛LFI

	¿ 																																					(6.5)	

	

Where	𝑛5'	 is	 the	number	of	neurons	in	the	 input	 layer	and	𝑛LFI	 is	 the	number	of	

neurons	 in	 the	 output	 layer.	 Having	 80	 input	 neurons	 and	 1	 output	 neuron,	 the	

initialization	interval	is	[−0.385,+0.385].	

During	the	training	process	it	is	useful	to	plot	the	learning	curve	of	the	training	

and	 validation	 error	 over	 each	 epoch.	 This	 plot	 gives	 a	 first	 hint	 on	 the	 training	

	 120	

performance	and	if	there	are	underfitting	or	overfitting	issues.	Figure	6.3	shows	the	

plot	of	the	learning	curve	of	the	initial	model.	Both	the	training	and	validation	error	

are	decreasing,	however	at	the	end	of	epoch	500	the	validation	error	is	much	higher	

than	 training	 error,	 meaning	 that	 there	 is	 room	 for	 improvement	 in	 the	

performance.	

	

	

	

It	is	possible	also	to	plot	predicted	against	actual	values	and	predicted	values	

against	residuals	for	both	training	and	test	sets	to	see	how	well	the	model	fits	the	

data.	Figure	6.4	shows	these	plots	for	the	initial	model.		

0 100 200 300 400 500

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

3.
0

Epoch

R
M

SE

Learning curve

training RMSE
validation RMSE

Figure	6.3.	Learning	curve	over	epoch	for	the	initial	model	

	 121	

	

From	the	actual	against	predicted	plot,	it	can	be	seen	that	train	values	lie	in	a	

much	larger	range	that	test	values,	making	the	training	set	more	difficult	to	learn	

than	the	validation	set.	The	reason	for	this	large	difference	is	that	the	training	data	

is	composed	by	years	in	which	the	economic	cycle	is	facing	a	recession,	while	the	

test	 data	 belongs	 to	 a	more	 favorable	 phase.	 If	 the	 data	 is	 kept	 like	 that,	 in	 the	

following	stages	there	will	be	issues	with	the	validation	error	being	lower	than	the	

training	 error.	 To	 solve	 this	 issue,	 a	 step	 back	 needs	 to	 be	 taken	 and	 additional	

outliers	 have	 to	 be	 removed	 from	 the	 training	 set.	 To	 decide	 how	many	 values	

should	be	excluded,	one	can	try	comparing	how	many	examples	lie	above	several	

0 10 20 30 40 50 60

0
5

10
15

20

Plot of actual vs predicted train values

actual

pr
ed
ic
te
d

−2 0 2 4 6 8 10

−2
0

2
4

6
8

10

Plot of actual vs predicted test values

actual
pr
ed
ic
te
d

0 5 10 15 20

−1
0

0
10

20
30

40

Plot of the train residuals

Predicted values

R
es

id
ua

ls

0 2 4 6 8

−5
−4

−3
−2

−1
0

1
2

Plot of the test residuals

Predicted values

R
es

id
ua

ls

Figure	6.4.	Actual	by	predicted	and	residual	plots	for	training	and	test	sets	

	 122	

different	thresholds.	Table	6.2	represents	a	set	of	thresholds	and	the	corresponding	

number	of	examples	above	that	threshold.	

	
Table	6.2.	Thresholds	with	corresponding	number	of	examples	
	

Threshold	 3	 4	 5	 6	 7	 8	 9	 10	

N°	examples	 163	 80	 46	 36	 25	 23	 20	 20	

	

The	threshold	of	5	seems	a	good	compromise	between	diminishing	the	range	

of	 the	 training	 data	 distribution	 and	 not	 excluding	 too	many	 values.	 After	 these	

values	are	removed	and	data	is	rescaled,	the	model	can	be	run	again	on	the	new	data.	

As	can	be	seen	from	Figure	6.5,	the	two	plots	of	actual	against	predicted	values	of	

the	new	dataset	lie	on	a	similar	range.	

	

−2 0 2 4 6 8 10

−6
−4

−2
0

2
4

6
8

Plot of the train residuals

Predicted values

R
es

id
ua

ls

0 2 4 6

−4
−2

0
2

Plot of the test residuals

Predicted values

R
es

id
ua

ls

−2 0 2 4 6 8 10

−2
0

2
4

6
8

10

Plot of actual vs predicted train values

actual

pr
ed
ic
te
d

−2 0 2 4 6 8 10

−2
0

2
4

6
8

10

Plot of actual vs predicted test values

actual

pr
ed
ic
te
d

Figure	6.5.	Actual	by	predicted	and	residual	plots	for	new	training	and	test	sets	

	 123	

The	residuals	plot,	however,	has	still	an	unusual	shape	due	to	the	fact	that	the	

model	is	too	simple	to	explain	the	relationship	between	the	variables.	The	choice	of	

a	proper	architecture	and	the	tuning	of	the	hyperparameters	will	address	this	issue.	

	

As	an	additional	diagnostic	measure,	another	type	of	 learning	curve,	showing	the	

relationship	between	the	training	set	size	and	the	RMSE,	can	be	also	represented.	

Ideally	 the	 training	 error	 should	 increase	 up	 to	 a	 certain	 threshold,	 while	 the	

validation	error	should	decrease	until	the	two	curves	nearly	converge.	When	there	

are	only	a	few	examples,	the	training	error	will	be	low.	Adding	new	examples	will	

increase	the	training	error,	but	at	the	same	time	the	model	will	start	to	generalize	

better	and	the	validation	error	will	decrease.	At	a	certain	point	adding	new	examples	

will	not	lead	to	any	increase	in	the	training	data	nor	a	decrease	in	the	validation	data,	

meaning	that	the	model	cannot	be	improved	anymore	by	adding	new	data.		

This	type	of	plot	can	be	used	to	check	if	sufficient	data	was	collected,	but	also	

to	 diagnose	 underfitting	 or	 overfitting	 issues.	 If	 the	 two	 errors	 are	 high	 and	 the	

validation	curve	flattens	too	soon,	this	can	be	a	sign	of	underfitting.	If	on	the	other	

hand,	 the	 validation	 curve	 flattens	 too	 slowly	 and	 the	 final	 gap	 between	 the	

validation	and	training	error	is	too	large,	then	there	may	be	a	problem	of	overfitting.	

	

	

●

●

● ● ● ● ● ● ●

0 5000 10000 15000

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

3.
0

3.
5

Training set size

R
M

SE

●●

●

●

●

●

●

● ●

Learning curve

● training RMSE
validation RMSE

Figure	6.6.	Learning	curve	for	the	training	set	size	of	the	cleaned	model	

	 124	

Figure	6.6	 shows	 the	 learning	 curve	 for	 the	 training	 set	 size	of	 the	 cleaned	

model.	From	this	plot,	it	can	be	seen	that	the	validation	error	decreases	slowly	and	

after	10000	examples	it	does	not	diminish	much	more,	while	the	training	error	does	

not	increase,	indicating	that	the	sample	size	is	sufficient.	The	final	gap	between	the	

two	 errors	 is	 still	 large,	 so	 that	 there	 is	 still	 room	 for	 improvement	 in	 model	

performance.	

	

The	next	step	is	to	tune	the	hyperparameters	and	to	choose	a	proper	architecture.	

The	first	parameter	to	be	tuned	is	the	batch	size,	which	controls	how	many	training	

examples	are	 fed	 into	 the	network	before	 it	updates	 its	 internal	parameters.	The	

smaller	 the	 batch	 size,	 the	 noisier	 and	 less	 accurate	 will	 be	 the	 estimate	 of	 the	

gradient.	Figure	6.7	shows	how	the	learning	curve	differs	for	a	common	set	of	batch	

sizes.	The	values	used	to	construct	this	plot	are	summarized	in	table	6.3.	

	
Table	6.3.	Training	and	validation	RMSE	for	each	batch	size	
	

Batch	size	 Training	RMSE	 Validation	RMSE	

4	 0.2808884	 0.7646563	

8	 0.2909414	 0.8103767	

16	 0.2980046	 1.6498182	

32	 0.3394789	 0.7629813	

64	 0.3185743	 0.5967911	

128	 0.3278236	 0.5278244	

256	 0.3302692	 0.6987758	

512	 0.3695705	 1.1214295	

	

The	batch	sizes	of	4,	8	and	16	are	characterized	by	an	increasing	validation	curve,	

which	 is	 a	 sign	 of	 overfitting.	 For	 the	 other	 batch	 sizes,	 both	 curves	 decrease	

smoothly.	For	the	batch	size	of	128,	the	validation	error	is	both	closer	to	the	training	

error	and	lower	with	respect	to	the	other	graphs.	When	plotting	a	learning	curve	to	

choose	 the	 optimal	 value	 for	 the	 hyperparameter,	 the	 lowest	 validation	RMSE	 is	

used	to	select	the	best	model.	As	a	measure	for	the	actual	generalization	capacity	of	

the	chosen	model,	one	should	consider	instead	the	test	error.	In	this	case	the	test	

error	is	equal	to	1.0995523.	

	

	 125	

	

0 100 200 300 400 500

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Epoch

R
M

SE

Batch size = 4

●

●

training RMSE
validation RMSE

0 100 200 300 400 500

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Epoch

R
M

SE

Batch size = 8

●

●

training RMSE
validation RMSE

0 100 200 300 400 500

0.
0

0.
5

1.
0

1.
5

2.
0

Epoch

R
M

SE

Batch size = 16

●

●

training RMSE
validation RMSE

0 100 200 300 400 500

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

Epoch

R
M

SE

Batch size = 32

●

●

training RMSE
validation RMSE

0 100 200 300 400 500

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Epoch

R
M

SE

Batch size = 64

●

●

training RMSE
validation RMSE

0 100 200 300 400 500

0.
0

0.
5

1.
0

1.
5

Epoch

R
M

SE

Batch size = 128

●

●

training RMSE
validation RMSE

0 100 200 300 400 500

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1.
2

Epoch

R
M

SE

Batch size = 256

●

●

training RMSE
validation RMSE

0 100 200 300 400 500

0.
0

0.
5

1.
0

1.
5

2.
0

Epoch

R
M

SE

Batch size = 512

●

●

training RMSE
validation RMSE

Figure	6.7.	Learning	curve	for	different	batch	sizes	

	 126	

The	next	parameter	that	can	be	adjusted	is	the	learning	rate,	which	controls	the	step	

size	that	is	taken	by	the	learning	algorithm	during	each	update.	The	smaller	is	the	

learning	 rate,	 the	more	 iterations	 the	model	will	 need	 to	 converge	 to	 a	 solution.	

Figure	6.8	shows	how	the	learning	curve	changes	for	different	values	of	the	learning	

rate.	The	values	used	to	construct	this	plot	are	summarized	in	table	6.4.	

	
Table	6.4.	Training	and	validation	RMSE	for	each	learning	rate	
	

Learning	rate	 Training	RMSE	 Validation	RMSE	

1e-6	 1.3605340	 2.0211911	

3e-6	 0.8477103	 1.0196106	

1e-5	 0.6738588	 1.8796661	

3e-5	 0.4996461	 1.4100378	

1e-4	 0.3989935	 1.1459491	

3e-4	 0.3627621	 0.5192023	

1e-3	 0.3336582	 0.5541194	

3e-3	 0.4142433	 0.6158273	

1e-2	 0.2973949	 0.5540108	

3e-2	 0.2752589	 0.5207355	

	

An	alfa	equal	to	3e-4	gives	the	lowest	validation	error	and	can	be	considered	as	a	

good	 choice	 for	 the	 model.	 The	 test	 error	 for	 the	 optimal	 model	 is	 equal	 to	

0.6018634.	

	

	

	 127	

	

0 100 200 300 400 500

0
1

2
3

4
5

6

Epoch

R
M

SE

Learning rate = 1e−6

●

●

training RMSE
validation RMSE

0 100 200 300 400 500

0.
0

1.
0

2.
0

Epoch

R
M

SE

Learning rate = 3e−6

●

●

training RMSE
validation RMSE

0 100 200 300 400 500

0.
0

1.
0

2.
0

3.
0

Epoch

R
M

SE

Learning rate = 1e−5

●

●

training RMSE
validation RMSE

0 100 200 300 400 500

0
1

2
3

4
5

Epoch

R
M

SE

Learning rate = 3e−5

●

●

training RMSE
validation RMSE

0 100 200 300 400 500

0.
0

1.
0

2.
0

3.
0

Epoch

R
M

SE

Learning rate = 1e−4

●

●

training RMSE
validation RMSE

0 100 200 300 400 500

0.
0

0.
5

1.
0

1.
5

Epoch

R
M

SE

Learning rate = 3e−4

●

●

training RMSE
validation RMSE

0 100 200 300 400 500

0.
0

0.
4

0.
8

1.
2

Epoch

R
M

SE

Learning rate = 1e−3

●

●

training RMSE
validation RMSE

0 100 200 300 400 500

0.
0

0.
5

1.
0

1.
5

2.
0

Epoch

R
M

SE

Learning rate = 3e−3

●

●

training RMSE
validation RMSE

0 100 200 300 400 500

0.
0

0.
2

0.
4

0.
6

0.
8

Epoch

R
M

SE

Learning rate = 1e−2

●

●

training RMSE
validation RMSE

0 100 200 300 400 500

0.
0

0.
2

0.
4

0.
6

0.
8

Epoch

R
M

SE

Learning rate = 3e−2

●

●

training RMSE
validation RMSE

Figure	6.8.	Learning	curve	for	different	learning	rates	

	 128	

The	next	step	is	to	find	the	optimal	number	of	hidden	neurons.	Figure	6.9	shows	the	

plot	 of	 a	 learning	 curve	 representing	 the	 RMSE	 against	 the	 number	 of	 hidden	

neurons.	It	can	be	seen	that	the	optimal	number	of	neurons	leading	to	the	lowest	

error	is	80.	The	test	error	for	this	model	is	equal	to	0.5245490.	

	

	

The	values	used	to	construct	this	plot	are	summarized	in	table	6.5.	

	
Table	6.5.	Training	and	validation	RMSE	for	different	number	of	hidden	neurons	
	

N°	of	hidden	neurons	 Training	RMSE	 Validation	RMSE	

55	 0.3538492	 0.5049096	

80	 0.3590196	 0.4734417	

160	 0.3542810	 0.5987814	

240	 0.3523830	 0.7934415	

	

In	this	case,	since	the	number	of	hidden	neurons	is	equal	to	the	number	of	inputs,	

only	one	hidden	layer	 is	required.	 If	more	hidden	neurons	were	to	be	selected,	 it	

would	be	possible	also	to	divide	the	nodes	into	more	hidden	layers	(having	the	same	

number	of	nodes	in	each	layer)	and	to	choose	the	architecture	with	the	lowest	error.	

●
●

● ●

50 100 150 200

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0

Number of hidden neurons

R
M

SE

●

●

●

●

Learning curve

● training RMSE
validation RMSE

Figure	6.9.	Learning	curve	for	different	numbers	of	hidden	neurons	

	 129	

	

The	subsequent	stage	is	to	select	a	proper	weight	decay,	which	is	essential	to	solve	

the	overfitting	issue	that	ANNs	often	encounter.	The	plot	of	the	learning	curve	for	

different	values	of	lambda	can	help	choosing	the	optimal	value.	The	learning	curve	

for	lambda	after	the	additional	outliers’	removal	has	still	the	validation	curve	lying	

below	the	training	curve	in	some	points.	This	is	due	to	how	the	dataset	was	divided	

into	 the	 three	 subsets.	 The	 validation	 set	 is	 slightly	 easier	 with	 respect	 to	 the	

training	set.		

To	solve	this	issue,	a	possible	solution	is	to	mix	the	years	instead	of	the	initial	

simple	spit.	The	years	2010,	2012,	2014,	2016	and	2018	are	placed	into	the	training	

set,	the	years	2011	and	2015	into	the	validation	set,	while	the	years	2013	and	2017	

into	the	test	set.	The	tuning	of	the	weight	decay	and	the	remaining	parameters	can	

be	done	with	the	new	subsets.	Figure	6.10	shows	the	three	learning	curves	for	the	

regularization	parameter:	the	first	graph	is	for	the	model	with	no	additional	outliers’	

removal,	the	second	plot	is	for	the	model	after	the	additional	outliers	were	removed	

and	the	third	is	for	model	having	the	mixed	years.	From	these	plots,	it	is	clear	how	

dealing	with	outliers	and	dividing	properly	the	three	subsets	can	impact	the	learning	

curve	for	lambda.	The	validation	curve	is	far	lower	than	the	training	curve	for	the	

first	model,	for	the	second	it	is	only	slightly	lower	and	for	the	third	the	validation	

error	is	always	greater	than	the	training	error.	The	optimal	lambda	after	mixing	the	

years	has	a	value	of	0.04.	The	test	RMSE	for	this	model	is	equal	to	0.3524313.	The	

values	used	to	construct	the	plot	for	the	mixed	data	are	summarized	in	table	6.6.	

	
Table	6.6.	Training	and	validation	RMSE	for	each	lambda	
	

Lambda	 Training	RMSE	 Validation	RMSE	

0.01	 0.3231508	 0.5418966	

0.02	 0.3206690	 0.4868148	

0.04	 0.3257047	 0.3852540	

0.08	 0.3521838	 0.3919100	

0.16	 0.4011927	 0.4222282	

0.32	 0.4905156	 0.5089262	

0.64	 0.6296357	 0.6423207	

	

	 130	

	

	

	

	

● ● ●
●

●

●

●

0.0 0.1 0.2 0.3 0.4 0.5 0.6

0.
0

0.
5

1.
0

1.
5

Lambda

R
M

SE

●

●

● ●

●

●

●

Learning curve

● training RMSE
validation RMSE

0.0 0.1 0.2 0.3 0.4 0.5 0.6

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Lambda

R
M

SE

Learning curve

training RMSE
validation RMSE

0.0 0.1 0.2 0.3 0.4 0.5 0.6

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1.
2

Lambda

R
M

SE

Learning curve

training RMSE
validation RMSE

Figure	6.10.	Learning	curve	for	weight	decay	(initial,	cleaned	and	mixed	years	models)	

	 131	

Another	parameter	that	can	be	adjusted	is	momentum.	This	parameter	acts	directly	

on	the	learning	algorithm	by	adding	an	inertia	to	the	past	direction	of	the	gradient	

and	 by	 speeding	 up	 the	 search	 process.	 To	 choose	 the	 optimal	 value	 for	 the	

momentum,	the	model	is	run	for	three	common	values	and	the	errors	are	saved	for	

each	model.	Table	6.7	shows	the	training	and	validation	error	for	each	value	of	the	

momentum.	 The	 value	 equal	 to	 0.9	 gives	 the	 lowest	 validation	 RMSE	 and	 is	 the	

optimal	choice.	The	test	RMSE	is	equal	to	0.3179015	in	this	case.	

	
Table	6.7.	Training	and	validation	RMSE	for	each	momentum	value	
	

Momentum	 Training	RMSE	 Validation	RMSE	

0.5	 0.3178722	 0.3548670	

0.9	 0.3158370	 0.3376132	

0.99	 0.3175656	 0.3412118	

	

	

In	addition	to	all	the	hyperparameters	that	were	previously	tuned,	it	is	also	possible	

to	add	a	dropout	operation	to	the	hidden	layer,	which	randomly	and	temporarily	

deactivates	a	prespecified	percentage	of	the	hidden	neurons.	Dropout	can	be	used	

as	 a	 regularization	 technique	 in	 place	 of	 L2	 regularization	 or	 it	 can	 be	 used	 in	

conjunction	 with	 it.	 One	 should	 try	 both	 the	 alternatives	 and	 choose	 the	model	

which	gives	the	best	performance.	

	At	first,	the	model	is	run	with	dropout	only,	by	inserting	the	dropout	operation	

after	the	hidden	layer,	by	keeping	the	momentum	equal	to	0.9	and	by	setting	the	

weight	decay	to	0.	This	is	done	for	several	values	of	the	dropout	probability	ranging	

from	0.1	to	0.8	and	the	errors	are	saved	in	a	table.	Looking	at	Table	6.8,	the	optimal	

dropout	 probability	 is	 0.8.	 The	 validation	 error	 however	 is	 greater	 than	 the	

validation	error	of	 the	model	with	weight	decay	equal	 to	0.04.	For	 this	problem,	

dropout	alone	does	not	improve	the	performance.	

	

Next,	the	model	is	run	with	the	optimal	weight	decay	of	0.04,	the	momentum	equal	

to	0.9	and	the	dropout	operation	for	the	same	range	of	values	as	before.	Table	6.9	

shows	the	training	and	validation	error	for	each	value	of	dropout	probability.	Here	

the	optimal	probability	is	0.1,	however	the	validation	error	is	still	higher	than	the	

	 132	

one	of	the	model	with	only	L2	regularization.	For	this	problem,	combining	dropout	

together	with	L2	regularization	does	not	improve	the	performance	of	the	model.		

The	final	model	selected	during	the	hyperparameters	tuning	phase	is	the	one	

with	weight	decay	equal	 to	0.04	and	momentum	equal	 to	0.9.	For	 this	model	 the	

learning	curve	for	the	epochs	is	plotted	again,	as	shown	in	Figure	6.11.	Compared	to	

the	learning	curve	of	the	initial	trial,	there	is	a	great	improvement	and	the	validation	

error	converges	far	better	to	the	training	error.	

	
Table	6.8.	Training	and	validation	RMSE	for	dropout	only	
	

Dropout	probability	 Training	RMSE	 Validation	RMSE	

0.1	 0.2980202	 0.3930612	

0.2	 0.2988269	 0.3797138	

0.3	 0.3014141	 0.3802287	

0.4	 0.2951145	 0.3896060	

0.5	 0.2986773	 0.3877924	

0.6	 0.2981306	 0.3895990	

0.7	 0.2974126	 0.4112488	

0.8	 0.2977595	 0.3475960	

	

	
Table	6.9.	Training	and	validation	RMSE	for	dropout	and	L2	regularization	
	

Dropout	probability	 Training	RMSE	 Validation	RMSE	

0.1	 0.3169915	 0.3379163	

0.2	 0.3169869	 0.3379721	

0.3	 0.3180193	 0.3394906	

0.4	 0.3168687	 0.3381536	

0.5	 0.3178455	 0.3391089	

0.6	 0.3174190	 0.3387054	

0.7	 0.3168625	 0.3385629	

0.8	 0.3172123	 0.3385263	

	

	

	 133	

	

	

Looking	 at	 the	 plot	 of	 predicted	 against	 actual	 values	 and	 predicted	 values	

against	residuals	in	Figure	6.12,	it	can	be	also	seen	a	great	improvement.	For	the	test	

values,	the	points	are	much	closer	to	the	fitted	line	and	the	test	residuals	do	not	have	

an	unusual	shape	anymore.		

	

In	order	 to	 synthetize	 the	progress	made	by	 tuning	 the	hyperparameters,	 a	 final	

table	summarizing	the	training,	validation	and	test	error,	after	each	parameter	has	

been	 adjusted,	 is	 presented.	 As	 can	 be	 seen	 from	 Table	 6.10,	 there	 is	 a	 visible	

improvement	in	the	model	performance	after	each	parameter	is	adjusted.	The	final	

model	could	be	still	 improved	by	using	more	advanced	 techniques.	Nevertheless,	

using	a	simple	hyperparameters’	tuning,	a	satisfactory	predictive	performance	can	

be	reached.	

	

A	final	consideration	should	be	done	also	on	the	prediction	of	the	CAR	ratio	and	how	

the	 model	 results	 should	 be	 interpreted	 by	 a	 regulator.	 As	 was	 pointed	 out	 in	

Chapter	4,	 the	CAR	ratio	measures	 if	a	bank	has	sufficient	capital	 into	reserve	 to	

withstand	 a	 certain	 amount	 of	 losses	 due	 to	 an	 external	 shock.	 The	 minimum	

Figure	6.11.	Learning	curve	over	epoch	for	the	final	model	

0 100 200 300 400 500

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1.
2

Epoch

R
M

SE
Learning curve

● training RMSE
validation RMSE

	 134	

requirement	for	the	CAR	ratio	is	8%.	The	higher	is	the	CAR	ratio,	the	more	likely	is	

the	bank	to	withstand	the	shock.	The	lower	it	is,	the	higher	is	the	risk	of	failure.	

The	standardized	requirement	of	8%	can	be	computed	in	order	to	interpret	

the	results.	The	CAR	ratio	at	time	t+1	has	a	mean	equal	to	23.79%	and	a	standard	

deviation	equal	to	13.80%.	The	standardized	minimum	is	then	equal	to	-1.14%.	A	

regulator	 will	 have	 to	 monitor	 more	 carefully	 the	 banks	 having	 a	 standardized	

prediction	close	to	-1.14%	or	even	below.	Those	banks	will	be	more	 likely	to	not	

have	 sufficient	 risk	 coverage	 and	 they	 could	 trigger	 the	 collapse	 of	 the	 entire	

economy	 in	 the	 case	 that	 they	 are	 important	 nodes	 in	 the	 system.	 Based	 on	 the	

results	of	the	model,	the	regulators	could	decide	for	which	banks	it	is	necessary	to	

take	preemptive	measures	that	will	reduce	their	level	of	risk.	

Having	 this	 in	mind,	 the	plot	of	predicted	against	actual	values	can	be	seen	

under	a	new	light.	The	points	lying	on	the	left	side	of	the	plot	around	the	value	of	-1	

represent	the	banks	at	a	higher	risk	that	need	careful	monitoring.	From	Figure	6.12,	

it	 can	be	 seen	 that	 the	points	below	 -1	 are	overestimated	by	 the	model	 and	 this	

would	be	a	serious	issue,	if	the	model	had	to	be	used	in	practice.	The	banks	with	a	

CAR	ratio	below	-1	are	at	higher	risk	than	it	is	forecasted	and	a	wrong	estimation	of	

the	actual	risk	incurred	will	be	made	by	looking	only	at	these	predictions.	That	is	

why	one	should	interpret	the	results	with	caution	and	if	possible,	the	final	model	can	

be	still	improved	to	obtain	more	precise	estimates	for	low	values	of	the	standardized	

CAR	ratio.	

	

	 135	

	

	
Table	6.10.		Summary	of	training,	validation	and	test	RMSE	for	each	tuning	
	

Type	of	tuning	 Training	RMSE	 Validation	RMSE	 Test	RMSE	

No	tuning	 0.3348050	 0.7411400	 1.1869470	

Batch	size	=	128	 0.3278236	 0.5278244	 1.0995523	

Learning	rate	=	3e-4	 0.3627621	 0.5192023	 0.6018634	

N°	of	hidden	neurons	=	80	 0.3590196	 0.4734417	 0.5245490	

Weight	decay	=	0.04	 0.3257047	 0.3852540	 0.3524313	

Momentum	=	0.9	 0.3158370	 0.3376132	 0.3179015	

	

	

Figure	6.12.	Actual	by	predicted	and	residual	plots	for	training	and	test	sets	of	the	final	model	

