
Master’s Degree programme

in Computer Science

Final Thesis

Automated verification of the Mixed
Content policy by using Web

Platform Tests

Supervisor
Prof. Stefano Calzavara

Graduand
Valentino Dalla Valle

Matriculation Number 874210

Academic Year
2022/2023

To my best friend Andrea (Miche)

3

Abstract
As the reliance on web applications for critical tasks such as banking and shopping grows,

ensuring user data and privacy protection becomes imperative. This thesis delves into the

intricacies of web application security, emphasizing the pivotal role of browser client-side se-

curity mechanisms, particularly the Mixed Content policy. Managed by theWorldWideWeb

Consortium (W3C), this policy addresses vulnerabilities introduced when HTTPS-loaded

webpages request insecure resources, which can lead to exploitable attacks. The study pro-

poses an automated methodology to verify the Mixed Content policy’s implementation in

web browsers using the Web Platform Test suite. The results show that the policy’s imple-

mentation is not always compliant with the specification. In particular, exploitable vulner-

abilities were found in two major web browsers. The vulnerabilities have been disclosed to

the vendors and have been fixed, and one CVE was assigned with a base score of 8.8. To

understand the presence of mixed content in the wild, a large-scale analysis of the top 100K

websites was conducted, comparing the data obtained with information from 2015. The re-

sults show that despite the community effort to reduce the presence of mixed content, the

issue is still present in a non-negligible number of websites.

5

Acknowledgements
Many thanks are due to my supervisor, Prof. Stefano Calzavara. His support and guidance

have been fundamental for the completion of this work. The opportunities he provided have

been invaluable for my personal and professional growth.

A special thanks also goes to the members of the Security and Privacy research group at

TU Wien. The feedback, discussions, and ideas they provided made this work possible. In

particular, I would like to thank Lorenzo Veronese, Pedro Bernardo, Marco Squarcina, and

Matteo Maffei, whom I worked with during my time at TU Wien. The time spent with them

helped me to understand the opportunities and challenges of research, and it has been a great

source of inspiration for my future career.

Words are not enough to tank my family, who supported me during my studies, as well as

my girlfriend Gaia, a constant source of love and encouragement. My mom Marta and my

sister Veronica have always been there for me, and I am so grateful to them.

Finally, I would like to thank my best friend Andrea, who has been with me at the start

of this journey. His support and friendship have been fundamental for so many years and

his concrete help during the first challenging years of university has been invaluable. He

suddenly passed away in November 2020. Here I would like to remember him as a hard

worker, an excellent student, and a wonderful person. A special thought goes to his family:

Luigina, Giovanni, Irene, and Chiara

7

Contents

1 Introduction 15

2 Background 19
2.1 The Web Platform . 19

2.1.1 HTML . 19

2.1.2 JavaScript as client-side language . 21

2.1.3 Identifying resources on the web . 23

2.1.4 Classifying resources based on the content types 24

2.1.5 HTTP . 24

2.1.6 Same Origin Policy . 26

2.2 Securing communications with HTTPS . 28

2.2.1 Security of HTTPS . 28

2.2.2 Improper HTTPS deployment . 29

2.2.3 Current HTTPS deployment on the web 30

2.3 Mixed Content . 32

2.3.1 Upgradeable content . 33

2.3.2 Blockable content . 33

2.3.3 Overview on Mixed Content Filtering 34

2.3.4 Obsolescences . 34

2.3.5 Integrations of Mixed Content . 35

3 Methodology 39
3.1 Overview on the WPT project . 39

3.1.1 Test Layout . 39

3.1.2 Javascript Tests . 40

3.1.3 Practical considerations on the WPT test suite 41

3.2 Leverage WPT for automatic verification of web security mechanisms 43

3.3 Execution Traces . 43

3.3.1 Browser instrumentation . 44

3.4 Web Invariants . 45

3.5 Trace Verification Pipeline . 46

3.5.1 Trace collection . 47

3.5.2 Trace verification . 47

3.6 Encoding mixed content invariants . 49

3.7 The notion of potential trustworthiness . 49

3.7.1 Is origin potentially trustworthy? . 49

3.7.2 Modeling the concept of potentially trustworthy origin 50

9

3.7.3 Is URL potentially trustworthy? . 51

3.7.4 Model the concept of potentially trustworthy URL 52

3.8 Does settings prohibit mixed security contexts? 52

3.8.1 Modeling the algorithm "Does settings prohibitsmixed security contexts?" 53

3.9 Upgrade a mixed content request to a potentially trustworthy URL, if appro-

priate . 55

3.9.1 Modeling the type of content: blockable vs upgradable 56

3.10 Should fetching request be blocked as mixed content? 57

3.10.1 Modeling the algorithm "Should fetching request be blocked as mixed
content?" . 58

3.11 More mixed content algorithms and invariants 60

3.11.1 Should response to request be blocked as mixed content? 60

3.11.2 Model the filtering of content in nested contexts 61

4 Results 65
4.1 Results for Webkit . 65

4.1.1 sandbox attribute bypass Mixed Content restrictions in WebKit . . 66

4.1.2 Framed pages bypass Mixed Content restrictions in WebKit 66

4.1.3 The attack: CVE-2023-38592 . 66

4.1.4 Mixed content beacon endpoints not filtered in WebKit 70

4.2 Results for Firefox . 71

4.2.1 Problem with WebSockets in Firefox 71

4.3 Results for Chromium . 72

4.4 Mixed Content in the wild . 74

4.4.1 Previous results . 74

4.4.2 Crawling the web . 74

4.4.3 Results of crawling . 76

4.4.4 Mixed content in the wild: 2015 and 2023 81

5 Conclusions 83

10

List of Figures
2.1 Websites using HTTPS . 31

2.2 Encrypted traffic of Chrome users by OS platform 31

3.1 Trace Verification Pipeline. 47

4.1 Circular heatmap of the CVSS vector attributes for CVE-2023-38592 68

4.2 Websites from the top 1000 list that present Mixed Content 77

4.3 Mixed Content requests in the top 1000 websites 78

4.4 Websites from the top 100K list that present Mixed Content 79

4.5 Mixed Content requests in the top 100K websites 80

List of Tables
3.1 WPT Test flags and features . 40

3.3 Web Invariants . 46

3.2 Considered WPT tests . 63

4.1 Tests that returned SAT for some invariant in WebKit 65

4.2 Details of the CVSS vector attributes for CVE-2023-38592 68

4.3 Tests that returned SAT for some invariant in Firefox 73

4.4 Comparison of mixed content in the wild: 2015 and 2023 81

11

List of source codes
2.1.1 RFC 6454 Algorithm to evaluate whether two URLs are same-origin 26

2.3.1 Algorithm "Main Fetch" . 35

2.3.2 Chromium implementation of "Should fetching request be blocked as mixed content?" . 36

3.1.1 Example of testharness.js . 41

3.3.1 Example of execution trace . 44

3.4.1 Example of invariant . 46

3.5.1 Example of SMT-LIB encoding of invariant . 48

3.5.2 Example of final SMT-LIB code . 48

3.7.1 Algorithm "Is origin potentially trustworthy?" . 50

3.7.2 SMT-LIB implementation of "Is origin potentially trustworthy?" 51

3.7.3 Algorithm "Is URL potentially trustworthy?" . 51

3.7.4 SMT-LIB implementation of "Is URL potentially trustworthy?" 52

3.8.1 Algorithm "Does settings prohibit mixed security contexts?" 53

3.8.2 SMT-LIB function to obtain origin of a blob: URI 53

3.8.3 SMT-LIB function to obtain origin of a data: URI 54

3.8.4 SMT-LIB function to understand if blob: and data: URI are potentially trustworthy . . 54

3.8.5 SMT-LIB implementation of "Does settings prohibits mixed security contexts?" 55

3.9.1 Algorithm "Upgrade a mixed content request to a potentially trustworthy URL, if appro-
priate" . 55

3.9.2 SMT-LIB function to categorize mixed-content . 57

3.10.1 Algorithm "Should fetching request be blocked as mixed content?" 57

3.10.2 Formula for blockable mixed content filtering . 58

3.10.3 SMT-LIB encoding of the invariant for blockable mixed content filtering 59

3.10.4 Formula for upgradeable mixed content filtering 59

3.10.5 SMT-LIB encoding of the invariant for upgradeable mixed content filtering 60

3.11.1 Algorithm "Should response to request be blocked as mixed content?" 60

3.11.2 SMT-LIB function to identify if the ancestor chain permits mixed content 61

3.11.3 Formula for mixed content filtering in nested contexts 62

3.11.4 SMT-LIB encoding of the invariant for mixed content filtering in nested contexts . . . 62

4.1.1 Commit message for the fix of CVE-2023-38592 . 69

4.1.2 How Apple fixed the framing security violation. 69

4.1.3 How Apple fixed sandboxing security violation. 70

4.2.1 Message for the disclosure of Firefox WebSocket filtering problem 72

4.4.1 Populating crawling list using anchors present in the current document 75

4.4.2 Obtain mixed content request classification while crawling 76

13

1 Introduction
The work I present in this thesis is based on my internship at the Research Unit Security

and Privacy of TU Wien from April to July 2023. There, I worked on a project that aims at

automating the verification of security policy implementations in web browsers. The project

is ideated by Lorenzo Veronese, Pedro Bernardo, Marco Squarcina, and Matteo Maffei from

TUWien, together with Stefano Calzavara from Ca’ Foscari University and Pedro Adão from

the University of Lisbon.

My contribution to this project was the study and modeling of the Mixed Content policy.

As users increasingly rely on web applications for sensitive tasks like banking, shopping,

and communication, it becomes vital to ensure that their data and privacy are protected

from potential breaches. The security of web applications is a complex problem: it involves

multiple layers of software and a shared responsibility between browser vendors and web

developers.

Browser client-side security mechanisms are fundamental as they are the first line of de-

fense against attacks and can mitigate the effects of vulnerabilities in web applications.

Securitymechanisms are regulated via specifications developed by various standardization

bodies. These specifications define platform-independent rules that browsers must follow.

However, the implementation of these specifications is not always straightforward as often

may require changes to existing browser components which were not developed with such

integration in mind.

One of the most relevant client-side security mechanisms is the Mixed Content policy,

which regulates the inclusion of insecure resources in HTTPS-delivered web pages. The

specification is managed by the World Wide Web Consortium (W3C) and has gone through

multiple revisions in the last few years.

When a webpage loaded over HTTPS requests resources over an insecure connection, it

introduces vulnerabilities that can be exploited by attackers.

These vulnerabilities can lead toman-in-the-middle attacks, where attackers can intercept,

alter, or inject malicious content into the insecure requests.

The Mixed Content policy is designed to mitigate these attacks by blocking the insecure

requests. Its correct implementation is therefore fundamental to ensure the security of users.

In this thesis is proposed a methodology to automate the verification of the Mixed Content

policy in web browsers. To do so, we will leverage the Web Platform Test (WPT) suite, a

collection of tests that are maintained by browser vendors, specification authors, and web

developers.

After having analyzed the implementation of the browser security mechanism, we will

move on to study the presence of mixed content in web applications. Our attention will

15

be focused on the top 100K websites, trying to compare up-to-date information with data

collected in 2015. This will allow us to understand the effectiveness of the Mixed Content

security mechanisms as well as evaluate the web developers’ efforts in securing their appli-

cations.

The thesis is structured in the following parts:

• Chapter 2: provides the background knowledge needed to understand the thesis. It

starts with a brief introduction to theWeb Platform, its architecture, and its main tech-

nologies. The focus is on web standards and respective browser implementations. A

brief look at the Same Origin Policy will follow, in order to understand its role in se-

curing the web and understand its limitations.

Then the HTTPS protocol is introduced, with a focus on the security properties it

provides and the risks that could arise with a wrong deployment.

Finally, an overview of mixed content and the W3C specification that regulates its

inclusion in web pages. A brief look at an example of the implementation of mixed

content filtering is considered, to better understand the current state of the art.

• Chapter 3: provides the methodology used to automate the verification of the Mixed

Content policy in web browsers. The Web Platform Test project is briefly presented,

with an overview of the test suite structure and the role it has in the web ecosystem.

A framework that leverages WPT to automate the verification of security policies is

then presented. An overview of the pipeline used by the framework is provided, with

a focus on the design choices and the implementation details required to perform a

large-scale formal analysis of data collected from the execution of WPT tests in web

browsers.

Finally, the Mixed Content specification is studied in detail, to extract a model of the

policy that can be used within the framework. The challenges encountered during

this process are presented, with a focus on the choices made to obtain a platform-

independent, efficient, and precise model that can be deployed on a large-scale anal-

ysis. Each step of the model extraction is presented with a direct reference to the

corresponding component of the specification.

• Chapter 4: the chapter is divided into two parts. First, the results of the analysis

on the three major web browsers (Chromium, Firefox, and Safari) are presented. The

security vulnerabilities found are discussed, with a focus on the impact they have on

the security of users. A brief look at the responsible disclosure process is provided,

looking at the reports that were sent to browser vendors. The fix implemented by the

vendors is discussed, with a look at the corrections made to the codebase.

After having analyzed the deployment of mixed content policy in web browsers, a

study on the presence of mixed content on the web is conducted. The data collected

from crawling the top 100K websites is presented, with an analysis of mixed content

16

at different levels of granularity (per category and request type). The analysis is per-

formed in two steps: the top 1000 websites are studied first, then the whole dataset is

considered.

Finally, a comparison of the results with data from a study conducted in 2015 will pro-

vide the basis for a discussion on the effectiveness of the different filtering approaches

proposed in the last years.

Numerous code snippets are included in the thesis, and various types of programming lan-

guages are considered. To easily identify them, the background color of the snippet encodes

the language used. In the following, the languages used and the color encoding.

• HTML : webpages source code.

• JavaScript : webpages source code.

• C++ : web browsers source code.

• SMT-LIB : implementation of web invariants.

• Pseudocode : algorithms defined in specifications.

• Text : generic text (e.g. vulnerabilities disclosure reports, commmit messages, etc.)

17

2 Background

2.1 The Web Platform
The term "web platform" refers to the collection of tools, languages, and protocols that enable

the creation, operation, and experience of websites and web applications.

The web platform is continually evolving and most of its components are open and stan-

dardized, ensuring that web content can be accessed and experienced consistently across

different devices and platforms.

Several organizations play pivotal roles in the creation, management, and evolution of

web standards. These organizations collaborate with industry experts, browser vendors, and

developers to ensure the web remains open, interoperable, and user-friendly.

Among these organizations, there are:

• World Wide Web Consortium (W3C): Founded in 1994 by Tim Berners-Lee, de-

velops open standards following a well-defined process which includes public drafts,

feedback collection, candidate recommendations, and final recommendations.

• WebHypertext Application TechnologyWorking Group (WHATWG): Founded
in 2004 by individuals from Apple, Mozilla, and Opera. The primary focus is on HTML

and related web technologies by maintaining "living standards": continuously updated

document that don’t have version numbers.

• Internet Engineering Task Force (IETF): Founded in 1986, develops and promotes

Internet standards, in particular the standards that comprise the Internet protocol suite

(TCP/IP). The IETF’s standardization process involves drafting documents called "Re-

quest for Comments" (RFCs). These documents are reviewed, discussed, and iterated

upon by the community before becoming standards.

2.1.1 HTML
HTML is the standard markup language used to create the structural framework of web

pages. The markup components of HTML are called tags and are usually expressed as a pair

of opening and closing elements used to delimit the content of the tag. The content of a tag

can be either text or other HTML tags, and the nesting of tags defines the structure of the

page. Tags are enclosed in angle brackets, and the opening tag can contain attributes that

provide additional information about the element. The HTML specification [41] defines a set

of standard tags that can be used to create the structure of a web page. The <html> tag is the

root element of an HTML page and is used to define the document type. The <head> tag is

19

used to define the header of the page and contains metadata about the document, while the

<body> tag is used to define the body of the page. Upon receiving an HTML document, the

browser parses the document and renders the page accordingly.

DOM tree

The structure provided by the HTML tags is used by browsers to build the Document Object

Model (DOM) tree. The DOM tree is a representation of the HTML document as a tree

of nodes, where each node represents an HTML object. It defines the logical structure of

the document, providing a reference for the methods that access and manipulate it. All the

HTML components have a representation in the DOM tree: HTML elements are element

nodes, HTML attributes are attribute nodes and the text contained in the HTML elements

forms text nodes. The <html> tag is the root element of the DOM tree, and it is the parent

of the <head> and <body> elements.

The DOM tree implementation is regulated by the WHATWG DOM Living standard [42]

that proposes a platform-neutral model for the tree, as well as the interfaces that can be used

to access and manipulate it.

Subresources

Within a single HTML document, it is possible to include references to other resources such

as images, stylesheets, and scripts. As the browser parses the HTML document, it may

encounter a subresource, when this happens, the requested content will be fetched by the

browser via a new separate HTTP request. When the content is retrieved, the browser can

use it to render the page. Depending on the type of resource requested, the browser can

decide to fetch and execute the content immediately or to defer the request. As an example,

if a subresource consists of a script requested via the <script> tag, the browser will halt the

rendering of the page until the script is fetched and executed. However, attributes like async

and defer can modify this behavior, allowing the browser to continue parsing the HTML

while the script is being fetched or executed.

Once a subresource is fetched, it can be cached by the browser. This means that on sub-

sequent visits or page loads, the browser can use the cached version instead of fetching it

again from the server, speeding up the page load time.

For certain subresources, like images, browsers can opt for "lazy loading": that is loading

the resource only when it’s about to be displayed on the screen (e.g. when a user scrolls to

it). Web developers can enable lazy loading of subresources by using the loading="lazy"

attribute. Lazy loading can improve the initial page load time, especially for pages with a

lot of images. Another benefit of lazy loading subresources is data and battery saving: in

a recent blog article by the Chromium project, experiments showed a ∼ 10% reduction in

bytes downloaded per page with lazy loading enabled in Chromium [1].

Frames

The HTML tag <iframe> , short for "inline frame", defines a type of subresource used to

allow an external webpage to be embedded within the current page. It consists of a window

20

within a webpage that displays another separate web document. Inline frames are used for

embedding content like advertisements, maps, videos, or even entire web pages within a

parent page. The source of the content to be embedded is specified using the src attribute.

An example of an inline frame is <iframe src="https://www.example.com"></iframe> . When

the content is fetched, it will be rendered within the boundaries of the iframe on the parent

page. This content is independent of the parent page, meaning it will have its own DOM tree

and code execution context.

2.1.2 JavaScript as client-side language
JavaScript is a high-level prototype-based object-oriented programming language used on

the web to add interactivity, dynamic behavior, and complex functionalities to websites. The

language conforms with the ECMAScript specification [17] that ensures the interoperability

of web pages across different browsers.

