
Master’s Degree

in Computer Science

Final Thesis

Efficient implementation of Treant:
a robust decision tree learning algorithm

Supervisor:
Ch.mo Prof. Lucchese Claudio

Assistant supervisor:
Abebe Seyum, M.Sc

Graduand:
Girardini Davide
Matricolation number
865919

Anno Accademico 2019/2020

Contents

Acknowledgements iii

Abstract v

1 Introduction 1

2 Machine learning overview 3
2.1 Machine learning at large scale . 3
2.2 Neural networks . 4

2.2.1 Advantages and drawbacks 5
2.2.2 Scalability . 5

2.3 Support vector machine . 6
2.3.1 Advantages and drawbacks 7
2.3.2 Scalability . 7

2.4 k-Nearest Neighbor . 8
2.4.1 Advantages and drawbacks 9
2.4.2 Scalability . 9

2.5 Decision trees . 9
2.5.1 Bootstrapping . 11
2.5.2 Bagging predictors . 11
2.5.3 Random forests . 12
2.5.4 Advantages and drawbacks 13
2.5.5 Scalability . 14

2.6 Summary . 14

3 Adversarial machine learning 17
3.1 Modelling an hostile environment 18
3.2 Attacker knowledge . 20
3.3 Trick neural networks . 21
3.4 Trick decision trees . 24
3.5 Summary . 27

4 The Treant algorithm optimization 29
4.1 Description of the problem . 29
4.2 Solving the optimization problem 34
4.3 Multi-threading . 35
4.4 Memory management . 38
4.5 Code validation . 41

i

ii CONTENTS

4.5.1 Single thread . 43
4.5.2 Internal parallelization . 44
4.5.3 External parallelization . 47

4.6 Python Binding . 50

5 Conclusion and future work 53

A Code distribution 55
A.1 Random datasets generation . 55
A.2 Compilation process workflow . 55

B Examples of usage 57
B.1 Python . 57
B.2 C++ . 62

Bibliography 65

Acknowledgements

I would like to thank my supervisor, Prof. Claudio Lucchese, and his assistant,
Seyum Abebe, for their technical support and very useful suggestions that helped
me to bring this work to its final form.

I am grateful to Fernanda for her encouragement in the early stages of this
long path toward the degree.

Finally, I must say that without the motivation given by my friends and my
family, I do not know if this result would have been possible.

iii

iv CONTENTS

Abstract

The thesis focuses on the optimization of an existing algorithm called Treant
for the generation of robust decision trees. Despite its good performance from the
machine learning point of view, unfortunately, the code presents some strong lim-
itations when employed with big datasets. The algorithm was originally written
in Python, a very good programming language for fast prototyping but, as well
as many other interpreted languages, it can lead to poor performances when it is
asked to crunch a big amount of data if not supported by appropriated libraries.
The code has been translated to the C++ compiled language, it has been paral-
lelized using OpenMP and STL libraries, along with other optimizations regarding
the memory management and the choice of third party libraries. A Python module
has been generated from the C++ code in order to make use of the very efficient
C++ classes in the same fashion as native Python classes. In this way, any user
can exploit both the Python flexibility and the C++ efficiency.

v

vi CONTENTS

Chapter 1

Introduction

The Treant algorithm [1] presents a novel approach for the construction of
decision trees in an hostile environment. The performance of this approach is
very good and the generated models has been proved to be quite robust under an
attacker able to perform a white-box attack. The original code used to test the
Treant algorithm is written in Python, an interpreted language that can be used
for fast prototyping. The code counts about 2500 lines.

Python is very powerful because is user-friendly, takes care of the memory
management through an internal garbage collector, implements a huge quantities
of libraries in the machine learning field: numpy, pandas, scipy, sklearn are some
of them. Python is an high level language that in few lines of codes can do the
job of hundreds of lines of code written in a low level language like C. A good
Python developer tries to use as much as possible the packages provided because
loops are very expensive. Nevertheless, sometimes it is not possible and the code
can became less and less efficient with an increasing complexity.

The original code execution times are very long with big datasets and, in some
cases, the usability is really limited. Very often, in the machine learning field, the
number of tests on a specific algorithm can be huge and can involve very different
configurations. For this reason, big tech companies that employ artificial intel-
ligence in their applications, are investing a big amount of resources in clusters,
cloud computing and computational infrastructures.

Unfortunately, the Python implementation does not scale well increasing the
size of the training set, the size of features and all the parameters that can increase
the computational load. This kind of limitations make the code practically unus-
able in many cases and difficult to be used to extend its results. This thesis tries
to solve this problem re-implementing the Treant algorithm in C++, a compiled
language very suitable for High Performance Computing applications. Many li-
braries have been implemented in recent years to ease the parallelization of C++

1

Introduction

code, both for multi-threading (see OpenMP, Standard Template Library, Boost)
and for multi-processing (see MPI library for example). GPU parallelization is
also becoming very popular in this field and usually bases its implementation on
C-like programming languages like OpenCL, CUDA, and Halide.

Chapter 2 presents an overview of the most popular machine learning tech-
niques that in the last decades have been greatly appreciated and developed by
members of the scientific community.

Chapter 3 explains what is the adversarial machine learning and how a model
can be attacked. This is quite recent research field and the main contributions re-
gard the neural networks. The Treant algorithm belongs exactly to this category
and is supposed to run in an hostile environment. It is able to generate robust
models that are able to behave well also if threatened by an external attacker.

The new C++ version of the Treant algorithm is analysed in the chapter
4 in terms of memory management and scalability thanks to the multi-threading
support. The C++ code is validated comparing its results with the original Python
code results and then tested with the use of multiple threads. Different types for
parallelization has been discussed, on feature level and on tree level when the target
is an ensemble model. The advantages and drawbacks of these two techniques
has been discussed along with test cases supporting the drawn conclusions. The
optimization libraries used by the Treant algorithm in its Python and C++
versions are discussed and compared inside the unit tests. The speed-up gained
reached peaks of x30 in the sequential version and it has been proved that the
code scales well increasing the number of threads employed.

Chapter 4.6 describes how the C++ source code has been wrapped using the
CFFI library inside a Python module. The middle layer between the two languages
is composed by C functions able to call the classes and methods of the generated
shared library. In this way a Python user can exploit both the efficiency of the
C++ language and the great usability of Python along with all the useful libraries
provided by this modern language.

Chapter 2

Machine learning overview

In this chapter four algorithms are analyzed, they can be considered as the most
influential in the machine learning and data mining areas [2]: artificial Neural
Networks, Support Vector Machines (SVM), k-Nearest Neighbor and Decision
Trees. More space is dedicated to the decision tree section because related to the
algorithm object of this thesis. The theoretical aspects behind each algorithm are
explained as well as the main advantages and the possible drawbacks that can
affect their scalability.

2.1 Machine learning at large scale

Large machine learning applications are becoming more and more popular in
the recent years mainly because of two key factors: the big size of the dataset
involved and the great progresses registered in the development of hardware ar-
chitectures as well as programming frameworks.

Typically, large distributed storage platforms are used to collect and save large
datasets; this implies the need of machine learning algorithms able to use efficiently
this stored data.

Efficient and simultaneous processing of these large data volumes are possible
thanks to the modern hardware architectures and improved programming frame-
works.

In the recent years, a lot of sensors are used to collect a big volume of high
dimensional and complex features growing the need of efficient hardware architec-
tures able to process efficiently and, in most of the cases, in a parallel way this
amount of data.

Visual object detection autonomous systems and speech recognition are two
examples of modern applications that involve this kind of data [3].

Providing an overview of the most effective algorithms can give an idea of how
well they can perform in large scale machine learning applications.

3

2.2 Neural networks Machine learning overview

2.2 Neural networks

In various relevant applications such as pattern recognition, neural networks
proved to be an effective machine learning algorithm outperforming many algo-
rithms such as Support Vector Machines. For this reason they are gaining a
strong popularity [4]. A neural network is a particular structure composed by
units named neurons. Three different kind of layers usually can be detected in
such architectures: the input layer containing the input feature vector; the output
layer containing the neural network response and the layers in between that can
present a size different from the input and output layers. An example of a neu-
ral network is illustrated in Figure 2.1. This particular artificial neural network,
called feed-forward neural network, the information travels from the input layer to
the output, no backward route is allowed.

Figure 2.1: Feed-forward neural network: signals can travel only forward, from input to
output

The three fundamental characteristics that compose a neural network are: the
architecture, the activation functions and the weight of the connections. The
network architecture and the functions must be chosen at the beginning and cannot
be changed during the training. The performance of the neural network depends
mainly on the value of the weights. The weights are refined during the training
phase by successive approximations. Many different strategies exist for the neural
networks training [5]. The Back Propagation algorithm is a very popular training
method [6]. Among the other techniques we can mention the weight-elimination
algorithm able to automatically infer the network topology and genetic algorithms
able to derive the network structure [7].

2.2 Neural networks 5

2.2.1 Advantages and drawbacks

The difficult part of a neural network design is guessing the most effective sizes
of the hidden layers.

When the number of neurons is too low or too high, the derived system does
not generalize well to unseen instances. For example, when too much nodes are
used, it may occur the phenomenon called overfitting and the desired optimum
may not be found at all. Kon and Plaskota [8] studied methods to derive the
nearly optimal quantity of neurons. High dimensional features such as images are
typically processed well by using neural networks. Unfortunately, neural networks
demand a huge amount of computing resources consuming a large amount of
processing power and physical memory. Another debated aspect is the difficult
neural network comprehensibility for average machine learning users [9].

2.2.2 Scalability

The most used training strategy for neural network training is the back propa-
gation algorithm, for this reason the scalability discussion starts from the analysis
of this procedure. Kotsiantis et al. [9] describes the Back Propagation algorithm
with six steps:

1. the input layer of the network receives an instance;

2. propagate the information to the output layer;

3. for each neuron, the local error is computed;

4. the weights are tuned in order to minimize the local error;

5. for the error, a penalty is accredited to the previous level of neurons, implic-
itly more importance is given to the neurons that have an higher weight;

6. another iteration is done where each neuron penalty is used as its error.

The optimal weight configuration is reached through successive adjustments of
the weights. I can be shown that the training stage computation time is equal
to O(nW) [9], where n is number of training instances and W are the number of
weights. So far, the amount of training required for a neural network can not be
estimated through an exact formula. The number of needed iterations generally
depends on the problem and on the particular architecture chosen. The error in a
feed-forward neural network could be equal to O(1/N) as showed by Barron [10].
Furthermore, a rule of thumb exists for the size T of a generic training set [11]:

T = O(N/ε) (2.1)

2.3 Support vector machine Machine learning overview

where ε represents the part of classification errors that is allowed. Because
the feed-forward operation is O(N), large parallel computers can be used to train
these neural networks and derive the weights, and thereafter copy them to a serial
computer for implementation.

