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Abstract

Nowadays, the need to organize data and enhance its accessibility in a systematic way
is ubiquitous. However, data is not free from bias and preconceptions, and the inherent
data bias may negatively influence data-driven algorithms. Consequently, the informa-
tion represented may tend to favour certain groups over others, thereby perpetuating
discrimination against so-called protected groups. This is also particularly evident in
the field of learning to rank (LtR), in which LtR algorithms are trained to rank a set of
items represented as feature vectors.

Numerous studies have been conducted in recent years on fairness management for ma-
chine learning algorithms, with the objective of reducing the effects of data biases on
the trained models. In this thesis, we focus on the relationship between LtR and fair-
ness. We modify an LtR framework, LambdaMART, whose original goal is to optimize
NDCGQk, by adding a group-based fairness measure to optimize, called Normalised
Discounted Difference (rND). Following an initial study focusing on LtR and fairness,
various methodologies for combining the two metrics and their application on two real
datasets will be proposed and evaluated.



Chapter 1

Introduction

Nowadays, machine leaning, particularly its application in the Learning to Rank
(LtR) field, is more critical in everyone’s daily use. This extensive usage is signifi-
cant because LtR algorithms are used in search engines and recommended system used
by the platforms that are used daily. Since they are so used, it is important to deal with
a particular problem that may be present in these algorithms, i.e., equity and impartial-
ity, which can be defined as Fairness. In particular, in LtR, resolving the problem of
Fairness means resolving all the problems that can be created by ranking making dis-
criminant choices. This discrimination can be created because the data or the algorithm
used is not fair, and this creates a situation where a specific group, described by a specific
attribute like "Sex’ or ’Age’, is considered not protected and then discriminated against.
The scope of this work is to create an LtR algorithm that deals with the problems created
by unfairness, particularly a model that finds a trade-off to optimise both Effectiveness
and Fairness. Regarding Fairness the objective is to achieves statistical parity between
the different groups and this means that the groups are treated in the same way regard-
less how they are defined.

The thesis is divided in different chapters. In the chapter 2, we are going to explain all
the basic concepts of learning to rank and Fairness necessary to better understand our
problem. Then, in chapter 3, we will explain the approach we adopted and the moti-
vations for the algorithm’s and we will show some experiments done to demonstrate its
validity.



Chapter 2

State of the art

In this chapter, we will explain the thesis’s fundamental theory. It is divided into four
sections. The first section, 2.1, explains machine learning, its importance, and informa-
tion retrieval with the importance of the search engine. The second section, 2.2, explains
a specific combination of machine learning and information retrieval, and that’s learning
to rank, with its different implementations. In the third section, 2.3, a specific problem
is addressed and explained, i.e. the problem of Fairness, which has become an important
aspect to take care of when using machine learning, and the different methods that can
be used to resolve it. Finally the last section, 2.4, explains the two dataset that we will
use to test our method.

2.1 Machine Learning and Information Retrieval

2.1.1 Machine Learning

Machine learning is a group of techniques and methods that uses data to make decisions
or predictions. The decisions that can be made are different and can be applied into
different domains with different applications such as recommendation systems, prediction
of disease based on patient analysis, fraud detection, image analysis and object detection,
and many other. To do all these things, it is necessary to have data to use as a basis for
the algorithms.

The data can be of different types based on the algorithm’s scope, this means that the
input can be an image, some text, numbers representing some kind of information and
other types, the important is that is transformed in number format so the algorithm can
"understand" it. Usually the data is processed; first cleaned [20] (so the duplicates, the
missing values, and the errors are removed), and then normalised (this means that it is
scaled to a standard format, which makes it easier to work on it). Obviously, another
important part is the algorithm. Some examples are regression or classification tree,
clustering methods or neural networks, and it is essential to choose the right one because
each has its advantages and disadvantages for each kind of problem that it treats.

The data is usually given as three sets: the training set, which contains the data that the
algorithm will use to "learn" the patterns and then generate the output; the validation
set, which is used as a first testing platform where the model is applied to see if the
results are good, and if not, then it is adjusted, and last one is the testing set which



contains the data that the algorithm will use to test if it learned correctly and then with
different measures it is verified its accuracy.

As just said, there are different algorithms but they can by grouped in four big categories
[31]:

e Supervised learning: This kind of algorithms takes labelled data, given in the
format of a pair (z,y) where z is the actual data, and y is the expected output.
The output is generated by an unknown function y = f(x). There are different
algorithms, such as decision trees, support vectors, or linear regression models.
The problems are usually divided into classification, the scope of which predicts
belonging to a class, or regression, which predicts a score of how much an object
belongs to a particular class

e Unsupervised learning: In this case, the data do not have a class, so the input
is received only from the description of the data, and then different algorithms
can be used to cluster the data, i.e., to group the items that are similar based on
functions that describe the distance between the items

e Semi-supervised learning: This is a combination of supervised and unsupervised
algorithms and uses the advantages of both methods to classify items

e Reinforcement learning This is more particular, as in the unsupervised, the
data are not labelled, and it is based on an agent, an environment, some policy
and the rewards. Here, the idea is that the model, through a process of try and
error, it starts from a specific condition and iteration after iteration through this
process it has the scope to achieve optimal conditions. The basic idea is that the
agent, which is the model, makes some choices; based on these choices, there is
a specific output. If the output is optimal, there is a reward; otherwise, another
choice is made, this process is repeated until the optimal state is achieved. These
methods are principally used in financial predictions, games, robotics and other
similar fields

2.1.2 Information Retrieval

Information retrieval can be defined as the task of finding documents that are relevant
to a user’s need [37]. One well known example of an information retrieval system is the
search engine, which is also necessary because the large amount of accessible data makes
it difficult to access it efficiently [28].

In Figure 2.1, it is showed how a search engine is composed and in the following parts
all the components are explained:

e Crawler which uses some particular strategies to gather documents from the web

e Parser that analyses the documents and creates an index of terms and a hyperlink
graph according to the analysis

e Indexer that transforms the parser’s results into indexes, and this allows to have
a quick document search
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Figure 2.1: Parts of a search engine (Insp. by [28])

e The link analyzer then evaluates the graph the parser generates to assess each
page’s significance. It also acts as a ranking feature to help the page to be recrawled

e The query processor creates the connection between the user and the search
engine. Then, the queries are processed using text-cleaning techniques, such as
stemming, lemmatisation, removing stop words, and so forth. This helps index
terms that search engines can then interpret

e Ranker compares the queries with the indexed documents by taking them as input
and can then, thanks to some heuristic formulas, calculate a matching score which
it can also be determined by extracting different features for every query-document
pair, and then combining them

Considering the importance of the ranker, much attention was given to the methods that
do this part of the process.

As just said the part of the ranker is very important and there are different algorithms,
that do this task, that were created in the years. The first, and most simple, algorithm
that can be used is a Boolean Retrieval Model [3]. In this case, each query is
expressed as a boolean expression combined by the operators AND, OR and NOT. This
model works in the following way: given N documents, each document is treated as a
boolean feature, which will answer True if a specific word is present and Fulse otherwise.
The query, as said, is expressed as a boolean expression, and then the model will give
all the relevant documents that the expression evaluates as True. Even if the model
is simple to implement, it has different disadvantages, such as the fact that it is not
possible to order the documents, and it is not easy to express the queries as a boolean
expression. As can be deduced, the method could be more usable, and new algorithms,
such as the Vector Space Model [3], were created. This kind of model takes as input,
or calculates it in some way, a document’s relevance to the given query, so thanks to
that it is possible to know the relevance of each document and then rank them. In order



to do so each document is represented by a vector of words describing it and then with
different methods is possible to calculate how important each document is to the relative
given query. This association between the query and the document is done thanks to
techniques such as the cosine distance, which allows to calculate how much the query
vector and the document vector are similar. Then, thanks to this distance each document
can be ranked. One of this new algorithms is the one that uses the BM25 [36] function
defined as

TF(gi,dy) - (k+1)

(2.1)
TF(gi dj)+ k- (1-b+b- %)

N
BM25(d;, q1.n) = Z IDF(g;) -
i1

N is the number of documents

e T'F(g;,d;) is the count of the number of times the word ¢; appears in the document

d;

|d;| is the length of document d; in words

d;]
N

L is the average document length defined by L =),

k and b are tuned by cross-validation

IDF(g;) is the inverse frequency of the word ¢; given by

N — DF(g;) + 05

IDF(@) = log—Fpro"05

e DF(g;) is the number of documents that contain the word ¢;

BM25 is influenced by how many times a word appears in a document, but it only has
to appear in a few documents; otherwise, it is not considered relevant since it is present
in almost all of them and this implies that even if the word is very frequent its value to
the query it is not so high.

2.2 Learning to rank

In Section 2.1 is explained the importance of the ranker in the search engines and what
are the machine learning algorithms, Learning to Rank (LtR) is a combination of
both. LtR is a model based on scores, so the scope is to output a relevance score for
each pair composed by a query and an item and then sort them to give a rank.

