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Abstract

In this work, we apply game-theoretic and statistical models to an open problem

regarding asymmetric information in loan contracts. Under these asymmetries,

the effect of higher collateral requirements on the interest rates applied by banks

to borrowers is not clear. The literature has argued both for positive and a negative

links, based on different hypotheses and econometric analyses. We discuss how this

effect cannot be decided a-priori. In the first part we construct three game-theoretic

models under different hypotheses, proving the impossibility of an univocal effect.

Then, to assess what is the prevailing effect in the reality, we analyze for the first

time loan big-data for millions of borrowers among various European countries,

as collected by the European DataWarehouse. We examine some mathematical

and practical aspects of: the Principal Component Analysis (PCA), the Principal

Component Regression (PCR), the regularization theory, the LASSO and RIDGE

regressions, applying them to our datasets. Finally, we combine a regression

model with the Probabilistic PCA, discussing the EM algorithm in presence of

sparse datasets. These datasets are characteristic of our database and others, and

defining the Probabilistic PCR we propose a new technique which may show itself

useful if the availability of loan data will increase over time conserving some data

sparsity.
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Chapter 1

Introduction

1.1 Combining game theory with econometrics

1.1.1 The problem

The present work concentrates on the influence of asymmetric information in

loan contracts, examining the subject both from a theoretical and an empirical

viewpoint. In particular, we consider a specific effect of the information

asymmetries which affect the credit market, and our main aim is to answer the

question: does collateral requirements increase or decrease interest rates of loan

contracts? While this topic can be analyzed through different points of view

and various subjects, we take advantage of game-theoretic models along with

mathematical and statistical tools to tackle it.

In fact, as we will see in the rest of the thesis, the answer to this apparently

simple question is not straightforward, since it requires a deep analysis and

somewhat advanced quantitative tools to give a satisfactory conclusion. We apply,

for example, utility and piecewise-defined functions, sets of borrower’s variables,

and probabilistic concepts to build some game-theoretic models; principal

component and regularized regressions, algorithms and geometric dimension

reduction techniques to analyze a huge amount of real loan data.

In doing so, we implicitly recognize the potential of quantitative reasoning

applied to a purely economic question. Indeed, in the last decades, the quantitative
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subjects have spread their influence in almost every field of research; this fact

can be explained at least through three different considerations, which reinforce

themselves reciprocally. Firstly, the significant development of these disciplines,

which have been enriched of more powerful concepts over time. Secondly, the

recognition of the usefulness of a formal reasoning applied to many questions

arising from disparate subjects. Finally, the technology development which

has made possible to take advantage of many applied mathematical methods

effectively. All these aspects are characteristic of our thesis. Indeed, we rely heavily

on mathematical and statistical theory, on its application to economic models and

data analysis, and we use a recent database (the ED, see below) and the MATLAB

software to analyze loan datasets.

To introduce the problem analyzed, we sum up the main questions which we

aim to answer throughout this thesis, and which are examined in depth through

the following chapters:

1. What happens to the interest rate of loan contracts when collateral of a higher

value is required?

2. Is this effect influenced by information asymmetries, which are characteristic

of loan contracts?

3. Is the theoretical and the empirical literature unanimous on these points?

4. How can we analyze loan big-data in an effective way? Which are the

mathematical tools and the statistical models which allow us to empirically

assess the interest rate-collateral relation?

5. How can we handle the problem of sparse data, which is characteristic of our

and other databases, in regression models?

Asymmetric information concept is not new to finance in general, and it is a

typical subject of study of game theory. Actually, it affects collateral contracts,

where two players, the bank and the borrower, interact. We show that these

asymmetries influence the collateral-interest rate link, since collateral can be
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used as an effective tool under moral hazard and adverse selection. In fact,

these situations change the conclusions reached in the analysis under symmetric

information, pointing out that not any effect can be decided a priori, since these

scenarios are equally plausible.

The economic and econometric literature has broadly discussed the topic as well,

but depending on the particular assumptions made by each author, contradictory

conclusions have been provided. We can expect that different contracts match

some of these specific hypotheses better, hence the overall effect of collateral

requirements on loan interest rates is ambiguous, as we prove theoretically. Then,

this conclusion is empirically tested in the second part of the thesis, using data for

millions of borrowers among various European countries. We apply to this data

the Principal Component Analysis and the Principal Component Regression (PCA

and PCR), some regularized regression techniques, the Cross-Validation and other

statistical tools. We analyze their derivation, the theory behind these subjects and

the problems related to their practical application.

We find that different effects hold for different countries and for different

contracts, which is consistent with our theoretical analysis. Moreover, since other

borrower’s variables are considered in the analysis along with the collateral one,

we provide some comments about their effect on the interest rates too, along with

their reciprocal relations found through an unsupervised analysis. Finally, we

notice that, while the availability of data for the current variables is likely to be

improved, one characteristic feature of our database is a certain amount of sparse

data. Moving from this practical consideration, we theoretically discuss different

not trivial techniques and models useful under this framework (the Probabilistic

PCA, the EM algorithm for sparse datasets) and we define the Probabilistic PCR

moving from the basic PCR technique.

9



1.1.2 The link between game theory and econometrics

This work is made up of two closely interconnected parts. The first is theoretical,

and we take advantage of the modelization allowed by game theory, proposing

different models and formalizing the problem discussed. The second part is a

statistical/econometric part, which allows us to empirically analyze a large amount

of loan data in order to verify what happens in the real word. In fact, the effect

of collateral requirements on loan interest rates could have been considered only

from a theoretical viewpoint, or only from an empirical one, but the combination

of these two aspects is very effective in this context. The rational approach of

game theory, and the consequent results obtained theoretically, are enriched by an

econometric analysis, where we explore what empirical data reveals. Indeed, we

find that our peculiar approach to the problem presented in the first theoretical

part is supported by our empirical findings. Actually, we do not propose a unique

answer to the question which our thesis moves from, but our aim is to show that

the effect of collateral on the loan interest rate can be either positive or negative,

depending on different theoretical assumptions and on different situations which

take place in the real word. We give a very short overview of the content of the

following chapters.

1.2 A brief outline of the chapters

1.2.1 Chapter 2

In this chapter, we present a concise, but complete, literature review on the

topic of this thesis. We move from the seminal work by Stiglitz and Weiss (1981),

and then we analyze the contrasting theoretical literature which has discussed

the effect of collateral on loan contracts, and in particular on the borrower’s risk

and on the interest rate applied. We mainly focus on the different hypotheses

made by the authors, comparing them in order to understand why they reach

opposite conclusions. Then, we revise the empirical literature, which has found

contrasting results as well, depending on the particular data-set considered and
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on the procedure chosen.

1.2.2 Chapter 3

In this chapter, we built our game-theoretic models in order to prove the a priori

impossibility of an unambiguous effect of collateral requirements on the interest

rates of loan contracts. Specifically, we show that different hypotheses, related

to three different scenarios — symmetric information; moral hazard; adverse

selection — lead to different conclusions, proposing a more general approach

compared with the previous literature. We prove that with perfect information the

presence of collateral implies a lower interest rate, but if asymmetric information

is considered this effect is no longer straightforward. Our conclusions are in line

with those provided by other authors, but we provide a different derivation.

1.2.3 Chapter 4

In this chapter, firstly we analyze the main mathematical and statistical

aspects related to the Principal Component Analysis, for example its algebraic

derivation, the choice between the covariance and the correlation matrix, the

interpretation of the coefficient vectors and their associated eigenvalues, the

Singular Value Decomposition. Then we focus on the Principal Component

Regression method, examining its theoretical motivation and practical aspects,

such as its rationale and the variable selection problem. Moreover, we briefly

introduce the Cross-Validation and the K-means clustering in order to apply them

in our empirical analysis. We conclude the chapter with the practical application of

these tools to our loan big-data, examining the relation between the interest rate

and collateral along with other borrower’s variables.

1.2.4 Chapter 5

In this chapter, we extend the previous analysis applying other regression

techniques to our data. We examine two regularized regression methods, the

Ridge and the LASSO, which have an analogous in the mathematical theory of

11



regularization, but were independently developed by statisticians. We examine

the theory behind these techniques, in particular their different shrinkage effects,

justifying them both analytically and geometrically. We discuss the differences

and the analogies between the PCR and these regressions, in particular their

higher-bias and possible lower-variance estimators compared with the OLS as

shown in literature. At the end, we apply these techniques to the loan data and we

analyze the differences with the results of Chapter 4, showing that the conclusions

do not change.

1.2.5 Chapter 6

In this chapter, we discuss a new possible approach which can be particularly

useful for our dataset. In fact, the current RBMS datasets on the ED present

a huge volume of missing data especially for the optional variables, thus we

propose an approach which may be useful under the realistic hypothesis that the

availability of quantitative loan data will increase over time, however conserving

some data sparsity. We examine the Probabilistic PCA, an extension of the

PCA which allows a stochastic modelization of variables, in order to discuss

an application of the EM algorithm in the presence of missing values. Since

this method is unsupervised, we extend it into a supervised one, defining the

Probabilistic PCR and examining whether this extension can be applied, for

example showing the necessity to orthogonalize the column vectors derived

through the EM algorithm, which span the principal subspace, in order to apply

the PCR model and to interpret the results in terms of the original variables.

1.3 Data description. Big-data analysis

1.3.1 Availability of loan data: The European DataWarehouse

A substantial part of this thesis has been made possible thanks to the huge

collection of loan data stored in the European DataWarehouse database. The

European DataWarehouse (ED) "is the first centralised platform in Europe which

12



collects, stores and distributes standardised ABS loan level data" (see the ED

website). Therefore, the loan considered are an underlying for an Asset-Backed

Security and the storage of loan data is motivated by the "ABS Loan Level

Initiative", which aims to improve the transparency of ABS markets, giving access

to the market participants to this information; this initiative was conceived by the

European Central Bank.

The specific analysis presented in this thesis has been made possible thanks to

the agreement between Ca’ Foscari University and the ED, which has provided

the Edwin and the EDplus services. In particular, in this thesis we have analyzed

millions of data collected for each single borrower associated with a residential

mortgage-backed security (RMBS), for different European countries (see table 4.1

in Chapter 4). This huge amount of data requires non-traditional techniques and

can be seen as an evidence of the increasing importance of the so called "big-data

analysis" research field.

1.3.2 Big-data analysis: An emerging research field

One of the key characteristics of the ED data is, without doubt, their huge

dimensionality. In fact, the ED offers various possibilities to aggregate them

and to visualize lots of synthetic indicators, in order to make faster and easier

comparisons. Nevetheless, the huge dimensionality offers a great amount of

information if data is analyzed properly, as we have attempted to do in the present

work.

Indeed, the importance of data analysis in recent years cannot be overstressed.

This subject is important for each aspect considered, from informatics to statistics,

from meteorology to natural sciences such as genetics and astronomy, from image

analysis to economics.

From a more specific viewpoint, research on data analysis is one of the

most promising sectors of modern mathematics. It is enough to point out

a well-known consideration of Gromov (August 1998), whose remarks on the

future of mathematics include to "deal with huge amounts of loosely structured
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data", provided that "we shall need [...] mathematical professionals able to

meditate between pure and applied science". The subject seems very interesting,

theoretically and practically too. In fact, a development of further mathematical

and I.T. tools is necessary to properly take advantage of this data, which in our

time is overabundant. The reduction of the so-called "Big-data" and the following

extraction of their nested information can lead to a substantial improvement of

our knowledge in almost every field. This explains why nowadays data analysis

is one of the most prolific research fields. This development is supported by

major increases in information technology. Indeed, the data is collected in

bigger and bigger databases, taking advantage of increased computer memory and

computing power unimaginable until a few decades ago. In this work we make

these statements effective. Firstly, we take advantage of some statistical and

mathematical tools to empirically assess the theoretical hypotheses considered

in the game-theoretic part. In fact, we rely heavily on algebraic, mathematical

analysis, computer science and probabilistic tools to analyze, reduce and interpret

our data. Secondly, we propose a new approach to the principal component

regression (see below) to address the problem of sparse independent variables,

extending the probabilistic PCA proposed by Tipping and Bishop (1999), to a

regression model.

Since the underlying variables of our data vectors are of an economic type, the

final target is an econometric analysis. As a matter of fact, we analyze and discuss

empirical results derived from the analysis of loan data, showing how all these

tools show themselves effective in this particular context. Specifically, we discuss

some useful methods which can be applied to the large datasets characteristic of

the European DataWarehouse. The analytical tools proposed here are general,

hence any researcher will be able to apply them in the future, to the ED datasets

with a more complete loan data availability, or to other datasets.

14



1.3.3 Data characteristics and the problem of sparse matrices

We briefly resume the key points of our empirical analysis, in particular of

our data, which are thoroughly discussed throughout the econometric part. Our

analysis is a cross-sectional study, where the dependent variable is the Interest

Rate Margin of loans associated with RMBS contracts, and the regressors are

specific borrower’s variables, among them the value of collateral pledged. In

order to have comparable data, we preliminarily split our loan data according

to the country of origin, and to the nature of the interest rate, namely fixed or

floating, and in addition for the fixed rate we consider separately two shorter

periods, approximately homogeneous for macroeconomic variables. For a complete

description please refer to Section 4.5 of Chapter 4.

As anticipated, a major characteristic of our data is a certain sparsity among the

optional variables (those which can be optionally compiled by the creditors). This

problem can be considered as an intrinsic feature of many databases, thus the topic

of sparse data can be seen as an interesting research topic of our age. In Chapter

6, we present some methods which follow this direction, and which may be applied

to the ED database in the future.
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Part I

Game Theory
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Chapter 2

Literature review

2.1 Asymmetric information in financial contracts: An

overview

The problem of information asymmetries is not new to the field of game theory,

or to finance in general. Its importance was made apparent by the award of the

Nobel Memorial Prize in Economic Sciences to George Akerlof, Michael Spence

and Joseph Stiglitz in 2001, acknowledging their contribution in studying markets

with asymmetric information; see, for example, Rosser Jr. (2003). Indeed, it is

not difficult to figure how financial interactions, which involve a certain number

of players and usually contrasting interests, can be frequently characterized

by features such as moral hazard, private information, opportunistic actions,

incentive issues and related aspects.

Many researchers have examined a broad range of topics related to these

themes. With regard to the subject of the present work, asymmetric information

has been shown to affect financial contracts deeply and specifically loan contracts,

as mentioned in the introduction. For example, without any pretense to give a

comprehensive list, asymmetric information generally leads to a conflict between

bondholders and stockholders (Smith and Warner, 1979), and this situation could

cause a decrease of firms’ value. In fact, asymmetric information generally can

be associated with a loss of social welfare, as discussed by Csóka et al. (2015) for

19



the case of corporate financing with moral hazard. Other authors have focused

on solutions for this problem, such as regulatory devices to mitigate asymmetric

information in loan contracts (Berndt and Gupta, 2009). Furthermore, since

the theme of information asymmetries is recurring when two players stipulate

a contract, game theory has turned out to be useful in the analysis of loan and

insurance contracts. For instance, its concepts have been applied to analyze the

decision to strategically default in a mortgage contract (Collins et al., 2015) or

to examine the relationship between borrowers and lenders in an open economy

(Claus, 2011).

On the other hand, the topic of collateral requirements has been studied under

different aspects too. For example, some analyses outside the scope of our

research have dealt with studying the specific effect of collateral requirement in

affecting the participation of borrowers to the market (Acharya and Viswanathan,

2008) or examining how collateral can increase efficiency of the credit market

(Manove et al., 2001). In this thesis, we focus specifically on the relationship

between collateral requirements, borrower’s risk and the interest premium in loan

contracts.

In the next section we give a brief summary of the literature on this subject.

2.2 Asymmetric information in loan contracts: The role of

collateral

2.2.1 Theoretical literature

A seminal work regarding the effect of imperfect information in the credit

market and the role of collateral and interest rates is Stiglitz and Weiss (1981),

who consider the interaction between players in a loan contract, the bank and the

borrower. They argue that the decisions about the interest rate could affect both

the actions ("the incentive effect") and the nature ("the adverse selection effect")

of borrowers. For the most part, their analysis concerns credit rationing, which

is a consequence of the credit market imperfection, and in some cases cannot be
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modified by additional collateral requirements.

Credit rationing refers to a limitation of credit supplied by the bank, when the

interest rate is no longer a factor able to rebalance the market. In order to justify

this situation, firstly they prove mathematically that the expected return on a

loan is a decreasing function of its risk. Therefore, a bank raising the interest

rates on loans faces two opposite effects: a "direct effect" which is an increase of

its expected return due to a higher interest rate, and an "indirect effect" which

is due to adverse selection. If the latter effect prevails over the former, all the

contracts whose interest rate r exceeds a given interest rate r̂∗ are denied, and

the basic market equilibrium is altered due to unverifiable actions of the borrower.

In other terms, banks could design contracts to discourage the borrowers’ actions

which are in conflict with their interests, and then equilibrium credit rationing

would occur. Since in their analysis, interest rates are not always a factor able

to equilibrate supply and demand, we may think that collateral could do it. But

under the assumption that borrowers have DARA preferences, they prove that

borrowers with higher wealth, who can provide more collateral, are also prone

to invest in high risk projects. Therefore, higher interests and higher collateral

requirements could lead the borrower to undertake riskier investments, and this

fact can decrease the advantage of banks even if collateral in itself always increases

the bank return.

This model has not gone without criticism and has triggered off a huge literature

on the relationship between collateral and risk in loan contracts.

An influential different view is given in Bester (1985). The author, contrary to

Stiglitz and Weiss (1981), assumes that banks choose simultaneously the interest

rate and the collateral amount rather than separately. In this case, he states, in

equilibrium no credit rationing occurs, because now a self-selection mechanism

can take place. If this assumption holds along with other conditions, like an

unrestricted collateral availability, he proves that contracts with higher interest

rate and lower collateral requirements are chosen by riskier borrowers. On the

contrary, borrowers with lower default probability are willing to provide more
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collateral. In a later paper, Bester (1987) is partially in contrast with the result

of Stiglitz and Weiss (1981) once again, using similar arguments. Indeed, he

suggests that lenders should design contracts to disincentive a false declaration

of borrower types, and this is actually achievable through an increase in collateral

requirements which implies a decrease in interest rates. However, a reduction of

collateral availability caused by borrowers’ wealth could lead to credit rationing

and pooling of borrowers.

The same conclusion is suggested in Wang (2010), who similarly considers

the possibility of different combinations of interest rate and collateral to sort

borrowers, and then discusses the possible negative influence of collateral pledging

on enterprise decisions of production. On the other hand, credit rationing

equilibrium is recovered by Coco (1999). He argues that this conclusion holds if

additional assumptions on entrepreneurs’ risk preferences are made. In particular,

he reconsiders the Stiglitz and Weiss’ model to account for different risk attitudes

of borrowers, as well as the effort required to accomplish the project. He proves that

in this case, collateral might not serve as a signaling device either. This conclusion

is in contrast with Bester (1985) because, when more risk-averse borrowers are

associated with safer investments, the relation between their project risk and

the marginal rate of substitution between interest rate and collateral may not

be monotone, and this was actually one of the main assumptions made by Bester

to construct its model. Nevertheless, in the last part of the analysis it is shown

that the previous equilibrium implies at least a non-negative correlation between

collateral and the risk of a project, and a possible positive link between interest

rates and collateral.

As shown in Chan and Thakor (1987), the analysis presented in Stiglitz and

Weiss (1981) depends on their assumptions made on the nature of competitive

equilibrium. Indeed, they extensively discuss the role of collateral, depending

both on assumptions made on the credit market and the influence of moral hazard

and private information. Firstly, they examine a different hypothesis where "all

rents accrue to borrowers" rather than to depositors, concluding that in this case
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rationing no longer occurs. The intuition is that, if a perfect elastic deposit supply is

presumed, now every borrower receives a loan. Secondly, they show how collateral

can serve under asymmetric information. More collateral offered increases the

expected borrower’s loss, who as a consequence should increase his effort. On the

contrary, a higher interest rate reduces the effort level: the high quality borrower

contracts will have a lower interest rate and higher collateral.

Su (2010) observes that collateral is largely employed in loan contracts, hence

the credit rationing as described by Stiglitz and Weiss hardly ever occurs in

practice. Rationing equilibrium is under discussion in De Meza and Webb (1987)

too. Indeed, differently from Stiglitz and Weiss (1981) where all borrowers’ projects

have an equal expected return, their model accounts for different expected returns

between projects, leading to opposite results.

Other theoretical studies pick up the usefulness of collateral. In this regard,

the effectiveness of collateral to reduce the information asymmetry is discussed

by Broll and Gilroy (1986). They explain the dynamics of the credit market under

asymmetric information, basing their model on Stiglitz and Weiss (1981) but with a

greater focus on collateral requirements rather than on the interest rate. The main

results are the same, but their different derivation allows a deeper examination of

collateral requirements. As a matter of fact, they highlight that, contrary to the

case of an efficient market when an increased demand (in this case, for credit)

results in a higher equilibrium price (the interest rate), here an increase in the

interest rate could lead to an adverse selection mechanism, such that low-risk

borrowers might be expelled from the market, contrary to the interest of banks who

would suffer major risk. This happens because, reasoning in terms of a borrower’s

expected profit, if the interest to pay is raised then the borrower has to find ways of

increasing its expected value, thus increasing its risk to compensate. Just in this

case, collateral would serve as a "market-clearing" device. Their analysis, focusing

on the collateral variable, allows them to find a critical value c = c∗ for the collateral

amount such that the borrower’s expected profit is non-negative. An average risk

σ∗ is related to this value, and since they prove that ∂σ∗

∂c
> 0, adverse selection is
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demonstrated. A positive relationship between risk and collateral is given in Chen

(2006), who develops a model in order to take into consideration also the timing

when collateral should be pledged.