2.3 Support vector machine

From the Structural Risk Minimization principle, part of the computational
learning theory, has been derived a classification technique called Support Vector
Machines (SVM). The main goal of the SVM is to differentiates between units of
classes in the training data by means of an optimal classification function. Consid-
ering a linearly separable dataset, the optimal classification function is determined
constructing a hyperplane which maximizes the margin between two subsets and
thus creates the largest possible distance between those [12]. Figure 2.2 illustrates
this strategy.

Figure 2.2: Visualization of a 2D support vector machine classifier

From the SVM point of view, the best generalization of the model is reached
maximizing the margin and thus the most optimal hyperplane. This yields to the
best classification performance for both the training data as well as future data.
SVM maximizes the function (2.2) in relation to −→w and b in order to find the

2.3 Support vector machine 7

maximum margin hyperplane for the lagrangian LP :

LP = 1
2 ‖
−→w ‖ −

t∑
i=1

αiγi(−→w · −→x i + b) +
t∑

i=1
αi (2.2)

Here, t is the number of training points, αi are the lagrangian multipliers.
The hyperplane is characterized by the vector −→w and the constant b. Data-points
laying on the optimal separating hyperplane are called support vector points. The
resulting hyperplane is a linear combination of these support vector points, the
remaining points are ignored and are not part of the solution. For this reason,
the complexity of a SVM is not affected by the number of features present in the
training data and makes SVMs very suitable for learning problems that contain
a large number of features in comparison to the amount of training instances.
Unfortunately, sometimes it is not possible to find a separating hyperplane with
the presence of misclassified instances.

Non-linearly separable data are very common in real world problems, in such
cases no hyperplane correctly dividing the training set can be found. In order to
overcome this problem, a possible solution is outlining the data onto an altered
feature space. It is possible to demonstrate that increasing the feature space
dimensionality any regular training set can be divisible [9].

2.3.1 Advantages and drawbacks

Among the many advantages that SVM provides, we can mention that the al-
gorithm is based on an established theory, it needs only tens of training specimens
and it is not affected by the feature space dimensionality [9]. However, the learning
strategy implements relatively complex training and categorization algorithms as
well as high memory and time utilization during training and classification phases.

2.3.2 Scalability

The solution of an n-dimensional Quadratic Programming problem (QP) is
involved in any SVM training phase, where n represents the number of training
instances. Large matrix operations and time consuming numerical calculations
are usually implemented in standard QP methods to solve this kind of problem.
Dealing with large scale applications, this method is very inefficient and not prac-
tical, unfortunately this is a well known drawback of the SVM method. Methods
that can solve the QP problem relatively quickly and efficiently can be found in
the scientific literature, for example the Sequential Minimal Optimization (SMO)
[13]. This method divides the QP problem into QP sub-problems and solves the
SVM quadratic programming problem without the use of numerical QP optimiza-
tion steps or extra matrix storage. A novel SVM approach finds an estimation

2.4 k-Nearest Neighbor Machine learning overview

of a least surrounding sphere of a group of items [2]. Intrinsically, SVM methods
solve binary classification problems; so, dealing with a multi-class problem, usu-
ally the strategy used is dividing the problem into a group of various classification
challenges.

2.4 k-Nearest Neighbor

The main goal of the k-Nearest Neighbor classification algorithm, or kNN, is
to find a group (also called cluster) of k objects that has the closest proximity to
a test object, then a unique label is assigned considering the prevalence of a class
in the closest proximity. The main three components of this algorithm are here
summarized: a group of labeled objects; a proximity metric; and the number k
of nearest neighbours [2]. Usually, the "Euclidian Distance" is used, this is a very
popular proximity metric used for kNN classification. This metric is explained by
the following formula [9]:

D(x, y) =
(

m∑
i=1

(xi − yi)2
)1/2

(2.3)

The "Euclidian Distance" is only one of the possible metrics used to define a
distance between instances of a dataset. Other examples include the Minkowsky,
Camberra or Chebychev metrics [14], even if often, in order to achieve more accu-
rate results altering the voting influence, weighing strategies are used.

Figure 2.3: Visualization of the k nearest neighbors of two centroids in the case of k =
3 and k = 9

Equation (2.4) is used to get the majority class and categorize the test objects

2.5 Decision trees 9

once the k-Nearest-Neighbor list is acquired:

Majority V oting : Y ′ = argmax
∑

(xi,yi)∈Dz

I(v = yi) (2.4)

where v represents the class label, yi represents the i-th nearest neighbor class
label and I(·) is the indicator functions that returns value one for a valid argument
or zero for an invalid argument [2].

2.4.1 Advantages and drawbacks

The logic behind kNN algorithms can be easily understood and implemented.
Despite its simplicity, the algorithm still performs well for many cases, for example
for multi-modal classes. However, structural problems can influence the algorithm
behavior. Kotsiantis et al. [9] summarizes those in three points:

1. the algorithm can require too much memory especially for large datasets;

2. the choice of the similarity function can change a lot the results;

3. an approved method for selecting the k factor is not existing.

2.4.2 Scalability

kNN classification is one of the unsupervised learning algorithms and the train-
ing phase does not exist, instead all feature values are stored in memory. Com-
pared with other machine learning algorithms like SVMs or decision trees, kNN
classifiers are considered slow learners. Although the model creation is computa-
tionally inexpensive, the classification phase is expensive from the computational
point of view because each k-nearest neighbor needs to be labelled. This requires
calculating the distance based on the chosen metric of the unlabeled instance to
all instances in the labeled set. For this reason, all the dataset must be stored in
memory, and the computation can be extremely expensive, especially with a great
number of instances. Many methods has been discussed in the past in order to
deal with this problem, such as the inverted index join algorithm [15], one of the
fastest algorithms for producing exact kNN graphs. The drawback of this algo-
rithm is its exponentially growing execution time. The greedy filtering algorithm
by Park et al. [16] is one example of the recent algorithms recently developed that
guarantee a time complexity of O(n).

2.5 Decision trees

Decision tree learning is a method for approximating discrete-valued target
functions, in which the learned function is represented by a decision tree. Learned

2.5 Decision trees Machine learning overview

trees can also be represented as sets of if-then rules to improve human readability.
These learning methods are among the most popular of inductive inference algo-
rithms and have been successfully applied to a broad range of tasks from learning
to diagnose medical cases to learning to assess credit risk of loan applicants.

Decision trees classify instances by sorting them down the tree from the root to
some leaf node, which provides the classification of the instance. Each node in the
tree specifies a test of some attribute of the instance, and each branch descending
from that node corresponds to one of the possible values for this attribute. An
instance is classified by starting at the root node of the tree, testing the attribute
specified by this node, then moving down the tree branch corresponding to the
value of the attribute in the given example. This process is then repeated for the
subtree rooted at the new node.

Figure 2.4: A decision tree for the concept buys_computer, indicating whether an World-
Electronics customer is likely to purchase a computer. Tests on attributes are repre-
sented by internal nodes (non-leaf). The two classes (either buys_computer = yes or
buys_computer = no) are represented by the leaf nodes.

Figure 2.4 shows a typical decision tree that represents the concept Buys com-
puter. The goal of the model is predicting whether a customer at WorldElectronics
is likely to purchase a computer. Rectangles denote internal nodes, whereas ovals
denote leaf nodes. Some decision tree algorithms produce only binary trees (where
each internal node branches to exactly two other nodes), whereas others can pro-
duce non-binary trees.

For example the instance:

(age = youth, student = no, credit_rating = excellent)

2.5 Decision trees 11

would be sorted down the leftmost branch of this decision tree and would
therefore be classified as a negative instance (i.e., the tree predicts that Buys
computer = no).

In general, decision trees represent a disjunction of conjunctions of constraints
on the attribute values of instances. Each path from the tree root to a leaf corre-
sponds to a conjunction of attribute tests, and the tree itself to a disjunction of
these conjunctions.

For example, the decision tree is shown in Figure 2.4 corresponds to the ex-
pression:

(age = youth ∧ student = yes)
∨ (age = middle_aged)
∨ (age = senior ∧ credit_rating = excellent)

2.5.1 Bootstrapping

Bootstrapping is any test or metric that uses random sampling with replace-
ment. It falls under the broader class of resampling methods. Bootstrapping
assigns measures of accuracy like for example bias, variance, confidence intervals,
prediction error, to sample estimates. The estimation of the sampling distribution
of almost any statistic using random sampling methods can be reached using this
technique.

The bootstrap approach can be applied in machine learning applications in-
volving a set of trained models, like the ensemble models. In this case the training
records are sampled with replacement; i.e., a record already chosen for training is
put back into the original pool of records so that it is equally likely to be redrawn.
If the original data has N records, it can be shown that, on average, a bootstrap
sample of size N contains about 63.2% of the records in the original data. This
approximation follows from the fact that the probability a record is chosen by a
bootstrap sample is 1 − (1 − 1/N)N . When N is sufficiently large, the probabil-
ity asymptotically approaches 1 − e−1 = 0.632. Records that are not included in
the bootstrap sample become part of the test set. The model induced from the
training set is then applied to the test set to obtain an estimate of the accuracy
of the bootstrap sample, εi. The sampling procedure is then repeated b times to
generate b bootstrap samples used to train the rest of the ensemble model.

2.5.2 Bagging predictors

Bootstrap aggregating, also called bagging (from bootstrap aggregating), is
a machine learning ensemble meta-algorithm designed to improve the stability
and accuracy of machine learning algorithms used in statistical classification and
regression. It also reduces variance and helps to avoid overfitting. Although it is

2.5 Decision trees Machine learning overview

usually applied to decision tree methods, it can be used with any type of method.
Bagging predictors is a method for generating multiple versions of a predictor

and using these to get an aggregated predictor. The aggregation averages over
the versions when predicting a numerical outcome and does a plurality vote when
predicting a class. The multiple versions are formed by making bootstrap repli-
cates of the learning set and using these as new learning sets. Tests on real and
simulated data sets using classification and regression trees and subset selection
in linear regression show that bagging can give substantial gains in accuracy. The
vital element is the instability of the prediction method. If perturbing the learning
set can cause significant changes in the predictor constructed, then bagging can
improve accuracy.