In Figure 2.2, is seen the fundamental process of the LtR method which is composed
of two phases: the learning phase which takes the training data, formed by n training
queries ¢; (¢ = 1,....,n) and their corresponding items represented by the feature vector

m(®

z®) = {xy)} ) (where m(® is the number of documents linked to query ¢;), along the
score that ingiicates how relevant the document is for the query [28|, and this is defined
as the relevance judgement and can be given by:

10



e Relevance degree: in this way, the relevance of a document to a given query is
given by some human operators, and this is one of the most used methods given its
simplicity due to the fact that is only necessary to watch and confront the given
values

e Pairwise preference: also here, the preferences are given by humans, but it is
between two documents, so it is just which one is more relevant to the given query

e Total order: the preference is given as an order of documents based on the query
denoted as a particular permutation, and this is the most costly method of the
three

One problem that can be present in this kind of algorithm is the absence of judgment in
some cases and those then are considered by default as non relevant.

Once that all these data are prepared then a loss function h uses them in the training
phase to learn to rank the items. After this is done new data is passed to the model,
this is the testing phase, and is produced a ranking. Therefore is calculated a score with
a specific measure that confronts the relevance judgement given by the algorithm and
the true ones. This score is calculated for each query and then is averaged to get a total
score.

Different implementations of learning to rank have been made and can be classified
into three types: pointwise, pairwise, and listwise. These techniques utilise distinct
strategies based on various input, output, hypotheses spaces, and loss functions.

Training Testing
Data Data
Learning System Algorithm Ranking System

Prediction

Figure 2.2: Learning to rank frame (Insp. by [28])

2.2.1 Measures Used

As said the ranking produced is measured and there are different types of measures that
can be used, in the following section some of them are described:

1. Mean Average Precision(MAP): Before defining MAP, it is necessary to define
the Precision at Position k, PQk, which calculates the fraction of documents that
are relevant in top k positions. In case that the judgment is binary, this can be

defined as
Ztgk ]{Uﬂfl(t)zl}
k

PQk(m,v) = (2.2)

11



I1y is the indicator function which is 1 if the condition inside the parenthesis is
fulfilled. 7~1(j) is the document ranked at position j of the list 7. v is a list of
relevance of items and is 1 in position ¢ if the ¢-th item is relevant otherwise is
0. But this is the average precision only at some position k, then the Average
Precision (AP) defined for all the items is

B Z?:l Paf - [{’Uﬁ

AP(r,v) = =il

2.3
— 23)
m is the total number of documents related to query ¢, particularly those with
label 1, are m;. Now that AP is defined then MAP [3] is defined as the mean value
of AP calculated on all the queries

. Discounted Cumulative Gain (DCG): DCG |24, 23| has the advantage of
handling binary and multi level relevance judgments. It calculates the scores giving
more importance to the items placed in the top positions. For a specific query, it

can be defined as ’

oli 1
DCGQT = Z z
=1

log(1 +7) (24)

l; is the relevance label of i-th document; T indicates the truncation level, so in
case that the algorithm does not need all the ranking it can stop at a specific level

. Normalized Discounted Cumulative Gain (NDCG): Another measure is the
NDCG |[24], which is defined as

bcGar
ND T= 2.
caa maxN DCGQT (2:5)
With the denominator that is the maximum DCGQT for the query taken into

consideration

The previous measures are all defined in [0, 1] and are position based, so they are dis-
continuous and non-differentiable. Their particularity is that their values change only
when one item is ranked higher than the other.

2.2.2 Pointwise

This method is the most used, that’s because each document is scored independently
with the ground truth target values. The input space is formed by documents described
by a feature vector. The output space is given by the relevance degree of each single
document. The true label can be converted from different types of judgment and can be
described in terms of relevance degree; some examples are:

o If it is given the relevance degree [;, the ground truth label for document z; is
defined as y; = [,

e By determining the pairwise preference [, ,, it is possible to obtain the ground truth
label by counting the number of times a document outperforms another document

12



The hypothesis space, which is the set of all hypotheses the algorithm returns, includes
functions that use the document’s feature vector to predict its relevance degree. The
function f, called the scoring function, takes this data and creates the results that allow
the documents to be ranked.

There are several problems with this method, some of them are the following:

e The input object is just one document, so the interconnections between the docu-
ment and the order of documents are ignored, and the loss function focuses only
on the prediction of the ground truth label

e Multiple documents can be linked to a single query, but this is not considered. If
various documents are associated with different queries, the precision of the loss
function will diminish

e The loss function may give excessive importance to documents that are unimpor-
tant to the user, as it needs to consider their position in the ranking and the
function does not do it

e The training set requires the true label

2.2.2.1 Example of algorithms

As said previously, the goal is to create a ranked list of the documents which can be
viewed as a regression [19], classification, or ordinal problem.

2.2.2.1.1 Regression

In this scenario, solving the ranking becomes a regression problem. This means that
the model has to predict a continuous target variable, and the degree passed is also a
continuous variable. An instance of this is the algorithm described in "Subset Ranking
Using Regression" [14], which requires a group x = {z;}72, related to a training query
q and the true labels of the documents given by Y = {y;}"2,. The documents are then
ranked by a scoring function f, and the loss function is defined as:

L(f325,y5) = (95— f(x))” (2.6)

In Figure 2.3, is possible to observe that zero loss is present only if the scoring function
f(x;) is exactly equal to the label y;.

2.2.2.1.2 Classification
When viewing the ranking as a classification, the relevance degree is given as a category
label. Here, the classification can be divided in binary and multi-class:

e Binary: An example is the SVM-Based Method [32, 44| that uses documents,
x = {x;}7.,, and their binary relevance judgements, y = {y;}7.,, with respect to a
query ¢. If the documents are relevant y; = +1; otherwise, y; = —1. SVM is then

13
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Figure 2.3: Square Loss Function (Insp. by [28])
defined as
) nomd
mim§||wl|2 + A Z ij(-z)
i=1 j=1
s.t. wag-i) < -1+ 5]@, if y](-i) =0 (2.7)

wizl > 1€V iyl =1

5,7(1) 2 07 j = ]‘7"'7m(i)7i = 17 "'7n

Where xgi),y](-i) are the j-th document and its label with respect to a query g¢;.
Moreover m is the total number of documents associated with query ¢;. The
correct classification of xg-l) needs to satisfy the defined constraints, and the loss
function is a hinge loss determined for each document. This means that if the label

yj(i) is +1 and the model predicts a value equal to or greater than +1, the document

will have zero loss. Otherwise, the loss is £ J(l)
The graphical representation is shown in Figure 2.4.

Multi-class: A multi-class classification technique is proposed in "McRank: Learn-
ing to Rank Using Multiple Classification and Gradient Boosting” [27]. It takes
the documents = = {z;}7., related to the query ¢ and their relevance judgment

y = {y; }g”zl and predicts ¢; on ;. The loss function replaces the 0—1 classification

14
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Figure 2.4: Hinge loss of the function y; f(z;) (Insp. by [28])

error, L(y;,y;) = Iy, 24, and is defined as

m K
o(T5y) = D> —log P(§; = k) I~ (2.8)

J=1 k=1

Belonging to a category is determined by a particular function, and the classifier’s
output is transformed into a probability, with a weighted combination being utilised
to calculate a document’s final ranking score.

2.2.2.1.3 Ordinal

This method considers the order of the true labels during the training phase.

The condition that is necessary is to have the categories that are K-ordered. The
objective is then to find a scoring function f and consequently utilise the thresholds
by < by < ... < bg_y to differentiate the outputs of the scoring function into distinct
ordered categories.

PRanking [15] is such an algorithm. The algorithm projects into a vector w the doc-
uments and then the scope is to find the direction of this vector. To get the result it
is necessary to do an iterative learning process, this means that the instance z;, is de-
fined at an iteration ¢ associated with query ¢. After having x;, the algorithm estimates
U; = argmauny, {waj — b < 0}. Then compares the outputted value with y;, and if the
answer is incorrect then it indicates that a threshold k exists where the value w'z; is
not aligned with by. To fix this situation, the values of w'z; and by, are adjusted to-
wards each other, and this implies that w is transformed in w = w + z;; this is repeated

15
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Figure 2.5: Learning process of PRanking. The red dot is the output created by the
algorithm, the yellow one is how it is placed after the update (Ins. by [15])

until convergence. In Figure 2.5, an example of the learning process of this algorithm is
presented.

2.2.3 Listwise

Here, the set of documents related to query ¢ are the input space, this is denoted as
x = {x;}7.,, and in the output space, there is the document’s ranked list.
From the judgments, it is possible to get the true labels in the following way:

o If the judgment is of a relevant degree [;, then all the permutations consistent with
the judgment are ground truth permutations.

e In case of a pairwise preferences, all permutations consistent with the pairwise
preferences are considered valid.

The hypothesis space uses a function h that predicts the order of the documents by using
a scoring function f, this last function gives the score to each document and arranges
them in such a manner that at the end is present a specific permutation.

The listwise methods have two types of loss functions: one is directly correlated to the
evaluation measures, and the other is not. Consequently, the algorithms can be divided
into those that use the first type and those that use the second.