When JavaScript code is embedded in websites it is executed by the client’s browser using

an interpreter (usually referred to as JavaScript engine).

JavaScript code can be embedded in web pages in different ways, the most common being:

• Inline scripts: code can be embedded directly in the document using the <script>

tag.

• External scripts: code can be included as a subresource via <script src=""> to spec-

ify the URL of the script.

• Event handlers: code can be embedded in HTML objects to be executed in response

to events triggered by the user or the browser, such as clicks, mouse movements, or

keyboard input. An example of an event handler is

<button onclick="alert('Button clicked')">Click</button> . When the button is clicked,

the code specified in the onclick attribute is executed.

Manipulate the DOM tree via JavaScript

JavaScript, when used in the context of web browsers, provides the ability to interact with

and manipulate the DOM tree of a document. This capability is fundamental to creating

dynamic, interactive, and responsive web applications. Scripts embedded in the page can

access and modify elements’ attributes as well as add or remove nodes from the DOM tree.

Such functionalities are enabled by a series of methods and properties that are part of the

WHATWG DOM living standard. As an example, the method document.getElementById()

can be used to retrieve a reference to an element in the DOM tree.

The method document.createElement('tagname') can be used to create a new element node

and parent.appendChild(childNode) can be used to append the element as a child of a node.

XMLHttpRequest

The XMLHttpRequest (XHR) API is a JavaScript API to asynchronously send HTTP requests

from aweb browser to a web server. It is a component of AJAX programming (Asynchronous

21

JavaScript and XML), a set of web development techniques that allow web pages to be up-

dated by exchanging data with a web server behind the scenes.

The XMLHttpRequest API is defined by the WHATWG XMLHttpRequest living standard

[45]. The API is event-driven and exposes a series of methods and properties that can be

used to retrieve data from a server. The most relevant methods of the XHR API are:

• open(method, URL, [async, user, password]) : initializes a request with the given pa-

rameters.

• send([body]) : sends the request to the server with the optional body.

• abort() : aborts the request if it has already been sent.

Fetch

The Fetch API is a JavaScript API that provides an interface for fetching resources over the

network. It is the successor of the XMLHttpRequest API and is regulated by the WHATWG

Fetch living standard [43].

The Fetch API is promise-based and exposes a series of methods and properties that can

be used to create and manage requests. The main method of this API is fetch(resource)

which creates a request for the resource provided (usually a URL) and returns a promise that

resolves to the response.

WebSockets

The WebSocket protocol provides full-duplex communication channels over a single TCP

connection, ensuring lower overhead than half-duplex alternatives such as HTTP polling.

With a WebSocket connection, the server can send content to the browser without the need

for a request to be made by the client first, allowing messages to be passed back and forth

while keeping the connection open. The connection is in cleartext by default but can be

encrypted via the Secure WebSocket protocol (WSS), built on top of TLS.

The WebSocket API is a JavaScript API that provides an interface for creating and man-

aging WebSocket connections. The API is regulated by the Whatwg HTML living standard

[41]. TheWebSocket API is event-driven and exposes a series of methods and properties that

can be used to interact with the server. The most relevant methods of the WebSockets API

are:

• new WebSocket(url) : the constructor used to create a new WebSocket connection.

• send(data) : sends data to the server. The data can be a string, a Blob, an ArrayBuffer,

or an ArrayBufferView.

• close() : closes the connection.

Being event-driven means that theWebSocket API exposes a series of events that can be used

to handle the different stages of the connection. For example, when a message is received

from the server, the browser dispatches a message event.

22

To react when the browser receives data from the server, one can register a listener for the

message event: socket.onmessage = (event) => alert(event.data) .

2.1.3 Identifying resources on the web
A Uniform Resource Identifier (URI) is a unique sequence of characters that identifies a re-

source used in the web.

URL

A URL (Uniform Resource Locator) is a subset of URIs that contains information about the

location of a resource on the web. The URL specification is defined by the WHATWG URL

living standard [44]. A URL consists of the following components

• Scheme : the protocol used to access the resource.

• Authority : optional component to provide authentication information.

• Host : the domain name or IP address of the server where the resource is located.

• Port : the port number on which the server is listening for requests.

• Path : the location of the resource on the server.

• Query : a set of key-value pairs that are appended to the URL and are used to pass

additional information to the server.

• Fragment : a string of characters that identifies a secondary resource within the pri-

mary resource.

An example of a URL is the following string:

https :// user:pass @ example.com : 8080 /path/to/resource ? key1=value1&key2=value2 # fragment

Main URI schemes

The scheme is the initial part of a URI, preceding the colon (:) and indicates how the identifier

should be interpreted or accessed. It defines the namespace and the protocol for the rest of

the URI. The most common URI schemes are:

• http: and https: used in URLs to access resources on the web via the HTTP and

HTTPS protocols.

• ws: and wss: used in URLs to access resources on the web via the WebSocket and

Secure WebSocket protocols.

• about: used in browsers to reveal internal state and built-in functions. Two examples

of resources using this scheme are about:blank and about:srcdoc . The first is used to

create empty documents. The second is the fixed URI of iframes whose content comes

from the srcdoc attribute.

23

• data: used to include data in-line in web pages as if they were external resources.

• blob: used to create URLs that reference binary data as if theywere external resources.

• file: used to reference files on the user’s computer.

2.1.4 Classifying resources based on the content types
Multipurpose Internet Mail Extensions (MIME) types are a standard way of classifying files

on the Internet according to their nature and format. They are defined and standardized by

the RFC 6838 [23]. MIME types are composed of two parts: a type and a subtype, separated by

a slash (/). The type represents the general category of the data, while the subtype specifies

the exact kind of data. For example, the MIME type text/html indicates that the document

is a text file and its content is HTML. A MIME type always has both a type and a subtype,

never just one or the other.

An optional parameter can be added to provide additional details, such as the character

encoding used. The parameter is defined with the format: type/subtype;parameter=value

MIME types are case-insensitive but are traditionally written in lowercase. The parameter

values can be case-sensitive.

Some relevant MIME types are:

• text/html : represents an HTML document.

• text/css : represents a CSS stylesheet.

• text/javascript : represent JavaScript code.

Previously, the MIME type application/javascript was also used but is now depre-

cated.

• image/png : represents a PNG image.

• image/jpeg : represents a JPEG image.

• application/json : represents a JSON document.

• application/octet-stream : used to represent arbitrary binary data.

2.1.5 HTTP
The Hypertext Transfer Protocol (HTTP) is a stateless application-level protocol for dis-

tributed, collaborative, hypertext information systems. The protocol is currently regulated

by the RFC 9112 [24]. The protocol operates on a request-response model: a client sends

a request to the server which responds with the requested data and/or an appropriate sta-

tus code. In HTTP each request from a client to a server is treated in isolation and without

reference to any previous requests.

The default port for HTTP communications is 80.

24

HTTP request

An HTTP request is made by a client to a server with the aim of accessing a resource hosted

by the server. To make the request, the client uses a URL that identifies the location of the

resource to be fetched. The HTTP request is composed of a series of parameters:

• Method: indicates the desired action to be performed. The most common methods are

GET , POST , DELETE and OPTIONS .

• URL: the URL of the resource to be fetched.

• Version: the version of the HTTP protocol used to perform the request.

• Headers: a set of key-value pairs that provide additional information about the re-

quest.

• Body: the body of the request, used to send data to the server.

Request headers

HTTP request headers provide meta-information about the resource to be fetched or about

the client itself in order to allow the server to tailor the response accordingly. For this thesis,

the following request headers will be considered:

• User-Agent: a string that identifies the client software.

• Host: the domain name of the server (and optionally the port number).

• Accept: a list of acceptable content types for the response, expressed using the MIME

type format.

An empty line is used to separate the headers from the body of the request.

HTTP response

AnHTTP response is made by a server to a client to provide the resource that was requested,

or inform the client of the success of the action requested. The HTTP response is composed

of a series of parameters:

• Version: the version of the HTTP protocol used to perform the request.

• Status code and Status text: a numeric code and textual equivalent that indicates the

result of the request. Examples of response status are 200 OK , 301 Moved Permanently ,

404 Not Found , and 500 Internal Server Error .

• Headers: a set of key-value pairs that provide additional information about the re-

sponse.

• Body: the body of the response, used to send data to the client.

25

Response headers

HTTP response headers provide meta-information about the response to allow the client to

interpret it accordingly. For this work, we will focus on the following response headers:

• Content-Type: the MIME type of the response body.

• Location: the URL of the resource to be fetched in case of a redirection.

2.1.6 Same Origin Policy
The SOP is a fundamental security mechanism of web browsers and consists of restricting the

interaction between documents and resources having different origins. It prevents malicious

websites from accessing sensitive information or performing unauthorized actions on behalf

of users by isolating different origins, disallowing one from interactingwith other’s resources

such as cookies, DOM elements, web requests, and web storage.

SOP applies to various resources, but the mechanism lacks a formal specification. As a

consequence, different browsers may implement it in slightly different ways. [30].

Definition of origin

The SOP mechanism is based on the well-standardized concept of origin. The concept of

origin is regulated by the RFC 6454 [22]. Two URLs have the same origin if the protocol, port

(if specified), and host are the same for both. When the port is omitted, the default port of

the scheme is implicitly assumed. The RFC defines an algorithm (Snippet 2.1.1) to evaluate

whether two URLs are same-origin.

1 Two origins are "the same" if, and only if, they are identical. In
2 particular:
3

4 - If the two origins are scheme/host/port triples, the two origins
5 are the same if, and only if, they have identical schemes, hosts,
6 and ports.
7

8 - An origin that is a globally unique identifier cannot be the same
9 as an origin that is a scheme/host/port triple.
10

11 Two URIs are same-origin if their origins are the same.

Snippet 2.1.1: RFC 6454 Algorithm to evaluate whether two URLs are same-origin

According to the RFC, if we consider the URL https://www.example.com/path , then:

• https://www.example.com/other will be same-origin.

• https://www.example.com:443 will also be same-origin as omitting the port evaluates

to the default one.

26

• http://www.example.com will not be same-origin as the schemes are different.

• https://other.example.com will not be same-origin as the hosts are different.

SOP and cross-origin resources

Interaction between two resources having different origins is regulated by SOP as follows:

• Cross-origin writes: Examples are links, redirects, and form submissions. Typically

allowed by SOP.

• Cross-origin embeddings: Examples are scripts, iframes, stylesheets, images, and

videos. Typically allowed by SOP (but potentially regulated by other policies, such as

Mixed Content or X-FrameOptions)

• Cross-origin reads: Examples are XHR and Fetch requests. Typically disallowed by

SOP (but potentially allowed by CORS). WebSocket cross-origin communication is not

disallowed by SOP.

Risks of cross-origin embeddings

Cross-origin embedding refers to the practice of including subresources from a different ori-

gin than that of the embedding document. Subresources that can be subject to cross-origin

embedding are:

• Scripts: included in a page via the <script> tag.

• Stylesheets: included in a page via the <link> tag.

• Resource Media: included in a page via , <video> and <audio> tags.

• Frames: included in a page via the <iframe> tag.

• Fonts: included in a page via the @font-face CSS rule.

• Objects: included in a page via the <object> tag.

There are risks linked with cross-origin embedding: we previously considered how scripts

can potentially access the full DOM of the embedding page. This may lead to the disclosure

of sensitive information, as the script will have control over the resources of the embedding

page.

Therefore, we say that cross-origin embeddings do enable third-party dependencies: rely-

ing on resources provided by a third party (like scripts from CDNs) means that if the third

party is compromised the embedding page will be exposed.

In general, if an attacker has control over the embedded content, it can leverage it to

perform malicious actions on the embedding page.

27

2.2 Securing communications with HTTPS
When using HTTP, the data exchanged between the client and the server is sent in cleart-

ext. This enables a man-in-the-middle attacker to intercept the transmitted data and read or

modify the content.

HTTPS (Hypertext Transfer Protocol Secure) is an extension of the HTTP protocol, de-

signed to ensure secure communication over the web. HTTPS leverages the TLS (Transport

Layer Security) cryptographic protocol that provides encrypted communication, ensuring

both the authenticity and integrity of data exchanged between a user’s browser and the web

server. HTTPS piggybacks HTTP entirely on top of TLS, this way the entirety of the un-

derlying HTTP protocol can be encrypted, that is request’s URL, query parameters, headers,

and cookies. The default port for HTTPS communications is 443.

2.2.1 Security of HTTPS
When using HTTP, the data exchanged between the client and the server is sent in cleartext.

Moreover, the client cannot be sure that the server it is communicating with is the one it

expects.

HTTPS is designed to solve these problems by providing three main security properties:

• Authentication: ensuring that the data is coming from the expected server.

• Confidentiality: ensuring that the data is not readable by third parties.

• Integrity: ensuring that the data is not altered during transmission.

To obtain these goals HTTPS relies upon a combination of three key ingredients: symmet-

ric encryption, asymmetric encryption, and certificates.

Authentication

When a website decides to use HTTPS, it requests a digital certificate from a third party

called Certification Authority (CA). This certificate contains the website’s public key and is

digitally signed by the CA. When a user connects to the website, the server presents this

certificate. The user’s browser contains a list of trusted CAs and can verify the certificate’s

authenticity by checking the CA’s digital signature. If the certificate is valid and matches the

server’s domain, it confirms the server’s authenticity.

HTTPS does not require authenticating the client: it is possible to use client certificates,

but this is rarely done in practice.

Confidentiality

The TLS protocol provides confidentiality by encrypting the data exchanged between the

client and the server. The TLS handshake is preliminary to the actual data exchange and

is used to establish a secure connection. During the TLS handshake, the client and server

negotiate a shared secret key that is used to encrypt and decrypt data. To do so they rely on

28

asymmetric encryption: the client obtains the server public key from the server certificate

and uses it to encrypt its own public key, generated on the fly. They negotiate a shared secret

key by exchanging messages encrypted with their own private key and decrypted with the

other’s public key. Once the symmetric key is exchanged, they can use it to encrypt and

decrypt data with a symmetric encryption algorithm.

Integrity

When data is sent over HTTPS, a hash of the data is generated using a cryptographic hash

function. This hash is then encrypted with the sender’s private key, creating a digital sig-

nature. Upon receiving the data, the recipient can decrypt the digital signature using the

sender’s public key, obtaining the original hash. The recipient then computes the hash of the

received data and compares it to the received value. If they match, it confirms that the data

has not been tampered with during transmission.

2.2.2 Improper HTTPS deployment

Deploying HTTPS is a challenging task due to the technical complexity of its underlying

protocols (i.e., HTTP, TLS) as well as the complexity of the TLS certificate ecosystem and

this of popular client applications such as web browsers [32].

Many websites still avoid ubiquitous encryption and force only critical functionality and

sensitive data access over encrypted connections while allowing more innocuous function-

ality to be accessed over HTTP. In such contexts, the bad TLS configuration may provide a

false sense of security.

The following is a quick overview of the most common mistakes in HTTPS deployment.

Using invalid, revoked or expired certificates

If the server is using an invalid certificate, the client will not be able to verify its authenticity.

This scenario may occur when the server is using a self-signed certificate or a certificate

issued by an untrusted CA.

Another problem with HTTPS certificates comes with the expiration date. Certificates

have a limited validity period, after which they are no longer considered valid. Certificate

renewal must be performed before the expiration date or the certificate is considered invalid.

Revoking certificates is a mechanism used to invalidate a certificate before its expiration

date. This is necessary when the certificate’s private key is compromised, the certificate

was issued erroneously, or for other reasons that might undermine the certificate’s trust-

worthiness. There are several mechanisms in place to handle certificate revocation, such as

Certificate Revocation Lists (CRLs) and the Online Certificate Status Protocol (OCSP).

Modern web browsers do present a warning message to the user when they detect an

invalid, expired, or revoked certificate, giving the user the option to proceed to the website

anyway but suggesting to avoid it.

29

Using weak cipher suites

The cipher suite is a combination of authentication, encryption, message authentication code

(MAC), and hashing algorithms used. During the handshake, the client and the server nego-

tiate a cipher suite to use for the connection. This choice is based on the order of preference

of the client among the ciphers supported by both.

Many common HTTPS misconfigurations are caused by choosing the wrong cipher suites.

Old or outdated cipher suites are often vulnerable to attacks. It’s essential to disable weak

or deprecated ciphers and ensure that the server is configured to use strong, modern cipher

suites.

Both SSLv2 and SSLv3 are deprecated and should not be used. Cipher suites of such ver-

sions are in the form SSLv2_* and SSLv3_* .

Similarly, suites using weak hashing algorithms such as MD5 and SHA1 are deprecated

and should not be used. Cipher suites of such versions are in the form *_MD5 and *_SHA .

Redirect from HTTP

A user may attempt to navigate to a website that supports HTTPS via plain HTTP. This could

happen when he manually enters the URL with the http scheme, or he may be following

an outdated link. It is important that in this case, the web server redirects the user to the

HTTPS version of the website.

When the server receives anHTTP request, it should respondwith a 301 Moved Permanently

status code and a Location header containing the HTTPS URL. This way the user’s browser

will automatically redirect the user to the HTTPS version of the website for the current con-

nection as well as future ones.

SSL stripping

Even if the webserver supports HTTPS redirect, an attacker can still intercept the initial

HTTP request and tamper with it. This scenario enables the SSL stripping attack [25] where

the attacker can prevent the redirect from happening.

The man-in-the-middle attacker modifies the initial response to remove the redirect to

HTTPS. The user’s browser will then load the HTTP version of the website, allowing the

attacker to intercept all the following traffic. To enable a transparent attack, the attacker will

set up an HTTPS connection to the server, encrypting and forwarding the traffic he received

in cleartext from the client. When the server sends the encrypted reply, the attacker will

decrypt it (removing, or "striping" the SSL encapsulation) and forward it to the client, who

will be unaware of the fact that the server is sending encrypted traffic.

2.2.3 Current HTTPS deployment on the web

HTTPS is the de facto standard for secure communication over the web and nowadays, it

is used by most of the websites. Google’s HTTPS encryption on the web - Transparency

Report [19] is a reliable source of up-to-date statistics on the percentage of pages loaded over

30

HTTPS. The report presents data collected via two different sources: the Chrome browser

(via the usage statistics collected by default) and the Google search engine.

Figure 2.1: Websites using HTTPS. Data from [19]

The report provides information at different levels of granularity: country, device type

(mobile or desktop), and platform (OS where the Chrome browser is installed). From the

report, it is possible to observe how the percentage of pages loaded over HTTPS has been

steadily increasing over the years (Figure 2.1). Upon desktop platforms, the report presents

higher percentages of pages loaded over HTTPS under Windows compared to macOS and

Linux (Figure 2.2).