2.5.3 Random forests

A random forest is an ensemble (i.e., a collection) of fully grown decision trees.
Random forests are often used dealing with very large training datasets and a very
large number of input variables. A random forest model is typically composed by
tens or hundreds of decision trees. The generalisation error rate from random
forests tends to compare favourably to boosting approaches, yet the approach
tends to be more robust to noise in the training dataset, and so seems to be a very
stable model builder, mildly affected by the noise in a dataset that single decision
tree induction usually presents. Recent studies demonstrated that the random
forest model builder is very competitive with nonlinear classifiers such as artificial
neural nets and support vector machines. However, performance often depends
on dataset configuration and so it remains useful to try a suite of approaches.
Each decision tree is built from a bag of the training dataset, using what is called
replacement in performing this sampling. During the construction of a decision
tree, at each node, the features to be considered are randomly sampled. This
idea introduces a variation among the trees by projecting the training data into a
randomly chosen subspace before fitting each tree or each node. The construction
of each decision tree is not stopped until the model reaches its maximum size (no
pruning performed). Together, the resulting decision tree models of the forest
represent the final aggregated model where each decision tree votes for the result,
and the final outcome is decided by the majority. It is worth to remind that for
a regression model the result is the average value over the ensemble of regression
trees. Different options can be tuned during the random forest construction: the
number of trees to build, the training dataset sample size to use for building each
decision tree, and the number of variables to randomly select when considering
how to partition the training dataset at each node. A final report can also present
the input variables that are actually most important in determining the values of

2.5 Decision trees 13

the output variable. Avoiding the pruning, i.e. building each decision tree to its
maximal depth, hopefully we can generate a model that is less biased. The RF
natural randomness in the dataset selection and in the variable selection delivers
considerable robustness to noise, outliers, and over-fitting, when compared to a
single tree classifier.

This randomness has another advantage: it also delivers substantial computa-
tional efficiencies. In building a single decision tree we may select a random subset
of the training dataset. Moreover, at each node in the process of building the de-
cision tree, only a small fraction of all of the available variables are considered
for determining the best dataset partition. For this reason, the computational
requirement is substantially reduced.

In summary, a random forest model is a good choice for model building for a
number of reasons. First, just like decision trees, very little, if any, pre-processing
of the data needs to be performed. The data does not need to be normalised and
the approach is resilient to outliers. Second, if we have many input variables, we
generally do not need to do any variable selection before we begin model build-
ing. The random forest model builder is able to target the most useful variables.
Thirdly, because many trees are built and there are two levels of randomness
and each tree is effectively an independent model, the model builder tends not to
overfit to the training dataset.

2.5.4 Advantages and drawbacks

Decision tree learning is one of the most widely used and practical methods
for inductive inference. It is a method for approximating discrete-valued functions
that is robust to noisy data and capable of learning disjunctive expressions.

Comparative studies focused on performance demonstrated that decision tree
algorithms possess a very good combination of classification speed and error rate
if compared with other machine learning algorithms [17].

An improved version of the C4.5, the EC4.5, can calculate identical decision
trees gain of up to 500% [18].

The construction of decision tree classifiers does not require any domain knowl-
edge or parameter setting, for this reason it is appropriate for exploratory knowl-
edge discovery. Decision trees are not limited by the data space dimensionality.
The tree form makes intuitive and generally easy to assimilate by humans the
representation of the acquired knowledge. The two main steps of the decision tree
induction, learning and classification, are usually simple and fast. In general, de-
cision tree classifiers are considered to be machine learning models having a good
accuracy. However, the data at hand can determine a successful use of the model.
Many application areas such as medicine, manufacturing and production, financial

2.6 Summary Machine learning overview

analysis, astronomy, and molecular biology have employed decision tree induction
algorithms for classification, they are also the basis of several commercial rule
induction systems.

2.5.5 Scalability

There are many examples of tree inducing algorithms that split the feature
space with hyper-planes that are parallel to an axis. This kind of strategy gener-
ates the so called univariate decision trees. Split at each non-terminal node usually
involves a single feature. Building an univariate decision tree has a time complex-
ity of O(d·f ·Nlog(N)), where N represents the total number of instances, f is the
number of features and d the number of tree nodes [19]. Data mining applications
that having large datasets can build univariate decision trees in reasonable time,
good performance can be achieved by parallelizing these algorithms.

Olcay and Onur [19] proposed side-by-side applications of the C4.5 algorithm
through three different methods:

• feature based parallelization;

• node based parallelization;

• data based parallelization;

Following their study, on datasets with high dimensionality, feature based par-
allelization seems to be, theoretically, the most effective reaching high speedups,
whereas data based parallelization and node based parallelization reach their best
performance respectively on large datasets and on datasets that contain trees with
a high number of nodes.

Perfect load balancing is a mandatory requirement in all of these cases. As con-
firmed by the test cases discussed in chapter 4.3, they observed that the speedup
depends significantly on the load distribution amongst processors.

Other kind of parallel strategies are described in [20] where the authors em-
ployed graphics cards to generate Random Forests (RF) and Extremely Random-
ized Trees (ERT); or in [21] where the authors described PLANET : a scalable
distributed framework for learning tree models over large datasets with a MapRe-
duce strategy.

2.6 Summary

Machine learning algorithms try to solve mainly two kind of problems: classi-
fication problems and regression problems. While models for regression problems

2.6 Summary 15

predict the value of a numerical variable providing as output a number, the clas-
sification models, also called classifiers, predict categorical (discrete, unordered)
class labels. The machine learning algorithms presented in this chapter are ap-
plied mainly as classifiers, but, even after an overview, it is usually difficult to say
which is the best, in general.

Most popular machine learning algorithms are discussed in several comparison
studies in the recent literature. Easily interpreted decision trees, like the ones
generated by C4.5, contain a good mixture of error rate and calculation time.
However, C4.5 has a lower performance if compared to SVM when there are multi-
dimensions and continuous features [9]. A subset of the C4.5 and kNN (among
other algorithms) has been compared with SVM by Kotsiantis and Miyamoto et
al., in those experiments SVM performed significantly better than C4.5 and kNN
[22].

Choosing the right size of the hidden layer is the main issue when working with
Neural Networks. A poor generalization can be caused by an underestimation of
this layer, whereas overfitting can be due to an overestimation [2].

Comparison experiments performed by Royas-Bello et al. and Aruna et al.
between SVM and Neural Networks using multiple datasets concluded that SVM
can reach a higher accuracy than Neural Networks [23][24].

Despite its simplicity, the kNN algorithm must store all feature values in mem-
ory. However, even if it lacks a training phase, there are multiple issues that can
affect the performance of this algorithm. According to Kotsiantis et al. and Wu
et al. kNN requires large storage space, its results are sensitive to noise and irrele-
vant features, the choice of k is not principled and the choice of the metric used to
calculate the distances can significantly affect the model [9][2]. In a similar way,
neural network training can be very inefficient due to the presence of irrelevant
features.

It seems that better performance are achieved by SVMs and Neural networks
working with multi-dimensions or continuous features; as opposed, working with
categorical or discrete features, logic-based systems should be preferred. On the
other hand, when working with multi-collinearity and an existing input-output
relation, NNs and SVMs achieve better performance.

Diagonal partitioning can affect negatively decision trees models. Noise can
seriously affect kNN classifiers, in contrast to decision trees which are very tolerant
in this case.

Concluding this overview, when facing a classification problem, it seems that
the best approach to choose the best algorithm is performing a benchmark of
the candidate algorithms and selecting the most promising one for the specific

2.6 Summary Machine learning overview

application.

Chapter 3

Adversarial machine learning

This thesis focuses on decision trees trained in an hostile environment, for this
reason the adversarial learning process needs to be explained with some further
details. This chapter presents some examples of attacks that can be performed
on two very popular machine learning (ML) models: deep neural networks and
decision trees. When a machine learning system is designed to ensure system
security, such as in spam filtering and intrusion detection, everybody acknowledges
the need of training models resilient to adversarial manipulations [25], [26]. Yet,
the same considerations can be drawn for other critical application scenarios in
which machine learning is now employed, where adversaries may cause severe
system malfunctioning or faults.

In the scientific community there is a growing concern about machine learn-
ing algorithm potential to reproduce discrimination against a particular group of
people based on sensitive characteristics such as gender, race, religion or other.
In particular, algorithms trained on biased data are prone to learn, perpetuate or
even reinforce these biases.

Recently, many episodes of this nature have been documented. For example,
an algorithmic model used to generate predictions of criminal recidivism in the
United States of America (COMPAS) discriminated against black defendants [27].
Also, discrimination based on race and gender could be demonstrated for targeted
and automated online advertising on employment opportunities [28].

Taking an example regarding the financial sector, consider a machine learning
model which employed by a bank to grant loans to inquiring customers: a malicious
user may try to undermine the model qualifying himself for a loan. Unfortunately,
traditional machine learning algorithms proved week defensive strategies to a wide
range of attacks, and in particular to evasion attacks, i.e., carefully crafted per-
turbations of test inputs that manipulates the model and can generate prediction
errors.

In this context, the EU introduced the General Data Protection Regulation

17

3.1 Modelling an hostile environment Adversarial machine learning

(GDPR). This legislation, dated May 2018, represents one of the most important
changes in the regulation of data privacy in the last 20 years. It strictly regulates
the collection and use of sensitive personal data. The main purpose is obtaining
non-discriminatory algorithms, it rules in Article 9(1): "Processing of personal
data revealing racial or ethnic origin, political opinions, religious or philosophical
beliefs, or trade union membership, and the processing of genetic data, biometric
data for the purpose of uniquely identifying a natural person, data concerning
health or data concerning a natural person’s sex life or sexual orientation shall be
prohibited" [29]. The common practice, today, is to remove protected attributes
from the data set. This concept is known as “fairness through unawareness”.

While this approach seems to be viable when using conventional, deterministic
algorithms with a manageable quantity of data, it is not compliant for machine
learning algorithms trained on “big data.” Here, unexpected links to sensitive
information can rise from complex correlations in the data. Unfortunately, there
are cases where presumably non-sensitive attributes, can serve as substitutes or
proxies for protected attributes.

For this reason, on one side the data scientists try to optimize the performance
of a machine learning model, but on the other they are challenged to determine
whether the model output predictions are discriminatory, and how can be mit-
igated such unwanted bias. Many bias mitigation strategies for ML have been
proposed in recent years; however, most of them regard neural networks. En-
semble methods combining several decision tree classifiers have proven to be very
efficient for various applications. Therefore, actuaries and data scientists prefer,
for tabular data sets, the use of gradient tree boosting over neural networks due
to its generally higher accuracy rates.