2.2.3.1 Example of algorithms

2.2.3.1.1 Measure-Specific Loss

The objective here is to improve the metrics used to evaluate ranking performance. The
issue is that the metrics usually used, like NDCG and MAP, are based on position,
making them discontinuous and non-differentiable [35]. This challenges optimisation
because most functions are created to deal with continuous and differentiable scenarios.
One algorithm for this type of loss is SoftRank [43], which incorporates randomness into
the ranking process by treating a document’s score as a random variable whose mean is
equal to the score derived from the scoring function. This execution allows a document
to be placed in different positions with different probabilities. Then, for each ranking
is calculated the NDCG and is made an average of all of them and is used as a smooth
approximation to calculate the original NDCG.

16



2.2.3.1.2 Non measure-Specific

In this model the evaluation measures are not optimised directly way and the discrep-
ancy between the model results and the ground truth permutation 7, is evident.
ListNet [10] is an algorithm that defines the loss function using the probability dis-
tribution. That is possible because the ranked list and the permutations are directly
connected. ListNet then uses the Plackett—Luce model [30, 33] to apply this concept in
LtR, and it defines the probability for each permutation 7 according to this chain rule:

H [~ S“”” (2.9)

u= 190 S 1(“))

771(j) is the document ranked at the j-th position of the permutation 7, and ¢ is a
function that can be linear, exponential or sigmoid. ListNet defines two permutation
probability distributions for a given query ¢: one is based on the scores from the scoring
function f; the other, P,(n), is based on the ground true label. To create the loss
function ListNet uses the K-L divergence between the probability distribution of the
ranking model and the ground truth and combines it with the previous definition. This
is defined by:

L(f;x,9) = D (Py(x) || P(x|(f(w,z))) (2.10)

A gradient descent is sufficient for the global minimum because K-L is a convex loss
function [47].

One big problem of this approach is its high complexity, which grows exponentially with
m. The reason is that for each query ¢, when K-L is calculated, adding m-factorial is
required and this makes the algorithm more complex.

2.2.4 Pairwise

In this method, the focus is on comparing pairs of items, which means that the ranking
have to choose which item of the pair is the best one for the query.

The input here is formed by pairs of objects represented by feature vectors. The pairwise
preference (which takes values from {+1, —1}) for every pair of items is the output of
the method. The true labels are defined as:

e Relevance degree [; and the pairwise preference for (z,,x,) are defined as y,, =
2- I,y —1

e If the pairwise preference is defined then v, , = l,,

The hypothesis space defines a function h that receives a pair of documents and deter-
mines their relative order as output. In some algorithms [13] the scoring function f can
be defined as h(zy, Ty) = 2 - I{f(z.)>f(z,)} — 1. The objective is to minimise the number
of misclassifications in the document pairs. It is crucial to note that the document pairs
should not be independent since this would violate the basics of classification.

The loss function considers only a pair of items at a time because it considers only the
relative order between them but this does not provide enough information to place the
items in the final ranking. Additionally, the method overlooks that specific pairs are
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generated from the documents associated queries.

One main algorithm in this kind of methods is LambdaMART [9], in the following
sections are explained LambdaMART and the algorithms that are used to create it.

2.2.4.1 RankNet

RankNet [7] is a Pairwise algorithm so it has the hypothesis space constructed with a
scoring function f, and the loss function is based on pairs of items. This model, as base
that learns to do the ranks, can use boosted trees or neural networks. In the case that
it uses a neural network and in particular if it is a two-layer neural network, such as the
one in Figure 2.6, the features are taken as input, and the bottom layer takes care of
them. Instead, the second layer is formed by different hidden nodes, each with a sigmoid
transformation that gives the items a ranking.

The training phase is defined as follows:

e Training data is divided based on queries
e The input feature vector z € R™ is transformed into a value f(x)

e The model then takes for each query a pair of items, I; and [;, that have different
labels, along with their corresponding feature vectors x; and x;

e The model calculates the scores s; = f(x;) and s; = f(z;)

e Since the labels are different, it is evident that one of the two items should be
ranked higher, and this information is defined by ;> [;; in this case, I; is required
to be ranked above I;

e The likelihood that I; should be ranked higher than I; is given by the sigmoid
function, which leads to good probability estimates [4], such as:

1

Py =P(Li> 1) = ) (2.11)
Where o determines the shape of the sigmoid
e The cost is then defined as
C = —P;; logP;; — (1 — P;j) log(1 — py;) (2.12)

It is given by a cross entropy function, which penalises any deviation of the model’s
predicted probabilities from the target ones.

As said pairs of items are taken into consideration, so if the ¢-th document is deemed
more relevant than the j-th document, the variable defined as S;; € {0,£1} is 1, —1
otherwise; if not, then it is 0. It is possible to assume Fij = %(1 + S;;), and this gives
the following equation:

1
C = 5(1 — Szg) O'(SZ‘ — Sj) + lOg (1 + G_U(Si_sj)) (213)
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Figure 2.6: Two layer neural network [28§|

The cost is symmetric, this means that it is not affected by the sign of S;;, the position
of 7, and 7. So, it is defined as

(2.14)

~ Jlog (1 + e“’(si_sﬂ')) if S;; = £1
log 2 if s; =55

When scores are assigned to documents with varying labels, they are moved further apart
in the ranking. In the long run, if the scores result in an inaccurate ranking, the cost is
linear; otherwise, it is zero. Thus is possible to have

oC 1 1 oC
aSi g (2< S ) 1 — eU(SiSj)> aSJ ( 5)
Then, the weights w; € R are updated by the gradient as
oC
Wy — Wi, — N7
ouw (2.16)
o (2C 05, 0C 05, '
ok g 881‘ 8wk aSJ- 8wk
1 represents the positive rate of learning, then
oC
i CWk
B oC oC
= : Do, —Ua—wk (2.17)
ac \*
_ ) <o
nzk: (ka) B
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In order to update the model, it is needed the gradient of the cost concerning the model
parameters wy, which necessitates them concerning the model scores s;.

2.2.4.2 LambdaRank

LambdaRank is an evolution of RankNet that uses the gradients directly instead of
deriving them from the cost function, but this does not mean that they are not cost
gradients. The gradients are considered as forces, and is possible to think of them as
arrows of A\ that represent the magnitude of the contributions of the item. To apply this
concept to a pair of items firstly the first item, I, can be assumed to be more relevant
than the second, I5. Then the second item is pushed down by a force equal to |A|, and
I; is displaced upward by the same quantity, obviously, if the values of the two items are
the opposite, then the items will be moved oppositely.

The transformation of RankNet [8] into LambdaRank can be done in the following way,
i.e., when considering a pair of items I;, I;, by combining the definitions given before,
the gradient can be expressed as:

oc _ocos  oc o,
Owy,  9s; Owy 0s;j Owy,

) 1 Os;  Os;
_ Loy (. J .
o, (Do 05

Owy,  Owg

From this, is possible to derive

M EMZJGQ—&-)—;) (2.19)

0s; 2 1 + eo(si—s;)

If it is increased by the magnitude of the change in NDCG, known as |Axpcg|, which it
is obtained by swapping the ranking of only /; and I, then
aC(SZ — Sj) —0

i = = A 2.20
J s 1 — eolsi—s;) | NDC'G'| ( )

Since the priority is to maximise C, then the weights wy are defined as

oC
and )
oC oC
- = = - 2.22
00 = 5 ~duy <(9wk> >0 (2.22)

Usually, there is the problem of a flat or discontinuous score functions, given that the
gradients are calculated after the items are sorted based on their score. However this
method overcomes this problem.
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2.2.4.3 MART

MART [18] is a boosted tree model that produces its output by combining the outputs of
multiple regression trees through a linear combination. As in the usual tree algorithms,
the regression trees [29] use the data and corresponding labels to split into right and left
nodes.

The output F(z) can be written as

Fy(z) = Z@z’fi(fﬂ) (2.23)

Each f;(z) € R is a function defined by a single regression tree, and the weight «o; € R
is associated with the i-th regression tree. f;, oy and 7, (the value associated with each
leaf) are associated with the tree’s leaf node and are determined through training.
Since the model is a boosted tree, the basic idea is that the next tree created should
improve on the part where the previous one made mistakes, and in order to do so, MART
uses the gradient descent. This means that the following tree is created using as a base
the m derivatives of the cost evaluated in the previous points, so

0C(F,)
00~ oF,

F (2.24)

This implies that if 0F = —77876; then 0C < 0. The new tree is added with a form of
regularisation, so it is possible to adjust the relevance and importance of each tree, and

this weight is given by 7y, where 7 is the actual part that gives the regularisation.