With a slightly different approach, Chan and Kanatas (1985) investigate

whether the existence of collateral is justified outside a moral hazard framework.

They examine a situation of asymmetric payoff valuation between borrowers and

lenders. In this case the information itself is the same, but the players of the

contract have different opinions or beliefs regarding their expected payoff. This

difference may exist because, denoting by x the outcome of an investment made

with the borrowed capital, the expected value for the borrower (b) depends on

his subjective belief, that can be represented through a cumulative distribution

function F (x):

E b(x) =

∫ k

a

xF (x)dx (2.1)

for appropriate a, k, which is in general different from

E l(x) =

∫ k

a

xG(x)dx (2.2)

where G(x) is the cumulative distribution function associated with lender’s belief

(l). The lender is interested in this outcome because default occurs when the

terminal value of the project is lower than the debt, and in this case the lender

collects entirely this value. Under these assumptions, collateral is shown to be

useful as a signaling device if the lender evaluates the project less than the

borrower, due to the trade-off between higher collateral amount and lower interest

rate taking place when asymmetric beliefs exist. Therefore, according to this model

better borrowers should pledge a higher amount of collateral, in order to take

advantage of a lower interest rate.

Contrarily, Flatnes and Carter (2016) propose a model in order to take

into consideration the moral hazard problem. They focus on group lending

contracts and demonstrate that moral hazard is heavily reduced through collateral

requirements. Another specific case is examined in De Meza and Southey (1996).

When the bank has more information about the risk of a project, for example in

the case of a start-up, higher collateral is required from high-risk borrowers. Rajan
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and Winton (1995) propose a model where collateral requirements increase as the

borrower experiences financial difficulties.

Another point of discussion has been the substantial difference in the collateral

value for borrowers and for banks, constituting a disincentive to request them.

In fact, this is the case where collateral value is C for the borrower and β · C,

β ∈ (0, 1) for the bank, for example because of transaction and liquidation costs.

This issue is examined in Besanko and Thakor (1987), both for credit market

equilibrium under monopoly and under perfect competition. Differently from Chan

and Thakor (1987), they assume that collateral is not costless. They argue that,

since the use of collateral is costly, a monopolist would rather extract all the

borrower’s surplus simply by increasing the interest rate. This result is obtained

under the hypotheses of a universal risk-neutral economy, full information and

collateral infinitely accessible to the borrower. Their analysis is at odds with

common sense, since a riskier borrower would pay a lower interest rate compared

to a safer borrower. But if asymmetric information exists, as it usually does, and

if the market is competitive, the authors offer a different conclusion. The use of

collateral in this case becomes a useful tool to characterize borrowers since interest

rates are supposed only to cover the contractual costs and collateral is used as a

disincentive for riskier borrowers from choosing the contract designed for low risk

borrowers.

Another model which takes these dissipative costs into consideration is

developed by Booth et al. (1991), accounting both for moral hazard and private

information issues. In fact, their analysis is influenced by this hypothesis along

with a more specific one, which is a distinguishing feature of their model: for any

given action there is a higher margin of improvement for the bad borrower than

for the good one. Among their other hypotheses there are risk-neutral borrowers,

perfect competition in the credit market, a set A of two possible borrower’s actions

{ā, a} associated with different costs and which, together with the borrower type

"bad" or "good", are the dependent variables for the success probability. Therefore

their approach is different from Stiglitz and Weiss (1981) too, since their focus
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is on the quality (the type) of borrowers rather than on their wealth. Under

moral hazard, when the bank actually knows the borrower type, they conclude that

collateral is generally required from bad borrowers in order to increase their loss

in the case of default, consequently inducing them to choose a higher effort. The

combination of an increased collateral requirement along with a higher interest

rate could be more appropriate than a greater increase only of interest rates, as

in the case of "usury laws" (Chan and Thakor, 1987) or "accepted social norms"

which put an upper bound on the interest rates (Coco, 1999). Instead, if the bank

does not know the borrower type, they achieve different results. In this last case

the best action for the bank is to ask borrowers to truthfully report their type

(Myerson, 1979), and then bad borrowers take advantage of the better contractual

conditions offered to good borrowers. Then collateral is required both from bad and

good borrowers: the positive relation between higher risk and higher collateral

requirements is still not straightforward.

From a different point of view, a related discussion (Benjamin, 1978)

concentrates on the additional costs for stipulating secured loan contracts. Despite

these costs, it is shown that collateral can be useful in order to enforce debt

contracts, as previously discussed in Barro (1976). The analysis of Bieta et al.

(2008) stands apart. They challenge all the past theoretical models which

investigated the role of collateral as a signaling device. The authors state

that, under assumptions different from those assumed by the previous literature,

collateral cannot serve to reduce the typical asymmetric information of loan

contracts. In particular, they propose a model to take into consideration the

continuous outcome for the risky project of borrowers. They analyze two borrowers’

class, where the first class is less risky and its projects exhibit second order

stochastic dominance over the second class. Under the previous assumptions, they

prove that the expected payoff for the first class, in presence of collateral, is less

than or equal to that for the second class, which is contrary to the bank interest due

to the assumption on the risk of each class (as stated in Stiglitz and Weiss, 1981; in

fact, credit rationing is recovered here). Therefore, the only case where collateral
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is useful is when an equality between the two expected payoff holds, which is

rare. Although this model lies on less restrictive assumptions compared with

other works, it is worth noticing how it does not explain empirical results found

in the plentiful previous literature and in practice, where collateral requirements

are usual.

2.2.2 Empirical literature

Along with the prevalent theoretical approach, other authors have also taken

advantage of an empirical analysis to assess their models, discussing the previous

contrasting literature and testing different samples to verify which hypothesis was

observed in practice.

In this way, the assumption of a direct or an inverse association between

collateral and risk is experimentally tested in Berger and Udell (1990). The

authors present a cross-section analysis to verify which hypothesis is more

frequent, using a sample of over one million commercial loans from the Federal

Reserve’s Survey of Terms of Bank Lending. They regress the loan risk premium on

collateral and other control variables at different periods, finding more frequently

a positive coefficient for the former regressor. Their conclusion is that collateral

is generally related with riskier loans and riskier borrowers. The authors here,

contrary to Bester (1985) but in accordance with other studies (Degryse and

Van Cayseele, 2000, Harhoff and Körting, 1998), have assumed a sequential

decision for interests and collateral, where the latter is chosen before the former.

This avoids the simultaneity problem in the estimation.

Almost contemporarily, a similar conclusion is reached by Leeth and Scott

(1989). Taking a sample of 1,000 US small business loans, they find a higher

default probability and a greater loan size and loan maturity, all risk indicators,

for secured loans. Later, Angbazo et al. (1998) find empirical support for

this conclusion, using over 4000 loan transactions registered on Loan Pricing

Corporation’s database, between 1987 and 1994.

A confirmation of this result is obtained in Jiménez and Saurina (2004). In
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analyzing the determinants of the Default Probability (PD) of bank loans, they

discuss extensively the role of collateral in this context. Their empirical results,

using data from the Credit Register of the Bank of Spain (CIR), suggest a higher

PD for collateralized loans.

However, the conclusion is opposite to the one reached by Degryse and

Van Cayseele (2000), who use data from Belgian banks, and find a negative

relationship between interest rates and collateral, even if the latter is decreasing as

the duration of the bank–firm relationship increases. This conclusion is supported

by Capra et al. (2005). They use a sample of small and medium-sized firms in

Valencia to test the role of collateral, and their analysis supports the hypothesis of

a negative relationship between collateral and interest rates, which is the contract

chosen by lower risk borrowers. Nevertheless, moral hazard is shown to affect the

initial choice of the contract, weakening the obtained link.

Similar conclusions can be found in Janda et al. (2003), who along with an

examination of the agricultural credit markets in the Czech Republic, develop a

model where low-risk borrowers are subject either to collateral requirements or to

rationing.

Breit and Arano (2008), consider the determinants of the price (interest rate)

applied to small businesses, and hypothesize a lower risk premium if the dummy

variable "Collateral" takes the value 1 (collateral required). Then they find

empirically a lower interest rate when a collateral secured the loan, as in their

estimation this dummy predictor is statistically significant. Similarly Agarwal

and Hauswald (2010), using 2002 and 2003 US data for SME, find a negative and

significant coefficient for collateral predictor regressed on the offered loan rate.

On the contrary Lehmann and Neuberger (2001), using a dummy variable for

collateral too, analyze 1988 US data for 174 lines of credit, finding a positive

relationship. Similarly, Pozzolo (2002) proposes both a model and an empirical

analysis to justify a positive relation between interest rate and collateral. The

main assumptions of his model are the different collateral value for the borrower

and the lender, and the inclusion of a moral hazard problem, where borrowers
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maximize their payoff choosing their effort. He argues how under these conditions

an equilibrium between the borrower’s profit for a given effort and the expected

return of the bank (equals to the risk free investment) exists: solving the system

leads both to a higher interest rate and higher collateral value for riskier contracts.

This result is the same of Booth et al. (1991), who make similar hypotheses about

moral hazard and costly collateral. Then, using data of bank loans to Italian

non-financial firms, the author finds that secured loans are considered ex-ante

riskier by banks. Brick and Palia (2007), using data from the 1993 National Survey

of Business Finances find a higher risk premium related to collateral pledging

as well. John et al. (2003) had reached the same conclusion analyzing US data

from the Securities Data Corporation. Collateral is shown to reduce the higher

credit risk also in Thailand, through an empirical analysis carried out by Menkhoff

et al. (2006). Furthermore, their incidence is shown to be higher than in mature

markets. Booth and Booth (2006) reach the same conclusion, analyzing data from

the Securities and Exchange Commission (SEC) of loans contracts stipulated from

1987 to 1989.

A dissenting view is from Elsas et al. (2000). Examining data from five of the

most important German banks, they do not find any relation between ex-ante

borrower quality and collateral pledged. The same result was previously found

in the empirical work by Machauer and Weber (1998) on German banks.

On the contrary Berger, Espinosa-Vega, Frame and Miller (2011) test whether

collateral can be seen as a device to reduce asymmetric information, or

equivalently, if a decrease in asymmetric information is related with a reduction

in collateral requirements and answer positively to the question, using an original

comparison of outcomes. They compared results that preceded and followed the

introduction of a specific survey (the Federal Reserve’s Survey of Terms of Bank

Lending), which reduced the ex-ante private information: with its usage, collateral

requirements lowered.

Weill and Godlewski (2006) highlight the conflicting literature on the theme,

explaining the dissimilar conclusions provided by the authors as a different degree
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of asymmetric information among countries, using a sample of 5843 loans from

43 countries. In particular, they analyze the link between loan risk premium and

collateral: a simple OLS regression is employed concerning interest as a function of

collateral, the degree of information asymmetries for each country and some other

variables. Financial, accounting standards and economic development indicators

are used as proxy for the degree of information asymmetries. The estimation

results in a significant positive coefficient for the collateral variable, apparently not

supporting its use as a device to solve adverse selection issue. However, a further

analysis shows that this positive link is weakened by an increase in information

asymmetries.

Differently, Berger, Frame, Ioannidou et al. (2011) suggest as a possible

explanation both the different economic characteristics and the types of collateral.

Then they conduct an empirical study on commercial loans of Bolivian financial

institutions, and find a negative relationship between collateral amount and

risk-premium, which is explained through a lower bank’s loss in case of borrower’s

default. A similar conclusion, but with a different sample, is given by Blazy and

Weill (2006), analyzing the role of collateral circumscribed to French banks and

discussing how guarantees reduce loan loss when default occurs. They conclude

that collateral could help to solve adverse selection problems.

A dual relationship is found in Calcagnini et al. (2009). Through an empirical

analysis on Italian banks, they obtain different results depending on the nature

of borrowers: using the interest rate spread as the dependent variable for a linear

model, a positive coefficient for collateral predictor is estimated for firms, and a

negative one for consumer households. Therefore they conclude that guarantees

are used to reduce adverse selection problems for consumer households and as an

incentive to mitigate moral hazard for firms.

Finally, Ono et al. (2012) examines both ex-ante the risk of borrowers who

pledge a collateral and how guarantees influence firm ex-post performance using

a sample from the Japanese Surveys of the Financial Environment (SFE). They

find that guarantees are more likely to be pledged by high risk firms and that their
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one year ex-post performance is better than firms which have not secured their

loan. Specifically, they find a cost-cutting effect, which comes out in favor of the

moral-hazard reduction effect of collateral, through an observed higher managerial

effort in order to reduce the probability of default. A similar conclusion, but

only theoretically, has been already presented in Bester (1994), who proposed an

analysis where in high-risk projects there is a greater usage of collateral, pointing

out that the probability of bankruptcy is reduced as collateral acts like an incentive.

In agreement, collateral is implicitly assumed to be a feature required for riskier

borrowers in Peydró (2013), since periods characterized by a less strict policy in

granting loans are associated with a weakening in collateral requirements.
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Chapter 3

Models for the relation between

collateral and interest rates in

loan contracts

3.1 Introduction: A reductionist approach to the problem

In this chapter, our main aim is to prove the a priori impossibility to decide for

one unambiguous relation between collateral and interest rates of loan contracts.

We use both mathematical and intuitive arguments. Specifically, we show that

different hypotheses, related to three different scenarios — symmetric information;

moral hazard; adverse selection — lead to contrasting conclusions with regard to

the link between collateral and interest rates. Since these general assumptions are

equally plausible, the impossibility to choose which hypothesis and, hence, which

conclusion is true ends our proof. Indeed, from the previous chapter, it is evident

that the contradictory conclusions provided by many authors depend exclusively

on their different assumptions. We highlight that these assumptions are usually

rather similar, except for some details or for an additional hypothesis, but this does

not prevent completely contrasting conclusions. For example, different results are

obtained if borrowers’ wealth is considered variable or fixed, or if the collateral

usage is assumed costless or onerous.

33



We focus on a more general approach to tackle the question we are dealing with.

The difference between our approach and the others’ is the focus on some general

financial and game-theoretic principles rather than on a specific aspect of the loan

contracts. Moreover, our approach is mainly probabilistic, because we analyze

general relations rather than a specific contract, as it befits our general discussion.

Due to these features, the following analysis does not propose a unique solution.

Nevertheless, this does not mean that our models are inadequate or ambiguous,

because they actually achieve a unique most probable solution depending on the

specific assumptions. In particular, we prove that with perfect information the

presence of collateral implies a lower interest rate, but if asymmetric information

comes into play the effect of a collateral requirement on the loan interest rate is

no longer straightforward. Our discussion can be adapted to include more specific

hypotheses, but this seems not to change our conclusion on the ambiguity of this

link, since considering more precise hypotheses would change the results as seen

in the literature review from Chapter 2.

3.2 A theoretical analysis under symmetric information

3.2.1 Our approach to the problem

When a bank, or in general a creditor, stipulates a loan with a borrower, it

must decide the interest rate i to apply, taking both macroeconomic (the Euribor

interest rate, GDP growth rate forecasts, etc.) and microeconomic variables into

consideration. If we focus on the latter ones, the information available to the bank

will result in a decision D : x −→ i, which is a function of the borrower’s variables

x. This function should reflect basic principles of economics and ultimately of

human intrinsic nature (assuming a rational behavior). For example, a higher

borrower’s risk should result in a higher interest rate. Generally, the interest rate

can be a function of the borrower’s risk, the length of the contract, the amount

borrowed, etc. Hence D(x) = i for an appropriate x, which is, depending on the

subject, the vector of regressors, independent variables, predictors, covariates, etc.
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Sometimes, one variable xj (assume xj continuous) in the set x has a

straightforward relation with the dependent variable i (called also image, label,

output,etc):
∂D

∂xj
≥ 0 or

∂D

∂xj
≤ 0. (3.1)

Usually, however, the effect of a variable is not a priori clear-cut. This is the case

of collateral, for which it is unclear whether its value has a positive or a negative

link with the interest rate applied. In fact, from an immediate perspective, the

relationship should be negative, because borrower’s risk should be lowered if

collateral can be collected in case of default. But this simple interpretation does

not necessarily hold, since usually the decision over the interest rate is made under

asymmetric information, and the usage of collateral is largely influenced by this

asymmetry.

To tackle this problem using game theory, the starting point in our analysis is

to assign a role to each player, according to the well-known principal-agent model.

Indeed, this model accounts for the main features of loan contracts stipulation

under asymmetric information. Firstly, the payoff of the player called principal

depends on the actions taken by the player called agent. Secondly, the principal

designs the contract considering an incentive mechanism, in order to encourage

the agent to fulfill the contractual conditions. The agent considers this incentive,

along with his expected payoff and the cost of performing an action, and chooses

his strategy in order to maximize his payoff.

In our analysis the bank is the principal which gives an agent (the borrower)

a sum L and expects a net payoff which depends on the interest rate i. Here we

assume that the bank decides the contractual conditions, and the agent receives

the sum borrowed and is required to put an effort e to invest the borrowed capital.

The analogy between the situation of a loan stipulation and, for example, an

employment situation is that the principal gives a sum to the agent, which is a

salary in the latter case and the amount borrowed in the former, and there is

an agent’s effort e, that can be seen as the work he performs in exchange for

the salary, or the loan, increasing the payoff of the principal. Therefore, this is
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a bilateral relation, established through a contract designed by the creditor, which

the borrower can decide to sign, and whose final result depends critically on the

agent’s effort. In case of default, the borrower may not pay the borrowed capital

back or, at least, we assume that the bank does not earn the contractual interest,

similarly to the situation of an employee who, failing to fulfill his task, causes a loss

to the principal. However, in some cases a difference arises in the bank-borrower

contract, which should be taken into account and which may not be observed in the

principal-employee contract, that is a common interest in the final result for the

principal and for the borrower, since the latter is supposed to invest the borrowed

capital in a project. In any case, the effort e is always costly for the borrower. This

is a fundamental point, considering the link that it has with collateral, as discussed

in Section 3.3.

In the following discussion, using a founding principle of finance and introducing

the critical effort concept, we will be able to discern between risk and collateral,

and to discuss what happens to the interest rates-collateral link, given a fixed

risk. In fact, we can ideally split the total risk in two parts. The first part derives

from the risk of any investment made using the borrowed capital, and can be

priced through a higher interest rate. The second part derives from the association

between a higher probability of default caused by a lower effort supplied by the

borrower. Then, we discuss how asymmetric information can change the relation

interest-collateral.

A presentation of the general models that some of our ideas originate from can be

found in Macho-Stadler and Pérez-Castrillo (2001). We have extended them to the

specific case of loan contracts, and we have adopted a more probabilistic approach.

However, Section 3.2.2 and our line of reasoning regarding loan in this chapter are

original.

3.2.2 A theorem based on the risk-return trade-off

This section presents a general model under symmetric information. Our main

assumptions are:
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1. The effort is induced by the principal in order to maximize his utility.

2. The contract is accepted by the agent if a precise condition is verified.

3. The principal can measure the agent effort e. In other words, the quantity e

can be included in the contract terms. The relevance of this remark will be

discussed later.

4. We consider a single period relation.

We begin defining the following concept:

Definition 1 (Critical effort). The critical effort ẽ is the minimum effort required

for the borrower (the agent) to avoid default.

We assume only two possible states of the world: sk ∈ S, k = 1, 2, where

S =


s1 = "Default"

s2 = "Solvency"
(3.2)

Therefore, the bank has two possible related final payoffs: one for the state of the

word s1 and another for the complementary case. The realization of S depends on ẽ,

but since the critical effort is defined ceteris paribus, there are other factors which

can influence the realization of a specific state of the world. These quantities are

stochastic, thus they influence the conditional probability

Pr(S = sk|ẽ). (3.3)

The optimization problem for the principal becomes

max
2∑

k=1

Pr(S = sk|ẽ) · U1(πk) (3.4)

where πk is the final payoff associated with the specific state of the world k, which

depends also on the effort required to the borrower, (3.3) must be estimated by

the principal in order to compute his maximum expected payoff and U1 is an

appropriate utility function associated with the lender; U2 is the utility function

associated with the borrower. This maximization problem is subject to the
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restriction:
2∑

k=1

Pr(S = sk|ẽ) · U2(W )− c(e) ≥ A (3.5)

where c : e −→ c(e) is the borrower’s cost function. The second term of the

inequality, A, is the so-called "reservation utility", and intuitively represents the

agent’s expected utility of alternative investment opportunities, and it has to be

lower than the first member. This restriction is assumed both necessary and

sufficient to ensure that the contract is signed by the borrower. The argument W

of the function U2 includes both the sum borrowed L and the payoff of any external

investment made with this sum, or any quantifiable additional utility obtained by

the borrower using the sum L.

Under this framework we prove that the presence of collateral implies a lower

interest rate.

The effect of the absence or the presence of collateral of value C on the bank’s

final (gross) payoff π, or equivalently except for a sign factor on the borrower’s

payment, can be represented through piecewise-defined functions:

π =

{
0 if S = s1

L(1 + i) if S = s2

πc =

{
C if S = s1

L(1 + i′) if S = s2

or, for loans which are both secured but differ for their collateral value:

πc′ =

{
C ′ if S = s1

L(1 + i) if S = s2

πc′′ =

{
C ′′ if S = s1

L(1 + i′) if S = s2

with C ′′ > C ′.