3.1 Modelling an hostile environment

A game between two players, an attacker and a defender, can be used to model
secure learning systems: the data are manipulated by the attacker that tries to
fool the learning algorithm chosen by the defender. Let us calling H the learning
algorithm and the two strategies implemented by the attacker A(train) and A(eval)

. The resulting game has the following players and phases:

1. Defender: in order to select hypotheses based on the observed data, he
chooses the learning algorithm H ;

2. Attacker: can have a potential knowledge of H and chooses attack proce-
dures A(train) and A(eval)

3. Learning phase:

3.1 Modelling an hostile environment 19

• Get the dataset D(train) affected by A(train);

• Learn hypothesis: f ←− H(D(train))

4. Evaluation phase:

• Get the dataset D(eval) affected by A(eval);

• Each prediction f(x) is compared with y for each pair (x, y) ∈ D(eval)

Figure 3.1 shows these steps where the fundamental interactions between the
defender and attacker in choosing H, A(train), and A(eval) take place. H is chosen
by the defender to select hypotheses that predict with a good accuracy without
considering the possible attacks generated by A(train) and A(eval), in the meanwhile
the attacker tries to produce poor predictions choosing the most aggressive A(train)

and A(eval).

Figure 3.1: Diagram of an attack against a learning system where PZ is the data’s true
distribution, A(train) and A(eval) are adversary’s attack procedures, D(train) and D(eval)

are the training and test datasets, H is the learning algorithm, and f is the hypothesis it
learns from the training data. The hypothesis is evaluated on the test data by comparing
its prediction f(x) to the true label y for each (x, y) ∈ D(eval)

Influence, security violation and specificity are characteristics typically used to
categorize a generic attack.

For example, the structure of the game and the legal moves that each player
can make are determined by the influence axis.

Exploratory attacks are not applied during the training phase, but they use
other techniques, like, for example, probing the detector to discover information
about it or its training data. When this kind of attacks are present, the procedure
A(train) is not used and thereby the attacker only influences D(eval).

On the other hand, the attacker may has indirect influence on f through his
choice of A(train) when he uses causative attacks that are active during the training

3.2 Attacker knowledge Adversarial machine learning

process. The choice of the instances the adversary would like to have misclassi-
fied during the evaluation phase is determined by the security violation and
specificity axes of the taxonomy.

In an integrity attack the focus is moved to false negatives, for this reason
the attacker will use A(train) and/or A(eval) to find false negatives in the dataset,
whereas the creation of false positives can take place in an availability attack. A
targeted attack involves the predictions for a small number of instances, while an
indiscriminate attacker employs its resources to a wide range of instances.

3.2 Attacker knowledge

A very important aspect regarding the attacker nature is the amount of infor-
mation accessible and possibly used to fool the learning system. Generally, three
components of of the learner are known to the adversary: its learning algorithm,
its feature space and its data.

Not only the attacker’s capabilities are a key factor to build a reasonable model,
but also a critical aspect is the attacker’s information.

The Kerckhoffs’ Principle [30] can be taken as a relevant guideline for assump-
tions about the adversary: i.e., secure learning systems should not be based on
unrealistic expectations of secrecy. Rely on secrets can be very dangerous because,
in case of information leakage, the entire system can be suddenly comprised. I has
been proved that robust security systems marginally rely on assumptions about
what can be kept realistically secret from a potential attack.

On the other hand, giving to the attacker an unrealistic degree of information,
can yield to an over pessimistic model; e.g., optimal attacks can be crafted by
an omnipotent adversary who completely knows the algorithm, feature space, and
data.

Thus, it is important to estimate adequately the real possibilities of the at-
tacker, what is its knowledge of the learning algorithm and the side effects that
this information can cause.

A good compromise is assuming that the attacker has complete knowledge of
the training algorithm, and, in addition, partial or complete information about
the training set. For example, the attacker could eavesdrop on all network traffic
over a specific time period that involves the sampling of the learner training data.
In the following, we consider different degrees of the adversary’s knowledge and we
evaluate the attack efficiency based on different sources of potential information.

White-Box Attacks: in this case the attacker is assumed to know everything
about the model, the training algorithm, and training data distribution. Hence,
the underlying training strategy and parameters are exposed to the adversary.

3.3 Trick neural networks 21

Black-Box Attacks: the attacker have a very limited knowledge of the tar-
geted model or algorithm and can not access it’s parameters. The attacker can
query the model to observe what kind of outputs it gives. In the hard-label black
box attack scenario the attacker is not able to query the model, and perturbation
to craft adversarial samples is done without it.

Different attack types can be generated changing of the following conditions:
when the attack takes place (i.e, before or after learning process); which is its
influence (if causative introduces vulnerabilities at the beginning, if exploratory
introduces vulnerabilities after training). Based on that, we can distinguish two
fundamental types of attack.

Poisoning attack: takes place before the learning process starts by modifying
a part of training data in order to disrupt the process and make it learn what it
should not learn, hence reduce the performance and accuracy of the trained model.
The bad samples can be labeled incorrectly in the training domain (either it is
targeted or indiscriminate) or in a different domain. One of the challenges of
targeting training data is that it is difficult to get their real distribution since
data are usually protected. Hence, poisoning attack exploit the vulnerability of
machine learning models emerging from re-training which corrupt the process by
meddling. Other methods of poisoning attack are label modification in which the
adversary modify the label for arbitrary instances, and also if the adversary has
access to the training data it is possible to poison by modifying the data before
it is used for training, and if the adversary has the ability to augment data it can
inject malicious instances into the training set.

Evasion attack: is the most known type of attack where the attacker craft
adversarial samples that look like normal data instances which forces wrong pre-
diction (wrong labelling). In this attack adversarial samples are crafted at test
time to evade detection and exploit the vulnerabilities of trained model. Hence,
the model misclassifies it as a legitimate instance. This attack does not assume
any influence over the training data. In evasion attack, given a generic instance
x, the target is to add the smallest perturbation δ which generates an adversarial
sample x̄ = x+ δ that is able to evade the model into an inaccurate prediction. A
typical example in Computer Vision is changing some image pixel before uploading
and fool the correct model labelling.

3.3 Trick neural networks

In the recent years, a lot of attacks examples related to deep neural networks
has been discovered, probably because this research field is still young and the

3.3 Trick neural networks Adversarial machine learning

learning process of a neural network is still difficult to understand at a human eye
and the tests, sometimes can lead to unexpected results.

The adjective "deep" in deep learning (also known as deep structured learning)
comes from the use of multiple layers in the network. Early work showed that a
linear perceptron cannot be a universal classifier, and then that a network with a
non-polynomial activation function with one hidden layer of unbounded width can
on the other hand so be. Deep learning is a modern variation which is concerned
with an unbounded number of layers of bounded size, which permits practical ap-
plication and optimized implementation, while retaining theoretical universality
under mild conditions. In deep learning the layers are also permitted to be het-
erogeneous and to deviate widely from biologically informed connectionist models,
for the sake of efficiency, trainability and understandability, whence the structured
connotation.

Figure 3.2: Adding carefully crafted noise to a picture can create a new image that
people would see as identical, but which a DNN sees as utterly different.

State-of-the-art deep neural networks have achieved impressive results on many
image classification tasks. However, these same architectures have been shown to
be unstable to small, well sought, perturbations of the images. Despite the impor-
tance of this phenomenon, no effective methods have been proposed to accurately
compute the robustness of state-of-the-art deep classifiers to such perturbations
on large scale datasets.

A first big reality check on the DNN classification performance came in 2013,
when Google researcher Christian Szegedy and his colleagues posted a preprint
called "Intriguing properties of neural networks". The researchers showed that it
was possible to take an image - of a lion, for example - that a DNN could identify
and, by altering a few pixels, convince the machine that it represented something
different, such as a library (see Figure 3.2 for another example). The team called
the analyzed images adversarial examples.

Surprisingly, DNNs can see things that were not there, such as a penguin in a

3.3 Trick neural networks 23

Figure 3.3: DNNs can be confused by object rotation, probably because they are too
different from the types of image used during the training phase

Figure 3.4: Natural images can sometimes trick a DNN, because it might focus on
picture colour, texture or background rather than selecting the salient features a human
would recognize

pattern of wavy lines as demonstrated by Clune and Anh Nguyen, together with
Jason Yosinski.

The following are the considerations of Yoshua Bengio (University of Montreal
in Canada), a pioneer of deep learning: "Anybody who has played with machine
learning knows these systems make stupid mistakes once in a while. What was a
surprise was the type of mistake", he says. "That was pretty striking. It’s a type
of mistake we would not have imagined would happen".

New types of mistake have been recorded in this field. Again, Nguyen [31]
showed that a simple rotation in an image was sufficient to throw off some of the
best image classifiers around. According to a recent study by Hendrycks and his
colleagues [32], even unadulterated, natural images can still trick state-of-the-art
classifiers into making unpredictable gaffes, such as identifying a mushroom as a
pretzel or a dragonfly as a manhole cover (see Figures 3.3 and 3.4). These are only
few of the numerous examples of DNN fooling processes that can be found in the

3.4 Trick decision trees Adversarial machine learning

current scientific literature. In practice for tabular data sets, actuaries and data
scientists prefer the use of gradient tree boosting over neural networks due to its
generally higher accuracy rates.

3.4 Trick decision trees

To date, research on evasion attacks has mostly focused on linear classifiers and,
more recently, on deep neural networks. As described in section 2.5, decision trees
are interpretable models, yielding to predictions which are human-understandable
in terms of syntactic checks over domain features; this is particularly appealing
from the security point of view.

Unfortunately, despite their success, only limited attention have been given to
decision tree ensembles by the security and machine learning communities so far,
yielding a sub-optimal state of the art for adversarial learning techniques.

The perturbation cost, in most of the attacks, is calculated as a measure of dis-
tance. The following three metrics are well known in adversarial learning research
community:

1. `0 − norm: captures localized perturbations with arbitrary magnitude. For
example, attacks using `0−norm on image minimize the number of modified
pixels.

2. `2−norm: attacks which calculate their cost using `2−norm, first calculate
the sum of squared error between adversarial and benign samples and then
minimize it.

3. `∞ − norm: this measurement is the simplest one and aim to minimize the
amount of perturbation which can be applied to generate adversarial samples.

Models that implement counter-measures to the threats of on attacker are
usually classified as robust models. Figure 3.5 explains how the best accuracy
should not be confused with the best robustness.

In the upper figure a set of 10 points is easily separated with a horizontal split
on feature x(2). The accuracy of this split is 0.8. In the middle figure the high
accuracy horizontal split cannot separate the `∞ balls around the data points and
thus an adversary can perturb any example xi within the indicated `∞ ball to
mislead the model. The worst case accuracy under adversarial perturbations is 0
if all points are perturbed within the square boxes (`∞ norm bounded noise). The
lower figure shows a more robust split on feature x(1). The accuracy of this split is
0.7 under all possible perturbations within the same size `∞ norm bounded noise

3.4 Trick decision trees 25

Figure 3.5: A simple example illustrating how robust splitting works: a) best splitting;
b) best splitting under attack; c) best robust split.

(square boxes).