2.2.4.4 LambdaMART

The combination of LambdaRank and MART creates LambdaMART [46]. In this case,
every tree represents the \; values for the complete dataset, not just individual queries.
Additionally, this algorithm requires the Newton step when the exact step size cannot
be calculated. To achieve this, some specific preliminary steps are required and they are
explained in the following points:

o After sorting the items based on the score, the pair I; and I; is taken, with the
condition that I; > I;, then it is possible to obtain A;; defined as

)\4, —O'|AZ”|

ij — —1 I 60'(81'*8]‘) (225)

Z;; represents the utility difference from swapping the two items rank positions

Ai = Z Aij — Z Aij (2.26)

Jigrel Jfgirerl

e Then

Which simplified, becomes

{i,j}=1I j{igtel j{gitel
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e With the previous definition, it is now possible to write the utility function where
A; represents the utility’s derivative for a particular item I;

C= > |AZjllog (1+ e 7t)) (2.28)

{igy=1I

and can be rewritten as

s, > 1+ea(s,-—]sj) = > —olAZlp; (2:29)
L {igy=t {i,j}=I
From which it is obtainable p;; as

1 >\ij

= — 2.30
10.7 1 + 60‘(87;78]') O"le| ( )
e Then the second derivative is defined as
9°C
2 = > PIAZy pii(1 = pig) (2.31)
v {i,j}=I

Following these steps, is possible to establish the Newton step size for the k-th leaf of
the m-th tree as o0
_ ZwiGka ds;
Tem = S~ g
T, ERkm 952 (232>
- - ineka Z{i,j}:[ |AZij| pij
D vicRey, 2 fijy—1 |1 AZij| opij(1 — pi)
The LambdaMART algorithm has the possibility to customise the model to use scores
from a starting base model.

As said, LambdaMART is a combination of MART and LambdaRank, but one differ-
ence is in how LambdaRank and LambdaMART manage the update of their parameters.
The first adjusts the weights after each query, while the second makes the decisions using
all the data in a node at a particular time. This means it updates only some parameters
at time and not all of them. In particular, it chooses to split based on the leaf values
that decrease the utility for specific queries as long as the overall utility improves.

2.3 Fairness

Lately, machine learning has been widely used in diverse social settings but when algo-
rithms are written, are considered factors like performance, accuracy, and some aspects
such as privacy and transparency. One characteristic that is not so much considered is
fairness, but this is an important aspect to take care of considering that it is crucial to
avoid discrimination and bias in information since they may have important social im-
plications such as mistreat to some groups based on specific sensitive attributes like sex,
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Algorithm 1: LambdaMART
Data: The number of trees N is needed, number of training samples m, number
of leaves per tree L and learning rate 7
Result: Ranking model represented as a sum of N trees
for : =0 to m do
‘ Fy(z;) = BaseModel(z;)
end
for k=1 to N do
for : =0 tom do
Yi = A

SO NS T R C R

©
2
S
=

Il

10 ’Ylk fr— Zz,ele
1| Fy(wg) = Fpa(@) + 0 el (v € Rig)
12 end

gender, age and many others. Given that this behaviour it is unethical the community
has begun to acknowledge more the issue in recent years.

It is not easy to define the concept of Fairness because there are more than twenty
definitions, and they all depend on the specific case and data to which it is applied.
Certain characteristics include whether fairness is based on individuals, which means
that similar individuals are treated similarly, or on groups, which ensures equity among
different groups. The models that focus on group fairness can be divided into two cate-
gories: those that are for We’re All Equal (WAE), where all the groups have the same
abilities, and those in which is valid What You See is What You Get (WYSIWYG),
where observations reflect group characteristics.

2.3.1 Attributes

Attributes help determine whether an object qualifies as belonging to a protected cate-
gory. For this reason, individuals with the same value of a particular sensitive attribute,
such as gender or race, are referred to as a group. Generally, the methods that resolve
fairness problems can be categorised based on how they treat these variables.

Cardinality Algorithms may be categorised according to the number of sensitive
attributes considered. Specific algorithms focus on binary sensitive attributes while
others handle higher cardinality, and these are called multinary. In the first case, the
data is divided based on belonging to a specific attribute like gender or ethnic group. In
the second one, multiple sensitive are represented simultaneously; for example "women"
and "Asians". There is further categorisation when considering the multinary variables
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because some methods can consider one of the values protected, while others can treat
all values of the sensitive attributes as potentially subject to discrimination.

Number of sensitive attributes A different categorisation is determined by the
number of attributes an algorithm can process. Algorithms can be divided into those
capable of processing only one attribute, like gender or race, and those capable of pro-
cessing multiple attributes simultaneously, such as race and gender, together. The second
group is further divided based on their approach to attributes, either separately, which
means that, for example, it can handle both categories "women" and "black people", or
together, then for example it can handle the category of "black women".

2.3.1.1 Bias

As mentioned, data bias is the primary reason behind unfair algorithms, and it is possible
to categorise different biases [17]:

e Pre-existing bias: Includes all biases present without being influenced by an
algorithm and originates from social factors. In some instances, racial and class
disparities result in unequal opportunities for individuals

e Technical bias: Refers to how elements are constructed, such as the size of a
screen or how they are positioned in a list; higher items have more visibility than
lower ones or how they are positioned on a page. In the Western world, we read
from top to bottom and from left to right, and so items in the top-left corners have
more visibility [2]

e Emergent bias: Can arise when a system was initially intended for a specific
scenario but evolves with societal norms, creating a scenario in which the "winner
takes it all" attitude prevails

2.3.2 Mitigation methods

Depending on the type of problems solved, whether score-based or learning to rank,
there are different methods to mitigate the bias. The concept remains the same in both
methods; the principal difference is when the intervene in the process is done. In fact
the possible work can be done before, during, or after the execution.

2.3.3 Pre-Processing

This method aims to learn a fair representation and eliminate bias, that can be technical,
emergent or pre-existing, while preserving other important information. The resulting
algorithm then uses the updated data with reduced bias.

The advantages of this mitigation technique are:

e In the pipeline, the top priority is ensuring fairness
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e Unlike other methods, which depend on the labels of the data, here the protected
group is chosen considering the proximity between objects

e It provides increased management of data even when it is only partially compre-
hensive

A disadvantages is that it can handle only individual fairness and considers group fairness
as a specific instance of individual fairness.

2.3.3.1 Example of algorithms

2.3.3.1.1 iFair

iFair [26] is based on the principle of fairness given by "Fairness Through Awareness"
[16], defined by individual fairness, where similar items are treated alike. The algorithm
changes input record X, into a more equitable representation )?a using a mapping func-
tion ¢. So, for example, when taking two individuals, a and b, that are indistinguishable
when considering only the non-sensitive attributes after the transformation, they should
also be indistinguishable in the fairer representation. As said, here are not taking in
consideration the labels but only the distances, so it is defined the similarity measure, d,
free of bias, capable of capturing the diversity between the two items

|d(¢(x:), ¢(x5)) — d(a}, 27)

¢(x;) is the fair representation, z} is the feature vector containing only non-sensitive
features, and € is the threshold defining when the functions are distinguishable.

The algorithm process is defined as follows: it searches for similar items based on the non-
protected attributes, then creates a new feature set, ¢(X), that maintains distances while
incorporating sensitive attributes to disrupt the correlation of non-sensitive attributes
defined before.

The algorithm formalises the problem as a clustering problem, so there are K clusters
composed of similar individuals and a prototype vector v, representing each cluster.
Next, a candidate record, X,, is allocated to one of the vectors using a probability
distribution u; and is calculated the distance between all the clusters to find the most
similar. The fair representation is then

o(x;) =7, = Z Wik -V (2.34)

<e (2.33)

The loss fair, which maintains distances between data records on non-protected at-
tributes, is defined as

Lfair(Xa)?) = Z (d(fi,fj) - d(x;‘,x;‘))Q (2.35)
i j=1,...M
The loss utility is
M N
Lua(X, X) Z s — Tilla = D) (i — Ty)? (2.36)
i=1 j=1
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The objective function, which has to be minimised, is a combination of the data loss and
the fairness loss and is defined as

L=\ Ly <X, )?) 4 - L (X, )N() (2.37)

A and p are hyper-parameters, so to have better performances it is necessary to try
different values for them.

2.3.4 In-Processing

In this case, the algorithms expand the objective function with a fairness component.
Therefore, the algorithm’s optimisation problem involves both accuracy objective and
fairness objective; the technique then works on finding a balance between the two.
Some advantages are:

e [t has better trad-offs between fairness and accuracy since it is the main objective

e Can manage various biases without identifying a specific one
Some disadvantages are:

e The impact that it gives is not as evident as other methods

e [t is not easy to understand what the method prioritises due to the need to balance
accuracy and fairness

2.3.4.1 Example of algorithms
Some algorithms that uses this kind of method are: DELTR [54]; Fair-PG-Rank [40];

Pairwise Fairness for Rankings [5].

2.3.4.1.1 DELTR

DELTR is a ListNet extension and is based on "Fairness of Exposure in Rankings"
[39]. The fairness definition relies on the differences in average visibility that determine
disparities in exposure and this affects the final ranking.