●
●

●●

●

●●

●●
●

●●

●

●
●

●

●●
●●●
●

● ●
● ●●

●
●

●●●

●

●
●

●

●●●

●

●

●

●

●

●

●

●

●●
●

●
●●
●

●

●●
●

●

●

●
●

●
●
●

●
●

●
●

●

●

●●

●

●●●●●

●

●

●

●●●

●

●●

●

●

●

●

●

●

●

●

●●
●

●●●●
●●

●

●

●●●
●●●
●●

●
●●●

●
●

●

●

●

●

●● ●

●

●

●

●●

●

●
●

● ●

●

●

●

●

●

●

●

●● ●●●●

●

●
●

●●
●●●

●

●

●

●
●

●

●

●

●●

●
●

●

●● ●

●

●● ●
●

● ●

●

●
●

●

●

●●●
●
●

●

●

●
●

●

●

●
●

●●
● ●●●

●●
●

●●
●●

●

●

●

●

●

●●
●●●●

●
●

●

●
●

●

●●●
●●●●●
●

●
●

●

●

●
●

●
●●●

●

●●

●

●

●

●
● ●

●

●●
●●●
●

●●●

●●
●

●

●

●

●

●

●
●

●

●
●●●

●

●●

●

●

●●●●
●
●

●● ●
●

●
●
● ●●

●

●
●●

●●●●

●

●● ●●●

●
●

●

●

●

●

●

●
●

●

●

●

●
●

●

●●●

●
●

●

●●

●
●

●●

●

● ●

●
●

●

●
●●

●

●●

●
●

●

●

●

●
●

●

●
●

●
●

●

●

●

●

●

●

●

●●

●

●●●● ●●

●

●

●
●●●

●●●●

●

●
●●

●

●

●

●
●

●

●●
●

●

●● ●

● ●
●●●●

● ●

●
●

●

●

●●●●

●

●●●

●●

●
●

●
●●
●●

●

●
●

●

●
●

●

●
●
●

●

●●●●

●
●

●
●

●

●

●●●

●

●

●

●
●

●●

●
●

●

●

●

●

●

●
●

●●●●

●

●
●

●

●

●
●●●

●●

● ●●● ● ●●

●

●
●

●

●

●●

●

●

●

●●
●

● ●●

●
●●●

●
●●

●

●

●
●

●

●

●

●

●●

●

●

●
●

●

●

●

●●
●

●

●●
●

●●

●

●

●

●

●
●

●

●

●

●

●

●
●

● ● ●●
●

●●
●

●

●

●

●

●
●

●

●

●

●● ●●●

●
●

●
●●●●
●

●
●●

●
●●●●

●

●
●

●

●

●

●●●
●

● ●●

●

●

●
●●
●

●●
●
●●
●

●●●
●●●

●
●

●

●●●
●●

●

●●

●

●

●

●●
●

●●

●
● ●

●

●

●
●●

●

●
●

●

●
●
●●

●
●

●●●

●
●

●
●●●
● ●●
●

●

●
●

●

●

●

●

● ●
●

●●●●●●

●

● ●

●

●

●
●●

●●
●●●

●
●

●
●

●
●

●

●

●● ●
●

●●●
●●

●

●●
●●●●●
●

●

●●●
● ●

●

●

●

●
●
●

●●

●

●
●

●

●

●

● ●
●

●

● ●

●

●

●●

●

●

●

●

●●

●

●

● ●

●

●
●

●

●
●●

●

●
●

●

●

●●
●

●

●
●●

●●●●●
●

●

●
●●●

●

●

●

●

●
●

●

●
●

●

●

●

●

●●
●

●●
● ●
●

●

●

●

●●●

●

●●

●

●
●

●● ●●
●

●
●

●●

●

●
●

●●
●

●●

●

● ●

●

●●
●●●
●● ●

●
●

●

●
●

●●●

●

●
●

●

●● ●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●●
●

●

●

●
●

●
●
●

●
●

●

●
●

●

●●

●

●●●●●

●

●

●

●●●

●

●●

●

●

●

●

●

●

●

●

●
●●
●●●●

●
●

●

●

●●●
●●●
●●

●
●●●

●
●

●

●

●

●

●●
●

●

●

●

●●

●

●

●

● ●

●

●

●

●

●

●

●

●●
●●●●

●

●
●

●
●

●●●

●

●

●

●
●

●

●

●

●●

●
●

●

●●

●

●

●● ●
●

● ●

●

●
●

●

●

●●
●

●

●
●

●

●
●

●

●

●
●

●●
● ●●●

● ●
●

●
●

●●

●

●

●

●

●

●●
●●●●

●●

●

●
●

●

●●●
●●●

●●
●

●
●

●

●

● ●

●
●●●

●

●●

●

●

●
●

●
●

●

●

●
●

●●●
●

●●●

●●●

●
●

●

●
●

●
●

●

● ●●●

●

●●

●

●

●●●● ●
●
●

●
●

●
●
●●

●
●

●●

●●●●

●

●● ●●●

●

●
●

●

●

●

●

●
●

●

●

●

●
●

●

●●●

●●

●

●●

●
●

●●

●

●
●

●
●

●

●
●●●

●●

●
●

●●

●
●

●

●
●

●
●

●

●

●

●

●

●

●
●

●

●● ●● ●●

●

●

●
●
●●

●●●●

●

●
●

●

●

●

●
● ●
●

●

●●
●

●

●●●

● ●
●●●

●
● ●

●
●

●

●

●●●●

●

●●●

● ●

●
●

●
●●
●

●

●

●
●

●

●
●

●

●

●
●

●

●●●●

●
●

●

●

●

●

●●●

●

●

●

●

●

●●

●
●

●

●

● ●

●
●

●●●●

●

●
●

●

●

●
●●●

●●

● ●●●● ●●

●

●
●

●

●

●●

●

●

●

●●
●

●
●●

●●●●

●
●●

●

●

●
●
●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●
●

●●
●

●●

●

●

●

●

●
●

●

●

●

●

●

●
●

●
● ●●

●
●●

●

●

●

●

●

●
●

●

●

●

●● ●●●

●

●

●
●●●●
●

●
●●

●●●●●

●

●
●

●

●

●

●●●
●

● ●●

●

●

●●●
●

●●
●
●●
●

●●●
●●●

●●

●

●●
●

●●
●

●●

●

●

●

●●
●

●●

●
● ●

●

●

●
●●

●

●
●

●

●
●
●●
●

●

●●●

●
●

●
●

●
●●

●●
●

●

●
●

●
●

●

●

● ●
●

●●●●●

●

● ●

●

●

●

●

●
●

● ●●
●

●

●
●●●

●

●

●

●●
● ●●●●●

●●

●

●●
●●●●●
●

●

●●●
● ●
●

●

●

●
●
●

●●

●

●
●●

●

●

●

● ●
●

●

● ●

●

●

●●

●

●

●

●

●●

●

● ●

●

●
●

●

●
●●

●

●
●

●

●

●●
●

●

●
●●

●●●●●
●

●

●
●●●

●

●

●

●

●

●

●

● ●

●

●

●

●

●●
●

●●● ●
●

●

●

●

●●●

●

●●

●

●

●

●● ●●
●
●

●

●●
●

●●

●

●
●

●●
●

●●

●

●●

●

●●
●●●●● ●

●
●●

●

●

●●●

●

●
●

●

●● ●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●● ●
●

●

●
●

●
●
●●
●

●

●

●
●

●

●
●

●

●●● ●●

●
●

●

●●●

●

●●

●

●

●

●

●

●

●

●

●
●●
●● ●●

● ●

●

●

●●●
●●●
●●

●
●●●

●
●

●

●

●

●

●●
●

●

●

●

●●

●

●
●

● ●

●

●

●

●
●

●

●

●●
●●●●

●

●
●

●
●

●●●

●

●

●

●
●

●

●

●

●●

●
●

●

●●

●

●

●●
●●

●
●●

●
●

●

●

●●●
●
●

●

●

●
●

●

●

●
●

●●
● ●●●

●●
●

●
●

●●

●●

●

●

●●●●●●
●

●

●

●
●

●

●●●
●●●●●
●

●
●

●

●

● ●

●
●●

●
●

●●

●

●●

●●

●
●

●

●

●
●

●●●
●

●● ●

●●
●

●
●

●

●
●

●
●

●

● ●●●

●

●
●

●

●

●●●●
●
●
●●

●
●
●
●●

●
●

●
●

●●●●

●

●●
●●●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●● ●

●
●

●

●●

●
●

●●

●
●

●

●
●

●

●

●
●●

●
●

●●
●●

●
●

●

● ●

●
●

●

●

●

●

●

●

●●

●

●
●●● ●●

●
●

●
●
●●

●●●●

●

●
●

●

●

●

●

● ●
●

●

●●
●

●

●● ●

● ●
●●●

●
● ●

●
●

●

●

●●●●

●

●●●

● ●

●
●

●
●●
●

●

●

●

●

●
●

●

●

●●

●

●●●●

●
●

●

●

●

●

●●●

●

●

●
●

●
●

●●

●

●
●

●

●●

●
●

●●
●●

●

●
●

●

●

●
●●●

●●

● ●●
● ●

●
●

●

●
●

●

●

●●

●

●

●

●●●

●
●●

●●●

●
●●

●

●

●
●

●

●

●

●

●●

●

●

●
●

●

●

●

●
●

●

●

●●
●

●●

●

●

●

●

●
●

●

●

●

●

●
●

●
●●●

●
●●

●

●

●

●

●

●
●

●

●

●

●
●
●

●

●

●

●●●●
●

●
●●
●●●●●

●

●

●
●

●

●

●●●
●

● ●●

●

●
●●●
●

●●
●● ●
●

●●●●●●

●●

●

●●
●

●●
●

●●

●

●

●

●●
●

●●

●●
●
●

●

●
●●

●

●
●

●

●
●
●●
●
●

●●●

●
●

●
●

●
●●

●●
●

●

●
●

●●

●

●

●
●

●

●●●●●

●

● ●

●

●

●

●

●
●

● ●●
●

●

●
●●●

●

●

●

●●
● ●

●
● ●
● ●

●

●●
●●●●●
●

●

●●●
●

●●

●

●

●
●
●

●●

●

●

●●

●

●

●

●●

●
●

● ●

●

●

●●
●

●

●

●

●
●●

●

●

●

●
●

●

●
●

●

●●
●

●

●●
●

●

●
●●

●●●●●
●

●

●
●●●

●
●

●

●

●
●

●

● ●

●

●

●

●

●●
●

●●
● ●

●

●

●

●

●

●●●

●

●●

●

●

●

●● ●
●
●

●

●●●●

●

●
●
●

●
●

●●

●

● ●

●● ●●

●

●●●

●

●●
●●●● ●

●
●●

●
●

●●●

●

●
●

●

●● ●

●

●

●
●

●

●

●

●

●● ●

●

●

●

●●
●

●

●

●
●

●●●
●
●

●
●

●
●

●

●
●

●

●●● ●●

●
●

●

●●●

●

●●

●

●

●

●

●

●

●

●

●●
●

●● ●●
●

●

●

●●●
●●●
●●

●● ●●

●●

●

●

●

●

●●

●
●

●

●

●●

●

●

●
● ●

●

●

●

●
●

●

●

●
●

●
●●

●●

●

●
●

●●
●●●

●

●

●

●
●

●

●

●

●●
●

●

●

●
●

●

●

●● ●●

●●●

●
●

●

●

●●
●

●
●

●

●

●
●

●

●

●
●

●●

● ●●●

●
●

●
●●

●●

● ●

●

●

●●
●●●●

●

●

●

●

●●●
●●●●●

●

●
●

●

●

● ●

●
●●

●
●

●●

●

●

● ●

●
●

●

●

● ●
●●●
●

●● ●

●●●

●

●
●

●
●

●
●

●

●●●

● ●

●

●

●

●●●● ●
●
●● ●● ●●
●

●
●

●●

●●●●

●

●●
●●●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●● ●

●
●

●

●

●
●

●●

●
●

●

●

●

●

●
●●

●
●

●●

●●

●
●

●

●

●
●

●
●

●

●

●

●

●

●

●●

●

●
●●●

●
●

●●

●
●●
●●●●● ●
●

●
●

●

●

●

● ●
●

●

●●
●

●

●●

●
●

●●
●●

●
●

●
●

●

●●●●

●

●●●

● ●

●
●

●
●●
●

●

●

●

●

●
●

●

●

●●

●

●●●●

●
●

●
●

●

●

●
●

●

●

●

●

●

●
●

●●

●

●
●

●

●●

●
●

● ●●●

●

●

●

●

●

●
●●●

●●

● ●●● ●
●

●

●

●
●

●

●

●
●

●

●

●●

●●

●
●●

●●●
●

●
●●

●

●

●●
●

●

●

●

●●

●

●

●
●●

●

●

●
●

●

●

●●
●

●●

●

●

●

●

●
●

●

●

●

●

●●

●
●● ●

●
●●

●

●

●

●

●

●●

●

●

●

●●●

●

●

●

●●●●
●

●
●●

●●●●●

●
●

●

●

●

●●●
●

● ●●

●

●
●●

●
●

●●
●●

●
●

●●●●●●

●●

●

●●
●

●
●

●

●●

●

●

●

●●
●

●●

●●
●●

●

●●●

●

●
●

●

●
●
●
●●
●

●●●
●

●
●

●
●

●
●●

●●
●

●

●
●

●
●

●

●

●
● ●

●●●●●

●

● ●●

●

●

●●
●

●●
●

●

●
●●●

●

●

●

●●● ●
●

●
●

●●

●

●●
●●●●●

●

●

●●●
●

●●
●

●

●

●
●●

●●

●

●

●●

●

●

●

● ●
●

●

● ●

●

●

●●
●

●

●

●

●
● ●

●

●

●

●

●
●

●

●

●

●

●●
●

●

●●●

●

●
●●

●●●●●
●

●

●
●●●

●
●

●

●

●
●

●

●

●

●

●

●

●

●●
●

●●
● ●
●

●

●

●

●

●
●●

●

●

●

●

●

●● ●
●
●

●

●●●●

●

●
●

●

●

●
●●

●
●

●

●
●

●●

●

●●●

●

●●
●● ●●

●
●
●

●
●

●●●

●

●
●

●●

●

●●

●
●●●

●

●

●
●

●

●

●

●

●●●

●

●

●●
●

●

●

●

●

●
●

●

●●
●●

●
●●

● ●●

●

●
●

●

●

●

●

●

●

●

●

●●
●

●
●
●●
●

●

●

●

●
●●●

●●●
●●
●● ●

●

●

●

●

●

●●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●
● ●
●●●

●

●

●

●
●●●

●

●

●

●
●

●

●

●
●

●

●

●
●

●

●

● ●
●

●

●
●●

●●●

●

●●
●

●

●

●

●●

●

●

●
●

●
●

●●
●

●

●
●

●

●
●

●●

●
●

●

●

●●●●● ●●

●

●

●

●●●

●●●
●●

●

●

●

●

●

●

●

● ●

●

●
●
●
●●

●

●

● ●
●●●
●

●

●
●

●●

●

●
●

●
●

●
●

●

●●●

●

●

●
●

●

●●
●

●●● ●●
●●●

●

●

●●

●
●●

●

●
●●●

●

●
●

●

●

●

●

● ●

●

●●

●

●
●

●

●
●

●

●

●

●●

●
●

●

●

●

●

●
●

●

●●

●
●

●

●

●
●

●

●

●

●

●

●●

●

●
●●●●

●
●

●
●●

●●●
●
● ●

●

●

●
●

●

●

● ●

●

●

●●

●

●
●

● ●●

●●

●●
●

●●●●

●

●●

●

●
●

●

● ●

●
●●
●

●

●

●

●
●

●

●

●
●

●

●●●●

●

●
●

●

●

●

●●
●

●
●

●

●

●

●●

●●
●

●

●●

●
●

●
●

●●

●

●
●

●

●

●
●●

●
●

●● ●●●
●

●

●

●

●

●

●

●

●

●

●

● ●

●
●

●●

●
●●

●

●

●●

●

●

●

●

●

●

●

●●
●

●
●

●

●

●

●
●

●

●

●●
●

●●

●

●

●

●

●

●

●

●

●

●
●

●
●
●

●●
●●

●

●

●

●

●

●●

●

●

●

●●●

●

●

●

●
●

●
●

●
●●

●
●●●●

●

●

●

●

●

●●●

●

● ● ●

●

●●
●

●●●●
●●

●

●
●●●●●●

●●

●

●●●
●●

●

● ●

●

●

●
●

●●

●
●● ●

●

●●
●

●

●

●

●

●

●

●●

●●●

●●

●
●

●

●●

●●
●

●

●
●

●

●

●

●

●

●

●

●●
●●●

●

●● ●
●●

●

● ●●
●

●
●
●

●

●

●
●

●

●

●●●

●

●●

●

●●
●●●●
●

●

●●●
●
●●●

●

●

●

●
●

●
●

●

●

●
●

●

●

●

●

●
●

●
●

●

●

●
●

●

●

●

●● ●

●

●

●

●

●

●

●
●

●

●
●

●

●
●
●

●

●
●●

●●

●

●

●
●●●
●●●

●

●

●
●

●

●●

●

●

●

●

●●
●

●
●
●●

●

●

●

●
●

●

●

●

●
●

●
●

●
●

●

●●●

●

●
●

●

●
●

●

●

●

●
●

●

●

●

●
●

●
●●

●

●

●

●

●

●
●●

●

● ●●●●
●

●

●

●●

●●

●
●

●

●●
●●

●

●●●

●

●●
●●

●
●

●

●
●

●●

●●●

●

●
●

●●

●

●
●

●
●●●

●

●

●
●

●
●

●

●

●●●

●

●

●●
●
●

●

● ●

●

●
●

●

●● ●●
●●●

● ●●

●

●
●

●

●

●

●

●

●

●

●

●●
●

●
●
●●
●

●

●

●

●
●●●

●●●
●●●● ●

●

●

●

●

●

●●

●
●

●

●●
●

●

●
●

●

●

●

●

●

●

●
● ●
●●●

●

●

●

●●●

●

●

●

●
●

●

●

●
●

●

●

●●●

●

●

●
●
●

●

●
●

●
●●

●

●

●●
●

●

●

●

●

●

●
●

●
●

●●
●

●

●
●

●
●
●

●

●
●

●

●

●
●●●● ●●

●

●

●

●●●

●●●
●●

●

●

●

●

●

●

●

● ●

●

●
●
●●●

●

●

● ●●
●●
●

●

●
●

●●

●

●
●

●
●

●
●

●

●●●

●

●

●
●

●

●●
●
●●●
●●●●

●

●

● ●

●
●●

●

●●●●

●

●
●●

●

●

●

● ●

●

●●

●

●
●

●

●
●

●

●

●

●●

●
●

●

●

●
●

●
●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●
●

●
●●

●
●

●
●●

●●●
●
● ●

●

●

●

●

●

●

●

●●

●

●●

●

●
●

●● ●

● ●

●●

●

●●●●

●

●
●

●

●

●

●

●
●

●
●●
●

●

●

●

●

●

●

●

●●

●

●●
●●

●

●
●

●

●

●

●●

●
●

●

●

●

●●

●●

●

●

●●

●
●

●
●

●●

●

●
●

●

●

●
●●

●
●

●● ●●●
●

●

●

●

●

●

●

●

●

●

●

● ●

● ●

●
●

●

●●

●

●

●●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●●

●

● ●
●●

●

●

●

●

●

●

●

●

●

●

●

●
●

● ●
●

● ●
●

●

●

●

●●

●

●

●

●●●

●

●

●

●
●

●
●
●●●
●●●●●

●

●

●

●

●

●●●

●

● ●●

●

●
●●
●●●●

●●

●

●
●●●
●
●●

●●

●

●●
● ●●
●

● ●

●

●

●
●

●
●

●
●●
●

●

●●
●

●

●

●

●

●
●

●●
●●●

●
●
●

●

●

●●
●●

●

●

●
●

●

●

●
●

●

●

●

●●
●●

●

●

●●●●●●

● ●●
●●●●

●

●

●

●
●

●

●●

●

●●

●

●●●●● ●
●

●

●●●
●
●●●

●

●

●

●
●

●
●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●
●
●

●

●

●
● ●

●

●

●

●

●

●

●
●

●
●

●

●

●●
●

●

●●
●●●

●

●

●
●●●

●●●

●

●

●

●
●

●●

●

●

●

●

●●
●●
●
●●

●

●

●

●
●

●

●

●

●●

●
●

●
●

●

●●●

●

●
●

●

●
●

●

●

●

●
●

●

●

●

● ●
●
●●

●

●

●

●

●

●

●
●

●

● ●●●●
●

●

●

●
●

●
●
●

●
●

●●

●●
●

●
●

●●

●

●●●

●

●●
●●

●
●

●

●
●

●
●

●●●

●

●
●
●●

●●● ●●●

●

●

●
●
●

●

●

●

●●●

●
●

●●
●
●

●

● ●

●

●
●

●●
●

●
●●●

● ●●

●

●
●

●

●

●

●

●

●

●

●

●●
●

●
●●●

●

●

●

●

●
●●●

●●●
●●●● ●

●

●

●

●

●

●●

●
●

●

●●

●

●

●
●

●

●

●●

●

●

●
● ●●●●

●

●

●

●●
●

●

●

●

●
●

●

●

●
●

●

●

●●●●

●

●

●
●●

●

● ●

●
●●●

●

●●
●

●

●

●

●

●

●
●

●
●

●●
●

●

●
●

●
●
●

●

●

●

●

●

●
●●●● ●
●

●

●

●

●●●
●●●

●●
●

●

●

●

●

●

●

●●

●

●
●●
●

●
●

●

● ●●
●●
●

●

●

●

●●

●

●
●

●
●

●
●

●

●●●

●

●

●
●

●

●●
●
●●●
●●●
●
●

●

● ●

●
●●

●
●●●

●

●

●
●●

●

●

●

● ●

●

●●

●

●
●

●

●
●

●

●

●

●●

●
●

●

●

●
●

●
●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●
●

●●●

●

●

●
●●

●
●

●
●
● ●

●

●

●

●

●

●

●

●

●●

●

●

●
●●

●

●●

●
●

●

●●●●

●

●
●

●

●

●

●

● ●
●●●●

●

●

●

●
●

●

●

●
●

●

●●
●●

●

●
●

●

●

●

● ●

●●

●
●

●

●●

●●

●

●

●●

●●

●
●

●●

●

●●

●

●

●
●●

●

●

●● ●●●
● ●

●

●

●

●

●

●

●

●

●

● ●

●
●

●
●

●

●●

●

●

●●

●

●

●

●

●

●

●

●●
●

●
●

●

●

●

●
●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●
●

● ●
●

●

●

●

●●

●

●

●

●●●

●

●

●

●
●

●
●

●●●
●●●●●

●

●

●

●

●

●●●

●

● ●●

●

●●
●

●●●●

●
●

●

●
●●●
●
●●

●●

●

●●
●

●●●

●

●

●

●

●
●

●
●

●
●

●
●

●

●●
●

●

●

●

●

●
●

●

●●
●●●

●
●
●

●

●

●
●

●●

●

●●

●

●

●
●

●

●

●

●●
●●●

●

●●●●●●
●

●
●

●●●●
●

●

●

●
●

●

●●

●

●●

●

●● ●●● ●
●

●

●●●

●
●●●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●●
●

●

●

●
● ●

●

●

●

●

●

●

●
●

●
●

●

●

●●
●

●

●●
●●●

●

●

●
●●

●●●

●

●

●

●

●

●
●

●

●

●

●

●●
●●
●

● ●

●

●

●

●
●

●

●

●

●●

●
●

●
●

●

●
●●

●

●
●

●

●

●

●
●

●
●

●

●

●

● ●
●

●
●

●

●

●

●

●

●
●

●

●
●●●
●
●

●

●

●
●
● ●
●

●
●

●

●

●

●

●
●
●

●●
●●

●●

●

●
●

●

●

●●●●
●●

●

●
●
●●

●●

●●●

●

●
●
●●

●●● ●●●

●

●

●
●
●

●

●

●

●●●

●●

●●
●●

●

●●

●

●

●

●●
●●
●●●

● ●●

●

●
●

●

●

●

●

●

●

●

●

●●
●

●
●●●

●

●

●

●
●

●●●

●●●
●●●●
●

●

●

●

●

●

●●

●

●

●

●●
●

●

●
●
●

●

●●

●

●

●
● ●
●●●

●

●

●

●●
●

●

●

●

●

●

●

●
●

●

●

●●●●

●

●

●
●

●

●
●

●●●●

●

●●
●

●

●

●

●

●

●
●

●
●

●●
●

●

●
●

●
●
●

●

●

●

●

●

●
●●●●
●

●

●

●

●●●
●●

●
●●

●

●

●

●

●

●

●

● ●

●

●
●
●● ●

●

●

●
●●

●●
●●

●

●●

●

●
●

●
●

●
●

●

●●●

●

●

●
●

●

●
●
●
●

●●
●●●
●

●

●

● ●

●●●

●

●●●●
●

●
●●

●

●

●

●
●

●

●●

●

●
●

●

●
●

●

●

●

●●

●
●

●

●

●
●

●

●
●
●●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●
●

●●●

●

●
●

●●●●●
●
● ●

●

●

●

●

●

●

●

●

●●

●

●

●
● ●●

●●

●●
●

● ●●●

●

●
●

●

●

●

●

● ●
●●●●

●

●

●

●●

●

●
●

●

●

●●
●●

●

●
●

●

●

●

● ●

●●

●
●

●

●●

●●
●

●

●●

●●

●
●

●●

●

●●

●

●

●
● ●

●

●

●●●●●
● ●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●
●●

●
●

●

●

●

●
●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●
● ●

●

●

●

●

●●

●

●

●

●
●●

●

●

●

●
●

●

●
●●●
●●●●●

●

●

●

●

●

●●

●

● ● ●

●

●●
●

●●●●

●
●

●

●
●●●
●●●

●●

●

●●●
●

●●

●

●

●

●

●
●

●
●

●

●

●

●

●●
●

●

●

●

●

●●
●

●●
●●●

●
●●

●

●

●●
●●

●

●●

●

●

●
●
●

●

●

●●
●●●

●

●●
●●●●

●
●

●

●●●●
●

●

●

●
●

●

●●

●

●

●

●● ●● ●
●

●

●●●

●
●●●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●●

●

●

●

●

●

●

●
●

●●
●

●

●●
●

●

●●
●●●

●

●

●
●●
●

●

●

●
●

●

●●

●

●

●

●

●●
●

●
●●

●

●

●

●

●
●

●

●

●

●●

●

●
●

●

●
●●

●

●●
●

●
●

●

●
●

●
●

●
●

●

● ●
●

●●

●

●

●

●

●

●
●

●

● ●●●
●

●

●

●
●

●
●

●
●
●

●

●

●

●

●●

●

●

●

●

●
●

●
● ●● ●

●

●●

●●●

●
●

●

●

●●●

●●

●

●●
●

● ●

●●

●

●

●●●

●
●●

●
●●

●

●

●
●●

●

●●●●

●●

●●●

●

●●

●

●

●

●●
●

●

●
●●

●
●

●
● ●

●

●

●

●

●

●

●

●

●

●●

●
●●

●

●

●

●●
●●
●●

●●●
●●
●

●

●

●

●

●

●●
●

●

●

●●

●

●

●

● ●

●

●
●

●

●

●
●

●

●●●

●

●

●

● ●
●

●

●

●

●

●

●

●
●

●

●●●●

●

●

●●
●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●●
●

●

●
●

●

●
●

●
●

●

●
●

●

●

●

●
●●●●
●

●

●

●

●●●
●●

●

● ●
●

●

●

●

●

●

●
●

●
●

●

●●●
●

●

●

●
●●●●
●●

●

●
●

●

●

●
●

●
●

●

●●●

●

● ●

●

●

●●●●

●●
●

●

●
●

●

●
●●●

●●●
●

●
●
●

●

●

●

●

●

●

●●

●

●●

●●

●

●

●

●
●

●

●

●

●

●

●●

●
●●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●
●

●
●

●●
●

●●

●

●

●●

●

●

●

●

●

●

●
●

●
●
●

●●

●

● ●
●●

●

●
●

●

●

●
●
●●●●

●

●

●

●
●

●●

●

●

●●

●

●●

●

●

● ●

●●

●●

●

●●

●

●

●

●

●
●

●

●

●
●

●

●
●

●

●

●
●

●

●

●●●●●●

●

●

●

●

●

●

●

●

● ●
●
●

●

●●

●

●

●●●

●

● ●

●

●
●

●
●

●
●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●
●●

●

●

●

●
●

●

●
●

●●

●

●

●

●

●

●

●
●●

●

●

●

●●

●
●●●
●

●

●●●

●

●

●

●

●

●●
●

●
● ●

●

● ●●
●●●●

●●

●

●
●●●●●●

●●

●●●
●
●●

●

●

●

●

●
●

●
●

●

●

●

●

●
●

●
●

●

●

●

●

●●
●● ●
●●●

●

●

●
●

●
●

●

●●

●

●

● ●

●

●

●●
●●

●

●

●
●●●●●●

●

●●●
●

●

●

●●

●

●
●

● ●●●
●

●

●●

●
●●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●
● ●●

●

●

●●

●

●

●

●
●

●
●

●●
●

●

●

●●●

●●
●●●

●

●

●
●●●

●

●

●

●

●

●●●

●

●

●

●

●
●●
●●

●

●

●
●
●

●

●

●

●

●

●
●

●
●
●

●

●●

●

●●

●
●

●
●

● ●

●

●

●

●
●

●●

●

●
●

●

●

●

●
●

●

●●●
●

●

●●
●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●●●●●●●●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●●

●

●●●●

●●

●●

●

●

●

●

●

●

●●

●
●

●

●

●
●

●

●●●

●●

●

●●
●

●
●

●●

●

●

●●●

●
●●

●
●●

●

●

●
●●

●

●●●

●

●

●
●

●●●

●

●●

●

●

●

●●●
●

●●● ●●● ●
●

●

●

●

●

●

●

●

●

●●

●

●●
●

●

●

●●
●●
● ●

●●●● ●
●

●

●

●

●

●

●●
●

●

●

●●

●

●

●

● ●

●

●

●

●

●

●
●

●

●●●

●

●

●

● ●
●

●

●

●

●

●

●

●

●

●●●

●

●●●

●

●

●

●●
●

●

●

●

●

●

●

●
●
●

●

●
●

●

●
●

●
●

●

●

●
●

●

●

●
●●●● ●

●

●

●

●●●
●●

●

● ●
●

●

●

●

●

●

●

●

●
●

●

●●●
●

●

●

●
●●●●
●●

●

●
●

●

●

●
●

●●

●

●●●

●

● ●

●

●

●●●

●●●

●

●
●

●

●

●
●●

●●●
●

●
●●

●

●

●

●

●

●

●●

●

●
●

●
●

●

●

●

●
●

●

●

●

●

●

●●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●
●

●
●

●●
●

●●

●

●

●●

●

●

●

●

●

●

●
●

●
●

●●

●

● ●
●●

●

●
●

●

●

●
●
●●●●

●

●

●

●
●

●●

●

●●

●

●●

●

●

●
● ●

●●

●
●

●

●●

●
●
●

●

●

●

●

●
●

●

●●

●

●

●●

●

●

●●●●●●

●

●

●

●

●●

●

●

● ●
●
●

●

●●

●

●

●●●
●

●●

●

●
●

● ●
●

●
●

●

●

●
●

●

●

●
●

●

●

●

●

●

●
●●

●

●

●

●
●

●

●
●

●●

●

●

●

●

●

●

●
●●

●

●

●

●●
●●●●

●
●

●●●

●

●

●

●

●

●
●

●

●
● ●

●

● ●●
●●●●

●●
●
●

● ●●●●●

● ●

●●●
●

●●

●

●

●

●

●
●

●
●

●

●

●

●

●
●

●
●

●

●

●

●

●
●

●● ●
●●●

●

●

●
●

●
●

●

●●

●

●

● ●
●

●

●●
●●

●

●

●
●●
●●●●

●

●●●
●

●

●

● ●
●

●
●

● ●●●●

●

●●

●
●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●
●

●●

●●● ●

●

●

●●

●

●

●

●
●

●
●

●●
●

●

●

●●●

●●
●●●

●

●

●●●

●

●

●

●

●

●●●

●

●

●

●

●
●●●●

●

●

●
●
●

●

●

●

●

●

●●

●
●
●

●

●●

●

●●

●
●

●
●

● ●

●

●

●

●
●●●

●

●
●

●

●

●
●

●

●●●
●

●

●●
●

●

●
●

● ●

●●

●

●

●

●

●

●

●

●
●

●●●●●●●●

●

●

●

●

●

●●

●

●
●
●

●

●

●

●●

●

●●●●

●

●●

●

●

●

●

●●
●

●

●

●
●

●

●
●●

●

●

● ●●

●
●

●

●
●

●

●

●●●

●●

●

●●
●

●
●

●●

●

●●●

●
●●

●
●●

●

●

●●

●

●●●
●

●

●

●
●

●●●

●

●●●
●
●●●
●

●●● ●●● ●
●

●

●

●

●

●

●

●

●

●●

●

●●
●

●

●

●
●
●●
●

●●●● ●●

●

●

●

●

●

●●
●

●

●

●●

●

●

●

● ●

●
●

●

●

●

●
●

●

● ●
●

●

●

●

● ●●

●

●

●

●

●

●
●

●

●●●

●

●●●

●

●

●

●●
●

●

●

●

●

●

●

●
●

●

●
●
●

●

●
●

●
●
●

●

●
●

●

●

●
●● ●● ●

●

●

●

●●●
●●

●

●

●●

●

●

●

●

●

●
●

●
●

●

●●
●

●

●

●
●●●●
●●

●

●●

●

●

●●

● ●

●

●●●

●

●
●

●

●

●●●

●●●
●

●
●

●

●

●
●●●●●

●

●
●●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●
●

●
●

●

●

●

●●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●
●●●●
●●

●

●

●●

●

●

●

●

●

●

●
●

●
●

●●

●

● ●
●●

●

●
●

●

●

●
●
●●●●

●

●

●

●
●
●●

●

●●

●

●●

●

●●

●
●

● ●

●

●●

●
●
●

●

●

●
●

●
●

●

●●

●

●

●●

●

●

●●●●●●●

●

●

●

●

●

●

●

●

● ●
●
●

●

●●

●

●

●●●
●

●●

●

●
●

● ●
●

●
●

●

●

●●
●

●

●
●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●
●●

●

●
●

●●

●
●●●
●

●

●●●

●

●

●

●

●

●●
●

●
● ●

●

● ●●
●●●●

●●
●
●

● ●●●●●

●
●

●●●
●● ●

●

●

●

●

●
●

●
●

●

●
●

●

●
●

●
●

●

●

●

●

●●
●● ●
● ●●
●

●
●

●
●

●

●

●●

●

●

●
●
●

●

●●
●●

●

●

●
●●●●●●

●

●●●
●

●

●

● ●
●

●
●

● ●●●●

●

●●

●

●

●

●

●

●●
●
●

●

●

●

●

●

●

●
●

●

●
●

●●● ●

●

●

●●

●●

●
●

●
●

●
●

●●

●

●

●●●

●●
●●●

●

●

●●●

●

●

●

●

●

●●●

●

●

●

●

●
●●●●

●

●

●
●
●

●

●

●

●

●

●●
●
●●

●

●●

●

●●

●
●

●

● ●●

●

●●●●

●

●

●

●

●
●

●

●●●●

●

●●
●

●

●●

●
●

●●

●

●

●

●

●

●

●

●
●

●●●●●●●●

●

●

●

●

●

●●

●

●
●
●

●

●

●

●●

●

●●●●

●

●●

●

●

●

●

● ●
●

●

●

●
●

●

●
●●

●

●

●

●

●

●

● ●

●

●

●
●

●

● ●●

●
●

●

●
●
●

●

●●●

●●

●

●●
●

● ●

●●

●

●●
●

●
●●

●●

●

●

●

●●

●

●●●
●

●

●

●
●

●●●

●

●●●
●
●●●

●●●●
●●●
●

●

●

●

●

●

●

●

●

●

●●

●
●●

●

●

●

●●
●●
●

●●●● ●
●

●

●

●

●

●

●●
●

●

●

●●

●

●
●

● ●

●
●

●

●

●

●
●

●
● ●
●

●

●

●

●●●

●

●

●

●

●
●

●

●

●●●

●

●●●

●

●

●

●●
●

●

●

●

●

●

●

●
●

●

●

●
●

●

●
●

●
●
●

●

●
●

●

●

●

●●●● ●

●

●

●

●●●
●●

●

●

●●

●

●

●

●

●

●
●

●
●

●

●●
●

●

●

●
●●●●
●●

●

●
●

●

●

●●

●
●

●

●

●

●●

●

●

●

●

●●●

●●●

●

●●

●

●
●●

●
●●●●

●

● ●

●

●

●

●
●

●

●

●
●

●●●

●

●
●

●

●

●

●

●

●
●

●
●
●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●●

●
●●●

●
●●

●

●

●●

●

●

●

●

●

●

●
●

●●

●●

●

●
●

●●

●

●
●

●

●

●
●●●●

●

●

●

●
●
●●

●

●●

●

●●

●

●●

●
●

●

●

●●

●
●
●

●

●

●
●

●●

●

●●

●

●

●●

●

●

●●●●●●●

●

●

●

●

●

●

●

● ●
●
●

●

●●

●

●

●●●
●

●●

●

●
●

●

●
●

●
●

●

●

●●
●

●
●

●

●

●

●

●

●●

●

●

●

●
●
●

●

●●

●

●●

●

●

●
●●

●

●

●

●●

●
●
●●

●
●

●●●

●

●

●

●

●

●●
●

●
● ●

●

●

●
●●●●
●●
●
●

● ●●●●●

●
●

●●●
●● ●

●

●

●

●

●
●

●
●

●

●
●

●

●
●

●
●

●

●

●

●

●●
●● ●
● ●
●●

●

●
●

●

●

●

●●

●

●

● ●
●

●

●●
●●

●

●

●
●●●●●●

●

●●●
●

●
●

●
●
●

●
●

● ●●●●

●

●●

●

●

●

●

●

●●
●
●

●

●

●

●

●

●

●
●

●

●●

● ●● ●

●

●

●●

●
●

●
●

●
●

●●
●●

●

●

●●●

●●
●●●

●

●

●●●

●

●

●

●

●

●●●

●

●

●

●

●
●●●●

●

●

●
●

●

●

●

●

●

●●
●
●●

●

●●

●

●●

●
●

●

●
●

●

●

●●●●

●

●

●

●

●
●●●●
●

●

●●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●●●●●●●

●

●

●

●

●

●●

●

●
●
●

●

●

●

●●

●

●●●●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●●
●

●

●
●

●

●

●

●

●

●●● ●
●●

●●

●

●

●

●●

●

●

●

●

●●

●

●●●

●
●

●●●

●

●●

●

●●

●

●●

●●

●

●

●

● ●
●

●● ●

●

●

●
●●

●●●

●

●●●●
●

●●●●●
●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●●●
●●

●●●●
●

●●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●●

●
●●
●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●●●●

●

●●●

●
●

●

●●
●

●

●
●

●

●

●

●
●

●
●
●

●
●●●

●

●
●

●

●

●

●●
●

●
●

●

●

●

●●●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●
●●

●

●
●

●

●●

●

●

● ●

● ●

●

●
●

●●

●

●

●

●●●●

●●
●●

●

●●

●

●
●●●●

●●●

●

●
●

●

●

●●

●

●

●

●
●

●
●

●
●●

●

●

●●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●
●●●

●
●

●

●●

●
●

●

●

●

●●

●●

●●
●

●

●

●●

●

●
●

●

●
●
●
●● ●

●

●

●

●

●●

●

●

●

●

●●

●

●
●

●

●
●

●

●●
●

●●

●
●

●●
●

●

●●

●
●

●

●

●

●● ●●●●

●

●

●

●

●

●

●●●● ●●

●

●

●●●●

●
●

●

●●

●●
● ●
●

●

●

●
●

●

●
●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●●

●
●

●●

●

●●●
●
●

●●●

●

●

●

●

●

●●
●

●
● ●

●

●

●●
●●
●●●●

●
●

●●●●

●
●

●●●●●
●

●

●

●
●●

●

●
●

●

●

●

●
●

●

●
●

●

●

●●
●● ●

●
●●
●●

●
●

●

●

●●

●

●

●

●●

●

●●●●
●

●

●

●●●●
●●

●
●●

●

●
●

●
●●

●
●

● ●●●

●

●
●

●●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●●
●
●

●

●●

●

●

●
●●

●
●

● ●

●

●

●●●●

●●

●●●

●

●

●●●

●

●

●

●

●

●●

●

●

●

●

●●●
●●

●

●

●
●

●

●

●

●

●

●●
●
●●

●

●●

●

●●

●●

●

●●

●

●
●●●●

●

●

●

●
●

●●●●
●

●

●●
●

●

●●

●

●●

●

●

●●

●

●

●

●

●
●
●

●●●●●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●●●●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●●●
●