At first, let us analyze the principal’s viewpoint. Clearly, if the agent does not

sign the contract the game does not come into being, hence we proceed analyzing

the case where the contract is signed, that is when (3.5) is satisfied.
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Recall that one of the basic principle of finance is the risk-return trade-off, and

besides, we assume that economic agents are risk-averse.

As far as the risk-return trade-off is concerned, even if from a theoretical point of

view an injective relation between risk and return can be assumed, this hypothesis

can be relaxed in order to improve the effectiveness of our conclusions. Our solution

arises from a simple consideration. Theoretically, for each borrower, the preference

curve f which maps σ (the risk) into r (the return) is strictly increasing. However,

in practice some problems occur. In fact, σ is not observable and the domain

is not continuous, because borrowers are labeled with risk-classes, for example

rating-classes, which are countable, thus the domain is only approximately

continuous. Therefore, we should consider σ̂, the estimation of σ, and make the

domain of f continuous, for example by using an interpolation technique. More

importantly, when different borrowers are considered together, the injectivity is

violated, because for each risk-class there is a point cloud where each borrower’s

point could have a different r-value. The consideration which solve this problem is

that the mean behaves better than a single observation when looking for a general

principle. This principle is applied, for example, in econometrics using regression

models, or in statistical mechanics considering the behaviour of a certain number of

particles, rather than their individual position, in order to formulate general laws.

In other terms, we can recover an injective function by computing the barycenter

r̄ of the point cloud for each risk-class, and constructing an interpolation of these

barycenters. We call g the continuous function derived through this procedure,

which can be made bijective by appropriately restricting its codomain to its range

R = g(σ̂) (we use the conventional notation g�R to indicate this restriction). Now it

is acceptable to assume
∂g

∂σ̂
> 0. Through this hypothesis, we prove that if collateral

is required to each borrower, the interest rate must decrease.

Moving from the previous considerations, we notice that the presence of

collateral, or of collateral with a higher value, decreases the expected loss of the

bank if default occurs, or equivalently it increases its expected return. Thus,

given a fixed expected maximum return without collateral, the same value can
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be obtained applying lower interest rates if collateral is provided by borrowers.

Similarly, considering a contracts whose collateral value is C ′′ > C ′, the interest

rate should be lower in order to maintain the principal’s expected maximum return

constant, that is if C ′′ > C ′, then i′ < i⇔ L(1 + i′) < L(1 + i), being L > 0. Moreover,

the borrower’s risk is not changed by the presence of collateral under symmetric

information, because in this context the risk is independent from collateral. But

if risk with or without collateral is the same, because borrowers are the same

and there are not adverse selection problems, collateral and interest rates can be

considered as substitutes to price the risk borne by the bank. Therefore, when risk

is fixed, if the presence of collateral increases the expected return, a contradiction

of the risk-return principle arises. Thus, in order to obtain the same return, the

interest rate applied must be lowered.

Given the previous general assumptions, we have proved the following

Theorem 1. Let C ∈ (0,∞) be the value of collateral and i the interest rate of a loan

contract. When collateral is required to each borrower,
∂i

∂C
< 0 holds .

Proof. Under perfect information, collateral is not used to solve moral hazard or

adverse selection problems. Therefore, from the previous discussion, the estimated

risk σ̂ of each borrower does not change if he provides collateral with value C. Since

the restriction g � R is bijective, the expected total return r must be unique for a

given risk. But a higher C increases r, then the interest rate i must decrease.

It is important to underline that all these conclusions are derived ceteris paribus,

that is fixing all the other variables that could affect the interest rate decision. We

are not considering, for example, the bank strategy: the bank might choose higher

interest rates and higher collateral requirements at the same time. But from an

abstract point of view, and using only the basic financial principles, this is not

possible. In other words, of course banks prefer higher collateral requirements

and higher margins, but in an efficient and ideal market, with no free-lunches,

perfect competition, etc, this is not feasible. A bank is rewarded only for the risk

it assumes, because risk is priced, contrary to its subjective decision about the
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Collateral-Interest proportion (similarly to the enterprises’ choice of Equity/Debt

ratio).

On the other hand, considering the situation from the agent’s point of view, when

the principal requires additional collateral with value C, this term must be added

to (3.5) with a negative sign. But this term could change the inequality direction,

such that
2∑

k=1

Pr(S = sk|ẽ) · U2(W − C)− c(e) < A. (3.6)

In this case, the borrower does not sign the contract. But, as long as the risk of the

borrower is supposed constant, this condition is not acceptable because the bank

would give up on the expected payoff that would have obtained without collateral.

In fact, under the previous hypotheses collateral should increase the expected

payoff of banks. At the same time, under perfect competition, the agent could sign

the contract with other banks for which (3.5) is verified. These banks exist as far

as their remuneration is in line with the market risk premium associated with the

specific risk of the borrower. The only way that a bank has to avoid this situation,

verifying (3.5), is by means of a lower interest rate. Notice that interest rates are

included in (3.5), because we can consider the net borrowed capital, which includes

the interest to be paid, and is higher when interests are lower. Again, the bank

cannot simultaneously achieve a higher i and a higher C for a given borrower.

3.3 Asymmetric information

3.3.1 The influence of moral hazard

In the previous discussion we have examined an ideal situation, where the loan

contracts are not affected by asymmetric information problems. In this section we

extend the previous analysis introducing these asymmetries. Firstly, we discuss

how moral hazard influences our conclusions. The moral hazard problem occurs

when agents’ behaviour is not observable, or at least it is not verifiable by the

principal. In particular, we consider the situation where the borrowers’ effort e is

not observable, or verifiable, after the conclusion of loan contracts. As discussed
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above, this effort implies a cost c(e) for the agent, then it decreases its payoff, and

since e is not observable the borrower could take advantage of the situation by

reducing it. Moral hazard is a widespread problem; for example in the insurance

industry, insured individuals may reduce their effort to prevent the insured event

(see Campbell, 2006). While in the previous section e was a fixed quantity, now the

agent actively chooses the effort, because it cannot be contracted upon. Then the

agent maximizes his utility function taking e into consideration, that is (using the

previous notation):

arg max
e

2∑
k=1

Pr(S = sk|ẽ) · U2(W )− c(e),∀e > 0. (3.7)

If I is the value of any investment made by the borrower with the sum L, the loan

balance, the argument of the utility function U2 contains L ≤ L+ I if e < ẽ, because

we assume that I = 0 in the case of default.

In this scenario a collateral requirement can be used by the bank (the principal)

to force the borrower and increase e. Considering this new condition, when e ≤

ẽ the borrower has an incentive to increase its effort because his loss is higher.

The mathematical representation of this idea is simple, because the presence of

collateral just changes the maximum condition into

arg max
e

2∑
k=1

Pr(S = sk|ẽ) · U2(W ′)− c(e) (3.8)

where W ′ includes now the quantity −C (we denote with k, k′ all the other

profits/costs associated with each case, which does not influence this discussion):

W ′ =

{
L− C + k if S = s1

L+ I + k′ if S = s2

To examine this condition, we take advantage of a simplifying assumption, which is

not new to game theory modeling, adapting it to the specific case of loan contracts:

we assume that the effort belongs to a binary set, so it can be either High or Low.

Formally, e ∈ {eH , eL}. Given this new hypothesis, c(eH) > c(eL), because c(e)

increases as the effort increases. The principal prefers the higher effort, eH , and
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computes the probabilities associated with each result, for a given effort: Pr(S =

sk|eH) and Pr(S = sk|eL). Clearly, a lower effort is more likely to produce default

(D):

Pr(D|eL) > Pr(D|eH). (3.9)

This explains the principal’s preference for the higher effort. If the agent

maximizes his expected net utility choosing a lower unverifiable effort, the

principal should design the contract in order to shift the agent’s choice from eL

to eH . However, the value I must be taken into consideration too. Therefore the

inequality

2∑
k=1

Pr(S = sk|eH) · U2(W ′)− c(eH) ≥
2∑

k=1

Pr(S = sk|eL) · U2(W ′)− c(eL) (3.10)

is not always verified, and depends on the additional payoff given by I — which is

more probable to exist when e = eH — compared with the higher cost associated

with eH . In all the cases where (3.10) holds, the equilibrium will be at eH . To

sum up, if both the principal and the agent would choose eH , without incentives,

there is no problem. But if the agent is prone to choose a lower effort, then the

principal could design the contract to obtain a higher effort, and collateral comes

into play. As a matter of fact, in our specific case the previous condition can be

rewritten using the variableW ′ in comparison with the new variableW ∗ defined as:

W ′ =

{
L− C + k if S = s1

L+ I + k′ if S = s2

W ∗ =

{
L+ k if S = s1

L+ I + k′ if S = s2

Clearly, the former variable is more likely to encourage an agent to choose eH ,

simply because the loss for a borrower is higher in the case of default. In fact,

the agent does not always choose a higher effort even when collateral is pledged,

because there are other variables which influence his decision, that is why we say

"is more likely". Nevertheless, under appropriate conditions, which are different

for each contract and for each borrower, the incentive is effective. More specifically,
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in every situation where the higher cost associated with default is greater than

the higher cost of choosing eH , an agent is more likely to choose eH . The variable

quantity I can also be assumed to be a positive function of e. In order to account for

this uncertainty, we say that the frequency of the borrowers which satisfy (3.10) is

higher when collateral is pledged.

To formalize this intuition, we take advantage of the frequency ϕ, which gives

the idea of a more frequent relation rather than of a relation that is always true

for each borrower:

ϕ

[
2∑

k=1

Pr(S = sk|eH) · U2(W ′)− c(eH) ≥
2∑

k=1

Pr(S = sk|eL) · U2(W ′)− c(eL)

]
(3.11)

is higher than

ϕ

[
2∑

k=1

Pr(S = sk|eH) · U2(W ∗)− c(eH) ≥
2∑

k=1

Pr(S = sk|eL) · U2(W ∗)− c(eL)

]
(3.12)

that is, the inequality sign ≥ holds for more borrowers when collateral is pledged.

This explains why, under moral hazard, collateral can be associated with a

higher interest. As a matter of fact, higher interest rates and higher collateral

requirements are compatible, though not always necessary, if they are both

considered as a penalization for a riskier borrower who prefers eL to eH . The

effect of moral hazard on collateral has been already analyzed, but with a different

derivation, by Flatnes and Carter (2016) and Booth et al. (1991). The main

difference in our model, as discussed in the introduction of this chapter, is its

generality. Another difference is that, considering the totality of contracts rather

than a single loan, we reason in terms of frequency, which fits better our more

general discussion. Nevertheless, our results are consistent with these papers.

3.3.2 The influence of adverse selection

In addition to moral hazard, in this section we examine a different problem

related with asymmetric information, called adverse selection. Consider the

situation where each borrower has more information than the principal regarding

his own quality. To formalize this situation, we make use of a binary set, and
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we suppose that the quality q of a borrower can be either good (G) or bad (B). A

good borrower is an agent who is less likely to default. On the contrary, a bad

borrower is an agent associated with a higher probability of default. We assume

that the quality is not influenced by the effort e discussed in the previous section.

For example, a higher probability of default may be caused by a riskier borrower

(who invests in riskier projects).

In this case different agents should get different contractual conditions, and in

particular better agents should obtain better conditions in terms of the interest

rate. But this is not easily achievable if information is not perfect, since the

bank does not know which are the true good borrowers. On the other hand, bad

borrowers try to take advantage of better contractual conditions, obfuscating their

true category. At the same time, an adverse-selection effect takes place if banks

raise the interest rate, because this leads to exclude lower risk borrowers and to

retain those who are riskier. In this case banks could design the contract in order to

discern and select between good and bad borrowers, requiring a signal. Obviously,

the contract should be designed so that good borrowers benefit from signalling their

true type.

This concept is very intuitive: if an agent proves his good quality to the principal,

then he can take advantage of its features, otherwise he achieves a lower utility.

In the specific case of loan contracts, we can examine if a good agent has the

possibility to obtain better contractual conditions, that is a lower interest rate.

We prove that this question has an affirmative answer. The main point here is

that borrowers are not interested in revealing their true type (=quality) if they can

obtain better conditions by cheating on their quality, and they are prone to reveal

this information if they can take advantage of it.

Above in this chapter, we have discussed how the borrower’s payoff is changed

when he provides collateral, representing with the variables W ′ and W ∗ the two

different situations of absence and presence of collateral.

In this case, if an agent regards himself as a good borrower (q = G), in order to

compute his expected payoff he uses a (strictly) lower weight Pr(S = sk|q = G) for
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the sum associated with the event D than a bad borrower:

Pr(D|q = B) > Pr(D|q = G). (3.13)

If adding collateral, or equivalently increasing its value, allows the borrower to

prove his good quality, and to obtain better contractual conditions, he will use it

as a signal, benefiting from a lower interest rate. On the other hand, providing

collateral of higher value may not be the optimal choice for a bad borrower if the

expected cost of this signal is higher than the lower interest paid. On the other

hand, from the principal’s point of view, collateral is used in order to distinguish

better borrowers and to apply them a lower interest rate, therefore, ceteris paribus,

when collateral is provided, interest should be lower. Thus, collateral can be seen

as a tool that mitigates the adverse selection problem. Using the previous notation,

when a lower interest rate does not compensate the borrower’s higher expected cost

of providing collateral, and assuming a common cost function c(e) for all borrowers,

(3.13) implies
n∑
k=1

Pr(S = sk|q = B) · U2(W ′)− c(e) <
n∑
k=1

Pr(S = sk|q = G) · U2(W ′)− c(e). (3.14)

As in the general case, the presence of collateral is associated with a lower interest

rate, but in this case the presence of collateral allows the bank to discriminate

between good and bad borrowers. This result is consistent with Bester (1985),

Bester (1987), Chan and Thakor (1987), but derived through a more general

reasoning. Moreover, while the main results are the same, our discussion can

be adapted to include any more specific hypothesis. For example, taking into

consideration also the hypothesis of the difference in the collateral value for

borrowers and for banks, Besanko and Thakor (1987) suggest the same conclusion.

Indeed, this similar result is justified by the construction of our model, because

even if β · C, β ∈ (0, 1), is the collateral value C for the bank, we have discussed

how this tool has a direct effect only on the borrower’s decision. In other terms, the

value remains C for the borrower, hence the incentive or the signal effects remain

effective.

When moral hazard and adverse selection are both present, the effect is not clear
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if we consider the totality of contracts. As a matter of fact, we have discussed how

collateral can be used as a tool in both cases, but it is associated with, respectively,

higher and lower interest rate. Both e and the borrowers’ quality q variables

influence the probability of default (D). In fact we can write

P (S = D) = f(e, q, ·) (3.15)

where · stands for all the other variables affecting this probability. Moreover,

P (S = D|q = B, e = eL) ≤ P (S = D|q = B) (3.16)

because we have assumed that a lower effort increases the default probability;

P (a|b) is the conditional probability. These quantities are unknown to the

lender, since q and e are unobservable under asymmetric information. Therefore,

the decision on the interest rate cannot be easily associated with collateral

requirements. In truth, the bank could achieve both a signal and an incentive

raising at a proper level the latter quantity, but at least a negative effect arises

at the same time, that is a loss of surplus. This loss is due to the lost contracts

associated with those borrowers who consider the cost of additional collateral too

high. For example, these borrowers could belong to the group (eL, B), because

without the second assumption on their quality, some of them would have signed

the contract under only moral hazard, evaluating eH profitable as discussed in

Section 3.2.2. This loss of lender’s profit is intuitive, since the bank should lose

some payoff in a situation where it is penalized by lack of information. The results

of this discussion are consistent with Booth et al. (1991), who similarly cannot

derive a straightforward relation in the presence of both moral hazard and adverse

selection.

In conclusion: higher interest rates can be associated with more collateral

under moral hazard, because collateral requirements can be used as an incentive

to increase the effort. Lower interest rates are compatible with more collateral

under symmetric information and adverse selection. We have proved our thesis on

the a priori impossibility to establish a unique monotone relation under general

assumptions, because different hypotheses may reasonably apply.

47



In the next part of this work, we demonstrate empirically that these conclusions

are supported by an analysis of the effect of collateral on the interest rate among

some different European countries, obtaining contrasting results dependent on the

country considered.
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Part II

An econometric approach
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Chapter 4

Principal Component Analysis for

supervised learning

[The Econometric Society] main object shall

be to promote studies that aim at a

unification of the theoretical-quantitative

and the empirical-quantitative approach to

economic problems and that are penetrated

by constructive and rigorous thinking

similar to that which has come to dominate

the natural sciences [...]. Experience has

shown that each of these three viewpoints,

that of statistics, economic theory, and

mathematics, is a necessary, but not by

itself a sufficient, condition for a real

understanding of the quantitative relations

in modern economic life. It is the

unification of all three that is powerful.

And it is this unification that constitutes

econometrics.

Ragnar Frisch
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4.1 A bridge between supervised and unsupervised learning

In analyzing any type of data, researchers can encounter two categories, usually

called labeled and unlabeled data. Suppose that a collection C of data belongs to

a set Θ of a given dimension n and the relation f : Θ 7−→ Φ holds, then we call

C unlabeled, while the collection C̃ ∈ (Θ,Φ) is called a labeled data set, whose

dimension is (n × m) with m being the dimension of Φ. In other words, the case

of two data collections may be considered, xi ∈ Θ , i = 1, 2, ..., n, and yj ∈ Φ,

j = 1, 2, ..., n, and the map ψ : xi 7−→ yj. Then, if the researcher can (or decides to)

examine only the collection {xi}, the independent variables are unlabeled because

the dependent variables are not considered. On the contrary, if the pairs {xi, yj} are

available, some labels are attached to x: this is why this is known as labeled data

case, where the dependent variables can be employed to analyze the relation ψ. We

highlight that even in the case of unlabeled data a relation can exist, and it can be

either known or unknown, but the focus (or the availability) is on the dependent

variable. It is also worth underlying that this distinction is not discriminating, as

a greater data availability in the case of labeled collections might suggest, because

unlabeled data can be used for various purposes, for example in the classification

domain.

As a result of both this conceptual and practical distinction, an ensuing

difference arises between supervised and unsupervised learning. We broadly

call supervised learning the methods whose primary goals are to understand the

underlying relation ψ between the dependent variable (usually a single variable

y) and the independent variables (usually a vector of variables, x). Usually in

practice more than one realization for each variable is observed, thus we replace

the dependent variable with a column vector y and the independent variables with

a matrix X, where each row represents a realization and each column a variable.

The most well-known supervised learning method is the regression analysis. On

the other hand, the cluster analysis can be addressed as an unsupervised learning

method, because it aims to analyze the latent structure of a dataset without

considering the divergence between its input and output variables. Another
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well-known unsupervised method is the Principal Component Analysis (also called

PCA). This very useful, and commonly employed, technique aims to reduce a set of

variables from a space Θ to a subspace spanned by the principal component vectors,

that are orthogonal vectors constructed so that they preserve as much as possible

the variation of the original dataset. Principal component analysis is not really a

new technique. In its early form it was proposed by Hotelling (1933) and Pearson

(1901), but its widespread use followed both the increased computing power and

its development as a general statistical method (see among others, Rao, 1964).

Moreover, it was modified in a great number of ways: for example in Chapter 6 we

examine the Probabilistic PCA, a modification which can be particularly useful to

analyze large sparse datasets. A comprehensive treatise of principal component

analysis can be found in Jolliffe (2002).

Principal component analysis is commonly used as an unsupervised learning

method, since it involves a linear transformation of the independent variables,

but in truth it has been used in a supervised environment too, for example

to improve the interpretability or to reduce the number of regressors. In our

following application we examine in depth this use, achieving two levels of analysis

at the same time. On one hand, we are showing its differences compared to

the standard regression model, discussing its effects and problems related, for

example, in selecting of a subset for the principal components. At the same time

we are going to adapt and to take advantage of these econometric tools to address

the problem about the analysis of loan borrowers’ variables presented under the

general framework of the game theory. Therefore, the successive analysis provides

some empirical evidence about the relation between collateral and borrowers’

risk as modeled in the first part, and a further analysis about other borrowers’

variables.
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4.2 Principal component analysis background

4.2.1 Introduction to the Principal Component Analysis and algebraic

derivation of principal components

Let X = (xij) ∈ Rn×v, n, v ∈ N, the matrix of data whose j-th column, j = 1, 2, .., v,

is the column vector of observations for the j-th variable and whose i-th row,

i = 1, 2, .., n, refers to the row vector of variables for the i-th observation, denoted

by xi. Denote with Σ the square matrix of Variance-Covariance for the random

variables x. As stated above, this method looks for a linear transformation of the

original variables that sequentially maximizes the variance of the transformation,

imposing the orthogonality of the new vectors found, that are called principal

components. Let α be a vector of v constants, α1,j, and consider the linear

combination
∑v

j=1 α1,jxj and its variance

Varα′1x = α′1Σα1. (4.1)

Hence the optimization problem is:

maxα′1Σα1 (4.2)

under a constraint arbitrarily chosen, α′1α1 = 1. This procedure is iterative, in the

sense that it consists of successive maximizations of the quantity α′jΣαj imposing

the linear independence condition Cov[α′j−1x,α
′
jx], j = 2, .., v. It is easy to verify

that the principal components are related with the algebraic concept of eigenvalue

and eigenvector: this is a direct consequence of their definition. The derivation

of the PCA can be found, among others, in Jolliffe (2002), Smith (2002), Kramer

(2013) and James et al. (2013)) and implies some some mathematical hypotheses

that here we attempt to explain. Let us consider the definition of eigenvalues and

eigenvectors (Roman, 2005) :

Definition 2 (Eigenvalues and Eigenvectors). Let V be a linear space over a field

F, and let τ ∈ `(V ). A scalar λ ∈ F is an eigenvalue for τ if there exists a non-zero

vector v ∈ V :

τv = λv (4.3)
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In this case, v is called an eigenvector for τ .