An early attack algorithm designed for single decision trees has been proposed
by Papernot et al. [33], based on greedy search. To find an adversarial example,
this method searches the neighborhood of the leaf which produces the original
prediction, and finds another leaf labeled as a different class by considering the
path from the original leaf to the target leaf, and changing the feature values
accordingly to result in misclassification.

Zhang et al. [34] introduced an attacking strategy specifically designed to vot-
ing ensembles of binary decision trees with binary valued feature variables. Their
approach depends on input and output analysis of the targeted system. They sim-
plified the optimal evasion attack in [35] to a reduced and less costly strategy of
0 − 1 Integer Linear Programming (ILP). Their optimal evasion problem became
the minimization of `0 distance formulated in terms of 0 − 1 ILP with constraints.
The constraints ensure any successful attack will change the label (sign) of the
output; ensure that there is one and only one decision making path; even with
the introduction of attacks, the method preserves the semantics of binary decision
tree. To complement their optimal evasion problem solution, Zhang et al. also
introduced an heuristic evasion algorithm which finds the most important features
which appears most frequently and closer to the root in decision tree, and greedily
modify the single best feature at each iteration until the attack become success-
ful to produce adversarial sample. This approach is also extended to black-box
settings.

Chen et al. [36] studied the robustness verification problem for tree-based
models, including decision trees, random forests (RFs) and gradient boosted de-
cision trees (GBDTs). They applied two types of attack: the first one developed

3.4 Trick decision trees Adversarial machine learning

by Kantchelian et al. [35] and the second developed by Cheng et al. [37]. The
first one is a white-box attack against binary classification tree ensembles. This
method finds the exact smallest distortion (measured by some `p norm) neces-
sary to mislead the model. The second one does not rely on the gradient nor
the smoothness of output of a machine learning model. Cheng’s attack method
has been used to efficiently evaluate the robustness of complex models on large
datasets, even under black-box settings. To deal with non-smoothness of model
output, this method focuses on the distance between the benign example and
the decision boundary, and reformulates the adversarial attack as a minimization
problem of this distance. Some adversarial examples obtained by this method
are shown in Figure 3.6, where we display results on both MNIST and Fashion-
MNIST datasets. Cheng’s attack is able to craft adversarial examples with very
small distortions on natural models; for human eyes, the adversarial distortion
added to the natural model’s adversarial examples appear as imperceptible noise.

Figure 3.6: MNIST and Fashion-MNIST examples and their adversarial examples found
using the untargeted attack proposed by [37] on 200-tree gradient boosted decision
tree (GBDT) models trained using XGBoost with depth=8. Natural GBDT models
are fooled by small `∞ perturbations(b,e); instead robust GBDT models require much
larger perturbations (c, f) for successful attacks.

Chen et al. demonstrated that their robust model needed a greater `∞ per-
turbations to be fooled than the natural gradient boosted decision tree (GBDT)
models. Since a typical decision tree can only split on a single feature at one time,
it is natural to consider adversarial perturbations within an `∞ ball of radius ε
around each instance xi. Such perturbations enable the adversary to minimize
the score obtained by the split. So, instead of finding a split with highest score,
an intuitive approach for robust training is to maximize the minimum score value

3.5 Summary 27

obtained by all possible perturbations in an `∞ ball with radius ε. The framework
defines ∆I as the ambiguity set of instances that can fall to the right or on the
left child of each node due to the attack application. For efficiency and scalability
reasons, Chen’s robust splitting procedure for boosted decision trees approximates
the minimization by considering only four representative cases: no perturbations,
perturb all points to the left, perturb all points to the right, swap the points. In
this way, only a constant factor is added to the asymptotic complexity of the algo-
rithm. The robust splitting is determined finding the minimum score of these four
combinations. The split method proposed by Chen et al. has been implemented
the code described in chapter 4.

Another novel algorithm, called Treant, which uses optimization approach
in optimal tree construction is presented in [1]. It optimizes an evasion aware loss
function during the tree construction, by employing a formal threat model used to
generate attacks. As the tree grows, this approach make sure that it is optimally
constructed by means of splitting choices that are aware of the capabilities of the
attacker. Considering the insufficiency of attack representation when an attacker
is aware of the defense mechanism and the representation of the total possible
attacks of the work in [36], the authors decided to base their algorithm on two
main components. The first one is robust splitting, which identifies instances for
which the outcome depends on the attacker’s move, and evaluate the splitting
quality. The second component is called attack invariance, a security property
requiring that additional tree growth does not constitute a new attacking strategy
for the attacker.

Chapter 4 is focused on the implementation of this algorithm.

3.5 Summary

In this chapter an overview of the possible attacks on NN and decision tree
models has been presented. This presentation of adversarial machine learning can
be summarized in the following points:

• adversarial machine learning is a novel field;

• some possible attack strategies (like white and black box attacks) has been
described;

• there are few works in this area, but the interest is increasing due to the
impact that ML algorithms can have in our lives in the near future;

• artificial neural network has been studied more than other ML models, prob-
ably because of their great success in the recent years and their low human
readability;

3.5 Summary Adversarial machine learning

• despite decision trees success in many applications, attack strategies and
experiments on this kind of models are very few;

• the concept of robust splitting has a crucial importance in the defensive strat-
egy of a decision tree model;

• some attack strategies on decision trees and some counter-measures has been
presented;

• a defensive strategy for decision trees training called Treant algorithm has
been introduced.

Chapter 4

The Treant algorithm
optimization

In this chapter it is discussed the core work of this thesis: the refactoring of a
Python code implementing the Treant algorithm [1].

After a brief description of the algorithm, the initial performance and design
of the Python code are described as well as the strategies implemented to enhance
its quality, readability and computation time in a new C++ implementation.

4.1 Description of the problem

The starting point of the work carried on in this thesis was a Python code
used to solve the problem described by Calzavara et al. in [1]. The authors pro-
posed a novel learning algorithm, called Treant, designed to build decision trees
which are resilient against evasion attacks at test time. Based on a formal threat
model, Treant optimizes an evasion-aware loss function at each step of the tree
construction. This is particularly challenging to enforce correctly, considered the
greedy nature of traditional decision tree learning. In particular, Treant has
to ensure that the local greedy choices performed upon tree construction are not
short-sighted with respect to the capabilities of the attacker, who has the advan-
tage of choosing the best attack strategy based on the fully built tree. Treant
is based on the combination of two key technical ingredients: a robust splitting
strategy for decision tree nodes, which reliably takes into account at training time
the attacker’s capability of perturbing instances at test time, and an attack in-
variance property, which preserves the correctness of the greedy construction by
generating and propagating constraints along the decision tree, so as to discard
splitting choices which might be vulnerable to attacks.

The notation of symbols used in [1] is reported in Table 4.1.

29

4.1 Description of the problem The Treant algorithm optimization

The Treant construction is summarized in algorithm 1. The core of the logic
is in the call of the TSplit function (line 2), which takes as input a dataset
D, an attacker A and a set of constraints C initially empty, and implements the
construction recursively. The construction terminates when it is not possible to
further reduce LA (line 3).

Symbol Meaning
LA Loss under attack
D Training dataset

A(x) Set of all the attacks A can generate from x
λ(ŷ) Leaf node with prediction ŷ

σ(f, v, tl, tr) Internal node testing xf ≤ v, having sub-trees tl, tr
Dl(f, v, A) Left elements of ternary partitioning on (f, v)
Dr(f, v, A) Right elements of ternary partitioning on (f, v)
Du(f, v, A) Unknown elements of ternary partitioning on (f, v)
DL(f, v, A) Left elements of the robust splitting on t̂ stump
DR(f, v, A) Right elements of the robust splitting on t̂ stump
DL(f, v, A) Set of constraints for the left child of t̂
DR(f, v, A) Set of constraints for the right child of t̂

Table 4.1: Notation summary

Algorithm 1 Treant
Input: training data D, attacker A, constraints C
Output: Node of the tree structure (internal node or leaf)

1: ŷ ← argminy LA(λ(y),D) subject to C
2: σ(f, v, λ(ŷl), λ(ŷr)),Dl,Dr, Cl, Cr ←TSplit(D, A, C)
3: if LA(σ(f, v, λ(ŷl), λ(ŷr)),D) < LA(λ(ŷ),D) then
4: tl ←Treant(Dl, A, Cl)
5: tr ←Treant(Dr, A, Cr)
6: return σ(f, v, tl, tr)
7: else
8: return λ(ŷ)
9: end if

Function TSplit returns the sub-tree minimizing the loss under attack LA on
D subject to the constraints C, based on the ternary partitioning. It then splits
D by means of the robust splitting strategy and returns new sets of constraints,
which are used to recursively build the left and right sub-trees. If the Du set
is not empty, then its elements will fall into DL or DR based on (ŷl, ŷr) values
resulting from the solution of the min-max problem. The constraints CL and CR

are propagated downstream to the child nodes. During the tree construction,
the implementation incrementally computes a sufficient subset of A(x). A simple
example of the algorithm execution can be found in [1].

The splitting method implemented in the TSplit function (line 2 in algorithm
1) solves an optimization problem that minimizes a cost function (also called loss

4.1 Description of the problem 31

function). In the scientific literature we can find many candidates for the loss
function; among the others Gini’s index, Entropy, SSE and Log-Loss. In partic-
ular, the loss function chosen in the Python code is the Sum of Squared Errors
(SSE) and must be minimized with some constraints (see [1] for the mathematical
formulation of the cost functions and the constraints imposed). The minimization
problem is solved using the function minimize of the optimize package belonging
to the scipy Python library. The authors identified in the SLSQP method the best
suitable way to solve the problem at hand (for more details see par. 4.2).

In the end of the article (see section V of [1]), the algorithm has been tested
on three real datasets:

1. census: Census Income (see [38])

2. wine: Wine Quality (see [39])

3. credit: Default of Credit Cards (see [40])

having the following main statistics:

Statistics type census wine credit
n. of instances 45,222 6,497 30,000
n. of features 13 12 24

class distribution (pos.÷neg. %) 25÷75 63÷37 22÷78

Table 4.2: Main statistics of tested datasets

Even if the tested datasets are not very large, the original Python code is
quite slow, especially if the target is not the construction of only one tree but an
ensemble of decision trees like in the case of bagging classifiers.

For this reason, the code needed to be refactored with a translation to a com-
piled language since Python is an interpreted language and enhancing its perfor-
mance using a multi-threading approach in the parts that could be parallelized.
The chosen language was C++, a language able the go to a very low level and,
in its modern version (the C++17 standard has been used), can easily generate
parallel applications thanks to the powerful Standard Template Library (STL)
where at least a couple of modules like thread and future can ease the life of
the programmer avoiding the code complexity that was inevitable in former times.