Figure 2.2: Encrypted traffic of Chrome users by OS platform. Data from [19]

The data provided by the Google report are in line with the results presented by the 2022

Web Almanac. The Web Almanac presents data collected via the HTTP Archive [31], a

project that crawls the web and collects information on publicly available websites.

According to Web Almanac, in 2022 the percentage of requests that used HTTPS was 94%

on desktop and 93% on mobile.

31

2.3 Mixed Content
In July 2014, W3C’sWeb Application Security Working Group published the First Public Work-
ing Draft of the Mixed Content Specification. The draft was intended as a reference for an

open discussion on how user agents should handle the fetching of insecure resources in the

context of secure documents. The specification went through a series of revisions and cur-

rently, it is a W3C’s Candidate Recommendation Draft [34]. As stated by the document, the

aim of the specification is that of “describing how a user agent should handle fetching of

content over unencrypted or unauthenticated connections in the context of an encrypted

and authenticated document”.

The Mixed Content specification has to cover a relevant security aspect: when a user

loads a document through a secure channel (such as HTTPS), the user agent can assert the

authentication of the connection, the establishment of encrypted communication, and guar-

antee data integrity. However, the strength of such assertions is considerably diminished

when subresources (such as frames, scripts, and images) are loaded via an insecure channel.

As requests for such subresources are wide open for man-in-the-middle attacks, there could

be a significant impact on user privacy and security if such are loaded into the document.

The status of such content is defined as mixed, given that security assertions can no longer

be expressed.

The specification details how user agents can mitigate these risks by limiting a resource’s

ability to communicate in the clear, filtering requests and responses based on secure charac-

teristics of the current document.

Different types of mixed content are defined, based on the type of subresource being

fetched. It is meaningful to perform such distinction as there is a difference in the risk of

including active elements such as scripts or stylesheets compared to passive elements such

as images, audio, and videos. For example, an insecurely loaded script allows the attacker ar-

bitrary code execution in the context of the page. This can result in destructive consequences

as other security mechanisms won’t help in protecting the user (as observed in 2.1.6, SOP

won’t block the content).

On the other hand, an image loaded as mixed content will not expose the user to the same

risk. Images do not contain any type of executable code or command, and their inclusion in

the page will result in the simple visualization of the data fetched. The risks in this case are

related to the context where the image is used: if we consider for example a web e-mail client

that uses images to populate the two buttons “Send” and “Delete draft”, a man-in-the-middle

attacker can swap the content of the two network responses and phish the user. Even if this

represents a clear security problem, the risk is much smaller compared to the previous case.

When we considered the various HTTPS misconfigurations (such as certificate problems

or bad cipher suites), we noted how web browsers present warning messages to the user if

any of those problems are detected. This happens during the TLS handshake: before any

sensitive content is exchanged.

As mixed content exposes the user to similar risks as HTTPS misconfigurations, if there

was no regulation put in place against mixed content presence in webpages, then users would

be silently exposed. This is exactly what happened before the specification was proposed:

no warning message was presented, and content was silently loaded on the page, exposing

32

the unaware users.

2.3.1 Upgradeable content

TheW3CMixed Content specification defines mixed content as upgradeablewhen the risk of
allowing its usage as mixed content is outweighed by the risk of breaking significant portions

of the web. This category includes:

1. Requests whose destination is "image". This corresponds to most images loaded via

 , with the exception of the ones that do use the srcset attribute or are embed-

ded in a <picture> tag. The CSS proprieties background-image and border-image also

belong to this category.

2. Requestswhose destination is "video". This corresponds to elements loaded via <video>

and <source> .

3. Requestswhose destination is "audio". This corresponds to elements loaded via <audio>

and <source> .

2.3.2 Blockable content

Any mixed content that is not upgradeable is considered to be blockable. Some elements that

do belong in this category are:

1. JavaScript code included in the page via <script> .

2. CSS code included in the page via <style> .

3. Frames included in the page via <iframe> .

4. WebSocket endpoints contacted via the WebSocket API.

5. Requests made via the XMLHttpRequest and fetch APIs.

6. Fonts loaded via the CSS rule @font-face .

7. External resources included via <object> and <embed> .

8. Forms actions defined via <form action="..."> .

9. Web application manifest included via <link rel="manifest" href="..."> .

10. Anchors presenting an hyperlink auditing endpoint via .

33

2.3.3 Overview on Mixed Content Filtering
The Mixed Content specification proposes a series of algorithms to determine if a certain

resource is mixed content or not. The first set of algorithms is defined to determine if the

context of a request is a relevant one for filtering mixed content. If a document is loaded

over HTTP, then there is no need to perform any filtering as all the requests will be insecure.

Mixed content is only relevant when the document is loaded over a secure protocol, such as

HTTPS.

To reason about the safeness of including a resource over a specific environment, the spec-

ification adopts the concept of potential trustworthiness. If the environment is potentially

trustworthy, then resources loaded over it cannot be mixed content.

As a consequence, resources loaded in a potentially trustworthy environment are checked

to see if they are potentially trustworthy as well. If the checks report that the resource is not

potentially trustworthy, then it is mixed content and the respective network request cannot

proceed.

Sometimes, reasoning about trustworthiness can be difficult. For example, framed pages

may inherit the trustworthiness of the parent page. This is the case of a framed page loaded

via a data: URI. For this reason, the specification defines that the ancestors’ chain should be

considered when determining if mixed content should be blocked or not in a particular en-

vironment. Performing the checks may therefore require recursively exploring the ancestor

chain, going up different levels (and eventually considering the top level).

When a particular resource is categorized as mixed content, dealing with it is a matter

of deciding whether to block the request or to upgrade it to a secure one. The specification

defines that the request should be blocked if the content is categorized as blockable. If the

content is upgradeable, an auto-upgrade process is attempted. Autoupgrading the request is

done by changing the scheme of the request’s URL to https . This way the request will be

performed over a secure channel opening the possibility to load the resource securely. The

resource will not be loaded on the page if the auto-upgrade fails (i.e. if the server cannot

provide the resource securely).

It’s possible to understand how the approach proposed by the specification is about strictly

blockingmixed content. Thismeans that all the resources loaded by the pagewill be retrieved

over a secure connection. This is the safest approach as no possibility is left for a network

attacker to tamper with any of the content of the page. However, this approach may lead to

breakages in the page.

2.3.4 Obsolescences
Earlier versions of the specification proposed a different filtering approach. Blocking the

loading of insecure images, audio, and video was not enforced: the content was loaded and

an in-between security indicator was shown (generally the removal of the padlock icon in

the address bar). Eventually, this method did not provide a clear indicator of risk to users

and as a consequence, there was little to no incentive for developers to avoid mixed content

in webpages.

This pushedW3C to come up with the latest revision of the specification, with the current

34

approach commonly referenced as “strict mode” or “strict blocking”, where the webpage is

loaded entirely over a secure transport. With the current approach, the auto-upgrading of

content comes as a mitigation of potential breakages (other than an approach to increase

security), as well as a solution to minimize the amount of developer effort.

Previous namings

The approach attempted with previous versions of the specification explains the former nam-

ing of upgradeable content, that was optionally blockable as the decision to block it was del-

egated to browser vendors, with the majority opting for allowing the content and informing

the user with a small UX change (the aforementioned padlock icon removal).

Another naming is commonly adopted with active content used to reference blockable

mixed content and passive content to reference upgradeable mixed content. Although this

naming is very popular, it is not officially adopted by the current version of the specification.

2.3.5 Integrations of Mixed Content

The specification describes how the Fetch specification should hook into the algorithms for

mixed content filtering before performing the network request.

In Snippet 2.3.1, the first steps of the Main Fetch algorithm implementation (defined in

the WHATWG Fetch specification [43]) with the integration of the auto-upgrade and Mixed

Content filtering at line 6 and line 7.

1 Let request be fetchParams’s request.
2 Let response be null.
3 If request’s local-URLs-only flag is set and request’s current URL is not local,

then set response to a network error.↪→

4 Run report Content Security Policy violations for request.
5 Upgrade request to a potentially trustworthy URL, if appropriate.
6 Upgrade a mixed content request to a potentially trustworthy URL, if

appropriate.↪→

7 If should request be blocked due to a bad port, should fetching request be
blocked as mixed content , or should request be blocked by Content Security
Policy returns blocked, then set response to a network error.

↪→

↪→

8 If request’s referrer policy is the empty string, then set request’s referrer
policy to request’s policy container’s referrer policy.↪→

... ...

Snippet 2.3.1: Algorithm "Main Fetch"

Overview on Chromium implementation of Mixed Content checks

In the following, a concrete implementation of theMixedContent specificationwith Chromium

source code. The code is taken from the Chromium GitHub repository [9].

The method MixedContentChecker::ShouldBlockFetch is called when a request is about to

be performed. It checks if the request can go through or if it should be blocked as mixed

35

content. The decision is based on the final value of the variable bool allowed defined at line

446.

First, the method checks if the environment does prohibit mixed content via the

InWhichFrameIsContentMixed method call. This call will return true if the environment is

trustworthy (that is, if any of the ancestors were loaded via https). If the call returns false,

the method exits immediately as the content should not be blocked. If the call returns true

then the checks continue.

The content of the request type is then categorized via the

MixedContent::ContextTypeFromRequestContext method call.

If the request is blockable then allowed = false . If the request is upgradeable (here ref-

erenced via the obsolete terminology optionally blockable) then the filtering will depend on

whether the strict mode is enabled (the current default is true).

Snippet 2.3.2: Chromium implementation of "Should fetching request be blocked as mixed con-
tent?", file blink/renderer/core/loader/mixed_content_check
er.cc [9]

1 // Copyright 2019 The Chromium Authors
...
402 bool MixedContentChecker::ShouldBlockFetch(LocalFrame* frame,
... ...
411 mojom::blink::ContentSecurityNotifier& notifier) {
412 Frame* mixed_frame = InWhichFrameIsContentMixed(frame, url);
413 if (!mixed_frame)
414 return false;
... ...
440 Settings* settings = mixed_frame->GetSettings();
441 auto& local_frame_host = frame->GetLocalFrameHostRemote();
442 WebContentSettingsClient* content_settings_client =
443 frame->GetContentSettingsClient();
444 const SecurityOrigin* security_origin =
445 mixed_frame->GetSecurityContext()->GetSecurityOrigin();
446 bool allowed = false;
... ...
457 mojom::blink::MixedContentContextType context_type =
458 MixedContent::ContextTypeFromRequestContext(
459 request_context, DecideCheckModeForPlugin(settings));
460
461 switch (context_type) {
462 case mojom::blink::MixedContentContextType::kOptionallyBlockable:
463 allowed = !strict_mode;
... ...
485 case mojom::blink::MixedContentContextType::kBlockable:
... ...
526 allowed = false;
527 case mojom::blink::MixedContentContextType::kShouldBeBlockable:
528 allowed = !strict_mode;
... ...
532 case mojom::blink::MixedContentContextType::kNotMixedContent:

36

blink/renderer/core/loader/mixed_content_checker.cc
blink/renderer/core/loader/mixed_content_checker.cc

533 NOTREACHED();
534 break;
535 };
... ...

37

3 Methodology

3.1 Overview on the WPT project

The Web Platform Tests (WPT) project [16] is a cross-browser test suite for the web plat-

form stack started in 2014. Its main goal is to give browser vendors confidence that they

are shipping software that is compliant with specifications and compatible with other im-

plementations. The majority of the test suite consists of HTML pages that can be loaded in

a browser and automatically provide a result. In general, the tests are cross-platform, short,

and self-contained and can be easily run in any browser. TheWPT test suite is integrated into

the CI/CD pipeline of all major browsers [27, 8, 13], with Firefox and Chromium officially

including it in 2014 [28, 20]. All the major browser vendors do contribute to the test suite

and depend on its comprehensive set of checks to confirm compliance with web standards

[18]. According to Firefox, Chromium, and WebKit contribution policies, each revision or

patch should pass all WPT regression tests before it is approved [26, 2, 12].

3.1.1 Test Layout

Most of the repository top-level directories hold tests for specific web standards. In the case

of W3C specifications, the directories are named after the short name of the spec (as an

example, there are top-level folders named /mixed-content, /service-workers and /s
ecure-contexts). Within the specification-specific directory, the test is laid out either with

a flat structure or with a nested structure. The first is used with short or simple specifications,

the latter presents subdirectories corresponding to the topic within the specification and is

adopted with larger specs. For example, WPT tests on mixed content auto-upgrading are

present in /mixed-content/tentative/autoupgrade.

Test filenames should be descriptive ofwhat is tested, one option could be test-topic-001.html

where test-topic is a short identifier that describes the test.

The test filename is significant in enabling specific features. For example, by default, all

tests are served over plain HTTP, so if a test requires HTTPS it must be given a filename

containing .https e.g. test-topic-001.https.html . In Table 3.1 a list of WPT filename flags

and the respective feature.

Tests are generally defined as HTML (including XHTML) or XML (including SVG). It is

also possible to define a test as a single JavaScript file (e.g. when including any JavaScript

flag specified in Table 3.1, the WPT server will automatically generate the respective HTML

file).

39

/mixed-content
/service-workers
/secure-contexts
/secure-contexts
/mixed-content/tentative/autoupgrade

Test Flag Feature
.https Test loaded via HTTPS

.h2 Test loaded via HTTP/2

.www Test is run on the www subdomain

.sub Test uses server side substitution feature

.window Generates a test run in a Window environment

.worker Generates a test run in a dedicated worker environment

.any Generates a test run in multiple scopes

.tentative
Test that makes assertions not yet required by any specification,

or in contradiction to some specification

Table 3.1: WPT Test flags and respective feature. : JavaScript files only

Server Features

Having just one or more HTML files may not be sufficient to cover specific test cases. More

advanced tests may require support for extra features, such as:

• Cross-domain access.

• Setting specific headers or status codes.

• Require state to be stored on the server.

• Inspect the browser-sent request.

TheWPT project includes server-side components that add support to these extra features.

In particular:

• A custom Python HTTP server: wptserve.

• A websocket server: pywebsocket.

3.1.2 Javascript Tests
If a WPT test does not involve rendering and does not require user interaction, it can be

defined as a Javascript test. The WPT project includes a framework for defining Javascript

tests called testharness.js [15]. The framework provides APIs to test both synchronous and

asynchronousDOM features. To use the framework, the testmust include the testharness.js

and testharnessreport.js scripts as shown in Snippet 3.1.1. Within a single file, it is possible

to define multiple tests, each providing a single result as (PASS/FAIL/TIMEOUT/NOTRUN).

The final result of a test is in PASS/FAIL based on the result of checking for one or more

assertions. The test fails at the first failing assert, and the remainder of the test is not exe-

cuted. Functions for making assertions have a signature like

assert_something(actual, expected, description) .

40

An example of assertion function is assert_true(actual, description) , that fails if the

expression actual does not evaluate to true. The description parameter is optional and is

used to provide a more detailed description of the assertion in the result of the test.

1 <!DOCTYPE html>
... <meta charset="utf-8">
402 <title>${1:Test title}</title>
... <script src="/resources/testharness.js"></script>
411 <script src="/resources/testharnessreport.js"></script>
412 <script>
413 test(function() {
414 assert_true(document.implementation.hasFeature());
... }, "test that never fails")
440 </script>

Snippet 3.1.1: Example of testharness.js

The body of the test is defined as a function passed to the test(func, name) function

together with a name for the test.

Execution of tests on a page is subject to a global timeout. By default, this is 10 seconds, but

a test runnermay extend the timeout using a meta tag: <meta name="timeout" content="long"> ,

this will extend the timeout to 60 seconds.

3.1.3 Practical considerations on the WPT test suite

There is a series of aspects to be considered with the adoption of the WPT test suite in

browser development pipelines. Browser vendors leverage the results of the tests to con-

firm compliance with web standards, using it to check a given revision or patch before it is

approved.

However, there is a series of practical constraints and practices that limit the effectiveness

of the results of tests to identify security issues.

Flaky tests

One aspect is the contribution that browser vendors offer to the test suite.

It is common practice for developers of the principal web browsers (Chrome, Firefox, and

Safari) to contribute to the test suite by adding new tests or updating existing ones. For

example, when they implement a particular feature or fix a specific bug, they often write a

set of WPT tests that are added to the suite. This practice helps with increasing the coverage

of the test suite but often introduces a bias in the results of the tests. When a specific browser

vendor does write a test for a given mechanism, it could be that the assertions he proposes

are biased towards his implementation.

This means that running that test on other platforms leads to misleading results, where

failures are reported even when no security violation happened. As a consequence, it is a

41

common practice for vendors to identify and mark sets of tests as flaky and ignore the results
in their pipelines.

In this case, however, the problem is with the assertions of the test, not with the test itself.

It could be that in the future, the execution of the test may lead to a security violation, but if

the test is marked as flaky, this will go unnoticed by browser vendors.

Outdated tests

Another aspect to consider is the maintenance of the test suite. When a new specification is

released, a series of tests are written to cover the new features. Often the tests are published

while the work on the specification is still in progress.

Such a set of tests has assertions that are based on the current state of the specification,

but the specification itself may change and as a consequence results of the tests may become

outdated.

Sometimes it is enough just to change the assertions of the test, keeping the test itself

unchanged. For example, when the mixed content specification was updated in February

2023 to introduce the strict blocking of mixed content, many tests already available in the

suite were still meaningful, it was only required to change the assertions to match the new

behavior.

In practice, however, such maintenance is not always done, and tests are left with outdated

assertions. A consequence of this is that browser vendors may mark those tests as outdated,

ignoring them for future evaluations.

Tests that are too specific

When a security violation is reported to a browser vendor, it is common practice that a WPT

test is written to reproduce the bug.

When this happens, the test is often written to reproduce the exact conditions that lead

to the bug. This may include a specific sequence of actions, with a specific timing, and a

specific set of parameters. It could be that to cover the violation it was possible to define a

more generic test that would cover a wider range of conditions. This may require a more

detailed reasoning on the nature of the problem and a given vendor may not be willing to

invest the time to do so.

The problem with this practice is that when specific tests are reporting a failure on some

other platform, the developers may assign a priority to the bug that is solely based on the

specific conditions of the test, while in practice the violation may be more severe as present

in a wider range of conditions.

Tests that do not assert on all the components tested

A single test may involve a set of different mechanisms and features. Sometimes, however,

the assertions of the test are only defined for a subset of the components involved. This is the

case of tests created to cover a given specification, where the interest is on the compliance

of the browser to the specification itself, and not on the effects of the other components

involved.

42

It could be that a test produces a security violation on a component that is not covered by

the assertions of the test. In this case, the violation will go unnoticed by the browser vendor,

as the test will be marked as passing.

3.2 Leverage WPT for automatic verification of web
security mechanisms

The WPT project represents the largest benchmark of intended browser behavior to date.