●

●

●

●

●
●
●

●

●
●

●

●

●

●

●

●●●
●

●●

●
●

●

●
●

●
●

●

●
●

●

●

●

●

●
●

●

●● ●●
●

●

●
●

●●
●

●

●

●
●

●

●

●●

●

●

●

●
●●●

●

●

●

●

●

●●●●
●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●●●

●●

●
●●

●

●●

●

●●

●

●●

● ●

●
●

●

●
●
●

●●
●

●

●

●
●

●●●

●

●●●●
●

●●●●●
●

●

●

●

●

●

●

●

●

●

●
●

●
●●

●

●

●

●●●
●●

●●●●
●

●●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●●

●
●●●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●●●●

●

●●

●
●

●

●●
●

●

●
●

●

●

●

●
●

●
●
●

●
●●●●

●●

●

●

●

●●
●

●
●

●●

●

●●●
●
●

●

●

●

●
●

●

●

●
●

●

●

●●

●

●

●
●

●
●

●
●

●

●●

●

●

● ●

● ●

●

●
●

●●

●

●

●

●●●●

●●●●
●

●

●

●

●
●

●●●
●●●

●

●

●

●

●

●●

●

●

●

●
●

●
●

●
●
●

●

●●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●
●●●

●●

●

●●

●
●

●

●

●

●●

●●

●

●

●

●

●●

●

●
●

●
●
●●●● ●

●

●

●

●●

●

●

●

●

●●

●

●
●

●
●

●

●

●
●

●●

●●

●
●

●

●

●●

●
●

●

●

●

●●●●●●

●

●

●

●

●

●

●
●●●

●
●

●

●

●●●
●

●
●

●

●●

●

●

● ●
●

●
●

●
●

●

●
●

●
●

●

●●

●

●

●
●
●

●
●

●

●

●

●

●●

●

●

●

●●●
●

●
●●●

●

●

●

●

●

●●
●

●
●

●
●

●
●●

●●
●
●●●

●
●

●●●●

●
●

● ●●●●●

●

●

●
●

●
●

● ●

●

●

●

●
●

●

●
●

●

●

●●
●● ●

●

●●
●

●
●

●

●

●

●●

●

●

●

●●

●

●
●●
●

●

●

● ●●●
●

●
●

●●

●

●

●

●
●●

●
●

● ●● ●

●

●

●

●●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●●●
●

●●

●

●

●
●●

●
●

● ●

●

●

●●
●

●

●
●

●●●

●

●

●
●●

●

●

●

●

●

●●

●

●

●

●

●●●
●●

●

●

●
●

●

●

●

●

●

●●
●
●●

●

●●

●
●

●

●●

●

●

●

●
●●●●

●

●

●

●

●
●●●●
●

●

●●
●

●

●
●

●

●

●

●

●●

●

●

●

●

●
●
●●●●●

●

●

●

●

●

●●

●

●
●●

●

●

●

●

●●●●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●
●●

●

●

●

●

●
●
●

●

●
●

●

●

●

●

●

●●●
●

●

●
●

●

● ●

●
●

●

●

●

●

●

●

●

●

●

●

●●●●●

●

●
●

●●
●

●

●

●
●

●

●

●●

●

●

●

●
●●●

●

●

●

●

●
●

●●●
●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●● ●

●●

●●●

●

●●

●

●●

●

●●

● ●

●
●

●

●
●
●

●●
●

●

●

●
●●●

●

●●●●
●

●
●●

●●
●

●

●

●

●

●

●

●

●

●

●
●●

●●

●

●

●

●●●
●●

●●●●
●

●●

●

●

●

●●●

●

●

●

●

●

●

●

●●

●
●

● ●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●●●

●

●●

●
●

●

●●
●

●

●
●

●

●

●

●

●

●
●
●

●
●●●
●

●●

●

●

●

●●
●

●●
●

●●

●●●
●
●

●

●

●

●
●

●

●

●
●●●

●

●●

●

●

●
●●●

●
●

●

●●

●

●

● ●

●●

●

●
●

●●

●

●

●

●●●●

●
●●
●●

●

●

●

●

●
●

●●●●●

●

●

●

●

●

●●

●

●

●

●
●

●
●

●
●●

●

●●

●

●
●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●
● ●
●●●

●●

●

●●

●
●

●

●

●

●●

● ●

●

●

●

●

●●

●

●

●

●
●
●●●● ●

●

●

●

●●

●

●

●●

●

●●

●

●
●

●

●

●

●

●
●

●●

●
●

●
●

●

●●

●
●

●

●

●

●●●●

●

●

●

●

●

●

●
●●●

●
●

●

●

●●●
●

●
●

●

●
●

●
●

● ●
●

●
●

●
●

●

●
●●
●

●

●●

●

●

●
●●●

●

●

●

●

●

●●

●

●

●

●●●
●

●
●●●

●

●

●

●

●

●●
●

●
● ●

●

●
●●

●●

● ●●●

●
●

●●●●

●
●

●
●●●●●

●

●

●

●

●
●

●
●

●

●

●

●
●

●

●●

●

●

●●
●● ●

●

●●
●●

●
●

●

●

●●

●

●

●

●●

●

●
●●●

●

●

●●●●
●
●

●
●●

●

●

●

●
●●

●
●

● ●● ●

●

●

●

●●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●●●
●

●●

●

●

●
●●

●
●

●

●
●

●

●●
●

●

●
●

●●●

●

●

●
●
●

●

●

●

●

●

●●

●

●

●

●

●●●
●●

●

●

●

●

●

●

●

●

●●
●
●●

●

●●

●
●●

●●

●

●

●

●
●●●●

●

●

●

●

●
●●●●
●

●

●●
●
●

●●

●

●

●

●

●●

●

●

●

●

●
●

●●●●●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●●●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●
●●●

