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Abstract
Nowadays web search companies record all the query logs that different users submit

for searching information on search engine. At first glance may be it does not look

so interesting keeping and saving query logs which most of them even do not have

an structure, but in-depth studies on query logs that have done till now show that

they are not just some words and absolutely they could be useful for some other

goals. However, query logs can not only analyzed to find out just some simple

information about users’ activities but also we can use data mining methods to

extract knowledge to develop new search-related applications. For example query

suggestions, finding better results for queries, recommendation systems and etc. As

web queries mostly are short and have a simple structure, it will be difficult to

identify the find the exact information needed by user. Then, some studies have

done for dividing queries according to different measures to make them more clearly

about the goal which they are done. Session detection was one of the concepts

is used for web search query identifications. For query session detection different

measure have used. Some of them just use time as a value for segmentation, some

of them use time Main target of session detection is the finding typical patterns the

users follow in their search processes, and, based on these patterns, to develop search

support tools such as smart query suggestions learned from the reformulations of

other users. Then, concept of search mission comes out which is connecting different

search session with same information need which actually defines as search mission

task. Among all the mission that have done in a session, there are mission which are

not related to the information need which mission is done for it. And, they could

decrees the performance the analyzing and mining the queries log. Finding these

queries and eliminating them in one hand could be good factor for improving all

result and on the other hand is hard because of enormous size of queries.
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Chapter 1

Introduction

1.1 Search Engine Query Logs

At these days search engines are getting to be a part of daily life of majority of

people. People use search engine for more or less every things. The queries that

people submit can be either a “Navigational query” — where the immediate intent is

to reach a particular site, an “Informational query” — where the intent is to acquire

some information assumed to be present on one or more web pages, a “Transactional

queries” — where the intent is to perform some web-mediated activity. And, this

leads that a lot of beneficial and non-beneficial options open for search engines.

So, all search engines try to keep their portion of this opened gate for making more

money. One of the resources which can be used for more study and analysis in search

engine queries are Query Logs that recorded and actually submitted by users during

their search period. Till now, different works have done by researchers that most of

them are about classification and categorizing queries according to their information

needs and tasks. Most known filed which is still has a lot of potentiality to grow

and getting better is Session Detection which is about classification which classifies

queries by theirs submitted time or newly done lexical features. But, there is a new

filed about queries which goes to be a topic in query analysis is “Mission and Task

Detection”. Bunch of works has done about this newly introduced works and still

there are some aspect that missing about this work. A session contains one or more

missions. These missions can be dependent to the information need or can be just a

single task that have done within a session. Finding end extracting these single task

queries automatically seems interesting enough to start a new topic and research.

So, we planned to use data mining knowledge discovery algorithm for make some

models and predictors for finding a pattern and making in popular for the other data

set of query logs. Therefore, we should have been able to define some features and
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attributes to use them as input data set to our machine learning and data mining

procedure. We had a collection of recorded queries with some information about

each query. First step was defining and extracting as much as possible feature for

each query which is submitted. For the preprocessing and data selection, we used a

corpus of 6381 queries annotated with logical session and mission information with

number of click per each query and the clicked links. In feature extracting section

we tried to extract as much as available features for each query which were lexical

and semantic all together. For, data mining task part we used the Weka software

developed by “Wikato university of New Zealand” for Data mining and machine

learning purposes. As this software has an adequate collection of algorithms we

tried to do more suitable algorithms according to the types of our data which were

numeric. After extracting the features and making a data set of all features with

their value, we had another problem and it was the skewed and imbalanced of class

distribution which leaded inaccurate results for our prediction model. By using

over-sampling, under-sampling and cost matrix during our model constriction we

solved this problem. Because of the type of features and the imbalance distribution

of class attribute evaluating outputs and results based on common measures were

not possible for our work, then we focused on “Kappa Value” plus some new visual

methods that Weka makes them available for data mining analysis help so much easy

understanding the results and the performance of made models like “ROC Curve”

and “Threshold Curves”.

Discovering single task queries absolutely would be useful for improving sugges-

tion tools for offering more related results for the users and it means finding needed

information in the minimum time for user. Since, there is a big competition among

the biggest search engines for having been used by the more users, even one small

step like this will help them in gathering more user. As we mentioned in Feature

definition section, till now we worked on some lexical contextual and non-contextual

features plus some semantic features which main one was ”Wikipedia Similarity”.

But, as we know there are so many other semantic measure which can be defined

for evaluating the semantic similarity of two text, our plan is applying them for

queries and using them as new feature. There will be some boundaries because of

the shortness of queries but still there are more options to use the semantic simi-

larity measure for our feature work and making our classification model more and

more precise about finding the single task queries.
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1.2 Machine learning and data mining

Machine learning and data mining are two confusing field of science, since they

employ the equal methods and overlap in many steps that they do. They can be

roughly defined as follows:

XMachine learning focuses on prediction, based on known properties learned

from the training data.

XData mining focuses on the discovery of (previously) unknown properties in

the data. This is the analysis step of Knowledge Discovery in Databases.

They have overlapping in many procedures: data mining employs many machine

learning methods, but usually with a bit different target in mind. On the other hand,

machine learning uses also data mining techniques as ”unsupervised learning” or as

a preprocessing step to make better learner accuracy. The confusion between these

two field communities comes from the basic assumptions they work with: in machine

learning, performance is usually assessed according to the ability to reproduce known

knowledge, whenever in Knowledge Discovery and Data Mining (KDD) the key task

is the discovery of previously unknown knowledge. Evaluated with respect to known

knowledge, an uninformed (unsupervised) method will easily be outperformed by

supervised methods, while in a typical KDD task, supervised methods cannot be

used due to the unavailability of training data.

Data mining which is the analysis part of the ”Knowledge Discovery in Databases”

is a subfield of computer science that tries to discover patterns in large data sets

involving at the intersection of artificial intelligence, machine learning, statistics,

and database systems.[2]

As mentioned above, purpose of data mining procedure is to extract knowledge

and information from a data set and change the form into an understandable shape

for the future uses.

1.3 Knowledge Discovery in Databases

The Knowledge Discovery in Databases (KDD) process is defined with the following

steps:

1. Selection

2. Pre-processing
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3. Transformation

4. Data Mining

5. Interpretation/Evaluation.

or a simplified process such as (1) pre-processing, (2) data mining, and (3) results

validation.

Figure 1.1: Knowledge Discovery in Database processes

1.3.1 Pre-processing

We have to assemble data set before using the data mining algorithms. Since data

mining can only uncover patterns that practically exist in the data. The data set

have to be large enough to contain these patterns. While remaining short enough to

be mined with the algorithms within an acceptable time. Pre-processing is required

to analyze the multivariate data sets before data mining. The target set is then

cleaned. Data cleaning eliminates the observations that have noise and those with

missing data.

Data transformation

In this step, producing of better data for the data mining is prepared and done.

Techniques which are used is about dimension reduction (as feature selection and ex-

tracting the instances), and attribute transformation (as discretization of numerical

attributes and functional transformation). This part can be essential for achieving

to goal in entire KDD process and it is usually very project-specific. For instances,

in medical examinations, the quotient of attributes might be the most important
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factor, and not each one by itself. In marketing, we may need to consider effects

beyond our control as well as efforts and temporal issues (such as studying the effect

of advertising accumulation). However, even if we do not use the right transforma-

tion at the beginning, we may obtain a surprising effect that hints to us about the

transformation needed (in the next iteration). Thus the KDD process reflects upon

itself and leads to an understanding of the transformation needed[17].

Data mining

Data mining contains six popular classes of tasks:

XAnomaly detection (Outlier/change/deviation detection) – The realizing and

recognition of unusual data records

XAssociation rule learning (Dependency modeling) – Seeks for relationships be-

tween variables. For instance a store may gather data on customer purchasing habits.

Using association rule learning, the store can figure out which products and items

are frequently bought in a shopping cart and use this information for some purposes

like arranging and putting the products which are bought beside each other or for

introducing a new product they can put it in a place which is normally viewed by

customers.

XClustering – Discovering groups and structures in the data that are in some

way or another ”similar”, without using known structures in the data.

XClassification – Generalizing known structure to use to new data. For instance,

an e-mail program might attempt to classify an e-mail as ”legitimate” or as ”spam”.

XRegression – Attempts to extract a function that is able to model the data

with the least possible error.

XSummarization – Providing a more compact representation of the data set,

involve visualization and report generation.

Results interpretation and validation

Data mining can accidentally be misused, and can then give us results that seems

to be significant; but which do not really predict future behavior and cannot be

reproduced on a new sample of data and possess little use. Often this results from

investigating too many hypotheses and not performing proper statistical hypothesis

testing. A simple version of this problem in machine learning is known as over

fitting, but the same problem can arise at different phases of the process and thus a

train/test split - when applicable at all - may not be sufficient to prevent this from

happening.
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The last step of knowledge discovery from data is to check that the patterns

generated by the data mining algorithms are really working in the data set, it means

is there exist real pattern even in other datasets.

All of patterns discovered by the data mining algorithms are not true in general.

Often happens for data mining algorithms to discover patterns in the training set

that are not valid for the general data. This is called over fitting. To avoid this

problem, in the evaluation and assessing step, patterns are defined by algorithms

applied on test sets which are not used for training and the resulting output is

compared to the desired output. For instance, a data mining algorithm tries to

specify ”spam” from ”legitimate” emails would be trained on a training set of sample

e-mails. After training phase, the achieved patterns would be applied to the test set

of e-mails on which were not in train set. The accuracy of the patterns can then be

measured from truly recognized emails.