This chapter presents the idea of leveraging the WPT test suite to automatically verify the

intended behavior of web security mechanisms. The framework proposed collects informa-

tion about the execution of the tests, and uses it to formally and automatically perform a

verification against a model of the security mechanisms.

A set of execution traces (i.e., sequences of relevant browser events) is collected from test

runs. Traces are then matched against web security invariants, which are intended security

properties expressed in first-order logic. The invariants are crafted from specifications of

web security mechanisms.

This way, it is possible to automatically identify flaws in the implementation of security

mechanisms as there will be certain traces violating the invariants.

The analysis will focus on WPT JavaScript tests. The invariants defined do cover both

JavaScript and browser internals behavior, while UI behavior is out of the scope of this work.

In Table 3.2 are presented the tests evaluated, the respective folders, and the number of tests

per folder.

In the previous section, we considered a set of practical problems in the evaluation of the

results of WPT test executions. The proposed framework allows to overcome such problems,

in particular:

• Flaky tests: the framework does not rely on potentially biased assertions of the tests.

The invariants defined are independent of the browser implementation.

• Outdated tests: when a specification is updated, only the respective invariant has to

be updated, there is no need to update single tests.

• Tests that are too specific: feedback on the gravity of a security violation comes

from the invariant, not from the test result. The risk of underestimating the severity

of a violation is reduced.

• Tests that do not assert on all the components tested: All the invariants are veri-
fied against each execution trace. If a violation is present, it will be identified, regardless

of the assertions of the test.

3.3 Execution Traces
A trace is a list of browser events collected during the execution of a test. Among the infor-

mation collected, there are:

43

• JavaScript API calls: calls to JavaScript APIs, e.g., Fetch, XHR.

• Network requests and responses: for both HTTP and HTTPS, as well as WS and

WSS. Each is identified by a unique ID.

• Cookie events: information when cookies are stored in the cookie jar.

Each execution trace is stored in JSON format: an example can be seen in Snippet 3.3.1.

"network":{
"requests":[

{"requestId": "10",
"url":{"href": "https://web-platform.test:8443/fetch/api/resources/cors-t ⌋

op.txt",...},↪→

"originUrl":{"href": 'data:text/html,<!DOCTYPE html><script>...',...},
...,
"tabId": 2,
"frameId": 8589934593,
"method": "GET",
"type": "xmlhttprequest",
...
"requestHeaders":[...]
...
"frameAncestors":[...],
...

},...]
"responses":[{...},...]

}
"events":[...],
"cookies": {},
"tests":{"HTTP fetch": { "start": 1694918528955, "end": 1694918529569 },...},
"proxy":{...}

Snippet 3.3.1: Example of the execution trace from the test

/mixed-content/nested-iframes.window.html . Some data has been removed for

compactness.

3.3.1 Browser instrumentation
Browser events are collected by instrumenting the browser with a custom extension. The

code of the extension leverages the Extension API, a cross-browser framework that provides

interfaces to access the content of open web pages and browser internals.

Network events monitoring

Information on network events is provided via callback functions executed when a request

is sent and when a request is deemed completed (either a response was received or it was

dropped). This approach provides the full content of a request, plus additional information

provided by the browser, like the tab and frame IDs of the request initiator. The callbacks are

added to the following events of the browserwebRequest object:

44

• onSendHeaders : emitted when a request is about to be sent.

• onCompleted : emitted when a request is completed.

• onBeforeRedirect : emitted when a request is about to be redirected.

JavaScript API calls monitoring

The WebExtension API allows injecting JavaScript code into the context of a web page. This

feature was used to proxy the relevant JavaScript functions, by using Proxy objects and

method overriding, enabling the collection of all the data associated with each API call, such

as its arguments and the respective browsing context. Some APIs monitored are:

• Fetch API: the fetch function is overridden to log the parameters of web requests.

• XHRAPI: the XMLHttpRequest constructor is overridden to log the parameters of web

requests.

• window.open : the function is overridden to log when a new window is opened.

• PostMessage API: the postMessage function is overridden to log when messages are

posted between windows or frames.

As theWebExtension API is a cross-browser framework, most of the code of the extension

is cross-compatible with the web browsers considered by the project (Chromium, Firefox,

and Safari). Despite that, little changes were still required due to slight differences in the

browser implementation of certain JavaScript APIs: one example is with the assignment of

frame IDs in Safari, where there is a difference in the frame ID of children and the parent ID

of nephews of the top level compared with Firefox and Chromium.

3.4 Web Invariants

Invariants represent models of security proprieties expressed as functions mapping traces

to propositions, defined in quantified first-order logic using the theories of uninterpreted

functions, integer arithmetic, algebraic datatypes, and strings.

On Snippet 3.4.1 an example of invariant to model a simplified version of mixed content

filtering: if an HTTPS origin makes a network request, then the content cannot be fetched

over HTTP. The invariant is defined as an implication, requiring the URL of the request to

not have the http:// scheme if the origin URL does present the https:// scheme.

45

simple-mixed-content-blocking(tr) :=
∀t1∀url∀method∀type∀origin-url∀doc-url∀ancestors ∀r-hds ∀r-bdy∀id,
∀origin-host,∀url-host
(net-request(id, url, method, type, origin-url, doc-url, ancestors, r-hds, r-bdy)
@trt1 ∧
origin-url = ”https : //” ++ origin-host

⇒ ¬(url = ”http : //” ++ url-host)))

Snippet 3.4.1: Example of an invariant to check that an HTTPS origin does not fetch content

over HTTP

Events (e.g. net-request) are defined as a datatype. The @tr predicate is implemented

as a recursive function and represents the realization of an event at a specific time (e.g. t1).
Auxiliary predicates can be defined as either macros or functions. For example, the function

++ is used to concatenate strings.

On Table 3.3 the list of invariants defined for the project. Later in the chapter, the mixed

content invariants will be studied in detail.

Name Invariant References
WS.I1 Integrity of Secure cookies [36]

WS.I2 Confidentiality of HttpOnly cookies [36]

WS.I3 Integrity of __Host- cookies [36]

WS.I8 Authenticity of req. initiator [36]

WPT.1 Integrity of SameSite cookies

WPT.2 Cookie serialization collision resistance [33]

WPT.3 Blockable mixed-content filterig

WPT.4 Upgradeable mixed-content filtering

WPT.5 Mixed-content filtering in nested contexts

Table 3.3: Web Invariants.

: Cookies, : Mixed-Content, : SOP/Origin

3.5 Trace Verification Pipeline
The WPT tests are run on the three major browsers that are instrumented by installing the

extension. One execution trace is produced per eachWPT test, and all the traces are collected

into a database.

The traces are then post-processed, translated to SMT-LIB 2, and checked against the in-

variants using the Z3 theorem prover. This results in a formula that is a negation of each

invariant applied to the events of a single trace. Results on the satisfiability of the formula

46

WPT

Tests

�

�

�



Execution

Traces

2

Z3

Theorem Prover

n
Invariants

UNSAT

SAT �

Figure 3.1: Trace Verification Pipeline.

give information on effective violations of the proposition that characterize a given invariant

(i.e. a violation of a specific security property). Such violations are collected to be manually

inspected.

The analysis pipeline is based on the Kubernetes container orchestration platform, allow-

ing to execute multiple instrumented browsers and Z3 analysis in parallel.

A schematic representation of the pipeline can be found in Figure 3.1. A more detailed

discussion of the pipeline follows.

3.5.1 Trace collection

Each WPT test is run in an isolated container.

Each container includes the WPT repository and a specific version of the tested browser

with the extension installed.

For this project, the browsers analyzed are Chromium 118.0.5961.0, Firefox 116.0.3, and

Safari 16.4.

Once aWPT test is executed, the execution trace is downloaded in JSON format and stored

in a Redis database.

3.5.2 Trace verification

Upon completion of each single test, the JSON file is post-processed and translated to SMT-

LIB format. The resulting code is combined with the SMT-LIB encoding of the invariants (an

example of an encoded invariant is in Snippet 3.5.1). To prove that no event among all the

ones collected during the test can disprove the invariant, the satisfiability is checked on the

negation of the invariants.

Checking satisfiability with Z3 may have three possible outcomes:

• UNSAT: the invariant is true for the current trace.

47

• SAT: the invariant is not valid and the current trace is a counter-example for the in-

variant.

• UNKNOWN: Z3 was not able to prove or disprove the invariant (e.g. due to timeout).

1 (define-fun simple-mixed-content-blocking ((tr (List Action))) Bool
2 (forall ((t1 Int) (url String) (method RequestMethod) (type ResourceType)

(origin-url String) (document-url (Option String)) frame-ancestor (redirs
(List String)) (request-headers RequestHeaders) (request-body (Option
String)) (id String))

↪→

↪→

↪→

3 (=>
4 (and
5 (at t1 tr (net-request id url method type origin-url document-url

frame-ancestors redirs request-headers request-body))↪→

6 (= origin-url (str.++ "https://" cvalue)))
7 (not (= url (str.++ "http://" cvalue))))))

Snippet 3.5.1: SMT-LIB encoding of the invariant presented in Snippet 3.4.1

In Snippet 3.5.2 a minimal example of the SMT-LIB file produced by merging the example

invariant (line 6) with the encoding of the example trace (line 8). Note how in line 11 the

satisfiability check is performed on the negation of the invariant.

1 (declare-datatypes ((RequestMethod 0)) (((M-GET) (M-POST) (M-PUT) (M-DELETE)
(M-OPTIONS) (M-PATCH) (M-OTHER))))↪→

2 ...
3 (define-fun-rec in (l (List Action) ...)
4 (define-fun-rec at ((n Int) ...)
5 ...
6 (define-fun simple-mixed-content-blocking ((tr (List Action))) ...)
7
8 (define-fun trace1 () (List Action) (insert (net-request "10"

"https://web-platform.test:8443/fetch/api/resources/cors-top.txt" M-GET
type-sub_frame ...)))

↪→

↪→

9 (echo "===== trace1 =====")
10 (echo "simple-mixed-content-blocking")
11 (assert (not (simple-mixed-content-blocking trace1)))
12 (check-sat)

Snippet 3.5.2: Final SMT-LIB codewith the invariant from Snippet 3.5.1 and the encoded trace

from Snippet 3.3.1

48

3.6 Encoding mixed content invariants
For the remainder of this chapter, we will study the W3C’s Mixed Content specification, to

extract a set of web invariants that can be used in our framework to automatically verify the

implementation of mixed content filtering in web browsers.

The Mixed Content specification defines a series of algorithms to filter requests and re-

sponses. The attributes that are used by the algorithms to make the filtering decisions are:

1. Document’s origin.

2. Request’s URL.

3. Request’s destination.

4. Request’s initiator.

5. Ancestor navigables.

6. User agent configuration.

All these attributes are collected by the instrumented browsers and stored in the execution

trace.

3.7 The notion of potential trustworthiness
In order to reason about the filtering algorithms it is relevant to define what the user agent

should consider as secure content. The concept of mixed content is relevant only in the

presence of a securely loaded document: it does not apply when the embedder page is not

delivered securely (i.e. via HTTP).

The W3C Secure contexts specification [40] identifies certain hosts, schemes and origins as

potentially trustworthy, even if they might not be authenticated and encrypted in the tradi-

tional sense. These elements are identified via the algorithms "Is origin potentially trustwor-
thy?" and "Is URL potentially trustworthy?"

3.7.1 Is origin potentially trustworthy?

1 If origin is an opaque origin, return "Not Trustworthy".
2 Assert: origin is a tuple origin.
3
4 If origin’s scheme is either "https" or "wss", return "Potentially Trustworthy".
5 If origin’s host matches one of the CIDR notations 127.0.0.0/8 or ::1/128,

return "Potentially Trustworthy".↪→

6 If the user agent conforms to the name resolution rules in
(let-localhost-be-localhost) and one of the following is true:↪→

7 origin’s host is "localhost" or "localhost."
8 origin’s host ends with ".localhost" or ".localhost."
9 then return "Potentially Trustworthy".

49

10 If origin’s scheme is "file", return "Potentially Trustworthy".
11 If origin’s scheme component is one which the user agent considers to be

authenticated, return "Potentially Trustworthy".↪→

12 If origin has been configured as a trustworthy origin, return "Potentially
Trustworthy".↪→

13 Else return "Not Trustworthy".

Snippet 3.7.1: Algorithm "Is origin potentially trustworthy?"

3.7.2 Modeling the concept of potentially trustworthy origin
The algorithm 3.7.1 is essentially a list of schemes and hosts that are considered trustworthy

origins. It could be possible to model the algorithmwith a regex that matches those elements.

The regex can be easily defined with the schemes that are considered potentially trustworthy

origins (https:// , wss:// and file:), since those are prefixes in the URL. On the other

hand, checking if the host evaluates to localhost or a loopback address is a more complicated

task and a bigger regex is required.

The function presented in Snippet 3.7.1 is an SMT-LIB encoding that models origin trust-

worthiness, it leverages the theory of character strings and regular expressions over an al-

phabet consisting of Unicode characters.

The specification considers the possibility of having a vendor-defined list of whitelisted

origins (line 11 of the algorithm). Such a feature is used in practice by browser vendors to

extend the concept of trustworthiness to certain customs origin e.g. chromium whitelisted

the origins chrome-extension:// , chrome:// and chrome-native:// , while firefox whitelisted

moz-extension:// . For this project, we decided to ignore such a possibility to maximize

platform independence and reduce the maintenance task of periodically having to verify if

some browser vendor updated its list.

1 (define-fun is-origin-potentially-trustworthy ((URI String)) Bool
2 (str.in.re URI
3 (re.union
4 (re.++ ;1a. URL's protocol is https
5 (str.to.re "https://")
6 (re.* re.allchar))
7 (re.++ ;1b. URL's protocol is wss
8 (str.to.re "wss://")
9 (re.* re.allchar))

10 (re.++ ;2. URL's protocol is file.
11 (str.to.re "file://")
12 (re.* re.allchar))
13 (re.++ ;3. URL's host is localhost as a domain (*.localhost or localhost)
14 (re.* (re.range "a" "z")) ;protocol
15 (str.to.re "://")
16 (re.opt (re.* (re.++ (re.* (re.range "a" "z")) (str.to.re "."))))
17 (str.to.re "localhost")
18 (re.opt (re.++ (str.to.re ":")((_ re.loop 1 5)(re.range "0" "9"))))
19 (str.to.re "/")
20 (re.opt (re.* re.allchar)))

50

21 ;Loopback addresses are considered secure.
22 (re.++ ;4a. URL's host is a loopback IPv4 address
23 (re.* (re.range "a" "z"))
24 (str.to.re "://127")
25 ((_ re.loop 1 3) (re.++ (str.to.re ".")(re.opt ((_ re.loop 1

3)(re.range "0" "9")))))↪→

26 (re.opt (re.++ (str.to.re ":")((_ re.loop 1 5)(re.range "0" "9"))))
27 (str.to.re "/")
28 (re.opt (re.* re.allchar)))
29 (re.++ ;4b. URL's host is a loopback IPv6 address
30 (re.* (re.range "a" "z"))
31 (str.to.re "://[")
32 (re.opt
33 (re.*
34 (re.++
35 (re.* (str.to.re "0"))
36 (str.to.re ":"))))
37 (re.* (str.to.re ":"))
38 (re.opt (re.* (str.to.re "0")))
39 (str.to.re "1")
40 (str.to.re "]")
41 (re.opt (re.++ (str.to.re ":")((_ re.loop 1 5)(re.range "0" "9"))))
42 (re.opt (re.++ (str.to.re "/") (re.* re.allchar)))))))

Snippet 3.7.2: SMT-LIB implementation of "Is origin potentially trustworthy?"

3.7.3 Is URL potentially trustworthy?

The algorithm "Is URL potentially trustworthy?" is used to apply the concept of trustworthi-

ness on request and response URLs. All the URLs that are considered trustworthy origins are

also trustworthy URLs.

On the other hand, certain URLs and schemes that are not considered potentially trust-

worthy origins are considered trustworthy URLs, as including those resources is considered

safe. As an example, there is no risk in loading an iframe with the about:blank URL (that

identifies an empty page).

1 If url is "about:blank" or "about:srcdoc"
2 return "Potentially Trustworthy".
3
4 If url’s scheme is "data"
5 return "Potentially Trustworthy".
6
7 Return the result of executing "Is origin potentially trustworthy?" on url’s

origin.↪→

Snippet 3.7.3: Algorithm "Is URL potentially trustworthy?"

51

3.7.4 Model the concept of potentially trustworthy URL

Similarly to the previous example, the trustworthiness of the URL is modeled as a function

that matches the provided URL against a regex. In this case, the regular expression is much

simpler as we need to match either the full URL (to check if it is either about:blank or

about:srcdoc), or a prefix of the URL, to check if it is a data: scheme.

This results in an encoding that is equivalent to the specification algorithm.

1 (define-fun is-url-potentially-trustworthy ((URI String)) Bool
2 (or
3 (str.in.re URI
4 (re.union
5 (str.to.re "about:blank") ;1a. URL equals "about:blank"
6 (str.to.re "about:srcdoc") ;1b. URL equals "about:srcdoc"
7 (re.++ ;2. URL's protocol is data
8 (str.to.re "data:")
9 (re.* re.allchar))))

10 (is-origin-potentially-trustworthy URI)))

Snippet 3.7.4: SMT-LIB implementation of "Is URL potentially trustworthy?"

3.8 Does settings prohibit mixed security contexts?
The following algorithm identifies the contexts where Mixed Content should be blocked.

While up until now only documents have been mentioned, there are other contexts where

mixed content should be blocked. Web Workers for example should block mixed content as

they can only be created in secure contexts (hence the origin is an HTTPS document).

The Web Worker API is standardized by the WHATWG HTML living standard. Work-

ers allow running JavaScript code in the background, parallel to the main execution thread.

This is particularly useful for performing tasks that are computationally intensive or time-

consuming without blocking the main thread and thereby ensuring that the user interface

remains responsive.

TheWHATWG specification states that both documents andworkers have an environment
settings object that can be examined in order to determine whether they should restrict mixed

content or not. The environment settings object specifies the origin of the environment and

is used by the algorithm Does settings prohibit mixed security contexts?
The algorithm terminates immediately returning "Prohibits Mixed Security Contexts" if

the settings object presents an origin that is potentially trustworthy. If not, and if the current

settings object is a window (that is, we are not in aWorker), the frame ancestors of the current

document are considered: the chain is checked to see if any of the ancestors have a potentially

trustworthy origin. When a trustworthy origin is detected, the algorithm returns "Prohibits

Mixed Security Contexts".

If no potentially trustworthy origin is detected among all the ancestors, the algorithm

returns "Does Not Restrict Mixed Security Contexts".