●

●

●
●●
●

●

●
●

●

●

●

●

●

●●●
●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●●
●●
●

●
●

●●
●

●

●

●
●

●

●●

●

●

●

●
●●●

●

●

●

●
●

●●●
●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●●●

●●

●● ●

●

●●

●

●●

●

●●

● ●

●
●

●

●

●●
●

●

●●
●●

●

●●●●

●
●

●●
●●

●

●

●

●

●

●

●

●

●

●
●

●●

●●

●

●

●

●●●
●●

●●●●
●

●●

●

●

●

●●●

●

●
●

●

●

●

●

●●

●
●

● ●●

●

●
●

●

●

●

●

●

●

●

●

●

●●●●

●

●●

●

●

●

●●
●

●

●
●

●

●

●

●

●

●
●
●

●
●●●●

●●

●

●

●

●●
●

●●
●

● ●

●

●●●
●
●

●

●

●

●●

●

●

●
●●●

●

●●

●

●

●
●●

●

●
●

●

● ●

●

●

●
●

●
●

●

●

●

●●

●

●

●

●●●

●
●●●●

●

●

●

●

●●
●●●●
●

●

●

●

●

●

●●

●

●

●

●
●

●
●

●
●
●

●

●●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
● ●
●●●

●●

●

●●

●

●

●

●

●

●●

● ●

●
●

●

●

●●

●

●
●

●
●●●●● ●
●

●

●

●

●

●

●●

●

●●

●

●
●

●

●
●

●

●
●
●●

● ●

●
●

●

●●

●●

●

●

●

●● ●●

●

●

●

●

●

●

●●●●
●

●

●
●

●●●●

●
●

●

●
●

● ●
●●
●

●●

●
●

●

●
●

●
●

●

●●

●

●

●
●●●

●

●

●

●

●

●●

●

●

●

●●●
●
●

●●●

●

●

●

●

●

●●
●

●● ●
●●●

●
●
●

●● ●

●
●

●●●●

●

●
●●●●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●
●
●● ●

●

●●
●

●
●
●

●

●

●●

●

●
●●

●

●
●●●

●

●

●●●●
●
●

●
●
●

●

●
●

●

●
●

●
●

●
●●

●

●

●

●●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●●●
●●

● ●

●●

●
●●

●
●

●
●
●

●

●●
●

●

●
●

●●

●

●

●
●
●

●

●

●

●

●

●●

●

●

●

●●●●●

●

●

●

●

●

●

●

●

●●
●●●

●

●●
●
●

●

●●

●

●

●

●
●●●●

●

●

●

●

●
●●●●
●

●

●●

●
●

●●

●

●

●

●

●●

●

●

●

●

●
●
●●●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●●●

●

●

●
●
●
●

●

●
●

●

●

●

●

●

●●●●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●
●●

●
●

●●
●

●

●

●
●

●

●●

●

●

●

●
●●●

●

●

●

●
●

●●●

●

●

●

●

●

●

●
●

●

●

●

●●● ●
●

●

● ●●

●

●

●
●●

●
●

●
●

●

●
●

●●

●●●

●

●●●●
●

●
●●

●

●

●

●

●

●

●

●

● ●
●

●●

●

●

●

●● ●●●
●●●●

●
●●

●

●

●

●
●●

●

●
●

●

●●

●

●
●

●

●
● ●

●

●
●

●

●

●

●

●

●

●
●●●

●

●

●●

●
●●

●
●

●●

●
●

●

●

●●
●
●

●
●●
●
●

●
●

●

●

●
●●●●
●

●

●●●
●
●

●

●

●

●
●

●

●

●
●●

●

●

●●

●

●

●●●

●
●

●

●
●

●

●

●

●

●

●

●
●

●●

●

●

●

●●●
●●●●●

●

●

●

●

●
●●●●●

●

●

●

●

●

● ●

●

●

●

●
●

●

●

●
●
●

●

●
●

●

●●
●

●

●

●

●●

●

●

● ●

●

●

●

●

●
● ●●

●

●

●●

●

●

●

●

● ●

●
●

●
●

●

●●

●

●

●

● ●●●●
●

●
●

●

●

●

●

●

●●

●

●●

●

●

●

●

●
●●

●
●

●
●

●

●●

●
●

●

●

●●●

●

●

●
●

●

●

●
●●

●
●

●

●

●●●●

●
●

●

●
●
●

●●
●

●

●
●

●

●●●

●

● ●

●

●

●●

●

●

●

●

●

●
●

●

●

●●

●

●●
●
●

●●

●

●

●

●

●

●●
●
●

●●
●●●

●
●

●
●
●

●

●●●●

●

●
●●
●●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●●●●●
●

●●
●

●
●

●●

●

●

●●

●

●
●●●

●

●

●●●●
●●

●
●

●

●

●

●
●●

●

●

●
●

●

●

●

●●

●

●

●

●●

●
●

●

●
●

●

●

●

●

●

●
●

●
●●

●
●●
●
●
●
●

●●

●
●

●

●

●

●●●
●

●
●

●●

●

●
●
●

●

●
●

●

●

●

●

●

●

●●●●●

●

●

●

●
●

●

●

●

● ●
●●●

●

●●
●●

●●

●

●

●
●

●●●

●

●

●

●

●●●●●
●

●

●●

●
●

●

●

●

●
●

●
●

●

●

●

●

●
●●●

●●●●

●

●

●

●

●

●●

●

●

●

●●●

●●

●●
●

●

●

●

●

●
●●

●
●

●

●

●
●●

●

●●

●
●

●

●

●●●●●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●●
●●●
●

●●

●

●

●

●●
●

●

●

●
●●

●

●

●

●●
●

●●

●

●

●

●

●

●●
●

●

●

●

● ●●
●

●

●●●

●

●

●
●●

●
●

●
●

●

●
●

●●

●●●

●

●●●●
●

●
●●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

● ●●●
●●●●

●
●●

●

●

●

●
●●

●

●
●

●

●●

●

●
●

●

●
● ●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●●

●●●

●
●

●●

●
●

●

●

●●
●
●

●
●●●
●

●
●

●

●

●
●●●
●

●

●●●
●●●

●

●

● ●

●

●

●
●●●

●

●●

●

●

●●●

●

●

●

●
●

●

●

●
●

●

●

●

●

●●

●

●

●

●●●
●●

●
●●

●

●

●

●

●
●●●●

●

●

●

●

●

● ●

●

●

●

●
●

●

●

●
●●

●

●
●

●

●●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
● ●●

●

●

●●

●

●

●

●

●

●

●
●

●
●

●

●
●●

●

●

●

● ●●●●
●

●
●

●

●

●

●

●

●●

●

●●

●

●

●

●

●
●●

●
●

●
●

●

●●

●
●

●

●

●●●

●

●

● ●

●

●

●●
●

●

●

●

●●●●

●●

●

●

●
●

●●●

●

●
●

●
●●●

●

● ●

●

●

●●
●

●

●

●

●

●
●

●

●

●●

●

●●
●
●

●●

●

●

●

●

●

●●
●
●

●●
●●●
●
●

●

●
●

●●●●

●

●
●●
●●

●

●

●
●

●

●

●

●

●

●
●

●●

●

●

●●●●●
●

●●
●

●
●

●●

●

●

●●

●

●

●●●

●

●

●●●●
●●
●
●

●

●

●

●
●●

●
●

●
●

●

●

●

●●

●

●

●

●●

●
●

●

●
●

●

●

●

●

●

●
●

●●●
●

●●
●
●
●
●

●●

●
●

●

●

●

●●● ●
●●

●●

●

●
●
●

●
●

●

●

●

●

●

●

●

●●●●
●

●
●

●●

●

●

●

● ●
●●●

●

●●●●
●●

●

●

●
●

●●●

●

●

●

●

●●●●●
●

●

●●

●
●

●

●

●

●●

●
●

●

●

●

●

●
●

●
●

●●●●

●

●

●

●

●

●●

●

●

●

●●●

●●

●●●
●

●

●

●

●
●●

●
●

●

●

●
●
●

●

●●

●

●

●

●●●●●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●●●
●●●
●

●●

●

●

●

●●
●

●

●

●
●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●
●

●

●

●

● ●●
●

●

● ●●

●

●

●
●●

●
●

●
●

●

●
●

●●
●●●

●

●●●●
●

●
●●

●●

●

●

●

●

●

●

●
●

●●

●

●

●

● ●●●
●●●●

●
●

●

●

●

●
●●

●

●●

●

●●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●●

●
●●

●
●

●●

●

●

●

●

● ●●
●

●
● ●●
●

●●

●

●

●
●●●
●

●

●●●
●●

●

●

●

●
●

●

●

● ●●●

●

●●

●

●

●●●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●●●●
●

●
●●

●

●

●

●

●
●

●●●

●

●

●

●

●

● ●

●

●

●

●
●

●

●

●

●●

●

●
●

●

●●
●

●

●

●

●●

●

●

●

●

●

●

●
●

●●
●

●
●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●
●●

●

●

●

● ●●●●
●

●
●

●

●

●

●

●

●●

●

●●

●

●

●●

●

●
●●

●
●

●
●

●

●●

●
●

●

●

●●●

●

●

● ●

●

●

●●
●

●

●

●

●●●●

●●

●

●

●
●

●●●

●

●
●

●

●●●

●

● ●

●

●

●●
●

●

●

●

●

●
●

●

●

●●

●

●●
●●●●

●

●

●

●

●

●●
●

●
●●
●●●
●●

●

●

●

●●●●

●

●
●●
●●

●

●

●

●
●

●

●

●

●

●
●

●●

●

●

●●●●●
●

●●
●

●
●

●●

●

●

●●

●

●

●●●

●

●

●●
●●
●●

●
●

●
●

●

●
●●

●
●

●
●

●

●

●

●●

●

●

●

●
●

●
●

●

●
●

●

●

●

●

●

●
●

●●●
●

●●
●
●
●
●

●●

●
●

●

●

●

●●●
●

●●
●●

●

●
●
●

●
● ●

●

●

●

●

●

●

●●●●
●

●

●

●●

●

●

●

●
●

●●●

●

●●
●
●
●●

●

●

●

●
●●●

●

●

●

●

●●●●●
●

●

●●

●
●

●

●

●

●●

●
●

●

●

●

●

●
●●●

●●●●

●

●

●

●

●

●●

●

●

●

●●●

●●

●●●
●

●

●

●

●
●●

●
●

●

●
●
●
●

●

●●

●

●

●●●●●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●●●
●●●
●

●●

●
●

●

●●
●

●

●

●
●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●● ●●
●

● ●●

●

●

●
●●

●
●

●
●

●

●
●

●
●

●●●●

●

●●●●
●

●
●●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●●
●

● ●●●
●

●

●

●

●

●
●●

●

●●

●

●●

●

●
●

●

●
●

●

●
●

●

●

●

●

●

●

●
●●

●

●

●●

●●●

●
●

●●●

●

●

●

●

● ●●
●

●
●●●
●

●●

●

●

●
●●●●

●

●●●
●●●

●

●

●

●

●

●

●
●●●

●

● ●

●

●

●●●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●
●

●●●
●●●● ●

●

●

●

●

●
●● ●●

●

●

●

●

●

●
●

●

●

●

●
●

●
●

●

●●

●

●
●

●

●●
●

● ●

●

●●

●

●

●

●

●

●

●
●

●● ●●
●

●

●●

●

●

●

●

●

●
●

●

●
●

●

●
●●

●

●

●

● ●●●●
●

●
●

●

●

●

●

●

●●

●

●●

●

●

●
●

●

●
●●

●
●

●
●

●

●●

●
●

●

●

●●●

●

●

● ●

●

●

●●

●

●

●●●

●●

●

●
●●●●●

●
●

●

●
●●●

●

●●

●

●

●●
●

●

●

●

●

●
●

●

●

●●

●

●●
●●●

●

●

●

●

●

●●
●
●

●●●●●
●●

●

●

●

●●●●

●

●●
●

●

●

●

●
●

●

●

●

●

●

●
●

●●

●

●

●●●●●
●

●
●
●

●
●

●●

●

●

●●

●

●

●●●

●

●

●●●●
●●
●
●

●
●

●
●●

●
●

●
●

●

●

●

●●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●
●●

●
●●
●●
●
●

●●

●
●

●

●

●

●●●
●●

●●

●

●●●

●● ●

●

●

●

●

●

●

●●●●

●

●
●

●●

●

●

●

●
●

●●●

●

●●● ●

●●

●

●

●
●

●●●

●

●

●

●

●●●●●
●

●

●●

●●

●

●

●

●●

●
●

●

●

●

●

●
●●●

●●●●

●

●

●

●

●

●●

●

●

●

●●●

●●

●●●
●

●

●

●

●
●●

●
●

●

●
●
●
●

●

●●

●

●

●●●●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●●●
●●●
●

●●

●
●

●

●●
●

●

●

●●●

●

●

●

●
●

●

●

●

●

●

−2 0 2 4 6 8 10

−2
0

2
4

6
8

10

Plot of actual vs predicted train values

actual

pr
ed
ic
te
d

●●

●●

●

●
●

●

●

●●●●
●●

●

●
●
●●

●
●

●●●

●

●
●
●●

●
●

● ●●●

●

●

●
●
●

●

●

●

●●●

●●

●●●●

●

●●

●

●

●

●●
●

●
●●●

● ●●

●

●
●

●

●

●

●

●

●

●

●

●●
●

●
●●●

●

●

●

●
●

●●
●

●

●●
●●●●
●

●

●

●

●

●

●●

● ●

●

●●
●

●

●

●
●

●

●●

●

●

●
●

●
●●●

●

●

●

●●
●

●

●

●

●

●

●

●
●

●

●

●● ●●

●

●

●
●

●

●

●

●

●●●
●●

●

●

●

●

●

●

●

●
●

●
●●
●

●

●
●

●
●

●

●

●

●

●

●

●
●●●●
●

●

●

●

●●●
●●

●
●●

●

●

●

●

●

●

●

●
●

●

●
●●
● ●

●

●

●
●●

●●
●●

●

●●

●

●
●

●
●

●
●

●

●●●

●

●

●

●

●

●
●
●
●

●●
● ●●●

●

●

● ●

●
●●

●

●●●●

●

●●●

●

●

●

●

●

●

●●

●

●
●

●

●●

●

●

●

●●

●
●

●

●

●
●

●
●

● ●●

●

●

●

●

●

●

●

●

●

● ●

●

●
●

●●
●

●

●
●

●
●

●
●

●
●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●
● ●

●
●

●●
●

● ●●●

●

●
●

●

●

●

●

● ●
●●●●

●

●

●

●
●
●●

●

●

●●●

●

●
●

●

●

●

● ●

●●

●
●

●

●●

● ●

●

●

●●

●●

●
●

●●

●

●●

●

●

●
●●

●

●

●●●●●●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●●

●

●
●

●

●

●

●

●●

●
●

●

●

●

●
●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

● ●
●

●

●

●

●●

●

●

●

●
●●

●

●

●
●●●

●
●●●

● ●
●●●

●

●

●

●

●

●●
● ● ●

●

●●●●●●●

●●

●

●
●●●
●●●

●●

●●●
●

●
●

●

●

●

●

●
●

●
●

●

●

●

●

●●●

●

●

●

●

●●

●

●●
●●●

●
●●

●

●

●●
●●

●

●●

●

●

● ●

●

●

●

●●
●●

●

●

●●
●

●●●
●
●●

●●●●
●

●

●

●
●●●

●

●

●

●
● ●● ●●

●

●●●

●●●●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●
●

●

●

●●

●

●

●

●

●

●

●
●

●●
●

●

●●
●

●

●
●

●●●

●

●

●●●
●

●

●

●

●

●

●●

●

●

●

●

●●
●●
●

●
●

●

●

●●

●
●

●

●

●

●●

●

●
●

●

●
●●

●

●●
●

●
●●

●
●

●
●

●

●

●

●

●●
●●

●

●

●

●

●

●
●

●

● ●●●
●

●

●

●
●

●
●

●
●

●
●

●

●

●

●●
●
●

●
●

●●

●●

●

●
●

●

●

●●●
●●

●

●
●
●●

●●

●●●

●

●
●
●●

●
●●

●●●

●

●

●
●
●

●

●●●

●

●

●●

●●●●

●

●●

●

●

●

●● ●●
●

●●
● ●●●

●

●

●

●

●

●

●

●

●

●●
●

●●●
●

●

●

●●
●●
●●

●●●●●●

●

●

●

●

●

●●

● ●

●

●●
●

●

●

●●

●

●
●

●

●

●
●

●

●●
●●

●

●

●

●●
●

●

●

●

●

●

●
●

●

●

●●●●

●

●

●

●
●

●

●

●
●●
●●

●

●

●

●

●

●

●

●
●

●
●●
●

●

●
●

●
●

●

●

●
●

●

●

●
●●●●●

●

●

●

●●●
●●

●
●●

●

●

●

●

●

●

●

● ●

●

●
●●

● ●

●

●

●
●●

●●
●●

●

●●

●

●

●
●

●●

●

●●●

●
●

●

●

●

●
●
●
●●●

● ●●
●
●

●

●
●

●
●●

●

●● ●●
●

●●●

●

●

●

●

●

●

●●

●

●●

●●

●

●

●

●
●

●
●

●

●

●
●

●
●

●
●●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●
●●

●

●
●

●
●

●
●

●
●
●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●
●
●

●●

●

● ●●●

●

●
●

●
●

●

●

●
●

●●●●

●

●

●

●●
●●

●

●

●●

●

●
●

●

●

●

● ●

●●

●
●

●

●●

● ●

●

●

●●

●●

●

●

●●

●

●●

●

●

●
●

●

●

●●●● ●●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●●

●

●
●

●

● ●

●
●

●
●

●

●

●

●
●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●
●

●

●

●

●

●

●

●
●●

●

●

●

●
●

●

●
●●●
●●

●●●

●

●

●

●

●

●●
● ● ●

●

● ●
●

●●●●

●●

●

●
●●●
●●●

●●

●●●
●

●●

●

●

●

●

●
●

●
●

●

●

●

●

●●
●

●

●

●

●

●
●

●

●●
●●●

●
●●

●

●

●●
●
●

●

●●

●

●

● ●
●

●

●

●
●

●●●

●

●●●
●●●

●
●

●

●
●●●

●

●

●

●
●●●

●

● ●
● ●●●●

●

●●●

●●●●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●
●

●

●

●●

●

●

●

●

●

●

●
●

●
●

●

●

●●●

●●
●●●

●

●

●●●
●

●

●

●

●

●

●●●

●

●

●

●

●●
●●●

●
●

●

●

●●

●
●

●

●

●

●●

●

●
●

●

●
●●

●

●●●

●
●

●
●

●●

●

●

●

●

●
●
●●

●

●

●

●

●

●
●

●

●
●●●
●
●

●

●
●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

● ●
●

●

●●

●●
●

●
●

●

●

●●●
●●

●

●
●
●●

●●

●●●

●

●

●●●

●●●
●●●

●

●

●
●●

●

●●●

●

●

●●

●●●●

●

●●

●

●

●

●●
●●
●●●

● ●●● ●
●

●

●

●

●

●

●

●

●

●●

●
●●

●

●

●

●
●

●●
●●

●●
●●●●

●

●

●

●

●

●●

●
●

●

●●
●

●

●

●●

●

●
●

●

●

●
●

●

●●
●●

●

●

●

●●
●

●

●

●

●

●

●

●
●

●

●●●●

●

●

●
●

●

●

●

●

●●
●●

●

●

●

●

●

●

●●
●

●
●

●●
●

●

●
●

●
●
●

●

●

●

●

●

●
●●●●●

●

●

●

●●●
●●

●
● ●

●

●

●

●

●

●

●

● ●

●

●
●●●

●
●

●

●
●●

●●
●●

●

●●

●

●

●
●

●●●●●

●
●
●

●

●

●
●

●●●
● ●●

●
●

●
●

● ●●

●

● ●●●
●

●●●

●

●

●

●
●

●

●●

●

●●

●●

●

●

●

●
●

●
●

●

●

●
●

●
●

●
●●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●
●

●

●

●
●

●
●

●
●

●
●
●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●
●
●

●●

●

●●●●

●

●
●

●

●

●

●

●
●●●●

●

●

●

●●
●●

●

●

●●

●

●
●

●

●

●

● ●

●●

●
●

●

●●
●

●

●

●

●●

●●

●

●

●●

●

●●

●

●

●
●

●

●

●●●● ●●

●

●

●

●

●

●

●

●

●
●
●
●

●

●

●●

●

●

●●

●

●
●

●

● ●

●
●

●
●

●

●

●

●●

●

●

●
●

●●

●

●

●

●

●
●

●

●

●

●

●
●

●

●
●

●●

●

●

●

●

●

●

●
●●

●

●

●

●
●

●

●
●●●
●●

●
●●

●

●

●

●

●

●●
● ● ●

●

● ●●●●●●

●
●

●

●
●●●
●●●

● ●

●●●
●
●●

●

●

●

●

●
●

●
●

●

●

●

●

●
●

●
●

●

●

●

●

●●

●

●●
● ●●

●
●●

●

●

●●
●
●

●

●●

●

●

●●
●

●

●

●
●

●●●

●

●●●●●●
●
●

●

●
●●

●

●

●

●
●●

●

● ●
● ●●

●●

●

●●●

●●●●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●●●

●

●

●●

●

●

●

●

●

●
●

●●
●

●

●

●●●

●●
●●●

●

●

●●●
●

●

●

●

●

●

●●●

●

●

●

●

●
●●●●

●

●

●

● ●

●

●

●

●

●

●●

●

●

●

●

●
●●

●

●●●

●
●

●
●

●●

●

●

●

●

●
●
●●

●

●

●

●

●

●
●

●

●
●●●
●
●

●

●●
●

●

●
●

●
●

●

●

●

●

●

●

●

●

●
●

●
●

●●●●●●●●

●

●

●

●
●●

●●
●

●
●

●

●

●●●
●●

●

●●
●

● ●

●●

●

●

●●●

●●●

●
●●

●

●

●
●●

●

●●●

●

●

●●

●●●

●

●●

●

●

●

●●
●

●
●
●●

●
●●● ●

●

●

●

●

●

●

●

●

●

●●

●
●●

●

●

●

●●
●●
●

●
●●●
●●●

●

●

●

●

●

●●

●

●

●

●●
●

●

●

●●

●

●
●

●

●

●
●

●

●●●●
●

●

●

●●
●

●

●

●

●

●

●

●
●

●

●●●●

●

●

●●
●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●●
●

●
●

●
●

●

●
●

●
●
●

●

●
●

●

●

●
●●●●●

●

●

●

●●●
●●

●

● ●
●

●

●

●

●

●

●
●

●
●

●

●●
●●

●
●

●

●
●●●●
●●

●

● ●

●

●

●
●

●
●

●

●●●

●●●

●

●

●
●

●●●
●

●●
●

●

●
●

● ●●

●

●
●●●

●

●
●●

●

●

●

●
●

●

●●

●

●●

●●

●

●

●

●
●

●

●

●

●

●

●
●

●
●●

●

●

●

●

●

●

●

●

●

●
●

●

●●
●●

●

●●

●
●●●●
●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●●

●

● ●
●●

●

●
●

●

●

●

●

●
●●●●

●

●

●

●●

●

●●

●

●

●●

●

●●
●

●

●

● ●

●●

●
●

●

●●
● ●

●

●

●●

●●

●

●

●●

●

●●

●

●

●
●

●

●

●●●●●●

●

●

●

●

●

●

●

●

● ●
●

●

●

●●

●

●

●●●

●

●
●

●

●●
●

●

●
●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●
●
●

●

●

●

●
●

●

●
●

●●

●

●

●

●

●

●

●
●●

●

●

●

●
●

●

●
●●●
●
●

●
●
●

●

●

●

●

●

●●
●

●

● ●

●

● ●●
●●●●

●●

●

●
●●●●●●

● ●

●●●
●
●●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●
●

●

●

●

●

●●
●● ●

●●●
●

●

●●
●
●

●

●●

●

●

●
●

●

●

●
●

●●
●

●

●
●●●●●●

●

●●●
●

●

●

●
●

●

●
●

● ●●●●

●

●
●●

●●●●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●●●

●

●

●●

●

●

●

●
●

●
●

●●●

●

●

●●●

●
●

●●●●

●

●

●
●●●

●

●

●

●

●

●●●

●

●

●

●

●
●●●●

●

●

●

●●

●

●

●

●

●

●●

●
●
●

●

●●

●

●●●

●
●

●
●

● ●

●

●

●

●

●
●

●●

●

●

●

●

●

●
●

●

●●●
●
●

●

●●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

● ●●●●●●●●

●

●

●

●

●

●●

●

●●
●

●

●

●

●

●

●●

●

● ●

●●

●● ●●●

●

●●

●

●●

● ●

●
●

●

●

●●
●

●

●●
●●

●

●●●●
●

●
●●

●●
●

●

●

●

●

●

●

● ●
●●

●●

●

●

●

●●●
●●

●●●●
●

●●

●

●

●

●●●

●

●

●

●

●
●

●

●●

●
●

● ●●

●

●
●

●

●

●

●

●

●

●

●

●

●●●●

●

●●

●●

●

●●
●

●

●
●

●
●

●

●

●
●
●

●
●●●●

●●

●

●

●

●●
●

●●
●

● ●

●●●
●
●

●

●

●

●●

●

●

● ●●●

●

●●

●

●

●
●●●

●
●

●

● ●

●

●

●
●

●
●

●

●
●

●●

●

●

●

●●●

●●●●●

●

●

●

●
●●●●●

●●

●

●

●

●

●

●●

●

●

●

●
●

●
●

●
●
●

●

●●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●
●●●

●●

●

●●

●

●

●

●

●●

●
●

●
●

●

●●

●

●

●

●●●●●●
●●

●

●

●

●

●

●●

●

●●

●

●

●

●
●

●

●
●
●●

●
●

●
●

●

●●

●●

●

●

●● ●●

●

●

●

●

●

●

●
●●●

●
●

●
●

●●●●

●
●

●

●
●

●●
●●
●

●
●

● ●

●

●
●
●
●

●

●●

●

●

●
●●●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●
●●●

●

●

●

●

●

●●
●●●
●●●

●●
●

●●

●
●

●●●●

●

●
●●●

●●

●

●

●

●

●
●

●

●

●

●

●
●

●

●●

●

●

●●●● ●●● ●●●
●

●
●

●●

●

●
●
●

●

●
●●●

●

●

●●●●
●
●
●
●

●

●

●

●

●
●

●
●

●
●●

●

●

●

●●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●●
● ●

●●
●

●●

●
●●

●
●

●
●

●

●

●●●●

●
●

●●

●

●

●
●
●

●

●

●

●

●

●●

●

●

●

●●●●●

●

●

●

●

●

●

●

●

●●
●●●

●

●●
● ●●

●●

●

●

●

●
●●●●

●

●

●
●
●●●●
●

●

●●
●
●

●

●

●

●

●
●●

●

●

●

●

●
●
●

●●●●

●

●

●

●

●

●●

●

●

●

●●●

●

●

●

●
●

●
●

●

●

●

●
●●●●

●

●

●
●
●
●

●

●
●

●

●

●

●

●

●●●●●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●●●
●●●
●

●●●

●

●

●

●

●●
●

●

●

●
●●●

●

●

●

●
●

●●●

●

●

●

●

●

●
●

●

●

●

●

●●● ●

●●

● ●●

●

●●

●

●●

●
●

●
●

●

●
●●

●
●

●●●

●

●●●●
●

●
●●

●
●

●

●

●

●

●

●

● ●
●●

●●

●

●

●

●● ●●●●●●●
●

●●

●
●

●

●●●

●

●
●

●

●
●

●

●●

●
●

●●●

●

●
●

●

●

●

●

●

●

●

●
●●●●

●

●

●●

●

●●
●
●

●●

●
●

●

●

●●
●
●

●
●●●●

●●

●

●

●

●●●●
●

● ●

●●●
●
●

●

●

●

●●

●

●

● ●●
●

●

●●

●

●

●●●

●
●

●

● ●

●

●

●
●

●
●

●

●
●

●●

●

●

●

●●●

●●●●●

●

●

●

●

●
●●●
●●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●
●
●

●

●●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●
●●●
●

●

●●

●

●

●

●

● ●

●●

●
●

●

●●

●

●

●

●●●
●●●
●●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●
●
●●

● ●

●
●

●

●●

●●

●

●

●● ●●

●

●

●

●

●

●

●

●●
●

●

●

●

●●●●

●
●

●

●
●

●
●

●●●

●●

● ●

●

●
●
●
●

●

● ●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●●
●
●

●●

●

●

●

●

●

●●
●●●
●

●●
●●
●

●●

●

●

●●●●

●

●
●●●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●●●● ●●●
●

●●
●

●

●

●●

●

●
●●

●

●
●●●

●

●

● ●●●
●
●
●
●

●

●

●

●

●
●

●
●

●
●●

●

●

●

●●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●●●
●

●●
●

●●

●
●●

●
●

●
●

●

●

●●●
●

●●

●●

●

●

●
●
●

●

●

●

●

●

●●

●

●

●

●●●●●

●

●

●

●
●

●

●

●

●●
●●●

●

●●
● ●
●

●
●

●

●

●

●
●●●

●

●

●

●●●●●
●

●

●●

●
●

●

●

●

●

●
●●

●

●

●

●

●
●
●

●●●●

●

●

●

●

●

●●

●

●

●

●●●

●

●

●

●
●

●
●

●

●

●

●
●●●

●
●

●

●

●
●●
●

●

●●

●

●

●

●

●

●●●●●

●
●●

●

●
●

●

●

●

●

●

●

●

●
●

●

●●●
●●●
●

●●●

●

●

●

●●

●
●

●

●
●●

●

●

●

●
●

●
●●

●

●

●

●

●

●
●

●

●

●

●

●●●●
● ●

●●●

●

●●

●
●●

●
●

●
●

●

●
●

●●

●●●

●

●●●●
●

●
●●

●

●

●

●

●

●

●

●

● ●
●●

●●

●

●

●

●● ●●
●

●●●●
●

●●

●
●

●

●●●

●

●
●

●

●
●

●

●●

●
●
● ●

●

●
●

●

●

●

●

●

●

●

●
●●●●

●

●

●
●

●
●●

●
●

●●

●
●

●

●

●●
●
●

●
●●●
●

●
●

●

●

●

●●●●
●

● ●

●●●
●
●

●

●

●

●
●

●

●

● ●●
●

●

●●

●

●

●●●

●
●

●

● ●

●

●

●
●

●●

●

●
●

●●

●

●

●

●●●
●●●
●●

●

●

●

●
●●

●●
●●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●●

●

●●

●

●●
●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●
●●●
●

●

●●

●

●

●

●

● ●

●
●

●
●

●

●●

●

●

●

●●●●●
●

●●

●

●

●

●

●

●●

●

●●

●

●

●

●

●
●●●

● ●

●
●

●

●●

●●

●

●

●● ●●

●

●

●

●
●

●

●
●●

●
●

●

●

●●●●

●
●

●

●
●

●
●

●●●

●●

● ●

●

●
●
●
●

●

●●

●

●

●●

●

●

●

●

●

●
●

●

●

●●

●

●●
●
●

●●

●

●

●

●

●

●●
●●●
●●
●

●
●

●●

●

●

●●●●

●

●
●●●

●●

●

●

●

●

●
●

●

●

●

●

●
●

●

●●

●

●

●●
●●●●●
●

●●
●

●

●

●●

●

●
●●

●

●
●●●

●

●

● ●●●
●●

●
●

●

●

●

●
●●

●
●

● ●●

●

●

●

●●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●●●
●

●● ●

●●

●
●●

●
●

●

●
●

●

●●
●
●

●●

●●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●●●●●

●

●

●

●
●

●

●

●

●●
●●●

●

●●
●●

●

●●

●

●

●

●

●●●

●

●

●

●●●●●
●

●

●●

●●

●

●

●

●

●
●

●

●

●

●

●

●
●
●

●●●●

●

●

●

●

●

●●

●

●

●

●●●

●

●

●

●
●

●
●

●

●

●

●
●●●

●
●

●

●

●
●●
●

●

●●

●

●

●

●

●

●●●●●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●●
●●●
●

●●●

●

●

●

●●
●
●

●

●
●●

●

●

●

●●
●

●●

●

●

●

●

●

●
●

●

●

●

●

●●● ●
●

●

● ●●

●

●

●
●●

●
●

●
●

●

●
●

●●

●●
●

●

●●●●
●

●
●●

●
●

●

●

●

●

●

●

● ●
●●

●●

●

●

●

●● ●●●●●●●
●

●●

●

●

●

●
●●

●

●
●

●

●●

●

●●

●
●
● ●

●

●
●

●

●

●

●

●

●

●

●
●●●

●

●

●
●

●
●●

●
●

●●

●
●

●

●

●●
●
●

●
●●●●

●
●

●

●

●
●●●●
●

● ●

●●●
●
●

●

●

●

● ●

●

●

●
●●●

●

●●

●

●

●●●

●
●

●

●
●

●

●

●

●

●

●

●
●

●●

●

●

●

●●●

●●●●●

●

●

●

●

●

●●●●●

●

●

●

●

●

● ●

●

●

●

●
●

●

●

●

●●

●

●
●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●●●

●

●

●●

●

●

●

●

● ●

●
●

●
●

●

●●

●

●

●

● ●●●●●

●●

●

●

●

●

●

●●

●

●●

●

●

●

●

●
●●

●
●

●

●

●

●●

●●

●

●

●●●

●

●

●

●

●

●

●
●● ●
●

●

●

●●●●

●●

●

●

●
●●●●●

●

●
● ●

●
●
●
●

●

● ●

●

●

●●

●

●

●

●

●

●
●

●

●

●●

●

●●
●
●

●●

●

●

●

●

●

●●
●
●

●●
●●●●

●

●
●
●

●

●●●●

●

●
●●
●●

●

●

●
●

●

●

●

●

●

●
●

●

●●

●

●

●
●
●●●●
●

●
● ●

●
●

●●

●

●
●●

●

●
●●●

●

●

●●●●
●●

●
●

●

●

●

●

●●
●

●

● ●

●

●

●

●●

●

●

●

●●

●
●

●

●
●

●

●

●

●

●

●
●

●
●●

●
●●
●
●
●

●
● ●

●
●

●
●

●

●

●●●
●

●●

●●

●

●●
●

●

●

●

●

●

●

●

●

●

●●●●●

●

●

●

●●

●

●

●

● ●
●●●

●

●
●
●●

●●

●

●

●
●

●●●

●

●

●

●

●●●●●●

●

●●

●
●

●

●

●

●
●

●
●

●

●

●

●
●●●

●●●●

●

●

●

●

●

●●

●

●

●

●●●

●

●

●

●●●
●

●

●

●

●
●●●

●
●

●

●

●
●
●

●

●●

●

●

●

●

●

●●●●●

●
●

●

●

●
●

●

●

●

●

●

●

●
●

●

●●●
●●●
●

●●

●

●

●

●●
●

●

●

●
●●

●

●

●

●●
●

●●

●

●

●

●

●

−2 0 2 4 6 8 10

−2
0

2
4

6
8

10

Plot of actual vs predicted test values

actual
pr
ed
ic
te
d

●

●

●● ● ●
●●

●

●●

● ●
●

● ●
●
●●

●●
●

●

●

●

●

● ●●●●
●

●
●● ●

●

●
● ●
● ●

● ●●
●

●●●
● ●

●

●

●

●

●
●

●

●
●●

●●
●

●● ●● ●
●

●

●

● ●
●
●●
●●

●●
●

●
●● ●●●

●

● ●●
●

● ●
●

●●●●
●
●
●

●●
●

●

●●●
●●●
●●●
●

●
● ●

●

● ●
●

●
●●

●
●

●

●
●●

●

●●
●

●
●●

●●

●●
●●●

●

●
●
●

●

●
●

●●
●
●
● ●●

●

●●

●

● ●●
●

●●
●●

●

●

●

●●

●

●
●

●

●● ●●
●

●
●●●
●●

●

● ● ●
●

●
●

●
●

●
●

●●●●●
●●●● ●●
●●

●●●
●●●
● ●
●

●

● ●
●●●●

●●
●

●

●

●
●

●● ● ●

●

●
●

●
●

●

●
●

●
● ●

●●
●

●
●
●●●●●
●
●
●●● ●● ●

●