A bunch of statistical techniques could be used to evaluate the algorithm, such

as ROC curves.

If the learned patterns do not meet the desired standards, afterward it is neces-

sary to review all of steps that have done in the procedure of KDD such as changing

the pre-processing and data mining steps. But in case that if the learned patterns

do meet the desired standards and results are be acceptable, then the final step is

to interpret and explain the learned patterns and make them as knowledge which

will be usable for next times[17].

So, if we want to divide our mission to 3 main part, first step of our procedure

will be pre-processing data. Our data is a data set of around 6000 instances that is

prepaid by the German university involve a CSV file which is containing the following

columns: User id, mission id, query id, query, normalized query, UTC TIMESTAMP,

UNIX TIME of submission, Number of CLICKS per each query, CLICKED URLS

for each query. Data mining task wich we will use in our project is classification

and our task in pre-processing step is mostly concentrating on defining the features

which are necessery for the data mining task.

And, final part of our procedure will be evaluation and interpretation of our

model. For the step 2 and 3 (data mining task an evaluation) we will use a software

called ”Weka” which is developed by Wikato university of Newziland for data ming

and machine learning purposes. A list of most well known and famous algorithms

for data ming task are collected in software and especially for classification we will

have pretty much all useful algorithms. For evaluation of model, weka offers different

options and measure which will be enough for our evaluations.
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1.4 Weka

As we mentioned before for the next 2 steps we will work with ”Weka” data min-

ing and machine learning software. It is developed by “Wikato university of New

Zealand” and is quite rich of different algorithms for all kind of data mining tasks

like classification, clustering, etc.

1.4.1 History of the Weka Project

The WEKA project was funded by the New Zealand government from 1993 up until

recently. The original project’s goals as:

“The programme aims to build a state-of-the-art facility for developing techniques

of machine learning and investigating their application in key areas of the New

Zealand economy. Specifically we will create a workbench for machine learning,

determine the factors that contribute towards its successful application in the

agricultural industries, and develop new methods of machine learning and ways of

assessing their effectiveness.”

The project at first beginning years focused on the developing of interface and

instructor of the workbench. Majority of implementations were done in C, with some

evaluation written in Prolog programming language. During this period the WEKA1

acronym was made and Attribute Relation File Format (ARFF) was created. The

first released version of WEKA was occurred in 1994. May 1998 was the year that

the final release of the TCL/TK-based system (WEKA 2.3) and, at the middle of

1999, the 100% Java WEKA 3.0 was released. This non-graphical version of WEKA

accompanied the first edition of the data mining book by Witten and Frank. In

November 2003, a stable version of WEKA (3.4) was released in anticipation of the

publication of the second edition of the book. In the time between 3.0 and 3.4, the

three main graphical user interfaces were developed[10]. We do not want to go so

much in detail of the Weka software and for more detailed information you can refer

to the reference and help of the software[21].
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Figure 1.2: Weka software interface
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Chapter 2

State of The Art

2.1 Query Log Mining

In order to assessing the output and result of a search we can have a look at how users

communicate and interact with the Internet by the search engine. For example, it

seems interesting to extract what is the pattern that they are following for a search or

what they modify their queries according to the results that they get for each query.

Queries themselves are not enough to discover and extract user’s intent. In addition,

one of the most important targets of a search engine is to assessing and evaluating

the quality of their suggested links for each query. There are some measure which

show some general information about them like the click through rate(the number of

clicks a query attract), time-on-page(the time spent on the result page) and scrolling

behavior and all of them say that search engines can evaluate theirs results quality

according to them.

2.1.1 Query log exploitation

So, now let see if search engines analyze and evaluate these gathered query logs what

kind of improvements and services can be obtained by them. Actually, we want to

know what the point of mining the query logs is. Here we can define some instances

of services that can be offered after these evaluations for a user which have done a

query.

Automatic query suggestion

Most of the previous works on the exploitation of query logs deals with the computa-

tion of inter-query similarities provide query expansion, suggestion or reformulation.
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Figure 2.1: A query submitted in a search engine

For example, Beeferman and Breger defined a way to provide suggestion by cluster-

ing queries based on the co-occurrence of URLs within the click-through data[1].

Chien and Immorlica proposed a technique to compute inter-query similarity

only according to temporal clues[4].

Based on aforementioned techniques, the idea is quite simple: two query are

related if they tend to co-occurrence at the same time; so, the similarity of two

query is derived from the correlation coefficient of their frequency functions[7].

Re-ranking of search results

Joachims was the first person who used click-through data as re relevance measure

about the retrieved results for each query. He used data to define a function for

learning of a specialized meta-search engine which later outperformed a commercial

search engine[13].

Later bunch of other works were done based on Joachims works and some other

ideas.

Other uses for query logs

Query logs also have been used in other things. For example, Chuang and Chien

proposed a method to categorize queries submitted to a search engine to assist in

the process of building Web Taxonomies[5].

Cucerzan and Brill proposed to use query logs to perform spelling correction[6].
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2.2 Search Session Definition

Till now, no precise definition has been defined neither for session nor query session.

Actually, seems to be a general agreement about them in the literature. When users

interact with a search engine for reaching to their needs, they produce a sequence of

queries that are able of being recorded and subsequently analyzed. Therefore, any

definition of session should take account of this iterative and evolving, in addition

to the underlying existence of user goals[7].

Typical statistical analysis which are done on query logs simply assist the query

set for measuring query popularity, term popularity, average query length, distance

between repetition of queries or terms, etc. More detailed and depth analysis is

search session which is temporal sequences of queries submitted by users[16].

Actually, the first analysis which has done for first time in- depth for assessing

search engine queries was conducted by Jansen et al. They did not provide any

session definition but the grouped together all queries done by each user[12].

For first time that that a clear definition for a search session provided is possibly

that of Silverstein et al[20].

”A session is a series of queries by a single user made within a small range of time;

a session is meant to capture a single user’s attempt to fill a single information

need.”

For first time that a clear definition for a search session provided is possibly

that of Silverstein et al. A session is a series of queries by a single user made

within a small range of time; a session is meant to capture a single user’s attempt

to fill a single information need. Majority of definitions consider that a session

corresponds, at most, to the interval of time extending the first to the last recorded

query submitted to a search engine by a certain user in a given day. Moreover, it

sounds generally accepted that a period like that does not always corresponds to

just one query but to several ones and many of them have relation. Then, from this

point to forward the term searching episode and searching session will be used. First

one shows the actions are done by a particular user within a search engine during at

most, one day. An episode like this can comprise one or more sessions where each of

them involves one or more consecutive queries related to on single information need

or target.

Therefore, a session from a search engine perspective can be:

1. The whole sequence of queries issued by one user during one single day;

2. The sequence of queries issued by one user since s/he starts the browser until

s/he quits;
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3. A sequence of queries with no more than a few minutes of inactivity between

them. The following literature review takes account of these and other views

of search session.

2.3 Analyzing behavior of user in a search session

A series of queries can be a portion of a unique information searching procedure.

There are some researches on the effect of set of requests on the search engine side.

The most important purpose of this type of analysis is clarifying how users interact

with the search engines and how is their next action according to the results showed

provided by search engine. One of the interesting thing is to see how users interact

with the search engine according to the page request. Users usually just check the

results of just the first page and they do not care about the results of the next

pages. During the search session a user usually try to rewrite (or modify) queries

for achieving the better results. This type of behavior is studied by Lau and Horvitz

by categorizing queries according to the seven categories[15].

1. New: A query for a topic which is not searched by the user inside of a scope

of dataset (one day);

2. Generalization: A query on the same topic as the previous one, but searching

for more general information than the previous one.

3. Specialization: A query on the same topic as the previous one, but searching

for more specific information than the previous one.

4. Reformulation: A query on the same topic that can be viewed as neither a

generalization nor a specialization, but a reformulation of the prior query.

5. Interruption: A query on a topic searched on earlier by a user that has been

interrupted by a search on another topic.

6. Request for additional results: A request for another set of results on the

same query from the search service.

7. Blank queries: Log entries containing no query.
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2.4 Query Classification and Session detection meth-

ods

Search engines sometimes use different ways to store queries. Some of them only

take one cookie to store an alphanumeric user ID. Some of them also store session

ID. Since mid of 2008, Google, AltaVista and Baidu just use user ID, but other

hand Yahoo, Ask, Live take use both user and session ID.

In this section we will have a look at different ways and techniques to partition

query logs into search sessions, which are short sequences of continuous queries that

have dependent single goal for retrieving needed information[7]. There will be two

kind of signal can be exploited lonely or in combined way for detecting session

boundaries:

1. the time gap between queries

2. the query reformulation patterns

2.4.1 Temporal clues for session boundary detection

Users tend to submit bursts of queries for short periods of time and enter afterwards

relatively long periods of inactivity. Therefore, to find out session boundaries, Silver-

stein et al[20]. suggested applying temporal thresholds. They used a 5 min cutoff:

if two queries were less than 5 min apart they would belong to the same session

and otherwise to different sessions. This technique is very common because of its

simplicity and has been used with different thresholds: 5 min, between 10 and 15

min, and 30 min.

2.4.2 Lexical clues for session boundary detection

Other techniques have suggested about using the content of the queries to figuring

out if there is a topic change or not. For this issue different classifications of pattern

seeking have been proposed. For the purpose of session boundary detection the

patterns that are mentioned above as behavior of users could be interested.

2.4.3 Machine-learning methods to combine temporal and

lexical clues

Using search pattern to find out session boundaries will show two main approaches:

1. New search pattern always mention a session border
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2. Statistical information can be collected from the query logs to figuring out

the probability that this search pattern in reality point a change of session

depending on the time gap between the two consecutive queries.