52

1 If settings’ origin is a potentially trustworthy origin, then return "Prohibits
Mixed Security Contexts".↪→

2
3 If settings’ global object is a window, then:
4 Set document to settings’ global object's associated Document.
5 For each navigable navigable in document’s ancestor navigables:
6 If navigable’s active document's origin is a potentially trustworthy

origin, then return "Prohibits Mixed Security Contexts".↪→

7
8 Return "Does Not Restrict Mixed Security Contexts".

Snippet 3.8.1: Algorithm "Does settings prohibit mixed security contexts?"

3.8.1 Modeling the algorithm "Does settings prohibits mixed
security contexts?"

Modeling the algorithm requires a more detailed analysis of potentially trustworthy origins

and requires integrating is-origin-potentially-trustworthy with auxiliary checks.

In particular, the origin of a blob: URI is the origin of the context in which it was created,

as a consequence, the trustworthiness is inherited from the parent.

The trustworthiness of data: URIs on the other hand is surprisingly more difficult to con-

sider [35] [29] [38] [21]. The current version of the W3C Secure Context specification does

not consider data: URI as a potentially trustworthy origin (in fact, the algorithm Is origin po-
tentially trustworthy? discussed above does not list the scheme). On the other hand, browser

implementations adopt the same approach of blob: URIs, where trustworthiness is inherited

from the parent context [7] (but not by inheriting the origin like blob: does. In this case,

only the trustworthiness is inherited). This behavior is mimicked by the algorithm: a check

is performed on the frame ancestors when the current origin is not potentially trustworthy

(lines 3-6). As a consequence, if a data: URI has trustworthy ancestors, mixed content will

be blocked as if it were a trustworthy origin itself.

Such considerations on blob: and data: require the definition of auxiliary functions.

Obtain the origin of blob: URIs

The origin of blob: is the origin of the context in which they were created. Therefore, blobs

created in a trustworthy origin will themselves be potentially trustworthy. The origin is

included in the URL and follows the scheme.

The auxiliary function to get such information simply checks if the content following the

prefix string blob: forms a potentially trustworthy origin.

1 (define-fun is-blob-url-potentially-trustworthy ((URI String)) Bool
2 (and
3 (is-prefix "blob:" URI) ;URL's protocol is blob
4 (is-url-potentially-trustworthy (str.substr URI 0 5))))

53

Snippet 3.8.2: SMT-LIB function to obtain origin of a blob: URI

Obtain the trustworthiness of data: URIs

To understand if a data: URI is trustworthy we consider the ancestor chain. We start from

the parent and check if it is a data: itself. If not, we return the URL of the parent. Else, if

the parent frame also consists of a data: URI we continue the recursion by ascending the

chain until we find a non-data URI to evaluate.

1 (define-fun-rec get-data-URI-origin ((ancestors (List String))) String
2 (match ancestors
3 ((nil "")
4 ((insert head tail) (ite (str.prefixof "data:" head) (get-data-URI-origin

tail) head)))))↪→

Snippet 3.8.3: SMT-LIB function to obtain origin of a data: URI

The second auxiliary function to deal with data: URI simply takes the ancestor chain

and reverses it, then calls get-data-URI-origin to get the URL of a parent and calls

is-origin-potentially-trustworthy on that. If a data: has an empty ancestor chain (this

could happen if the user enters directly the URI in the searchbar), the function returns false

(i.e. we consider data: URI not trustworthy on their own - much like the specification does).

1 (define-fun is-data-origin-potentially-trustworthy ((URI String) (ancestors
(List String))) Bool↪→

2 (and
3 (is-prefix "data:" URI)
4 (match ancestors
5 ((nil false)
6 ((insert head tail) true)))
7 (is-origin-potentially-trustworthy (get-data-URI-origin (rev ancestors)))))

Snippet 3.8.4: SMT-LIB function to understand if blob: and data: URI are potentially trust-

worthy

The implementation of Does settings prohibit mixed security contexts? uses the auxiliary

functions defined above and returns true if mixed content should be blocked in the context

provided.

Note how the analysis of the chain is performed only for data: URIs: this is amore specific

behavior than the one proposed by the algorithm (lines 3-6 of Snippet 3.8.1). This implemen-

tation choice was due to the fact that an invariant will be defined to cover the remaining

cases, allowing for more precise feedback on the potential security violations detected. The

invariant will be presented later.

54

1 (define-fun does-settings-prohibits-mixed-security-contexts ((origin-url
String) (document-url-opt (Option String)) (type ResourceType) (ancestors
(List String))) Bool

↪→

↪→

2 (forall ((document-url String))
3 (or
4 (is-origin-potentially-trustworthy document-url)
5 (is-blob-url-potentially-trustworthy url)
6 (is-data-origin-potentially-trustworthy document-url ancestors))))

Snippet 3.8.5: SMT-LIB implementation of "Does settings prohibits mixed security contexts?"

3.9 Upgrade a mixed content request to a potentially
trustworthy URL, if appropriate

The specification proposes an approach to increase the security of a page in an opportunistic

way. If upgradeable Mixed Content is requested by the page, the algorithm "Upgrade a mixed
content request to a potentially trustworthy URL, if appropriate" modifies the requested URL

and upgrades the protocol to HTTPS before the filtering takes place. This will have the effect

of avoiding the blocking of the upgradeable requests by Should fetching request be blocked as
mixed content?

As the specification notes, this could result in unwanted consequences as the protocol

upgrade may result in the loading of a resource that the developer did not intend. If the

original resource requested is an innocuous image served over http://example.com/imag
e.png, after the auto-upgrading a different resource may be targeted without the developer

or user’s explicit consent: it could be, for example that https://example.com/image.png
redirects to a tracking site.

In such cases, fetching the content can result in unwanted privacy issues. The specifica-

tion, however, states that such an event is expected to be exceedingly rare in practice.

On the other end, the risk of auto-upgrading blockable content is higher as this could

result in the of loading an out-of-date and vulnerable JavaScript library. For this reason,

auto-upgrading is only performed on upgradeable content.

1 If one or more of the following conditions is met, return without modifying
request:↪→

2 request’s URL is a potentially trustworthy URL.
3 request’s URL’s host is an IP address.
4 Does settings prohibit mixed security contexts? returns "Does Not Restrict

Mixed Security Contents" when applied to request’s client.↪→

5 request’s destination is not "image", "audio", or "video".
6 request’s destination is "image" and request’s initiator is "imageset".
7 Return blocked.

Snippet 3.9.1: Algorithm "Upgrade a mixed content request to a potentially trustworthy URL, if
appropriate"

55

http://example.com/image.png
http://example.com/image.png
https://example.com/image.png

3.9.1 Modeling the type of content: blockable vs upgradable
As observed in subsection 2.3.5, the specification proposes that the upgrade of mixed content

should be integrated into the Fetch algorithm. This means that as soon as the request is

issued (e.g. by the deliberate fetch() call, or by internal browser functions called when

subresources are included in the page) the check for upgradeable content is performed and

possibly, the scheme is upgraded.

Due to the instrumentation approach adopted for this project (i.e. a web extension), it is not

possible to hook into such functions. The methods fetch() and new XMLHttpRequest() have

been instrumented, but unfortunately, with browser extensions it’s impossible to instrument

the internal browser functions used for fetching subresources.

Moreover, the callbacks used to intercept all web requests sent happen when the auto-

upgrade has already been performed.

As a consequence, it would be possible to monitor auto-upgrade only for requests made

via fetch() and new XMLHttpRequest() , but this is only a minor part of the total number of

web requests sent.

As a consequence, we do not actively monitor auto-upgrading, but we detect if it was

performed by looking at the network requests. In particular, we expect that no upgradeable

mixed content request will be sent.

If an upgradeable mixed content request is detected, we know that there is a problem with

the (lack of) auto-upgrading.

To distinguish between upgradeable and blockable requests we define an auxiliary func-

tion that analyzes the request type and checks if it is about upgradeable content.

In particular, type-media is assigned by the browser to the following MIME types:

• audio/wave

• audio/ogg

• audio/mpeg

• audio/flac

• audio/3gpp

• audio/aac

• audio/mpeg

• audio/mp4

• video/3gpp

• video/3gpp2

• video/3gp2

• video/ogg

• video/mpeg

• video/mp4

• video/quicktime

Similarly, type-image is assigned to the MIME types:

• image/gif

• image/jpeg

• image/png

• image/svg+xml

• image/webp

• image/apng

• image/avif

56

If theMIME type of the request is any of the types above, the function is-mixed-content-upgradeable

will return true.

1 (define-fun is-mixed-content-upgradeable ((type ResourceType)) Bool
2 (or
3 (= type type-image)
4 (= type type-media)))

Snippet 3.9.2: SMT-LIB function to categorize mixed-content

3.10 Should fetching request be blocked as mixed
content?

The core of the Mixed Content mechanism is web request filtering. This is done by the

algorithm "Should fetching request be blocked as mixed content?" The logic of this algorithm is

simple: if the context prohibits mixed content then the URL has to be potentially trustworthy.

If the URL is not potentially trustworthy then the request is mixed content and should be

blocked.

The specification allows the user agent to exclude a set of origins from filtering (line 4

of Snippet 3.10.1). This way the user can define a whitelist of web pages where filtering

is disabled, but it’s suggested that such a choice should be presented to users with careful

communication of the risk involved.

Moreover, the filtering algorithm excludes top-level navigation fromMixedContent checks

(line 5 of Snippet 3.10.1). Not applying the filtering is based on the fact that the user might

have entered the URL themselves or clicked on a link. The browser’s address bar and security

indicators provide feedback about the security of the top-level navigation. If a user navigates

to an insecure page, the browser can indicate that the page is not secure. In this case, there is

no threat of compromising other securely delivered content, as top-level navigation doesn’t

have a "parent page" to compromise in this manner.

1 Return allowed if one or more of the following conditions are met:
2 Does settings prohibit mixed security contexts? returns "Does Not Restrict

Mixed Security Contexts" when applied to request’s client.↪→

3 Request’s URL is a potentially trustworthy URL.
4 The user agent has been instructed to allow mixed content.
5 Request’s destination is 'document', and request’s target browsing context

has no parent browsing context.↪→

6 Return blocked

Snippet 3.10.1: Algorithm "Should fetching request be blocked as mixed content?"

57

3.10.1 Modeling the algorithm "Should fetching request be blocked
as mixed content?"

As discussed in the previous subsection, we are interested in detecting mixed content re-

quests and categorize them either as upgradeable or blockable. This way it is possible to

monitor the behavior of the protocol upgrading. To do so, we define two invariants to model

the algorithm "Should fetching request be blocked asmixed content?" The first invariantmodels

blockable requests filtering. The second invariant models upgradeable requests filtering.

Modeling the filtering of blockable mixed content

To model line 4 of the algorithm (allow mixed content requests targeting the top level), it is

possible to look at the request type and if it is type-main_frame we know that the request

target is the top-level.

Another type of request that should not be filtered are requests for popups (that is top-

level navigation on a new tab). For popups, the request type is type-sub_frame (the same as

iframes), but in the request, there will be no document URL field. This allows us to identify

the request for popups and prevent filtering.

blockable-mixed-content-filtered(tr) :=
∀t1∀url∀method∀type∀origin-url∀doc-url ∀ancestors ∀r-hds∀r-bdy∀id
(net-request(id, url, method, type, origin-url, doc-url, ancestors, r-hds, r-bdy)
@trt1 ∧
¬(type = type-main_frame) ∧
¬(type = type-sub_frame ∧ document_url ̸= ∅) ∧
¬is-mixed-content-upgradeable(type) ∧
does-settings-prohibits-mixed-security-contexts(origin-url, doc-url, type, ancestors)

⇒ is-url-potentially-trustworthy(url)∨
is-blob-url-potentially-trustworthy(url)))

Snippet 3.10.2: Formula for blockable mixed content filtering

The formula presented above can be encoded in the following SMT-LIB invariant.

1 (define-fun blockable-mixed-content-filtered ((tr (List Action))) Bool
2 (forall ((t1 Int)(url String) (method RequestMethod) (type ResourceType)

(origin-url String) (document-url (Option String)) (frame-ancestors (List
String)) (request-headers RequestHeaders) (request-body (Option String))
(id String))

↪→

↪→

↪→

3 (=>
4 (and
5 (at t1 tr (net-request id url method type origin-url document-url

frame-ancestors request-headers request-body))↪→

58

6 (not (= type type-main_frame))
7 (not
8 (and
9 (= type type-sub_frame)

10 (= document-url-opt (some document-url))))
11 (not (is-mixed-content-upgradeable type))
12 (does-settings-prohibits-mixed-security-contexts origin-url

document-url type frame-ancestors))↪→

13 (or
14 (is-url-potentially-trustworthy url)
15 (is-blob-url-potentially-trustworthy url)))))

Snippet 3.10.3: SMT-LIB encoding of the invariant for blockable mixed content filtering

Modeling the filtering of upgradable mixed content

The invariant to model the filtering of upgradeable mixed content is very similar to the in-

variant on blockable content. The main difference is that we do not negate the result of the

function is-mixed-content-upgradeable .

upgradeable-mixed-content-filtered(tr) :=
∀t1∀url∀method ∀type∀origin-url∀doc-url∀ancestors ∀r-hds ∀r-bdy∀id
(net-request(id, url, method, type, origin-url, doc-url, ancestors, r-hds, r-bdy)
@trt1∧
¬()type = type-main_frame) ∧
¬(type = type-sub_frame ∧ document_url ̸= ∅) ∧
is-mixed-content-upgradeable(type)∧
does-settings-prohibits-mixed-security-contexts(origin-url, doc-url, type, ancestors)

⇒ is-url-potentially-trustworthy(url)∨
is-blob-url-potentially-trustworthy(url)))

Snippet 3.10.4: Formula for upgradeable mixed content filtering

1 (define-fun upgradeable-mixed-content-filtered ((tr (List Action))) Bool
2 (forall ((t1 Int)(url String) (method RequestMethod) (type ResourceType)

(origin-url String) (document-url (Option String)) (frame-ancestors (List
String)) (request-headers RequestHeaders) (request-body (Option String))
(id String))

↪→

↪→

↪→

3 (=>
4 (and
5 (at t1 tr (net-request id url method type origin-url document-url

frame-ancestors request-headers request-body))↪→

6 (not (= type type-main_frame))
7 (not
8 (and
9 (= type type-sub_frame)

59

10 (= document-url-opt (some document-url))))
11 (is-mixed-content-upgradeable type)
12 (does-settings-prohibits-mixed-security-contexts origin-url

document-url type frame-ancestors))↪→

13 (or
14 (is-url-potentially-trustworthy url)
15 (is-blob-url-potentially-trustworthy url)))))

Snippet 3.10.5: SMT-LIB encoding of the invariant for upgradeable mixed content filtering

3.11 More mixed content algorithms and invariants
In this section, we analyze another algorithm proposed by the specification and one more

invariant proposed by us.

3.11.1 Should response to request be blocked as mixed content?
Even if a request was not filtered, it may be relevant to block the reply received from the

server as some relevant information is available only a posteriori. One case would be if the

TLS authentication of the server (when communicating via HTTPS or WSS) fails due to an

expired or invalid certificate. The algorithm Should response to request be blocked as mixed
content? acts in the very same way as the request filter, this time considering information

related to the response received.

1 Return allowed if one or more of the following conditions are met:
2 Does settings prohibit mixed security contexts? returns "Does Not Restrict

Mixed Security Contexts" when applied to request’s client.↪→

3 request’s URL is a potentially trustworthy URL.
4 The user agent has been instructed to allow mixed content
5 request’s destination is "document", and request’s target browsing context

has no parent browsing context.↪→

6 Return blocked.

Snippet 3.11.1: Algorithm "Should response to request be blocked as mixed content?"

Considerations on modeling the algorithm

There is a series of considerations to make when considering how to model the algorithm

presented above.

When browsers do detect an error in the TLS handshake (e.g. an invalid certificate), the

connection will not be established and no HTTP message will be exchanged with the server.

This means that there is no response to be filtered (as no request was sent). This is true for

all the possible certificatemisconfigurations (expired, self-signed, invalid, revoked, certificate

from untrusted CA and weak cipher suites), and when this happens a TLS error is shown in

the browser console (as well as in the network panel). If the content of a subresource had to

60

be fetched via the connection that failed, it wouldn’t be populated, and a visual error message

would be presented if the subresource was an iframe, image, or video.

In general such errors are handled by the browsers with checks performed within TLS-

related methods, and not by the mixed content implementation.

One more situation to consider is the possibility of receiving a redirect to HTTP from a

server that was contacted via HTTPS. In such a case, the handshake succeeded, and both the

request and response (e.g. 301 Moved Permanently) were sent over a secure channel.

Then the web browser will send a new request to the redirected URL. If such URL is not

potentially trustworthy then the request will be blocked by the algorithm Should fetching
request be blocked as mixed content?.

Once again there is no need to implement filtering on responses.

In fact, web browsers do not implement mixed content filtering on responses as the checks

proposed by the algorithm "Should response to request be blocked as mixed content?" are al-
ready performed by other security mechanisms (e.g. TLS implementation).

We therefore decided that there is no need to model such an algorithm with an invariant.

3.11.2 Model the filtering of content in nested contexts

As anticipated in the previous section, we decided to have a dedicated invariant that models

the filtering of mixed content in nested contexts. This decision was based on the considera-

tion that nested contexts do represent one of the most difficult aspects of the Mixed Content

specification. Moreover, dealing with mixed content presence in framed pages has been quite

challenging for browser vendors, with several bugs and security violations reported in the

past [5] [6] [4] [10].

Having a dedicated invariant to detect mixed content violation in nested contexts allows

to evaluate the correct browser implementation of functions that compute origin trustwor-

thiness in framed pages.

In Snippet 3.11.2 the auxiliary function that models lines 4-6 of the algorithm Does settings
prohibit mixed security contexts? presented in 3.8.

Instead of checking for potential trustworthiness, only a check for the https: scheme is

performed. This simpler check is in line with the implementation of web browsers [3] and

allows for better performances compared to using the full regex of Snippet 3.7.2. We verified

that in practice this is possible without loss of generality.

Snippet 3.11.2: SMT-LIB function to identify if the ancestor chain permits mixed content

1 (define-fun-rec ancestors-permit-mixed-content ((ancestors (List String))) Bool
2 (match ancestors
3 ((nil true)
4 ((insert a acs)
5 (and
6 (not (str.in.re a
7 (re.++
8 (str.to.re "https://")

61

9 (re.* re.allchar))))
10 (ancestors-permit-mixed-content acs))))))

With the auxiliary function defined above it is possible to model an invariant that checks

if a mixed content request should be blocked as the nested context is composed of potentially

trustworthy origins.

Once again we exclude top-level navigation from the filtered requests.