●

●● ●

●

●

●

●●

●

●

●
●

●
●
●●

●

●

●
●
●
●

●
●

●

●
●
● ●
●●

●
●●●●

●
●●
●●
●

●

●●

●

● ●●

●
●

●●
●

● ● ●●
●
● ●●

●

●
●●

●
●
●

●

●
●

●●
●

●

●

●● ●
●●

●
●●
●

● ●

●

● ●
● ●

●

●
●

●
●

●

●

●
● ●●

●

●
●

●
● ●

●● ●
●●●

●
●

●
●

●
●

● ●●
●

●●
●

●●

●

●
●
●

●
●

●

●●●●●
●

●
●●

●●●●●
●●●● ●

●
●

● ●
●
●●
●

●

●
●

●

● ●

●

●
●

●
●

●
●●
●

●
●

●
●

●

●

●●
● ●

●

● ●●
●●

●●●
●

●
●

● ●
●●●●●

●

●
● ● ●●

●●
● ●●

●

●●
●
●
●●

●
●●

●

●

●●

●

●
●

●

●
●

●

●
● ●

●
●●

●

●●

●
●

●
● ●

●
●● ●●

●

●

●
●● ●●

●
●

●

●
●●●●●

●

●●

●
● ●
●

●●
●

●

●

●
●

●

●

● ●
●
●

●●

●

● ●●●
●●

●●

●

●●
●

●

●
●●●●●

●

● ●● ●●●●
● ●

●
● ●●

●

●●●

●

●
●●

●
● ●

●● ●●
●●

●
●●

●
●
●
●●
●

●●

●

●●
●

●
●●

●

●

●
● ●

●● ●●●

●

●
●

●

●

●●
●

●

●

●

●

● ● ●●
●

●●
●
●

●

●

●
●●●●

●
●●

●

●
●

●

●

●●
●

●
●

●●●
●●●

●

●

●

● ●
●

●●
●

●

●
●●
●

●

●
●●●

●
●

●
●

●

●●●
●

●
● ●●

●
●
●●●●●

●
●●●
●
●

●

●

●
●
●
●●

●

●

●
● ●● ●

●
● ●
● ●

●

●
●

●● ●● ● ●●● ●●

●

●
●

● ●
●

●

●
●

●

●●
● ●●

●

●

●

●

●

●●●●●● ●
●

●
●
●●

●

● ●

●
●● ●

●

● ●

●●
●

●● ●●

●

●
●

●
●

●
●

●

●

●

●●
●

●
● ●●

●

●
● ●●

●

●● ● ●
●●●

●●
● ●
●

● ●
●

●
●
●●

●

●

●

●
●

● ●●●●
●

●

●● ●

●

●
● ●
● ●● ●●
●

●●●
● ●

●

●

●
●

●

●
●

●
●●

●
●● ●

● ●
●

●

●

● ●●●●
●●

●
●

●
●
●● ●
●●

●
●

●
●

●
● ●

●
●●

●●
●
●
●
●●

●

●

●●●●●●
●●●●

●●
●

●
●

●
●

●
●●

●

●

●

●
●●

● ●●
●

●

●●
●●

●● ●●
●

●

●●
●

●

●
●

●●
●

●●
●●

●
●●

●
● ●●
●

●
●

●●

● ●

●

●
●

●

●

●

●

●
●

●●
●●●●●

●●

●
● ● ● ●●●
●
●

●
●

●●●
●●
●●

●● ●●

●
●

●●●
●●●
● ●●

●

● ●

●
●●●
●●
●

●

●

●
●

●●
● ●

●

● ●●●
●

●●
●● ●●

●●

●

●
●●●●●●

●
●
●

●●●
●

●●
●

●

●

●

●
●

●

●
●

●

●

●●

●●
●●

●

●

●
●

●

●

●

●●●

●
● ●

●
●●●●

●
●●
●●
●

●

●●

●

● ●●
●

●
●●

●
●

● ●●
●
● ●●

●●●
●

●
●
●

●

● ●
●●

●
●

●
●● ●

●●
●

●
●

● ●

●

● ●
●

●
●

●

●
●

●

●

●
●

●
●

●

●
●
●● ●

●
● ●

●●●●●

●

●

● ●●
●●

●

●

●

●
●

●●

●

●
●
●
● ●

●

●●

●

●
●
● ●
●

●
●●●●●

●●●● ●
●

●

● ●
●● ●
●

●

●
●

●

● ●

●

●
●

●
●

●
●●●

●
●

●●
●

●

●●
●

●

●

● ●
●

●●
●

●●
●●

●
●

●●●●●

●

●
●

●
●

●●●
● ●●

●

●
●

●
●
●

●
●

●
●

●

●
●

●

●

●
●

●

●
●

●

●
● ●

●
●●

●

●●

●●

●
● ●

●
●

●
●●

●

●

●
●●

●●
●

●●

●
●●
●●●

●
●●

●
●

●
● ●●

●

●

●

●
●

●
●

●
●

●● ●●

●

● ●●● ●●
●●

●

●●
●

●

●

●●●●
●
●

● ●●
●

●●●
● ●●
● ●

●

●

●●●

●

●
●●

●
● ●●● ●
●
● ●

●
●●

●●

●
●●
●

●●

●

●●●
●

●●
●●

●
●

●

●● ●●
●

●

●
●

●

●

●●
●

●

●

●

●

● ●
●●

●

●
●
●● ●

●

●
● ●
●
●

●
●●

●

● ●

●
●

●●
●

●

●

●
●

●
●●

●

●

●

● ●
●

● ●
●

●
●
●
●

●

●
●
●●● ●●

●

●
●
●
●
●
●●●

●
●●

●
●
●●
●
●
● ●

●●●
●
●

●

●

●
●
●
●●

●

●

●
●
●

●●
●

●
● ●● ●

●
●

●
●● ●● ● ●●
●

●

●

● ●● ●
●

●
●●

●

●●● ●●

●

●

●

●

●

●●●●●●
●

●

●
●
●●

●

●
●

●
●

●
●

●

●

●

●●
●

●● ●●
●
●

●

● ●
●

●
●
●

●

●●
● ●

●
●●

●

●
● ●
●

●

●
●

●

●● ● ●
●

●●
●●

● ●
●

●
●

●

●
●●●

●

●

●

●
●● ●

●
●●
●

●
● ● ●

●

●
● ●
●

●● ●●
●

●●
●
● ●

●

●

●
●

●

●
●

●
●

●●●● ●
● ●
●● ●

●● ●●●●

●
●

●
●

●
●
●● ●

●●
●

● ●●
●

● ●

●
●●●
●
●
●
● ●

●
●

●

●●●●●●●●●●●●
●
●

● ●
●

●
●●

●

●

●

●
●●●
●●
●

●
●●

●●
●●

●●●
●

●●
●

●

●
●

●●

●

●● ●●
●

●●

●
● ●●
●

●
●

●●
●

●

●

●
●

●

●

●

●●

●●
●

●
●

●
●●
●

●

●
● ● ● ●●●
●
●

●

●

●
●●●

●
●
●●●
●

●●
●●

●●●●
● ●●

●

● ●

●

●●●
●●
●

●

●
●

●
●●

● ●

●

● ●●●
●

●●
●

●

● ●●
●

●
●

●

●●●●●●
●
●

●
●●

●

●
●

● ●
●

●

●

●

●

●

●
●

●

●

●●
●●

●●

●

●

●
●

●

●

●

●●●

●
● ●●●

●●●
●

●●
●●
●

●

●●

●

● ●●

●
●

●●

●
● ●●

●

● ●●
●●●

●
●

●

●
●●
●●●

●
●

●●● ●●
●●

●●● ●

●

●
●●

●

●
●

●
●

●

●

●
●

●●●●
●
●● ●

●

●
●●●●●●

●

●

● ●● ●●
●

●

●

●
●●

●

●

●●
●

●
●

●
●●

●

●
●

●
●

●

● ●●●●● ●●●
●

●
●●

● ●
●● ●●

●

●

●

● ●

●

●●
●

●●
●●●

●
●●

●
●

●
●●● ●

●

●

●

●●
●● ●

●
● ●●
● ●

●

●
●●

●

●

●
● ●

●
●●●

● ●●

●

●
●●

●●
●

●

●
●●

●
●

●

●

●
●

●

●●
●

●
●

●
●●

●

●●

●●

●
●

●
●

●●
●●

●

●

●
●●

●
●

●

●

●
●

●● ●●●
●

●●
●

●
● ●●

●

●

●

●
●

●
●

●

●
●● ●●

●

●
●

●● ●
●

●●
●● ●

●

●
●●
●
●

●
● ●●●●●●

● ●
● ● ●●

●

●
●●

●

●
●● ●
● ●

●● ●●●
●
●

●●
●●
●
●●
●

●●

●

●●
●
●
●

●
●
●

●
●

●

●● ●●●

●

●●
●

●

●●●

●

●

● ●● ●
●●

●
●

●
●● ●

●

●
● ●●
●

●
●● ●

●●

●
●

●
●

●

● ●
●

●
●
●●

●

●

●

● ●
●

● ●
●

●
●
●

●

●

●

●●●● ●●
●

●
●
●
●

●
●

●

●

●●
●

●
●●
●
● ●

●
●●●
● ●

●

●
●

●
●
●●

●

●

● ●
● ●● ●

●
●

●● ●

●

● ●●
●

●● ● ●
●

●
● ●● ●● ●
●

●●

●

●●●
●

●

●

●

●

●
●
●●●●●●
●

●

●
●

●● ●
● ●

●●● ●
●
●

●

●● ●●● ●●
●

●

●

●

●

●

● ●●

●

●

●●●
●●

●●
●

● ●
●

●

●●●●
●

●
●

●
●

●
●● ●

●

●

●
●
●

● ●
●●
●

●
●

●
●●

●

●

●
●
●
● ●●
●●
●

●

●● ●
●

●
● ●
●

●● ●●
●

●

●

●
●

●
●

●

●
●

●
●

●●●
●●

●
●● ●●

●
● ●

●●
●●●●

●
●

●
●

●
●●● ●
●●

●
● ●● ●

●

●
●

●●
●●

●
●
●

●
● ●

●●●
●●●
●●

●
●

●
●

●●
●

●
●

●

●●

●

●

●

●
●●

● ●
● ●

●
●●

●
●

●
●

●●
●

● ●●●●

●

●
●

●●

●

●●
●

●
●

●●

●
● ●●
●

●
● ●●

●
●

●

●●

●

●

●
●

●
●
●

●

●
●
●●● ●

●

●

● ● ● ●
●

●●

●
●

●

●
●●●●

●
●●●
●

●
●

●
●
●●●

●
● ●

●

●
●●●●

●●●●

●

●
●

●● ●
●

●

● ●●●

●

●●
●

●

●

●●
●

●
●

●
●●

●●●
●

●

●
●●

●

●
●

●
●

●
●

●

●

●●● ●

●

●●
●●

●●

●

●

●
●

●

●

●

●
●●

●
●

●●●
●●●

●●
●
●●
●

●

●●

●

● ●
●

●

●
●●

●

● ●●

●

● ●● ●●
● ●

●
● ●●

●

●
●

● ●●●
●

●●●
●●● ●

●

●●

●●
●

●
●

●
●

●

●

●
●

●●●●
●●
● ●

●

●
●●●●●

●

●

●
●
●●

●

● ●

●

●

●
●●●

●

●
●

●

●

●●

●

●●

●
●●

● ●●●●●
●●●

●
●
●●

● ●
●● ●●

●

●

●

● ●

●

●●
●

●●●
●
●

●

●
●

●

●

●

●●● ●

●●
●

●●
●●

●

●
●

●
●●

●

●

●

●
●●

●

● ●
●

●

●●●
● ●●

●

●
●●
●●
●

●

●
●●

●

●●
●

●
●

●●●
●

●
●

●

●●
●

●

●●

●●

●
●

●
●

●●
●●

●

●●
●●

●

●
●

●●

●

●● ●●●
●

●●
●

●
●

●
●

●

●

●

●
●

●●

●

●
●● ●●

●

●

●
●
●

●
●

●●
●● ●

●

●
●●
●
●

●
●●● ●●●●

● ●●
●

●

●

●●●

●

●
●
●

●
● ●●●

●●● ●●
●●

●●
●
●●
●

●●

●

●●
●

●●●
●●

●

●

●

●
● ●●
●

●

●
●

●

●

●●
●

●●

●

●

● ●
●●

●
●●

●●

●

●

●

●
● ●●
●

●
●● ●

● ●

●

●●
●

●
●

●

●
●

●
●● ●

●

●

●
●● ●●●

●●
●

●
●

●●
●●

●●●
●●

●
●

●
●●

●
●●

●●●●
●
●

●
●

●
●●
●●

●●

●
●

●
●
●●

●

●

●
●●

●● ●

●
●

●● ●

●

● ●●
●

●●
● ●

●●

●

●

●●
●● ●

●
●●

●

●●● ●●

●

●
●

●
●
●●●●●●
●

●

●
●
●● ●
● ●

●
●●
●●

●

●

●● ●●● ●●
●
●

●

●

●

●

● ●●

●

●

●●
●

●
●●

●

● ●
●

●
●
●●●

●

●

●
● ●
●

●
●

●
●

●●
●

●

● ●
●
●
●

●

●

●

●●

●

●
●

●
●

●

●
●

●● ●●●

●
●

●

●●
●

●●●
●

●●
●
● ●

● ●
●
●●

●

●●●●● ●

● ●

●●
●●

●

●
● ●

●
●●
●●

●
●

●

●

● ●● ●
● ●

●●

●

●●
●●
● ● ●

●

●

● ●●●

●

●● ●
●●

●
● ●● ●●

●●●

●

●
●●●

●
●

●

●
● ●●

●

● ●●
●
●●●● ●● ●

●
●●●

●

● ●●● ●●
●

●
● ●
●●

●

●

●

●

●
●

●
●

●

●
●

●

●

●
●

●
●

●

●

●
● ●

●●●
●

●

●●
●

●
● ●● ● ●

●
● ● ●● ●●
●●●

●

●●

●

●

●

●
●● ●●

●
●
●

●
●

● ●
●

●
●

●
● ●
● ●

●
●

●
●

●

●
●●●● ● ●
●

●
●● ●●● ● ●● ●

●

●●●
● ●

●
● ●●

●

●
●

●●

●

●

●●●
●●
●●●●

●

●

●

●

●

●
●

●●

●
●

●

●
●

●
●●

●
●●

●

●
●

●

●

●
● ●● ●

●● ●●●
●

●
●

●
●● ●

●

●
●

●

●●

●
●

●

●
●

●

●
●●●
●

●

●

●
●
●●●●
●

●

●

●●●

●

● ●●

●

● ●●

●

●
●●

●

●
● ●●●
●

●●●●● ●●●

●
●

●
●

●

● ●●●● ●
●

●
●

●

●

●

●

● ●●●
●●

●
●●

● ●

●

●

●

●
● ●

●

●

●

●● ●
●

●

●

●

●
●

●
● ●●● ●●

●
●

●
●●

● ●

●

●●

●

●
● ●

●

●
●

●

●

●
● ●

●
●

●

●

●

● ●●
●

●●

●●

●
● ● ●●●

●● ●

●

●
●

●
●●

●
● ●

●

●
●●● ●●●
●

●●
●●

●

●
●

●

●

●
●

●
●

●

●●
●

●● ●●

●

●●

●

● ●
●

●
● ●

●
●

●
●

●
●

●

●● ●

●

●●●
●●
●●

●

●●● ●

●
●
●

●
●
●●●●●

●

●
● ●●●●●●●●

●
●

●

●●●
●●●

●

●
●

●
● ●●●

●●

●

●
●●●●

●
●

●

●

● ●
●
●

●●● ●

●

●
● ●●
●

●●●
●●●

●

●●

●

● ●

●

●●●●
● ●●

●
●

●●●●
●●

●

●●●● ●●●
●

●
●
●●

●
●● ●
●

●

●●●
●

● ●
●
●●

●●
●
●

●

●●
●
●●● ●

● ●●
●●
●

●

●

● ●
●

●
●●

●
● ● ●

●

●

●

●●
●

● ●● ●
●

●

● ●

●

●
● ●●

●●
●●
●

● ●
●

●●● ●●●
●

●

●
● ●●●

●

●● ●●● ●●●●
●

●

●

●

●
●

●
●

●

●
●

●

●

●
●

●

●
●●

●

●

●

●

●
●

●

●
●●●

●
● ●
●

●

●
●
●

●
●

●
● ●●

●●
●

●

●●●● ●

●

● ●●●
●

●
●

●●
●

●

● ●●●●

●

●

●

●●

●

●●
●

● ●
●

●●
●

●●●

●
●

●
●●

●

●●●

●

●●
● ● ●

●
●●

●●

●

●●●●
●

●

●

●
●

●●
●

●●
●
● ●●
●

●
●● ●
●●

●

●
●● ●●
●●●

●

●●
●●●● ●

●

●

● ●●●

●

●● ●
●●
●
●

●● ●●
●●●

●

●
●●●

●
●

●

●

● ●●
●

● ●●
●

●

●●● ●● ●●●●

●
●

●
●● ●● ●
●

● ●●
●●

●

●

●
●●

●
● ●

●

●●

●

●

●
●

●

●

●

● ●
●

●
●●

●

●●
●

●
● ●● ● ●● ● ●
●

●●●●●

●

●●

●

●

●

●●
● ●●

●
●
●

●
●

●
●

●

●●

●
● ●● ●

●
●

●
●

●

●
●●●● ● ●
●

●
●●

●●
● ● ●●

●

●

●●● ●
●

●
●

●●
●●●
●●

●●
●● ●● ●

●
●●
●

●

●

●
●

●
●

●●

●
●

●

●
●

●

●●
● ●●

●

● ●
● ●●

●
●● ●●● ●●●

●●●

●
●

● ●

●

●●
●

●●

●

●

●

●
●

●
●

●●
●

●

●

●

●
●

●●●●
●

●

●
●●

●

●
● ●●

●

● ●●

●

●●●
●
●
●

●
●

●
● ●●●●● ●●●

● ●

●
●

●

● ●●●
● ●

●

●

●

●

●

●

●

●
●

●●
●●

●
●●

● ●
●●

● ●●

●
●

●●● ●
●

●
●

●
●

●
●

●
●●●

●

●

●
● ●●●

●
●

●

●
●

●
●●●

●

●
●

●

●

●
●

●
●

●

●

●

●

● ●

●

●

●●

●
●

●
● ● ●

●●
●● ●

●●

●
●
●●

●
● ●

●

●

●
●
●

●● ●●● ●●
●

● ●●

● ●●
●

●

●

●●
●

●
●

●

●
●●

●

●
●

●

●
● ●

●
●

●
●

●

●
●

●● ●
●

●●●
●●
●●

●

●●● ●

●
●
●

●

●

●
●●●●

●
●● ●●●●●●

●●
●
● ●●●

●

●●●

●

●

● ●● ●●●
●●

●

●
●●

●
●

●
●

●

●

●
●

●●
●●
● ●

●

●● ●●●
●●● ●●●

●

●
●

●

● ●

●

●●●●
●

●

●
●
●

●●●●
●●

●

●●●● ●●●
●

●●●
●

●
●

●●

●

●●●

●

●

●●
●
●

●●
●
●

●

●
●

●
●

●
●

●
● ●

●

●● ●

●

●●
●

●

●
●●

●● ● ●

●

●

●

●●

●

● ●● ●
● ●● ●

●

●● ●
●

●●●●●
●

●
●●●● ●●● ● ●●● ●●●

●
●● ●●●●●●●

●

●

●
●

●
●

●
●

●

●●
●

●

●
●

●
●
●●

●

●

●

●
●●

●

●
●●

●
●

● ●
●

●

●●
●

●
●

●
●

●●

●● ●

●

●●●● ●

●

●

●● ●
●●●

●

●● ●● ●●
●

●

● ●●●●

●

●

●

●●

●

●●
●

● ●
●

●●● ●●●●●
●●

●

●●●

●
●●●

●

●

● ●
●
●●

●

●●●●●
●

●

●
●

●
●

●●
●● ●●●●
●● ●●●

●

● ●● ●●
●●

●

●

●●
●●● ●

●
●

●
● ●●●

●

●● ●
●●

●
●

●● ●●
●●●

●

●
●●●

●

●●

●

● ●●

●●
●● ●

●

●●● ●● ●●●●

●
●

●
●● ●● ●●●

●
●●●●

●
●

● ●●● ●

●

●

●●

●

●

●●
●

●

●

● ● ●●●●

●

●●
●

●
●●● ●

●● ● ●
●

●
●●●●

●

●●

●
●

●

●
●

● ●●
●

●
●

●
●

●
●

●

●

●
●●

●●
●●

●

●
●

●

●
●●●● ● ●
●

●
●● ●
●

● ● ●●
●

●
●●● ●

●

●
● ●●●

●
●●●
●●●●●●

●
●●●

●

●

●

●
●

● ●
●

●

●●

●

●
●

●
●●● ●●

●

● ●
●

●
●

● ●
● ●●●

●●●
●

●
●

●
●● ●

●

●●
●

●●

●

●

●

●
●

●

●
●●
●

●
●

●

●

●

●●●●
●

●

●
●

●
●

● ●● ● ●●

●

●
●●●

●●
●
●

●●
●

●
●●● ●●●

● ●

●
●

●

● ●●
●
●

●●

●

●
●

●

●

●

●
●

●
●●●

●
●●

● ●

●
●
● ●●

●
● ●●● ●●●

●

●
●

●●● ●●●

●

●

● ●

●

●
●
●

●

●
●
●

●

●●
●

●

●●
●

●

●

●
●

●
●

●

●

●

● ●
●

●

●●

●

●

●
● ● ●

●● ●● ●

●
●

●
●
●●

●● ●
●

●

●
●●●
● ●●
● ●●

●

●
●●

● ●●
●
●

●
●●

●

●
●●

●

●
●

●

●
●

●

●
● ●

●
●

●
●

●

●●
●● ●

●
●●●

●●
●●

●
●●● ●

●
●
●

●

●
●
●

●
●●● ●
● ●
●

●●●●
●● ●●

●
●●
●

●●●

●

●

●
●

● ●●●

●
●

●

●
●●

●
●

●
●

●

●
●

●
●

●●
●●
●

●●
●● ●●●
●● ●

●●

●

●

●

●

● ●

●
●●●●

●
●

●
●
●

●
●●●●●

●

●●●
●

●●
●●

●●● ●
●
● ●
●

●

●●●

●

● ●●
●
● ●●●●

●

●
●

●
●

●
● ●
● ●●

●● ●

●

●● ● ●

●

●

●

●
● ● ●

●
●

●

●●

●

● ●●
●

●

●● ●

●

●● ●
●

●●●●
●

●
●

●●●
●●●

●
●●

●

●●●

●
●● ●●●●●●

●

● ●●
●

●

●

●
● ●

●●
●

●

●●
●●●

●
●

●

●

● ●
●

●●●
●

●

● ●●

●

●●
●

●●
●

●
●●

● ●
●

●●●● ●

●

●

●● ●

●

● ● ●
●● ●

●●

●
●

●

●
●●

●●

●
●● ● ●●●●

●

●●

●

●
● ●

● ●●●●●
●●●●

●
●●

●

●●●

●

●●●
●

●

●

●●
●● ●

●●●●
●

●

●

● ●● ●●●
●● ●●●●
●
●

●●
●

●

● ●● ●
●

●
●

●
●

●●
●●● ● ●

●

●
● ●

●●

●

●●●
●●

●
● ●●

●
●

●
●●

●

● ●●●●
●●

●

● ●●

●● ●● ●

●

●●● ●● ●
●●●

●
●

●

● ●● ●●●

●
●
●●●

●

●

● ●
● ●

●●

●●

●

●

●
●

●
●

●

● ●
●

●●●

●

●
●
●

●
● ●●

●
●● ● ●

●
●●●●

●●●

●

●

●

●●
● ●●

●
●
●

●
●

● ● ●

●

●●
● ●●●●

●

● ●

●

●
●●●● ●
●

●
●● ●
●

●
● ●

● ●

●

●●● ●

●

●
● ●●●

●
●●●
●●●● ●
●

●

●●●
● ●●

●
●

● ●

●●
●●

●

●

● ●
●●● ●

●

●

●
●

●

●
●● ●
● ●

●
●

●
●● ●

●

●
●
●● ● ●

●
●
●

●●

●

●

●

●
●

●
●

●
●

●
● ●●
●

●

●●●
●

●
●
●

●●
●

● ●
●

●
●

●
●

●
●●

●
●● ●

●
●●

●
●
●●● ●
● ●

● ●

●

●

●

● ●●●●
●●

●

●●

●

●

●

● ●
●

●●●
●

●

●●
●

●
●

●
●●

●● ●●●
●●●

●
●
●

●●● ●●
●

●

●

●
● ●●●

● ●
●

●
●
●●●
●

●

●●
●

●

●
●

●

●
●

●
●

●

● ●
●

●

●●

●
●

●
● ● ●

●●
●● ●

●

●
●
●●

●● ●
●● ●●●●● ●●

● ●
●

●

● ●●●
● ●●

●
●●

●

●
●

●

●
●

●

●

●

●
●

●● ●
●

●
●●
●

●●●● ●
●

●●●
●● ●●

●
●
● ●

●
●
●

●

●●
●

●●
●● ●● ●

●
●●●●
●● ●

● ●●●● ●●●

●

●

● ●● ●●●
●

●

●
●●●●

●

●
●

●

●
●

●
●
●

●●● ●●
●● ●●

●
●● ●

●●

●

●

●

●

●
●

●●●●●
●

●

●●

●

●
●●●●● ●

●●●● ●●●● ●●
● ●
● ●
●

●

●●

●
●

●
●

●
●

●●
●●

●

●
●

●
●

●● ●
● ●●

●● ●

●
●

● ●

●

●
●●●●

● ●
●●

●

●

●

● ●●
●

●

●
●

●

●

●
●●
●

●
●

●●
●

● ●
●●●● ● ●●● ●●●

●
●● ●●●●●●

●

● ●● ●
●

●

●
● ●●●
●

●
● ●

●
●●

●

●●

●

●

●●
●●●

●

●

● ●●

●

●●
●

●●
●

●

●●

●
●

●

●●●
●

●

●

●● ●

●

● ● ●
●●

●

●●● ●●●

●
●

●●

●

●●

●

●
●
●

●
●
●●

●
●

●

●●
●

●●
●

●● ●
●

●
●● ●●
●●

●
●

●●

●

●

●
●

●

●

●
● ●

●●
●● ●

●
●●● ●●● ●●

●

●●●
● ●●●●
●

●
●

●

●

●

● ●● ●●
●

●●

●

●

●●
● ● ●

●
● ●●

●

●

●●●●
●

● ●●
●

●

●

●●
●

●
●

●●● ●
● ●

●

●

●
●●

●
● ●

●

●

●
● ●●

●

●
●

●
●

●

● ●● ●●
●

●

●●
●
●

●
●

●
● ●

●
●

●

●
●●
●

● ●
●

●

● ●
●

●

●

●

●

●
●

●
●

●
●

●

●

● ● ●●

●

●
●
●
●
●
● ●

●

●

●
●

● ●● ●●

●

● ●● ●
●

●

● ●●●
●

●
●●
● ● ●

●
●●●●
●
● ●●● ●●

●
●

●●

●

●●●

●

●
●

●
●

●
●
●
● ●● ●●

●
●

●
●

●
●

●
●●●

●

●

●●● ●●

● ●
●●

● ●
●

● ●●
●●

●

●●
●●●

●

● ●

●● ●
●● ●

●

●
● ●

●

●

●

●

●

●
●

●

● ●
●● ●●●●●
●
● ●

●
●● ●●

●●

●
●●

●

● ●●
●●

●
●
●●●

●● ●
●

●

●●●●●●

●

●

●

●● ●

●● ●●
●

●
●● ●

●

●
● ●

●●●

●

●
● ●●

●●
●●●

●
●●

●
●● ●

●
●

●

●
●●●●

●●● ●

●

●

●
●

●

●
●

●

●

●
●

●

●
●

●

●●
●● ● ●

●
● ●●●
●●●●

●
● ●●

●
●

● ●
●

●●●
●

●
●

● ●
●

●
●

●
●

●

●
●
●

●

●
●

●

●

●
●

●● ●

●

●

●
●

●●●● ●
●●●●

●

●
●

●

●
●●

●
●●

● ●
●

●

●
●
●●● ●● ●

●
●
●
●●●
●

●
●

●
●

● ●●●
●

●

●

●

● ●●●
●

●
● ●

●
●●

● ●

●

●
●

●●●

●

●
●
●
●

●

●

●
●

● ●

●

●●

●

●

●
●

● ●
●

●●●
●

●
●●●●●●

●● ●●●
●

●

●
●
●

●
●

●

●

●
●●
●

●●●
●●●

●●

●
●
●●●

●

●
●● ●●
●

●
●●

●

●

●●

●
●

●

●
●
●

●

●
●●

●● ●

●
●● ●

●

●
●
●

●
●●●●

●
●

●

●
●●

● ●
●●
●●●●

●●● ●●●●●● ●

●

●
●●●

●

●

● ●●●●
●

●

●

●●
●

●
●

●● ●●●
●

●●

●
●●●
●

●

●

● ●●

●

●●
●

●●●●

●

●
●●

●
●
●

●
●

● ●●● ●●
●

●
● ●●●●●
●

●●●
●

● ●● ●
●
●

●

●

●
●

●●
●●

● ●●●
●● ●

●●● ●●
●●●

●●
●

●
●●●

●
●

●

●●
●

●●
●

●●●

●

●
●● ●●●
●
●

●
●●

●

●

●
●

●
●

●
●

●●●
●

●

● ●●
●●● ●

●

● ●●

●

●
●● ●●●●
●●●

●

●

●

● ●
● ●
●

●●●

●

●

●●
● ● ●

●
● ●●●

●

●●●●
●

● ●●
●

●

●

●●

●

●

●

●●
●

●
● ●

●

●

●
●●

●
● ●

●

●

●
●

●●
●

●

●

●
●

●
●

●
● ●●

●
●●●

●

●
●
●

●

●

●
●●
●

●●

●

● ●
●

●

●

●

●

●
●

●

● ●●
●

●
● ● ●●

●●
●●
●
●
● ●

●

●

●●
● ●● ●
●

●

●
●● ● ●

●

● ●●● ●●●● ● ● ●
●
●●●● ●
●

●●● ●●

●●

●●

●

●●●

●

●
●●

●
●●
● ●●●●

●
●

●
● ●

●
●●●●

●

●
●
●

● ●●
● ●

●●
● ●

●

● ●●
●

●

●

●●
●●●

●

●
●

●
● ●
●● ●

●

●
●

●
●

●

●

●

●

●
●●

● ●

●●
●

●●●●
●
● ●

●●●
●● ●

●

●
●●

●

●●
●
● ●
●
●●

●
●● ●●

●

●●●●●
●

●

●

●

●
● ●

● ●●●

●
●● ●

●

●
●
●

●
●

●
●

●

●
● ●●

●●

●●

●

●●
●

●●
●

●
●

●
●

●●●●
●●● ●

●

●

●●

●

●

●

●

●

●
●

●
●
● ●

●
●
●● ●

●
●

● ●●●

●

●
●● ●●

●●
●

●

● ●
●

●

●●

●
●●●

●
●

●●

●

●

●

● ●
●

●
● ●
●

●

●
●

●●
●

●

●

●
●

●
●●● ● ●●●●

●
●

●

●

●
●●

●
●●

● ●
●

●

●
●
●●

● ●
● ●

●
●
●
●●●●

●
●

●●●●●● ●

●

●

●

● ●●● ●
●

● ●
●

●
●●

●
●

●
●

●●●

●

●
●
●
●

●

●

●●
● ●

●

●●

●

●

●

●

●

●

●●●●
● ●

●
●
●●●

●
●● ●●●
●

●

●
●
●

●
● ●

●

●
●●
●

●
●●

●
●

●

●●

●
●●●●

●

● ●
● ●●

●

●

●●

●

●
●●
●

●

●

●

●●

●

●
●●

●

●●

●
●

●
●

●

●●●
●●●●●

●
●

●
●●

● ●
●

●
●●●●

●●● ●●●●●● ●
●

●
●●● ●

●

● ●●●●
●

●
●

●●

●

●
● ●

● ●●
●

●
●

●
●●●●

●

●

●
● ●

●

●● ●●●●●

●

●
●

● ●●●

●

●●
●

●●● ●●●

●

●

●

●●●●
●
●
●

● ●●
●

● ●●●

●
●

●
●

●
●

●
●●

●●●
●
●

●●● ●●
●

●
●
● ●

●
●

●

●● ●●●●
●●

●
●

●

●
●●

●
● ●●

●●

●●

●

●●
●

●

●
●● ●●●● ●●
●

●

●

●●
●

●
●

●●●
●
●

●

● ●●
●●
●

●

●

●●●
●
●●

●●●●
●
●●

●

●

●

●
●

●
●●

●
●●

●

●

●●
● ●

●●●●
●
●●●●●

●

● ●●
●

●
●

●●
●

●

●

●●
●

●● ●

●

●

●

●●
●

● ●
●

●

●
● ●●

●

●

●

●
●

●
●

●
● ●●

●
●●●

●

●
●
● ●

●

●
●●
● ●●

●

●

●

●●
●

●

●

●
●

●

●
●●
●
●

● ● ●●
●●

●
●
●
●
●

●

●

●

●●●●●
●

●

●

●
●● ●

●

●

●
●●● ●●● ●

● ●

●

●●●● ●
●

●●●
●

●

●●

●●

●

●●●

●

●●● ●
●●
● ●●●● ●●

●
●

●
●

●●●
●
●

●

●

●
●

●
●

● ●
●● ●

●
● ●●

●●

●
●

●
●

●●

●

●
●

●●
●

●● ●

●
●

●
●

●

● ●

●

●

●

●
●

●
●● ●
●●●●

●
● ●

●
●●

●●
●

●

●

●●
●

●
●●●

●
●
●●

●

●
● ●●

●

●●●●●
●

●

●

●

●
● ●

●
●●

●
●

●●
●

●● ●
●●

● ●

●●
●●
●

●

●●

●

●●
●●●

●

●●
●

●
●

●●●
●●●

●

●

●

●
●

●

●

●
●

●

●
●

●

●

●

● ●
●●

●● ●

●

●● ●
●●

●

●
●● ●●

●
●

●
●

● ●
● ●

●● ●
●●

●
●

●●

●

●

● ●
●

●
● ●●

●

●●
●●

●

●

●

●
●

●
●●● ●●●
●●

●

●
●

●

●
●●

●
●●

●
●●

●

●
●
●●
● ●

●
●

●

●
●
●●●●

●●●
●
●●
●

●
● ●

●

●

● ●●●
●●

●
●●

●●
●

●

●

●

●

●●●
●
●

●

●

●
●

●
●

●
● ●

●

●●

●

●

●
●●

●

●●●●
● ●

●
●
●●●

●●
● ●

●
●●

●

●
●
●

●
● ●

●

●
●●
●

●
●●

●●

●●

●
●●●

●

●

● ●
● ●●

●●
● ●●
●
●
●

●

●

●

●●

●

●●
●

●●
●●

●●
●

●
●●●

●●●●●
●

●

●
●●

● ●
●

●
●

●
●

●
●●● ●●●●●● ● ●●

● ●● ●

●

● ●●●●
●

●

●

●●

●

●● ●
● ●●

●

●
●●

●●●

●

●

●

●

●
● ●
●
●
●●

●

●
●
●

●

●
●

●

●
●
● ●●● ●●●

●
●

●●●●●
●●
●

● ●●
●

● ●
●●

●
●

●
●

●●

●
●●

●

●●
●
●

●●● ●●
●

●
●

●
●

●
●

●

●●
●●●

●

●
●

●● ●
●
●

●
●●

●
●

●
●●

●
●

●

●
●●

●●
●●

●●

●

●●
●

●

●●● ●●●● ●●

●

●●

●●
●

●
●

●
●
●
●
●

●

● ●●
●●
●

●

●

●●●●
●●

●●●●●●●
●

●

●

●

●

● ●●

●

●●

●

●

●●
● ● ●●●●
●
●●●●●

●
● ●
●

●
●

●
●●●

●

●

●●
●

●
● ●

●

●

●

●●
●

● ● ●
●

●
●

●●

●●●

●
●

●
●

●● ●●
●

●●●

●

●●● ●

●
●

●●
● ●●

●

●
●

●
●

●

●

●

●
●

●

●
●●
●
●

● ● ●●
●●

●
●
●

●
●

●
●

●

●●●●
● ●
●

●

●
●● ●

●

●

●
●●●

●
●
● ●

● ●
●
●●●● ●
●

●
●●

●●

●●

●
●

●

● ●●●

●

●●
●

●
●
●

●
●
●

●
●●

●
●

●●

●●●
●
●

●

●

●

●
●

●
●

●●● ●
●

●●●
●

●
●

●●●
●

●
●●

●
●

●
● ●

●
●●

●

●

●

●●
●

●

●

●

●
●●

●
●●●●

●
● ●

●●
●

●●

●
●

●

●●● ●●●● ●●

●

●
●

●
●●●

●

●●●●
●

●●

●

●

●
●

●
●●●

●●●
●

●● ●
●

● ●

●●
●● ●

●

●●

●

●●
●

●●

●

●●
● ● ●●●●●
●●
●

●

●

●
●

●

●

●

●

●

●
●

●

●
● ●

●●
●● ●

●

●● ●
●●

●

●●●
●

●
●

●●

●
●● ●●● ●●● ●

●

●●

●
●

● ●

●

●
●●

●

●●
●●

●

●
●

●
●

●

●
●
●

● ●●
●

●

●

●
●

●

●

●●

●
●●
●

●●
●●●●● ●

●
●

●

●
●
●●●● ●

●
●
●
●●●

●
● ●

●

●

● ●●● ●●
●

●●
●

●● ●

●

●

●

●●●
●
●
●

●●
●

●●
●

● ●
●

●●

●

●

●
●
●

●
●●●●

● ●●
●
●●●●●

● ●
●
●● ●●●
●

●
● ●

●

●●●●
●●●

●●

●
●

●
●●

●
●

●

● ●● ●●

●
●● ●

●

●

●●

●
●

●
●●

●

●●
●

●●

●
●

●●
●

●

●●●
●●●

●
●

●
●

●●●
● ●

●

● ●●
●● ●●● ●●●●●● ● ●

● ●●
●

●

● ●●
●● ●

●

●

●●

●

●
● ●

● ●●

●

●

●●
●

●
●

●

●

●

●

●
●
●
●
●●

●

●
●

●

●
●

●

●
●●

●

●
●● ●
●●

●
●

●●●●
●

●
●

●
● ●
● ●●●

●

●

●
●

●●
●

●●
●

●●●●
●

● ●● ●
●●

●●

●
●

●

●● ●●●

●

●
●●

● ●
●
●

●
●●● ●

● ●
●

●

●●
●
●

●
●

●●
●

●

●
●

●
●

● ●
●●●

●

●●
● ●●●●●

●
●●

●
●● ●●●

●
●

●● ●●
●

●●
●

●

●

●
● ●●●●●

●
●●●● ●●●
●

●●
●●

●

● ●
● ●

●

●

●

●

●
●●● ● ●

●
●●●●●
●●●● ●●● ●●

●
●
●

●

●

●●
●

●● ●
●

●
●

●●●
●
●

● ●
● ●●●

●
● ●●

●

● ●●

●
●●●●

●

●●●
●

●

●●●
● ●●
●

●

●
●

●
●

●
●

●●
●●●● ●

●
●

●

●●
●●●
●

●

●

●

●●●● ●●

●

●
●● ● ●

●

●
●

● ●
●●

● ●● ●●● ●● ●
●
● ●● ●

●

●
●

●

●
●

●●
●● ●

●●●
● ●●●

●

●

●

● ●
●

●●
●●
●
●● ●● ●

●

●
●
●●● ●●● ●●●

●●

●

●
●●

●
●●

●● ●

●

●
●

●

●

●

●

●
●●

●
●●

●
●●●●

●

●
●

●●
●

●
●

●●●● ●●
●● ●●

●●

●
●

● ●
● ●
●
●●●

●

●

●

●

●

●

●●

●●

●
●●

●
●● ●●

●

●

●
● ●●●

●

●●●●
●●●

●

●
●

● ●
●
●
●●●

●

●

● ●

●

●

●

●

●●●
●

●
●●

●
●
●●

●●● ●
●

●
●

●
●

●
●

●
●

●●
● ●● ● ●●●

● ●

● ●
●

●
●

●

●

●

●
●●

●

●
●

● ●●●
●● ●●●● ●●

●
●

●

●●

●

●●
●

●
●

●●
●● ●●●

●
●

●
●●●●

● ●
●●
●
●●
●

●

●

●

●

● ●●● ●
● ●●

●

●
●

●

●

●

●●●
●

● ●●●●●●
●

●

●
●
●

●

●

●
●
●

●
●

●●●●
●

●
●
●●

●
●●● ●●

●

●
●●

●

●● ●
●
●
●●

●
●

●
●● ●●

●

●

●
●
●●●

●

●
●● ●

●
●●

●

●
●

●●● ●
●●

●

●

●
●●

●
●●

●

●
●

●●●● ●●●●●

● ●
●●● ● ●

●

●

●●●

●

●●
●

●●●●● ● ●

● ●● ●
●

●

●

●●●
●
●

●
●
●

●

●
●

●
● ●●

● ●
●●●●

●

●

●

●
●

●●●●
●●

●

●●
●

●●
●

●●
● ●

●
●
●

●
●● ●●

● ●●●●●● ●●
●

● ●
●
●

●

●

●
● ●●

●

●

●●●● ●● ●● ●●

●
●
● ●●

●

●
●

●●●●● ●

●

●
●●●

●
●

●

●

●
●●

●

●●●●●● ●●
●

●

●
●

●
●

●

●●
●

●
● ● ●

●

●●
●●

●
●

● ●

●● ●

●● ●
●●

●

●
● ●●

●
●●●●

●
●

●

● ●
●●●

●
●

●

●● ●
● ●●

●
●

●
●

●
●●

●

●●
●

●●
●

●●
●●●

●
●● ●
●
● ●

●
●● ●●
●
●●

●
●

●

●
● ●

●●● ●
●●●● ●●●●
●●

●●

●

● ●
●

●

●

●

●●

●
●

●● ● ●
●●

●●●
●

●●●● ●●●

● ●
● ●

●

●●
●

●● ●

●

●
●

●
●

●
●

●
●

●

● ●●●
●

● ●●

●

● ●●

●

●●●●

●

●● ●

●
●●●

● ●●
●

●

●●●
●

●
●

●●
●●●● ●

●
●

●

●●●●●
●

●
● ●●●●● ●● ●● ●● ●

●

●●
●

●
●●

●
●

● ●●● ●● ●
●● ●● ●

●

●
●

●

●
●

●● ●
● ●

●●●
● ●●●

●
● ●

● ●●
●●

●●●
●●

●● ●

●

● ●●●
●

●●●
●

●●
●●

●

●
●

●
●●●●

●

●

●

●

●

● ●
●

● ●●
●

●●
●
●●
●

●
●
●

●
●● ●

●
●

●●●● ●●
● ●●

●
●
●

●
● ●● ●●●●

●

●

●

●

●

●

●●
●●

●
●●

●
●●

●

●

●

●

● ●●●
●●●

●
● ●●●

●
●●

●
●●

●
●●
●
●

●

●

●●

●

●●
●●●
●

● ●●●
●
●● ●

●● ●
●● ●

●
●●

●
●

●

●●
●

●● ● ●●●
● ●

●
●

●

●

●

●

●

●

●

●
●

●● ●●●● ●
●●●●

●
●

●
●

●

●●

●

●●
●

●●
●●

●● ●●●
●

●
●

●●●●
●

●
●
●●●●
●

●

●
●

●

● ●●
● ●● ●●
●

●
●

●

●

●

●●●
●

● ●●●●●● ●
●

●
●●

●

●

● ●● ●
●●●●

●
●●

●●●
●●● ●
●

● ●●●

●
●● ●●

●
●

● ●

● ●●● ●●

●

●

●

●
●●

●
●

●
●●

●● ●● ●
●

●

●● ●
●●

●

●

●
●
●

●●
●

●

●
●

●●●● ●●●●●

● ●●
●● ●

●

●

●
●

●●

●

●●
●●●

●
●● ● ●

● ●● ● ●●

●

●●●
●
●

●
●●

●

●

●
●● ●● ●

●
●
●
●
●

●

●

●
●

●

●●●●●

●

●●
●

●●●
●● ●

●
●
●

●

●● ●●●
●●●●●

●
● ●● ●
●
●

●

●

●
● ●●

●

●

●●●● ●● ●● ●●
●●

● ●●
●

●
●

●●
●● ●

●

● ●●●
●

●●

●

●
●●

●

●●
●
●● ●

●
●

●

●
●

●●
●

●●● ●
●

● ●
●

●●
●●● ●
●

●
●
●

●

●● ●
●●

●

●
● ●●

●
●●●●

●●
●

● ●
●●

●
●
●

●
●● ●● ●●● ●

● ●
●

●●

●

●
●
●

●●●●
●

●●●
●

●●
●

●
● ●

●
●

● ●●

●
●●

●
●

●

●