The exposure of document d, in a ranked list generated by a probabilistic ranking P and
adapted to match ListNet’s accuracy metric, is given by the probability of appearing in
the top position of a ranking for a specific query and is

Exposure (z]|Py) = Py (X]) - v (2.38)

vy is the position bias of position 1, which signifies how essential an item is in the ranking
[23]. The average exposure of documents in group G, with p € {0,1} is

1

Exposure(G,|Pj.) = N
p

Z Exposure(z}| Pyq) (2.39)

zleGp
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An unfairness criterion measured in terms of disparate exposure is
U(77) = max (0, Exposure(Gg)| Pya) — Exposure(G1| Pyi))? (2.40)

G represents the non-protected group, and G represents the protected group. Only if
the protected group receives less exposure can the asymmetric hinge loss be identified as
unfair. The accuracy metric L, which uses the function defined by ListNet, is defined as

LDELTR(yqy?//\q) = L(yq7§q) + U@q) (2-41)

v € R{ is a parameter that creates a trade-off between ranking utility and disparate
exposure. By increasing v, the focus is more on minimising the differences in expo-
sure. Otherwise, it is more on discrepancies between the training data and the ranking
algorithm’s output.

2.3.5 Post-Processing

The assumption in this case is that the model has been trained; thus, a predicted ranking
is provided for the method to re-order items to improve fairness. Usually, the methods
are group based, where certain groups are protected, and one is non-protected. Some
benefits of this technique are:

e The guarantee that the protected group has excellent visibility

e The re-ordering and utility measures used and how they affect the ranking are
apparent and comprehensible

Some disadvantages are:

e Increasing fairness can reduce the accuracy

e A small amount of bias can lead to a notable decrease in performance

2.3.5.1 Example of algorithms

There are different algorithms such as: FA*IR binary |52] and multinary [53|; Fairness-
Aware Ranking at Linkedin [21];Continuous Fairness with Optimal Transport [51], Fair-
ness of Ezposure |39] and Equity of Attention [6].

2.3.5.1.1 FA*IR

FA*IR, in the binary case, is based on the concept that it is important to achieve sta-
tistical parity between the protected and not protected groups. It defines fairness by
assuming that a ranking is fair if items positions are decided thanks to a Bernoulli
distribution unaffected by the candidate’s sensitive attributes. Thanks to a statistical
evaluation that determines if a Bernoulli process could have generated the ranking, it
is guaranteed that the proportion of protected candidates does not exceed a specific
minimum percentage p. Given a minimum proportion p of elements at each position in
the ranking, is possible to pre-compute a table that contains this values. This is done
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by calculating F~1(a; k; p), i.e., the inverse of the binomial CDF. Once these tables are
created, sorting them individually in descending order of scores and combining them
into one ranking is possible. If the ranking does not meet the minimum quantity defined
before, a protected item is placed so the proportion is preserved.

2.3.6 Intervening on the Ranked Outcome

This technique is like the post-processing, so the idea is to take action on the ordered
result and set limitations to ensure a certain amount of variety or representation within
the top-k.

2.3.6.1 Example of algorithms

Some works are: Ranking with Fairness Constraints [12|; Rank-aware Proportional Rep-
resentation [50|; Balanced Ranking with Diversity Constraints [48]; Online Set Selection
with Fairness and Diversity Constraints [42].

2.3.6.1.1 Rank-aware Proportional Representation

Considering two groups: G1, the protected group, and G, the non-protected. The items
are assigned to them based on a single binary sensitive attribute. The central concept of
fairness emphasises the importance of an item being ranked higher; this implies that it is
more critical to achieve proportional representation in higher positions. A ranking shows
statistical parity when being part of a protected group does not impact where an item is
placed in the final rank. The fairness measures defined are based on sets, meaning that
the values for top-b, top-2b, top-3b, etc..., where b is a parameter that indicates how many
elements are considered in each set, are combined using a logarithmic function. This
discount prioritise higher positions over lower ones, emphasising the principal concept
of the method. All the measures described here have values in [0, 1], where closer to 0
means that the rank it is more fairer.

There are three measures that express this concepts in different ways:

e Normalized discounted difference (rND) is defined as

N

1 1 ‘wm e

rND(T) = (2.42)

Z o loga k| k N

It computes the difference in the proportion of members from the protected group
at the top-k positions and the overall population. As seen in the formula, the val-
ues are accumulated at discrete points in the ranking with a logarithmic discount
and finally normalised. The normaliser Z is computed as the highest possible value
of rND.

It is possible to observe that this formula is convex, continuous, and not differen-
tiable at 0. If one of the groups, ST or S, has a more significant proportion, then
the rank is unfair.

Figure 2.7 shows how rND behaves on synthetic datasets of 1000 items with 300,
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Figure 2.7: Example of rND execution

600 and 900 items in S*. In particular it creates a fake ranking based on the prob-
ability given, which is between 0 and 0.98, and it creates a random value u € [0, 1],
and if it is smaller than the probability taken in consideration at that moment,
then is putted a protected item firstly, otherwise it is putted in the non protected
one. This way it is possible to choose how many items of each group will be at top
and can be created different possible ranks. After this ranks are created then the
measure 7ND is applied and given the relative score. This method is also applied
to the other measures and examples.

Normalized discounted KL-divergence (rKL): Kullback-Leibler (KL) calcu-
lates the average of the logarithmic discrepancy between two discrete probability
distributions P and Q:

Dret(PIIQ) = 3 P tog 5 ) (243)

With this, it is possible to calculate the difference between how the protected group
is treated in the top k& and how it is treated in the rest of the population

po (1S5 85l

g K (2.44)
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Figure 2.8: Example of rKL execution

Normalised discounted KL-divergence (rKL) is then defined as

N
1 D (P]|Q)
KL(1) == —_— 2.45
rKL(r) = > Togak (2.45)
k=b,2b,...
Figure 2.8 shows how rKL behaves on synthetic datasets of 1000 items with 300,
600, and 900 items in S*.

e Normalized discounted ratio (rRD): It is defined similarly to the rND, but
instead of using the number of elements for the denominator is used the number
of non protected elements till position k. rRD is then defined as

N

1 L |1STsl 187
rRD(T) = = L.kl
" Zk:%:b,,,, logak ‘|Sl_...k| 157

(2.46)
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Figure 2.9: Example of rRD execution

Figure 2.9 shows how rRD behaves on synthetic datasets of 1000 items with 300,
600 and 900 items. By looking at the example of execution, and the fact that the
two groups are not treat equally, is possible to observe that rRD has good results
when S corresponds to at most 50% of the underlying population, and the fairness
probability is less than 0.5.

2.3.6.1.2 Balanced Ranking with Diversity Constraints

Here, in-group fairness is addressed, which requires that the best items for each category
be placed in the top k positions in the final ranking. In order to do so, two measures are
presented:

e IGF-Ratio: Its value is in (0, 1], with higher values meaning that fairness is more
respected. The idea is to quantify the utility of the group by calculating the ratio
between the most valuable item skipped and the lowest one put in the rank, and
this is given by

IGF-Ratio(v) = Z— (2.47)

v
a, is the score of the lowest value item accepted, and b, is the highest valued item
rejected

o IGF-Aggregated: This is similar to /IGF-Ratio. The difference is that there are
not only pairs of items but all the items of a specific group are taken in considera-
tion. In particular, it takes all the items of the group and all the ranked items of
the same group. This is represented by

s
IGF-Aggregated(v) = min;ca, {%} (2.48)
he[i,v Sh
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The numerator is the sum of all ranked items, and the denominator is the sum of
all the group items; in both cases, it takes only the items up to position k. This
gives a fair result when all the qualified items are taken; otherwise, the gap between
the two will be significant, meaning there is an unfair rank.

2.3.7 Intervening on the Score Distribution

All the algorithms here assume that there is a pre-existing bias such that the ranker
disadvantages the non-protected groups. So, the objective is to adjust the score before
it is given to the ranker.

2.3.7.1 Example of algorithms

Some algorithms with this technique are: Selection Problems in the Presence of Im-
plicit Bias |25]; Interventions for Ranking in the Presence of Implicit Bias |11]; Causal
intersectionality and fair ranking [49].

2.3.7.1.1 Causal intersectionality and fair ranking
Here, fairness is defined by how the rank will change if an item belongs to a different
group than the original one; by this concept, the new rank is generated by some fabricated
scores. The model uses a structural causal model (SCM) that consists of a directed acyclic
graph G = (V| E') where V represents the variables, and F depicts the casual relationship
from source to target vertices, as illustrated in Figure 2.10. By looking at the arrows
of the graph, it is possible to understand how direct and indirect discrimination works.
To be direct, it is just necessary that the arrows point from a protected variable to the
output node; it is considered indirect if it passes through a mediating variable, which can
be resolving or not. If it is resolving, then it is just necessary to resolve discrimination
problems generated by the protected variables; if it is non resolving, it is also necessary
to resolve the discrimination created by the mediator.
Having calculated the vector of sensitive attributes A and new possible values a’, the
goal is to calculate the counterfactual Y. o by replacing the original values with the
new ones. The changes are then propagated in the graph, creating the new ranking.
The changes are applied to the variables defined by A and the relative non-resolving
attributes, not to the resolving ones.
A ranking 7 can be considered fair if for all possible values x for all the attributes a # o’
then
P (Yaca(U)) = kX =2,A = a)
=P (?(YAea’(U» = k‘X =z, A= (L)

This is valid for any rank k.