The nature of a New Search pattern mentions that so many topically dependent

queries are fragmented into different sessions. Away from the combination to tem-

poral and lexical data the approach has two key sight. First, it needs training data

which is judged by human analysis. The information latterly is used to compute the

conditional probability of shift given the time interval and search patters.

Second, for combining those probabilities to the Dempster’s rule two confidence

weights are required; both the weights and the aforementioned threshold are to be

obtained by means of genetic algorithms[7, 11].

2.5 Search mission detection

Another point of view is provided by the analysis of Multitasking and Task Switching

in query session. Multitasking sessions are the ones that users searching information

for different topics at the same time. Some research has done for pointing that how

the users have tend to maintain multi-tasking queries.

For example, Ozmutlu et al.[19] show that in 11.4 % of the searches users follow

multitasking sessions. Actually, task and multitasking t=is the point that will open

another issue in query log analysis and it is Search mission.

Query session is taking care of identifying the series of successive queries that

a user does for searching a same information. Nevertheless, assessing just only

successive queries will lose some important connections: typical patterns involve

interleaving session resulting from a multitasking search behavior as well as hier-

archies of different search goals and so-called “missions”. For instance a user may

shortly interrupt a long search session for weather forecasting, or may check subor-

dinate search targets spanning some days that eventually form a larger mission. So,

here again two issue of search session detection and multitasking/mission identifi-

cation is come up again. The recent approach for session detection is the cascading

method[9]. The new cascading method with a new step that uses a Linked Open

Data analysis for session detection[8].

2.6 Singletone mission

So far we said that we can go one step forward from the query session to query

mission discovery. Imagine we have a session involve bunch of queries. According
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to the definition of mission inside of a session we will have one or more mission that

each of them are for a needed information. But, among them there are queries and

missions that even have done in a session with other queries but actually does not

have any relation with other queries and mission that are inside the session. In our

research we call the singleton queries.

These singleton queries can affect all of tools which are done for query log anal-

ysis. Now, actually this is our motivation for doing this thesis and we are sure that

finding these singleton missions and being able to extracting them out of session

could be incredibly useful for all tools that are working with queries.

Therefore, we are going to get help from Data mining and machine learning

methods to apply our idea and use classification task to make a model for discovering

these singleton mission according to statistical data that we have about each query.
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Chapter 3

Problem Statement

3.1 Background and Notation

Generally speaking, a classification problem can be described as follows.

Let X be a population of objects, where each object xi ∈ X is represented by

an n-dimensional vector of features, i.e., xi = (xi,1, . . . , xi,n), and with each feature

xi,j describing a particular aspect of the object. In addition, let each xi belong to

one class, labeled as yi, out of a set of k classes1, i.e., yi ∈ Y = {0, . . . , k − 1}.
We call (xi, yi) a labeled example, namely any object instance with its associated

class label. Suppose D = {(x1, y1), . . . , (xm, ym)} is a set of m labeled examples

drawn from the population of objects above, and call it the gold set. Also, assume

we randomly partition D in two subsets, i.e., a training set (Dtrain) and a test set

(Dtest), so that:

D = Dtrain ∪ Dtest.

A classifier is a learning algorithm that uses the (labeled) training set to predict

which class label y′ ∈ Y should be assigned to unseen instances of the population

x′ 6∈ Dtrain, i.e., instances which lay outside the training set and whose actual class

is unknown.

Specifically, assuming the existence of an unknown target function f : X 7−→ Y ,

which maps each object to its correct class, the goal of a classifier is to exploit the

training set Dtrain to learn another function h? : X 7−→ Y , called hypothesis and

selected from the space of all possible hypotheses H, which best approximates f .

Since the real target function f is unknown, h? may assume any value outside

1If k = 2, we reduce to a binary classification problem.
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Dtrain, namely the space of all possible hypotheses H, which h? may be selected

from is potentially infinite, thereby making learning computationally unfeasible.

However, the introduction of the Probably Approximately Correct (PAC) learning

theory allows relaxing the learning task as to finding h? ≈ f , with high probability.

Concretely, to estimate how well an hypothesis h ∈ H approximates f , we define

a cost function ω : Dtrain × H 7−→ R, which intuitively measures the penalty h

should pay for incorrectly classifying instances in Dtrain. Finally, the classification

algorithm chooses h? among the space of all possible hypotheses, so as to minimize

the cost function:

h? = argmin
h∈H

ω(Dtrain, h).

The overall performance of a classifier can be then evaluated on the remaining

portion of the original gold set, i.e., the test set Dtest.

Typically, for each labeled example (xi, yi) ∈ Dtest we do the following. First,

we compute the chosen function h?(xi). This would result either in a match, i.e.,

h?(xi) = yi or in an error, i.e., h?(xi) 6= yi. Finally, we can measure several indica-

tors, such as true positives (tp), true negatives (tn), false positives (fp), and false

negatives (fp), which in turn allow us to compute precision, recall, and F1 scores.

In the following, we assume our population of objects to be the queries of a

query log. We also assume the query log is partitioned into a set of (long-term) user

sessions, which in turn are parititioned into a set of search missions.

3.2 Problem Definition

Let Q be a query log made of a set of (long-term) user search sessions Si.

Q = {S1, . . . ,S|Q|} =

|Q|⋃
i=1

Si.

Each Si is in turn composed of a sequence of queries qi,j:

Si = (qi,1, . . . , qi,|Si|) =

|Si|⋃
j=1

qi,j.

It turns out that:

Q =

|Q|⋃
i=1

|Si|⋃
j=1

qi,j.
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In addition, we assume each Si is divided into a set of search missionsMi. Each

element of Mi is actually a subset of queries of the original Si:

Mi = {Mi,1, . . . ,Mi,|Mi|},

Mi,k ⊆ Si ∀k ∈ {1, . . . , |Mi|}.

It turns out that:

Si =

|Mi|⋃
k=1

Mi,k.

Therefore, Mi is a mission-based partitioning of the original search session Si. We

can thus define the set M of all the search missions in Q as follows:

M =

|Q|⋃
i=1

|Mi|⋃
k=1

Mi,k.

In addition, let m : Q 7−→ M be a bijection which maps each query to exactly

one search mission, i.e., to the search mission which q belongs to. Concretely, if

q ∈ Q is the generic query of the log and M ∈M is a search mission:

m(q) = M iff q ∈M.

Furthermore, we define a boolean function g : Q 7−→ {0, 1}, which states whether a

query q ∈ Q is part of a singleton mission:

g(q) =

{
1 if |m(q)| = 1,

0 otherwise.

We can learn our binary classifier as follows. Each query qi ∈ Q is represented by

an n-dimensional vector of features, i.e., qi = (xi,1, . . . , xi,n), with each xi,j describing

a particular aspect of the query qi. Eventually, we can build our gold set of queries

belonging to singleton search mission, i.e., search missions composed of only one

query, as follows:

D = {(q1, g(q1)), . . . , (q|Q|, g(q|Q|)} =
⋃
q∈Q

(q, g(q)).

3.3 Features Extraction

A crucial aspect in order for any classifier to be effective is to properly choose the

set of features to represent each instance (i.e., each query). In the following, we try
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to explore those clues that might provide a clear evidence for a query to be actually

part of a singleton mission.

In order to generate the vector of features q for each query q, we consider both

contextual and non-contextual signals. More specifically, the former refers to features

that are computed with respect to a subset of all the other queries q′, which appear

in the same session Sof q or, even more broadly, in the whole query log Q. On the

other hand, we might also look at each query q individually. For instance, we may

want to check whether q is an URL.

In the sections below, we will discuss these two aspects separately.

3.3.1 Non-Contextual Features

– n clicks(q) ∈ N
This is a discrete feature which counts the total number of click that have

done for each query. q.

– count terms(q) ∈ N
This is a discrete feature which counts the total number of terms of the query

q.

– is valid domain(q, T,D) ∈ {0, 1}
Let T be a dictionary of top-level web domains: T = {t1, . . . , t|T |}. In addition,

let D be a collection of domain names: D = {d1, . . . , d|D|}.
This is a boolean feature which states whether at least one of the strings

obtained by appending each top-level domain to q turns out to be a valid

hostname, that is it checks if: ∃ti ∈ T, dj ∈ D | q⊕ ti = dj, where ⊕ represents

the append operator between two strings.

Note: Maybe this feature is useful only for single-term queries. However, there

might be some cases where two-terms queries refer to a valid web domain as well,

e.g., “ny times” may be linked to the valid web domain nytimes.com. Also, the

dictionary of top-level web domains T can be retrieved from here: http://en.

wikipedia.org/wiki/List_of_Internet_top-level_domains whereas a list

of the most common (US) web domains is available from here: http://www.alexa.

com/topsites/countries/US.

– is wikipedia anchor(q,W ) ∈ {0, 1}
This is a boolean feature which states if the query q actually links to a

Wikipedia article. To this end, we might check if the string representing q

appears as an anchor text for one (or more) Wikipedia article.
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3.3.2 Contextual (Within-Session) Features

Assuming the query q belongs to the long term session S ∈ Q, the following con-

textual features for q may be computed on the basis of a subset of all the remaining

queries q′ ∈ S or, even more broadly, q′ ∈ Q, such that q′ 6= q.

Also, let t(q) be the issuing timestamp of each query q ∈ Q. In addition, let ≺τ be

a total order representing the time-ordering relationship between the queries in S.

We thus define τ(q, q′) as the elapsed time between q and q′:

τ(q, q′) = |t(q)− t(q′)|.