The invariant is equivalent to the formulation: “If the ancestor chain disallows mixed

content, then requests must have a potentially trustworthy URL”

mixed-content-filtered-in-nested-contexts(tr) :=
∀t1∀url∀method∀type∀origin-url∀doc-url∀ancestors ∀r-hds ∀r-bdy∀id
(net-request(id, url, method, type, origin-url, doc-url, ancestors, r-hds, r-bdy)
@trt1∧
¬(ancestors-permit-mixed-content(ancestors))∧
¬(type = main_frame)

⇒ is-url-potentially-trustworthy(url))

Snippet 3.11.3: Formula for mixed content filtering in nested contexts

1 (define-fun mixed-content-filtered-in-nested-frames ((tr (List Action))) Bool
2 (forall ((t1 Int) (url String) (method RequestMethod) (type ResourceType)

(origin-url String) (document-url (Option String)) (frame-ancestors (List
String)) (request-headers RequestHeaders) (request-body (Option String))
(id String))

↪→

↪→

↪→

3 (=>
4 (and
5 (at t1 tr (net-request id url method type origin-url document-url

frame-ancestors request-headers request-body))↪→

6 (not (ancestors-permit-mixed-content frame-ancestors))
7 (not (= type type-main_frame)))
8 (or
9 (is-url-potentially-trustworthy url)

10 (is-blob-url-potentially-trustworthy url)))))

Snippet 3.11.4: SMT-LIB encoding of the invariant for mixed content filtering in nested con-

texts

62

html 7445

encoding 1342

referrer-policy 1301

content-security-policy 821

fetch 775

svg 723

websockets 717

editing 601

dom 488

IndexedDB 464

xhr 415

mathml 405

navigation-api 395

workers 321

webvtt 320

service-workers 299

webdriver 279

streams 253

webaudio 250

wasm 246

bluetooth 230

speculation-rules 209

shadow-dom 200

upgrade-insecure-requests 197

WebCryptoAPI 183

webrtc 168

mixed-content 163

pointerevents 156

webmessaging 154

infrastructure 150

webxr 137

custom-elements 137

web-animations 136

scroll-animations 127

webcodecs 122

resource-timing 122

scheduler 108

encrypted-media 106

client-hints 104

eventsource 100

FileAPI 90

trusted-types 88

layout-instability 81

web-locks 78

media-source 78

permissions-policy 77

performance-timeline 76

fullscreen 76

url 75

encoding-detection 75

selection 71

intersection-observer 69

cookies 69

user-timing 62

largest-contentful-paint 61

signed-exchange 60

cookie-store 60

compression 59

serial 58

webidl 55

forced-colors-mode 55

event-timing 54

paint-timing 53

navigation-timing 53

mediacapture-streams 52

preload 51

webnn 50

feature-policy 50

webusb 49

webstorage 49

fs 48

loading 47

clipboard-apis 47

element-timing 46

portals 44

uievents 43

quirks 39

animation-worklet 39

webtransport 37

webauthn 36

js 35

document-policy 34

storage 32

import-maps 32

accessibility 32

compat 31

compute-pressure 30

web-bundle 29

focus 29

domparsing 29

soft-navigation-heuristics 28

cors 27

payment-request 26

shape-detection 25

webrtc-encoded-transform 24

mediacapture-image 24

domxpath 24

credential-management 24

reporting 23

worklets 22

density-size-correction 22

orientation-event 21

input-events 21

inert 20

requestidlecallback 19

longtask-timing 19

visual-viewport 18

storage-access-api 18

long-animation-frame 18

hr-time 18

screen-wake-lock 17

resize-observer 17

notifications 17

mediacapture-record 17

js-self-profiling 17

battery-status 17

urlpattern 16

orientation-sensor 16

measure-memory 16

geolocation-API 16

screen-orientation 15

old-tests 15

browsing-topics 15

beacon 15

web-share 14

imagebitmap-renderingcontext 14

background-fetch 14

secure-payment-confirmation 13

presentation-api 13

picture-in-picture 13

payment-handler 13

console 13

scroll-to-text-fragment 12

is-input-pending 12

font-access 12

accelerometer 12

web-nfc 11

speech-api 11

page-visibility 11

network-error-logging 11

idle-detection 11

geolocation-sensor 11

server-timing 10

screen-capture 10

sanitizer-api 10

pending-beacon 10

mediacapture-insertable-streams 10

media-capabilities 10

magnetometer 10

gyroscope 10

audio-output 10

ambient-light 10

webrtc-extensions 9

touch-events 9

permissions 9

webgl 8

video-rvfc 8

subapps 8

secure-contexts 8

keyboard-map 8

document-picture-in-picture 8

webvr 7

remote-playback 7

pointerlock 7

mediasession 7

mediacapture-fromelement 7

keyboard-lock 7

fledge 7

x-frame-options 6

webrtc-stats 6

shared-storage 6

gamepad 6

file-system-access 6

content-dpr 6

close-watcher 6

badging 6

webrtc-svc 5

wai-aria 5

push-api 5

lifecycle 5

delegated-ink 5

content-index 5

clear-site-data 5

webrtc-identity 4

vibration 4

ua-client-hints 4

proximity 4

payment-method-basic-card 4

mimesniff 4

merchant-validation 4

device-memory 4

virtual-keyboard 3

trust-tokens 3

top-level-storage-access-api 3

timing-entrytypes-registry 3

screen-details 3

periodic-background-sync 3

parakeet 3

netinfo 3

mst-content-hint 3

generic-sensor 3

autoplay-policy-detection 3

acid 3

webrtc-priority 2

webhid 2

savedata 2

png 2

permissions-revoke 2

permissions-request 2

managed 2

intervention-reporting 2

installedapp 2

html-media-capture 2

direct-sockets 2

deprecation-reporting 2

contenteditable 2

background-sync 2

apng 2

window-placement 1

webrtc-ice 1

web-otp 1

webmidi 1

subresource-integrity 1

private-click-measurement 1

payment-method-id 1

page-lifecycle 1

media-playback-quality 1

mediacapture-region 1

mediacapture-handle 1

mediacapture-extensions 1

input-device-capabilities 1

eyedropper 1

entries-api 1

ecmascript 1

custom-state-pseudo-class 1

contacts 1

avif 1

accname 1

Table 3.2: Considered WPT tests. Total: 24855 tests. WPT Version: d888ebb

63

4 Results

4.1 Results for Webkit
At the time of writing, not all the tests have been run on WebKit. About 6,000 tests have

been run on a total of 24,000.

In Table 4.1 the tests that reported SAT for some mixed-content invariant.

The mixed-content tests of the folder tentative/autoupgrade do all return SAT for

upgradeable-mixed-content-filtered , as well as a test in upgrade-insecure-requests.
This is because WebKit does not comply with the current version of the Mixed Content

specification. Asmentioned in subsection 2.3.4, previous versions of the specification allowed

vendors to choose between blocking upgradeable content or allowing it and showing an in-

between security indicator.

WebKit has not been updated to perform auto-upgrading, so mixed content requests for

upgradeable content are sent over the network.

Folder Test SAT Invariant
upgrade-insecure-requests gen/srcdoc-inherit.meta/unset/img-t

ag.https.html
mixed-content-filtered-

in-nested-frames

mixed-content

nested-iframes.window.html

csp.https.window.html

blockable-mixed-

content-filtered

gen/top.http-rp/opt-in/beacon.https

.html

gen/top.meta/opt-in/beacon.https.htm

l

gen/top.meta/unset/beacon.https.html

tentative/autoupgrades/audio-upgrade

.https.sub.html

upgradeable-mixed-

content-filtered

tentative/autoupgrades/video-upgrade

.https.sub.html

upgrade-insecure-requests tentative/autoupgrades/image-upgrade

.https.sub.html

upgrade-insecure-requests/gen/top.me

ta/unset/img-tag.https.html

Table 4.1: Tests that returned SAT for some invariant in WebKit

In the following, we explore a powerful attack that was found thanks to the SAT reported

on the tests mixed-content/csp.https.window.html and mixed-content/nested-i

65

tentative/autoupgrade
upgrade-insecure-requests
gen/srcdoc-inherit.meta/unset/img-tag.https.html
gen/srcdoc-inherit.meta/unset/img-tag.https.html
nested-iframes.window.html
csp.https.window.html
gen/top.http-rp/opt-in/beacon.https.html
gen/top.http-rp/opt-in/beacon.https.html
gen/top.meta/opt-in/beacon.https.html
gen/top.meta/opt-in/beacon.https.html
gen/top.meta/unset/beacon.https.html
tentative/autoupgrades/audio-upgrade.https.sub.html
tentative/autoupgrades/audio-upgrade.https.sub.html
tentative/autoupgrades/video-upgrade.https.sub.html
tentative/autoupgrades/video-upgrade.https.sub.html
tentative/autoupgrades/image-upgrade.https.sub.html
tentative/autoupgrades/image-upgrade.https.sub.html
upgrade-insecure-requests/gen/top.meta/unset/img-tag.https.html
upgrade-insecure-requests/gen/top.meta/unset/img-tag.https.html
mixed-content/csp.https.window.html
mixed-content/nested-iframes.window.html
mixed-content/nested-iframes.window.html

frames.window.html.

4.1.1 sandbox attribute bypass Mixed Content restrictions in WebKit
Our framework reported a violation for blockable-mixed-content-filtered with the WPT

test mixed-content/csp.https.window.html. The test consists of a webpage that

presents the CSP’s sandbox allow-scripts directive. The directive has the same effects as

the

sandbox allow-scripts attribute in a frame (block form submission, disable API, and set the

origin to null) applying restrictions on the whole webpage.

By analyzing the trace we observed how the webpage is loaded via HTTPS, so mixed

content should be prohibited. Nevertheless, a fetch request targeting an HTTP endpoint was

not blocked.

Upon further analysis, we identified how the cause of the filtering bypass was that the

CSP directive was effectively setting the origin variable to null . As the null origin is not

potentially trustworthy, mixed content checks were not performed.

4.1.2 Framed pages bypass Mixed Content restrictions in WebKit
Another violation was reported for mixed-content-filtered-in-nested-frames with theWPT

test wpt/mixed-content/nested-iframes.window.html. In the browser trace, we

observed a fetch request to an insecure endpoint coming from a frame whose origin was

potentially trustworthy. After some investigation, we concluded thatWebKit was performing

themixed content checks incorrectly: secure pages embedded from insecure origins were not

considered potentially trustworthy, and therefore mixed content checks were not performed

for most of the content. Only scripts, stylesheets, and insecureWebSocket requests were still

blocked.

4.1.3 The attack: CVE-2023-38592
It is possible to combine the effects of the two security violations of subsection 4.1.1 and

subsection 4.1.2 by framing a page with the sandbox attribute inside an HTTP top level.

This way all the mixed content requests (for both upgradeable and blockable content) are

not blocked.

This dangerous scenario is exploitable by an attacker: if he finds out that https://bank
.com includes a mixed content script he can frame it in http://attacker.com and when a

user visits the page the request will be sent, with a network attacker capable of intercepting

it and obtaining arbitrary code execution on the page https://bank.com.
We reported the problem to Apple via theWebKit Bugzilla platform. The following snippet

is our message for the disclosure of the vulnerability.

Safari version: 16.5 (16615.2.9.11.6, 16615)
Safari does not enforce mixed content checks for active content in secure pages

embedded from insecure origins.↪→

66

mixed-content/nested-iframes.window.html
mixed-content/nested-iframes.window.html
mixed-content/nested-iframes.window.html
mixed-content/nested-iframes.window.html
mixed-content/csp.https.window.html
wpt/mixed-content/nested-iframes.window.html
https://bank.com
https://bank.com
http://attacker.com
https://bank.com

An attacker at http://evil.com can frame a page from a secure origin
(https://bank.com) that attempts to load active mixed content.↪→

The mixed content which would normally be blocked is now allowed and can be
intercepted and tampered with by a network attacker.↪→

This can potentially lead to attacker-controlled code in an https page. Additional
capabilities are provided by embedding websites in an iframe using the sandbox
attribute.

↪→

↪→

When embedding the secure page from an iframe with the sandbox attribute, all mixed
content is allowed.↪→

However, without the sandbox attribute, <script> <style> and all active mixed content
loaded from insecure WebSockets (ws://) is blocked.↪→

Nonetheless, an attacker can still tamper with all of the following types of active
mixed content:↪→

- <iframe src="...">
- fetch("...")
- XMLHttpRequest()
- <object data="...">
- <form action="...">
- CSS @font-face {... src: url("...")}

According to the W3C's Mixed Content specification
(https://www.w3.org/TR/mixed-content), all active mixed content included from a
secure origin should be blocked.

↪→

↪→

This is the behavior of both Chrome and Firefox, but not Safari.

Details on CVE and impact

About one week after we disclosed the vulnerability, the WebKit Security team confirmed

the problem and issued it with priority P1 (“Serious security issue” according to the WebKit

bug prioritization guidelines [39]).

Two weeks after being confirmed, the issue was marked as resolved in the Bugzilla plat-

form. Then two weeks later Apple published a series of security updates with the fix of the

vulnerability and the CVE that was assigned to it: CVE-2023-38592.

The CVE vectors are reported in Table 4.2. The complexity of the attack is low, as the only

requirement is to frame an HTTPS page from an HTTP one. User interaction is required as

the user must visit the attacker’s page. The scope is high as the attacker can tamper with all

the mixed content requests.

Note that as the vulnerability was found in WebKit, it affects all the browsers that use it

as an engine. This includes Safari, as well as all the browsers for iOS and iPadOS as Apple

does not allow other engines to be used on its devices.

Other projects also use the WebKit engine, for example, the GNOME Web browser (for-

merly known as Epiphany) and WebKitGTK, the port of WebKit to GTK+. Within one week

after the publication of the CVE, all the browsers above delivered a fix for the vulnerability.

The bug report submitted is not yet accessible to the public, but the entry on the bug

tracker platform should be made open in the next weeks.

67

Base Score Impact Subscore Exploitability Subscore NVD Published Date

8.8 High 5.9 2.8 07/28/2023

Attack vector Attack complexity Privileges Required User Interaction

Network Low None Required

Scope Confidentiality Impact Integrity Impact Availability Impact

High High High High

Table 4.2: Details of the CVSS vector attributes for CVE-2023-38592

Figure 4.1: Circular heatmap of the CVSS vector attributes for CVE-2023-38592

Apple fix

The fix was delivered with the commit bc09b6f [11]. The commit message can be seen in

Snippet 4.1.1.

According to Apple, two root causes enabled the bypass of mixed content checks:

• Framing security violation: the mixed content checks were not performed on the

whole frame ancestors chain, only the top frame and the request URL were considered.

• Sandboxing security violation: the mixed content checks were not performed on

sandboxed documents and frames as information about the origin was lost (as it was

set to null).

It is possible to bypass mixed content restrictions on pages which are
framed. There are two issues here: secure frames embedded in
insecure frames can bypass and frames that are sandboxed can bypass.

In the former case, we are only checking for mixed content in the
frame making the request as well as the top frame. So if an insecure frame
embeds a secure frame, that secure frame could then embed an insecure frame and
make mixed content requests without being blocked since the middle frame
is not checked against the URL for mixed content.

68

For the latter case we check whether or not the security origin
of the requestor has an "https" protocol. The problem is sandboxed iframes
are given an opaque origin which does not have the "https" protocol (or
any protocol for that matter) and so we were skipping the mixed content check.
...

Snippet 4.1.1: Commit message for the fix of CVE-2023-38592

To fix the first problem, Apple changed the mixed content filtering to perform checks on

thewhole frame ancestors chain. In Snippet 4.1.2, the new function that performs the check is

shown. A loop is performed to recursively ascend the chain: the method isMixedContent() is

called passing the frame that is currently analyzed and the URL of the request. If the method

returns true , the request is mixed content, and it will be blocked.

The request is not blocked only if the method returns false for all the frames in the chain,

including the top level.

50 static bool foundMixedContentInFrameTree(const LocalFrame& frame, const URL&
url)↪→

51 {
52 auto* document = frame.document();
53
54 while (document) {
55 RELEASE_ASSERT_WITH_MESSAGE(document->frame(),

"An unparented document tried to load or run content with url: %s",
url.string().utf8().data());

↪→

↪→

56
57 if (isMixedContent(*document, url))
58 return true;
59
60 auto* frame = document->frame();
61 if (frame->isMainFrame())
62 break;
63
64 auto* abstractParentFrame = frame->tree().parent();
65 RELEASE_ASSERT_WITH_MESSAGE(abstractParentFrame,

"Should never have a parentless non main frame");↪→

66 if (auto* parentFrame =
dynamicDowncast<LocalFrame>(abstractParentFrame))↪→

67 document = parentFrame->document();
68 }
69
70 return false;
71 }

Snippet 4.1.2: How Apple fixed the framing security violation.

The second problem was fixed by changing the mixed content checks to consider the real

origin of the frame. The function that performs the check is shown in Snippet 4.1.3.

69

Previously the method document.securityOrigin().protocol() was used to get such infor-

mation, but if the sandbox attribute is used, the method returns null as origin protocol.

The fix adds a check to see if document.securityOrigin() returns an opaque origin, and if

so, the correct value for the origin is obtained with a call to document.url() .

40 static bool isMixedContent(const Document& document, const URL& url)
41 {
42 // sandboxed iframes have an opaque origin so we should perform the mixed

content check considering the origin↪→

43 // the iframe would have had if it were not sandboxed.
44 if (document.securityOrigin().protocol() == "https"_s ||

(document.securityOrigin().isOpaque() &&
document.url().protocolIs("https"_s)))

↪→

↪→

45 return !SecurityOrigin::isSecure(url);
46
47 return false;
48 }

Snippet 4.1.3: How Apple fixed sandboxing security violation.

After Safari was updated, we ran again our framework on the WPT tests that previously

reported SAT. Those tests now return UNSAT, as the insecure web requests are now blocked.

4.1.4 Mixed content beacon endpoints not filtered in WebKit

In Table 4.1 it is possible to see how a set of tests on bacon endpoints is giving SAT for the

invariant blockable-mixed-content-filtered .

A beacon request is a special type of request that is sent by the browser to an endpoint

when the user clicks on a link of an anchor element that presents the ping attribute. For

example, if the following anchor is clicked, a beacon request will be sent:

Click me .

When the user clicks on the link the browser will send a POST request to https://ex
ample.com/ping. In this case, the endpoint URL is potentially trustworthy. If on the other

hand, the endpoint URL was not potentially trustworthy, the request is mixed content, and

it should be blocked (as we noted in the previous chapters, beacon endpoint requests are

considered blockable).

Let’s consider now one of the tests that produced SAT: mixed-content/gen/top.met
a/unset/beacon.https.html. The test attempts to send various beacon requests to end-

points that are not potentially trustworthy. This includes both same-origin and cross-origin

endpoints, as well as endpoints that are secure at first but then downgraded after a server

redirect. All those subtests do result in SAT for the invariant blockable-mixed-content-filtered .