(2.49)

2.3.8 Intervening on the Ranking Function

The motivation to use this technique is that sometimes the initial formula results in one
group being present in a lower percentage, so adjustments are required to ensure the
population is in equal proportion.
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Figure 2.10: SCM Example (Insp. by [49])

2.3.8.1 Example of algorithms
One algorithm that does this kind of work is Designing Fair Ranking Schemes [1].

2.3.8.1.1 Designing Fair Ranking Schemes

Here is used a combinatorial geometry approach to navigate the search space and identify
a fair scoring function f close to f regarding the angular distance between their weight
vectors, if such a function exists.

This algorithm uses a fairness oracle O that accepts a dataset C' and a linear ranking
function f, with a weight vector w. The oracle returns True if the ranking satisfies the
fairness criteria and Fulse if it does not.

2.4 Datasets

Different datasets are used in the field of learning to rank and fairness, but for this thesis,
we decided to use the following two: Microsoft Learning to Rank [34] and German Credit
[22].

2.4.1 Microsoft Learning to Rank Dataset

Using the queries and logs provided by the search engine Bing, Microsoft created two
datasets with different queries written by users, one with 10.000 queries, MSLR10K and
one with 30.000 queries, MSLR30K. The dataset is divided into five folders because a
five-fold cross-validation is applied to them. Each dataset represents the data as a pair
composed of the query, and a vector of variables represents the associated document.
The dataset, MSLR30K, contains an average of 120.19 documents for each query and
the relevance associated with each document is represented by a value v € {0,1,2,3,4},
with higher values meaning that the document is more relevant to the query. The vector
representing the document associated with the query contains 136 variables. The first
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100 contain information such as the value of TF*IDF, variance of term frequency, stream
length, etc. The remaining variables give information about the results from a language
model, the page rank, url click count or quality of the page and others.

2.4.2 German Credit

This dataset contains the financial information of 1.000 individuals and is usually used
by a binary classification task that predicts whether an individual’s credit is good or
bad. The information found here is about each individual such as the credit taken; the
scope and quantity of credit; the age; the sex; the type of work, and other information.
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Chapter 3

Experimental Analysis

In this chapter, we will explain the process that we applied to solve the Fairness problem
explained in section 2.3. Firstly, we are going to explain the motivation behind our
solutions, Section 3.1, then how we implemented it, Section 3.2, and finally, the results
of some experiments done are shown in Section 3.4.

3.1 Motivations

The objective of the thesis was to implement a learning to rank algorithm that its
optimisation based on efficiency and fairness. To do so, we used the Light GBM library
[38], which uses LambdaMART, Section 2.2.4.4, as its basis. The type of bias we treat
is the pre-existing one, and to solve it, we used the rND metric, Section 2.42, which
has the scope to maximise the statistical parity between different groups, allowing us an
exemplary implementation with LambdaMART.

LightGBM is one of the best-performing learning models for ranking. It is based
on the LambdaMART method, and thus on Trees and Gradient Boosting, i.e., it creates
each time trees that correct the errors of the previously created one. Trees are created
using the Leaf-Wise technique, i.e., they are created layer by layer. One of the reasons
for its speed is the fact that when it has to choose how to divide the data in the feature
tree, it chooses which to divide using a particular histogram, sum of gradients and sum
of squared gradients. Another thing done for optimisation is not to consider all the data
but only those with more significant gradients. One more advantage is that it allows
parallel processes to be used and the GPU to be used for the calculations, thus further
optimising the timing.

3.2 Implementation

Given that the objective is to maximise both performance and Fairness, in order to do so,
we used the formula of the gradient A\; of LambdaMART, equation 2.26, and integrated
in it the part of the Fairness, then now it becomes

Ai = aAPNPOC 1 (1 — a)AFTNP (3.1)
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P is the pairwise preference related to NDCG, which influences the performance, while
F is the one for rND, which is related to Fairness. The hyperparameter o € [0, 1] allows
us to choose which aspect is more relevant; for simplicity, we will call (1 — «) as .

The idea behind the model is quite simple, but the difficulty lies in the fact that is
difficult to order the items to have a fair rank because there is not a defined order that
assures the fairness. When we calculate the order of the items based on the performance,
it is relatively simple because we have NDCG, which is calculated from the ordering done
on the relevance labels of the items, and then the rank is simple to do. However, when
calculating the order for the fairness, we can not do the same because rND does not
specify an order of the items but only the proportion of protected and non protected.
Nevertheless, we can take advantage of this definition of rND because since it only cares
about proportion, we can swap position of items belonging to the same group and that
are inside the same set. This way, we can maintain the same proportion but improve
the final rank to optimise performance and fairness. From this method, we can conclude
that the two measures are strictly related, allowing us to reach the algorithm’s scope.

As said, we used LightGBM as an algorithm and then modified it to adapt to the
integration of rND. The code is based on the one provided by the paper [41], but there
are some differences. One difference is in how the normaliser Z is calculated; the origi-
nal paper uses two constant NORM ITERATION and NORM CUTPOINT to specify
the max iteration and batch size used in the calculation. First, the maximum value of
the input group fairness measure is obtained at different fairness probabilities. Run the
above calculation NORM ITERATION times. Then, compute the average value of the
above results as the maximum value of each fairness probability. Finally, the maximum
value is chosen as the normaliser of this group’s fairness measure. Since we considered
this solution not optimal, then we implemented it another way. Our idea is based on the
fact that since Z represents the highest possible value of rND, it represents the worst
ranking for fairness. This happens when all the predictions are grouped together based
on the category, so all the protected items are on one side and the non protected on the
other. Based on this idea the calculation of Z is done in the following way: the items
are ordered such that all the protected are at the beginning and the relative rND is cal-
culated. After this the same procedure is repeated but with the protected items that are
all putted at the end. Then to get the value of Z we take the maximum between the two
rNDs calculated. Another thing added is stopping at QT elements; that is because, as
said, we are only interested in the top elements and not all of them. One more difference
is that Light GBM skips the pairs with the same relevance and we added the case that
the elements that are both protected or belong to the same set are skipped, allowing a
faster algorithm.

Since the algorithm of rND is considered at sets of K elements and considering that
the different calculations should be made for each query, that is because this is how the
algorithm of Light GBM is done, to improve the performance, we decided to calculate for
each query, the number of protected, non protected, the length of the query, the max
rND that it is possible to have and save them in arrays, so when needed in the process,
it is just necessary to access the data and not recalculate them each time.
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As said, the difficulty is in ordering the elements for the fairness measure. To achieve
this we created three different strategies.

3.2.1 First Strategy

The first and most straightforward strategy is to take the rank produced by the algorithm
at iteration [ and take two items, ¢; and i; such that ¢; > ;. Then Ar/ND,; is calculated,
representing the change in rND after swapping the rank positions of items i; and 7;.
Specifically, it is interpreted in the following way: in case 4, is ranked higher than i, and
is correct, more fair, then after the swap, the value of the fairness parameter increases
and ArND;; > 0; otherwise, if i, should be below ¢; then ArND;; < 0. From this, we
can define

In this case, the parameter F' is independent of P, so the condition of adjustment between
the two is not guaranteed.

3.2.2 Second Strategy

This second strategy overcomes the problem of the first one by combining the two metrics.
In particular, it creates a ranking, defined as w9, based on the concept that the NDCG
must be maximised and rND is at its minimum, meaning that fairness is prioritised over
performance. F is then defined as

F = {(i,5) | indy(is, 2) < indy(iz|ms)} (3.3)

indy is a function that gives the index of the set that contains a specific item.
The ranking is created in the following way:

1. Ttems are sorted based on relevance to the query ¢, at this step, NDCG is max-
imised, and the problem of more items with the same relevance label is resolved
since the scores given by the algorithm give the order

2. Some changes are made to respect the proportion of several protected items over
the total number of items. The changes made move some elements from one set to
another, trying to keep the previous order the same. This way, rND is minimised
without changing too much the value of NDCG

3.2.3 Third Strategy

In this case, the idea is similar to the second strategy, but here, we give more impor-
tance to NDCG, so the scope is to minimise 7ND under the constraint that NDCG is
maximised. Then, F' is defined as

where ind, is defined as in the second strategy and ms is the ranking that prioritises
performance over fairness and is created in the following way:
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1. Ttems are sorted based on relevance to the query ¢, at this step, NDCG is max-
imised, and the problem of more items with the same relevance label is resolved
since the scores given by the algorithm give the order

2. We consider only the items that have the same relevance and change only them.
This way, rND can be minimised while NDCG can be at its maximum

3.3 Dataset modification

As said in Section 2.4, we used the MSLR and German Credit datasets, but they are not
suitable as they are and need to be modified.

MSLR is modified following the idea of the paper "Probabilistic Permutation Graph
Search: Black-Box Optimization for Fairness in Ranking” |45] which takes the feature
QualityScore2, attribute id 133, as the discriminatory feature, and uses the value 10
as threshold to divide the documents into two groups with a ratio of 3 : 2 between them.