Note that here we don’t take into account the sign of this measure, i.e., τ(q, q′) =

τ(q′, q).

– normalized count terms loc(q,S) ∈ R,
normalized count terms glb(q,Q) ∈ R
This is a continuous feature which can be derived by count terms(q) above as

follows. Let max count terms loc(S) be the number of terms of the query q′ ∈
S having the maximum number of keywords in session S max count terms glb(Q)

having the maximum number of keywords in query log Q , i.e.,

max count terms loc(S) = maxq′∈S(count terms(q′))

and

max count terms glb(Q) = maxq′∈Q(count terms(q′))

Then, we can compute:

normalized count terms loc(q,S) =
count terms(q)

max count terms loc(S)

normalized count terms glb(q,Q) =
count terms(q)

max count terms glb(Q)

– z count terms loc(q,S) ∈ R, z count terms glb(q,Q) ∈ R
This is another way of normalizing the raw count terms(q) feature. Indeed,

this is the standard score which represents the number of standard deviations

an observation is above the population mean. It is obtained by subtracting

the population mean from an individual raw score, and then dividing such

difference by the population standard deviation.
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We have to think about what “population” here refers to: either it refers to

the session S where q resides or it overall refers to the whole query log Q.

Anyway, let the population mean of count terms(q) with respect to S(Q) be

µS (µQ), and let the population standard deviation with respect to S(Q) be

σS (σQ), two features are computed as follows:

z count terms loc(q,S) =
count terms(q)− µS

σS

z count terms glb(q,Q) =
count terms(q)− µQ

σQ

– session length(q,S) ⊆ N
This is a discrete feature which measures the total number of queries of the

session S. It is straightforward to realize that if session length(q,S) = 1

this means that q is the only query of the session, and therefore it is surely a

singleton. Due to this, maybe we should focus only on those sessions S ∈ Q
such that |S| > 1.

– normalized session length(q,S,Q) ⊆ R
This is a continuous feature which measures the total number of queries of the

session S yet normalized with respect to all the other sessions S ′ ∈ Q.

Let max session length(Q) be the length of the session S ′ ∈ Q having the

maximum number of queries, i.e.,

max session length(Q) = maxS′∈Q(session length(q,S ′))

Then, we can compute:

normalized session length(q,S,Q) =
session length(q,S)

max session length(Q)

– z session length(q,S,Q) ⊆ R
Similarly to the z count terms(q,Q), this feature compute the standard score

of the session length. Specifically, if we denote by µQ and σQ the population

mean and standard deviation of the session length, we can compute this feature

as follows:

z session length =
session length(q,S)− µQ

σQ

– is first query(q,S) ∈ {0, 1}
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This is a boolean feature which states whether q appears as the very first query

of the session S.

– is last query(q,S) ∈ {0, 1}
This is a boolean feature which states whether q appears as the very last query

of the session S.

– time elapsed from prev(qi,S) ∈ N
Let qi be the i-th query of S and let ⊥ be a default value, which may either

be 0 or ∞. This feature equals to:{
⊥ if i = 1,

τ(qi, qi−1) otherwise.

– time elapsed to next(qi,S) ∈ N
Let qi be the i-th query of S and let ⊥ be a default value, which may either

be 0 or ∞. This feature equals to:{
⊥ if i = |S|,
τ(qi, qi+1) otherwise.

– z time elapsed from prev loc(qi,S) ∈ R,
z time elapsed from prev glb(qi,Q) ∈ R
This is a way of normalizing the raw time elapsed from prev(qi,S) feature

on the basis of population mean and standard deviation. Again, we have to

think about what “population” here refers to: either it refers to the session S
where qi resides or it overall refers to the whole query log Q.

Anyway, let the population mean of time elapsed from prev(qi,S) with re-

spect to S(Q) be µS (µQ), and let the population standard deviation with

respect to S(Q) be σS (σQ), two features are computed as follows:

z time elapsed from prev loc(qi,S) =
time elapsed from prev(qi,S)− µS

σS

z time elapsed from prev glb(qi,Q) =
time elapsed from prev(qi,Q)− µQ

σQ

– z time elapsed to next loc(qi,S) ∈ R,
z time elapsed to next glb(qi,Q) ∈ R

26



Similarly to the scores above we can compute the following features:

z time elapsed to next loc(qi,S) =
time elapsed to next(qi,S)− µS

σS

z time elapsed to next glb(qi,Q) =
time elapsed to next(qi,Q)− µQ

σQ

– n of equal queries(qi,S) ∈ N
This feature states qi ∈ S how many equal query has in session§. Note that

this feature is defined only queries that belong to the same user session S.

– z n of equal queries loc(qi,S) ∈ R
This a way for normalizing the equal number of queries of each query in a

session.

– z n of equal queries glb(qi,S) ∈ R
This a way for normalizing the equal number of queries of each query in a

query log Q.

3.3.3 Semantic Contextual (Within-Session) Features

Till now we worked on features which are all non semantic. In this part we are going

to define some semantic features that for each query should measured according to

the others queries which are in the same session or in query log.

– min wiki similarity(qi,S) ∈ R, max wiki similarity(qi,S) ∈ R
This function returns the cosine similarity between the ”wikified” expansions

of both input strings It assumes the two strings are already represented in the

Wikipedia vector space.

– min haming distance(qi,S) ∈ R, max haming distance(qi,S) ∈ R
The Hamming distance between two strings computes the number of positions

where a character mismatch occurs For binary (i.e., 0/1) strings this is equal

to the number of 1s in s XOR b The function takes as input two strings and an

optional parameter which specifies whether the final score has to be normalized

with respect to the length of the string (default = False) NOTE: the Hamming

distance is defined ONLY when the two strings have the same length!

– min haming similarity(qi,S) ∈ R, max haming similarity(qi,S) ∈ R
This is just the complimentary score of the Hamming distance above.
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– min jacard char level similarity(qi,S) ∈ R,
max jacard char level similarity(qi,S) ∈ R
This is the Jaccard coefficient which is always in [0,1] range. It is computed

as follows:

J = |set(a)ANDset(b)|/|set(a)ORset(b)|

– min jacard word level similarity(qi,S) ∈ R,
max jacard word level similarity(qi,S) ∈ R
This is the Jaccard coefficient which is always in [0,1] range. It is computed

as follows:

J = |set(a)ANDset(b)|/|set(a)ORset(b)|

– min sorensen dice char level similarity(qi,S) ∈ R,
max sorensen dice char level similarity(qi,S) ∈ R
This is the Sorensen-Dice coefficient which is always in [0,1] range. It is com-

puted as follows:

QS = 2C/(|s|+ |t|)whereC = |set(a)ANDset(b)|

– min sorensen dice word level similarity(qi,S) ∈ R,
max sorensen dice word level similarity(qi,S) ∈ R
This is the Sorensen-Dice coefficient which is always in [0, 1] range. It is

computed as follows:

QS = 2C/(|s|+ |t|)whereC = |set(a)ANDset(b)|

– min longest common substring(qi,S) ∈ R,
max longest common substring(qi,S) ∈ R
This is the length of the longest common substring between two strings s and

t.

– min longest common subsequence(qi,S) ∈ R,
max longest common subsequence(qi,S) ∈ R
This is the length of the longest common subsequence between two strings s

and t Differently from the longest common substring above, the sequence of

common chars here don’t need to be one next to the other.
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– min levenshtine distance(qi,S) ∈ R,
max levenshtine distance(qi,S) ∈ R
The Levenshtein distance between two strings computes the minimum number

of character-edit operations (i.e., deletion, insertion, and substitution)that are

required to change one string to the other The function takes as input two

strings and an optional parameter which specifies whether the final score has

to be normalized with respect to the length of the longer string (default =

False).

– min levenshtein similarity(qi,S) ∈ R,
max levenshtein similarity(qi,S) ∈ R
This is just he complimentary score of the Levenshtein distance above Note

that if not normalized this returns the difference between the number of char-

acters of the longer string and the levenshtein distance above Intuitively, the

levenshtein distance between two strings (s,t) would require at most a number

of character-edit operations which is equal to the length of the longest string

between s and t.

– min jaro winkler similarity(qi,S) ∈ R,
max jaro winkler similarity(qi,S) ∈ R
and

– min jaro winkler distance(qi,S) ∈ R,
max jaro winkler distance(qi,S) ∈ R
The Jaro-Winkler similarity is a score in [0, 1] which uses the Jaro distance

as its building block It counts the matching characters of the two strings as

well as the transpositions needed Matches are counted by looping over the

shortest string. For each character of the shortest string in position i, we

look if the same character occurs in the longest string either at the same

position (i) or in a window of characters before and after i, i.e., window =

int(math.floor(max(|s|, |t|)/2.0) − 1) Also, matches that occur in a differ-

ent order between the two strings are considered to be transposed The Jaro-

Winkler similarity is computed as:

JW (s, t) = J(s, t) + (prefix length ∗ prefix scale ∗ (1− J(s, t)))

where J(s, t) is the Jaro distance, and prefix length and prefix size two

tuning parameters.
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Chapter 4

Modeling and Evaluation of

models

At the end of Feature Extraction section we made 48 attributes for each query.

From this 48 attributes, 4 of them are contextual features which are evaluating

independently from the other queries and just are measures for each of them, 18 of

them are contextual within session which means the values are not independent for

each query and are calculated according to the other queries in a session and finally

26 of them are semantic contextual which are just Minimum of Maximum of values

that each query has in compare to other queries in same session.