●●●● ●

●●●● ●●
●●

●●
●

●

●

● ●
● ●

●

●

●
●

●
●●● ● ●

●●●●●●●●●●
●●●

●
●

●
●●●● ●

● ●
●

● ●
●●● ●

●

●
●

● ●● ●
●

● ●●

●

● ●●

●

●●●●

●

●● ●

●●
●●

● ●●
●

●

●●
●

●● ●
●● ●

●●● ●
●

●

●

●●
●●●●
●

●
●●

●

●
●

●● ●
● ●● ●

●

●●●●
●

●● ● ●● ●●● ●●
●

●● ●● ●

●

●● ●
●

●
●●

●

● ●
●●●
●

●
●●

●
● ●

● ●● ●●●
●●●●

●● ●

●

● ●●●●
●

●●
●

●●
●●

●●
●

●
●●●● ●

●

●

●

●
●

●
●

● ●●

●
●●
●
●●

●
●

●
●

●
●● ●

●●
●

●●● ●
●

● ●●

●●

●
●

● ●
●

●●●●●

●

●

●

●

●

●●
●●●

●●●
●

●

●

●

●

●

●

●
●●●

●●
●● ●●●

●

●●
● ●

●●
●●

●

●

●

●
●

●
●●

●
●
●●

●

●●●●● ●
●

● ●●●
●

●
●● ●

●

●

●●
●

●● ●
●

●●
● ●

●
●●
●

●

●

●

●

●
●●

●● ●●●●●●●●●
●

●
●

●

●

●●

●

●●
● ●
●

●●
●● ●

●●●●
●

●●
●● ●

●
●●●●●
●

●

●

●

●

● ●●● ●● ●● ●●

●●

●
●●●

●
●
● ●●●
●

●● ●
●

●
●● ●

●

● ●● ●
●●●● ●

●●
●●● ●●● ●●

● ●●●

●
●● ●●

●
●

● ●
● ●●

● ●●

●

●

●

●
●●

●
●

● ●●
●

● ●
● ●●

●

●●●●●

●

●

●
●
●

●●● ●
●

●
●● ●● ●

●
●●●

●
●

●●● ●
●

●

●
●●

●

●
●●

●●●
●
●
● ● ●

●●
●

●
●

●

●●●
●
●

●

●●

●

●

●

●● ●● ●
●

●
●
●
●

●

●

●●

●

●●●●●

●

●●
●

●●
●

●●

●●

●
●

●

●● ●
● ●
●●●●● ●
● ●● ●

●

●

●

●
● ●●

●

●
●●●

●● ●● ●●
●●

● ●●

●

●
●

●●
●● ●

●
● ●●●

●
●●

●

●
●●

●

●●
●
●● ●

●
●

●
●

●

●● ● ●
●

● ●

●
● ●

●
●●
●

●
● ●

● ●
●
●
●

●● ●●

●

●
● ●●

●

●●●●
●

●
● ●

●●
●●

●
●

●
● ●●

●
●●

●

●
●●●

●

●

●
●
●

●●●●
●

●●●
●

●●
●

●● ●
●

●● ●●●●

●

●

●●●●
●

●●●● ●●
●●

●●
●●

●

● ●
● ●

●

●

●
●

●
●●● ●

●
●●●●●●●●●●

●
●●

● ●
●

●
●
●

● ●●
●

●
● ●

●
●

●
●

●
●●

●

●●●
● ●●

●

●
●●

●

●●●●

●

●● ●

●

●
●●

●
●●●

●

●●
●

●
● ●

●● ●
●●● ●

●
●

●

●
●
●●●●
●

●

●

●

●
●

●
●

●● ●
●

●● ●

●

●

●

●●
●

●
● ●

●

● ●●
●

●●
●

●

●

●● ●

●

●●

●

●
●

●●
●

● ●
●●● ●●●

●●
●

● ●●

●

●●●●●●
●● ●

●
●

●
●●

●
●●●
●

●●
●

●
●●

●
●●●●● ● ●

●

●
●

●
●

●

● ●●
●

●
●

●
●●

●
●

●
● ●

●● ●
●●

●
●●

●
●
●

● ●●
●●● ●

●
●

●
●●●●●

●

●

●

● ●
●

●
●●

●●●
●

●

●
●

●

●

●

●
●

●
● ●

●●●
●●●

●
●● ● ●●

●
●●

●

●

●

●

● ●●
●
●●
●●

●

●●●●● ●
●

● ●●
●
●

●
●●

●
●

●

●

●

●
●● ●

●
●
● ●

●

●
●●
● ●

●

●

●

●

●
●

●
●

●●
●●●●●●●

●
● ●

●

●
●●

●

●●
●

●●●
●● ●

●
●
●

●
●

●●●● ●●●●●●
●

●

●
●

●

● ●
● ●● ●● ●●

●●
● ●

●
●

●
●
● ●●●
●●●●

● ●●●

●

● ●●
●

●●●●
●

●●
●●● ●●● ●●

●
●●● ●

●
●

●●●
● ●

● ●●
● ●●

●

●

●
●
●●

●
●

● ●●
●

● ●
●

●
●●

●●●●●
●

●
●

●
●●

●●
● ● ●

●
●●●●

●●●●
●

●

●●● ●
●

●
● ●

●
●

●●
●●●●●●
● ●

●●

●

●
●

●

●●●●●

●

●●

●

●

●

●● ●●

●

●
●●
●
●

●

●

●●

●

●●●●●

●

●●
●

●●
● ●●

●

●

●

●

●
●● ●

●
●

●●●● ●
● ●● ●

●
●●●

● ●●

●

●
●●●

●
● ●●

●●● ● ●●

●

●
●

●●●●
●

●
●

●
●● ●
●●

●

●

●
●

●

●●
●
●● ● ●
●

●

●

●

●● ● ●
●

●
●

● ● ●
●

●●
●

●
●

● ●
●
●
●

●
● ●
●

●●
● ●●

●
●●●●

●

●
●

●●●
●● ●

●
● ●●

●

●● ●

●

●●●
●

● ●●
●
●
●

●
● ●●●

●
●

●●
●●

● ●
●

●●●
●

●●●● ●●
●●

●

●

●
●

● ●
● ●

●
●

●●
● ● ● ●
●
●
●
●
●●

●●●
●

●●
●

●

● ●●●●
●

●

●

●
●

●

●●● ●
●

●

●● ● ●

●

●
●● ●●●●●

●

●
●
●●

●
●

● ●
●●

●

●
●

●
●
● ●

●● ●●●● ●●●
●

●
●●
●
●
●

●
●●
●
●
●●

●

●

●

●
●

●

●

●

●
● ●
●
● ●

●

●●
● ●
●

●
●

●
●●

● ●

● ●
●

●

●●
●●

●
●
●● ●●●

●

●
●

● ●●
●

●●●●●

●
● ●

●
●

●

●
●● ●●● ●

●
●

●
● ●●

●

●

●●
●

●

●
●

●

●

●●
●

●

●

●●
●●●

●
● ● ●●●

●●
●

●
●

●

●
●

● ●

●

●●
●

●

●
●

●●●●●
●

● ●

●
●●
●

●●
●

●●
●●

●
●●

●●

●

●●●
●●

●

●●
● ●●●●

●
●

●

●

●
●

●
●●
●● ●●

●●●● ●
●

●●●
●●●● ●

●
●● ●

●
●

●●
●

●

●
●
●

●

●

●

●●
●

●● ●
●●

●
●●●●
●
● ●● ●
●

●
●●● ●●●
●●
●●
●

●
●

●

●

●●
●
●

●●
●●

●
●

●

●

●
● ●● ●●

●
● ●● ●

●

●

●

●●
●●●
●●●

● ●●
●●

●●
●
● ●
●

●●●
●

●●●●● ●●●●
●

●
●●

●●● ●●
●

●
● ●●

●
●

●

●

●
●● ●

●

● ●●
●

● ●●
●●

●●●
●●

●
●

●
●

●●● ●●● ●

●

●●

●

● ●
●

●
●

●

●●● ●

●

●● ●●
●●

●●
●
●
●● ● ●

●●
●

●

●
●●

●●
●
● ●
●

●●
● ●

●
●● ●●●●● ●

●

●●

●●●●●●

●

●
●

●●
●

●
● ●

●

●
● ●

●
●● ●●●

●●●●
●

●
●

●

●

●

●● ●
●

●

●
●●

●●●●● ● ●●
●

●
●●●●

●

●
●●●

●●●

● ●
●

●

●
●●●
●

●
●

●
●

●●
●

●
●● ●

● ● ● ●●●●

●
●●
●

●
●

●● ●●
● ●
●

●
●●●

●

●
●

●●●●●
●

● ●
●

●

●●
● ●

●
●●

●
●

●
●

●
●●

●
● ●
●
●

● ●
●●

●●
● ●

●
●●●

●
●●●● ●●

●●

●

●

● ●● ●● ●●
●●

● ● ●

●
●
●
●
●

●
●
●●
●

●●
●

●

● ●●●● ●
● ●

●

●

●

●●
●

●
●

●

●
● ● ●

●

●
●● ●●●●

●

●
●
●●

●
● ● ●●●

●

●● ●
●
●●

●● ●●
●

● ●●●

●

●
●●
●●

●

●●
●
●
●●

●

●

●

● ●

●

●

●
●●

●
●
● ●

●

●●● ●●
●

●
● ●●

●
●

●

●

●

●

●●
●● ●

●
●● ●●●●

●

●
● ●●

●
●
●
●
●

●● ● ●
●

●

●

●●
●

●● ●
●

●
●● ●
●

●
●●

●
●

●

●

●

●
●

●
● ●

●

●

●●

●●
●

●

●

●
●●●

●●
●

●
●

●
●

●
● ●

●

●●●
●

●
●●

●●●●● ●
● ●

●
●●
●

●
●

●
●●

●●

●
●●

●●

●

●●● ●●
●

●●● ●
●●●

●
● ●

●

●
●

●● ●●
●

●
●●●●

●●●●●
●●●● ●

● ●
● ●

●
●

●
●
●

●
●

●
●

●

●

●

●

●
● ●●

●

●●
●●●●●●

● ●
●

●

●

●

●●● ●●●
●●
●●
●

●●

●

●●
●
●

●●
●●●

● ●

●

●●
●

● ●● ●●
● ●

●

●

●

●●
●
●
●

●●●● ●
●●●

●

●
●
● ●●

●
●●

●

●●●●● ●●
● ● ●

●●● ●●● ●●
● ●● ●●

●
●

●
●

●
●● ●

●

● ●●

●
●

●● ●
●

●●●
●●

●
●

●
●

●●● ●
●

● ●

●

●●

●

● ●
●

●
●

●

●●● ●

●

●
● ●●

●●
●●●

●
● ● ●

●●●

●

●
●●

●●
●
● ●

●
●●
●

●

●

●
● ●●●●●

●
●

●●
●●●
●

●●

●

●
●

●●●
●

● ●
●●

● ●
●

●● ●

●

●

●●●●
●

●
●

●

●

●

●● ●●

●

●
●● ●●●●● ● ●●

●

●
●●● ●

●

●
● ●●

●
●●

●
●

●

●
●●●
●

●●
●●

●●
● ●

●● ●
● ● ● ●
●●●

●
●●
●

●
●

●
●

●●
● ●● ●●●●

●

●
●

●●● ●●

●

● ●
●

●

●●● ● ●●●

●
●

● ●
●
●
●

●
● ●●● ● ●

●●
●●

● ●●
●●●

●
●●●● ●●

●●

●●

●

●

● ●●
●●

●●
● ● ●

●●
●
●

●●
●
●●
●

●
●

●

● ● ●●●
●●

●
●

●
●

●●
●

●
●

●

● ● ●

●

● ●● ●●●● ●
●

●

●
●

●
●

● ●●●
●

●
●

●
●
●●

●● ●
●
●

● ●●●

●

●
●
●
● ● ●
●●
● ●

●●

●

●
●

●
●

●

●

●

●●
●

●
●

● ●

●●● ●●
●

●
● ●●

●

●● ●
● ●

●
●● ●

●
●●●●●●
●

●
● ●

●

●

●●●●
●●

● ●●
●

●

●●
●

●● ●
●● ●●

●

●● ●●●

●

● ●

●

●
●

●

●
●

●

●

●●
●●

●

●
●

●
●●● ●●

●

●
●

●
● ●● ●

●

●
●●

●● ●●

●●●●● ●
●

●
●

●●
●●●

●
●● ●● ●

●

●●
●●

●

●
●●
●

●
●

●
●

● ●●●●

●
● ●

●

●
●

●● ●●
●

●

●●●●
●
●

●●● ●●●●
●

● ●● ●
●

●
●

●
●

●
●

●
●

●
●

●

●

●● ●●
●

●● ●●●●●●
●

●●
●

●

●

●●● ●●●
●●
●●
●

●●
●

●●
●
●

●●●●●
● ●

●

●●
●

● ●● ●●
●

●
●

●

●

●●
●
●
●

●●●● ● ●●●
●

●

●

● ●●
●
●●

●

●●●●● ●●● ●
●

●●● ●●●
●●

●
●● ●●

● ● ●
●

●
●● ●

●

●
●●

●
● ●● ●

●

●●●
●●

●●●
●

●●● ●

●

● ● ●●●

●

● ●
●

●
●

●

●●● ●

●

●
● ●●

●● ●●●●● ● ●
●●

●

●

●
●●

●
●●
●

●

●
●

●

●
●
●

●
● ●●●●●

●
●

●●
●
●●
●

●●

●

●●
●●●

●

●
●

●●
●

●
●

●●
●●

●

●●●●●
●

●

●

●
●

●● ●●

●
●
●● ●●●●● ●

●●
●

●
●●●
●

●

●
●●●

●
●●

●
●●●●●● ●●

●● ●
●

●
●

●
●

●
● ●

● ●
●
●●

●
●

● ●

●
● ●
●

●●
●
●●

●
●●

●

●

●●
●●● ●●

●

● ●●

●

●
●● ● ●

●
●
●
●

● ●
●
●●

●
● ●
●●

● ●
●●

●●
●

●
●●

●●●
●

●
●●● ●●

●●

●●

●

●●
●●

●●
●

● ● ●
●

●
●

●

●
●●● ●●

●

●

● ● ●●● ●● ●

●

●
●

●●
● ●

● ●
● ● ●

●

● ●
● ●●●● ●●

●

●

●
●●

●
●●●

● ●
●●

●●
●●

●● ●
●

●
● ●●●

●

●

●
●●●

●
●●●●
●●

●

●
●

● ●

●

●
●●●

●
●
●

●

●●●● ●
●

●
● ●

●●

●

●●

●

● ●

●
●● ●

●●
● ●●●

●
●

●● ●
●

●●
●
●
●

●●
● ●●

●

●

●●
●●● ●●● ●

●
●

●
● ●●●

●

●
●

●

●
●

●

●

●

●

●
●●

●●
●

●
●

● ●●● ●●●

●
● ●● ●
●

●
●

●●●
●● ●●

●●●●●
●

●

●●
●●
●●●

●
●●

●
●

●

●

●
●

●●

●

●●●
●

●
●

●●●
●●●

●

●

●
●

●
●

●
●●

●

●
●
●● ●

●
●●

●
●

●●● ● ●
●● ●●

●
●●● ●

●●

●

●
●

●

●

●● ●●
●

●
● ●●●●
●● ●● ●

●

●

●●● ●●●

●●
●●●

●●
●

●
●
●● ●●●●
●

●

●

●●
●

●
●● ●●

●

●●

●

●

●●
●
●
● ●●●● ●●●●

●

●

●
● ●●

●
●●

●

●●●●● ●●●●
● ●●●●●

●
●

● ●
● ●●

● ●
●●
●● ●

●

●
●●

●
● ●● ●

●
●
●

●●
●●●

●

●●● ●
●

● ● ●
●●●
●
●

●
●

●
●●● ●

●

●
● ●● ●● ●

●
●
●
● ●

●
●●

●
●

● ●●

●
●
●
●

●

●
●

●

●

●●

●
● ●●
●●●

●

●

●●●
●●
●●●

●

●
●

●●●
●

● ●●●
●

● ●
●●
●

●

●

●●●●●
●

●

●

● ●
●●

●
●

●

●
●● ●●●●
● ●

●●
●

●
●●●
●

●

●

●
●●

●
●●

●
●●

●
●●

●
● ●

●
●●

● ●

●
● ●
●

●

●
●●●

●●● ●

●
● ●
●

●●
●●● ●●●
● ●●●

●●● ●●

●

●

0 2 4 6 8 10

−6
−4

−2
0

2
4

Plot of the train residuals

Predicted values

R
es

id
ua

ls

●●
●
●

●
●●
●

●

●●
●

●

●●
●

●●
●
●

●
●

●●● ●●●
●
●

●
●

●

●●●
●

●●●
●

●
●

●
●
●● ●●
●●●● ●

●

● ●● ●●●●● ●●●●
●
● ●●
●

●

● ●● ●
● ●●
●

●

●●
●●● ● ●

●

●

● ●
●

●

●

●●●
●●

●
● ●● ●●

●
●●

●

● ●●●●

●
●

●
● ●

●
●● ●● ●

●

●●●
●● ●

●●●
●●

●

● ●● ●●●

●
●
●

●

●
●

●

●
●

●
●

●
●

●●

●

●
●

●
●

●

● ● ●●
●●

●

●●
●

●
● ●● ●

●
● ● ●
●

●●
●●●●●

●●

●

●
●

● ●●
●

●●
● ●●

● ●

●

●●●
●●●●

●

●
●

●

●
●●●● ●
●

●
●● ●
●

●
●

●●●

●

●●●

●

●

●●
●●●

●
●●●●
●●● ●

●

●

●●●
●

●
●
●
●●

●

●●●●
●

●
● ●

●●● ●
●

●

●
●

●

●
●●

●● ●
●

●
●

●
● ●

●

●●●
● ● ●●● ●

●

●

●

●

●
●

●
●
●
●● ●●

● ●
●●●●

●
●

● ●●

●
● ●● ● ●●

●

●
●●

●

● ●●
●●

●
●
●
●●

●●●

● ●
●

●

●

● ●●●●
●●

●
●

● ●
●

● ●
●
●●

●

●

●● ●

●●
● ●

●
●

●
●●●

●
●●

●
●
●

●

●

● ●●
●

●

●

●
●

●
●

●
● ● ●●
●●●
●●

●
●

● ●●

●
●

●

●
●

●

●
● ●●

●

●●
●

●
●
● ● ●

●●

●
● ●

●

●
●
●●

●
● ●●● ●●●●● ●●

● ●●
●

● ●
●●

●
● ●
●●

●

●
●

●
●●

●

●

●

●
●

●● ●
●

●●●
●

●●
●● ●

●
●●● ●● ●●

●
●
●

●
●
●

●

●
●●●●
●●

●● ●
●

●●●●
●
● ●●●●
●
●●● ●

●

●

●
● ●●●

●

●

●
●●●●

●

●
●

●

●
●

●
●
●

●
●●

●●●
● ●●
●

●● ●●●

●

●

●

●

● ●
●●●●●

●
●

●
●●●●●●●● ●●●

●● ●●●
●
●● ●● ●
●

●

●●
●● ●●
●
● ●

●●●

●

●
●

●
●

●● ●
● ●
●

●● ●

● ●

●
●

●

●
●

●●●
● ●

●●

●

●

●

●
●● ●

●

●
●

●

●

●
●●
●

●●●●●
● ●

●●●● ● ●●●
●●●

●
●●

●●●●●●
●
●

●

●
●

●●

●

●

●
●●●

●
●

●
●

●
●●

●●●

●

●

●
● ●●●

●

●

●
●●

●

●●

●

●
●

●
●

●
●

● ●
●

●●●
●

●

●
●●●

●

● ●
● ●

●
●

●●●

●
●

●

●
●●

●
●

●●
●
●

●

●●

●

●●
●

●●
●●

●●●●● ●
●●

●
●

●●
●

●●●
●

●
●●

●
●

●

●
●

●

●
●●

●●●
●

●
●
● ●● ●●●
●
● ●●●●
●
●●●

●

● ●● ●
● ●●
●
●

●
●●●

●
●

●

●
● ●●

●
●

●●●
●●

●
●● ●

●
●

●●

●

● ●●●●
●

●
●
●

●
●●● ●● ● ●●●●●

●● ●
●●●

●

●
●

●

● ●●●

●

●
●

●

●

●

●

●
●

●
●

●

●

●●
●

● ●●

●

● ●
●

●
●●

●

●●
●

●● ●● ●

●
● ● ●●

●●
●●●●● ●●

●

●
●

● ●●
●

●●
● ●●

● ●

●

●●
● ●●●

●●

●
●

●

●
●●●● ●
●

●●● ●●
●

●
●●

●

●●●

●

●

●●
●●●

●
●●●

●

●●●●●
●
●●

●
●

●
●

●
●● ●

●
●●

●
●

●
● ●

●●● ●
●●

●

●

●●● ●●
●

●
●

●●
● ●

●

●●●● ●

●

●● ●●

● ●

●

●
●

●
●
●

●● ●
●

● ●●●●●

●
● ● ●●

●
●

●● ●●

●

●
●●

●
●

●●●● ●●
●
●●

●●
●

●

● ●●

●

● ●●●●
●

●

●

●● ●
●

● ●●●
●

●

●●
●

●

●
● ●

●●● ●●
●

●
●●

●
●●

●

●

● ●●
● ●

●
●

● ●
●

● ● ●●
●●●
●●
● ●

● ●
●

●

●

●

●
●

●

●
● ●
●

●

●● ●●
●

●
●

●
●

●

●
●

●

●●
●●

●
●

●
●● ●● ●●● ●●

● ●●

●

● ●
●●

●
● ●●●

●

●
●

●
●

●

●

●●
●●

●●
●●●

● ●
●

●● ●
●●●● ●● ●●

●
●●

●
●
●

●

●
●
●●●●● ●●

●

●
●●●●
●
● ●●●●● ●●● ●

●

●

●
● ●

●●
●

●

●●●●●

●

●

●

●

●
●

●

●
●

●
●●

●●●● ●●
●

●● ●●●

●

●

●

●

●

●

●
●●●●

●
●

●●●
●●●●●● ●●●●● ●●
●●●

●
●●

●

●

●●
●●

●●
●●

●●●
●

●

●
●

●
●

●●
●

● ●●
●● ●

●
●

●
●

●

● ●
●●● ● ●●●

●

●
●

● ●● ●

●

●● ●
●

●
●
●

●
●●●●
● ●●

●
●● ● ●●

● ●●●
●

●
●● ●●●●●●

●
● ●

● ●
●●

●

●

●
●

●●●
●

●
●

●
●● ●●●
●

●● ●●●●

●

●
●● ●

●●
●

●●
●●

●
●

● ●
●

●●● ●

●

●
●●
●

●

● ●
● ●

●
●

●●
●●

●

●●

●
● ●
●
●

●

● ●●
●
● ●●●

●

●● ●
●●
●●

●●●●● ●●●●●
●●●

●●●
●

●●●
●

●
●
●
●

●

●
●
●

●●●● ●
●●

●●
●

●●●
● ●●●
●●

●●
●

●

●

●
●●
●

● ●●
●
●

●
●●
●

●
●

●
●●●●

●
●●●
●●

●
●

●
●

●
●●●

●

● ●●●●
●

● ●●
●

●
●● ●●

●
●●●

●
●

●● ●
●●● ●

●

●

●

●
●●●

●

●
●

●
●

●

●

●
●

●
● ●

●

●●●
●

●●

●

● ● ●

●

●●●

●

●
●
●

●
●
●●
●

●
● ● ●●

●●
●●●●● ●

●

●

●●
●

●●
●

●

●

● ●●
● ●

●

●
●
● ●●●

●●
●

●

●

●
●●●● ●
● ●●● ●

●
●

●
●●
●●
●

●

●

●●
●●

●●
●●

●

●●
●●

●

●●

●
●

●●
●●●
●

●
●●

●
●

●
●

●
●●● ●

●●
●
●

●●● ●
● ●

●
●

●
●● ●

●

● ●●● ●

●

●
● ●●

●

●

●
●

●●
●
●

●
●

●
●● ●●●
●●

●● ● ●●

●

●
●● ●●

●

●●●

●
●

●●
●●

●
●
●

●●
●●

●●

●
●●●●●●● ●

●

●

●●
●●

● ●
●
●

●

●
●●

●

●

●
● ●

●●
● ●●● ●

●●

●

●●
●

●

● ●
●

● ●
●
●

●
●●

● ● ●●
●●●
●
●

●●
●

●
●

●

●
●

●

●
●

●●

●

●●
●

●
●

● ●
●

●●

●
●

●

●●
●●

●

● ●●
● ●

●
●●● ●●

●
●

●
●

● ●●●
●

●
●●●

●

●
●

●
●

●

●

●
●

●● ●

●

●● ●
●

●
●
●● ●●●●● ●● ●
●

●
●●

●
●
●

●
●
●●●●●● ●
●

●

●
●
●●●●● ●

●●●● ●●
●

●

●

●

●
● ●●●

●

●

●

●● ●●
●

●

●

●

●

●
●

●

●
●

●
●●

●●
●● ●●

●
●●

●

●●

●

●

●●●

●

●

●●●●
●

●

●●●●●●●●● ●●
●● ●●
●

●
●

●●
●

●

●●
●
●

●●
●●

●●
●
●

●

●
●

●
●●●

●

● ●● ●● ●
●

●
●

●
●●

●
●
● ●

●●
●

●

●
●

●
●● ●
●

●● ●

●

●
●
●

●●●●
●

●
●●

●
●●

● ●●● ●●●
●

●

●● ●●●●●● ● ●● ●
●●

●

●

●
●

●●●
●

●
●

●
●●

●

●
●

●
●● ●●●●
●

●
●● ●●●

● ●
● ●●

●
●

●
●●

●
●●

●
●

●
●●● ●●

●

●

●
●

●
●●

●●
●

●●
●

●

●

●●●●●●●●
●

●

●

●
●
●

●

●
●●

●
● ●●●

●

●● ●
●● ● ●

●
●● ●●
●●

●
●

●
●

●

●

●
●

●●
●● ●●

●●

●

● ●●
●●● ●●● ●●

●

●
●
●

● ●●●
●●

●●
●

●

●

● ●● ●
● ●●●
●

●
●●

● ● ●
●

●●
●
●

●
●●●●●●

●
● ●●

●●●

●

● ●
●●● ●

● ●●
●

●
●● ●

●
●

●●●
●
●

●
●

●
●●●

●

●
●

●

● ●●●

●

●●
●
●

●

●

●
● ●

●
● ●

●

●●
●

●
●●

●

●
●

●

●

●
●

●

●

●
● ●●

●● ●
●

● ● ●●

●●
●●●●● ●●

●

●●
●

●●
●

●

●

● ●●
● ●

●

●
●

●
● ●●●

●
●

● ●

●

●
●●●● ●
●

●●● ●●

●
●

●●

●

●●●

●

●

●
● ●●
●

●
●●
●

●
●

●
●

●

●●
●●

●
●
●●●

●
●

●●
● ●●

●
●

●
●● ●●● ●

●
●●● ●● ●

●
●

●
● ●●

●
●●● ●

●

●● ●
●

●
●

●

●

●●●
●● ●
●● ●●●●●
●● ●

●●

●

●
●

●
●●

●
●●

●
●

●●
●●

●
●
●

●●
●●

●●

●

●
●●●●●●

●

●

●

●
●

●

●
●● ●●

●

●
●●●

●

●

●
● ●

●●●

●
●● ●

●●
●

●●
●

●

●
●

●● ●●●
●

●

●
● ● ●●
●●●
●
●

●●

●

●
●

●

●
●

●

● ●●

●

●●
●

●
●
●● ● ●

●●
●
●

●

●●
●●

●

● ●●
● ●

● ●● ●●
● ●● ●

● ●
●●

●

●

●●
●

●
●

●
●

●

●

●

●
●

●● ●

●
●

●●
●

●●
●● ●●●●● ●●

●

●

●
●●

● ●●
● ●

●

●

●
●●
●● ●

●
●

●
●
●●●●
● ●

●●●● ●●
●

●

●

●

●

●
●●●

●

●

●

●●
●●

● ●

●

●

●

●
●●

●

●
●

●
●

● ●●
●

● ●
●

●●

●

●
●
●

●

●

●●●●●
●

●●●●●●●● ●●
●●

●

●●● ●●
●

●

●●
●

●
●●●●

●●
●●

●

●
●

●●●●
●●

●●
●● ●

● ●

●
●
●●

●
●● ● ●●
●

●
●

●
● ●● ●

●
●

● ●

●

●●●
●●●●●● ●

●
●

●
●●

● ●●
●

●●●●

●

●● ●●●●●● ● ●● ●●
●

●
●

●
●

●●● ●
●

●

●●
●

●
●
●

●● ●●●

●
●

●
●● ●

●●●
●● ●●

●
●●

●
●●●●

●

●
●●●

●●
●

●

●● ●●● ●
●

●
●

● ●
●
●●●●●●●●

●
● ●●

●

●●

●

●
●●● ●

●

●
●●●

●

●

●
●●●●

●
●●

●●● ●
●● ●

●
●

● ●●●●
●

●

●●
●
●

●
●
●●● ●●

●●
●●

●
●

●

● ●● ●
●
● ●●
●● ●

●
●●●●●●

●●●●
●

●● ●
●

●
●●●●
●

● ●
●

● ●
●
●

●
●

●
●●

●

● ●●
● ●●

●

● ●●

●
●●●●

●

●
●

●●
●

●●
● ●

●●
● ●●

●
● ●

●● ●
●●● ●●●

●

●
●●●●●
●

●

●●
●

●
●

●● ●
●

●● ●

●

●

●

●●
●

●
● ●

●

● ●●
●

●● ●●
●

●●
●

●

●●

●

●
●

●● ●

● ●
●●
●

●
●●●

●
●● ●●

●

●●●●●●
●● ●

●
●

●
●●

●
●●● ●
●●

●
●

●●
●

●●●●●
● ●

●

● ●
● ●

●

●
●●

●●
●
●●●●

●
● ●

●● ●●●

●
●●

●●● ● ●●●
●

● ●

●●●●●●
●

●

●

● ●
●

●
●●

●
●●

●

●

●●

●

●

●
●●●

●

●
●●

●
●●

●
●● ●●

●
●
● ●
●

●

●

●

●
●●●●

●●

●

●●●●● ●●● ●
●

●●
●●●

●●

●

●

●

●
●● ●

●

●
● ● ●

●
●●● ●

●

●

●

●
●

●
●

●
●

●
●●●●●●●

●● ●
●

●
●●

●
●
●

●●●
●

● ●
●
●●
●●

●●● ●●●●●●
●

●

●
●

●

● ●●
●● ●●

●
●

●
●

●
●

●
●

●
●
●●●
●
●●● ● ●
●●

●
●

●
●

●●
●●● ●

●
●
●●●●●

● ●●
●●● ●

●
●

●
●●
● ●
● ●●

● ●

●

●

●
●●

●
●

● ●●
●

● ●
●

●

●●
●●

●
●●
●

●●
●

●●
●

●● ● ●

●

●●●●
●●●●

●

●

●●● ●
●

●

●
●

●
●

●●
●●●●●●

● ●
●●

●

●

●
●

●●●●●
●●●

●

●
●

●● ●●

●

●●
●
●
●

●

●

●

●
●●●●●

●

●●
● ●● ●●

●

●●
●

●●● ●
●
●

●●●●● ●● ●
●

●

●● ●●
●

●●●
●● ●●●● ● ●●
●

●
●●●●

●

●●
●

●●
●

●●
●

●

●
●

●

●●●●● ●
●

●

●

●
●

●
● ● ●●

● ●

● ● ● ●●●
●

●
●● ●

●●●

●●
● ●●

● ●●

●

●●●●

●

●

● ●
●●

●●
●● ●●

●

●● ●
●

●

●●●●
● ●●●
●
●

●●
● ●
●● ●

●
●● ●●

●●
●
●

●●
● ●
●●●● ●●

●●
●

●
●

●

● ●● ●
●
●●

●●● ●
●

●
●
●
●●
●●

●●●
●

●● ●

●

●
●●●●
●

●

●
●

● ●
●●● ●●●

●

●

● ●●

●
●●

●

● ●●●●●●

●

●
●●

●

●

●
●

●●●
● ●

●

●

●
● ●

●● ●
●●● ●●●

●

●
●
●●●
●

●

●
●●

●
●

●●
●● ●● ●

●

●

●

●●

●

●
● ●

●

●●
● ●●

●
●

●

●●
● ●

●●

●

●
●

●●
●●

●
●●
●

●
●●

●

● ●
● ●●

●

●●●
●
●

●
● ●

●
● ●

●●●
●●● ●●●

●
●

●●
●

●

●●●●
●

●
● ●● ●

●

● ●●
●●

●
●●●● ● ●●●

●
●●

●
●

●

●●
● ●

●
●●

●

● ●
●●●●●●

●

●

●

●
●●
●

●●
●●● ●

●

●
● ●

●
●

●●

●

●
●●

●
●●

●

●●
●●●

●● ●

● ●

●

●

●

●●●
●●

●

●●●●● ●●

●

●●●
●

●●● ●● ●
●

●

●
●

●
● ●●

● ●
●

●● ●

●

●

●

●●
●

●

●●●
●

●●●●●●
●● ●

●

●
●●

●
●● ●●●
●

● ●
●

●● ●●
●●● ●●●●●●
●

●

●

●

●

● ●
●

●● ●● ●●
●●

●

●

●
●

●
●
●●●
●

●●● ●
●●

●

●

●
●
●

●●
●●
●

●●●
●●● ●●

● ●
●

●●● ●
●

●
●●●

●

●
● ●●● ●

●

●

●
●●●

●

● ●●
●

● ●
●

●

●●
●●

●
●●
●

●●

●
●●

●
●

● ● ●

●

●●

●
●

●●●
● ●

●

●●● ●

●
●● ●●

●
●● ●●●●●● ● ●●●

●

●

●
●

●●●●●
●●●

●

●
●

●
● ●●

●

●●●
●

●
●

●

●●●●●●

●

●●
●●

●
●

●

●

●

●
●

●
●● ●

●
●●●●●● ●● ●

●

●

●● ●●
●

●●●
●● ●●

●
● ● ●●

●

●
●●●

●
●

●

●● ●●●
●

●●
●●
●

●

●

●●●●● ●
●

●

●
● ●
● ● ●●●

●

● ● ● ●●●●

●●●●

●●●

●●
●●

● ●●

●

●●●
●

●

● ●●●●●
●● ●●

●

●●
●

●

●

●
●
●●
●

●
●●

●
●

●●
●

●
●●

●
●

●●
●●●

●
●●●

● ●
●
●
●● ●● ●●
●

●
●

●

●
●● ●

●
●●

●●● ●
●

●
●
●
●●
●●

●●● ●●● ●

●
● ●

●●●
●●

●

●
●

●●●● ●●

●

●

● ●●

● ●●
●

● ●●●●●●
●

●
●
●●

●
●

● ●●● ●
●●

●

●
● ●

●● ●
●●● ●
●

●
●

●
●●●●
●

●

●●●●
●
●●

●
●

●

● ●

●

●

●
●●

●
●
● ●

●

●●
● ●
●

●
●

●

●●
●

●

●●
●●

●
●●

●
●

●
●
●●

●
●●

●

● ●
● ●●

●

●●●●●
●

● ●

●

● ●
●●● ●●● ●●● ●● ●●

●

●

●●●●
●

●● ●

●

●

●

● ●●
●●●

●●●● ● ●●● ●●●
●

●

●

●
●

●
●

●
●●

●

● ●
●
●●●●●
●

●

●

● ●●
●

●●
●●● ●●

●

●
●

●●●

●

●
●●

●
●
●

●
●● ●●

●

●● ●
●

●

●

●

●
●●●●●

●
●●●●● ●●

●

●●● ●
●●● ●● ●

●

●

● ●
●
● ●●

●
●

●
●● ●

●

●
●●●

●
●

●●●
●

●●●●●●
●● ●

●

●
●●

●
●●●

●
●●

●

●
●●

●

●●●●
●●●●●●

● ●

●
●

●

● ●
●

●●
●

● ●●
●●

●
●

●

●

●
●●●● ●●●
●

● ●●●

●

●
●
● ●

●
●●● ●●●
●●● ●●

● ●
●

●
●● ●

●
● ●●
●●

●
● ●●

● ●

●

●

●
●●●

●

● ●●

●
● ●● ●

●●●●●●●
●

●●

●

●●
●

●●
●

●

●

●●

●
●

●
●●

●
●

●

●
●● ●

●

●
● ●
● ●●

●●●
●
●● ● ●●●

●

●

●
●

●
●●●● ●●● ●●

●

●
● ●●

●

●
●●
●

●
●

●

●●●●●●

●

●●
●●

●
●

●

●

●

●
●

●
●● ●

●

●
●●●●● ●● ●

●

●
●● ●●

●

●●● ●● ●
●●

● ● ●●
●

●
●●●

●●
●

●
● ●●● ●●●

●●
●

●

●

●
●●●●

●

●

●

●

●
● ● ●

●● ●
● ● ● ●
●●●

●●● ●
●●
●

●● ●●
●

●
●

●
●●●

●
●

● ●●●●●
●

● ●●

●

●● ●●

●

●●●●
●

●
●

●
●
●

●
● ●
●
●

●
●

●●
●●● ●

●
●●● ●
●●●● ●●

●●

●
●

●
●

●
●● ●

●
●●

●●●
●

● ●●
●
●●
●

●
●●●
●

●●
● ●

● ●●●● ●
●

●

●● ●●●● ●
●

●

●
● ●
●

●
●

● ●
● ●●●●●

●

●
●
●

●

●
●

● ●
●●

●

●●

●

●
●●

●● ●●●● ●
●

●
●

●●●
●
●
●

●

●●●
●
●
●●

●
●

●

● ●

●

●

●
●

●
●●

● ●

●

●●
● ●
●

●
●

●
●●

● ●

●

●
●

●

●●
●●

●
●●
●

●
●●
●
●

●

● ●● ●●●
●●
●

●
● ●

●● ●

●
●● ●

●● ●
●●
●
● ●●

●

●
●●●●

●

●●
●

●
●

●

●
●●

●●●
●●● ● ●●● ●●
●

●
●

●

●
●

●
●

●

●●
●

● ●
●

●
●●●●
●

●

●●
●● ●

●●
●

●● ●●
●

●
●

●●
●

●
●

●
●●

●

●
●● ●●

●
● ●
● ●

●

●
●

●●●
●● ●●●●●● ●●

●

●●●●
●●●

●

●
●

●

● ●
●
● ●●

●
●

●

●● ●

●

●

●
●●●● ●●●

●
●●●●
●●

●● ●
●

●
●●●
●●●●
●

●●
●

●
●

●

●

●●
●
●

●●
●●●

● ●

●

●
● ●

● ●● ●
●

●
●

●●

●
●

●

●

●
●●● ●
●●
●

● ●●●

●

●
●
● ●
●

●●● ●●●●
●
●
●●● ● ●

●
●● ●●● ●●

●

●
● ●●

●
●

●

●

●
●●●

●

●
●●

●
● ●● ●●●
●●
●●●

●
●
●

●
●
● ●●● ● ●

●

●●

●
●

●
●

●
●

●

●
●● ●

●

●

●
●● ●●

●
●●●●●

● ●
●●

●

●

●

●
●
●●●● ●

●
●
●
● ●

●
●● ●●

●
●●

●
●

●

●

●●●●●●

●

●●
●●●

●
● ●

●
●

●
●

●● ●
●
●

●●●
●
● ●● ●
●

●
●
●

●
●

●

●●●
●● ●●●● ●

●●
●

●
●●●●●

●

●
●●● ●●●

●●
●

●

●

●
●●●
●

●
●

●

●

●●
● ●

●● ●
●

● ● ●●●●

●●●
●

●
●

●● ●●
● ●
● ●●●●

●

●
● ●●●●●

●
● ●●

●

0 2 4 6 8 10

−4
−2

0
2

4
6

Plot of the test residuals

Predicted values

R
es

id
ua

ls

	 136	

	 	

	 137	

	
	
Conclusions	and	closing	remarks	
	

With	 respect	 to	 the	 final	 case	 study	analysis,	 some	 important	 takeaways	have	 to	

pointed	out	before	making	any	final	considerations.		

First,	ANNs	need	a	large	amount	of	data	and	variables	in	order	to	be	able	to	

generalize.	When	trying	to	solve	a	financial	problem	using	neural	networks,	it	is	not	

simple	to	find	sufficient	data.	One	should	first	look	for	possible	sources	of	data	and	

verify	if	there	are	sufficient	examples	for	the	problem	in	question.	Depending	on	the	

data	availability,	the	variables	should	be	selected	thereafter.	

Second,	it	is	essential	to	pre-process	the	dataset,	to	divide	properly	the	three	

subsets	and	to	remove	all	the	possible	outliers.	As	the	results	of	the	case	study	show,	

processing	 adequately	 the	 dataset	 will	 have	 a	 major	 impact	 on	 the	 model	

performance	and	also	on	the	soundness	of	the	estimated	errors.	

Third,	one	should	not	stop	at	the	common	choice	for	the	architecture	and	the	

hyperparameters	of	the	network,	but	instead	he	should	choose	a	rigorous	method	

for	tuning	them	to	improve	the	results.	

Considering	the	lessons	learnt,	it	is	clear	that	one	should	study	and	thoroughly	

understand	 the	 theoretical	 notions	 behind	 artificial	 neural	 networks	 to	 obtain	

reasonable	results	and	to	be	able	to	interpret	them	correctly.	

	

More	broadly,	the	focus	of	this	thesis	has	been	to	explore	the	theoretical	foundations	

relative	to	artificial	neural	networks	and	subsequently	how	they	can	be	applied	for	

solving	 the	 financial	 problems	 that	 can	 be	 encountered	 by	 banks	 and	 regulatory	

authorities.	ANNs	could	be	employed	to	identify	the	potential	risks	and	weaknesses	

faced	 by	 banks	 through	 non-linear	 linkages.	 The	 insights	 drawn	 from	 these	

instruments	could	be	used	in	addition	to	the	supervisory	toolkit	to	identify	troubled	

institutions	or	potentially	important	systemic	nodes.		

It	should	be	stressed	once	again	that	one	should	possess	a	sound	knowledge	of	

the	theory	and	the	properties	of	the	model,	along	with	a	clear	understanding	of	the	

financial	problem	in	question	in	order	to	employ	correctly	ANNs.	If	the	model	is	used	

	 138	

alone,	 it	 will	 produce	 outputs	 that	 are	 unstructured	 or	 difficult	 to	 interpret.	

Consequently,	a	certain	degree	of	subjectivity	and	a	critical	mind	are	needed	when	

analyzing	 and	 interpreting	 the	 results,	 especially	 when	 dealing	 with	 prediction	

problems.	

	

In	conclusion,	artificial	neural	networks	and	deep	learning	techniques	could	be	valid	

instruments	to	be	added	into	the	supervisory	toolkit	for	performing	stress	tests	in	

order	to	get	novel	insights	on	the	relations	between	the	variables	and	identify	other	

sources	of	vulnerability.	

	

	 	

	 139	

	
	

Bibliography	
	
	
[Abraham,	2005]	Abraham,	A.	(2005),	Artificial	Neural	Networks,	In	Handbook	of	
Measuring	System	Design	(eds	P.H.	Sydenham	and	R.	Thorn).	
	