After studying the problem, we understood that WebKit does not perform mixed content

checks for beacon requests.

We reported this problem to Apple, and we are waiting for confirmation.

70

https://example.com/ping
https://example.com/ping
mixed-content/gen/top.meta/unset/beacon.https.html
mixed-content/gen/top.meta/unset/beacon.https.html

4.2 Results for Firefox
At the time of writing all the tests have been run on Firefox (the full list is presented in

Table 3.2).

The tests that returned SAT for some invariants are reported on Table 4.3.

Similarly to WebKit, the tests of the folder tentative/autoupgrade do all return

SAT for upgradeable-mixed-content-filtered . This is caused by the same reason: Firefox

did not comply yet with the current version of the Mixed Content specification, as protocol

upgrading is not performed for upgradeable requests.

On the other hand, contrary to WebKit, Firefox is starting to implement the new version

of the specification: on Firefox Experimental (the nightly build) protocol upgrading is per-

formed for image and video types.

The developers are slowly adding support for protocol upgrading on the remaining types

of content as well. For the implementation of the new specification, Firefox chose a con-

servative approach by giving time to web developers to update their websites and serve the

content via HTTPS.

4.2.1 Problem with WebSockets in Firefox
There is a set of tests about WebSocket connections that return SAT for the invariant

blockable-mixed-content-filtered . The tests are looking at a specific scenario: a WebSocket

request sent from a Worker using an insecure protocol: ws: . The worker is created from a

secure page, so its origin is potentially trustworthy. As a consequence we expect the request

to be blocked as mixed content, but it is not.

We investigated the problem and found out that Firefox is implementing incorrectly the

filtering for WebSocket requests. In particular, filtering is not performed if the origins are:

• blob: origins: if the insecure WebSocket request is sent from a blob: origin, it is not

filtered.

• data: URI Worker origins: if a Worker is created from a data: URI and the Web-

Socket request is sent from it, it will not be filtered.

On Snippet 4.2.1 the message that we sent to Mozilla for the disclosure of the problem. We

received a reply from the developers within a day, and they confirmed the problem.

A fix has been already merged in the Firefox codebase, and it will be released in the next

weeks.

As part of a research project at TU Wien, we observed an inconsistency on Firefox
affecting websockets and mixed content policy restrictions.↪→

In particular, connections to insecure WebSockets (ws://...) are not blocked by the
mixed content policy when the WebSocket is created from a potentially trustworthy
origin via blob: or by a Worker loaded via a data: URI.

↪→

↪→

We provide the following payloads to test this behavior:
1) To test a Worker loaded via data: URI, you can execute new

Worker("data:text/javascript,new WebSocket('ws:example.com')");↪→

from a potentially trustworthy origin (e.g., https://example.com).

71

tentative/autoupgrade

2) To test blob: URI, execute the script below from a potentially trustworthy origin
window.open(URL.createObjectURL(

new File([`<!DOCTYPE html><script>new
WebSocket("ws://example.com");</script>`],↪→

'test.html',
{type: 'text/html'})));

The Worker script (1) triggers a connection request in Firefox, while Chromium and
Safari block it with a mixed-content exception.↪→

Similarly, the blob example (2) does not cause any error on Firefox, but it is
blocked on Chromium and Safari.↪→

Snippet 4.2.1: Message for the disclosure of Firefox WebSocket filtering problem

4.3 Results for Chromium
All tests have been run in Chromium. No SAT was reported in any mixed content invariants.

72

Folder Test SAT Invariant

upgrade-insecure-requests

gen/srcdoc-inherit.meta/unset/img-tag.h

ttps.html mixed-content-

filtered-in-

nested-frames
gen/iframe-blank-inherit.meta/unset/im

g-tag.https.html

gen/worker-classic-data.meta/unset/web

socket.https.html

blockable-mixed-

content-filtered

gen/worker-module-data.meta/upgrade/web

socket.https.html

gen/worker-module-data.http-rp/upgrade/

websocket.https.html

gen/worker-module-data.meta/unset/webso

cket.https.html

mixed-content

gen/worker-classic-data.meta/unset/web

socket.https.html

gen/worker-classic-data.meta/upgrade/w

ebsocket.https.html

gen/worker-module-data.meta/unset/webso

cket.https.html

gen/worker-module-data.http-rp/opt-in/

websocket.https.html

gen/worker-module-data.meta/opt-in/webs

ocket.https.html

gen/worker-classic-data.meta/opt-in/we

bsocket.https.html

gen/worker-classic-data.http-rp/opt-in/

websocket.https.html

tentative/autoupgrades/audio-upgrade.h

ttps.sub.html

upgradeable-mixed-

content-filtered

tentative/autoupgrades/video-upgrade.h

ttps.sub.html

tentative/autoupgrades/image-upgrade.h

ttps.sub.html

gen/top.meta/unset/img-tag.https.html

gen/top.meta/unset/audio-tag.https.html

clear-site-data resource.html

upgrade-insecure-requests

gen/top.meta/unset/img-tag.https.html

gen/iframe-blank-inherit.meta/unset/im

g-tag.https.html

/upgrade-insecure-requests/gen/top.meta

/unset/img-tag.https.html

Table 4.3: Tests that returned SAT for some invariant in Firefox

73

gen/srcdoc-inherit.meta/unset/img-tag.https.html
gen/srcdoc-inherit.meta/unset/img-tag.https.html
gen/iframe-blank-inherit.meta/unset/img-tag.https.html
gen/iframe-blank-inherit.meta/unset/img-tag.https.html
gen/worker-classic-data.meta/unset/websocket.https.html
gen/worker-classic-data.meta/unset/websocket.https.html
gen/worker-module-data.meta/upgrade/websocket.https.html
gen/worker-module-data.meta/upgrade/websocket.https.html
gen/worker-module-data.http-rp/upgrade/websocket.https.html
gen/worker-module-data.http-rp/upgrade/websocket.https.html
gen/worker-module-data.meta/unset/websocket.https.html
gen/worker-module-data.meta/unset/websocket.https.html
gen/worker-classic-data.meta/unset/websocket.https.html
gen/worker-classic-data.meta/unset/websocket.https.html
gen/worker-classic-data.meta/upgrade/websocket.https.html
gen/worker-classic-data.meta/upgrade/websocket.https.html
gen/worker-module-data.meta/unset/websocket.https.html
gen/worker-module-data.meta/unset/websocket.https.html
gen/worker-module-data.http-rp/opt-in/websocket.https.html
gen/worker-module-data.http-rp/opt-in/websocket.https.html
gen/worker-module-data.meta/opt-in/websocket.https.html
gen/worker-module-data.meta/opt-in/websocket.https.html
gen/worker-classic-data.meta/opt-in/websocket.https.html
gen/worker-classic-data.meta/opt-in/websocket.https.html
gen/worker-classic-data.http-rp/opt-in/websocket.https.html
gen/worker-classic-data.http-rp/opt-in/websocket.https.html
tentative/autoupgrades/audio-upgrade.https.sub.html
tentative/autoupgrades/audio-upgrade.https.sub.html
tentative/autoupgrades/video-upgrade.https.sub.html
tentative/autoupgrades/video-upgrade.https.sub.html
tentative/autoupgrades/image-upgrade.https.sub.html
tentative/autoupgrades/image-upgrade.https.sub.html
gen/top.meta/unset/img-tag.https.html
gen/top.meta/unset/audio-tag.https.html
resource.html
gen/top.meta/unset/img-tag.https.html
gen/iframe-blank-inherit.meta/unset/img-tag.https.html
gen/iframe-blank-inherit.meta/unset/img-tag.https.html
/upgrade-insecure-requests/gen/top.meta/unset/img-tag.https.html
/upgrade-insecure-requests/gen/top.meta/unset/img-tag.https.html

4.4 Mixed Content in the wild
After having analyzed the behavior of the browsers and identified critical vulnerabilities in

the implementation of mixed content filtering, we wanted to understand howmany websites

are currently including mixed content.

After some research, we determined that no recent workwas done on this topic. Therefore,

we decided to crawl the top 100K websites to analyze mixed content presence on the web.

4.4.1 Previous results
One of the most recent researches about mixed content presence on the web was performed

in 2015 by P. Chen et al. with the paper “A Dangerous Mix: Large-scale analysis of mixed-

content websites” [14].

The paper presents an analysis of mixed-content inclusions on Alexa’s top 100,000 Internet

domains. To crawl the web they used HtmlUnit, a headless browser capable of running

JavaScript content. The browser does not render webpages per se but provides high-level

Java API that can be used to inspect the content of fetched webpages.

From the top 100,000 list, they considered only websites having at least 200 pages served

over HTTPS. This was done by using the Bing search engine API to get a list of pages belong-

ing to the same origin. For instance, the querying for site:example.com will return pages

hosted on example.com as well as subdomains. This way, from the initial list they obtained a

subset of 18,526 sites. They then fetched a total of 481,656 HTTPS pages, scanning on average

26 HTTPS pages per website.

Their study shows that 7,980 (43%) websites presented at least one type of mixed content.

In particular, they detected a total of 620,151 mixed-content requests for 191,456 different

files. In total, the number of vulnerable HTTPS pages was 74,946.

They categorized the mixed content inclusions into the following categories:

• Images: 406,932 requests from 5,557 websites (30%).

• iframes: 25,362 requests from 2,593 websites (14%).

• CSS: 35,957 requests from 2,223 websites (12%).

• JavaScript: 150,179 from 4,816 websites (26%).

4.4.2 Crawling the web
To compare the results with the scan performed in 2015, we decided to crawl the top 100K

websites as well. As Alexa’s list was discontinued in May 2022, we obtained an up-to-date

list from the Tranco project [37].

The list is research-oriented and consists of the top 1 million websites, obtained by aver-

aging all available rankings over 30 days.

For the crawling, we used Puppeteer, a Node.js library that provides a high-level API to

control a headless Chromium instance. Puppeteer allows to automate the crawling of web-

sites, and it is used by many projects to perform web scraping.

74

example.com

To detect mixed content we used the DevTools protocol to identify mixed content error

messages in the browser console. We therefore use information coming directly from the

browser as it is less resource-intensive than having to manually scan the DOM and JavaScript

code. The headless Chromium will render the webpage and execute the JavaScript code,

essentially behaving the same as a normal execution under user navigation.

As we observed with the results of our automated testing framework, Chromium resulted

in the browser with the best implementation of the Mixed Content policy (no violation was

found). We can therefore assume that using the error messages shown in the console is a

reliable way to detect mixed content inclusions as the number of false negatives due to a

security flaw in the implementation should be negligible.

This approach permits easy categorization of the different types of mixed content inclu-

sions, as the error messages are specific for each type.

Eachwebsite is scanned by visiting its homepage and then following all the links that point

to the same domain. This process is repeated until all the pages of the website are visited or

if the time limit of 5 minutes is reached. A fixed time of 5 seconds is used in between page

visits, to avoid overloading the website with requests. This defines an upper limit of 60 pages

that can be visited for each website.

We added a custom request header to inform the website that we are performing crawling

for research purposes, including an email to contact in case of problems.

Using anchors to visit different pages

Once a specific domain is extracted from the list, we visit the homepage of the website. We

then collect the anchors to create a list of other pages to scan. In particular, we consider only

anchors that point to the same origin, and that do not contain a fragment part. We exclude

pages that were already visited and pages that point to the same URL as the current page.

The code at Snippet 4.4.1 shows the filtering that is performed to populate the crawling list.

1 const filtered = allElements
2 .filter((el) => el.localName === "a" && el.href) // Element is an anchor

with an href.↪→

3 .filter((el) => typeof el.href == "string" && !el.href.includes("#")) //
Element does not have fragment part↪→

4 .filter((el) => el.href !== location.href) // Link doesn't point to page's
own URL.↪→

5 .filter((el) => {
6 if (sameOrigin) {
7 return new URL(location).origin === new URL(el.href).origin;
8 }
9 return true;

10 })
11 .map((a) => a.href);
12

Snippet 4.4.1: Populating crawling list using anchors present in the current document

75

Understanding type of mixed content

To identify and categorize mixed content requests we use the error messages that are shown

in the browser console. Mixed content errors do include the substring “Mixed Content”. It

is possible to categorize the mixed content requests into blockable and upgradeable content

by looking at the error message. If the message includes “WAR”, then the message is infor-

mative to communicate that auto-upgrading was performed on an upgradeable request. If

the message does not include “WAR”, then the request was blocked as mixed content. The

message includes the URL of the request and the content type.

We store the full content of the message in one of two different files based on the mixed

content type. Such files will be post-processed at the end of the crawl to obtain the final

results.

In Snippet 4.4.2, the code used to obtain the mixed content request classification.

1 function isMixedContentError(errorMessage) {
2 if (errorMessage.includes("Mixed Content")){
3 if (errorMessage.includes("WAR")) {
4 console.log(
5 chalk.bgYellow.black("upgradeable-mixed-content:"),
6 errorMessage
7);
8 fs.appendFile(
9 "./results/upgradeable.txt",

10 errorMessage + "\n",
11 function (err) {
12 if (err) throw err;
13 });
14 }
15 else {
16 console.log(
17 chalk.bgRed.black("blockable-mixed-content:"),
18 errorMessage
19);
20 fs.appendFile(
21 "./results/blockable.txt",
22 errorMessage + "\n",
23 function (err) {
24 if (err) throw err;
25 });
26 }
27 }
28 }

Snippet 4.4.2: Obtain mixed content request classification while crawling

4.4.3 Results of crawling

In total, 30 parallel Chromium instances were used, each scanning a subset of the top 100K

websites. As the crawling process is CPU intensive, we used a machine with 32 cores and 40

76

GB of RAM. The available bandwidth was 1 Gbps. With such a configuration, the crawling

took about ten days to complete.

The results were post-processed to obtain the final statistics.

We divide the analysis into two parts: we first consider the top 1000 websites, then we look

at the full list of 100K websites and compare the results with the data from 2015 presented

in the paper “A Dangerous Mix: Large-scale analysis of mixed-content websites”.

Top 1000 websites

We consider now the most popular sites on the web. One preliminary assumption on this

subset is that the complexity of pages should be higher on average compared to the full list.

We may expect these websites to include many dynamic pages each with several external

resources.

Another consideration could be that somewebsites in this subset could include older pages

that may still include external resources loaded via HTTP. This aspect could be exacerbated

by the fact that some websites do have many web pages that are not visited often, with most

of the traffic concentrated on a few pages. A representative example of this is university

websites that often include personal pages of professors and researchers.

On the other hand, we also expect that most of these websites are updated and maintained,

as they are more popular and visited by many users. In particular, the websites of big com-

panies should be updated more often, as the budget for the maintenance of the website is

higher.

Figure 4.2: Websites from the top 1000 list that present Mixed Content

We consider first the number of websites that include mixed content per category. This

can be visualized in Figure 4.2. In particular, we have that 357 websites (35.7%) include at

least one type of mixed content. This is split into:

77

• Websites with upgradeable mixed content: 271 websites (27.1%).

• Websites with blockable mixed content: 86 websites (8.6%).

We now consider the requests that are mixed content based on the content type. This

information can be visualized in Figure 4.3. A total of 48,605 requests were found to be

mixed content. These were divided as follows:

• Upgradeable requests: 39,202 requests that have been upgraded.

– Element(subresources): 39,153 requests.

– Image(javascript fetch): 49 requests.

• Blockable requests: 9,380 requests have been blocked.

– Script: 6,370 requests.

– Endpoint (fetch): 1,470 requests.

– Favicon: 1,020 requests.

– Stylesheet: 187 requests.

– Frame: 131 requests.

– Font: 197 requests.

– Plugin resource (<object>): 2 requests.

– Resource (<embed>): 1 request.

Figure 4.3: Mixed Content requests in the top 1000 websites

78

Top 100K websites

We now move to the full list of the top 100K websites. From the websites in this list, we

expect a lower complexity of pages on average, this should translate into a lower number of

external resources per page.

Figure 4.4: Websites from the top 100K list that present Mixed Content

First, we look at the number of websites that include mixed content. This can be visualized

in Figure 4.4. In particular, we have that 6,075 websites (6.075%) do include at least one

category of mixed content. This number is split into:

• Websites with upgradeable mixed content: 4,407 websites (4.407%).

• Websites with blockable mixed content: 2,692 websites (2.692%).

• Websites with both: 1,024 websites (1.024%).

If we consider the number of websites that include mixed content, we can see that the

percentage is lower than the one for the top 1000 websites. This should confirm the initial

hypothesis that websites have a lowerwebpages complexity on average and therefore include

fewer external resources.

We now consider the requests that are mixed content per each type. This information can

be visualized in Figure 4.5. In total, 769,919 requests were found to be mixed content. These

are divided into the following types:

• Upgradeable requests: 679,553 requests that have been upgraded.

– Element (subresources): 677,000 requests.

– Image (javascript fetch): 2,320 requests.

79

– Audio (javascript fetch): 106 requests.

– Image (javascript fetch): 24 requests.

• Blockable requests: 90,366 requests have been blocked.

– Script: 41,023 requests.

– Stylesheet: 13,946 requests.

– Font: 12,045 requests.

– Frame: 6,230 requests.

– Favicon: 4,192 requests.

– Endpoint (fetch): 8,504 requests.

– XHR request: 2,820 requests.

– Plugin resource (<object>): 459 requests.

– Manifest: 119 requests.

– Prefetch resource (CORS requests): 128 requests.

– Resource (<embed>): 30 request.

– Hyperlink auditing endpoint (anchor with ping): 11 requests.

Figure 4.5: Mixed Content requests in the top 100K websites

80

4.4.4 Mixed content in the wild: 2015 and 2023
We compare now the study of P. Chen et al. from 2015 with the data obtained with our crawl

(July 2023). Such comparison can be useful to reason about the effectiveness of the mixed

content filtering approach proposed by the W3C specification. The results are summarized

in Table 4.4.

We can see that the number of websites with mixed content has decreased noticeably. This

happened even though the number of websites scanned by the study in 2015 was smaller than

the set we considered. In the study of P. Chen et al. the list of pages to scan was provided by

using the Bing API. They focused on sites having at least 200 pages served over HTTPS, so

their analysis was conducted on 18,526 sites. On the other hand, we obtained the list from

anchors in pages, and our study was performed on all the sites of the top 100K list.

The fact that despite that the number of blockable mixed content requests detected in our

study has been reduced by 57.5% shows how in the last 5 years the approach of blocking

this type of requests has been effective in forcing web developers to update their websites to

serve the content via HTTPS.

On the other hand, the number of upgradeable requests has increased. This can be ad-

dressed by considering that older versions of the W3C specification did not force vendors to

block upgradeable requests. As stated by the specification authors, this approach was not

effective and our numbers do confirm this statement.