For the German Credit, we created new data because the data in the original dataset
was not enough to do some relevant tests. For each query, we sampled 50 individuals with
a ratio of 4 : 1 for non-creditworthy to creditworthy individuals, and so in total now, we
have 100.000 queries. Then, as protected variables, we consider gender, whether Male
or Female, and age, if they are under 35 years or over.

3.4 Experiments

Now, we are going to show some of our experiments that are all made with b = 5 and
the cutoff at 15 and 50. Unless otherwise stated, all the following results are based on
the validation set.

3.4.1 LambdaMART on the datasets

Firstly, let us see how the basic LambdaMART model performs on the three datasets
created: MSLR, German Credit with Age protected, German Credit with Sex as pro-
tected variable.

In Figures 3.1, 3.1, 3.1 3.2, we can see that the model has a Fair score not so bad,
since it is under 0.5, remembering that nearer it is to 0 fairer it is, and it is not its
primary scope. At a first observation there is not a correlation between the cutoff and
the quality, we can observe this by looking at the dataset German Sex, where with @15,
has better fairness. But if we look at the other datasets the case @50 have better fairness.
In Figure 3.3 and 3.4, we can see the accuracy based on the NDCG measure; in the case
of MSLR, the performance is not bad since it is over 0.5 and in the other datasets, it
reaches 1.0, or almost 1.0. Because, as said the dataset is created by repeating data and
at some point the algorithm learns the different patterns.
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Best rND Results with @15, b=5, applied on validation set; LambdaMART on different Datasets
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Figure 3.1: Results of LambdaMART rND@15 on the validation set of the three datasets

Best rND Results with @50, b=5, applied on validation set; LambdaMART on different Datasets
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Figure 3.2: Results of LambdaMART rND@50 on the validation set of the three datasets
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Best NDCG Results with @15, b=5, applied on validation set; LambdaMART on different Datasets
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Figure 3.3: Results of LambdaMART NDCG@15 on the validation set of the three
datasets

Best NDCG Results with @50, b=5, applied on validation set; LambdaMART on different Datasets
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Figure 3.4: Results of LambdaMART NDCG@50 on the validation set of the three
datasets

3.4.2 Hyperparameters Tuning

Now that we have seen how the LambdaMART basic performs on the datasets, we can
apply our strategy to the different datasets and by changing the value of «, we can see
how it performs in terms of performance and fairness.
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3.4.2.1 MSLR

In Table 3.1 we can see how the algorithm performed on the dataset created from MSLR.
In particular it shows how the three strategies acted with the different a. As the basic
LambdaMART in case of @50 the results are slightly better than @15. While in Table
3.2 are represented the best results of the different tries and the relative plots are visible
in Figures 3.5, 3.6, for NDCG, and Figures 3.7, 3.8, for rND.

H Models H alpha beta | NDCG@15 rND@15 | NDCG@50 rNDQ@50 H
LambdaMART | 1.00 0.00 55.02 26.48 63.19 22.52
Strategy 1 0.90 0.10 54.41 23.27 62.63 19.33
Strategy 2 0.90 0.10 54.72 24.98 62.93 20.53
Strategy 3 0.90 0.10 54.86 25.27 62.95 20.97
Strategy 1 0.80  0.20 53.91 23.00 62.40 19.04
Strategy 2 0.80  0.20 54.63 24.51 62.78 20.34
Strategy 3 0.80  0.20 54.72 25.04 62.88 20.68
Strategy 1 0.70  0.30 53.59 22.76 62.20 19.00
Strategy 2 0.70  0.30 54.39 24.55 62.71 20.35
Strategy 3 0.70  0.30 54.71 24.84 62.79 20.65
Strategy 1 0.60  0.40 53.25 22.65 62.06 18.89
Strategy 2 0.60  0.40 54.44 24.37 62.65 20.22
Strategy 3 0.60  0.40 54.40 24.71 62.73 20.63
Strategy 1 0.50  0.50 52.95 22.63 61.84 18.85
Strategy 2 0.50  0.50 54.23 24.27 62.61 20.18
Strategy 3 0.50  0.50 54.48 24.78 62.73 20.55
Strategy 1 0.40  0.60 52.57 22.62 61.57 18.70
Strategy 2 0.40  0.60 54.22 24.26 62.52 20.04
Strategy 3 0.40  0.60 54.41 24.60 62.63 20.42
Strategy 1 0.30  0.70 52.13 22.50 61.35 18.60
Strategy 2 0.30  0.70 54.00 24.12 62.46 19.97
Strategy 3 0.30  0.70 54.25 24.51 62.62 20.37
Strategy 2 0.20  0.80 53.93 23.98 62.26 19.93
Strategy 3 0.20  0.80 54.06 24.47 62.43 20.23
Strategy 1 0.20  0.80 51.49 22.29 60.98 18.56
Strategy 1 0.10  0.90 50.52 22.30 60.36 18.56
Strategy 2 0.10  0.90 53.39 23.69 61.95 19.84
Strategy 3 0.10  0.90 53.63 24.24 62.27 20.32

Table 3.1: Results of our algorithm with different o and g on MSLR dataset
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H Models H cutoff ‘ alpha beta | NDCG rND H
LambdaMART 15 1.00  0.00 55.02  26.48
Strategy 1 15 0.10  0.90 50.52  22.30
Strategy 2 15 0.10  0.90 53.39  23.69
Strategy 3 15 0.10  0.90 53.63  24.24
LambdaMART 50 1.00  0.00 63.19  22.52
Strategy 1 50 0.10  0.90 60.36  18.56
Strategy 2 50 0.10  0.90 61.95 19.84
Strategy 3 50 0.20  0.80 62.43  20.23

Table 3.2: Best results of our algorithm on MSLR

Best NDCG Results with @15, b=5, applied on validation set; Best results on MSLR
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Figure 3.6: Best Results in terms of NDCG@50 on validation set of MSLR
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Figure 3.7: Best Results in terms of rND@15 on validation set of MSLR
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Best rND Results with @50, b=5, applied on validation set; Best results on MSLR
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Figure 3.8: Best Results in terms of rND@50 on validation set of MSLR

3.4.2.2 German_Sex

In Table 3.3 we can see the performance of the model applied to the dataset German
Credit when using the Sex, so Female or Male, as the protected variable. Here, as before,
the case @50 is slightly better but the difference between the two cases is not so big. The
Table 3.4 resumes the best results of the different combinations and the relative plots
are in Figures 3.9, 3.10, for NDCG and Figures 3.11, 3.12, for rND.
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H Models H alpha beta | NDCG@15 rND@15 | NDCG@50 rND@50 H

LambdaMART | 1.00 0.00 100.00 20.51 100.00 19.34
Strategy 1 0.90 0.10 100.00 19.56 100.00 18.52
Strategy 2 0.90  0.10 100.00 19.45 100.00 18.39
Strategy 3 0.90  0.10 100.00 19.51 100.00 18.38
Strategy 1 0.80  0.20 100.00 19.41 100.00 18.46
Strategy 2 0.80  0.20 100.00 19.43 100.00 18.29
Strategy 3 0.80  0.20 100.00 19.48 100.00 18.36
Strategy 1 0.70  0.30 100.00 10.47 100.00 18.58
Strategy 2 0.70  0.30 99.99 19.31 99.99 18.28
Strategy 3 0.70  0.30 100.00 19.40 100.00 18.36
Strategy 1 0.60  0.40 100.00 10.42 100.00 18.39
Strategy 2 0.60  0.40 99.97 19.28 99.97 18.20
Strategy 3 0.60  0.40 100.00 19.43 100.00 18.33
Strategy 1 0.50  0.50 100.00 10.43 100.00 18.40
Strategy 2 0.50  0.50 99.94 19.24 99.95 18.19
Strategy 3 0.50  0.50 100.00 19.40 100.00 18.34
Strategy 1 0.40  0.60 100.00 19.39 100.00 18.42
Strategy 2 0.40  0.60 99.91 19.10 99.92 18.15
Strategy 3 0.40  0.60 100.00 19.43 100.00 18.31
Strategy 1 0.30  0.70 100.00 19.39 100.00 18.46
Strategy 2 0.30  0.70 99.88 19.13 99.89 18.15
Strategy 3 0.30  0.70 100.00 19.40 100.00 18.29
Strategy 1 0.20  0.80 100.00 19.41 100.00 18.36
Strategy 2 0.20  0.80 99.85 19.01 09.83 18.07
Strategy 3 0.20  0.80 100.00 19.44 100.00 18.35
Strategy 1 0.10  0.90 99.99 19.35 100.00 18.38
Strategy 2 0.10  0.90 99.79 18.99 99.76 18.08
Strategy 3 0.10  0.90 100.00 19.44 100.00 18.36

Table 3.3: Results of our algorithm with different @ and 5 on German Credit dataset
that uses 'sex’ as protected variable