Here `(V ) represents the set of all linear operators ψ on V , ψ : V −→ V . Consider

the derivation of the first two principal components: as the procedure is iterative,

it is immediate to extend the result to the j-th principal component, j = 3, 4, ..., v.

Using the standard Lagrange multipliers method we write the function to be

maximized as:

f(α1, λ) = α′1Σα1 − λ(α′1α1 − 1) (4.4)

Thus, imposing the first order condition:

∂f

∂α1

= Σα1 − λα1 = 0 (4.5)

and rewriting the equation in the form corresponding to Definition 2,

Σα1 = λα1 (4.6)

it can be stated that λ is an eigenvalue of Σ and α1 is its eigenvector, but only

if the conditions of Definition 2 hold: having the same form is not a sufficient

condition. In fact, the concept of eigenvalue can be extended to matrices, and this

is not surprising since the multiplication map Γv, where Γ is a matrix, is a linear

transformation. We can wonder if λ ∈ F such that Γv = λv, v ∈ V exists. Indeed,

if this number exists for a non-zero vector v, then it is defined as an eigenvalue for

the matrix Γ. Another useful concept is given by the following definition:

Definition 3 (Spectrum of a matrix). The spectrum Spec(Γ) of Γ is the set of all

eigenvalues of the matrix Γ.

It can be proved that the eigenvalue λ is not unique in Spec(Σ) when v > 1. On

the contrary, from the derivation of the remaining v − 1 principal components, a

number of v − 1 related eigenvalues λj can be computed, with a very important

property: they are in (strictly) decreasing order, λj−1 > λj. This can be derived

from the previous optimization problem:

maxα′1Σα1 =⇒ (4.7)

α′1Σα1 = α′1λ1α1 = λ1α
′
1α1 = λ1α

′
1α1 = λ1 · 1 (4.8)
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given the orthonormality for the vectors α′1 and α1. Thus, the quantity that

maximizes the variance is λ1, which is associated with the first PC (principal

component).

To derive the second principal component we write:
maxα′2Σα2

α′2α2 = 1

Cov[α′1x,α
′
2x] = 0

(4.9)

or equivalently, 
maxα′2Σα2

α′2α2 = 1

α′2α1 = 0

(4.10)

Then, using again the Lagrange multiplier method,

f(α2, λ, η) = α′2Σα2 − λ(α′2α2 − 1)− η(α′2α1) (4.11)

∂f

∂α2

= Σα2 − λα2 − ηα1 = 0 (4.12)

and multiplying by α′1 the second member gives

α′1Σα2 − λα′1α2 − ηα′1α1 = 0 =⇒ (4.13)

η · 1 = 0 (4.14)

and

Σα2 = λα2 (4.15)

Again, the last equation shows that λ and α2 are, respectively, the eigenvalue and

the eigenvector of the matrix Σ. As stated above, the same conclusions are reached

proceeding in this way for the remaining variables. According to the usual notation,

we call Principal Components (PCs) the linear combinations α′j · x for j = 1, 2, .., v

and loadings or simply coefficients the objects α′j.

While principal components are usually derived analytically, an alternative

geometrical interpretation exists. It can be shown (see for example Jolliffe,

2002, pp. 18-19) that principal components are interpretable geometrically as
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the principal axes of the v-dimensional ellipsoids E = x′Σ−1x. Indeed, E is by

definition the generalized form for an ellipsoid, and it can be proved that for a

given matrix Σ−1 the principal axes of the ellipsoid are its eigenvectors, which

correspond to the PCs in this case.

4.2.2 The Singular Value Decomposition

Another very relevant algebraic result for the principal component analysis is

the singular value decomposition (SVD). A formal discussion of the SVD can be

found in Candilera and Bertapelle (2011); in this section we do not denote the

vectors and the matrices in bold, since the context makes the notation evident. Let

φ : Rn −→ Rm be a linear application, K = kerφ, X = K⊥ ⊂ Rn and Y = imφ, with

the usual notations for the kernel, the image and the orthogonal complement. Now

define:

φ|X := X −→ Y (4.16)

and

ψ(x) · x′ := φ(x) · φ(x′),∀x, x′ ∈ X (4.17)

which respectively represent an isomorphism, since Rn = X ⊕ kerφ, and a

symmetric endomorphism ψ : X −→ X. If u1, u2, ..., uv is an orthonormal basis

for X, then

ψ(x) =
v∑
i=1

φ(x) · φ(ui)ui. (4.18)

The spectral theorem guarantees the existence of an orthonormal basis for X

which is made up of the eigenvectors of ψ. This theorem reminds one of the main

features of PCA, the orthonormality of the principal component vectors justifying

the connections of this mathematical technique with the PCA. Let λ1 ≥ λ2 ≥ ... ≥

λv > 0 be the ordered set which corresponds to the collection of the eigenvalues λ2
i

associated with the i-th vector of the basis. The values λi, i = 1, ..., v, are called the

singular values for the matrix A ∈ Mm×n(R). If the rank of the matrix A is r, and

we define two matrices P and Q such that P ′P = Ir, Q′Q = Ir and S is the diagonal
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matrix whose non-zero elements are λi, i = 1, ..., r the equality

A = PSQ′ (4.19)

is called the Singular Value Decomposition. Let Σ be the Variance-Covariance

matrix for the data collected in A, then

Σ ∝ A′A = (PSQ′)′PSQ′ = QS2Q′ (4.20)

so the PCs are given by

AQ = PS (4.21)

The SVD result is largely adopted in the numerical algorithms for the PCA

analysis, allowing a fast calculation of its values.

4.2.3 Sample properties of principal components and the choice between

covariance and correlation matrix

In the previous sections we have discussed the population properties, because we

have implicitly assumed the matrix Σ−1 to be known and x, the vector of variables,

to be a row vector with v columns, but the sample properties are needed to apply

the principal component analysis to real data. In any case, these properties share

lots of similarities with the population ones. Let x1,x2 ,..., xn be the vectors for the

n observations; the already defined matrix X = (xij) ∈ Rn×v is the matrix whose

i-th row is xi. In this case (see, for example Jolliffe, 2002) we can define z̃ = α′jxi

as the score for the i-th observation on the j-th PC. Then the sample variance to

maximize, in order to derive the first PC, is

1

n− 1

n∑
i=1

(z̃i1 − z̄1)2 (4.22)

under the same constraint as before. The derivation that follows is conceptually

the same as the population case.

A specific practical precaution which is usually applied in the empirical analyses

is the standardization of variables. This is a very important feature to take

advantage of. For example, it allows us to consider the basic form of the singular
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value decomposition, but more than anything it prevents a wrong analysis due to

a possibly incomparable data size. As a matter of fact, the standardization

x̃j =
xj − x̄j
σjj

, j = 1, 2, ..., v (4.23)

provides the possibility to compute the PCs using the Correlation matrix instead of

the Variance-Covariance matrix. In Von Storch and Zwiers (1999), Section 13.1.10,

it is proved that the principal components (also called Empirical Orthogonal

Functions) are invariant under an orthogonal transformation:

Z = ΓX : X = Γ−1Z (4.24)

ΣZZ = ΓΣXXΓ′ (4.25)

Γ′ = Γ−1 (4.26)

but not under every transformation. In general, the principal components do not

correspond to those that are found using the Variance-Covariance matrix Σ after

an appropriate reverse transformation. Nevertheless, frequently different units

of measurements are used in practice to measure different variables and some

variables may be of a different order of magnitude than others. In all these cases,

using the correlation matrix is more appropriate. The standardization of variables

can provide a standardized method to follow before applying PCA, preventing

some principal components from being overrated, and in general avoiding all the

errors due to incompatible measures among the variables. Moreover, as it was

independently demonstrated by Hotelling (1933) and Meredith and Millsap (1985),

the use of correlation matrix can be seen as the appropriate method to maximize

the quantity:
v∑
j=1

q∑
k=1

r2
jk (4.27)

where 1 ≤ q ≤ v is the number of the elements of y resulting from the orthonormal

(linear) transformation y = B′x, B′ ∈ Rv×q, and r2
jk representing the squared

correlation between the j-th variable and the k-th principal component. This

particular criterion can be thought as a way to characterize an "optimal" subspace
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of q-dimensions, since 1 ≤ q ≤ v, and it is maximized when the first q eigenvalues

of the Correlation matrix are computed.

Another interesting property can be pointed out considering again the

transformation(s) yi = B′xi, where now the index i > 1 highlights the presence

of two or more random vectors x. One way to choose the matrix B is to solve the

problem

max
n∑
h=1

n∑
k=1

(yh − yk)′(yh − yk). (4.28)

Associating the index i > 1 with the number of observations n, and q with

dimension of the subspace where they are projected, it can be proved that B must

be equal to the first q columns of the loading coefficient matrix. The last two

theorems presented above suggest the idea of retaining a fewer number of principal

components. In fact, if the first few PCs explain an (arbitrary) substantial part of

the data variance, these theorems strengthen the idea to retain only them. This is

one of the main advantages of the PCA method, together with a possible improved

interpretability with respect to the original variables.

These properties suggest a link between the principal component analysis and

regression models. Indeed, we can wonder if the principal component vectors play

some role in the regression analysis: using the standard notation for the regression

model y = Xβ + ε, the next theorem paves the way to discuss this topic in greater

details.

Theorem 2. Let Γ be a v × v orthogonal matrix and ϕ = Γ−1β. If ϕ̂ is the OLS

estimator of ϕ, the elements of ϕ̂ have, successively, the smallest possible variance if

Γ = (α)ij. Then the elements of Z = XΓ are the sample PCs for x.

Proof. If ϕ̂ is an OLS estimator, then σϕ̂ ∝ (Z′Z)−1, hence σϕ̂ ∝ B′(X ′X)−1B.

Considering the trace tr(B′j(X
′X)−1Bj), which we want to minimize, it can be

shown that Bj must consist of the last j columns associated with the last j

eigenvectors of (X ′X)−1, which are the first j eigenvectors of (X ′X) since they

are reciprocal.

These considerations suggest we should verify whether principal component
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analysis may be usefully employed in the linear regression. Indeed, even if the

previous theorem does not suggest any link between PCA and the dependent

variable (please note that the y variable is not involved in the reasoning, but only

in the OLS estimate) it suggests a possible usage of the PCA as a dimensional

reduction device, along with conceivable improved interpretational and estimation

properties, which now we are going to discuss.

4.3 Principal Component Regression

The main idea of Principal Component Regression (PCR) is to take advantage of

the results given by the PCA, a traditional unsupervised learning method, into the

standard regression model y = Xβ + ε, which is a supervised method.

Assume the usual hypotheses for the linear model and its error terms; see for

example Wooldridge (2015), Chapter 2. As we do in the empirical analysis, here we

assume that each variable is measured about its mean and that the independent

variable matrix is standardized, which is convenient in the case of a different unit

of measurement among variables as discussed above.

Considering the matrix of scores Z whose elements are associated with each

observation, that is, using the previous notations, z̃ = α′jxi, j = 1, 2, ..., v or Z =

XA. If we write the linear model using Z as the matrix of dependent variables,

the following relations hold:

y = Zϕ+ ε (4.29)

Xβ = XIβ = XAA′β = Zϕ (4.30)

where

ϕ := A′β (4.31)

and since the matrix of coefficients A is orthogonal by derivation.

The OLS estimator β̂ can be derived, after having computed the OLS estimator

ϕ̂, through the inverse relation β̂ = Aϕ̂. Usually only a subset of vectors of the

score matrix is retained, such that

y = ZSϕS + ε̃ (4.32)
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for ZS ⊂ Z.

The main advantages of this approach are at least four.

First of all, the possibility of taking advantage of the interpretational properties

of the PCs, which are computed separately and before the regression. However,

in reconstructing the estimated values for β, the PCR offers an estimate for the

original independent variables.

Secondly, it may be interesting to study our data using an approach different

from the previous empirical studies, and which usually has been found helpful in

dealing with large dataset.

Thirdly, and really worth noticing, combining PCA analysis with the linear

regression is a particular aspect of a more general theory developed on the class of

biased estimators, as will be clearer further on in this and the following chapters.

This is extremely important considering the resulting possibility to compare the

estimates given by different methods, both to assess if there is an unambiguous

relationship independent of the method chosen, and to choose the more convenient

model in terms of a common defined statistical performance. In fact, the possible

reduction of the Mean Squared Error (MSE) — as discussed in the section on the

Cross-Validation technique — can be used to choose the most suitable regression

model to apply to our dataset.

Furthermore, the PCA analysis can be extended to examine the general problem

of missing data, which is a feature of our loan data, and allows us to propose a

regression model based on the results of the Probabilistic PCA (see Chapter 6).

We cannot omit another advantage of this technique, that is related to the

multicollinearity problem. This problem is quite frequent in practice, especially

when a large number of regressors is considered, and occurs when a specific

variable can be written as a linear combination of another variable included in

the estimation too. More formally, and without loss of generality, this is the case

where x1 = α + βx2 for some appropriate constant vectors α and β. This has

been studied in econometrics for a long time, since in this case the traditional OLS

estimators for the linear regression model are subjected to a different range of
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problems. Choosing as the independent variables a subset of the scores derived

from PCA can considerably reduce the variance of these estimators. The reason,

which will be analytically evident in the next section, is that if the first k ≤ v

columns of the score matrix are chosen, then the variance of the estimator for β,

Var β̂, can be reduced.

In the next section, we are going to discuss in depth some of its properties,

its interpretation, some problems related with both variable selection and score

selection, and generally every feature necessary in order to make this technique

effective in our successive empirical analysis.

4.4 Variable selection and interpretation in PCA and PCR

4.4.1 Interpretation and selection of the optimal principal component

subset

Considering the principal component analysis as an unsupervised method, the

interpretation of the principal components and the choice of the optimal subset

are two of the most relevant aspects in practice. A discussion and some empirical

applications of these subjects are presented, among others, in Rao (1964), Blackith

and Reyment (1971), Diamantaras and Kung (1996) and Jolliffe (2002).

The interpretation of the principal components, α′jx, concerns its elements and

first and foremost their relative magnitude and sign. To understand better their

meaning, we can represent a j-th principal component as a column vector of v rows:


zj1

zj2

..

zjv


Firstly, it is important to compare each element of this vector on a relative rather

than an absolute scale, not depending on the measurement unit. Hence, the first

step consists of standardizing each element, according to its relative magnitude.
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A second relevant step is to consider the sign of their absolute relative values.

In fact, to analyze the coefficients, it can be useful to represent them as a vector

whose elements are the + or − sign, if their absolute relative value is greater than

an arbitrary chosen level, and with another symbol (let ∗) if they are not significant

(in this context without any reference to the equivalent statistical term), operating

the following transformation:
zj1

zj2

..

zjv

 =⇒


+/− /∗

+/− /∗

..

+/− /∗


The rounding of optimal estimates implied in this procedure, as shown in Bibby

(1980), has more advantages than negative aspects. Indeed, when done carefully,

this rounding reduces the original variance explained by a PC only of a negligible

percentage: in this paper the average loss of the explained variance, after a

rounding of one decimal, was λ1
300

for the first principal component in R4. Therefore,

the loss in accuracy is overcompensated by the gain in interpretation.

In any case commenting only one sign, considered separately, would be wrong:

what the contrast of these signs suggest is of importance. Obviously, if only

the contrast counts, then the signs of each PC are arbitrary. Therefore, the

examination of this contrast, made for each PCs one at a time, could suggest

the phenomenon responsible for the original data variation (percent) associated

with the considered principal component. The interpretation should be done with

regard to the underlying nature and characteristics of the real case examined. For

example, in our successive empirical study on loan data we analyze whether a

clear interpretation of the first two PCs, obtained from the available independent

variables, is possible, that is if an economic interpretation is feasible.

Since the derivation of PCs is essentially algebraic, this cannot be guaranteed.

However, this is not the only added value of this technique. In fact, another

feature of PCA is the dimensionality reduction of the original space allowed by

selecting an optimal subspace among the v principal components. Specifically, it
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can be shown (see below in this section) that choosing the first k ≤ v principal

components retains, by construction, a subspace with the maximum possible

amount of variance of the original space.

This can be formalized using the previous notation: the choice of a subset ZS ⊂

Z is made such that ZS = Z1 ∪Z2 ∪ ... ∪Zk. Moreover, we have already discussed

the inverse relation between the arrangement of the column vectors belonging to

the score matrix and the percentage of the original variance they explain.

It is interesting to make some theoretical consideration on this result, which is

one of the most important concepts of PCA and one of the most discussed topics of

PCR (see 4.4.2). From (4.2.1) we know that the equation

Σαj = λαj, j = 1, 2, ..., v (4.33)

holds, as well as the orthogonal constraint α′jαj = ‖αj‖2 = 1. Now let us define the

following:

Definition 4 (Hermitian matrix). A matrix A = A† , where A† is the conjugate

transpose of A, is an Hermitian matrix.

Suppose A is the Variance-Covariance matrix: indeed, a symmetric matrix A

which takes values in the field F = R ⊆ C is a special case of an Hermitian matrix.

Definition 5 (Rayleigh-Ritz ratio). The ratio R(A,x) := x
′
Ax
x′x

is called

Rayleigh-Ritz ratio.

The Rayleigh-Ritz theorem, discussed among others in Horn and Johnson

(2012), provides a link between the non-decreasing eigenvalues λ1 ≤ λ2 ≤ .... ≤

λj of the Hermitian matrix and the maximization problem with orthonormal

constraint, as takes place in PCA. The reverse order of the indexes for λ here are

only due to opposite conventions: using the standard notation for PCA, we write

Σαj = λαj and derive

R(Σ,αj) =
α′jλαj
α′jαj

= λj. (4.34)

The variance explained by the j-th PCs, VarPCj, can be computed through its

associated eigenvalue. Indeed, from the algebraic construction presented above, it
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follows immediately that:

VarPCj =
λj∑v
j=1 λj

. (4.35)

Thus retaining only the first k ≤ v PCs lead to keeping an amount of the original

variance of
∑k

j=1 λj∑v
j=1 λj

<
∑v

j=1 λj∑v
j=1 λj

= 1.

The main point here is: if k is small, maybe equal to 2 or 3, and at the same

time the variation explained by these first k PCs is high, and the cumulative

variation is also high, the reduction allowed by the PCA is effective since it retains

a large amount of the original variation. The rule to choose the optimal level to

be retained is not unequivocal. Some authors have discussed various procedures

to choose the optimal level, as Mandel (1972), Eastment and Krzanowski (1982)

and Sugiyama and Tong (1976). In these studies a discussion on the optimal

dimensional reduction of the original space is presented, under specific hypotheses

and simulation studies. On this point a wide discussion has been made in

Al-Kandari and Jolliffe (2001), where different variable selection criteria are

compared. However, we are not going to analyze these and other related studies,

since our focus is on the variable selection in the PCR and in practice usually the

decision is made by rule of thumb: a level between 0.80 and 0.90 is considered

satisfactory. Moreover, retaining a high percentage of the variance may not be

the only purpose of the researcher. In fact, as discussed among others by Ferré

(1995), the goal is not always to optimally fit the original dataset. In the case

of PCR, where a dependent variable is present and then the predictive aspect is

predominant, a deeper and probably more essential discussion is imperative.

4.4.2 Choosing the optimal principal component subset in PCR.

Solutions and variations of PCR

In the principal component regression the score vectors are substituted to the

original independent variables as predictors. In doing so, it is common to retain

as regressors only the row vectors associated with the first principal components

derived from the previous PCA, and this is in fact one of the most straightforward

usage of PCA in the regression analysis, which can improve both the interpretation
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and the estimates given by the OLS estimator. For example, in his examination on

the variable selection in linear regression, Hocking (1976) explains the principal

component regression as a technique which deletes the last PCs. This is the

approach supported by Mansfield et al. (1977), Mosteller and Tukey (1977) and

Gunst and Mason (1980) but criticized by Jolliffe (1982).

Among all the possible methods, a very simple one consists of fixing a cut-off

level h∗ for the respective eigenvalue, such that the PC is included in the analysis

if its eigenvalue hj > h∗. The cut-off level must be chosen considering whether a

previous standardization has been made: if this holds, a level between 0.01 and 0.1

may be appropriate.

In truth, even though the first principal components retain the higher

percentage of the variance among the independent variables, there is not any

certainty that their correlation with the dependent variable will be maximum.

A possible conflicting choice can arise when a principal component is associated

with a relative low eigenvalue but has a high predictive importance for the y

variable. For example, in the analysis of Smith and Campbell (1980) among the

most significant regressors in PCR for the response variable there are some PCs

associated with a low eigenvalue. Their analysis considered chemical data, but

in Hill et al. (1977) the same happens for economic variables, such as the Gross

National Product and the Unemployment rate. Their results suggest that all of

the six PCs (they used six original variables) should be included, even if the last

explain a small amount of the variance. Empirical opposite conclusions are given

in Berk (1984) with six different datasets. His result, even though it points out that

this problem does not always take place, cannot be considered as the only possible

case.