The latest version of the specification was published in February 2023 and proposes a strict

blocking approach for upgradeable requests. It was quickly implemented in April 2023 by

Chromium, while Firefox is starting now to implement it.

We expect to see a decrease in the number of upgradeable requests in the next years thanks

to this new approach, as the same policy was effective in reducing the number of blockable

requests.

Metric 2015 2023 Difference
Websites with mixed content 43% 6.07% -36.93%

Mixed Content requests 620,151 769,919 +24.2%

Upgradeable requests 406,932 679,324 +66.9%

Blockable requests 213,219 90,595 -57.5%

Table 4.4: Comparison of mixed content in the wild: 2015 and 2023

81

5 Conclusions
The framework presented in this thesis allows testing the implementation of security mech-

anisms in web browsers in a fully automated way. Its design is modular and can be easily

extended to support new security mechanisms. We used it to formally verify the implemen-

tation of the Mixed Content policy in the three major browsers.

The Mixed Content Policy is a fundamental client-side security mechanism of the Web

Platform. It has been regulated by the W3C specification for almost a decade now, and since

then it has been implemented in all major browsers.

Despite the importance of the policy, we detected implementation flaws in two of the three

major browsers, with one of them being trivially exploitable. The flaws found were present

since the beginning of the standardization process. This means that the implementation of

the standard was not properly tested by browser vendors.

After having verified the implementation of the Mixed Content policy, we scanned the

top 100K websites to evaluate the presence of mixed content. We found that as of today,

about 6% of the websites still include some type of mixed content. While this is a significant

improvement compared to the situation in 2015, we can affirm that the issue is still present

in a non-negligible number of websites. The approach proposed by the W3C specification to

strictly disallow blockable content was very effective in reducing the presence of this type of

security risk. On the other hand, the approach proposed with upgradeable content was not

as efficient.

A new version of the Mixed Content specification was released 8 months ago, introducing

a new approach for filtering upgradeable content. The approach proposes a more strict pol-

icy that increases security while minimizing the risk of breaking web page functionalities.

Despite that, two of the three major browser vendors did not comply yet with the latest ver-

sion of the specification, and while one of them is planning to do so soon, the other has not

yet announced any plans to update the implementation.

83

Bibliography

[1] The Chromium Authors. Automatically lazyloading offscreen images and iframes for

lite mode users. https://blog.chromium.org/2019/10/automatica
lly-lazy-loading-offscreen.html.

[2] The Chromium Authors. Chromium contribution guideline. https://chromium
.googlesource.com/chromium/src/+/refs/heads/main/docs/
contributing.md#Running-automated-tests.

[3] The Chromium Authors. Function measurestricterversionofismixedcontent. https:
//source.chromium.org/chromium/chromium/src/+/main:
third_party/blink/renderer/core/loader/mixed_content_c
hecker.cc;l=242;drc=f649fd2e9a7f00f657c025800f5d7ed3d1
bffd21.

[4] The Chromium Authors. Mixed content iframe leads to crash in navigationre-

quest::getassociatedrfhtype. https://bugs.chromium.org/p/chromi
um/issues/detail?id=1482252.

[5] The Chromium Authors. Mixed content parent frame checking logic might be wrong.

https://bugs.chromium.org/p/chromium/issues/detail?id=
623486.

[6] The Chromium Authors. Oopif: layout tests failures when inspecting a cross-site

iframe’s properties with –site-per-process. https://bugs.chromium.org/
p/chromium/issues/detail?id=623268.

[7] The Chromium Authors. data: uri inheriting trustworthiness. https://source
.chromium.org/chromium/chromium/src/+/main:third_party/
blink/renderer/core/loader/mixed_content_checker_test.
cc;l=49;drc=974a4bdf9247c35d13a73e33ebbe06640762cad9.

[8] The Chromium Authors. Wpt integration in chromium. https://chromium.g
ooglesource.com/chromium/src/+/HEAD/docs/testing/web_p
latform_tests.md.

[9] The Chromium Authors. Chromium repository on github. https://github.c
om/chromium/chromium, 2023.

85

https://blog.chromium.org/2019/10/automatically-lazy-loading-offscreen.html
https://blog.chromium.org/2019/10/automatically-lazy-loading-offscreen.html
https://chromium.googlesource.com/chromium/src/+/refs/heads/main/docs/contributing.md#Running-automated-tests
https://chromium.googlesource.com/chromium/src/+/refs/heads/main/docs/contributing.md#Running-automated-tests
https://chromium.googlesource.com/chromium/src/+/refs/heads/main/docs/contributing.md#Running-automated-tests
https://source.chromium.org/chromium/chromium/src/+/main:third_party/blink/renderer/core/loader/mixed_content_checker.cc;l=242;drc=f649fd2e9a7f00f657c025800f5d7ed3d1bffd21
https://source.chromium.org/chromium/chromium/src/+/main:third_party/blink/renderer/core/loader/mixed_content_checker.cc;l=242;drc=f649fd2e9a7f00f657c025800f5d7ed3d1bffd21
https://source.chromium.org/chromium/chromium/src/+/main:third_party/blink/renderer/core/loader/mixed_content_checker.cc;l=242;drc=f649fd2e9a7f00f657c025800f5d7ed3d1bffd21
https://source.chromium.org/chromium/chromium/src/+/main:third_party/blink/renderer/core/loader/mixed_content_checker.cc;l=242;drc=f649fd2e9a7f00f657c025800f5d7ed3d1bffd21
https://source.chromium.org/chromium/chromium/src/+/main:third_party/blink/renderer/core/loader/mixed_content_checker.cc;l=242;drc=f649fd2e9a7f00f657c025800f5d7ed3d1bffd21
https://bugs.chromium.org/p/chromium/issues/detail?id=1482252
https://bugs.chromium.org/p/chromium/issues/detail?id=1482252
https://bugs.chromium.org/p/chromium/issues/detail?id=623486
https://bugs.chromium.org/p/chromium/issues/detail?id=623486
https://bugs.chromium.org/p/chromium/issues/detail?id=623268
https://bugs.chromium.org/p/chromium/issues/detail?id=623268
https://source.chromium.org/chromium/chromium/src/+/main:third_party/blink/renderer/core/loader/mixed_content_checker_test.cc;l=49;drc=974a4bdf9247c35d13a73e33ebbe06640762cad9
https://source.chromium.org/chromium/chromium/src/+/main:third_party/blink/renderer/core/loader/mixed_content_checker_test.cc;l=49;drc=974a4bdf9247c35d13a73e33ebbe06640762cad9
https://source.chromium.org/chromium/chromium/src/+/main:third_party/blink/renderer/core/loader/mixed_content_checker_test.cc;l=49;drc=974a4bdf9247c35d13a73e33ebbe06640762cad9
https://source.chromium.org/chromium/chromium/src/+/main:third_party/blink/renderer/core/loader/mixed_content_checker_test.cc;l=49;drc=974a4bdf9247c35d13a73e33ebbe06640762cad9
https://chromium.googlesource.com/chromium/src/+/HEAD/docs/testing/web_platform_tests.md
https://chromium.googlesource.com/chromium/src/+/HEAD/docs/testing/web_platform_tests.md
https://chromium.googlesource.com/chromium/src/+/HEAD/docs/testing/web_platform_tests.md
https://github.com/chromium/chromium
https://github.com/chromium/chromium

[10] The WebKit Authors. Consider mixed-content iframes to be mixed script instead of

mixed display. https://bugs.webkit.org/show_bug.cgi?id=1160
65.

[11] The WebKit Authors. Repository commit to fix cve-2023-38592. https://github
.com/WebKit/WebKit/commit/bc09b6fca3255742370fdd150cf9
627b53794c1e.

[12] The WebKit Authors. Webkit contribution guideline. https://webkit.org/c
ontributing-code/.

[13] The WebKit Authors. Wpt integration in webkit. https://docs.webkit.or
g/Infrastructure/WPTTests.html#import-wpt-tests-from-a
-local-checkout-of-wpt.

[14] Ping Chen, Nick Nikiforakis, Christophe Huygens, and Lieven Desmet. A dangerous

mix: Large-scale analysis of mixed-content websites. In Yvo Desmedt, editor, Informa-
tion Security, pages 354–363, Cham, 2015. Springer International Publishing.

[15] WPT Contributors. Wpt-testharness api. https://web-platform-tests.o
rg/writing-tests/testharness-api.html.

[16] WPT Contributors. Web-platform-tests. https://web-platform-tests.o
rg/, 2019.

[17] ECMA. Ecmascript standard. Technical report, ECMA, 2023. https://www.ecma
-international.org/publications-and-standards/standar
ds/ecma-262/.

[18] Gertjan Franken, Tom Van Goethem, Lieven Desmet, and Wouter Joosen. A bug’s life:

Analyzing the lifecycle and mitigation process of content security policy bugs. In 32nd
USENIX Security Symposium (USENIX Security 23), pages 3673–3690, Anaheim, CA, Au-

gust 2023. USENIX Association.

[19] Google. Https encryption on the web - transparency report. https://transpar
encyreport.google.com/https/overview?hl=en.

[20] James Graham. Integration of wpt in firefox repository. https://bugzilla.m
ozilla.org/show_bug.cgi?id=945222, 2014.

[21] Ivan Herman. Find the best terminology to restrict the usage of data urls. https:
//github.com/w3ctag/design-reviews/issues/635.

[22] Internet Engineering Task Force (IETF). The web origin concept. https://www.
rfc-editor.org/rfc/rfc6454, 2011.

[23] Internet Engineering Task Force (IETF). Media type specifications and registration pro-

cedures. https://www.rfc-editor.org/rfc/rfc6838, 2013.

86

https://bugs.webkit.org/show_bug.cgi?id=116065
https://bugs.webkit.org/show_bug.cgi?id=116065
https://github.com/WebKit/WebKit/commit/bc09b6fca3255742370fdd150cf9627b53794c1e
https://github.com/WebKit/WebKit/commit/bc09b6fca3255742370fdd150cf9627b53794c1e
https://github.com/WebKit/WebKit/commit/bc09b6fca3255742370fdd150cf9627b53794c1e
https://webkit.org/contributing-code/
https://webkit.org/contributing-code/
https://docs.webkit.org/Infrastructure/WPTTests.html#import-wpt-tests-from-a-local-checkout-of-wpt
https://docs.webkit.org/Infrastructure/WPTTests.html#import-wpt-tests-from-a-local-checkout-of-wpt
https://docs.webkit.org/Infrastructure/WPTTests.html#import-wpt-tests-from-a-local-checkout-of-wpt
https://web-platform-tests.org/writing-tests/testharness-api.html
https://web-platform-tests.org/writing-tests/testharness-api.html
https://web-platform-tests.org/
https://web-platform-tests.org/
https://www.ecma-international.org/publications-and-standards/standards/ecma-262/
https://www.ecma-international.org/publications-and-standards/standards/ecma-262/
https://www.ecma-international.org/publications-and-standards/standards/ecma-262/
https://transparencyreport.google.com/https/overview?hl=en
https://transparencyreport.google.com/https/overview?hl=en
https://bugzilla.mozilla.org/show_bug.cgi?id=945222
https://bugzilla.mozilla.org/show_bug.cgi?id=945222
https://github.com/w3ctag/design-reviews/issues/635
https://github.com/w3ctag/design-reviews/issues/635
https://www.rfc-editor.org/rfc/rfc6454
https://www.rfc-editor.org/rfc/rfc6454
https://www.rfc-editor.org/rfc/rfc6838

[24] Internet Engineering Task Force (IETF). Http/1.1. https://www.rfc-editor.
org/rfc/rfc9112, 2022.

[25] Collin Jackson and Adam Barth. Forcehttps: Protecting high-security web sites from

network attacks. In Proceedings of the 17th International Conference on World Wide Web,
2008.

[26] Mozilla. Mozilla contribution guideline. https://www.mozilla.org/en-U
S/about/governance/policies/commit/access-policy/.

[27] Mozilla. Wpt integration in firefox. https://firefox-source-docs.mozi
lla.org/web-platform/index.html.

[28] Dirk Pranke. Integration of wpt in blink engine repository. https://bugs.chr
omium.org/p/chromium/issues/detail?id=413454, 2014.

[29] Titouan Rigoudy. Data url iframes are considered secure contexts only if sandboxed.

https://github.com/w3c/webappsec-secure-contexts/issu
es/83.

[30] Jörg Schwenk, Marcus Niemietz, and ChristianMainka. Same-Origin policy: Evaluation

in modern browsers. In 26th USENIX Security Symposium (USENIX Security 17), pages
713–727, Vancouver, BC, August 2017. USENIX Association.

[31] Clarck B. Sengupta S., Tal L. Web almanac 2022: Security. https://almanac.ht
tparchive.org/en/2022/security.

[32] Suphannee Sivakorn. Understanding flaws in the deployment and implementation of

web encryption. In Ph.D. Thesis, Columbia University, 2017.

[33] M. Squarcina, P. Adão, L. Veronese, and M. Maffei. Cookie crumbles: Breaking and

fixing web session integrity. In USENIX Security ’23, 2023.

[34] Emily Stark, MikeWest, and Carlos IbarraLopez. Mixed content. Candidate recommen-

dation, W3C, February 2023. https://www.w3.org/TR/2023/CRD-mixed
-content-20230223/.

[35] Anne van Kesteren. Can data: Urls be part of a secure context? https://github
.com/w3c/webappsec-secure-contexts/issues/69.

[36] L. Veronese, B. Farinier, P. Bernardo, M. Tempesta, M. Squarcina, and M. Maffei. Web-

spec: Towards machine-checked analysis of browser security mechanisms. In 44th IEEE
Symposium on Security and Privacy. IEEE Computer Society, 2023.

[37] Samaneh Tajalizadehkhoob Maciej Korczyński Victor Le Pochat, Tom Van Goethem. A

research-oriented top sites ranking hardened against manipulation. https://tran
co-list.eu/.

87

https://www.rfc-editor.org/rfc/rfc9112
https://www.rfc-editor.org/rfc/rfc9112
https://www.mozilla.org/en-US/about/governance/policies/commit/access-policy/
https://www.mozilla.org/en-US/about/governance/policies/commit/access-policy/
https://firefox-source-docs.mozilla.org/web-platform/index.html
https://firefox-source-docs.mozilla.org/web-platform/index.html
https://bugs.chromium.org/p/chromium/issues/detail?id=413454
https://bugs.chromium.org/p/chromium/issues/detail?id=413454
https://github.com/w3c/webappsec-secure-contexts/issues/83
https://github.com/w3c/webappsec-secure-contexts/issues/83
https://almanac.httparchive.org/en/2022/security
https://almanac.httparchive.org/en/2022/security
https://www.w3.org/TR/2023/CRD-mixed-content-20230223/
https://www.w3.org/TR/2023/CRD-mixed-content-20230223/
https://github.com/w3c/webappsec-secure-contexts/issues/69
https://github.com/w3c/webappsec-secure-contexts/issues/69
https://tranco-list.eu/
https://tranco-list.eu/

[38] Jonathan Watt. Sandboxed data: Uri in a localhost page should be a secure context.

https://github.com/w3c/webappsec-secure-contexts/issu
es/26.

[39] WebKit. Webkit bug prioritization. https://webkit.org/bug-prioritiz
ation/.

[40] Mike West. Secure contexts. Candidate recommendation, W3C, September 2021. ht
tps://www.w3.org/TR/2021/CRD-secure-contexts-20210918/.

[41] WHATWG. Html standard. Technical report, whatwg, 2021. https://html.spe
c.whatwg.org/multipage/webappapis.html.

[42] WHATWG. Dom standard. Technical report, whatwg, 2023. https://dom.spec
.whatwg.org/.

[43] WHATWG. Fetch standard. Technical report, whatwg, 2023. https://fetch.sp
ec.whatwg.org/.

[44] WHATWG. Url living standard. Technical report, whatwg, 2023. https://url.
spec.whatwg.org/.

[45] WHATWG. Xmlhttprequest living standard. Technical report, whatwg, 2023. https:
//xhr.spec.whatwg.org/.

https://github.com/w3c/webappsec-secure-contexts/issues/26
https://github.com/w3c/webappsec-secure-contexts/issues/26
https://webkit.org/bug-prioritization/
https://webkit.org/bug-prioritization/
https://www.w3.org/TR/2021/CRD-secure-contexts-20210918/
https://www.w3.org/TR/2021/CRD-secure-contexts-20210918/
https://html.spec.whatwg.org/multipage/webappapis.html
https://html.spec.whatwg.org/multipage/webappapis.html
https://dom.spec.whatwg.org/
https://dom.spec.whatwg.org/
https://fetch.spec.whatwg.org/
https://fetch.spec.whatwg.org/
https://url.spec.whatwg.org/
https://url.spec.whatwg.org/
https://xhr.spec.whatwg.org/
https://xhr.spec.whatwg.org/

	Introduction
	Background
	The Web Platform
	HTML
	JavaScript as client-side language
	Identifying resources on the web
	Classifying resources based on the content types
	HTTP
	Same Origin Policy

	Securing communications with HTTPS
	Security of HTTPS
	Improper HTTPS deployment
	Current HTTPS deployment on the web

	Mixed Content
	Upgradeable content
	Blockable content
	Overview on Mixed Content Filtering
	Obsolescences
	Integrations of Mixed Content

	Methodology
	Overview on the WPT project
	Test Layout
	Javascript Tests
	Practical considerations on the WPT test suite

	Leverage WPT for automatic verification of web security mechanisms
	Execution Traces
	Browser instrumentation

	Web Invariants
	Trace Verification Pipeline
	Trace collection
	Trace verification

	Encoding mixed content invariants
	The notion of potential trustworthiness
	Is origin potentially trustworthy?
	Modeling the concept of potentially trustworthy origin
	Is URL potentially trustworthy?
	Model the concept of potentially trustworthy URL

	Does settings prohibit mixed security contexts?
	Modeling the algorithm "Does settings prohibits mixed security contexts?"

	Upgrade a mixed content request to a potentially trustworthy URL, if appropriate
	Modeling the type of content: blockable vs upgradable

	Should fetching request be blocked as mixed content?
	Modeling the algorithm "Should fetching request be blocked as mixed content?"

	More mixed content algorithms and invariants
	Should response to request be blocked as mixed content?
	Model the filtering of content in nested contexts

	Results
	Results for Webkit
	sandbox attribute bypass Mixed Content restrictions in WebKit
	Framed pages bypass Mixed Content restrictions in WebKit
	The attack: CVE-2023-38592
	Mixed content beacon endpoints not filtered in WebKit

	Results for Firefox
	Problem with WebSockets in Firefox

	Results for Chromium
	Mixed Content in the wild
	Previous results
	Crawling the web
	Results of crawling
	Mixed content in the wild: 2015 and 2023

	Conclusions