[Acemoglu	 et	 al.,	 2015]	 Acemoglu,	 D.,	 Ozdaglar,	 A.	 E.,	 Tahbaz-Salehi,	 A.	 (2015),	
Systemic	 Risk	 and	 Stability	 in	 Financial	 Networks,	 American	 Economic	 Review,	
American	Economic	Association,	vol.	105(2),	pp.	564–608.	
	
[Adrian	et	al.,	2020]	Adrian,	T.,	Morsink,	J.,	Schumacher,	L.	B.	(2020),	Stress	Testing	
at	the	IMF,	IMF	Departmental	Papers,	Policy	Papers	20/04,	International	Monetary	
Fund.	
	
[Allen	 and	 Babus,	 2008]	 Allen,	 F.,	 Babus,	 A.	 (2008),	Networks	 in	 Finance,	 The	
Network	Challenge:	Strategy,	Profit,	and	Risk	in	an	Interlinked	World.	
	
[Al-Shayea	et	al.,	2010]	Al-Shayea,	Q.,	El-Refae,	G.	A.,	El-Itter,	S.	F.	(2010),	Neural	
Networks	in	Bank	Insolvency	Prediction,	International	Journal	of	Computer	Science	
and	Network	Security,	10	(5),	pp.	240–245.	
	
[Anderson	 and	McNeil,	 1992]	 Anderson,	D.,	McNeil,	 G.	 (1992),	Artificial	Neural	
Networks	Technology,	ADACS	(Data	&	Analysis	Center	for	Software)	State-of-the	Art	
Report.	
	
[Angelini	et	al.,	2008]	Angelini,	E.,	Tollo,	G.	D.,	Roli,	A.	 (2008),	A	neural	network	
approach	for	credit	risk	evaluation,	The	Quarterly	Review	of	Economics	and	Finance,	
48,	pp.	733–755.	
	
[Atiya,	2001]	Atiya,	A.F.	(2001),	Bankruptcy	prediction	for	credit	risk	using	neural	
networks:	A	survey	and	new	results,	IEEE	transactions	on	neural	networks,	12	(4),	pp.	
929–935.	
	
[Aydin	and	Cavdar,	2015]	Aydin,	A.	D.,	Cavdar,	S.	C.	(2015),	Prediction	of	Financial	
Crisis	 with	 Artificial	 Neural	 Network:	 An	 Empirical	 Analysis	 on	 Turkey,	
International	Journal	of	Financial	Research,	6	(4),	pp.	36–45.	
	
[Bahrammirzaee,	 2010]	Bahrammirzaee,	 A.	 (2010),	 A	 comparative	 survey	 of	
artificial	intelligence	applications	in	finance:	artificial	neural	networks,	expert	system	
and	 hybrid	 intelligent	 systems,	 International	 Journal	 of	Neural	 Computing	 &	
Application,	19,	pp.	1165–1195.	
	

	 140	

[Basel	 Committee,	 2004]	 Basel	 Committee	 (2004),	 Principles	 for	 Sound	 Stress	
Testing	Practices	and	Supervision,	Bank	of	International	Settlements.	
	
[Basel	Committee,	2009]	Basel	Committee	(2009),	International	Convergence		
of	 Capital	 Measurement	 and	 Capital	 Standards,	 consultative	 paper,	 Bank	 of	
International	Settlements.	
	
[Basel	Committee,	2011]	Basel	Committee	 (2011),	Basel	 III:	A	global	 regulatory	
framework	 for	 more	 resilient	 banks	 and	 banking	 systems,	 Bank	 for	 International	
Settlements.	
	
[Basel	Committee,	2014]	Basel	Committee	(2014),	Basel	III:	the	net	stable	funding	
ratio,	Bank	for	International	Settlements.	
	
[Basel	 Committee,	 2016]	 Basel	 Committee	 (2016),	 Leverage	 and	 Risk	Weighted	
Capital	Requirements,	Bank	for	International	Settlements,	Working	Papers,	586.	
	
[Basheer	 and	 Hajmeer,	 2000]	Basheer,	 I.	 A.	 and	 Hajmeer,	 M.	 (2000),	 Artificial	
Neural	 Networks:	 Fundamentals,	 Computing,	 Design,	 and	 Application,	 Journal	 of	
microbiological	methods,	43,	pp.	3-31.	
	
[Cerchiello	et	al.,	2017]	Cerchiello,	P.,	Nicola,	G.,	Rönnqvist,	 S.,	 Sarlin,	P.	 (2017),	
Deep	learning	bank	distress	from	news	and	numerical	financial	data,	DEM	Working	
Papers	Series,	140,	University	of	Pavia,	Department	of	Economics	and	Management.	
	
[Chatzis	et	al.,	2018]	Chatzis,	S.	P.,	Siakoulis,	V.,	Petropoulos,	A.,	Stavroulakis,	E.,	
Vlachogiannakis,	N.	 (2018),	Forecasting	 stock	market	 crisis	 events	 using	deep	and	
statistical	machine	learning	techniques,	Expert	Systems	with	Applications,	112,	pp.	
353–371.	
	
[Čihák,	2007]	Čihák,	M.	(2007),	Introduction	to	Applied	Stress	Testing,	IMF	Working	
Papers	07/59,	International	Monetary	Fund.	
	
[Dahl	et	al.,	2013]	Dahl,	G.	E.,	Sainath,	T.	N.,	Hinton,	G.	E.	(2013),	Improving	deep	
neural	networks	for	LVCSR	using	rectified	linear	units	and	dropout,	IEEE	International	
Conference	on	Acoustics,	Speech	and	Signal	Processing,	pp.	8609-8613.		
	
[Da	Silva	et	al.,	2017]	Da	Silva,	I.	N.,	Spatti,	D.	H.,	Flauzino,	R.	A.,	Liboni,	L.	H.	B.,	dos	
Reis	Alves,	S.	F.	 (2017),	Artificial	Neural	Networks:	A	Practical	Course,	Springer	
International	Publishing.	
	
[De	Mello	and	Ponti,	2018]	De	Mello,	R.	F.,	Ponti,	M.	A.	(2018),	Machine	learning:	
A	practical	approach	on	 the	 statistical	 learning	 theory,	Springer	 International	
Publishing.	
	
[EBA,	 2018]	 European	 Banking	 Authority	 (2018),	 Final	 report	 on	 guidelines	 on	
institutions’	stress	testing,	EBA/GL/2018/04.	
	

	 141	

[ECB,	2006]	European	Central	Bank	(2006),	Financial	Stability	Review,	pp.	147-154.	
	
[Enoch	 et	 al.,	 2013]	 Enoch,	 C.,	 Everaert,	 L.,	 Tressel,	 T.,	 Zhou,	 J.	 (2013),	 From	
Fragmentation	to	Financial	Integration	in	Europe,	International	Monetary	Fund.	
	
[Fioramanti,	2008]	Fioramanti,	M.	(2008),	Predicting	Sovereign	Debt	Crises	Using	
Artificial	Neural	Networks:	A	Comparative	Approach,	Journal	of	Financial	Stability,	4,	
pp.	149–164.	
	
[Gai	 and	 Kapadia,	 2010]	Gai,	 P.,	 Kapadia,	 S.	 (2010),	 Contagion	 in	 financial	
networks,	Proceedings	 of	 the	 Royal	 Society	 A:	 Mathematical,	 Physical	 and	
Engineering	Sciences,	466,	pp.	2401–2423.	
	
[Gai	et	al.,	2011]	Gai,	P.,	Haldane,	A.G.,	Kapadia,	S.	(2011),	Complexity,	concentration	
and	contagion,	Journal	of	Monetary	Economics,	Elsevier,	vol.	58(5),	pp.	453–470.	
	
[Glorot	and	Bengio,	2010]	Glorot,	X.,	Bengio,	Y.	(2010),	Understanding	the	difficulty	
of	training	deep	feedforward	neural	networks,	Proceedings	of	AISTATS	2010,	vol.	9,	
pp.	249–	256.	
	
[Graves,	 2012]	 Graves	 A.	 (2012),	 Supervised	 Sequence	 Labelling	 with	 Recurrent	
Neural	 Networks,	 Studies	 in	 Computational	 Intelligence,	 Springer,	 Berlin,	
Heidelberg.	
	
[Haldane,	 2013]	 Haldane,	 A.	 (2013),	 Rethinking	 the	 financial	 network,	 Fragile	
Stabilität	–	stabile	Fragilität,	Springer	VS,	Wiesbaden,	pp.	243–278.	
	
[Haldane	and	May,	2011]	Haldane,	A.	G.,	May,	R.	M.	(2011),	Systemic	risk	in	banking	
ecosystems,	Nature,	469,	pp.	351–355.	
	
[Heaton	et	al.,	2016]	Heaton,	J.	B.,	Polson,	N.	G.,	Witte,	J.H.	(2016),	Deep	Learning	in	
Finance,	Applied	Stochastic	Models	in	Business	and	Industry,	33	(1),	pp.	3–12.	
	
[Hodnett	et	al.,	2019]	Hodnett,	M.,	Wiley,	J.	F.,	Liu,	Y.	H.,	Maldonado,	P.	(2019),	Deep	
Learning	 with	 R	 for	 Beginners:	 Design	 neural	 network	 models	 in	 R	 3.5	 using	
TensorFlow,	Keras,	and	MXNet,	Packt	Publishing	Ltd,	pp.	97-130.		
	
[IMF,	 2013]	 International	Monetary	 Fund	 (2013),	Financial	 Crises:	 Explanations,	
Types,	and	Implications,	WP/13/28.	
	
[IMF,	FSB	and	BIS,	2009]	International	Monetary	Fund,	Financial	Stability	Board	
and	 Bank	 for	 International	 Settlements	 (2009),	 Guidance	 to	 Assess	 the	 Systemic	
Importance	of	Financial	Institutions,	Markets	and	Instruments:	Initial	Considerations,	
Report	to	the	G-20	Finance	Ministers	and	Central	Bank	Governors,	Washington,	DC	
and	Basel.	
	
[Ioffe	 and	 Szegedy,	 2015]	 Ioffe,	 S.,	 Szegedy,	 C.	 (2015),	 Batch	 Normalization:	
Accelerating	Deep	Network	Training	by	Reducing	Internal	Covariate	Shift,	ICML'15:	

	 142	

Proceedings	of	the	32nd	International	Conference	on	International	Conference	on	
Machine	Learning,	Volume	37,	pp.	448–456.	
	
[Khashman,	2010]	Khashman,	A.	(2010),	Neural	networks	for	credit	risk	evaluation:	
Investigation	of	different	neural	models	and	learning	schemes,	Expert	Systems	with	
Applications,	37,	pp.	6233–6239.	
	
[Kumar	 and	Ravi,	 2007]	Kumar,	 P.	 R.,	 Ravi,	 V.	 (2007),	Bankruptcy	 prediction	 in	
banks	and	firms	via	statistical	and	intelligent	techniques	-	A	review,	European	Journal	
of	Operational	Research,	180,	pp.	1–28.	
	
[LeCun	et	al.,	2015]	LeCun,	Y.,	Bengio,	Y.,	Hinton,	G.	(2015),	Deep	Learning,	Nature	
521	(7553),	pp.	436-444.	
	
[Lipton	et	al.,	2015]	Lipton,	Z.	C.,	Berkowitz,	J.,	Elkan,	C.	(2015),	A	Critical	Review	of	
Recurrent	Neural	Networks	for	Sequence	Learning,	ArXiv,	abs/1506.00019.	
	
[Liu	et	al.,	2017]	Liu,	W.,	Wang,	Z.,	Liu,	X.,	Zeng,	N.,	Liu,	Y.,	&	Alsaadi,	F.E.	(2017),	A	
survey	of	deep	neural	network	architectures	and	their	applications,	Neurocomputing,	
234,	pp.	11-26.	
	
[Mai	et	al.,	2019]	Mai,	F.,	Tian,	S.,	Lee,	C.,	&	Ma,	L.	(2019).	Deep	learning	models	for	
bankruptcy	 prediction	 using	 textual	 disclosures,	European	 Journal	 of	 Operational	
Research,	274,	pp.	743–758.	
	
[Maier	et	al.,	2010]	Maier,	H.	R.,	Jain,	A.,	Dandy,	G.	C.,	Sudheer,	K.	P.	(2010),	Methods	
used	 for	 the	 development	 of	 neural	 networks	 for	 the	 prediction	 of	 water	 resource	
variables	 in	 river	 systems:	 Current	 status	 and	 future	 directions,	Environmental	
Modelling	&	Software,	25,	pp.	891-909.	
	
[Nielsen,	 2015]	 Nielsen,	 M.	 A.	 (2015),	 Neural	 Networks	 and	 Deep	 Learning,	
Determination	Press,	available	at	http://neuralnetworksanddeeplearning.com/	
	
[Nik	et	al.,	2016]	Nik,	P.	A.,	Jusoh,	M.,	Shaari,	A.	H.,	and	Sarmdi,	T.	(2016),	Predicting	
the	probability	of	financial	crisis	in	emerging	countries	using	an	early	warning	system:	
artificial	neural	network,	Journal	of	Economic	Cooperation	&	Development,	37	(1),	
pp.	25–40.	
	
[Pacelli	and	Azzollini,	2011]	Pacelli,	V.,	Azzollini,	M.	(2011),	An	Artificial	Neural	
Network	 Approach	 for	 Credit	 Risk	 Management,	 Journal	 of	 Intelligent	 Learning	
Systems	and	Applications,	3,	pp.	103–112.	
	
[Petropoulos	 et	 al.,	 2018]	 Petropoulos,	 A.,	 Siakoulis,	 V.,	 Stavroulakis,	 E.,	
Klamargias,	A.	(2018),	A	robust	machine	learning	approach	for	credit	risk	analysis	of	
large	 loan	 level	 datasets	 using	 deep	 learning	 and	 extreme	 gradient	 boosting,	 IFC	
Bulletins	chapters,	49.	
	
[Petropoulos	 et	 al.,	 2019]	 Petropoulos,	 A.,	 Siakoulis,	 V.,	 Vlachogiannakis,	 N.	 E.,	
Stavroulakis	E.	(2019),	Deep-Stress:	A	deep	learning	approach	for	dynamic	balance	

	 143	

sheet	stress	testing,	8th	Annual	Research	Workshop	-	The	future	of	stress	tests	in	the	
banking	sector	–	approaches,	governance	and	methodologies,	Paris,	2019.	
	
[Petropoulos	 et	 al.,	 2020]	 Petropoulos,	 A.,	 Siakoulis,	 V.,	 Stavroulakis,	 E.,	
Vlachogiannakis,	N.	E.	(2020),	Predicting	bank	insolvencies	using	machine	learning	
techniques,	International	 Journal	 of	 Forecasting,	
https://doi.org/10.1016/j.ijforecast.2019.11.005.	
	
[Quagliarello,	 2009]	 Quagliarello,	 M.	 (2009),	 Stress	 testing	 the	 banking	 system:	
Methodologies	and	applications,	Cambridge:	Cambridge	University	Press.	
	
[Santurkar	et	al.,	2018]	Santurkar,	S.,	Tsipras,	D.,	Ilyas,	A.,	Madry,	A.	(2018),	How	
Does	 Batch	 Normalization	 Help	 Optimization?,	 NIPS'18:	 Proceedings	 of	 the	 32nd	
International	 Conference	 on	 Neural	 Information	 Processing	 Systems,	 pp.	 2488–
2498.	
	
[Schuermann,	2014]	 Schuermann,	T.	 (2014),	Stress	 Testing	Banks,	 International	
Journal	of	Forecasting,	vol.	30	(3),	pp.	717–728.	
	
[Sengupta	et	al.,	2020]	 Sengupta,	S.,	Basak,	S.,	 Saikia,	P.,	Paul,	S.,	Tsalavoutis,	V.,	
Atiah,	 F.D.,	 Ravi,	 V.,	 Peters,	 R.A.	 (2020),	 A	 review	 of	 deep	 learning	 with	 special	
emphasis	 on	 architectures,	 applications	 and	 recent	 trends,	 Knowledge-Based	
Systems,	105596,	https://doi.org/10.1016/j.knosys.2020.105596	
	
[West,	2000]	West,	D.	(2000),	Neural	network	credit	scoring	models,	Computers	&	
Operations	Research,	27,	pp.	1131–1152.	
	
[Wu	et	al.,	2014]	Wu,	W.,	Dandy,	G.	C.,	Maier,	H.	R.	(2014),	Protocol	for	developing	
ANN	models	and	 its	application	 to	 the	assessment	of	 the	quality	of	 the	ANN	model	
development	process	in	drinking	water	quality	modelling,	Environmental	Modelling	
&	Software,	54,	pp.	108-127.	
	
[Yu	 et	 al.,	 2008]	Yu,	 L.,	Wang,	 S.,	 Lai,	 K.	 K.	 (2008),	Credit	 risk	 assessment	with	 a	
multistage	 neural	 network	 ensemble	 learning	 approach,	Expert	 Systems	 with	
Applications,	34,	pp.	1434–1444.

	 144	

	 	

	 145	

	
	
Appendix	A	
A	list	of	the	codes	for	the	case	study	
	

The	 present	 appendix	 contains	 the	 codes	 that	were	 produced	 for	 the	 case	 study	

analysis	of	 the	 final	chapter.	The	Apache	MXNet	toolbox	 in	R	 is	employed	for	 the	

development	of	the	ANN	and	the	tuning	of	the	hyperparameters	14.	

	

A.1	Outliers’	detection	and	scaling	choice	

outliers_det.R ####

this script contains the code to make a scatterplot for the
detection of outliers

load the raw dataset
rm(list = ls())
library(readxl)
data <- read_excel("bank_data_final.xlsx")
df = data[,c(3:83)]
df[is.na(df)] <- 0
df_matrix <- matrix(as.matrix(df), ncol = ncol(df), dimnames = NULL)

plot the outliers with a scatter plot
plot(df_matrix[,1],df_matrix[,81], ylab = "CAR at time = t+1", xlab =
"net_loan")
plot(df_matrix[,4],df_matrix[,81], ylab = "CAR at time = t+1", xlab =
"yield_ea")
plot(df_matrix[,5],df_matrix[,81], ylab = "CAR at time = t+1", xlab =
"fundc_ea")
plot(df_matrix[,7],df_matrix[,81], ylab = "CAR at time = t+1", xlab =
"CAR")
plot(df_matrix[,16],df_matrix[,81], ylab = "CAR at time = t+1", xlab =
"fundc_ea_1")
plot(df_matrix[,40],df_matrix[,81], ylab = "CAR at time = t+1", xlab =
"CAR at time = t-3")

scaling_choice.R ####

this script contains the code to choose the best scaling method

load the data without the outliers ###
rm(list = ls())
library(readxl)
data <- read_excel("bank_data_no_outl.xlsx")

df = data[,c(3:83)]

14	The	MXNet	framework	is	available	at	https://mxnet.apache.org/	

	 146	

df[is.na(df)] <- 0
df_final <- matrix(as.matrix(df), ncol = ncol(df), dimnames = NULL)

scale variables with the two techniques ###

standardization
tr_mean <- apply(df_final[1:16023,], 2, mean) # computed for training
set only
tr_sd <- apply(df_final[1:16023,], 2, sd)

df_stand = matrix(, nrow = dim(df_final)[1], ncol = dim(df_final)[2])
for (i in 1:81) {
 df_stand[,i] = (df_final[,i]- tr_mean[i])/tr_sd[i]
}

robust scaling
tr_Q1 <- apply(df_final[1:16023,], 2, quantile, probs = 0.25)
tr_Q2 <- apply(df_final[1:16023,], 2, quantile, probs = 0.5)
tr_Q3 <- apply(df_final[1:16023,], 2, quantile, probs = 0.75)

df_robust = matrix(, nrow = dim(df_final)[1], ncol = dim(df_final)[2])
for (i in 1:81) {
 df_robust[,i] = (df_final[,i]- tr_Q2[i])/(tr_Q3[i]-tr_Q1[i])
}

plot histograms for comparison ###

pdf('plot_hist_100.pdf', width=6, height=8)
par(mfrow=c(3,1))
hist(df_final[,1], xlab = "net loans", breaks = 100, main = "no
scaling")
hist(df_stand[,1], xlab = "net loans", breaks = 100, main =
"standardization")
hist(df_robust[,1], xlab = "net loans", breaks = 100, main = "robust
scaling")

par(mfrow=c(3,1))
hist(df_final[,8], xlab = "total assets", breaks = 100, main = "no
scaling")
hist(df_stand[,8], xlab = "total assets", breaks = 100, main =
"standardization")
hist(df_robust[,8], xlab = "total assets", breaks = 100, main =
"robust scaling")

par(mfrow=c(3,1))
hist(df_final[,4], xlab = "yield on earning assets", breaks = 100,
main = "no scaling")
hist(df_stand[,4], xlab = "yield on earning assets", breaks = 100,
main = "standardization")
hist(df_robust[,4], xlab = "yield on earning assets", breaks = 100,
main = "robust scaling")

par(mfrow=c(3,1))
hist(df_final[,7], xlab = "CAR ratio", breaks = 100, main = "no
scaling")
hist(df_stand[,7], xlab = "CAR ratio", breaks = 100, main =
"standardization")
hist(df_robust[,7], xlab = "CAR ratio", breaks = 100, main = "robust
scaling")

par(mfrow=c(3,1))

	 147	

hist(df_final[,81], xlab = "CAR ratio at time T+1", breaks = 100, main
= "no scaling")
hist(df_stand[,81], xlab = "CAR ratio at time T+1", breaks = 100, main
= "standardization")
hist(df_robust[,81], xlab = "CAR ratio at time T+1", breaks = 100,
main = "robust scaling")
dev.off()

A.2	Initial	trial	

intial_trial.R ####

this script contains the code for the initial trial with parameters
set equal to common values for the dataset with additional outliers
removal

rm(list = ls())
library(readxl)
require(mxnet)

load the dataset ######

data <- read_excel("bank_data_no_outl_2.xlsx")

pre-processing of the data ######

extract specific variables
df = data[,c(3:83)]
df[is.na(df)] <- 0 # impute missing values as 0

scale the variables with standardization
df_final <- matrix(as.matrix(df), ncol = ncol(df), dimnames = NULL)

compute for the train set only
tr_mean <- apply(df_final[1:15985,], 2, mean)
tr_sd <- apply(df_final[1:15985,], 2, sd)

apply to whole dataset
df_norm = matrix(, nrow = dim(df_final)[1], ncol = dim(df_final)[2])
for (i in 1:81) {
df_norm[,i] = (df_final[,i]- tr_mean[i])/tr_sd[i]
}

partition dataset into train, validation and test sets ######

partition the dataset into 60% (years 2010-2014),
20% (years 2015-2016) and 20% (years 2017-2018)
data_train = df_norm[1:15985,]
data_val = df_norm[15986:22064,]
data_test = df_norm[22065:27398,]

data_train.x = data_train[,-81] # predictors
data_train.y = data_train[,81] # response variable

data_val.x = data_val[,-81]
data_val.y = data_val[,81]

data_test.x = data_test[,-81]

	 148	

data_test.y = data_test[,81]

create network architecture ######

data <- mx.symbol.Variable("data")

FIRST HIDDEN LAYER - 55 neurons
fc1 <- mx.symbol.FullyConnected(data, name = "fc1", num_hidden=55)
act1 <- mx.symbol.Activation(fc1, name ="sigmoid1", act_type = "relu")
output layer
fc_out <- mx.symbol.FullyConnected(act1, name="fc_out", num_hidden=1)
lro <- mx.symbol.LinearRegressionOutput(fc_out)

train the model ######

devices <- mx.cpu()
mx.set.seed(0)
n_epoch = 500

logger <- mx.metric.logger$new()
model_dnn = mx.model.FeedForward.create(lro, X = data_train.x,
 y = data_train.y, ctx=devices, array.layout = "rowmajor",
 eval.data=list(data=data_val.x, label=data_val.y),
 num.round = n_epoch, array.batch.size = 200,
 learning.rate = 1e-3, momentum = 0, wd = 0,

eval.metric = mx.metric.rmse, initializer =
mx.init.uniform(0.385),epoch.end.callback =
mx.callback.log.train.metric(1,logger))

save RMSE metrics (train + evaluation)
RMSE_train = logger$train
RMSE_eval = logger$eval

plot the RMSE over the epochs
pdf('plot_lear_curve_initial_trial.pdf', width = 8, height = 6)
par(mfrow=c(1,1))
plot(RMSE_train,type = "l", col = "red", ylim = c(0,2.2),
 xlab ="Epoch", ylab ="RMSE")
lines(RMSE_eval,type = "l", col = "blue")
title(main ="Learning curve")
legend("topright", c("training RMSE","validation RMSE"),
 cex=0.8, col = c("red","blue"), pch = c(19,18), lty=1:1)
dev.off()

compute predictions and residuals for the train and validation data
y_pred_train <- predict(model_dnn, data_train.x)
summary(as.vector(y_pred_train))
resid_train = data_train.y - y_pred_train
sprintf("train RMSE = %f", sqrt(mean((resid_train)^2)))

y_pred_val <- predict(model_dnn, data_val.x)
summary(as.vector(y_pred_val))
resid_val = data_val.y - y_pred_val
sprintf("validation RMSE = %f", sqrt(mean((resid_val)^2)))

compute predictions and residuals for the test data
y_pred_test <- predict(model_dnn, data_test.x)
summary(as.vector(y_pred_test))
resid_test = data_test.y - y_pred_test
sprintf("test RMSE = %f", sqrt(mean((resid_test)^2)))

	 149	

plot of fitted against actual values and residuals ######

pdf('plot_pred_act_initial_trial.pdf', width = 12, height = 6)
par(mfrow=c(1,2))
plot(data_train.y, y_pred_train[1,],
 xlab = "actual", ylab = "predicted", xlim = c(-2.5,10), ylim =
c(-2.5,11),
 main = "Plot of actual vs predicted train values")
abline(a=0,b=1)
plot(data_test.y, y_pred_test[1,],
 xlab = "actual", ylab = "predicted",xlim = c(-2.5,10), ylim = c(-
2.5,11),
 main = "Plot of actual vs predicted test values")
abline(a=0,b=1)
dev.off()

pdf('plot_resid_pred_initial_trial.pdf', width = 12, height = 6)
par(mfrow=c(1,2))
plot(y_pred_train, resid_train,
 ylab = "Residuals", xlab = "Predicted values",
 main = "Plot of the train residuals")
abline(0, 0)
plot(y_pred_test, resid_test,
 ylab = "Residuals", xlab = "Predicted values",
 main = "Plot of the test residuals")
abline(0, 0)
dev.off()

convert weights and thresholds into a matrix ######
FC1_w = as.matrix(model_dnn$arg.params$fc1_weight)
FC1_b = as.array(model_dnn$arg.params$fc1_bias)
FC_out_w = as.matrix(model_dnn$arg.params$fc_out_weight)
FC_out_b = as.array(model_dnn$arg.params$fc_out_bias)

save the working environment ######

save.image(file = 'initial_trial.RData')
load('initial_trial.RData') # to load the environment later

A.3	Learning	curve	for	the	training	set	size	

LC_train_size.R ####

this script contains the code for creating the learning curve for
different values of training set size

the initial part of the script (in which the dataset is loaded and
partitioned and the network architecture is created) is the same as
in initial_trial.R, so it is omitted for simplicity

train the different model with a for cycle ######

devices <- mx.cpu()
mx.set.seed(0)
n_epoch = 500

	 150	

m_train = c(2,100,500,1000,1500,2000,5000,10000, dim(data_train.x)[1])

RMSE_list = list()
models_list = list()
tr_pred_list = list()
v_pred_list = list()
tst_pred_list = list()
tr_err_true <- c()
v_err_true <- c()
tst_err_true <- c()
err_train <- c()
err_eval <- c()
for (i in m_train) {
 train.x_new = data_train.x[1:i,]
 train.y_new = data_train.y[1:i]
 logger <- mx.metric.logger$new()
 model_dnn = mx.model.FeedForward.create(lro, X = train.x_new,
 y = train.y_new, ctx=devices, array.layout = "rowmajor",
 eval.data=list(data=data_val.x,
 label=data_val.y),
 num.round = n_epoch, array.batch.size = 200,
 learning.rate = 1e-3, momentum = 0, wd = 0,

 eval.metric = mx.metric.rmse,
 epoch.end.callback = mx.callback.log.train.metric(1,
logger),initializer = mx.init.uniform(0.385))

 # save RMSE final metrics (train + evaluation)
 RMSE_train = logger$train
 RMSE_eval = logger$eval
 err_train = c(err_train, RMSE_train[n_epoch])
 err_eval = c(err_eval, RMSE_eval[n_epoch])

 # make predictions and save all results
 y_pred_train <- predict(model_dnn, data_train.x, array.layout =
 "rowmajor")
 y_pred_val <- predict(model_dnn, data_val.x, array.layout =
 "rowmajor")
 y_pred_test <- predict(model_dnn, data_test.x, array.layout =
 "rowmajor")

 err_tr = sqrt(mean((data_train.y - y_pred_train)^2))
 err_v = sqrt(mean((data_val.y - y_pred_val)^2))
 err_tst = sqrt(mean((data_test.y - y_pred_test)^2))

 tr_err_true = c(tr_err_true, err_tr)
 v_err_true = c(v_err_true, err_v)
 tst_err_true = c(tst_err_true, err_tst)

 tr_pred_list[[match(i,m_train)]] = y_pred_train
 v_pred_list[[match(i,m_train)]] = y_pred_val
 tst_pred_list[[match(i,m_train)]] = y_pred_test

 models_list[[match(i,m_train)]] = model_dnn
 RMSE_list[[match(i,m_train)]] = logger

 rm(logger)
 rm(model_dnn)
 rm(RMSE_train)
 rm(RMSE_eval)
 rm(y_pred_train)
 rm(y_pred_val)
 rm(y_pred_test)
 rm(err_tr)
 rm(err_v)

	 151	

 rm(err_tst)
 }

plot the RMSE over the training set size
pdf('LC_train_size_plot.pdf', width = 10, height = 6)
plot(m_train,err_train,type = "o", col = "red", pch = 20, ylim =
c(0,3.5),
 xlab ="Training set size", ylab ="RMSE")
lines(m_train,err_eval,type = "o",pch = 20, col = "blue")
title(main ="Learning curve")
legend("topright", c("training RMSE","validation RMSE"),
 cex=0.8, col = c("red","blue"), pch = c(19,18), lty=1:1)
dev.off()

A.4	Learning	curve	for	the	batch	size	

LC_batch_size.R ####

this script contains the code for creating the learning curve for
different values of batch size

the initial part of the script (in which the dataset is loaded and
partitioned and the network architecture is created) is the same as
in initial_trial.R, so it is omitted for simplicity

train the different models with a for cycle ######

devices <- mx.cpu()
mx.set.seed(0)
n_epoch = 500
batch_s= c(4,8,16,32,64,128,256,512)

RMSE_list = list()
models_list = list()
tr_pred_list = list()
v_pred_list = list()
tst_pred_list = list()
tr_err_true <- c()
v_err_true <- c()
tst_err_true <- c()
err_train <- c()
err_eval <- c()

for (i in batch_s) {
 logger <- mx.metric.logger$new()
 model_dnn = mx.model.FeedForward.create(lro, X = data_train.x,
 y=data_train.y, ctx=devices, array.layout = "rowmajor",
 eval.data=list(data=data_val.x,
 label=data_val.y),
 num.round = n_epoch, array.batch.size = batch_s,
 learning.rate = 1e-3, momentum = 0, wd = 0,
 eval.metric = mx.metric.rmse,
 epoch.end.callback = mx.callback.log.train.metric(1,
 logger), initializer = mx.init.uniform(0.385))

 # save RMSE final metrics (train + evaluation)
 RMSE_train = logger$train

	 152	

 RMSE_eval = logger$eval

 err_train = c(err_train, RMSE_train[n_epoch])
 err_eval = c(err_eval, RMSE_eval[n_epoch])

 # make predictions and save all results
 y_pred_train <- predict(model_dnn, data_train.x, array.layout =
 "rowmajor")
 y_pred_val <- predict(model_dnn, data_val.x, array.layout =
 "rowmajor")
 y_pred_test <- predict(model_dnn, data_test.x, array.layout =
 "rowmajor")

 err_tr = sqrt(mean((data_train.y - y_pred_train)^2))
 err_v = sqrt(mean((data_val.y - y_pred_val)^2))
 err_tst = sqrt(mean((data_test.y - y_pred_test)^2))

 tr_err_true = c(tr_err_true, err_tr)
 v_err_true = c(v_err_true, err_v)
 tst_err_true = c(tst_err_true, err_tst)

 tr_pred_list[[match(i,batch_s)]] = y_pred_train
 v_pred_list[[match(i,batch_s)]] = y_pred_val
 tst_pred_list[[match(i,batch_s)]] = y_pred_test

 models_list[[match(i,batch_s)]] = model_dnn
 RMSE_list[[match(i,batch_s)]] = logger

 rm(logger)
 rm(model_dnn)
 rm(RMSE_train)
 rm(RMSE_eval)
 rm(y_pred_train)
 rm(y_pred_val)
 rm(y_pred_test)
 rm(err_tr)
 rm(err_v)
 rm(err_tst)