4.1 Data mining task (Classification)

Now we have done pre-processing step and we can switch to the next step of our

KDD procedure. As we mentioned before Data mining and Machine Learning have

a lot of overlapping techniques and actually now after extracting the features we

will use some methods of machine learning to use these features to extract models

by classification algorithms that will be our patterns in data set.

4.2 Evaluating learned model

Since we have different types of classification algorithm, we can try all of them which

are suitable for numeric data sets like ours to make a model but the point is finding

the best one for our problem. Here the importance of model evaluation pups up and

plays the main role in our procedure.

During this evaluation procedure a bunch of problems can happen. For example

having a limited number of instances makes modeling and testing procedure more
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difficult. Sometimes the instances are classified imbalance and there is a big differ-

ence between the proportions of classes. Therefore, all these issues must take into

account during the evaluation progress.

4.3 Commonly-accepted performance evaluation

measures

Different evaluation measures assess different characteristics of machine learning

and data mining algorithms. The empirical evaluation of algorithms and classifiers

is a matter of on-going debate between researchers. Supervised Machine Learning

(ML) has several ways of evaluating the performance of learning algorithms and the

classifiers they produce. Measures of the quality of classification are built from a

confusion matrix which records correctly and incorrectly recognized examples for

each class.

Confusion matrix is a good tool for summarizing different types of error. Here we

can see a confusion matrix for a two class data set which classes labeled as Positive

and Negative which is exactly same as our case.

Figure 4.1: Different types of errors and hits for a two classes problem.

Calculatable measure form confusion matrix are Accuracy and Error rate that

can be used for performance evaluation.

Errorrate =
fp+ fn

tp+ fp+ fn+ tn

accuracy =
tp+ tn

tp+ fp+ fn+ tn
= 1− Errorrate

4.3.1 Why Accuracy and Error Rate are Inadequate Per-

formance Measures for Imbalanced Data Sets

The error rate and the accuracy are measures that more often are been used for

calculating the performance of learning systems. However, when the probabilities

of the classes are different, such measure may be misleading. For example, it is

straightforward to create a classifier having 90 % accuracy (or 10 % error rate) if
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the distribution of classes be consequently 90 % and 10% of total number of cases,

by simply labelling every new case as belonging to the majority class. Another

problem about using accuracy (or error rate) is that these measures consider different

classification errors as equally important. For example, a sick patients diagnosed as

healthy might be a fatal error while a healthy patience diagnosed as sick is considered

a much less serious error since this mistake can be corrected in future exams. On

domains where misclassification cost is relevant, a cost matrix could be used. A cost

matrix defines the misclassification cost, i.e., a penalty for making a mistake for

each different type of error. In this case, the purpose of the classifier is to minimize

classification cost instead of error rate.

The vast majority of ML research focus on the settings where the examples are

assumed to be identically and independently distributed (IID). This is the case we

focus on in this study. Classification performance without focusing on a class is the

most general way of comparing algorithms. It does not favor any particular appli-

cation. The introduction of a new learning problem inevitably concentrates on its

domain but omits a detailed analysis. Thus, the most used empirical measure, ac-

curacy, does not distinguish between the number of correct labels of different classes:

On contrary, two measures that separately estimate a classifier’s performance on

different classes are:

sensivity =
tp

tp+ fn

and

specifity =
tn

fp+ tn

Which Sensitivity mostly refers to the correctly classified of positive class and is

often called Recall. And specificity which essentially focuses on negative group.

Sensitivity and specificity are often employed in bio- and medical applications

and in studies involved image and visual data. Focus on one class is mostly taken in

text classification, information extraction, natural language processing, and bioin-

formatics. In these areas of application the number of examples belonging to one

class is often substantially lower than the overall number of examples. The experi-

mental setting is as follows: within a set of classes there is a class of special interest

(usually positive). Other classes are either left as is – multi-class classification – or

combined into one – binary classification. The measures of choice calculated on the
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positive class:

precision =
tp

tp+ fp

recall =
tp

tp+ fn
= sensivity

F −measure =
(β2 + 1) ∗ precision ∗ recall
β2 ∗ precision+ recall

All three measures distinguish the correct classification of labels within different

classes. They concentrate on one class (positive examples). Recall is a function of

its correctly classified examples (true positives) and its misclassified examples (false

negatives). Precision is a function of true positives and examples misclassified as

positives (false positives). The F-score is evenly balanced when β = 1. It favors

precision when β > 1, and recall otherwise.

4.3.2 What is a good Performance measure for our data set

A comprehensive evaluation of classifier performance can be obtained by the ROC

curves. In signal detection theory, a receiver operating characteristic (ROC), or

ROC curve, is a graphical plot which illustrates the performance of a binary classifier

system as its discrimination threshold is varied. The curve is created by plotting the

true positive rate against the false positive rate at various threshold settings. (The

true-positive rate is also known as sensitivity in biomedicine, or recall in machine

learning. The false-positive rate is also known as the fall-out and can be calculated

as 1 - specificity). The ROC curve is thus the sensitivity as a function of fall-out.

In general, if both of the probability distributions for detection and false alarm are

known, the ROC curve can be generated by plotting the cumulative distribution

function (area under the probability distribution from -inf to +inf) of the detection

probability in the y-axis versus the cumulative distribution function of the false-

alarm probability in x-axis.

ROC analysis provides tools to select possibly optimal models and to discard

suboptimal ones independently from (and prior to specifying) the cost context or the

class distribution. ROC analysis is related in a direct and natural way to cost/benefit

analysis of diagnostic decision making.

The ROC curve was first developed by electrical engineers and radar engineers

during World War II for detecting enemy objects in battlefields and was soon intro-

duced to psychology to account for perceptual detection of stimuli. ROC analysis
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since then has been used in medicine, radiology, biometrics, and other areas for many

decades and is increasingly used in machine learning and data mining research.

The ROC is also known as a relative operating characteristic curve, because it is a

comparison of two operating characteristics (TPR and FPR) as the criterion changes.

The contingency table can derive several evaluation ”metrics” (see infobox). To draw

an ROC curve, only the true positive rate (TPR) and false positive rate (FPR) are

needed (as functions of some classifier parameter). The TPR defines how many

correct positive results occur among all positive samples available during the test.

FPR, on the other hand, defines how many incorrect positive results occur among

all negative samples available during the test.

A ROC space is defined by FPR and TPR as X and Y axes respectively, which

depicts relative trade-offs between true positive (benefits) and false positive (costs).

Since TPR is equivalent to sensitivity, and FPR is equal to 1-specifity, the ROC

graph is sometimes called the sensivity vs (1-specifity) plot. Each prediction result

or instance of a confusion matrix represent one point in the ROC space.

The best possible prediction method would yield a point in the upper left cor-

ner or coordinate (0,1) of the ROC space, representing 100% sensitivity (no false

negatives) and 100% specificity (no false positives). The (0,1) point is also called a

perfect classification. A completely random guess would give a point along a diago-

nal line (the so-called line of no-discrimination) from the left bottom to the top right

corners (regardless of the positive and negative base rates). An intuitive example of

random guessing is a decision by flipping coins (heads or tails). As the size of the

sample increases, a random classifier’s ROC point migrates towards (0.5,0.5).

The diagonal divides the ROC space. Points above the diagonal represent good

classification results (better than random), points below the line poor results (worse

than random). Note that the output of a consistently poor predictor could simply

be inverted to obtain a good predictor.

4.3.3 Area under the curve

When using normalized units, the area under the curve (often referred to as sim-

ply the AUC, or AUROC) is equal to the probability that a classifier will rank a

randomly chosen positive instance higher than a randomly chosen negative one (as-

suming ’positive’ ranks higher than ’negative’). This can be seen as follows: the

area under the curve is given by (the integral boundaries are reversed as large T has

a lower value on the x-axis)

A =
∫ −∞
∞ y(T )x′(T ) dT =

∫ −∞
∞ TPR(T )FPR′(T ) dT =

∫∞
−∞TPR(T )P0(T ) dT =
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〈TPR〉. The angular brackets denote average from the distribution of negative

samples.

4.4 Training and Testing

For classification problems, normally performance of model is measured as error

rate. So simply, if the model predict the class of each class correctly, it is measured

as success and otherwise error. And error rate is calculated by dividing the errors

over the whole number of instances. Now the point is this, unfortunately we cannot

judge about the performance of a model just according to the error rate of learned

model on training set because the classifier has been learned from the same data

and performance evaluation based on it will be so optimistic. Because sometime

may be we get good result from a model but this good results may not be same on

another independent data set. For example because of existence of noise if we make

a model with a high accuracy it will lead problem because of over fitting and leaning

from noise will mislead our classifier on other real data sets. Hence, for assessing the

performance of our learned model we need to evaluate the error rate of the model

based on a data which was not a part of training set which is called as test set. Well

now if there is large amount of data is available we will not have any problem and

we can use a large part as training set and then another independent data as test

set. But if we cannot provide good amount of data our modeling will not be good

enough. Because large training instance will give a good model. In the cases with

limited size of data a certain amount is hold out as training set and the rest will used

as test set, this way is called holdout procedure. In our case as we are using the data

set provided by the German university form 6383 instance, we have a reasonable size

of data. Now point is this, which portion will be suitable for the holdout procedure.

As we know for finding a good classifier we should use as much as possible data

as training set and for figuring out the good error rate we want to use as much as

possible data as test set. Normally, in machine earning and data miming problems

of the most reasonable portions is 80 – 20, which means allocation 80 percent of

whole data to training set and the rest 20 percent as test set. Before dividing the

data set to training and test set we should shuffle the data. Because after dividing

data set, may be the sample for training or testing not be representative for the

class distribution. In other word, it is possible that the majority of one class be in

training (or test) set and this will absolutely will affect the final model. So, shuffling

the data set before dividing it to training and test set can enervate this possibility.