Ideally, the optimal subset for the Principal Component Regression has the form

ZS ⊂ Z, where ZS =
k⋃
j=1

Zi is only a special case. It is evident that there is

practically not an unequivocal solution to this problem, and for this reason various

ideas have been proposed in literature.

On the one hand, as for the unsupervised PCA analysis, the selection can be
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made through various rules of thumb. As a matter of fact, every choice made

for an optimal level of some determined parameter can be useful in practice. A

simple but efficient rule could consist of including both the first PCs and the

other potential PCs which present a low-variance but a significant link with the

dependent variable. One of the weaknesses of these techniques is the inevitable

presence of an arbitrary choice.

On the other hand, the usage of the PCA combined with a linear regression

model suggests the possibility of applying the same test of significance and the

statistics which are usually employed for the standard linear regression. One

possible approach involves a decision of an optimal level for the variance inflation

factor (VIF), which is usually employed to detect the multicollinearity when lots

of variables are present. A less arbitrary choice is to use the T -test applied to

the principal components, as discussed in Foucart (2000). This test measures

the independent contribution of each score vector to the PCR. Even if the T -test,

as shown by Mason and Gunst (1985), is not perfectly symmetric for low and

high-variance components, it can constitute a valid solution even if too many

variables could be retained (Jolliffe, 2002).

Another common coefficient used in the linear regression, the R̄2, is taken into

consideration by Lott (1973) for the problem we are discussing. He suggests

choosing the subset S which satisfies the condition

max
S

R̄2
S = max

S
(1− (1−R2

S)
n− 1

n− v − 1
). (4.36)

With a completely different approach, other authors have suggested some

variations of the classical PCR itself, since this selection problem seems to be an

intrinsic characteristic of the principal component regression.

Literature on this topic is varied. Hawkins (1973) and Webster et al.

(1974) independently proposed including the dependent variable in the principal

component analysis, a method called latent root regression. A variation of the

latent root regression which employs the Cholesky factorization is presented in

Hawkins and Eplett (1982). Oman (1991) discuss a shrinkage of the least square

estimators on the first principal components. Another possible approach is the
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partial least squares regression. In our empirical study we focus on the previous

statistical methods, rather than on the variations of the PCR. Since the number

of principal components is four, sometimes these methods, in accordance with the

estimated MSE, supply the conclusion of retaining all the variables, and in other

cases to retain their own subset.

4.4.3 Overfitting. The Cross-Validation technique and its applications to

PCR

In our empirical analysis we largely use the so-called Cross-Validation (CV)

technique, a tool which compared with the previous solutions proposed for the

optimal subset selection could lead to a less-arbitrary choice, or at least which

presents some advantages. The Cross-Validation is largely employed in practice,

despite its conceptual simplicity, even to test the performance of increasingly

complex models (James et al., 2013), and is adopted in this work for the validation

of other regression techniques too. It is worth pointing out that this technique

can be advantageously employed thanks to the sufficient contemporary computing

power, which has remarkably increased compared with the past.

The CV belongs to the resampling methods, whose name derives from the

repeated extraction of a sample set that these methods perform. The theoretical

basis for the use of the CV method in the principal component regression can be

found in Hill et al. (1977). In their discussion of an optimal subset selection for the

PCR, the authors suggest considering the mean squared error (MSE), which for a

general predictor of y is defined as

ρ = MSE =
1

n

n∑
i=1

(yi − ŷi)2. (4.37)

This definition of MSE corresponds to those used for the "strong criterion"

proposed by the authors, which is to prefer the subset a to the subset b if

MSEa < MSEb (4.38)

This quantity must be estimated as in the case of the MSE for an estimator,

since in this case we are interested in ρ̂ for the population and not only for the
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sample which the values ŷi were computed on: the CV technique allows this. These

considerations find support in literature: Krzanowski (1987), Mertens et al. (1995)

and Diana and Tommasi (2002) discuss the application of the CV to the selection of

the PCs, because it measures the quality of the fit for different choices of regressors

in the PCR.

To briefly discuss the Cross-Validation technique, we consider some preliminary

concepts. For a dataset of n observations of the dependent and independent

variables:

O = {(y1,x1), (y2,x2), ..., (yn,xn)}. (4.39)

the training set T ⊆ O of the data is defined as the observations which are available

to train, that is to fit, the model. On the contrary, the test set K ⊆ O : K ∩

T = ∅ contains those observations which have been excluded by the training set,

or however those which are unavailable to fit the data. In fact, this last subset

is very useful to compare the predictive values, computed through the training

set, with a different dataset. For example, loosely speaking, the MSE computed

on the training set has less importance than the test MSE,
1

k

k∑
i=1

(yi − ŷi)
2, i ∈

K, since we are interested in a model which prevents large errors when the new

elements of K are added and the predictions ŷi have been made using the trained

model. This concept is related to the statistical problem of overfitting. As the

word says, when too many parameters are included in a model, it over-fits (and

then does not simply fit) the training data set because it adapts very precisely

(at limit perfectly) to the available observations. But the problem is that a very

bad fit occurs when a new observation is included, since its flexibility is very poor.

In other terms, a compromise between the flexibility of a model and an optimal

fit for the training data should be reached; otherwise the predictive power of the

model would be insufficient. The Bias-Variance trade-off, a well-known concept in

statistics, must be considered to fit a model.

Formalizing, the expected MSE for the test set can be written as

EMSE(test) = E(yi − ŷi)2 = Var ŷi +Bias2(ŷi) + Var ε (4.40)

70



i ∈ K, ε the error term. For a fixed Var ε, the previous discussion suggests finding

the best balance between the Var ŷi and the Bias(ŷi), such that EMSE(test) is

minimized. These considerations hold for the MSE of an estimator as well: in

the PCR regression made on a subset of scores Z, contrary to the ordinary linear

regression model, the Bias(β̃) 6= 0. Using the previous notation,

y = Zϕ+ ε =⇒ ϕ̂ = (ZZ′)−1Z′y = Λ−2Z′y (4.41)

where Λ is the diagonal matrix whose elements are λ
1/2
kk , the k-th largest

eigenvalues of the matrix X ′X. Then,

β̂ = Aϕ̂ = AΛ−2A′X ′y =
v∑
i=1

λ−1
ii aka

′
kX
′y. (4.42)

Since for the OLS estimator E(β̂) = β, if in the PCR the set of regressors is

restricted to a subset of scores 1, 2, ..., s− 1, with a related estimator β̃ the E(β̃) 6= β

of a quantity
v∑
i=s

aka
′
kβ. On the other hand, it can be shown using the SVD that

Var β̃ = σ2

s−1∑
i=1

λ−1
ii aka

′
k. (4.43)

Since among the retained scores there are usually those associated with larger

eigenvalues, the reciprocal factors λ−1
ii associated with the excluded variables are

smaller. Therefore (4.43) is smaller, thus the variance is lower than that of the

traditional linear regression estimators. To compute the overall effect of these two

opposite effects, the Cross-Validation algorithm randomly split the available data

set in two subsets. The training set is used to train the model; the validation

set is used to evaluate the statistical performance. When the reduction of the

variance overcompensates the greater bias the MSE is lower, as we illustrate in

our empirical analysis. A substantial problem could arise if, choosing the splitting

rule, the training set is excessively restricted, as fewer observations always imply

a worse statistical performance. That is the reason why in practice usually a k-fold

Cross Validation is employed, which means that the observations are randomly

split into k subsets (groups or folds) of comparable cardinality, of which the last

k − 1 are used to train the model and the first is the validation set; this procedure
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is repeated k times (algorithm 1). When n = k the procedure is called LOOCV; it

retains the largest training set possible, but it is computationally expensive and its

estimates have a lower bias but a higher variance compared with the 10-fold CV.

In our empirical analysis, as it is frequent in practice, we use a 10-fold CV.

Algorithm 1 CV algorithm
1: procedure K-FOLD CROSS VALIDATION

2: Split the data in k subsets of comparable size

3: for i=1:k do

4: Train the model on {1,2,...,i-1, i+1,...,k} subsets

5: Compute the MSEi on the i-th validation subset

6: end for

7: MSEcv = 1
k

k∑
j=1

MSEj

8: end procedure

4.4.4 Selecting variables in PCR using an iterative F-test

Another aspect of the principal component regression, which is mostly unheeded

in practice, is the variable selection among the original predictors. In fact, we have

discussed the selection for the principal components but not for the independent

variables which the principal component analysis is applied to. This subject is

characteristic when dealing with the standard linear regression, but most studies

tend to retain all the original variables for the principal components included in the

regression. As a matter of fact (depending on its definition) the regression applied

to the PCA can be seen as a method which however retains all the variables and

which concerns only the score vectors.

Nevertheless, some authors have explored this topic to examine whether a

variable selection in the PCR can improve results. In the empirical part we adopt

an F -test, as proposed by Mansfield et al. (1977), to show the significance of our

predictors.

Considering a principal component regression model where only a subset
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1, 2, ..., s of scores is retained, then

Ŷ = Ȳ +
s∑
j=1

ujϕ̂j (4.44)

with u = z′A, z ∈ Z. The Sum of Squared Residuals (RSS) becomes:

RSS =
n∑
i=1

(Yi − Ŷi)2. (4.45)

The test statistic used to compare two different models is analogous to the

F -statistics for a linear regression model. Firstly, the increase in the residual sum

of squares u1 is computed deleting from the original variable set the j-th variable

xj one at a time. The minimum of the set {uj}, j = 1, ..., v is:

uki = minuj. (4.46)

The i-th variable is deleted if, considering the F distribution with (1, l) degrees of

freedom
minuki
MSE

≤ F (m, l). (4.47)

The procedure is iterative: if it exists, in the second step k + 1 the minimum of

the increased RSS value is computed, and the test to decide if the variable is

statistically irrelevant becomes

(minuk+1
i −minuki )

MSE
≤ F (m, l). (4.48)

However, since in our analysis the number of available complete variables is not

large and the economic interpretation has to be considered too, we apply this

algorithm only to give an example of the significance of our variables, stopping

at the first step. The choice is made one at a time for each variable with thousands

of observations, hence for F (m, l) it can be assumed m = 1 and l −→∞.

4.5 Empirical results on loan data

In this section we apply the principal component regression to loan data, along

with the variable selection techniques, the statistical tests and the other aspects

which have been discussed so far in this chapter. Our aim is to verify what these

73



results suggest, from an economic point of view, and specifically what is the effect

of collateral and of other borrower variables on the residential mortgage-backed

security (RMBS) interest rate. The key points of our analysis are:

1. It is a cross-sectional study on different large datasets collected on the

European DataWarehouse (ED).

2. A preliminary split of this data is done considering the nature of the interest

rate, namely fixed or floating. Indeed, the fixed interest rate margin,

being established in a specific date, is not precisely comparable taking an

extended period of time. Thus, we consider separately two shorter periods

approximately homogeneous for the macroeconomic variables, in particular for

the Euribor interest rate: from 2004 to 2006 (before the crisis, higher margins)

and from 2011 to 2016 (post-crisis, lower margins).

3. The dependent variable, collected in the column vector y, is the Interest Rate

Margin of the loan contracts associated with a RMBS for each borrower.

4. The explanatory variables, collected in the matrix X, are the Primary Income

of the borrower, the Loan Term, the Original Balance of the loan and the Loan

to Value ratio. The variable Debt to Income was excluded due to issues of

multicollinearity.

5. Our analysis is performed separately on the main European Union countries

for which the data are available: Belgium, UK, Spain, France, Italy, Germany,

Ireland and Netherlands. This allows us to analyze the possible differences

among these countries.

Therefore, for each country, an original matrix A of n rows (the number of

observations, ranging between 133153 to 1264432) and v = 7 columns is available.

In this analysis, contrary to the case examined in the last chapter, all rows with

at least one Nan (not available) data are deleted. Our goal is to examine the

empirical results on the relation between X= [Primary Income, Original Balance,

Loan Term, Loan to Value] and y= [Interest Rate Margin] as given by the PCR.
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The dimensionality of the matrices analyzed is resumed in table 4.1. While the

number of observations n is variable, the number of columns is always 7: two of

them contain the loan origination date and the interest rate type, four contain the

independent variables and one the response variable.

Table 4.1: The dimensionality of data analyzed

Country n = Number of rows (observations)

Belgium 133, 153

UK 370, 146

Spain 1, 264, 432

France 994, 601

Germany 489, 402

Ireland 242, 331

Netherlands 775, 920

Italy 476, 241

It is important to highlight that the primary goal of this analysis is not to

propose a predictive model for the interest rate. Indeed, other borrower’s variables

foreseen in the ED taxonomy are currently unavailable and moreover the interest

rate can depend on further variables, such as macro-economics variables, the

economic cycle expectations, the risk-adversity of the lender and, as usually

happens in social sciences analyses, the imponderable individual decision made

for each client. Our goal, however, is to examine the overall effect of the variables

collected for each borrower, as they are available in the ED, which are very specific

and relevant for the interest rate decision. As a matter of fact, both the economic

intuition and the statistical significance in our results guarantee their influence

on the interest rate decision. From a statistical viewpoint, these statements are

equivalent to state that the significance of our predictors are of more interest than

the total variance of the dependent variable explained by the model. The MSE

here is used as a number which can be advantageously employed to compare the

accuracy of the different methods applied.
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On the other hand, the high significance level of our regressors (the score

variables), combined with a lower variance for the estimators induced by the PCR

when a subset of the PCs is chosen, and above all the high number of observations

keep up the accuracy of our estimates. The unsupervised principal component

analysis made before the regression is of interest too.

Having taken this into consideration, our examination is made on the available

micro-data as best we can in order to consider the individual characteristic of a

huge number of contracts, in contrast with the previous empirical analyses made

on this subject; we do not exclude that in the future, as data availability may

improve, these results may be reconsidered and extended in order to include new

predictors (see also Chapter 6). Due to this consideration, in order to strengthen

the results found by these estimates, we flank an unsupervised learning method,

known as K-means clustering, to the PCR analysis. This method is by construction

independent of the other possible missed predictors. The main idea behind this

clustering method is to partition the dataset into K disjoint sets, which contain

similar data. The similarity is usually evaluated as a specific distance between the

observations and a centroid. Intuitively, the algorithm based on the work by Arthur

and Vassilvitskii (2007) starts from a randomly chosen observation considered as

the first of k centroids. Then it assigns each observation to its closest centroid,

chosen again randomly with an assigned probability and depending on a specified

distance. Each distance is computed as di = d(xi, ci), where xi are the points which

belong to the set with centroid ci. The process is then repeated n times, and finally

converges to the lowest possible sum of distances di. This leads to a classification

of points based on their distances from their closest centroid.

In our empirical analysis, we show in an example that the clustering is in

accordance with our estimates. In particular we partition the observations in two

clusters, considering the Loan to Value and the Interest Rate Margin variables:

we find that the positive coefficient estimated in the PCR for the Loan to Value

variable corresponds to the cluster whose centroid is associated with higher

interest rates and higher loan to value. As discussed in the fifth chapter, the results
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of the present section are coherent with those computed with other regression

techniques.
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Now we comment the main results given by our analysis, which is conducted

separately on the available data for the fixed and for the floating interest

rates. In this section we present an overview of these results, along with some

representative tables. The complete analysis for each country can be found in

Appendix A.

At the first step, a correlation analysis on the matrixX is done for each country:

Σ̂J , where J is the country’s name, represents the matrix of correlations for the

independent variables. There is a certain similarity among these matrices. In

nearly all the cases for the floating interest rates, the correlation between the

Primary Income and the Loan Term is negative, as is also often that between

the Primary Income and the Loan to Value, while the other correlations are

positive. These estimates suggest that in general the borrowers who require a

longer loan and who pledge less collateral have a lower primary income. This

fact is completely coherent with common sense, because a borrower who has a

low income is more likely to require a loan with a high duration and he probably

cannot pledge much collateral. For the fixed interest rates these conclusions

do not hold, since the correlation matrix has always positive entries (except for

the Netherlands and Germany at one of its entries). This fact points out the

difference between the fixed and the floating interest rate contracts: a fixed interest

rate seems to be required from borrowers with higher Primary Income, Loan to

Value and Loan Term together. There are not too high correlations, and then

no evidence of multicollinearity: notice that the Loan to Value variable depends

on the collateral pledged (the denominator) and then is not predictable knowing

the Original Balance (the numerator). However, to assess the multicollinearity

among the independent variables we employed the Belsley collinearity diagnostics.

Some of these tests are presented in the Appendix (see for example table A.1.1).

The condition indices are all low, and this strongly supports the absence of

multicollinearity (Belsley et al., 2005). The principal component analysis allowed

us to detect and delete in advance the main outliers (see figure 2), even if the

results did not change due to the high number of observations considered.
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Σ̂Belgium =



1.0000

0.21860 1.0000

-0.10556 0.29683 1.0000

-0.10189 0.14899 0.21622 1.0000



Table 4.2: The correlation matrix for Belgian data. The negative correlation between the Primary

Income and the variables Loan Term/Loan to Value is a recurring pattern in our analysis.

Singular values Condition indices

1st 1.0000

2nd 1.2070

3rd 1.4272

4th 1.7504

Table 4.3: Belsley collinearity diagnostics on the UK data. There is no evidence of multicollinearity.

The first principal components, by construction, explain most of the data

variation. Since the variables considered are four, the last PCs do not explain a

very low variation, as would happen with many more components, but generally

the first two components explain more than 65% of the original variation, and the

first three around 85%.

Principal component number Variance explained

Component 1 40.207

Component 2 25.044

Component 3 19.134

Component 4 15.616

Table 4.4: Principal Component Analysis on Spanish data: the first three components explain

around 85% of the original variation.

Regarding the interpretation of the first two principal components there is a

clear recurring pattern. For each country, the first principal component explains

most of the variations, measuring the overall level of the loan variables. This is a

79



common result in PCA: it simply shows that the greatest source of variation is the

magnitude of the variables. As the entries of the correlation matrices are mainly

positive, this could have been expected. On the contrary, the second principal

component, both for the floating and for the 2004-2006 fixed interest with only

two exceptions (UK and 2004-2006 fixed Belgium), contrasts two groups. The

distinction is made between the groups [Primary Income, Original Balance] and

[Loan Term, Loan to Value], which geometrically can be represented as in figure 6

(see Appendix A). A possible economic interpretation has been anticipated during

the correlation analysis. A higher primary income leads both to the possibility

to pledge more collateral and to exploit the loan for a a shorter time. The last

consideration is supported by the possibility of a more rapid repayment which a

wealthier borrower actually can do. The other variable, the Original Balance, is

positively related to the primary income, which means that the loans of a greater

amount are associated with a higher primary income. This is straightforward.

Finally, the contrast between the original balance and the Loan to Value ratio

suggests that the increase of collateral value is more than proportional than the

increase in the original balance. This supports the logical idea of a positive

link between the amount granted and the collateral required. These conclusions

are again quite different for the fixed interest rates. Among four countries

analyzed, two (Belgium and Netherlands) exhibit the same contrast between the

first variable (Primary Income) and the other three nations. This means that when

the original balance is higher, the fixed interest rate contract generally does not

require more collateral, and at the same time that a higher primary income is in

contrast with the original borrowed sum. With more countries, it would have been

interesting to examine if this was a specific feature of the post-crisis fixed rate

contracts.
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Coefficient Matrix

Variable PC1 PC2

Primary Income + +

Original Balance + +

Loan Term + −

Loan to Value + −

Table 4.5: The coefficient signs of the first two principal components computed on Irish data. The

second PC contrasts the Primary Income and the Original Balance with the other two variables.

The theoretical considerations about the optimal PCs subset choice examined

through this chapter are implemented in our analysis. The number of PCs retained

ranges between 3 and 4 (in the last case, all the components are retained). The

selection is based on various decision rules, but since the number of components

is not very high, they usually are not very discordant. As we pointed out at the

beginning of this section, this analysis deleting the last PC retains most of the

original variation (≈ 85%), but for a less-arbitrary decision three criteria were

considered: the Rule of Thumb/RSS, the T -statistic and the Cross-Validation MSE.

As is displayed in figure 4, the cross-validation method allows us to consider the

subset with the lowest estimated MSE. The initial rapid decrease, when too few

PCs are retained, stops when more than two PCs are chosen, coherently with

the theoretical discussion about the overfitting (Section 4.4.3). The T -statistic is

usually highly significant for at least three of the four components. In the tables of

Appendix A, the PCs reported are those with a highly significant p-value (usually

under 1%). Finally, the rule of thumb based on the RSS comparisons, and on the

total variation explained, sometimes suggests a strong relation between the last

PC and the dependent variable, cannot support its removal from the analysis. The

MSE varies among the estimates for each country, ranging from 0.28 to 3.62, with

a lot of values around 1. The other question, the selection of the independent

variables, is applied to the first few analyses mainly to support the decision to

retain all four original variables. As a matter of fact, the F -statistic test always

rejects the null hypothesis, implying that all the predictors are significant, as can
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be expected since there are not many independent variables.

Choosing the optimal subset

Decision rule PCs retained

Rule of Thumb/ RSS PC1, PC2, PC3

T -statistic (α = 0.1) PC1, PC2, PC3, PC4

Cross-Validation MSE PC1, PC2, PC3

Table 4.6: The results of the different decision rules discussed in the theoretical part, applied to

German data. In this case the CV technique suggests to retain the first three PCs, minimizing the

Mean Squared Error.