H Models H cutoff ‘ alpha beta ‘ NDCG rND H
LambdaMART 15 1.00  0.00 | 100.00 20.51
Strategy 1 15 0.10  0.90 99.99  19.35
Strategy 2 15 0.10  0.90 99.79  18.99
Strategy 3 15 0.30  0.70 | 100.00 19.40
LambdaMART 50 1.00  0.00 | 100.00 19.34
Strategy 1 50 0.10  0.90 | 100.00 18.38
Strategy 2 50 0.20  0.80 99.83  18.07
Strategy 3 50 0.80  0.20 | 100.00 18.36

Table 3.4: Best results on German Credit dataset that uses ’Sex’ as protected variable
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Best NDCG Results with @15, b=>5, applied on validation set; Best results on German Credit ("Sex")
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Figure 3.9: Best Results in terms of NDCG@15 on validation set of German Credit with
'Sex’ as protected attribute

Best NDCG Results with @50, b=>5, applied on validation set; Best results on German Credit ("Sex")
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Figure 3.10: Best Results in terms of NDCG@50 on validation set of German Credit
with ’Sex’ as protected attribute
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Best rND Results with @15, b=>5, applied on validation set; Best results on German Credit ("Sex")
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Figure 3.11: Best Results in terms of TND@15 on validation set German Credit with
‘Sex’ as protected attribute
Best rND Results with @50, b=5, applied on validation set; Best results on German Credit ("Sex")
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Figure 3.12: Best Results in terms of TND@50 on validation set German Credit with
‘Sex’ as protected attribute

3.4.2.3 German_Age

In Table 3.5 we can see how the algorithm performed when the dataset is the German
Credit with the Age, less or more than 35 years, as protected variable. The results follow
the same pattern seen before, so with @50 we have better results for performance and
fairness, but here as in the case of MSLR the advantage of using @50 is more visible.
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If we look at Table 3.4 we can see the best results and the relative plots are in Figures
3.13, 3.14, for NDCG and Figures 3.15, 3.16, for rND.

H Models H alpha beta | NDCGQ@15 rND@15 | NDCG@50 rND@50 H
LambdaMART | 1.00  0.00 100.00 29.21 100.00 24.26
Strategy 1 0.90  0.10 100.00 22.00 100.00 19.65
Strategy 2 0.90  0.10 100.00 22.00 100.00 19.57
Strategy 3 0.90  0.10 100.00 22.09 100.00 19.62
Strategy 1 0.80  0.20 100.00 22.10 100.00 19.69
Strategy 2 0.80  0.20 99.97 21.77 99.98 19.40
Strategy 3 0.80  0.20 100.00 21.96 100.00 19.58
Strategy 1 0.70  0.30 100.00 22.09 100.00 19.71
Strategy 2 0.70  0.30 99.91 21.28 99.93 19.22
Strategy 3 0.70  0.30 100.00 22.12 100.00 19.68
Strategy 1 0.60  0.40 100.00 22.04 100.00 19.74
Strategy 2 0.60  0.40 99.85 21.12 99.88 19.03
Strategy 3 0.60  0.40 100.00 22.08 100.00 19.64
Strategy 1 0.50  0.50 100.00 22.13 100.00 19.80
Strategy 2 0.50  0.50 99.79 20.92 99.83 18.91
Strategy 3 0.50  0.50 100.00 22.06 100.00 19.65
Strategy 1 0.40  0.60 100.00 22.05 100.00 19.77
Strategy 2 0.40  0.60 99.73 20.75 99.75 18.81
Strategy 3 0.40  0.60 100.00 22.14 100.00 19.62
Strategy 1 0.30  0.70 99.96 21.79 100.00 19.80
Strategy 2 0.30  0.70 99.64 20.60 99.67 18.68
Strategy 3 0.30  0.70 100.00 22.00 100.00 19.64
Strategy 1 0.20  0.80 99.89 21.44 99.98 19.72
Strategy 2 0.20  0.80 99.54 20.53 99.58 18.61
Strategy 3 0.20  0.80 100.00 22.04 100.00 19.58
Strategy 1 0.10  0.90 99.79 20.96 99.88 19.23
Strategy 2 0.10  0.90 99.42 20.36 99.44 18.59
Strategy 3 0.10  0.90 100.00 22.01 100.00 19.64

Table 3.5: Results of our algorithm with different @ and § on German Credit dataset
that uses "Age’ as protected variable
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H Models H cutoff ‘ alpha beta | NDCG rND

LambdaMART | 15 1.00  0.00 | 100.00 29.21
Strategy 1 15 | 010 090 | 99.79  20.96
Strategy 2 15 | 010 090 | 99.42  20.36
Strategy 3 15 | 0.80 0.20 | 100.00 21.96

LambdaMART | 50 1.00  0.00 | 100.00 24.26
Strategy 1 50 | 0.10 090 | 99.88 19.23
Strategy 2 50 | 0.10 0.90 | 99.44  18.59
Strategy 3 50 | 0.90 0.10 | 100.00 19.62

Table 3.6: Results of our algorithm with different @ and 5 on German Credit dataset
that uses "Age’ as protected variable

Best NDCG Results with @15, b=5, applied on validation set; Best results on German Credit ("Age")
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Figure 3.13: Best Results in terms of NDCG@15 on validation set of German Credit
with "Age’ as protected attribute
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Best NDCG Results with @50, b=5, applied on validation set; Best results on German Credit ("Age")
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Figure 3.14: Best Results in terms of NDCG@50 on validation set of German Credit
with ’Age’ as protected attribute

Best rND Results with @15, b=5, applied on validation set; Best results on German Credit ("Age")
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Figure 3.15: Best Results in terms of rND@15 on validation set German Credit with
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Best rND Results with @50, b=5, applied on validation set; Best results on German Credit ("Age")
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Figure 3.16: Best Results in terms of rND@50 on validation set German Credit with
"Age’ as protected attribute

3.5 Evaluations

By examining all the experiments conducted we can draw some conclusions. According
to Tables 3.2, 3.4 and 3.6, all the three strategies produce fairer results compared to
LambdaMART; although the performance is not as strong, it is still acceptable.

When focusing on the MSLR dataset, the First Strategy provides the most favorable

outcomes regarding fairness. Despite expectations, the Second Strategy, designed specif-
ically for fairness, could perform better. This discrepancy may be due to the labels of the
items being limited to a range of 0 to 4, making it challenging to achieve a satisfactory
ranking that meets the criteria of the Second Strategy approach.
When examining the algorithm’s performance with various strategies on the German
Credit dataset, we find that the Second Strategy excels in fairness, the Third in perfor-
mance, and the First strikes a balance between both aspects. The results are conceptually
identical for both datasets of German Credit, that are based on 'Sex’ and 'Age’. Here,
the results are expected because they respect the idea behind the strategies, and this is
also thanks to the fact that the relevance labels are 0 or 1 and then this allows to have
good results and execution of the formulas.
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Chapter 4

Conclusion

In this work, we addressed the problem of Fairness described in Section 2.3 and, in par-
ticularly, its application in learning to rank. To solve this problem, we adopted a fairness
measure based on the concept of statistical parity, i.e., the scope is to have the two groups
(protected and non protected) in similar percentages in the final ranking. This measure,
rND, was combined with the NDCG given by the algorithm LambdaMART.

The objective is then to create an algorithm based on LambdaMART that optimises both
performance and fairness. In order to do so, we developed three different strategies, each
focused on a specific part of the problem, described in Section 3.2. Then, these strategies
are tested on two different real datasets that are used in learning to rank, described in
Section 2.4, i.e., MSLR, which is a dataset created by Microsoft that contains different
queries with the relative documents that are related to them and the German Credit,
which contains individuals that asked a Credit. Here, it is possible to find the personal
information, such as age, sex, scope of the credit, about the people, and since it is a
smaller dataset than MSLR we enlarged it by creating synthetic data by using the one
already present in it. The three strategies differ in how we arrange the items in the
produced rank.

The first one choose if two elements must be swapped, following the idea of the Lamb-
daMART, Section 2.2.4.4, if the difference in terms of *ND given by the swap is positive
or not, so if we do the swap, it has a better fairness. This strategy applied to the datasets
gave good results, and it respected the fact that it has the scope to optimise fairness and
performance.

The second strategy is more complicated because it has the objective to optimise the
combination of NDCG and rND by maximising NDCG while rND is at its minimum.
That is because, with lower values, the algorithm is more fair, so as evident the main
scope here is to give more importance to fairness than performance. By applying the
method to the datasets, we evaluated that this goal was respected and achieved.

The third strategy is similar to the second, but here, the scope is to minimise 7ND while
the NDCG is at its maximum. That is because with more significant values of NDCG,
the performance is better, and the rND should be minimised. Here, instead, we give
more importance to the performance of the model than the fairness and by looking at
the results in Section 3.4, we can see that this condition is respected.
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In conclusion our research has successfully achieved its main objective. As the positive
results demonstrate, we have developed an algorithm that optimises performance and
Fairness. This algorithm has the potential to significantly impact the field of machine
learning and Fairness in algorithms.
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