Also a more general way to mitigate any bias cause by the particular sample chosen
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is to repeat the whole process, training and testing, several times with different

random samples. The error rate on the different iteration are averaged to yield an

overall error rate. An important statistical technique called Cross Validation could

be used for this purpose. In cross validation, we decide about a fixed number of

folds or parts of data. For example one of the most common division is 10 fold

cross validation. Suppose that data is splited to 10 fold or portion. These portion

have not to be exactly equal and according to the size of data there could be a

tolerance for the size portions. In each turn of these portions is used as test set and

the rest will used as training set. In next iteration another portion will be treated

as test set and the previous test portion will take into account as training set with

other portions. This procedure will have done for 10 time and it is called 10 fold

cross validation. Actually training procedure is done for 10 times in this way and

the testing model is done on the portion which was out of training set during the

learning procedure. At the end 10 error estimates are averaged to yield an overall

estimate.

As we said we have a data set with 638 instances, for enervating the problem of

equal representation of class in data set, we shuffle the whole data set before dividing

it. Then we will use the 80 percent of data set as training set and the 20 percent

will be our test set for evaluating the produced predictor. But, our evaluation way

will be a mixed of these 2 ways that are mentioned. Here before testing the models

by test set we use the other evaluation method which is cross validation for finding

the best modeling algorithm for our problem. The candidate modeling algorithms

will be used and evaluated by 10 fold cross validation. At this step our assessment

about the algorithms will be about error rate and accuracy of each model. As these

measure are calculated by averaging the error rates of 10 iteration and 10 times

training procedure, for approving the calculated error rates we will do one more

time the procedure of learning by using whole training set and testing the output

model by the allocated test set which is 20 percent of our initial data set. Actually,

learning procedure will be done for the selected algorithms 11 time (10 time during

the 10 fold cross validation and last one on whole training set).

Candidate algorithms with high accuracy and error rate As we told before first

step of our modeling procedure was assessing most common classification algorithms

and modeling our training set by 10 fold cross validation. Among all these common

algorithms according to the error rate and accuracy we chose 4 algorithms and went

one step more and did the last learning phase which was training the candidate

algorithm base on whole training set and final evaluation and test is testing the

model on the test set which is the 20 divided percent of whole data set.

36



4.4.1 ZeroR Algorithm

For knowing what is the base line accuracy of the data set simply by trying the

”ZeroR” classifier we can get it. So, the reason why we get it at first step is that

actually it could be a simple but a good mood for measuring other classifiers. Actu-

ally, since 91 % of our data set is from class ”Negative”, it is easy to put all instances

as Negative and it simply give 91% of accuracy from all Negative classes which all

have put in Negative class.

Figure 4.2: ZeroR classification Algorithm results

The predictive performance of the model with detail is showed in the right-hand

Classifier output frame. The Confusion Matrix for the model is provided at the

bottom side of the Classifier output. We can see from it that all instances have

been classified as “Negative”. It is clear that such trivial model is useless and it

cannot be used for discovering “Positive” instances which are our desired goal. As

you see the accuracy of the model (Correctly Classifieds Instances) of this model is

very high: 91.14 %. This fact clearly indicates that the accuracy cannot be used

for evaluating the usefulness of classification models built using unbalanced datasets

like ours which there is a huge difference between majority and minority class.
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4.5 Most Influential Data Mining Algorithms

After introducing the evaluation methods we started to modeling by different algo-

rithm and all of them according to the explained evaluation methods we chose 4

algorithm which have better results compare to others. Actually as we mentioned

before we trained all of possible classification algorithms and tested them by 10 fold

cross validation and these 4 algorithms are chosen among the them and the last step

for proving the performance of these algorithms was retraining the selected algo-

rithm by doing one more training by whole training set and testing it by provided

test set.

4.5.1 Bayesian network

Bayesian networks is a statistical method for Data Mining, a statistical method for

discovering valid, novel and potentially useful patterns in data.Bayesian networks

are used to represent essential information in databases in a network structure. The

network consists of edges and vertices, where the vertices are events and the edges

relations between events. Bayesian networks are easy to interpret for humans, and

are able to store causal relationships , that is, relations between causes and effects.

The networks can be used to represent domain knowledge, and it is possible to con-

trol inference and produce explanations on a network.

Let U = x1, ..., xn, n ≥ 1 be a set of variables. A Bayesian network B over a set

of variables U is a network structure BS, which is a directed acyclic graph (DAG)

over U and a set of probability tables BP = p(u|pa(u))|u ∈ U where pa(u) is the

set of parents of u in BS. A Bayesian network represents a probability distributions

P (U) = Qu ∈ Up(u|pa(u)). Inference algorithm to use a Bayesian network as a clas-

sifier, one simply calculates argmaxyP (y|x) using the distribution P(U) represented

by the Bayesian network. Now note that

P (y|x) = P (U)/P (x)∞P (U) = Y u ∈ Up(u|pa(u))(1)

And since all variables in x are known, we do not need complicated inference algo-

rithms, but just calculate (1) for all class values.

After explaining the Bayesian Network, let try it on our data sets. We do mod-

eling with the prepaid training set with 10 fold cross validation and the summary

of the modeling is in below.
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Figure 4.3: Bayesian Network Algorithm

In summary with almost 13.33 % error rate we have a good accuracy. Taking

a look at the confusion matrix shows the algorithm had a reasonable output. This

algorithm classifies the positive class more successfully with 98 correctly classifies

instances over 101 instances and just with 3 incorrectly classified. And it give a

high Recall with 0.97 for positive class. For Negative class this algorithm works a

bit weaker than positive class and classified 890 over 1039 negative instances and

had error for 149 instances. It give 0.85 for recall. But having 149 wrongly classified

negative class as positive decrease the precision of positive class for this algorithm

which is almost 0.4. Then as we mentioned before for imbalanced data, as there

is a big difference between the number of instances for each class may be these

evaluation measures could be a bit confusing but the ROC curve measure shows

more reasonable the performance of our classifier.

4.5.2 LogitBoost

LogitBoost is a boosting algorithm formulated by Jerome Friedman, Trevor Hastie,

and Robert Tibshirani. The original paper[1] casts the AdaBoost algorithm into

a statistical framework. Specifically, if one considers AdaBoost as a generalized

additive model and then applies the cost functional of logistic regression, one can
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Figure 4.4: bayesian network-
threshold-positive

Figure 4.5: bayesian network-
threshold-negative

derive the LogitBoost algorithm. LogitBoost can be seen as a convex optimization.

Specifically, given that we seek an additive model of the form

f =
∑

t αtht

the LogitBoost algorithm minimizes the logistic loss:∑
i log

(
1 + e−yif(xi)

)
We are going to try this algorithm on our data set and see how it works. The

summary bellow is shows the classification of our test data by the model which is

produced through learning the training set. As we can see the total accuracy is

very high and s around 95% and just 5% of error but as we mentioned before we

are going to check other measures. According to the confusion matrix there are 24

instances of non single query classified as singleton and 34 singleton query classified

as non singleton query. Precision of 0.97 for Negative class is super good but the

errors happen for classifying the positive classes make the precision of positive class

less and 0.74. Same for recall which is 0.98 for negative class and almost 0.7 for

positive.

About ROC area fortunately we have great results and 0.96 for this algorithm

is a good result.

4.5.3 Threshold Selector with Logistic Algorithm

A meta-classifier that selecting a mid-point threshold on the probability output by

a Classifier. The midpoint threshold is set so that a given performance measure

is optimized. Currently this is the F-measure. Performance is measured either

on the training data, a hold-out set or using cross-validation. In addition, the

probabilities returned by the base learner can have their range expanded so that the

output probabilities will reside between 0 and 1 (this is useful if the scheme normally

produces probabilities in a very narrow range). By default this algorithm chose the
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Figure 4.6: LogitBosst Algorithm

Figure 4.7: logitboost-threshold-
positive

Figure 4.8: logitboost-threshold-
negative

Logistic regression classifier and we even we tried other classifiers we found out the

Logistic more efficient than others in this algorithm.

Down below is the summary of re-evaluating the test set with the model based on

logistic regression classifier. First impression from the accuracy and error rate with

94% and 6% sound a good result. Taking a look at the confusion matrix shows that

algorithm with 49 wrongly classified non singleton query as singleton has done good

job and worked a bit weakly in classifying the singleton queries with 35 wrongly

classified queries. Precision of Negative class is 0.97 which for positive class is 0.6

and recall is 0.95 and 0.75 for negative and positive classes respectively. Next and

more important measure for us is ROC area which 0.95 sound really good in this
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Figure 4.9: Threshold Selector with Logistic algorithm

algorithm.

Figure 4.10: Threshold Selector ROC
Curve for Positive class

Figure 4.11: Threshold Selector ROC
Curve for Negative class

4.5.4 C4.5 - Decision trees

When we give a data set to the C4.5 algorithm, it first makes an initial tree using

the divide-conquer technique as bellow: If all the instances in data set belong to the

same class, the tree will be a leaf labeled with the most frequent class I data set.

Otherwise, select a test based on a single attribute with two or more outcomes. The

algorithm will do this test the root of the tree with one branch for each outcome of

test, divide data set to subsets according to the outcome for each case, and apply
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Figure 4.12: J 48 algorithm

the same process recursively to each subset. In this algorithm attributes can be

both kind of numerical and nominal and this determines the type and the format of

the test outcomes. Then the initial tree is pruned to avoid over-fitting.