The final estimates β̂, reconstructed for the original variable terms starting from

the results obtained through the principal component regression on the dependent

variable Interest Rate Margin, are presented for each country and both for floating

and fixed interest rates in the tables of Appendix A. The comment is made on the

sign rather than on the magnitude and is always to be intended as a result of a

general pattern (considering the totality of the contracts) rather than applicable

to each singular contract. In the following chapter we analyze whether the effect

given by a particular coefficient is weak due to its magnitude, employing shrinkage

estimators.

Starting from the floating loan analysis, the primary income influences

positively the variable y in each country except for the Netherlands, where its

sign is negative. Economically, this coefficient suggests that the level of the

interest rate applied in a (RMBS) loan is higher for borrowers with higher income.

Among the possible explanation there is the greater propensity to pay for the

wealthier borrowers, given the decreasing marginal utility theory. On the contrary,

the original balance is negatively related to the dependent variable, except for

France, Ireland and the Netherlands. An intuitive explanation is that probably a

higher amount borrowed allows the debtor to obtain better contractual conditions.

The effect of the third variable, the loan term, is more frequently positive. The

related coefficient is greater than 0 in Belgium, Spain, Germany, Ireland and the

Netherlands. A negative coefficient is estimated for the UK, France and Italy.
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Examining the overall effect for each country, since a geographical pattern is not

clearly evident, the analysis suggests that in some countries the interest rate can

be higher as a remuneration for the longer loan term, in other countries that a

longer loan agreement implies more favorable conditions.

Finally, the question posed in the first part of this work is answered by the

coefficient estimated for the Loan to Value variable (see Section 4.6). Given the

amount borrowed, from the definition of the Loan to Value, a positive coefficient

implies a negative link between collateral and interest rates. A higher interest

rate is associated with a higher Loan to Value, and then with lower collateral

requirements, in Belgium, the UK, Spain, Germany and Ireland. In the other

three nations, Italy, the Netherlands and France the latter relationship is positive.

This empirically supports our thesis on the a priori impossibility to decide for

one theoretical hypothesis. In fact, for the first group of countries the prevalent

effect is the signalling related to the case of asymmetric information between the

borrower and the lender. In the second minority group the moral hazard seems to

be prevalent: as we proved in our model, "higher interest rates and higher collateral

requirements are compatible if they are both considered as a penalization for a

riskier borrower".
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The economic analysis for fixed interest rates is similar, and the empirical

conclusions support the hypothesis of a negative link between collateral and

interest rates. Specifically, both for 2004-2006 and for 2011-2016 periods, the

coefficient estimated for the Loan to Value is positive for 6 of the 7 cases analyzed.

Moreover, the coefficient for the variable Original Balance is negative in every

country except for France, which is an exception also for the floating interest rate

for this coefficient.

To support the estimated coefficient for the Loan to Value variable, as discussed

above, a cluster analysis is done for example on the UK and German data, see

figures 1 and 5 (Appendix A).

Figure 1: The positive coefficient for the variable Loan to Value, found through the Principal

Component Regression applied to UK data, is confirmed by a cluster analysis: the centroid for

the contracts with a higher Loan to Value corresponds to a higher interest rate margin.

This graphic suggests at least two interesting considerations. Firstly, as we

have affirmed above, the effect estimated is the prevailing one, and it is not valid

for every contract. As a matter of fact in these graphics it can be seen that each

contract is associated to its Loan to Value and its Interest Rate, and there are

contracts with a high loan to value and low interest rate, as well as the opposite.
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There is not a clear cluster. This confirms again the existing different game theory

effects which are specific for each contract.

On the other hand, considering the two centroids the second has both a higher

Loan to Value and a higher Interest Rate. This link is not so strong, but it is

the prevailing overall effect, coherently with the positive value for this coefficient

estimated by the PCR. In other words, the main point here is that considering

the total of the contracts, those with a higher Loan to Value tend to be clustered

into the group whose centroid has a higher interest rate, since this minimizes the

possible distance for these contracts.

These results imply another important consideration. An empirical analysis

which derives its conclusions from a small number of observations, or from an

analysis on a single country, can be misleading and biased since there is not a link

which is nearly always valid. In fact, the discordant coefficients we have estimated

indicate the prevalent effect observed on millions of different contracts of different

countries. But, more importantly, it indicates that for different contracts, and for

different countries, different hypotheses could be valid. In the next chapter we

discuss other possible biased methods, which are based on the regularization, and

analyze whether their estimates are in line with the conclusions reached in this

section.
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4.6 A summary table

We highlight the most important results of the empirical analysis in this

summary table. The other results, and the estimates for each country, are

presented in the immediately following appendix.

Country Effect of collateral on floating interest rates

Belgium, the UK, Spain, Germany, Ireland −

Italy, the Netherlands, France +

Effect of collateral on fixed interest rates

Belgium +

The UK, Spain, Germany, Ireland −

Italy, the Netherlands, France −

Other relevant statistics

Number of PCs usually retained PC1, PC2, PC3

Variance explained by the first three PCs ≈ 85% (on average)
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Appendix A

Empirical results. Principal

component regression

A.1 Analysis for floating interest rates

A.1.1 Belgium

Σ̂Belgium =



1.0000

0.21860 1.0000

-0.10556 0.29683 1.0000

-0.10189 0.14899 0.21622 1.0000


Table A.1: Belsley collinearity diagnostics

Singular values Condition indices

1st 1.0000

2nd 1.1085

3rd 1.3453

4th 1.5868
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Table A.2: Variation explained in PCA. Belgium

Principal component number Variance explained

Component 1 36.185

Component 2 29.450

Component 3 19.993

Component 4 14.372

Coefficient Matrix

Variable PC1 PC2

Primary Income ∗ +

Original Balance + +

Loan Term + −

Loan to Value + −

Choosing the optimal subset

Decision rule PCs retained

Rule of Thumb/RSS PC1, PC2, PC4

T -statistic (α = 0.05) PC1, PC2, PC3, PC4

Cross-Validation MSE PC1, PC2, PC3, PC4

F-test

Min(
minuk

i

MSE ) = 4.1575 F−stat = 3.84 Variables to exclude: None

PCR final results

Variable Coefficient Effect

Primary Income 0.0199 +

Original Balance −0.0115 −

Loan Term 0.1257 +

Loan To Value 0.10723 +

MSE 1.9465
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A.1.2 UK

Σ̂UK =



1.0000

0.15728 1.0000

-0.019896 0.13989 1.0000

0.0056817 0.24755 0.46365 1.0000


Table A.3: Belsley collinearity diagnostics

Singular values Condition indices

1st 1.0000

2nd 1.2070

3rd 1.4272

4th 1.7504

Table A.4: Variation explained in PCA. UK

Principal component number Variance explained

Component 1 39.940

Component 2 27.414

Component 3 19.610

Component 4 13.036

Coefficient Matrix

Variable PC1 PC2

Primary Income + −

Original Balance + +

Loan Term + −

Loan to Value + −

Choosing the optimal subset

Decision rule PCs retained

Rule of Thumb/ RSS PC1, PC2, PC3

T -statistic (α = 0.04) PC1, PC2, PC3, PC4

Cross-Validation MSE PC1, PC2, PC3, PC4
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PCR final results

Variable Coefficient Effect

Intercept 1.3315

Primary Income 0.035627 +

Original Balance −0.42502 −

Loan Term −0.043499 −

Loan To Value 0.19186 +

MSE 2.2989
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A.1.3 Spain

Σ̂Spain =



1.0000

0.021481 1.0000

-0.0084544 0.35704 1.0000

-0.0037192 0.23818 0.31844 1.0000


Table A.5: Variation explained in PCA. Spain

Principal component number Variance explained

Component 1 40.207

Component 2 25.044

Component 3 19.134

Component 4 15.616

Coefficient Matrix

Variable PC1 PC2

Primary Income + +

Original Balance + *

Loan Term + *

Loan to Value + *

Choosing the optimal subset

Decision rule PCs retained

Rule of Thumb/ RSS PC1, PC2, PC3, PC4

T -statistic (α = 0.04) PC2, PC3, PC4

Cross-Validation MSE PC1, PC2, PC3, PC4

PCR final results

Variable Coefficient Effect

Primary Income 0.0036458 +

Original Balance −0.078313 −

Loan Term 0.050054 +

Loan To Value 0.026419 +

MSE 0.2882
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A.1.4 France

Σ̂France =



1.0000

0.15917 1.0000

-0.19793 0.21913 1.0000

-0.069169 0.16672 0.26524 1.0000


Table A.6: Variation explained in PCA. France

Principal component number Variance explained

Component 1 36.338

Component 2 28.935

Component 3 19.443

Component 4 15.283

Coefficient Matrix

Variable PC1 PC2

Primary Income * +

Original Balance + +

Loan Term + *

Loan to Value + *

Choosing the optimal subset

Decision rule PCs retained

Rule of Thumb/ RSS PC1, PC2, PC3

T -statistic (α = 0.04) PC1, PC2, PC3, PC4

Cross-Validation MSE PC1, PC2, PC3, PC4

PCR final results

Variable Coefficient Effect

Primary Income 0.31300 +

Original Balance 0.029993 +

Loan Term −0.13342 −

Loan To Value −0.020734 −

MSE 0.7192
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A.1.5 Germany

Σ̂Germany =



1.0000

0.15681 1.0000

-0.020135 0.13352 1.0000

0.0055376 0.24718 0.46287 1.0000


Table A.7: Variation explained in PCA. Germany

Principal component number Variance explained

Component 1 32.710

Component 2 26.907

Component 3 24.750

Component 4 15.633

Coefficient Matrix

Variable PC1 PC2

Primary Income * +

Original Balance * +

Loan Term + −

Loan to Value + *

Choosing the optimal subset

Decision rule PCs retained

Rule of Thumb/ RSS PC1, PC2, PC3

T -statistic (α = 0.04) PC1, PC2, PC3, PC4

Cross-Validation MSE PC1, PC2, PC3, PC4

PCR final results

Variable Coefficient Effect

Primary Income 0.021645 +

Original Balance −0.34960 −

Loan Term 0.31400 +

Loan To Value 0.28106 +

MSE 3.0071
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A.1.6 Ireland

Σ̂Ireland =



1.0000

0.22666 1.0000

-0.055005 0.19398 1.0000

0.032021 0.26106 0.43792 1.0000


Table A.8: Variation explained in PCA. Ireland

Principal component number Variance explained

Component 1 40.600

Component 2 28.405

Component 3 17.183

Component 4 13.812

Coefficient Matrix

Variable PC1 PC2

Primary Income + +

Original Balance + +

Loan Term + −

Loan to Value + −

Choosing the optimal subset

Decision rule PCs retained

Rule of Thumb/ RSS PC1, PC2

T -statistic (α = 0.04) PC1, PC2 PC3, PC4

Cross-Validation MSE PC1, PC2, PC3

PCR final results

Variable Coefficient Effect

Primary Income 0.016572 +

Original Balance 0.033523 +

Loan Term 0.022233 +

Loan To Value 0.026827 +

MSE 1.8919
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A.1.7 Netherlands

Σ̂Netherlands =



1.0000

0.33716 1.0000

-0.034690 -0.025170 1.0000

0.084148 0.035977 0.069199 1.0000


Table A.9: Variation explained in PCA. Netherlands

Principal component number Variance explained

Component 1 33.982

Component 2 26.680

Component 3 22.870

Component 4 16.467

Coefficient Matrix

Variable PC1 PC2

Primary Income + *

Original Balance + −

Loan Term * +

Loan to Value * +

Choosing the optimal subset

Decision rule PCs retained

Rule of Thumb/ RSS PC1, PC2, PC3, PC4

T -statistic (α = 0.04) PC1, PC2, PC3, PC4

Cross-Validation MSE PC1, PC2, PC3, PC4

PCR final results

Variable Coefficient Effect

Primary Income −0.20686 −

Original Balance 0.17934 +

Loan Term 0.046619 +

Loan To Value −0.18101 −

MSE 1.2649
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A.1.8 Italy

Σ̂Italy =



1.0000

0.1434 1.0000

-0.0186 0.2230 1.0000

-0.0006 0.2184 0.3803 1.0000


Table A.10: Variation explained in PCA. Italy

Principal component number Variance explained

Component 1 39.048

Component 2 26.6360

Component 3 18.8450

Component 4 15.4740

Coefficient Matrix

Variable PC1 PC2

Primary Income + +

Original Balance + +

Loan Term + −

Loan to Value + −

Choosing the optimal subset

Decision rule PCs retained

Rule of Thumb/ RSS PC1, PC2, PC3

T -statistic PC1, PC2, PC3, PC4

Cross-Validation MSE PC1, PC2, PC3

PCR final results

Variable Coefficient Effect

Primary Income 0.0153 +

Original Balance −0.2197 −

Loan Term −0.0652 −

Loan To Value −0.0531 −

MSE 2.4944
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A.2 Analysis for fixed interest rates: 2004-2006

A.2.1 Belgium

Σ̂Belgium =



1.0000

0.065811 1.0000

0.0024815 0.34966 1.0000

0.021600 0.25591 0.32396 1.0000



Table A.11: Belsley collinearity diagnostics

Singular values Condition indices

1st 1.0000

2nd 1.2736

3rd 1.4795

4th 1.6085

Table A.12: Variation explained in PCA. Belgium

Principal component number Variance explained

Component 1 40.653

Component 2 25.064

Component 3 18.571

Component 4 15.713

Coefficient Matrix

Variable PC1 PC2

Primary Income + −

Original Balance + +

Loan Term + −

Loan to Value + −
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Choosing the optimal subset

Decision rule PCs retained

Rule of Thumb/ RSS PC1, PC2, PC3

T -statistic (α = 0.04) PC1, PC2, PC3, PC4

Cross-Validation MSE PC1, PC2, PC3

F-test

Min(
minuki
MSE

) = 4.37 F−stat = 3.84 Variables to exclude:

None

PCR final results

Variable Coefficient Effect

Primary Income −0.011049 −

Original Balance −0.31753 −

Loan Term −0.25217 −

Loan To Value −0.089406 −

MSE 1.9704

A.2.2 Netherlands

Σ̂Netherlands =



1.0000

0.075851 1.0000

0.011198 -0.050778 1.0000

0.0022840 0.097338 0.036386 1.0000



Table A.13: Variation explained in PCA. Netherlands

Principal component number Variance explained

Component 1 28.138

Component 2 25.729

Component 3 24.829

Component 4 21.303
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Coefficient Matrix

Variable PC1 PC2

Primary Income + −

Original Balance + −

Loan Term * +

Loan to Value + +

Choosing the optimal subset

Decision rule PCs retained

Rule of Thumb/ RSS PC1, PC2, PC4

T -statistic (α = 0.04) PC1, PC2, PC3, PC4

Cross-Validation MSE PC1, PC2, PC3, PC4

PCR final results

Variable Coefficient Effect

Primary Income −0.0022467 −

Original Balance −0.026443 −

Loan Term 0.043101 +

Loan To Value 0.079255 +

MSE 0.7705

A.2.3 Italy

Σ̂Italy =



1.0000

0.13736 1.0000

0.0021499 0.38335 1.0000

0.0075177 0.32641 0.43651 1.0000


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Table A.14: Variation explained in PCA. Italy

Principal component number Variance explained

Component 1 44.363

Component 2 25.649

Component 3 16.240

Component 4 13.748

Coefficient Matrix

Variable PC1 PC2

Primary Income + +

Original Balance + +

Loan Term + −

Loan to Value + −

Choosing the optimal subset

Decision rule PCs retained

Rule of Thumb/ RSS PC1, PC2, PC4

T -statistic (α = 0.04) PC1, PC2, PC3, PC4

Cross-Validation MSE PC1, PC2, PC3, PC4

PCR final results

Variable Coefficient Effect

Primary Income 0.0045507 +

Original Balance −0.091774 −

Loan Term 0.28609 +

Loan To Value 0.00094786 +

MSE 3.6221
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A.3 Analysis for fixed interest rates: 2011-2016

A.3.1 Belgium

Σ̂Belgium =



1.0000

0.47777 1.0000

0.13899 0.47612 1.0000

0.22159 0.29693 0.43491 1.0000



Table A.15: Variation explained in PCA. Belgium

Principal component number Variance explained

Component 1 50.978

Component 2 23.496

Component 3 16.292

Component 4 9.2340

Coefficient Matrix

Variable PC1 PC2

Primary Income + +

Original Balance + −

Loan Term + −

Loan to Value + −

Choosing the optimal subset

Decision rule PCs retained

Rule of Thumb/ RSS PC1, PC2, PC4

T -statistic (α = 0.1) PC1, PC2, PC3, PC4

Cross-Validation MSE PC1, PC2, PC3, PC4
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PCR final results

Variable Coefficient Effect

Primary Income 0.017098 +

Original Balance −0.23177 −

Loan Term 0.19269 +

Loan To Value 0.28076 +

MSE 0.7578
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A.3.2 France

Σ̂France =



1.0000

0.060393 1.0000

-0.056128 0.39090 1.0000

0.0046009 0.21268 0.23404 1.0000


Table A.16: Variation explained in PCA. France

Principal component number Variance explained

Component 1 39.175

Component 2 25.416

Component 3 20.619

Component 4 14.790

Coefficient Matrix

Variable PC1 PC2

Primary Income * +

Original Balance + +

Loan Term + −

Loan to Value + *

Choosing the optimal subset

Decision rule PCs retained

Rule of Thumb/ RSS PC1, PC2, PC3 ,PC4

T -statistic (α = 0.1) PC1, PC2, PC3, PC4

Cross-Validation MSE PC1, PC2, PC3, PC4

PCR final results

Variable Coefficient Effect

Primary Income 0.0063327 +

Original Balance 0.048759 +

Loan Term 0.13448 +

Loan To Value 0.030659 +

MSE 0.8843
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A.3.3 Germany

Σ̂Germany =



1.0000

0.13260 1.0000

-0.0037796 0.24019 1.0000

0.015499 0.18177 0.27145 1.0000


Table A.17: Variation explained in PCA. Germany

Principal component number Variance explained

Component 1 36.940

Component 2 25.894

Component 3 19.613

Component 4 17.553

Coefficient Matrix

Variable PC1 PC2

Primary Income + +

Original Balance + +

Loan Term + −

Loan to Value + −

Choosing the optimal subset

Decision rule PCs retained

Rule of Thumb/ RSS PC1, PC2, PC3

T -statistic (α = 0.1) PC1, PC2, PC3, PC4

Cross-Validation MSE PC1, PC2, PC3

PCR final results

Variable Coefficient Effect

Primary Income 0.012740 +

Original Balance −0.12717 −

Loan Term −0.070708 −

Loan To Value 0.017765 +

MSE 0.4668
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A.3.4 Netherlands

Σ̂Netherlands =



1.0000

0.13260 1.0000

-0.051453 0.035089 1.0000

-0.069043 0.086023 0.049338 1.0000



Table A.18: Variation explained in PCA. Netherlands

Principal component number Variance explained

Component 1 32.984

Component 2 27.154

Component 3 23.817

Component 4 16.045

Coefficient Matrix

Variable PC1 PC2

Primary Income + −

Original Balance + +

Loan Term * +

Loan to Value * +

Choosing the optimal subset

Decision rule PCs retained

Rule of Thumb/ RSS PC1, PC2, PC3

T -statistic (α = 0.1) PC1, PC2, PC3

Cross-Validation MSE PC1, PC2, PC3

PCR final results

Variable Coefficient Effect

Primary Income −0.10927 −

Original Balance −0.023524 −

Loan Term −0.0090878 −

Loan To Value 0.21362 +

MSE 0.8470
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A.4 List of figures

Figure 2: Detecting outliers with PCA. (Belgium)

Figure 3: Cluster analysis for the data of the UK
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Figure 4: 10-fold Cross Validation MSE for the PCR. France.

Figure 5: Cluster analysis for German data.
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Figure 6: Geometrical interpretation of the first two PC: the principal axes for the Primary income

and the Original balance are both positive in the first PC and opposite in the second PC.
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Chapter 5

Shrinkage methods for supervised

learning

5.1 Introduction to the LASSO and ridge regressions

5.1.1 Mathematical background: The regularization of ill-posed

problems and the Lp-norm

In this section, we briefly discuss the mathematical background of

regularization. As a matter of fact this technique, which has been applied to

regression models, is strictly connected to other important fields of mathematics,

where a more general theory has been developed. To have a clearer and, ultimately,

more insightful vision of the regularization methods, it is worth briefly examining

this theory; a systematic treatise on this subject can be found in Nair (2009). To

explain the meaning of the term ill-posed problem, let consider the model

Tx = y (5.1)

where T is an operator between two normed linear spaces, T : X −→ Y . In this

general framework, we want to find a solution x̃ for a given y ∈ Y . Suppose we

have found it, and consider a perturbation of the system, such that the new value

y∗ is close to y. Is the new solution x̃∗ close to x̃? If the reply is negative, the

problem is called ill-posed; it is otherwise well-posed. The need for a close solution
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research can be seen under two different perspectives for our purposes. First, the

overfitting problem connected with the bias-variance trade-off (see Section 4.4.3) is

a statistical counterpart for this question. Furthermore, a solution for Tx = y can

be found if and only if a corresponding y exists in the image subset. Otherwise an

element x̃0 should be found, so that T x̃0 is close to y. Clearly, under this framework

the function F

F : x −→ ‖Tx− y‖ (5.2)

should be minimized:

x̃0 : inf{‖Tx− y‖, x ∈ X}. (5.3)

This is equivalent to the least squares solution except for a change of terminology.