The first step in this type of analysis is always a profiling of the existing code.
On the Python side, it was used a powerful IDE distributed by JetBrains called
PyCharm. In its Professional Edition available through the Student version of
the University of Ca’ Foscari license, provides a Python Profiler. The profiler
is a very useful tool to identify the most expensive functions of the code. The
refactoring should focus on these parts in order to get the maximum gain in terms

4.1 Description of the problem The Treant algorithm optimization

of performance. The profiler typically provides some statistics, like: the space
(memory) or time complexity, the usage of particular instructions or the frequency
and duration of function calls. It is also able to show the results in a tree fashion
where each function is plotted at its right stack level with a percentage related
the ratio between the function CPU usage over the total application usage.

Figure 4.1: Example of PyCharm profiler results on the original code in graph form

The aim of the profiled code was training a single decision tree using a single
thread. In the sklean Python package vocabulary, usually the training phase is
performed by a function called fit(X, y) that takes as input a dataset in the
form of a feature matrix X and a label vector y. The training phase is more time
consuming than the test phase where the model built is used to predict a given set
of instances. For this reason, all the analysis conducted is mainly focused on the
traning phase. Matrices and vectors in the Python code are arrays built with the
numpy library. The Figure 4.1 shows a portion of the profiler result given in the
graph form. The red boxes are calls to functions that are heavily involved in the
program execution. The colours degrade to yellow and green with the decrease of
the CPU usage. We can see that in the training phase of a decision tree the fit
function plays the main role. The __fit function is a private function that is called
recursively (see self-pointing arrow in the box in the figure) because the decision
tree holds a root node that is a recursive structure. So, the fit function must
call the recursive function __fit and build the recursive structure of the tree
formed by its nodes with a top-down procedure. The optimize_gain function
takes almost all the computational burden of the __fit function (see percentages
in the boxes). The optimize_gain function calls two fundamental function for

4.1 Description of the problem 33

the training problem at hand:

• __simulate_split (more or less two-thirds of load);

• __optimize_sse_under_max_attack (more or less one-third of load).

The first function simulates a split of the current portion of the dataset; just "a
portion" because, during the training process, the instances contained in the initial
dataset and falling inside the root node of the decision tree, are split recursively
into two subsets and assigned downstream to two children until the requirements
for a leaf creation are met (recall that the decision tree built is a binary tree, as
described in [1]). Like in other algorithms developed in an hostile environment,
the split function in the Treant algorithm involves an attacker. For this reason,
__simulate_split performs a loop on all the instances falling inside the node in
order to generate a larger subset including the instances generated by the attack.
This expanded set of instances is built calling the attack function of the Attacker
class on each instance belonging to the node. The __simulate_split’s output
are three subsets of the set of instances falling into the current node: the instances
falling in the left child, the instances falling in the right child and the instances,
if any, that can fall on the left or on the right child. The instances belonging to
this last set are called unknown in [1] and their final destination (the left or the
right child) is determined thanks to the output of the second function.

The __optimize_sse_under_max_attack function estimates two variables, ŷl

and ŷr, solving the min-max problem defined by equation (2) in [1] and reported
hereafter:

(ŷl, ŷr) = argmin
yl,yr

LA(σ(f, v, λ(yl), λ(yr)),D), (4.1)

where (f, v) is a fixed pair representing a generic entry in the feature matrix (for
the other symbols see Table 4.1).

Thanks to the (ŷl, ŷr) solution of the min-max problem, the uncertainty due
to the unknown instances is solved (see Definition 3 regarding Robust Splitting in
[1]) and the instances belonging to this set can be assigned to the pertinent child.
This concludes the description of fit(X, y), the most expensive function in the
original Python code.

Other functions have been considered during the refactoring, for example the
predict that is needed in the test phase and for the construction of a Python mod-
ule created by the C++ code and usable as estimator in the BaggingClassifier
class of the sklearn Python library.
Python classes like Attacker, Node, Constraint, SplitOptimizer among the
other, have their C++ counterpart in the refactored code for the sake of consis-

4.2 Solving the optimization problem The Treant algorithm optimization

tency and readability. In this way, a user of the original Python code can find
easily the references in the C++ code.

4.2 Solving the optimization problem

The construction of a robust decision tree involves the solution of the opti-
mization problem described by equation 4.1.

Python library scipy provides a useful function in the optimize package called
minimize. This function provides several methods taken from the scientific liter-
ature, among the other: Nelder-Mead, Powell, CG, BFGS, Newton-CG, L-BFGS-B,
TNC, COBYLA, SLSQP. The SLSQP method uses Sequential Least SQuares Program-
ming to minimize a function of several variables with any combination of bounds,
equality and inequality constraints. The Python method wraps the SLSQP Opti-
mization subroutine originally implemented by Dieter Kraft [41]. As a side note,
the wrapper handles infinite values in bounds by converting them into large float-
ing values.

In order to solve the same optimization problem in C++, the open-source
NLopt library has been compiled separately and linked in the final phase of the
compilation process. The target of this library is to solve non-linear optimization
problems [42]. As the scipy Python library, it provides several methods to solve
those problems. For the sake of consistency, the same solution method has been
chosen: SLSQP. Some methods are derivative-free and the calculation of the ja-
cobian matrix is optional, some other methods are gradient-based and they need
the declaration of the gradient function that will be used internally in order to
calculate the jacobian.

On one side, the C++ library NLopt implements the SLSQP method as gradient
based, on the other side the scipy.optimize.minimize function implements the
SLSQP method as derivative-free. In other words, only the function to be minimized
should be provided and not the gradient function. In order to ensure consistency
between the Python and C++ version, especially during the unit tests described
in the chapter 4.5, the same procedure followed by scipy.optimize.minimize to
calculate the jacobian matrix has been implemented in the function that calculates
the gradient on the C++ side.

It is worth noting that, due to a strange mismatching between the two solution
of the optimization problem, the two decision trees calculated by the Python code
and by the C++ code presented a slight difference in one particular node. The
case here discussed regards the census dataset with 5000 instances analysed and
an attacker with a budget of 60.

Since this was a good test case for the solution of the optimization problem, it

4.3 Multi-threading 35

has been investigated step-by-step. Curiously, even if the input was exactly the
same and with the same internal parameters (starting point, maximum number
of iteration and solution tolerances), the two functions calculated two different
minimum values. The minimum calculated by NLopt was less than the one calcu-
lated by scipy.optimize.minimize. For this reason, a last test was conducted:
the initial value of the function, x0, given as input to the Python function has
been modified with the minimum found by the C++ code and, surprisingly, the
code yielded to the same minimum calculated without modifying the value of x0.
So, even if starting from a lower point (the C++ minimum), the minimization
algorithm yielded to a greater solution, that unfortunately is not the expected
behaviour (see Table 4.3).

NIT FC OBJFUN GNORM
1 4 1.003093E+00 8.672082E-01
2 9 1.059868E+00 1.602760E-00
3 13 3.279960E+00 8.579736E-00
4 17 5.383091E+00 1.192596E+01
5 23 5.386212E+00 1.187600E+01
6 28 5.933486E+00 1.259119E+01
7 32 6.556814E+00 1.335931E+01
8 36 6.650636E+00 1.347121E+01
9 40 6.652721E+00 1.347368E+01

Table 4.3: Iterations of the Python minimizer in a particular test case: even if the
iterations begin with a good starting point x0 with the lowest value of the GNORM, the
error increases and the algorithm ends up with a solution that is worse than the initial
one (the optimum found by the C++ code)

From this analysis, at least in this particular case, the C++ version of the
SLSQP method was better than the Python version.

Giving a closer look to the scipy.optimize.minimize, it seems that an ex-
ternal Fortran function belonging to an external library is called. Most likely, this
was the original function developed by Kraft in [41]. According with the NLopt
online documentation, the original Kraft’s code was modified for its inclusion by
S. G. Johnson in 2010 with the following major changes: the inexact line search
was modified, a bug on the LSEI subroutine was fixed and the LSQ subroutine was
modified to handle infinite lower/upper bounds. These changes for sure improved
the code quality and can be the reason of the inconsistencies encountered in the
case discussed above.

4.3 Multi-threading

The first step of the refactoring involved the translation of the code to a com-
piled language: C++.

4.3 Multi-threading The Treant algorithm optimization

The second step involved the parallelization of the code in order to exploit
the great resources that the modern computers can provide. The final target of
any machine learning developer is, usually, bring his code to a level able to be
launched on a cluster with the possibility to crunch a big amount of numbers per
second generating the expected ML model as fast as possible. This would give
to the researcher the possibility to run more tests of his algorithm, increase the
robustness in a quicker way and open the code to the solution of bigger challenges.

The hardware used to test the code in its sequential and parallel versions had
the following technical characteristics:

Architecture: x86_64
CPU op-mode(s): 32-bit, 64-bit
Byte Order: Little Endian
CPU(s): 8
On-line CPU(s) list: 0-7
Thread(s) per core: 2
Core(s) per socket: 4
Socket(s): 1
NUMA node(s): 1
Vendor ID: GenuineIntel
CPU family: 6
Model: 142
Model name: Intel(R) Core(TM) i7-8565U CPU @ 1.80GHz
Stepping: 11
CPU MHz: 2944.316
CPU max MHz: 4600,0000
CPU min MHz: 400,0000
BogoMIPS: 3999.93
Virtualisation: VT-x
L1d cache: 32K
L1i cache: 32K
L2 cache: 256K
L3 cache: 8192K
NUMA node0 CPU(s): 0-7

The OS used was an Ubuntu 18.04 Linux distribution. As described in the speci-
fications above the hardware has the ability to run multiple threads concurrently,
so it is enough to have a first understanding of the horizons opened by the new
code. The code developed and described in this thesis is the first step of this
process toward an High Performance Computing code design; for the time being,

4.3 Multi-threading 37

the code can be launched using a multi-threading approach in more than one way
as described in the following. A future enhancement could be the multi-process
support adding the possibility to run the code on a cluster of machines and in-
crease even more its performance.

As described in chapter 4.1, the profiling analysis shown that the most expen-
sive function in the training phase is __simulate_split. This function produces
a split of the dataset based on a particular feature value. The function __fit
loops through all the columns of the feature matrix (outer loop) and calls the
__simulate_split function on each value assumed by the feature at hand using
a nested loop (inner loop).

Python loops are, in general, very time consuming if compared with C++
ones. Translating the __fit function to C++ gave a considerable boost to the
efficiency, but a further step can be done: parallelize the outer loop on columns.
So, instead of processing each column sequentially we can split the column indexes
in chunks and assign each chunk to a specific thread. We call this strategy internal
parallelization, because it is performed at the single tree construction level.

Another kind of parallelization can be implemented during the creation of
an ensemble model. For example, Random Forests and Bagging Classifiers are
methods involving the creation of multiple decision trees. In this case the indexes
of the trees that are going to be created can be split into chunks and assign each
of this chunk to a thread responsible for the creation of all trees belonging to its
chunk. This kind of strategy is called external parallelization in the following.