C4.8 which is improved version of C4.5 in Weka is knows as J48. So, the purpose

is to learn the possibilities provided by the Weka program to build and visualize

classification trees. In the classifier menu, select the J48 method from the trees

sub-menu.

As we see in summary, algorithm has around 93% of accuracy with around 7%

of error rate. Having a look at the confusion matrix shows that even algorithm just

with 26 wrongly classified non singleton queries as singleton had good performance

about them but with 49 instances of wrongly classified singleton instances had not

good performance about them. Precision and recall are same also, algorithm have

0.95 about the negative class and 0.67 about positive class and also 0.97 for negative

class in recall and 0.51 for positive class.

And last measure again ROC area in compare with other alorithms is not good

with 0.77. It So, we can decide that J48 is not a good algorithm for our data set

and models made based on this algorithm could not be useful for classification of

queries.
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4.5.5 ADTree

ADTrees were introduced by Yoav Freund and Llew Mason. However, the algo-

rithm as presented had several typographical errors. Clarifications and optimiza-

tions were later presented by Bernhard Pfahringer, Geoffrey Holmes and Richard

Kirkby. Implementations are available in Weka and JBoost. Original boosting al-

gorithms typically used either decision stumps or decision trees as weak hypotheses.

As an example, boosting decision stumps creates a set of T weighted decision stumps

(where T is the number of boosting iterations), which then vote on the final classifi-

cation according to their weights. Individual decision stumps are weighted according

to their ability to classify the data.

Boosting a simple learner results in an unstructured set of T hypotheses, making

it difficult to infer correlations between attributes. Alternating decision trees intro-

duce structure to the set of hypotheses by requiring that they build off a hypothesis

that was produced in an earlier iteration. The resulting set of hypotheses can be

visualized in a tree based on the relationship between a hypothesis and its ”parent.”

Another important feature of boosted algorithms is that the data is given a

different distribution at each iteration. Instances that are misclassified are given a

larger weight while accurately classified instances are given reduced weight.

After a weak performance with J48 algorithm let’s try this ADTree algorithm on

our data set and check. As we see down below the accuracy and error rate sounds

good and model has 94% of correct classification and just 6% of error. But according

to the ROC measure this algorithm among the tree classifiers seems more precise

and performs well and does good job about the Positive class in compare with the

J48 algorithm.

4.6 Imbalanced data and skewed distributions

4.6.1 What is a imbalanced data set

Several issues may impress output of a classifier algorithm. One of these issues

depends in the distribution of instances of classes. For some kind of application

domains, a huge disproportion in the number of cases belonging to each class is

usual. For example, in detection of fraud in credit card transactions, the number of

legitimate transactions is much higher than the number of fraudulent transactions.

In insurance risk modeling, only a small percentage of the policyholders file one

or more claims in any given time period. Also, in direct marketing, it is common

to have a small response rate (about 1%) for most marketing campaigns. In our
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Figure 4.13: ADTree Algorithm

problem we have more or less same condition. The number of instances for the

Singletone class is around 10% of the total number of instances and multi tasks

have the major part of data set with around 90% of total distribution. When this

difference among the frequency of classes is large, the learning algorithm may have

difficulties to learn how can realize the instances of minority class and final model

will be weak about discovering it. In these kind of imbalanced and skewed data sets

it easy for algorithm to put the instances in the class which has more probability

than other one. Actually, this will not be a classifier based on the attributes and will

be more about the population of the classes. I mean algorithm even can get a high

classification accuracy even with putting all instances in the class with majority.

Now we discuss several issues related to learning with skewed class distributions,

such as the relationship between cost-sensitive learning and class distributions, and

the limitations of accuracy and error rate to measure the performance of classifiers

[18]. Most of learning algorithms are not able to make a model that accurately

classifies the class with less frequency in skewed datasets. They normally have good

accuracy and low error rate for the class with high population. Also in first glance

the total accuracy and error rate of final model based on the imbalanced data set

will be very satisfying but it is unacceptable for minority class.
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The problem arises when the misclassification cost for the minority class is much

higher than the misclassification cost for the majority class. Unfortunately, that is

the norm for most applications with imbalanced data sets, since these applications

aim to profile a small set of valuable entities that are spread in a large group of

“uninteresting” entities. There are some works that have already done for solving

this problem and in our work we will follow and use their suggested techniques[4, 14].

4.7 What is the solution

Researchers find out some solutions that have 2 main ways. First one does some

changes in distribution and frequency of classes and second way does not change

touch the data set and just adjust algorithm by applying cost matrix. Well, first

technique tries to resample training set and modifies the distribution of instances

of each class before than modeling and applying the classification algorithm. Re-

sampling of training set could be done by increasing or decreasing the number of

instances. Actually when the number of instances in a class is so higher than other

one we decrease the distribution of majority class by removing some of the instances

of that class and we actually do Under-sampling or we can increase the number of

instances of minority class which is called over sampling. This way is not completely

applicable without any effect on our final model but works very good and tackles

the problem of imbalanced data. Over sampling can lead to over fitting and under-

sampling sometimes outperforms oversampling but in other hands can lead to lose

some useful information by removing instance. Next problem about the sampling

technique is the strategy of sampling. For example how many and which of instances

should be removed in under sampling technique or how many new instances and how

should be created for oversampling. In cost matrix instances of minority class have

high misclassification cost than the majority class.

Second technique as we mentioned before is cost sensitive classification which

works by applying a cost matrix on classification algorithms which can be done by

any algorithm. Cost-based learning can be divided into three steps; first step is

making a specific learning algorithm sensitive to cost, second one is assigning ex-

amples to their lowest risk class, and converting an arbitrary learning algorithm to

become cost sensitive. Adjusting the probability estimation or adjusting classifica-

tion threshold can also help counter the problem. Finally and last step is building

classifiers that learn each class separately can also be used to overcome the problem

of imbalance. Most of these solutions have been discussed in this paper[18, 14].

DOwn below is the list of mentioned techniques for solving the problem of imbal-
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anced data sets.

1. Under-sampling. One very direct way to solve the problem of learning from

imbalanced data sets is to artificially balance the class distributions. Under-

sampling aim to balance a data set by eliminating examples of the majority

class;

2. Over-sampling. This method is similar to under-sampling. But it aims to

achieve a more balanced class distributions by replicating examples of the

minority class.

3. Assign misclassification costs. In a general way, mis-classify examples of the

minority class is more costly than mis-classify examples of the majority class.

The use of cost-sensitive learning systems might aid to solve the problem of

learning from imbalanced data sets;

4.8 More Experiments

After assessing the mentioned ways about dealing with the imbalanced distributed

data, now we are going back to work with Weka and try them. For the 2 first

ways (Over-Sampling and Under-Sampling) there is a tool which is like a filter in

Weka and we can apply it on the data set. In the filter section under the supervised

subsection there is a filter in the name of SMOTE which is does what we want about

oversampling and Under-sampling.

It re-samples a dataset by applying the Synthetic Minority Oversampling Tech-

nique (SMOTE). The original dataset must fit entirely in memory. The amount of

SMOTE and number of nearest neighbors may be specified. For more information,

see the paper “Synthetic Minority Over-sampling Technique”[3].

4.8.1 Options available in Weka or re-sampling

Class Value – The index of the class value to which SMOTE should be applied.

Use a value of 0 to auto detect the non-empty minority class.

Nearest Neighbors – The number of nearest neighbors to use.

Percentage – The percentage of SMOTE instances to create.

Random Seed – The seed used for random sampling.

As our Yes class almost has the 10% of our class distribution, I apply 800% in

SMOTE option for increasing the number of Yes class instances around 10 times.
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In this way we will have a distribution which have around 50% of each class. Now,

after adjusting all of setting we should apply the filter and result will be a new build

dataset with a balanced class distribution which new made samples are generated

from the 5 nearest instances.

4.8.2 Modelling with new resampled traning data set

After all explained procedure of re-sampling our training set with some different

options which were the way of creating new instances, now we have a new training

set with 8208 instances and by chance exactly same size of two classes with 4104

instances in each. Just for making sure that new created instances won’t be near

each other we do a new shuffling with randomization that we had already used

it before for initial training set. And after applying this filter is time to go to the

classification process and try the previously tried algorithms with the initial training

set.

Well, retraining the new new data set shows us some of classifier do give any

considerable change in the result. As we mentioned before, by over sampling and

under sampling actually we are going to training and make a model which will do

same job about the test data which is not balance and is like the initial training

set. Unfortunately, even they improved and made much more better model through

the new re-sampled training data set but when we want to evaluate the model in

last step they again give the same results as the have given with initial training

set. And we did not get any improved results. Even some of them worked worse

and the output model is working worse and give less accurate prediction. As we

tried again this new re-sampled training set on different algorithms, also there are

some algorithms which had bad result with the initial training set but this time

with better results in learning and also testing procedures. Below we list some of

the algorithms which performed better with new training set.

4.8.3 Logistic Regression with new data set

Logistic regression is an algorithm which in many cases looks like the ordinary

regression. The procedure of this algorithm is modeling the relationship between a

dependent variable with one or more independent variables. This algorithm make

the possibility of checking the fit of model as well as at the importunateness of the

relationship that we are modeling. However, the underlying principle of binomial

logistic regression, and its statistical calculation, are quite different to ordinary linear

regression. While ordinary regression uses ordinary least squares to find a best
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Figure 4.14: Logistic Algorithm with resampled training set

fitting line, and comes up with coefficients that predict the change in the dependent

variable for one unit change in the independent variable, logistic regression estimates

the probability of an event occurring (e.g. the probability of a pupil continuing in

education post 16). Logestic Regression algorithm with the normal training set had a

weak performance on Positive class which had almost 50 percent wrongly classified

for this class which was same percentage of error rate on test set. But with the

new training set it seems that the algorithm learns better about the positive class

and classifies it better than before but it is not costless and we loose something in

Negative class classification and model treats weakly about the negative class which

results as high error rate in Negative class. So, we can conclude that this algorithm

actually does not make noticeable difference in error rate and precision of model

and even if does good job in positive class, it works worse than before about the

negative class.