The regularized regressions discussed in Section 5.1.2 can be used, for example,

when the condition X ′X∼I is violated, as in the case of multicollinearity. More

generally, if the problem is ill-posed a solution does not always exist. In this case, a

general set of tools which find a stable approximation for an ill-posed problem can

be adopted. They are called regularization techniques.

Definition 6 (Regularization family). Consider the operator family {Rα}α≥0 such

that Rαy −→ T+y for α −→ 0. This family is a regularization family.

The matrix denoted as T+ is the Moore–Penrose inverse of T . It can be proved

that T+ : R(T ) + R⊥(T ) −→ X, and therefore the importance of regularization is

given by the following theorem:

Theorem 3. Let T : X −→ Y be a linear operator. The following statements are

equivalent:

1. Tx = y has a least squares solution

2. y ∈ R(T ) +R⊥(T )

where R⊥(T ) is the standard notation for the orthogonal complement of the subspace

R(T ) := {y : y ∈ R(T )}.

Proof. The proof is based on a third condition, which is proved to be equivalent to

the second. Then, it suffices to prove that the first and the third conditions are
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equivalent. Let y ∈ Y , and define the orthogonal projection P : Y −→ Y onto R̄(T ),

the closure of R(T). The third condition is: Tx = Py. The second condition and the

third are then equivalent, since P (y) ∈ R(T )⇐⇒ y ∈ R(T )+R⊥(T ). Moreover it can

be proved that inf{‖v − y‖, v ∈ R̄(T )}= ‖v − y‖. Therefore, a least squares solution

is ‖Tx0 − y‖ = ‖Py − y‖. From this equation we derive that x0 is a least squares

solution if and only if Tx0 = Py.

Among all the possible regularization methods, here the Tikhonov

regularization is of interest.

Definition 7 (Tikhonov functional). The functional x −→ ‖Tx− y‖2 +α‖x‖2, x ∈ X0

is called the Tikhonov functional.

The solution which minimizes this functional is then the Tikhonov

regularization solution. The difference between this minimization problem and

those without any additional parameter is that in this case a solution always exists.

The concept of Tikhonov regularization corresponds to the ridge regression and a

modification of this regularization method is related to the LASSO.

The minimization problem we have generally considered until now was defined

on a general norm. However in practice some particular norms are chosen,

according to their specific properties related to the regularized problem (see the

next section). While the Euclidean norm is the most known, its generalization

considers this norm only as a particular case (Kolmogorov and Fomin, 1957):

Definition 8 (Lp-norm). An Lp-norm, for a vector x ∈ Rn, is the norm ‖x‖p =

(
n∑
k=1

|xk|p)
1
p .

If p = 2 the norm is called Euclidean: ‖x‖2 :=
√

(x2
1 + ...+ x2

n). If p = 1

the correspondent `1-norm is also called Manhattan distance. A geometrical

interpretation of different norms is given in the next section to justify the different

results of the ridge and the LASSO regressions.
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5.1.2 The regularization applied to regression models

The regularization applied to the regression framework was suggested for the

first time by Hoerl (1962), in order to control the least squares estimation β̂OLS

for the usual linear model y = Xβ + ε. Nevertheless, the later work by Hoerl

and Kennard (1970) is considered the landmark for this type of technique. In their

paper the original definition of the so-called ridge estimator, whose name comes

from the similarities with the quadratic response functions, is given through a

modification of the OLS estimator β̂OLS. The ridge estimator is defined as:

β̂ridge = (X ′X + kI)−1X ′Y , k ≥ 0 (5.4)

The regression model whose estimator is β̂ridge is called ridge regression. They

prove that the following relationship holds:

β̂ridge = (I + k(X ′X)−1)−1β̂OLS. (5.5)

The ridge estimator can be derived, through simple calculations, from the

minimization problem

min

[
n∑
i=1

(yi − β0 −
v∑
j=1

βjxij)
2 + k

v∑
j=1

β2
j

]
= min

[
RSS + k

v∑
j=1

β2
j

]
. (5.6)

It is clear that this formulation is the same as the Tikhonov regularization for

ill-posed problems; an empirical analysis on the stability of the ridge trace (βkj ,∀k)

is provided in Beaton et al. (1976). Compared with the least squares, the ridge

formulation implicates a shrinkage effect. Clearly for k = 0 the least squares

estimate is computed. The shrinkage terminology refers to the consequence that

the absolute value of the estimators {βj}, j = 1, ..., v, are skewed toward zero,

an effect caused by the shrinkage penalty k
v∑
j=1

β2
j . This effect can explained from

the formulation of the minimization problem, since a lower value is reached if the

coefficients are smaller (this effect is known as penalization). The only estimator

which is not penalized is β0, because it represents the intercept.

The parameter k is arbitrary: however, the optimal (in the MSE sense)

shrinkage parameter is usually computed with the CV approach (algorithm 1).
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Clearly, for k −→∞, the shrinkage effect is maximum. In practice a value k̃ <∞ is

adopted: this means that all the original variables are retained (βj 6= 0, ∀j). Then,

a resulting question could be if a modification of the original ridge regression would

improve the predictability or the interpretation, setting some coefficients exactly

to 0. This is the reason behind the LASSO regression formulation, proposed for the

first time by Tibshirani (1996), which can be formulated with a similar expression

to the ridge changing the constraint:

min

[
n∑
i=1

(yi − β0 −
v∑
j=1

βjxij)
2 + k

v∑
j=1

|βj|

]
= min

[
RSS + k

v∑
j=1

|βj|

]
(5.7)

since this formulation is equivalent to the original definition for the LASSO,

which consists in finding the values (α̂, β̂) which solve the following minimization

problem:

argmin{
n∑
i=1

(yi − β0 −
v∑
j=1

βjxij)
2}s.t.

v∑
j=1

|βj| ≤ t. (5.8)

Recalling Definition 8, the value p of the Lp-norm equals 1 in the LASSO and 2 for

the ridge regression. This fact leads to a possible a geometrical explanation. The

ridge regression differs from the LASSO since the constraint is a circle (a disk) for

the former and to a square for the latter.

`1 norm = ‖x‖1 := (|x1|+ ...+ |xn|)

`2 norm = ‖x‖2 :=
√

(x2
1 + ...+ x2

n)

Considering this distinction, a common explanation is that at the minimum, the

ellipses which represent the constant RSS points, intersect a vertex of the square,

then a coordinate axis, in the LASSO case: see figure 7 for the R2 case (James et al.,

2013). The same intuition can be extended to Rn.
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Figure 7: Geometrical interpretation of LASSO (square) and ridge (circle) constraints. (Source:

Chapter 3 of James et al., 2013).

The difference can also be interpreted analytically, through convex optimization

theory (Elad, 2010). Consider a maximization problem in `1:

min ‖x‖1 : b = Ax. (5.9)

As a consequence all the solutions give an equal penalty:

πmin := ‖xopt‖1 <∞ (5.10)

where x is a vector. From the triangle inequality

‖x1
opt + x2

opt‖1 ≤ ‖x1
opt‖1 + ‖x2

opt‖1 < 2πmin (5.11)

it is seen that all the solutions are close. Let ‖xopt‖1 be a solution with k > n

non-zeros, where n is the dimension of the column space for the matrix A. From a

well-known result of linear algebra, then the k elements are linearly dependent in

Rn, namely a non-trivial vector v exists, such that

Av = 0 (5.12)

For an appropriate small ε the relation

x = xopt + εv (5.13)

still satisfies Ax = 0, then it is still a solution (even if not the optimal one) by

definition:

∀|ε| ≤ min
i

|xiopt|
|hi|

, ‖x‖1 = ‖xopt + εv‖1 ≥ ‖xopt‖1 (5.14)
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The condition on |ε| is needed to ensure that any element of x does not change its

sign in that neighbourhood. The key point here is that the previous inequality is

in fact an equality

∀|ε| ≤ min
i

|xiopt|
|vi|

, ‖x‖1 = ‖xopt + εv‖1 = ‖xopt‖1 (5.15)

since it must be valid both for positive and negative ε. Then, the ‖xsol‖1 solution is

not changed by an addiction or subtraction of v.

This result paves the way to demonstrate the possible sparsity deriving from an

`1 minimization problem, since it is possible to consider a new solution xk−1
opt where

one entry is 0; the superscript (k−1) stands for the number of non-empty elements

of the vector. It is sufficient to set ε = −xiopt
vi

for an appropriate index i.

This procedure can be applied if k > n, or as long as the linear dependence holds.

This proves the link between `1 norm and sparse solutions.

Interestingly, the regularization theory applied to regression models can also be

justified through a Bayesian approach, as discussed in Lindley and Smith (1972)

and Tibshirani (1996). The main idea is that, in a regression analysis, prior

distributions p(β) can be chosen for a specific model parameter and the cases of

the ridge and LASSO correspond to an appropriate choice for these distributions.

5.2 Differences and analogies with the PCR. Some

properties of biased estimators

The three regression methods discussed till now, the ridge, the LASSO and the

PCR, share some common properties; in fact, they are strictly linked as discussed

in literature. Indeed, the estimator of the ridge regression, β̂ridge, is biased as well

as β̂PCR, as is shown in Hoerl and Kennard (1970) and Vinod (1978):

Bias(β̂ridge) = E(β̂ridge − β) = −k (X ′X+ kI)−1β (5.16)

The LASSO estimator is biased too: it is not possible to derive an analytical form,

but simulation studies show that Bias(β̂LASSO)k1 > Bias(β̂LASSO)k2 6= 0 if k1 > k2

where k is the shrinkage parameter.
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As for the PCR, the rationale behind defining a biased estimator, which is clearly

a negative property, is the bias-variance trade-off. Both β̂LASSO and β̂ridge could

lead to a lower MSE compared with β̂OLS, since their variance could be lower.

Again, simulations are needed to compute the variance for the LASSO, and the

results show that V ar(β̂LASSO)k1 < V ar(β̂LASSO)k2 if k1 > k2. Similar conclusions

are reached for ridge regression. However, the variance for the ridge estimator can

also be derived analytically, as well as its MSE (Hoerl and Kennard, 1970): if

Z := [I + k(X ′X)−1)−1] (5.17)

then

V ar(β̂ridge) = Z(X ′X)−1X ′(V arY )X(X ′X)−1Z′ = σ2Z(X ′X)−1Z′ (5.18)

which is decreasing as k increases, due to the definition of the matrix Z where k is

raised to the power of minus one. The total effect on the MSE accounts both for a

higher bias and a lower variance:

MSE(β̂ridge) = Tr(V arβ̂ridge) + β′(Z − I)′(Z − I)β (5.19)

implies

MSE ∝ V ar(β̂ridge) +Bias2(β̂ridge) (5.20)

Therefore, the performance of the three biased estimators examined up until now

can be compared in terms of MSE, and in terms of interpretability too.

The similarities between the ridge and the principal component regression

suggest a more general analysis. Indeed, as we have already discussed, the LASSO

tends to reduce the given set of independent variables contrary to the ridge and the

PCR. Hocking et al. (1976) define a general class of biased estimators

γ̃ = Bγ̂ (5.21)

whereB is a diagonal matrix whose non-zero elements are bi =
v∑
j=i

aj, which should

be set depending on the specific regression model. Indeed, they show that different

choices for aj are related to different biased estimators, including those of PCR

and ridge regression. Trenkler and Trenkler (1984) extend the analysis of Hsuan

116



(1981) on the analogies between the PCR and the ridge regression in the case

of multicollinearity, showing that in some cases the Euclidean distance between

the respective two estimators can be bounded. A simulation study comparing

some biased estimators is given by Hoerl et al. (1986), and the PCR seems to

perform worse than the ridge regression; however, this result could depend on the

procedure carried out. The same conclusion, in terms of a lower MSE, is achieved

in Al-Hassan and Al-Kassab (2009) using Monte Carlo simulations.

5.3 Empirical results compared with the PCR

In this section we briefly discuss the results presented in Appendix B. In

particular we examine the effects of regularization methods compared with the

previous estimates; for an economic explanation of these results, the variable

description, the method followed and any other remarks we refer to the previous

chapter, Section 4.5.

Firstly, the signs found for the coefficients with the PCR are not changed by

the LASSO or the ridge regression. Mainly, the dissimilarities caused by the

regularization in our analysis are the differences of the coefficient magnitudes,

in any case usually negligible. Moreover the MSE estimated is not significantly

changed by the application of these regression methods. This effect can be partially

explained by the low number of predictors, which instead are abundant in other

analyses where the LASSO and ridge regression are usually employed. In other

terms, we find that in our analysis the PCR did not perform noticeably worse

than these regularized methods (see figure 8). Hence, generally the results of the

present section support those found in the previous analysis. In a few cases the

LASSO estimates differentiate for a sparser solution compared with the ridge and

the PCR. For example, in the case of UK (see B.1.2, Appendix B), the Primary

Income and the Loan Term have a zero coefficient. This is a consequence of the

low absolute value estimated for these coefficients in the ridge regression (and in

the PCR), combined with the minimization condition posed on the MSE. Then,
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in this case the weak effect of these two variables is totally nullified by the `1

regularization. On the other hand, the two coefficients estimated for the Original

Balance and the Loan to Value maintain their sign, in spite of a change in their

magnitude. This suggests that the overall positive relationship between the loan

to value and the interest rate margin, already discussed in the previous chapter

for the PCR and confirmed by the cluster analysis, is still valid for the UK.

Again, these results based on a huge number of contracts confirm the absence of

an univocal effect among the main European countries.
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Appendix B

Empirical results: ridge and

LASSO

B.1 Analysis for floating interest rates

B.1.1 Belgium

ridge regression. Belgium

Variable Coefficient Effect Differences

with PCR

Primary Income 0.019925 + None

Original Balance −0.011468 − None

Loan Term 0.12567 + None

Loan To Value 0.10720 + None

MSE 1.9468 None
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LASSO. Belgium

Variable Coefficient Effect Differences

with PCR and

ridge results

Primary Income 0.019670 + None

Original Balance −0.011174 − None

Loan Term 0.12544 + None

Loan To Value 0.10703 + None

MSE 1.9469 None

B.1.2 UK

ridge regression. UK

Variable Coefficient Effect Differences

with PCR

Primary Income 0.035627 + None

Original Balance −0.42502 − None

Loan Term −0.043499 − None

Loan To Value 0.19186 + None

MSE 2.4414 None

LASSO. UK

Variable Coefficient Effect Differences

with PCR and

ridge results

Primary Income 0.00000 No Effect Sparse solution

Original Balance −0.33450 − None

Loan Term 0.00000 No Effect Sparse solution

Loan To Value 0.084944 + None

MSE 2.3133 None

120



B.1.3 Spain

ridge regression. Spain

Variable Coefficient Effect Differences

with PCR

Primary Income 0.0036458 + None

Original Balance −0.078313 − None

Loan Term 0.050054 + None

Loan To Value 0.026419 + None

MSE 0.28839 None

LASSO. Spain

Variable Coefficient Effect Differences

with PCR and

ridge results

Primary Income 0.00000 No effect Sparse solution

Original Balance −0.071431 − None

Loan Term 0.044837 + None

Loan To Value 0.022421 + None

MSE 0.2880 None

B.1.4 France

ridge regression. France

Variable Coefficient Effect Differences

with PCR

Intercept 1.1067

Primary Income 0.31300 + None

Original Balance 0.029993 + None

Loan Term −0.13342 − None

Loan To Value −0.020734 − None

MSE 0.72032 None
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LASSO. France

Variable Coefficient Effect Differences

with PCR and

ridge results

Primary Income 0.31286 + None

Original Balance 0.029653 + Same as ridge

Loan Term −0.13318 − None

Loan To Value −0.020485 − None

MSE 0.7202 None

B.1.5 Germany

ridge regression. Germany

Variable Coefficient Effect Differences

with PCR

Primary Income 0.021645 + None

Original Balance −0.34960 − None

Loan Term 0.31400 + None

Loan To Value 0.28106 + None

MSE 3.0074 None

LASSO. Germany

Variable Coefficient Effect Differences

with PCR and

ridge results

Primary Income 0.020765 No Effect Sparse solution

Original Balance −0.34867 − None

Loan Term 0.31351 No Effect Sparse solution

Loan To Value 0.28024 + None

MSE 3.0074 None
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B.1.6 Ireland

ridge regression. Ireland

Variable Coefficient Effect Differences

with PCR

Primary Income 0.014565 + None

Original Balance 0.032035 + None

Loan Term 0.0082966 + None

Loan To Value 0.041476 + None

MSE 1.8922 None

LASSO. Ireland

Variable Coefficient Effect Differences

with PCR and

ridge results

Primary Income 0.010218 + None

Original Balance 0.029541 + None

Loan Term 0.0048329 + Shrinkage

effect

compared

with PCR

Loan To Value 0.038981 + None

MSE 1.8921 None
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B.1.7 Netherlands

ridge regression. Netherlands

Variable Coefficient Effect Differences

with PCR

Primary Income −0.20686 − None

Original Balance 0.17934 + None

Loan Term 0.046619 + None

Loan To Value −0.18101 − None

MSE 1.2683 None

LASSO. Netherlands

Variable Coefficient Effect Differences

with PCR and

ridge results

Primary Income −0.20204 − None

Original Balance 0.17404 + None

Loan Term 0.042956 + None

Loan To Value −0.17752 − None

MSE 1.2682 None

B.1.8 Italy

ridge regression. Italy

Variable Coefficient Effect Differences

with PCR

Primary Income 0.0134 + None

Original Balance −0.2181 − None

Loan Term −0.0931 − None

Loan To Value −0.0262 − None

MSE 2.4938 None
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LASSO. Italy

Variable Coefficient Effect Differences

with PCR and

ridge results

Primary Income 0.0129 + None

Original Balance −0.2177 − None

Loan Term −0.09296 + None

Loan To Value −0.0260 − None

MSE 2.4912 None
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B.2 Analysis for fixed interest rates: 2004-2006

B.2.1 Belgium

ridge regression. Belgium

Variable Coefficient Effect Differences

with PCR

Primary Income −0.015696 − None

Original Balance −0.29455 − None

Loan Term −0.28577 − None

Loan To Value −0.075664 − None

MSE 2.1868 Higher

LASSO. Belgium

Variable Coefficient Effect Differences

with PCR and

ridge results

Primary Income 0.00000 No effect Sparse solution

Original Balance −0.21632 − None

Loan Term −0.21391 − None

Loan To Value 0.00000 No effect Sparse

Solution

MSE 1.9991 Lower than

ridge; Higher

than PCR
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B.2.2 Netherlands

ridge regression. Netherlands

Variable Coefficient Effect Differences

with PCR

Primary Income −0.0022467 − None

Original Balance −0.026443 − None

Loan Term 0.043101 + None

Loan To Value 0.079255 + None

MSE 0.77223 None

LASSO. Netherlands

Variable Coefficient Effect Differences

with PCR and

ridge results

Primary Income 0.00000 No effect Sparse solution

Original Balance −0.013738 − None

Loan Term 0.032022 + None

Loan To Value 0.066244 + None

MSE 0.7711 None

B.2.3 Italy

ridge regression. Italy

Variable Coefficient Effect Differences

with PCR

Primary Income 0.0045507 + None

Original Balance −0.091774 − None

Loan Term 0.28609 + None

Loan To Value 0.00094786 + None

MSE 3.6529 None
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LASSO. Italy

Variable Coefficient Effect Differences

with PCR and

ridge results

Primary Income 0.00000 No effect Sparse solution

Original Balance −0.033094 − None

Loan Term 0.22840 + None

Loan To Value 0.00000 No effect Sparse solution

MSE 3.6278 None

B.3 Analysis for fixed interest rates: 2011-2016

B.3.1 Belgium

ridge regression. Belgium

Variable Coefficient Effect Differences

with PCR

Primary Income 0.017098 + None

Original Balance −0.23177 − None

Loan Term 0.28076 + None

Loan To Value 0.0095291 + None

MSE 0.75798 None

LASSO. Belgium

Variable Coefficient Effect Differences

with PCR and

ridge results

Primary Income 0.017060 + None

Original Balance −0.23171 − None

Loan Term 0.28072 + None

Loan To Value 0.0095181 +

MSE 0.7580 None

128



B.3.2 France

ridge regression. France

Variable Coefficient Effect Differences

with PCR

Primary Income 0.0063327 + None

Original Balance 0.048759 + None

Loan Term 0.13448 + None

Loan To Value 0.030659 + None

MSE 0.88429 None

LASSO. France

Variable Coefficient Effect Differences

with PCR and

ridge results

Primary Income 0.0054513 + None

Original Balance 0.048307 + None

Loan Term 0.13388 + None

Loan To Value 0.030023 + None

MSE 0.8843 None

B.3.3 Germany

ridge regression. Germany

Variable Coefficient Effect Differences

with PCR

Primary Income 6.7606× 10−8 + None

Original Balance −0.13070 − None

Loan Term −0.064863 − None

Loan To Value 0.014495 + None

MSE 0.46687 None
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LASSO. Germany

Variable Coefficient Effect Differences

with PCR and

ridge results

Primary Income 0.014554 + None

Original Balance −0.13028 − None

Loan Term −0.064447 − None

Loan To Value 0.013945 + None

MSE 0.4668 None

B.3.4 Netherlands

ridge regression. Netherlands

Variable Coefficient Effect Differences

with PCR

Primary Income −0.10851 − None

Original Balance −0.024294 − None

Loan Term −0.0089454 − None

Loan To Value 0.21393 + None

MSE 0.75798 None

LASSO. Netherlands

Variable Coefficient Effect Differences

with PCR and

ridge results

Primary Income −0.10820 − None

Original Balance −0.023938 − None

Loan Term −0.0084896 − None

Loan To Value 0.21347 +

MSE 0.8474 None
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Figure 8: An illustration of the Cross-Validation method. The minimum value is highlighted with

a green marker.
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Chapter 6

Probabilistic Principal Component

Regression

6.1 Introduction: How to deal with data sparsity

In this chapter we discuss a new possible approach which extends the previous

analysis to the case of data vectors — which in our case are borrower’s variables

— characterized by a minor lack of entries. This problem is technically called

data-sparsity.