Finally, an hydrid parallelization can be generated mixing the two strategies
described above: for example the training of an ensemble of four trees can involve
one thread for the creation of the first two trees (first chunk) that internally run
other two support threads for the creation of each tree belonging to its chunk, one
thread for the creation of the last two trees (second chunk) that internally run
other two support threads for the single decision tree construction.

C++ multi-threading support can be implemented in different ways. The
first attempt involved OpenMP (Open Multi-Processing) library [43] that sup-
ports multi-platform shared-memory multiprocessing programming in C, C++,
and Fortran, on many platforms, instruction-set architectures and operating sys-
tems, including Solaris, AIX, HP-UX, Linux, macOS, and Windows. It consists of
a set of compiler directives, library routines, and environment variables that influ-
ence run-time behavior. The C++ code was linked properly but some issues arose
during the Python binding implementation. For this reason, the final C++ code

4.4 Memory management The Treant algorithm optimization

supports multi-threading through the use of Standard Template Library modules:
future module has been used for internal parallelization and thread module has
been used for external parallelization. Even if a little bit trickier than OpenMP
API from the implementation point of view, the use of STL modules limits the
number of external dependencies, that, in general, denotes a good code design.

Chapter 4.5 presents some test cases involving both internal and external par-
allelizations.

4.4 Memory management

The dataset is represented in Python by a matrix of features X and a vector of
labels y, both defined as numpy array.

The co-existence of numerical and categorical variables in the numpy array
representing the feature matrix has been solved using the Standard Template
Library data structure std::unordered_map<std::string, double> that maps
the categorical features expressed as unique strings to floating point numbers.
These passages are not needed a Python code because a numpy array accepts
multiple types of variables; e.g. integers, floating point numbers and strings. In
order to create a proper dataset reading the data from a file, two support functions
has been implemented:

• std::pair<unsigned, std::vector<std::string> >
getDatasetInfoFromFile(const std::string &datasetFilePath)

• std::pair<std::vector<std::string>, std::vector<std::string> >
fillXandYfromFile(double *X, const unsigned rows,
const unsigned cols, double *y,
const std::string &datasetFilePath)

The first one reads the number of rows and the column names from the file stor-
ing the dataset, the second one fills with the data the X and y arrays that are
supposed to have been allocated before thanks to the information provided by
getDatasetInfoFromFile. This process seems to be a little bit cumbersome, but
it is needed in order to create a shared library and use the code not only in a
pure C++ environment but also from Python where the memory of X and y is
externally managed (see chapter 4.6). The feature matrix of the dataset is stored
in the one-dimensional array X column-wise. This choice is very useful in order to
speed up the outer loop of the __fit function described in chapter 4.3. Switching
from one column to another can be easily done using pointer offsets.

The attack function is another function heavily used by the code when the
construction of the decision tree involves the presence of an Attacker with budget.

4.4 Memory management 39

This function is applied to the instances of the dataset, in this case a row-wise
ordering of the features in the dataset could be more effective.

A test case has been developed to prove this behaviour using artificial datasets
created with a random number generator. The maximum depth of the tree is set
to 2, so the internal structure of the decision tree is only one internal node, the
root, and two leaves.

n. of features cache-misses [millions] time elapsed [s]
128 3.2 3.14
256 19.8 10.79
512 353.9 38.21
1024 7678.2 267.48
2048 69265.7 2155.81

Table 4.4: Cache analysis of random generated dataset with 128, 256, 1024, 2048 fea-
tures. The number of instances is always 1000 and no multi-threading support has been
used. The cache-misses reported are concentrated in the attack function.

Figure 4.2: Cache analysis of random generated datasets with variable number of fea-
tures

Table 4.4 shows how important is the cache management during the attack
in the case of instances having a big number of features. Keeping constant the
number of instances (1000) and the number of used threads (1), the cache-misses
and the running times are increasing super-linearly with the number of features.
The reason is the fetching of an instance during the attack (most of the cache-

4.4 Memory management The Treant algorithm optimization

misses are related to attack function), unfortunately the values already present
in the cache are hardly re-usable. This yields to a large number of cache misses.
Figure 4.2 shows a strong correlation between cache misses and elapsed time during
the execution of the program.

The same problem can arise whenever we pass a matrix to the C++ code with
the wrong optimal order. For example, the predict(X) function where a set of
instances is passed as input. In this case the input matrix should be stored in
row-wise order because each instance, i.e. each row, is analysed sequentially and
the data already present in the cache can be re-used. The predict(X) function
works also when the input matrix is stored with a column-wise order, even if this
is not the optimal order.

A possible enhancement could be hidden inside the attack logic: are all the
features needed to perform an attack on a single instance? If the needed value
is only the one of the attacked feature, than the memory management can be
improved.

There is always a trade-off between memory storage and data race conditions:
sometimes storing more data than the strictly needed can lead to better CPU
performance, even if at the first glance the extra memory needed can be seen as a
waste of space. For example, duplicating the memory accessed in read-only mode
by two different threads avoids data-race conditions, but at the cost of doubling
up the space needed to run the program.

The cache analysis performed in this chapter was possible thanks to the perf
software available on Linux distributions.

4.5 Code validation 41

4.5 Code validation

The C++ version of the code has been tested on the census dataset with differ-
ent configurations: changing the attacker rules, changing the number of instances
considered, changing the number of threads used to build the robust decision tree.
In order to check the correctness of the code, many models were generated with
both codes and then compared; save and load functions has been provided in
order to save/load the trained decision trees to/from a given file path. These test
cases were very useful to find possible bugs in the C++ code.

The following snippet shows on example of a decision tree file representation:
Prediction:0,Score:0.25684930465943501,Num_instances:292,Loss:55.736301369862943
Prediction:1,Score:0.99999987106504784,Num_instances:10,Loss:1.6624221888340663e-13
[0,1]Feature_ID:10,Threshold:1740,Num_instances:302,Loss:55.736301369863085,Gain:5.3398575705348819,Num_constraints:0
Prediction:1,Score:0.99999996800328261,Num_instances:18,Loss:1.8428218623484035e-14
[2,3]Feature_ID:9,Threshold:5013,Num_instances:320,Loss:61.076158940397967,Gain:8.770716059602556,Num_constraints:0
Prediction:0,Score:-2.7808630443829319e-08,Num_instances:2,Loss:1.5466398543229416e-15
Prediction:0,Score:1.2866744451594745e-08,Num_instances:2,Loss:3.3110622556528832e-16
Prediction:1,Score:0.8196721393986538,Num_instances:122,Loss:18.03278688524588
[6,7]Feature_ID:5,Threshold:9,Description:Other-service,Num_instances:124,Loss:18.03278688524588,Gain:1.3220518244315045,Num_constraints:0
[5,8]Feature_ID:5,Threshold:23,Description:Craft-repair,Num_instances:126,Loss:19.354838709677388,Gain:1.280081925243266,Num_constraints:0
[4,9]Feature_ID:3,Threshold:12,Num_instances:446,Loss:90.4817956349209,Gain:20.121343378533723,Num_constraints:0
Prediction:0,Score:0.025882355661001211,Num_instances:425,Loss:10.71529411764701
Prediction:1,Score:1.0000000192178116,Num_instances:1,Loss:3.6932428132215565e-16
[11,12]Feature_ID:10,Threshold:2205,Num_instances:426,Loss:10.71529411764701,Gain:0.94667771333884332,Num_constraints:0
Prediction:0,Score:0.30952379946335418,Num_instances:42,Loss:8.9761904761904905
Prediction:0,Score:0.088235270427997087,Num_instances:68,Loss:5.4705882352941577
[14,15]Feature_ID:8,Threshold:5,Description:Male,Num_instances:110,Loss:14.446778711484596,Gain:1.2714031066972264,Num_constraints:0
[13,16]Feature_ID:3,Threshold:11,Num_instances:536,Loss:27.38015364916755,Gain:1.8269359030714938,Num_constraints:0
Prediction:1,Score:0.94444439509149503,Num_instances:18,Loss:0.94444444444448894
[17,18]Feature_ID:9,Threshold:4650,Num_instances:554,Loss:30.151533996683511,Gain:13.689621238000115,Num_constraints:0
[10,19]Feature_ID:4,Threshold:11,Description:Married-civ-spouse,Num_instances:1000,Loss:154.4442942481401,Gain:33.554705751863878,Num_constraints:0

Implicitly each line of the block is 0-indexed and each line represents a node
having its line number as implicit index. The floating point numbers are repre-
sented with an accuracy of ten decimals in order to assure a good precision when
the tree is reconstructed using the load function. The internal nodes starts with
a pair of integers inside squared brackets. This pair refers to the children, left and
the right respectively, of the internal node. Leaves do not start with such a pair
and contain different attributes, like prediction and prediction score.

The input dataset, census, was considered a good test for the code because
of its characteristics: a good number of features, a good number of instances and
both feature types (numerical and categorical).

4.5 Code validation The Treant algorithm optimization

The basic attacker is described in the following json structure file:

{
" a t t a c k s " : [{

" w o r k c l a s s " : [{
" pre " : " (' Never - worked ') " ,
" post " : " Without - pay " ,
" c o s t " : 1 ,
" i s_ nume rica l " : f a l s e

}]
} ,
{

" m a r i t a l _ s t a t u s " : [{
" pre " : " (' Divorced ' , ' Separated ') " ,
" post " : " Never - married " ,
" c o s t " : 1 ,
" i s_ nume rica l " : f a l s e

}]
} ,
{

" o cc u pa t i o n " : [{
" pre " : " (' Craft - r e p a i r ' , ' Prof - s p e c i a l t y ' , ' Exec - managerial ' , ...

'Adm- c l e r i c a l ' , ' S a l e s ' , ' Machine - op - i n s p c t ' , ' Transport - moving ' , ...
' Handlers - c l e a n e r s ' , ' Farming - f i s h i n g ' , ' Tech - support ' , ...
' P r o t e c t i v e - serv ' , ' Priv - house - serv ' , 'Armed - Forces ') " ,

" post " : " Other - s e r v i c e " ,
" c o s t " : 1 ,
" i s_ nume rica l " : f a l s e

}]
} ,
{

" education_num " : [{
" pre " : " (13 , 16) " ,
" post " : - 1 ,
" c o s t " : 20 ,
" i s_ nume rica l " : t r u e

}]
} ,
{

" c a p i t a l _ g a i n " : [{
" pre " : " (0 , np . i n f) " ,
" post " : 2000 ,
" c o s t " : 50 ,
" i s_ nume rica l " : t r u e

}]
} ,
{

" hours_per_week " : [{
" pre " : " (0 , np . i n f) " ,
" post " : 4 ,
" c o s t " : 100 ,
" i s_ nume rica l " : t r u e

}]
}

]
}

Listing 4.1: Basic attacker used in the validation tests

As shown in Listing 4.1, the attacker is constructed from a list of rules, each
rule is related to the name of a feature, the pre field indicates the values that can
assume the feature before the attack and the post field is the value of the feature
after the attack. The cost field indicates the cost that an attacker should pay in
order to apply that rule and the is_numerical flag determines is the feature is
numerical or categorical.