4.8.4 Bagging Algorithm with new data set

Bagging or boostrap aggregating, is a machine learning algorithm which has imple-

mented for making better the accuracy of machine learning algorithms which are
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used in statistical classification. This algorithm can reduces variance and by this

way avoids having over fitting in our models. This algorithm is usually is applied

in decision trees but the point of this method is that it can be used with all type

of the modelling algorithms.it is a special case of the model averaging approach.

Given a standard training set D of size n, bagging generates m new training sets Di,

each of size n’, by sampling from D uniformly and with replacement. By sampling

with replacement, some observations may be repeated in each Di. If n’=n, then

for large n the set Di is expected to have the fraction (1 − 1/e)(≈ 63.2%) of the

unique examples of D, the rest being duplicates. This kind of sample is known as

a bootstrap sample. The m models are fitted using the above m bootstrap samples

and combined by averaging the output (for regression) or voting (for classification).

For bagging algorithm we also have almost same condition with the previous one.

In total the numbers of correctly classified instances does not change significantly and

the only thing which change is the balance of correctly classified for each of classes.

In Positive class new model gets better in correctly classification and in negative

class gets worse. But, even the total number of correctly classified instanced does

not change a lot we reach to our goal. Because as we told before in imbalanced data

we should take care about the cost of the classes. I mean if classifying singleton

queries correctly is more important for us than classifying multi task queries, we

have reached to our goal by this way and most of instances are classified correctly.

Like the example of fraud in a bank system classifying a normal transaction as a

fraud is not costly as classifying the fraud transaction as a normal one.

4.8.5 LoogitBoost Algorithm with new train set

This algorithm was one of our chose one as a good classifier for our problem and

data set. Now with the new training set we get a model which in practice even give

less number of correctly classified instances but as mentioned before this model is

also learns better about the class which has more cost than other. This algorithm

is one of the best with around 5 % of error rate about positive class has the best

performance about the Singleton query discovering, even it does more mistake and

mis-classify more multi task query in compare with the model made by the initial

training set but in a case that purpose is discovering as much as possible of positive

class absolutely this model will be one of the best.
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Figure 4.15: Bagging Algorithm with over sampled training set

Figure 4.16: RegitBoost Algorithm with oversampled training set
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4.9 Under-sampling

Vice versa, when we do under-sampling we will decrees the number of instances of

class with high population to have a balanced number of instances. In our case we

decrease around 800% of instances of negative class and then we will have less in

compare with the original one (around 1000 instances) but the new one will have the

balanced distribution with 50% of each class. After trying the over sampling method

we can see that also in this way we can get some same results like oversampling.

But there is a problem about under-sampling that we are not that much interested

to do this technique and it is the loosing information. Actually, a good model from

an algorithm in supervised learning could be built if we can supply enough instances

for our algorithm and it can learn from each of instances. So, loosing each sample

meas loosing some information and that leads a weak and not well trained model.

4.10 Cost sensitive classification in output

We talked about the imbalanced data and the ways of handling the problem of

population of instances. We introduced the Over-sampling and Under-sampling

method which were trying to balance the number of instances before training and

making model. More precisely we should say that when we use these 2 method

for solving the problem of imbalanced data actually we try to fix in in the first

step, I mean we make a model based which is trained by balanced data set and the

output is a model which take care about the class which has more cost than the

others. Basically, when we re-ample a dataset with imbalanced instanced actually

we indirectly say that the class with minority population s more important for us

and any wrong classification about this class will be more costly for us. So, by

training aa algorithm with re-sampled data set we say to our model that take care

more about this class and the model is made by this consideration.

But, there is another way for handling the imbalanced data set and it works in

different procedure of these two re-sampling way. The thid way that we explained

before about imbalanced data is assigning misclassification costs. In this way we

first learn from the original train set without balancing the number of instances and

for the algorithm which are defining probability for classification, at the end and

after modeling for final results made model consider the cost of misclassification and

changes the threshold of the probability between two classes and puts even instances

with less probability of being in class with minority population even it can be lead

for misclassification for the other class.

For doing this in Weka by choosing the ”CostSensetiveClassifier” we can try
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this way of tacking the imbalanced data. Actually it does not choose the classifier

algorithm and we should decide about the algorithm which we want to use. Cost

matrix is the matrix we should define and decide about the cost that we want to

apply. Dimension of matrix depends on the class attribute that we have. As we

have two class which are Positive and Negative, we will make a 2 dimension cost

matrix that defines the cost of misclassification for each class by allocating the coast

in non diagonal elements of matrix. Well, this cost normally defines according to the

different parameters but in our case as we want to have reasonable misclassification

in both classes according to the minority class which has around 10% of distribution

we de try some different cost matrix. For example we try misclassification in Positive

class 5 times costly than Negative class and some other random ones.

Now, according to our features type we will choose our classification algorithm.

Based on previous experiment we can decide about the algorithms which had good

results in initial classification.

4.10.1 Logestic Algorithm withwith cost sensitive classifica-

tion

As we can see below, with cost matrix which in misclassification of positive class

costs 5 time of a misclassification of negative class, and re-evaluating the produced

model we can get more or less same results that we got in experiment that we did by

training the Logistic algorithm based on the re-sampled training set. The precision

of Positive class decrees in compare with he model which is made by initial training

se and that is because of making more mistake in Negative class but the number

of truly positive classified instances has been increased. ROC value and the area

under the ROC value is also high and means that model doeas a good job for our

imbalanced data set.

4.10.2 Bagging and LogitBoost Algorithms with cost sensi-

tive classification

Applying these two algorithms with cost sensitive classification approves that more

or less all do same job when we re-sample the training set by over or under sampling

technique. Just in this technique we can adjust the cost matrix to have more desired

results about the class which has more importance than the other one.
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Figure 4.17: Logistic Algorithm wit cost sensitive classification

Figure 4.18: Bagging Algorithm with cost sensitive classification
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Figure 4.19: Logitboost Algorithm with cost sensitive classification
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Chapter 5

Conclusion and Future work

5.1 Conclusion

In this work first of all we tried to define attributes as much as possible for each

query. We used the query itself, time and number of clicks done for each query

to define 48 lexical and semantic features. Then we had a new data set with 6383

instances and 49 attributes included the class attribute. According to the type of our

attributes we tried to use more appropriate algorithms to make model for prediction.

We came up with some algorithms which had good and acceptable enough for our

purpose. For making sure and secure about the correctness of model actually we did

11 time of training and last final test. For each algorithm we did a cross validation

with 10 fold and then when the results outcome from this step was good we shift to

the last and 11th training with whole training set and made model controlled and

test with allocated test set.

Another aspect that we discussed in this work was the issu of imbalanced data

sets. We talked about the most common ways for dealing with the skewed data sets

and used these techniques for even getting better results. Cost sensitive classification

is the solution fro our case. But, there are two ways for applying the cost sensitive

classification . One is directly applies during the learning procedures and the model

which is made is actually cost sensitive. This technique needs preprocessing on

training set and normally is done by Over and under-sampling and te algorithm

get trained by the re-sampled data set. And other technique which works a bit in

different way and model is made by original training data without any re-sampling

and preprocessing and normally os done by algorithms that define probability for

instances for classification. Then the prosecuted model applies the defined cost

matrix when it wants to classify the instances based on the defined cost matrix

and slightly changing the threshold of probability. The point of the cost sensitive
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classification is that, the total number of the correctly classified instances normally

does not change a lot and just based on the importance each of our classes model

tries to discover as much as possible instance of the class which is more costly than

the other but it will increase the error rate of other class with less cost.

Now, according based on the our goal and application we can decide about

the type of our modeling procedure. If we want to have a reasonable and fair

classification among all instances with out applying any importunateness and cost

we can use the mentioned algorithms that we applied on initial and original data

set. But, if in a special application according to our need goal becomes classifying

a special class, we can use the cost sensitive classification and put more cost in cost

matrix for the class which we want to find as much as possible.

5.2 Future work

For this work we defined 48 attributes for every query. These are defined base on

the query itself, time of doing query in a session and number of clicks done for

each query in session. We know that all of these feature do not have same effect

in classification. Absolutely some of them play more role in model for making

decision about the type of class of each query. One phase of next step could be

evaluating these defined queries and even pruning the less effective ones and do

modeling without those one to compare the results based on remaining attribute.

Another phase of our work could be adding some more and new attribute to improve

the accuracy of defined models. We are tying to implement some frameworks like

yoga and calculate a semantic feature based on this framework for our instance and

see the effect of the newly defined features on our results.

As we know there are so many other semantic measure which can be defined

for evaluating the semantic similarity of two text, our plan is applying them for

queries and using them as new feature. There will be some boundaries because of

the shortness of queries but still there are more options to use the semantic similarity

measure for our feature work and making our classification model more and more

precise about finding the single task queries.

Since, our work is quite new, there are a lot of potential fields about discover-

ing tasks of queries and specially, single task queries so we will do more research

about the fields which our research could be useful in them. These field can be

recommendation systems and other similar ones.
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