In fact, the following discussion is strictly related both to the theoretical and the

empirical topics discussed in the previous two chapters, and may show itself useful

under the realistic hypothesis that the availability of quantitative RMBS loan

data, collected on the European DataWarehouse, will increase over time, however

conserving some data sparsity. Specifically, we notice two intrinsic characteristics

of this database and others:

1. Some important variables may be added over time to those already accessible,

or however the availability of data for the current variables is likely to be

improved. Two reasons to believe this scenario to be true are both the

increasing effort of the ED to improve data compilation made by banks, and

the relative recent creation of this database.

2. However, an intrinsic problem of missing data must be acknowledged. Indeed,
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some banks might continue to leave some values empty, some errors might

occur during the data compilation or for other various reasons which can

happen in the practice of data storing, the presence of empty entries should

not be unexpected.

These considerations are supported by the features of the current RBMS datasets

on ED, which present a huge volume of missing data especially for the optional

variables. In fact, the present amount of missing data is currently too high to

include in the previous analysis other variables, as for example the "Guarantor

Income" or the "Additional Collateral Value". For this reason, the most complete

empirical analysis which we were able to propose, for each country and with the

current dataset, has been done with the predictors employed in the previous two

chapters. Here we present a specific solution to handle with missing data. In

particular, we discuss mainly the theoretical approach to this problem, since the

current data-sparsity is too high to allow an analysis similar to Chapters 4 and 5.

It will be possible to take advantage empirically of this approach, applying it to

each individual country, if the percentage of missing data decreases in the future.

6.2 The Probabilistic PCA model

In Chapter 4, the derivation of the principal component analysis was essentially

based on algebraic calculations applied to some statistical concepts, such as the

variance-covariance matrix or the linear independence. However, to introduce the

Probabilistic Principal Component Analysis (PPCA) as an extension of the classical

PCA it is helpful to discuss its corresponding geometrical derivation (as for example

in Wang, 2011). The geometrical interpretation of the PCA is closer to the original

Pearson’s idea and highlights its feature of dimensionality reduction technique.

The first passage of the PCA derivation in Chapter 4 was the standardization

and the centering of the independent variables. Regarding variables

standardization, here we suppose that the data are either comparable or are

analyzed after their standardization. As far as centering is concerned, it is allowed
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in this context provided that this transformation does not change the distance

among the original data. But this condition is actually verified, since centering

is a translation, and in Rn any translation is an isometry: Tx̄ is the translation

operator

Tx̄f(x) = f(x− x̄). (6.1)

Then, the second step is to derive the first principal component, maximizing

under an arbitrary constraint the variance of the original dataset. Intuitively,

this is equivalent to find a vector called the first principal direction such that

the projection of the data onto its direction retains most of the original variation.

Clearly, this direction is a 1-dimensional subspace of Rv, v being the dimension of

the row-space of the data matrix, using the same notation of the previous chapters.

By definition, the first principal component is this vector, since the projections of

each observation onto this 1-dimensional subspace form the score vector. Then, to

find the other principal components it is sufficient to find successively the other

principal directions, with the additional constraint of orthogonality among them.

Analytically, let define the quantity δ as the Frobenius norm of the matrix X:

δ(X) =
n∑
i=1

‖x2
i ‖ = ‖X‖F . (6.2)

Then, we need to find the direction which maximizes δ(X), which is the line

S1 associated with the first principal direction (or axis) w1. Since the data are

centered, this direction passes through the origin. Ideally w1 ∈ Sv−1, which is a

sphere, because it represents all possible directions in the space. Therefore

Tw1 : Rv −→ S1 (6.3)

w1 = arg max
a∈Sv−1

δ(Ta(X)). (6.4)

The loading vector related to the first principal component becomes:

αn,1 = Tw1(X) = [Tw1(x1), · · ·, Tw1(xn)]′ (6.5)

or

αn,1 = [y1,1, ..., y1,n]′ . (6.6)
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The remaining variables wj, j = 2, 3, ..., v, are the solutions of

wj = arg max
a∈S⊥v−1∩Sv−1

δ(Ta(X̃v−1)). (6.7)

where

X̃v−1 =

{
xi −

v−1∑
j=1

wjyj,i, 1 ≤ i ≤ n

}
(6.8)

because the maximization problem now takes into consideration the orthogonality

constraint, and the procedure is iterative. As discussed above, this procedure

implicates a loss of information, because it reduces the original data space.

Specifically, the principal component analysis minimizes the error e (=the loss)

deriving from the reconstruction of the original values through the orthogonal

linear projections found with the procedure just discussed. Hence e is defined as:

e =
n∑
i=1

‖xn − x̂n‖ (6.9)

where

x̂n = Wtn (6.10)

tn = W ′xn (6.11)

W = (w1,w2, ...,wv) (6.12)

with the notations of Chapter 4.

However, one of the main features of the present discussion is the absence

of a stochastic model associated to the independent variables, which is surely a

simplification. Starting from this consideration, Tipping and Bishop (1999) propose

an extension of the classical PCA to include a probabilistic model, whence the name

Probabilistic Principal Component Analysis. In the next section we discuss how

this model can be useful in the presence of missing data, while in this section

we present their original derivation of the PPCA, and its main properties. The

starting point is to consider a subject related to the PCA, the factor analysis. In

this last model, an original v-dimensional vector of variables x is expressed as a

linear function of a q-dimensional vector t:

x = Wt+ µ+ ε (6.13)
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where µ is a vector of constants and W is a v × q matrix. When q < v the

dimensional reduction effect is evident. The error term ε, is usually assumed

to be ε ∼ N (0,Ψ). If at the same time it is assumed t ∼ N (0, I), then x ∼

N (µ,WW ′ + Ψ). The parameters W and Ψ have to be estimated via maximum

likelihood, in particular the space spanned by the column vectors of W typically

do not correspond to the principal component subspace. Moreover, considering the

usual hypothesis assumed in literature for the residual variances (isotropic error

model),

∀i, ψi ∈ Ψ : ψi = σ2 (6.14)

Tipping and Bishop (1999) criticize the usual related hypothesis of a known

variance σ2. For this reason, starting from the works by Lawley (1953) and

Anderson and Rubin (1956) on the connection between the PCA and the factor

analysis, they extend these results considering the case where σ2 is estimated from

observed data and proving that the maximum likelihood estimators WML and σ2
ML

are linked to the PCA. If

ε ∼ N (0, σ2I) (6.15)

then

x|t ∼ N (Wt+ µ, σ2I) (6.16)

and

x ∼ N (µ, σ2I +WW ′). (6.17)

The related log-likelihood, derived through standard calculations, is

L = −N
2

{
v ln(2π) + ln |C|+ tr(C−1S)

}
(6.18)

where N is the number of observations, and

S =
1

N

N∑
n=1

(xn − µ)(xn − µ)′ (6.19)

C = σ2I +WW ′. (6.20)

Then, the authors prove that (6.18) is minimized setting

WML = U q(Λq − σ2I)0.5R (6.21)
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whereU q is the matrix whose columns are the principal eigenvectors of S, Λq is the

diagonal matrix of the related eigenvalues λj, 1 ≤ j ≤ q, andR is a [q×q] orthogonal

rotation matrix. The key result is that WML is equal to the matrix of the principal

component coefficient, or at least converges when it is estimated through the EM

algorithm - necessary when some data are missing, hence the model specified in

(6.13) maps the latent space into the principal subspace. The ML estimator for σ2

has an evident interpretation:

σ2
ML =

1

v − q

v∑
j=q+1

λj (6.22)

is directly proportional to the variance lost applying the PCA. Given the model just

discussed, in the following section we examine how the Expectation-Maximization

(EM) algorithm can be usefully applied to the PPCA in the presence of missing

values.

6.3 PPCA for sparse matrices: The EM algorithm with

missing data

As it was briefly discussed in Section 6.1, the problem of missing data, or

equivalently of sparse data matrices, is very relevant not only to our analysis but

definitely to a lot of other empirical analyses. Candès (2014) defines the sparsity

as:

Definition 9 (Sparsity). We shall say that a signal x ∈ Cn is sparse, when most of

the entries of x vanish. Formally, we shall say that a signal is s-sparse if it has at

most s nonzero entries. One can think of an s-sparse signal as having only s degrees

of freedom.

It is clear from this definition that the sparsity is associated with incomplete

information (called also energy, signal, etc). To handle with this problem, the EM

algorithm has proven useful. Since the EM algorithm can be applied in order to

estimate WML and σ2
ML in the PPCA, the link between the probabilistic principal

component analysis and sparsity becomes clear. The EM algorithm (Dempster
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et al., 1977) consists of two steps, namely the Expectation and the Maximization

steps, and computes the maximum likelihood (ML) estimator of some parameters

— in this case of WML and σ2
ML — when some variables are unobserved — in this

case the latent variables tn. In particular, in order to estimate the ML parameters

starting from an initial guess, these two steps find iteratively:

1. (E-step) the expected value of the log-likelihood function for the conditional

distribution of the hidden variables, given the observed data and the current

parameter estimates,

2. (M-step) the ML parameters, given the distribution assumed in the E-step.

The following estimator derivation is given again by Tipping and Bishop (1999),

in Section 3 and Appendix B. Starting from the log-likelihood for the complete data:

LC =
N∑
n=1

ln{p(xn, tn)} (6.23)

where, considering the distributions for xn and tn defined in the previous section,

p(xn, tn) = (2πσ2)−v/2 exp

(
−‖xn −Wtn − µ‖

2σ2

)
(2π)−q/2 exp

(
−‖tn‖

2

)
(6.24)

and where the complete data include both the observations xn and the latent

variables tn, the EM algorithm computes:

1. (E-step) The expected value of LC for the conditional distribution

p(tn|xn,W , σ2).

2. (M-step) The maximum value of the result obtained in the E-step with respect

to W and σ2.

The final results are:

WML =

{
N∑
n=1

(xn − µ)〈tn〉′
}(

N∑
n=1

〈tnt′n〉

)−1

(6.25)

σ2
ML =

1

Nv

N∑
n=1

{‖xn − µ‖2 − 2〈tn〉′W ′
ML(xn − µ) + tr(〈tnt′n〉W ′

MLWML)} (6.26)

where the terms

〈tn〉 = M−1W ′(xn − µ) (6.27)
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〈tnt′n〉 = σ2M−1 + 〈tn〉〈tn〉′ (6.28)

M = W ′W + σ2I (6.29)

are incorporated in the E-step and are included in the iterative procedure. In

fact, this algorithm is applied iteratively until convergence, determined through

a tolerance level, is obtained. In presence of missing data, as discussed extensively

in Ilin and Raiko (2010), this algorithm can be modified as follows. Firstly, (6.13)

must be rewritten element-wise as:

xij = w′itj + µi + εij, ∀i, j ∈ O (6.30)

where O stands for "Observed Data". Then, contrary to the case of fully-observed

data, the EM algorithm is applied not to the matrix T but to each vector tj, and

µ must be included in the computation at each step. These differences are a

consequence of the inclusion of the missing observations together with the latent

variables to construct the original complete values.

It is important to point out how these considerations hold only if data are

missing at random, which means that their missingness occurs at random and does

not depend on the unobserved data or on any latent variable characteristic. The

missingness which takes place in ED may present these characteristics, because it

seems not dependent on any specific value or feature of borrowers’ variables.

6.4 Probabilistic Principal Component Regression: A new

possible approach

In this section we present a new possible approach which combines the linear

regression technique with the PPCA for missing data. In particular, we take

advantage of the traditional PCR derivation, where the score vectors are the

dependent variables, but this time using the scores computed through the PPCA

in the presence of missing data. This extension must be done carefully, because all

the conditions of the original principal component regression must be respected to

derive a similar model. For example, we show the necessity to orthogonalize the
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column vectors of WML derived through the EM algorithm in order to apply the

PCR model and to interpret the results in terms of the original variables.

Therefore, after having briefly recalled the PCR derivation, we verify step by

step the similarities and the differences which arises when the PPCA scores are

used as independent variables for the regression. Our purpose is to verify that

the traditional PCR model does not prevent the use of the score vectors derived

through the model discussed in this chapter, or in other terms that this approach

is theoretically correct. The main advantage of this method, which motivates its

derivation, is the possibility to include in the PCR the variables which presents

missing data too.

Consider the traditional linear regression model:

y = Xβ + ε (6.31)

along with the assumptions mentioned in Section 4.3. If we assume that the values

of each variable have the same distribution, we can still center and standardize

the data using the mean and the variance, computed for each variable, using only

the observed values. Indeed, with the previous assumption, we do not make any

mistake in probability. Let us denote with the underscore ν the variables which

refer to the PPCA; then Zν is the score matrix derived through the PPCA in the

presence of missing data. In the classic PCR, we wrote the linear model using Z as

the matrix of dependent variables:

y = Zϕ+ ε (6.32)

The critical point is: does the relation derived in the classic PCR

Xβ = XIβ = XAA′β = Zϕ (6.33)

with

ϕ := A′β (6.34)

still hold? At first sight, the answer is negative because A is assumed to be

orthogonal. In fact, Tipping and Bishop (1999) discuss how at convergence the
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columns of WML spans the principal subspace, but they may not be orthonormal

because the relation

W ′
MLWML = R′(Λq − σ2I)R (6.35)

derived directly from (6.21) and where R is an arbitrary rotation matrix, is not

diagonal when R 6= I.

But this problem is easily solved by orthogonalization of WML. This is actually

possible through, for example, the application of the singular value decomposition

to find an orthonormal basis for the matrix. We recall that linear independence is

not sufficient for the orthogonality condition, even if it is necessary.

Therefore, the orthonormality for the coefficient vectors of the matrix Aν is

recovered. This allows to replicate the passages of Chapter 4 and in particular the

following equations are valid for the Probabilistic Principal Component Regression

too:

Xβ = XIβ = XAνA
′
νβ = Zνϕν (6.36)

ϕν := A′νβ (6.37)

Zν = XAν (6.38)

Due to the orthonormality of Aν , β̂ν can be still computed, using the OLS

estimator ϕ̂ν , as β̂ν = Aνϕ̂ν . Clearly, being the PPCA score different from those

computed through the classic PCA, the final β̂ will be different.

Finally, in the practice of the classic PCR a subset of vectors of the score

matrix is usually retained, which lead us to write the following definition for the

Probabilistic Principal Component Regression (PPCR):

Definition 10 (Probabilistic Principal Component Regression). Using the notation

discussed above, we define the Probabilistic Principal Component Regression as:

y = ZS
νϕ

S
ν + ε̃ (6.39)

for ZS
ν ⊂ Zν .

This definition is a modification of the traditional regression model y = Xβ+ε in

the following sense. Firstly, ε̃ denotes the traditional error term for this particular
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model (as in the case of the PCR, Chapter 4). But the relevant difference concerns

the independent variables, which in the PPCR model are the score vectors derived

through the PPCA.

This is the most important feature of the Probabilistic Principal Component

Regression, because formulating this model using as regressors the score vectors

computed through the PPCA — instead of the original independent variables, or of

the scores provided by the traditional PCA — provides a solution to the practical

problem of making a supervised analysis when some data are missing, as in the

case of our dataset. Essentially, Definition 10 extends the unsupervised PPCA

analysis to a regression model, preserving the interpretational properties of the

classic PCR, but allowing the matrix of independent variables to be sparse. As

we discussed previously in this chapter, this extension is not straightforward and

combines different statistical, algebraic and numerical tools. Indeed, the PPCA

technique, the EM algorithm, an orthogonalization of the matrix WML and the

results of a linear regression, along with the possibility to compute their outputs,

are required in order to apply the PPCR.

As we highlight in the final chapter, we leave the practical implementation

of the PPCR to future research, not necessary on loan datasets; however, if the

application to the European DataWarehouse datasets becomes possible due to a

reduction of data sparsity, a more comprehensive empirical analysis on sparse loan

variables may be supported by the PPCR.
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Chapter 7

Conclusions

In this thesis, we have analyzed the open problem regarding the effect of

collateral on the loan interest rates. In particular, we have studied this topic both

theoretically and empirically through a quantitative approach, in order to give a

new contribution to the existing literature.

In the first part of this work, we have proved the theoretical impossibility to

support an unidirectional effect, constructing different game-theoretic models.

In particular, under symmetric information, we have shown that some

fundamental financial assumptions lead to a bijection between risk and return

when the totality of loan contracts — rather than an individual loan — are

considered. This has allowed us to prove Theorem 1, which affirms that the interest

rate should be decreased by a higher collateral value.

However, asymmetric information is characteristic of loan contracts, hence we

have adapted the principal-agent model to the specific case of loan contracts, in

order to consider, for example, the default probability or the value of an investment

made with the borrowed capital. We have mathematically proved how collateral is

an effective tool which mitigates adverse selection and moral hazard problems.

These asymmetries change the previous result, because the effect of collateral now

depends on which hypothesis is assumed.

In the second part, we have provided a rather extensive discussion of the

mathematical and statistical theory behind the Principal Component Analysis,
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the Principal Component Regression, the LASSO and the Ridge regularized

regressions. We have applied these methods to loan big-data collected by the ED.

The purpose of this second part was to prove that the theoretical results obtained

in the first part of this work were supported by real loan contracts, as we have

indeed found out.

The main advantages of our approach to the empirical analysis are at least four,

as discussed in Chapter 4.

First of all, the possibility of combining an unsupervised analysis with a

supervised one. In fact, we have included other borrower’s variables along with

the value of the collateral pledged, and their reciprocal effects have been analyzed

with the PCA method. Secondly, it was convenient to study our data using some

approaches — different from the simpler ones used in the previous empirical

studies — which fit better to the huge volume of data analyzed in this thesis.

Indeed, these models provide a computational advantage compared with the more

traditional regression methods. For example, the OLS estimator requires a huge

amount of memory to be computed, which is a problem when applied to big-data.

Thirdly, the PCR, the LASSO and the Ridge lie within a more general theory

which considers the class of biased estimators. This has allowed us to discuss

their common features and to compare the estimates given by these different

methods, both to assess if there was an unambiguous relationship, independent of

the method chosen, and to choose the possible more convenient model in terms of

a common defined statistical performance if necessary. Finally, the PCA analysis

can be considered the starting point to examine the general problem of missing

data, which is a feature of our loan data. In fact, this consideration led us to

propose a new regression model based on the Probabilistic PCA (see Chapter 6),

that may be applied to our loan datasets in the future, provided that the data

sparsity decreases.

The huge collection of loan data available on the ED datasets has played an

essential role. As far as we know this is the first study which examines this

data through the methods discussed above, and definitely it is one of the few
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works present in literature which uses millions of data to assess empirically

the collateral-interest rates link, and which compares different countries using

common variables of loan contracts.

The results derived in the empirical part supported our thesis on the

impossibility to decide for a specific hypothesis among those presented in the

game-theoretic part. Indeed, the different coefficients of the collateral variable

associated to different countries suggest that the prevalent effect can be either

moral hazard or adverse selection: they both take place in the real word. Moreover,

some statistical values and a cluster analysis have also pointed out that the

prevailing effect obtained from the data analysis reflects a general trend, but that

this trend is not strong, which is another confirmation of its ambiguity.

In the final chapter, we have examined the Probabilistic Principal Component

Analysis approach in the presence of missing data, given the large amount of

sparse datasets which characterize the ED database. We have discussed how the

EM algorithm, which can be applied to derive the score vectors through the PPCA,

is an useful approach to handle with missing data, as highlighted in literature.

Finally, we have checked whether the PPCA can be applied to a regression

model, showing that this is feasible after some algebraic expedients, defining the

Probabilistic PCR. In the context of this thesis, this approach may reveal itself

useful if the availability of data will increase over time, however conserving some

data sparsity. The more comprehensive empirical analysis resulting from this

approach, if data will allow it reducing their sparsity, is left to future research.

The other future research themes related to this work are varied and numerous,

given the various topics discussed throughout this thesis. Among them, an

application of other models from game theory to analyze the link between collateral

and interest rates from other point of views may be interesting, as well as an

examination of a specific aspect of collateral in order to include further hypotheses

— even if the theoretical literature has already discussed broadly this last point.

As far as our empirical analysis is concerned, an extension could be done applying

other unsupervised techniques to the loan data. Another possibility may be to
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include some qualitative variables, providing additional insights to our analysis.

Other future research topics related to this thesis concern more the theoretical

part as, for example, the extension of the statistical methods presented or a further

examination of their properties (however, these topics have been already discussed

widely in literature) or the problem of sparsity in the supervised learning context.
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