}

plot the RMSE over epoch for each batch size
pdf('LC_batch_size_plot.pdf', width = 6, height = 12)
par(mfrow=c(4,2))
plot(RMSE_list[[1]]$train,type = "l", col = "red",
 ylim = c(0,1), xlab ="Epoch", ylab ="RMSE")
lines(RMSE_list[[1]]$eval,type = "l", col = "blue")
title(main ="Batch size = 4")
legend("topright", c("training RMSE","validation RMSE"),
 cex=0.8, col = c("red","blue"), pch = c(19,19), lty=1:1)

plot(RMSE_list[[2]]$train,type = "l", col = "red",
 ylim = c(0,1), xlab ="Epoch", ylab ="RMSE")
lines(RMSE_list[[2]]$eval,type = "l", col = "blue")
title(main ="Batch size = 8")
legend("topright", c("training RMSE","validation RMSE"),
 cex=0.8, col = c("red","blue"), pch = c(19,19), lty=1:1)

plot(RMSE_list[[3]]$train,type = "l", col = "red",
 ylim = c(0,2), xlab ="Epoch", ylab ="RMSE")
lines(RMSE_list[[3]]$eval,type = "l", col = "blue")
title(main ="Batch size = 16")

	 153	

legend("topright", c("training RMSE","validation RMSE"),
 cex=0.8, col = c("red","blue"), pch = c(19,19), lty=1:1)

plot(RMSE_list[[4]]$train,type = "l", col = "red",
 ylim = c(0,2.5),xlab ="Epoch", ylab ="RMSE")
lines(RMSE_list[[4]]$eval,type = "l", col = "blue")
title(main ="Batch size = 32")
legend("topright", c("training RMSE","validation RMSE"),
 cex=0.8, col = c("red","blue"), pch = c(19,19), lty=1:1)

plot(RMSE_list[[5]]$train,type = "l", col = "red",
 ylim = c(0,1.1),xlab ="Epoch", ylab ="RMSE")
lines(RMSE_list[[5]]$eval,type = "l", col = "blue")
title(main ="Batch size = 64")
legend("topright", c("training RMSE","validation RMSE"),
 cex=0.8, col = c("red","blue"), pch = c(19,19), lty=1:1)

plot(RMSE_list[[6]]$train,type = "l", col = "red",
 ylim = c(0,1.5),xlab ="Epoch", ylab ="RMSE")
lines(RMSE_list[[6]]$eval,type = "l", col = "blue")
title(main ="Batch size = 128")
legend("topright", c("training RMSE","validation RMSE"),
 cex=0.8, col = c("red","blue"), pch = c(19,19), lty=1:1)

plot(RMSE_list[[7]]$train,type = "l", col = "red",
 ylim = c(0,1.3), xlab ="Epoch", ylab ="RMSE")
lines(RMSE_list[[7]]$eval,type = "l", col = "blue")
title(main ="Batch size = 256")
legend("topright", c("training RMSE","validation RMSE"),
 cex=0.8, col = c("red","blue"), pch = c(19,19), lty=1:1)

plot(RMSE_list[[8]]$train,type = "l", col = "red",
 ylim = c(0,2.1),xlab ="Epoch", ylab ="RMSE")
lines(RMSE_list[[8]]$eval,type = "l", col = "blue")
title(main ="Batch size = 512")
legend("topright", c("training RMSE","validation RMSE"),
 cex=0.8, col = c("red","blue"), pch = c(19,19), lty=1:1)

dev.off()

save the RMSE values in a table
batches <- c("batch_4", "batch_8", "batch_16","batch_32",
 "batch_64", "batch_128", "batch_256", "batch_512")
RMSE_true_table <- data.frame("batch_size"= batches,
 "train_RMSE"= tr_err_true,
 "validation_RMSE" = v_err_true)
print(RMSE_true_table)

A.5	Learning	curve	for	the	learning	rate	

LC_alfa.R ####

this script contains the code for creating the learning curve for
different values of the learning rate (alfa)

the initial part of the script (in which the dataset is loaded and
partitioned and the network architecture is created) is the same as
in initial_trial.R, so it is omitted for simplicity

	 154	

train the different models with a for cycle ######

devices <- mx.cpu()
mx.set.seed(0)
n_epoch = 500
batch_s = 128
alfa = c(1e-6,3e-6,1e-5,3e-5,1e-4,3e-4,1e-3,3e-3,1e-2,3e-2)

RMSE_list = list()
models_list = list()
tr_pred_list = list()
v_pred_list = list()
tst_pred_list = list()
tr_err_true <- c()
v_err_true <- c()
tst_err_true <- c()
err_train <- c()
err_eval <- c()

for (i in alfa) {
 logger <- mx.metric.logger$new()
 model_dnn = mx.model.FeedForward.create(lro, X = data_train.x,
 y=data_train.y, ctx=devices, array.layout = "rowmajor",
 eval.data=list(data=data_val.x,
 label=data_val.y),
 num.round = n_epoch, array.batch.size = batch_s,
 learning.rate = i, momentum = 0, wd = 0,
 eval.metric = mx.metric.rmse,
 epoch.end.callback = mx.callback.log.train.metric(1,
 logger), initializer = mx.init.uniform(0.385))

 # save RMSE final metrics (train + evaluation)
 RMSE_train = logger$train
 RMSE_eval = logger$eval

 err_train = c(err_train, RMSE_train[n_epoch])
 err_eval = c(err_eval, RMSE_eval[n_epoch])

 # make predictions and save all results
 y_pred_train <- predict(model_dnn, data_train.x, array.layout =
 "rowmajor")
 y_pred_val <- predict(model_dnn, data_val.x, array.layout =
 "rowmajor")
 y_pred_test <- predict(model_dnn, data_test.x, array.layout =
 "rowmajor")

 err_tr = sqrt(mean((data_train.y - y_pred_train)^2))
 err_v = sqrt(mean((data_val.y - y_pred_val)^2))
 err_tst = sqrt(mean((data_test.y - y_pred_test)^2))

 tr_err_true = c(tr_err_true, err_tr)
 v_err_true = c(v_err_true, err_v)
 tst_err_true = c(tst_err_true, err_tst)

 tr_pred_list[[match(i,alfa)]] = y_pred_train
 v_pred_list[[match(i,alfa)]] = y_pred_val
 tst_pred_list[[match(i,alfa)]] = y_pred_test

 models_list[[match(i,alfa)]] = model_dnn
 RMSE_list[[match(i,alfa)]] = logger

 rm(logger)
 rm(model_dnn)

	 155	

 rm(RMSE_train)
 rm(RMSE_eval)
 rm(y_pred_train)
 rm(y_pred_val)
 rm(y_pred_test)
 rm(err_tr)
 rm(err_v)
 rm(err_tst)

}

plot the RMSE over epoch for each alfa
pdf('LC_alfa.pdf', width = 6, height = 12)
par(mfrow=c(5,2))
plot(RMSE_list[[1]]$train,type = "l", col = "red",
 ylim = c(0,5.8), xlab ="Epoch", ylab ="RMSE")
lines(RMSE_list[[1]]$eval,type = "l", col = "blue")
title(main ="Learning rate = 1e-6")
legend("topright", c("training RMSE","validation RMSE"),
 cex=0.8, col = c("red","blue"), pch = c(19,19), lty=1:1)

plot(RMSE_list[[2]]$train,type = "l", col = "red",
 ylim = c(0,2.4), xlab ="Epoch", ylab ="RMSE")
lines(RMSE_list[[2]]$eval,type = "l", col = "blue")
title(main ="Learning rate = 3e-6")
legend("topright", c("training RMSE","validation RMSE"),
 cex=0.8, col = c("red","blue"), pch = c(19,19), lty=1:1)

plot(RMSE_list[[3]]$train,type = "l", col = "red",
 ylim = c(0,3.4), xlab ="Epoch", ylab ="RMSE")
lines(RMSE_list[[3]]$eval,type = "l", col = "blue")
title(main ="Learning rate = 1e-5")
legend("topright", c("training RMSE","validation RMSE"),
 cex=0.8, col = c("red","blue"), pch = c(19,19), lty=1:1)

plot(RMSE_list[[4]]$train,type = "l", col = "red",
 ylim = c(0,5.2),xlab ="Epoch", ylab ="RMSE")
lines(RMSE_list[[4]]$eval,type = "l", col = "blue")
title(main ="Learning rate = 3e-5")
legend("topright", c("training RMSE","validation RMSE"),
 cex=0.8, col = c("red","blue"), pch = c(19,19), lty=1:1)

plot(RMSE_list[[5]]$train,type = "l", col = "red",
 ylim = c(0,3.3),xlab ="Epoch", ylab ="RMSE")
lines(RMSE_list[[5]]$eval,type = "l", col = "blue")
title(main ="Learning rate = 1e-4")
legend("topright", c("training RMSE","validation RMSE"),
 cex=0.8, col = c("red","blue"), pch = c(19,19), lty=1:1)

plot(RMSE_list[[6]]$train,type = "l", col = "red",
 ylim = c(0,1.6),xlab ="Epoch", ylab ="RMSE")
lines(RMSE_list[[6]]$eval,type = "l", col = "blue")
title(main ="Learning rate = 3e-4")
legend("topright", c("training RMSE","validation RMSE"),
 cex=0.8, col = c("red","blue"), pch = c(19,19), lty=1:1)

plot(RMSE_list[[7]]$train,type = "l", col = "red",
 ylim = c(0,1.4), xlab ="Epoch", ylab ="RMSE")
lines(RMSE_list[[7]]$eval,type = "l", col = "blue")
title(main ="Learning rate = 1e-3")
legend("topright", c("training RMSE","validation RMSE"),
 cex=0.8, col = c("red","blue"), pch = c(19,19), lty=1:1)

	 156	

plot(RMSE_list[[8]]$train,type = "l", col = "red",
 ylim = c(0,2),xlab ="Epoch", ylab ="RMSE")
lines(RMSE_list[[8]]$eval,type = "l", col = "blue")
title(main ="Learning rate = 3e-3")
legend("topright", c("training RMSE","validation RMSE"),
 cex=0.8, col = c("red","blue"), pch = c(19,19), lty=1:1)

plot(RMSE_list[[9]]$train,type = "l", col = "red",
 ylim = c(0,0.8),xlab ="Epoch", ylab ="RMSE")
lines(RMSE_list[[9]]$eval,type = "l", col = "blue")
title(main ="Learning rate = 1e-2")
legend("topright", c("training RMSE","validation RMSE"),
 cex=0.8, col = c("red","blue"), pch = c(19,19), lty=1:1)

plot(RMSE_list[[10]]$train,type = "l", col = "red",
 ylim = c(0,0.8),xlab ="Epoch", ylab ="RMSE")
lines(RMSE_list[[10]]$eval,type = "l", col = "blue")
title(main ="Learning rate = 3e-2")
legend("topright", c("training RMSE","validation RMSE"),
 cex=0.8, col = c("red","blue"), pch = c(19,19), lty=1:1)

dev.off()

save the RMSE values in a table
RMSE_true_table <- data.frame("n_alfa"=alfa,
 "train_RMSE"= tr_err_true,
 "validation_RMSE" = v_err_true)
print(RMSE_true_table)

A.6	Learning	curve	for	the	number	of	hidden	neurons	

LC_n_hidden.R ####

this script contains the code for creating the learning curve for
different numbers of hidden neurons

the initial part of the script (in which the dataset is loaded and
partitioned and the network architecture is created) is the same as
in initial_trial.R, so it is omitted for simplicity

train the different models with a for cycle ######

devices <- mx.cpu()
mx.set.seed(0)
n_epoch = 500
batch_s = 128
alfa = 3e-4
n_hid <- c(55,80,160,240)

RMSE_list = list()
models_list = list()
tr_pred_list = list()
v_pred_list = list()
tst_pred_list = list()
tr_err_true <- c()
v_err_true <- c()
tst_err_true <- c()
err_train <- c()
err_eval <- c()

	 157	

for (i in n_hid) {
 fc1 <- mx.symbol.FullyConnected(data, name = "fc1", num_hidden = i)

 logger <- mx.metric.logger$new()
 model_dnn = mx.model.FeedForward.create(lro, X = data_train.x,
 y=data_train.y, ctx = devices,array.layout = "rowmajor",
 eval.data=list(data=data_val.x,
 label=data_val.y),
 num.round = n_epoch, array.batch.size = batch_s,
 learning.rate = alfa, momentum = 0, wd = 0,
 eval.metric = mx.metric.rmse,
 epoch.end.callback = mx.callback.log.train.metric(1,
 logger), initializer = mx.init.uniform(0.385))

 # save RMSE final metrics (train + evaluation)
 RMSE_train = logger$train
 RMSE_eval = logger$eval

 err_train = c(err_train, RMSE_train[n_epoch])
 err_eval = c(err_eval, RMSE_eval[n_epoch])

 # make predictions and save all results
 y_pred_train <- predict(model_dnn, data_train.x, array.layout =
 "rowmajor")
 y_pred_val <- predict(model_dnn, data_val.x, array.layout =
 "rowmajor")
 y_pred_test <- predict(model_dnn, data_test.x, array.layout =
 "rowmajor")

 err_tr = sqrt(mean((data_train.y - y_pred_train)^2))
 err_v = sqrt(mean((data_val.y - y_pred_val)^2))
 err_tst = sqrt(mean((data_test.y - y_pred_test)^2))

 tr_err_true = c(tr_err_true, err_tr)
 v_err_true = c(v_err_true, err_v)
 tst_err_true = c(tst_err_true, err_tst)

 tr_pred_list[[match(i,n_hid)]] = y_pred_train
 v_pred_list[[match(i,n_hid)]] = y_pred_val
 tst_pred_list[[match(i,n_hid)]] = y_pred_test

 models_list[[match(i,n_hid)]] = model_dnn
 RMSE_list[[match(i,n_hid)]] = logger

 rm(logger)
 rm(model_dnn)
 rm(RMSE_train)
 rm(RMSE_eval)
 rm(y_pred_train)
 rm(y_pred_val)
 rm(y_pred_test)
 rm(err_tr)
 rm(err_v)
 rm(err_tst)

}

plot the RMSE over the number of hidden neurons
pdf('LC_n_hidden.pdf', width = 10, height = 8)

	 158	

plot(n_hid, tr_err_true,type = "o", pch = 20, col = "red", ylim =
c(0.3,1),
 xlab ="Number of hidden neurons", ylab ="RMSE")
lines(n_hid, v_err_true,type = "o", pch = 20, col = "blue")
title(main ="Learning curve")
legend("topright", c("training RMSE","validation RMSE"),
 cex=0.8, col = c("red","blue"), pch = c(19,18), lty=1:1)
dev.off()

save the RMSE values in a table
RMSE_true_table <- data.frame("n_hidden"= n_hid,
 "train_RMSE"= tr_err_true,
 "validation_RMSE" = v_err_true)
print(RMSE_true_table)

A.7	Learning	curve	for	the	weight	decay	

LC_lambda_mix.R ####

this script contains the code for creating the learning curve for
different values of lambda having a mixed dataset

rm(list = ls())
library(readxl)
require(mxnet)

load the dataset ######

data <- read_excel("bank_data_no_outl_2.xlsx")

pre-processing of the data ######

extract specific variables
df = data[,c(3:83)]
df[is.na(df)] <- 0 # impute missing values as 0

scale the variables with standardization
df_final <- matrix(as.matrix(df), ncol = ncol(df), dimnames = NULL)

tr_mean <-
apply(df_final[c(1:3375,6638:9841,12921:15985,19058:22064,24810:27398)
,], 2, mean)
tr_sd <-
apply(df_final[c(1:3375,6638:9841,12921:15985,19058:22064,24810:27398)
,], 2, sd)

df_norm = matrix(, nrow = dim(df_final)[1], ncol = dim(df_final)[2])
for (i in 1:81) {
 df_norm[,i] = (df_final[,i]- tr_mean[i])/tr_sd[i]
}

partition dataset into train, validation and test sets ######

partition the dataset into 60% (years 2010-2014),
20% (years 2015-2016) and 20% (years 2017-2018)
data_train =
df_norm[c(1:3375,6638:9841,12921:15985,19058:22064,24810:27398),]
data_val = df_norm[c(3376:6637,15986:19057),]

	 159	

data_test = df_norm[c(9842:12920,22065:24809),]

data_train.x = data_train[,-81] # predictors
data_train.y = data_train[,81] # response variable

data_val.x = data_val[,-81]
data_val.y = data_val[,81]

data_test.x = data_test[,-81]
data_test.y = data_test[,81]

create network architecture ######

data <- mx.symbol.Variable("data")

1st hidden layer – 80 neurons
fc1 <- mx.symbol.FullyConnected(data, name = "fc1", num_hidden=80)
act1 <- mx.symbol.Activation(fc1, name ="relu1", act_type = "relu")
output layer
fc_out <- mx.symbol.FullyConnected(act1, name="fc_out", num_hidden=1)
lro <- mx.symbol.LinearRegressionOutput(fc_out)

train the different models with a for cycle ######

devices <- mx.cpu()
mx.set.seed(0)
n_epoch = 500
batch_s = 128
alfa = 3e-4
lambda <- c(0.01,0.02,0.04,0.08,0.16,0.32,0.64)

RMSE_list = list()
models_list = list()
tr_pred_list = list()
v_pred_list = list()
tst_pred_list = list()
tr_err_true <- c()
v_err_true <- c()
tst_err_true <- c()
err_train <- c()
err_eval <- c()

for (i in lambda) {
 logger <- mx.metric.logger$new()
 model_dnn = mx.model.FeedForward.create(lro, X = data_train.x,
 y=data_train.y, ctx=devices, array.layout = "rowmajor",
 eval.data=list(data=data_val.x,
 label=data_val.y),
 num.round = n_epoch, array.batch.size = batch_s,
 learning.rate = alfa, momentum = 0, wd = i,
 eval.metric = mx.metric.rmse,
 epoch.end.callback = mx.callback.log.train.metric(1,
 logger), initializer = mx.init.uniform(0.385))

 # save RMSE final metrics (train + evaluation)
 RMSE_train = logger$train
 RMSE_eval = logger$eval

 err_train = c(err_train, RMSE_train[n_epoch])
 err_eval = c(err_eval, RMSE_eval[n_epoch])

	 160	

 # make predictions and save all results
 y_pred_train <- predict(model_dnn, data_train.x, array.layout =
 "rowmajor")
 y_pred_val <- predict(model_dnn, data_val.x, array.layout =
 "rowmajor")
 y_pred_test <- predict(model_dnn, data_test.x, array.layout =
 "rowmajor")

 err_tr = sqrt(mean((data_train.y - y_pred_train)^2))
 err_v = sqrt(mean((data_val.y - y_pred_val)^2))
 err_tst = sqrt(mean((data_test.y - y_pred_test)^2))

 tr_err_true = c(tr_err_true, err_tr)
 v_err_true = c(v_err_true, err_v)
 tst_err_true = c(tst_err_true, err_tst)

 tr_pred_list[[match(i,lambda)]] = y_pred_train
 v_pred_list[[match(i,lambda)]] = y_pred_val
 tst_pred_list[[match(i,lambda)]] = y_pred_test

 models_list[[match(i,lambda)]] = model_dnn
 RMSE_list[[match(i,lambda)]] = logger

 rm(logger)
 rm(model_dnn)
 rm(RMSE_train)
 rm(RMSE_eval)
 rm(y_pred_train)
 rm(y_pred_val)
 rm(y_pred_test)
 rm(err_tr)
 rm(err_v)
 rm(err_tst)

}

plot the RMSE over epoch
pdf('LC_lambda_mix.pdf', width = 10, height = 6)
par(mfrow=c(1,1))
plot(lambda, tr_err_true,type = "o", pch = 20, col = "red", ylim =
c(0,1),
 xlab ="Lambda", ylab ="RMSE")
lines(lambda, v_err_true,type = "o", pch = 20, col = "blue")
title(main ="Learning curve")
legend("topright", c("training RMSE","validation RMSE"),
 cex=0.4, col = c("red","blue"), pch = c(19,18), lty=1:1)
dev.off()

save the RMSE values in a table
RMSE_true_table <- data.frame("n_lambda"=lambda,
 "train_RMSE"= tr_err_true,
 "validation_RMSE" = v_err_true)
print(RMSE_true_table)

A.8	Choice	of	the	momentum	

mom_mix.R ####

	 161	

this script contains the code for creating the learning curve for
different values of momentum

the initial part of the script (in which the dataset is loaded and
partitioned and the network architecture is created) is the same as
in LC_lambda_mix.R, so it is omitted for simplicity

train the different models with a for cycle ######

devices <- mx.cpu()
mx.set.seed(0)
n_epoch = 500
batch_s = 128
alfa = 3e-4
lambda = 0.04
momnt <- c(0.5,0.9,0.99)

RMSE_list = list()
models_list = list()
tr_pred_list = list()
v_pred_list = list()
tst_pred_list = list()
tr_err_true <- c()
v_err_true <- c()
tst_err_true <- c()
err_train <- c()
err_eval <- c()

for (i in momnt) {
 logger <- mx.metric.logger$new()
 model_dnn = mx.model.FeedForward.create(lro, X = data_train.x,
 y=data_train.y, ctx=devices, array.layout = "rowmajor",
 eval.data=list(data=data_val.x,
 label=data_val.y),
 num.round = n_epoch, array.batch.size = batch_s,
 learning.rate = alfa, momentum = i, wd = lambda,
 eval.metric = mx.metric.rmse,
 epoch.end.callback = mx.callback.log.train.metric(1,
 logger), initializer = mx.init.uniform(0.385))

 # save RMSE final metrics (train + evaluation)
 RMSE_train = logger$train
 RMSE_eval = logger$eval

 err_train = c(err_train, RMSE_train[n_epoch])
 err_eval = c(err_eval, RMSE_eval[n_epoch])

 # make predictions and save all results
 y_pred_train <- predict(model_dnn, data_train.x, array.layout =
 "rowmajor")
 y_pred_val <- predict(model_dnn, data_val.x, array.layout =
 "rowmajor")
 y_pred_test <- predict(model_dnn, data_test.x, array.layout =
 "rowmajor")

 err_tr = sqrt(mean((data_train.y - y_pred_train)^2))
 err_v = sqrt(mean((data_val.y - y_pred_val)^2))
 err_tst = sqrt(mean((data_test.y - y_pred_test)^2))

 tr_err_true = c(tr_err_true, err_tr)
 v_err_true = c(v_err_true, err_v)
 tst_err_true = c(tst_err_true, err_tst)

	 162	

 tr_pred_list[[match(i,momnt)]] = y_pred_train
 v_pred_list[[match(i,momnt)]] = y_pred_val
 tst_pred_list[[match(i,momnt)]] = y_pred_test

 models_list[[match(i,momnt)]] = model_dnn
 RMSE_list[[match(i,momnt)]] = logger

 rm(logger)
 rm(model_dnn)
 rm(RMSE_train)
 rm(RMSE_eval)
 rm(y_pred_train)
 rm(y_pred_val)
 rm(y_pred_test)
 rm(err_tr)
 rm(err_v)
 rm(err_tst)

}

save the RMSE values in a table
RMSE_true_table <- data.frame("momentum"= momnt,
 "train_RMSE"= tr_err_true,
 "validation_RMSE" = v_err_true)
print(RMSE_true_table)

A.9	Choice	of	the	dropout	probability	

only_drop_mix.R ####

this script contains the code for creating the learning curve for
different values of dropout probability with lambda = 0

rm(list = ls())
library(readxl)
require(mxnet)

load the dataset ######

data <- read_excel("bank_data_no_outl_2.xlsx")

pre-processing of the data ######

extract specific variables
df = data[,c(3:83)]
df[is.na(df)] <- 0 # impute missing values as 0

scale the variables with standardization
df_final <- matrix(as.matrix(df), ncol = ncol(df), dimnames = NULL)

tr_mean <-
apply(df_final[c(1:3375,6638:9841,12921:15985,19058:22064,24810:27398)
,], 2, mean)
tr_sd <-
apply(df_final[c(1:3375,6638:9841,12921:15985,19058:22064,24810:27398)
,], 2, sd)

	 163	

df_norm = matrix(, nrow = dim(df_final)[1], ncol = dim(df_final)[2])
for (i in 1:81) {
 df_norm[,i] = (df_final[,i]- tr_mean[i])/tr_sd[i]
}

partition the data into train, validation and test sets ######

partition the dataset into 60% (years 2010-2014),
20% (years 2015-2016) and 20% (years 2017-2018)
data_train =
df_norm[c(1:3375,6638:9841,12921:15985,19058:22064,24810:27398),]
data_val = df_norm[c(3376:6637,15986:19057),]
data_test = df_norm[c(9842:12920,22065:24809),]

data_train.x = data_train[,-81] # predictors
data_train.y = data_train[,81] # response variable

data_val.x = data_val[,-81]
data_val.y = data_val[,81]

data_test.x = data_test[,-81]
data_test.y = data_test[,81]

create network architecture ######

data <- mx.symbol.Variable("data")

1st hidden layer – 80 neurons
fc1 <- mx.symbol.FullyConnected(data, name = "fc1", num_hidden=80)
act1 <- mx.symbol.Activation(fc1, name ="relu1", act_type = "relu")
drop1 <- mx.symbol.Dropout(data = act1, p=0.1)
output layer
fc_out <- mx.symbol.FullyConnected(drop1, name="fc_out", num_hidden=1)
lro <- mx.symbol.LinearRegressionOutput(fc_out)

train the different models with a for cycle ######

devices <- mx.cpu()
mx.set.seed(0)
n_epoch = 500
batch_s = 128
alfa = 3e-4
lambda = 0
momnt = 0.9
dropout <- c(0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8)

RMSE_list = list()
models_list = list()
tr_pred_list = list()
v_pred_list = list()
tst_pred_list = list()
tr_err_true <- c()
v_err_true <- c()
tst_err_true <- c()
err_train <- c()
err_eval <- c()

for (i in dropout) {

	 164	

 drop1 <- mx.symbol.Dropout(data = act1, p=i)
 logger <- mx.metric.logger$new()
 model_dnn = mx.model.FeedForward.create(lro, X = data_train.x,
 y=data_train.y, ctx=devices, array.layout = "rowmajor",
 eval.data=list(data=data_val.x,
 label=data_val.y),
 num.round = n_epoch, array.batch.size = batch_s,
 learning.rate = alfa, momentum = momnt, wd = lambda,
 eval.metric = mx.metric.rmse,
 epoch.end.callback = mx.callback.log.train.metric(1,
 logger), initializer = mx.init.uniform(0.385))

 # save RMSE final metrics (train + evaluation)
 RMSE_train = logger$train
 RMSE_eval = logger$eval

 err_train = c(err_train, RMSE_train[n_epoch])
 err_eval = c(err_eval, RMSE_eval[n_epoch])

 # make predictions and save results
 y_pred_train <- predict(model_dnn, data_train.x, array.layout =
 "rowmajor")
 y_pred_val <- predict(model_dnn, data_val.x, array.layout =
 "rowmajor")
 y_pred_test <- predict(model_dnn, data_test.x, array.layout =
 "rowmajor")

 err_tr = sqrt(mean((data_train.y - y_pred_train)^2))
 err_v = sqrt(mean((data_val.y - y_pred_val)^2))
 err_tst = sqrt(mean((data_test.y - y_pred_test)^2))

 tr_err_true = c(tr_err_true, err_tr)
 v_err_true = c(v_err_true, err_v)
 tst_err_true = c(tst_err_true, err_tst)

 tr_pred_list[[match(i,dropout)]] = y_pred_train
 v_pred_list[[match(i,dropout)]] = y_pred_val
 tst_pred_list[[match(i,dropout)]] = y_pred_test

 models_list[[match(i,dropout)]] = model_dnn
 RMSE_list[[match(i,dropout)]] = logger

 rm(logger)
 rm(model_dnn)
 rm(RMSE_train)
 rm(RMSE_eval)
 rm(y_pred_train)
 rm(y_pred_val)
 rm(y_pred_test)
 rm(err_tr)
 rm(err_v)
 rm(err_tst)

}

save the RMSE values in a table
RMSE_true_table <- data.frame("dropout_prob"= dropout,
 "train_RMSE"= tr_err_true,
 "validation_RMSE" = v_err_true)
print(RMSE_true_table)

	 165	

A.10	Choice	of	the	dropout	probability	with	L2	
regularization	

drop_mix.R ####

this script contains the code for creating the learning curve for
different values of dropout probability with lambda = 0.04

the initial part of the script (in which the dataset is loaded and
partitioned and the network architecture is created) is the same as
in only_drop_mix.R, so it is omitted for simplicity

train the different models with a for cycle ######

devices <- mx.cpu()
mx.set.seed(0)
n_epoch = 500
batch_s = 128
alfa = 3e-4
lambda = 0.04
momnt = 0.9
dropout <- c(0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8)

RMSE_list = list()
models_list = list()
tr_pred_list = list()
v_pred_list = list()
tst_pred_list = list()
tr_err_true <- c()
v_err_true <- c()
tst_err_true <- c()
err_train <- c()
err_eval <- c()

for (i in dropout) {
 drop1 <- mx.symbol.Dropout(data = act1, p=i)
 logger <- mx.metric.logger$new()
 model_dnn = mx.model.FeedForward.create(lro, X = data_train.x,
 y=data_train.y, ctx=devices, array.layout = "rowmajor",
 eval.data=list(data=data_val.x,
 label=data_val.y),
 num.round = n_epoch, array.batch.size = batch_s,
 learning.rate = alfa, momentum = momnt, wd = lambda,
 eval.metric = mx.metric.rmse,
 epoch.end.callback = mx.callback.log.train.metric(1,
 logger), initializer = mx.init.uniform(0.385))

 # save RMSE final metrics (train + evaluation)
 RMSE_train = logger$train
 RMSE_eval = logger$eval

 err_train = c(err_train, RMSE_train[n_epoch])
 err_eval = c(err_eval, RMSE_eval[n_epoch])

 # make predictions and save results
 y_pred_train <- predict(model_dnn, data_train.x, array.layout =
 "rowmajor")
 y_pred_val <- predict(model_dnn, data_val.x, array.layout =
 "rowmajor")
 y_pred_test <- predict(model_dnn, data_test.x, array.layout =

	 166	

 "rowmajor")

 err_tr = sqrt(mean((data_train.y - y_pred_train)^2))
 err_v = sqrt(mean((data_val.y - y_pred_val)^2))
 err_tst = sqrt(mean((data_test.y - y_pred_test)^2))

 tr_err_true = c(tr_err_true, err_tr)
 v_err_true = c(v_err_true, err_v)
 tst_err_true = c(tst_err_true, err_tst)

 tr_pred_list[[match(i,dropout)]] = y_pred_train
 v_pred_list[[match(i,dropout)]] = y_pred_val
 tst_pred_list[[match(i,dropout)]] = y_pred_test

 models_list[[match(i,dropout)]] = model_dnn
 RMSE_list[[match(i,dropout)]] = logger

 rm(logger)
 rm(model_dnn)
 rm(RMSE_train)
 rm(RMSE_eval)
 rm(y_pred_train)
 rm(y_pred_val)
 rm(y_pred_test)
 rm(err_tr)
 rm(err_v)
 rm(err_tst)

}

save the RMSE values in a table
RMSE_true_table <- data.frame("dropout_prob"= dropout,
 "train_RMSE"= tr_err_true,
 "validation_RMSE" = v_err_true)
print(RMSE_true_table)

plot the RMSE over the epochs
pdf('plot_LC_drop_mix.pdf', width = 8, height = 6)
par(mfrow=c(1,1))
plot(RMSE_list[[6]]$train,type = "l", col = "red", ylim = c(0,1.3),
 xlab ="Epoch", ylab ="RMSE")
lines(RMSE_list[[6]]$eval,type = "l", col = "blue")
title(main ="Learning curve")
legend("topright", c("training RMSE","validation RMSE"),
 cex=0.8, col = c("red","blue"), pch = c(19,18), lty=1:1)
dev.off()

plot the actual against predicted and residuals of the best model
pdf('act_pred_drop_mix.pdf', width = 12, height = 6)
par(mfrow=c(1,2))
plot(data_train.y, tr_pred_list[[6]],
 xlab = "actual", ylab = "predicted", xlim = c(-2.5,10), ylim =
c(-2.5,11),
 main = "Plot of actual vs predicted train values")
abline(a=0,b=1)
plot(data_test.y, tst_pred_list[[6]],
 xlab = "actual", ylab = "predicted",xlim = c(-2.5,10), ylim = c(-
2.5,11),
 main = "Plot of actual vs predicted test values")
abline(a=0,b=1)
dev.off()

	 167	

pdf('resid_pred_drop_mix.pdf', width = 12, height = 6)
par(mfrow=c(1,2))
plot(tr_pred_list[[6]], data_train.y-tr_pred_list[[6]],
 ylab = "Residuals", xlab = "Predicted values",
 main = "Plot of the train residuals")
abline(0, 0)
plot(tst_pred_list[[6]], data_test.y-tst_pred_list[[6]],
 ylab = "Residuals", xlab = "Predicted values",
 main = "Plot of the test residuals")
abline(0, 0)
dev.off()
	

	 	

	 168	

	