In the case of the basic attacker defined in the Listing 4.1, we define six rewrit-
ing rules: (i) if a citizen never worked, he can pretend that he actually works

4.5 Code validation 43

without pay; (ii) if a citizen is divorced or separated, he can pretend that he never
got married; (iii) a citizen can present his occupation as a generic “other service”;
(iv) a citizen can cheat on his education level by lowering it by 1; (v) a citizen can
add up to $2,000 to his capital gain; (vi) a citizen can add up to 4 hrs per week to
his working hours. We let (i), (ii), and (iii) cost 1, (iv) cost 20, (v) cost 50, and
finally (vi) cost 100 budget units. The applied attacker encompasses both feature
types, numerical and categorical, as well as different attack rule costs.

The header-only nlohmann library has been used for the json structure parsing.

4.5.1 Single thread

The test cases presented in this section were generated using only one thread
because the purpose was proving the consistency of the models generated by the
new C++ code compared with the ones generated by the original Python code.

i n. of instances budget time C++ [s] time Python [s] Speed-up
0 1000 5 0.867 24.99 28.82
1 1000 20 0.924 24.79 26.83
2 1000 40 0.838 25.95 30.97
3 1000 60 0.907 25.98 28.64
4 5000 0 11.62 345.46 29.73
5 5000 60 15.79 440.68 27.91
6 10000 60 56.61 1336.65 23.61

Table 4.5: Validation tests results.

The case number 5 in Table 4.5 presented a slight difference in the resulting
model of the C++ code caused by the different optimizer used in the two codes.
This case has been discussed in details in chapter 4.2. All the other unit tests
were passed successfully generating models completely consistent with the ones
generated by the original Python version.

Figure 4.3 shows an average speed-up greater than x28, in some cases greater
than x30, obtained from the translation of the Python code to C++. The speed-
up can be even increased using the multi-threading support of the C++ code as
demonstrated in sections 4.5.2 and 4.5.3.

Following the cases presented in [1], more tests were performed on the three
datasets: census, wine, credit. The attack configurations are consistent with
the ones reported in the article. The maximum depth imposed is 4 and the max-
imum number of instances per node is 20. The number of features considered are
a portion of the ones reported in Table 4.2: 27,000 for census; 4,000 for wine
and 18,000 for credit.

23.07 22.27 21.73 23.24 22.13 22.22 19.60 20.19 20.84

4.5 Code validation The Treant algorithm optimization

Figure 4.3: Validation test cases speed-up with a single thread. The test case index is
the one reported in table 4.5.The average value is represented with a dashed line.

Also in these cases involving greater training sets, the performance improve-
ments gained with the C++ code are quite remarkable (see Figure 4.4). The
average of the running times per dataset has been chosen because the values were
quite close to each other. Increasing the number of instances can also change
the load balancing among the feature columns of the training matrix as well as
the number of constraints to be imposed in the optimization problem when the
attacker budget enlarges the set of unknown instances.

4.5.2 Internal parallelization

The same decision tree can be generated also using a parallel strategy in the
__simulate_split function treating chunks of columns in different threads in-
stead of having only one big chunk as in the single thread approach.

This parallel strategy can be strongly affected by a different load balancing
between columns. The column computational load depends mainly on two factors:
the number of unique values and the type of attack that can be performed on that
column.

For example, in the census dataset there are 13 features. Considering only
the first 10,000 instances, one feature is quite unbalanced because has 8471 unique
values, one or two orders of magnitude greater than the unique values counted in
the other features.

The time spent on a single column by the unlucky thread holding the most

4.5 Code validation 45

Dataset name budget time (Python) [s] time (C++) [s] Speed-up

census

30 7517.45 456.70 16.46
60 7296.28 456.46 15.98
90 7324.80 466.38 15.71
120 7367.98 477.06 15.44

wine

20 50.07 2.17 23.07
40 56.57 2.54 22.27
60 61.70 2.84 21.73
80 67.64 2.91 23.24
100 69.70 3.15 22.13
120 69.98 3.15 22.22

credit
30 384.28 19.596 19.60
40 396.95 20.185 20.19
60 407.31 20.840 20.84

Table 4.6: Training of robust decision trees using a single thread and real datasets.

expensive column on his chunk can be much bigger than the time spent by the
other threads on the other columns. In this case the power of the multi-threading
approach is lost and the computation time of any multi-threading approach is
more or less the same of the single thread approach. Sometimes the overhead
brought by the creation of more than one thread can lead to elapsed times even
greater than the single thread case (see Table 4.7).

max depth n. of threads time elapsed [ms]
1 1 15339
1 2 14684
1 4 14613
2 1 32528
2 2 33183
2 4 29557
3 1 48250
3 2 51753
3 4 45718
4 1 66666
4 2 65338
4 4 62990

Table 4.7: census dataset with 10000 instances and the basic attacker with a budget
of 100 and multi-threading approach

Table 4.8 shows that during the formation of the first node (the root node)
where all the instances are taken into account, the time spent by the thread 0,
that has to analyze the column number 2, is clearly outlier. The thread 0 has to
analyse the most expensive column of the dataset and represent the bottleneck in
the decision tree formation.

Another experiment has been performed with a random dataset of 300,000

4.5 Code validation The Treant algorithm optimization

wine credit census

0

2,000

4,000

6,000

8,000

3 20
464

63 396

7,377

Av
.
tr
ai
ni
ng

tim
e
[s]

C++ Python

Figure 4.4: Average computation times for decision tree training on the three real
datasets (wine, credit and census)

instances and 16 features. Since it is a random dataset the load between the
columns is balanced. The attacker budget was set to zero in order to not affect
the balance between the different features.

Different decision trees with different depths has been trained, but the speed-up
recorded follows almost the same trend for all the 4 different type of internal tree
structures. The results reported in Figure 4.5 and in Table 4.9 confirm that work
on the columns is balanced the algorithms exploit the multi-threading approach
scaling quite well with the number of employed threads.

4.5 Code validation 47

column ID unique values thread ID analysis time [ms]
0 71

0 148651 7
2 8471
3 16

1 1684 7
5 14
6 6

2 457 5
8 2
9 96

3 120510 66
11 83
12 40

Table 4.8: First split analysis on census dataset: 4 threads

max depth n. of threads time elapsed [s] Speed-up
1 1 101.845 1.00
1 2 61.606 1.65
1 4 38.752 2.63
2 1 215.919 1.00
2 2 132.433 1.63
2 4 85.913 2.51
3 1 337.276 1.00
3 2 196.173 1.72
3 4 128.153 2.63
4 1 441.504 1.00
4 2 277.455 1.59
4 4 180.447 2.45

Table 4.9: Random generated dataset of 300,000 rows and 16 features used to generate
a decision tree with 1, 2 and 4 threads

4.5.3 External parallelization

The Python class RobustDecisionTree is a subclass of the BaseEstimator
class, part of the sklearn package. Thanks to its parent, RobustDecisionTree
can be an estimator of the BaggingClassifier class that is used to build an en-
semble model. The BaggingClassifier class can build its set of decision trees in
parallel specifying the number of jobs used during the training phase. The same
number of jobs can be used in the predict phase where, from a set of instances,
the model is able to classify each instance on a voting system that makes use of
all the decision trees inside the ensemble model.

Imitating this behaviour, a BaggingClassifier class has been designed also
in the C++ code; this class stores a set of decision trees. The training of these

4.5 Code validation The Treant algorithm optimization

Figure 4.5: Training of a decision tree from a random dataset of 300,000 instances and
16 features using 1, 2, 4 threads

trees can be carried on concurrently using more than one thread. In this way
the trees are not trained sequentially but in parallel. The instances used for the
training of the single decision tree are randomly sampled from the whole dataset
with or without replacement. A percentage determining the number of elements
in each sample can be set. This kind of parallelization where more than one tree
is trained concurrently is denoted as external parallelization (see chapter 4.3).

The instances are sampled randomly, so, quite likely, the load for the training
of a single decision tree should be approximately the same.

Here we revisit the example discussed in chapter 4.5.2 where the census
dataset with 10,000 instances has been trained in an adversarial environment with
an attacker having a budget of 100. In that case, the training of a single tree
with multi-threading support on the features gave a poor results, because of an
unbalanced column. The BaggingClassifier divides the decision trees to train
in chunks and each chunk is assigned to one thread.

Table 4.10 and Figure 4.6 show how the elapsed time during the training of
an ensemble model scales well when the the number of used threads is increased.
The model had internally 8 estimators trained with samples having the 50% of the
total instances present in the dataset. Only the external parallelization strategy
has been applied. The good speed-up obtained with the training of the ensemble
model demonstrate that this kind of parallelization is able to distribute more

4.5 Code validation 49

max depth n. of threads time elapsed [s] Speed-up
1 1 69.295 1.00
1 2 40.223 1.72
1 4 25.601 2.71
2 1 138.535 1.00
2 2 82.364 1.68
2 4 52.423 2.64
3 1 213.442 1.00
3 2 122.088 1.75
3 4 81.212 2.63
4 1 323.428 1.00
4 2 170.771 1.89
4 4 108.506 2.98

Table 4.10: BaggingClassifier trained with 8 estimators, sample ratio of 0.5, budget 100

Figure 4.6: Training of an ensemble model with 8 estimators using 1, 2, 4 threads

uniformly the load on the threads even with unbalances on the features inside the
training set. This kind of parallelization is a valid alternative especially when the
internal parallelization does not scale well.

4.6 Python Binding The Treant algorithm optimization

4.6 Python Binding

A C++ library can be called and used from Python, but there must exist a
middle layer in order to bind the two languages. Many tools has been developed
to solve this problem, like Cython, SWIG and ctypes. C++ compilation pipeline
is managed with CMake, that is a cross-platform tool able to manage the deploying
of C++ applications. As suggested in [44], CFFI (C Foreign Function Interface)
is a good tool to bind an already existing C/C++ library. The CFFI goal is to
call C code from Python without learning a third language. Thanks to its design,
CFFI requires users to know only C and Python, minimizing the extra bits of API
that need to be learned. In CFFI there is no C++ support. Sometimes, like in the
Treant case, it is reasonable to write a C wrapper around the C++ code and
then call this C API with CFFI.

The class between Python and C++ is called PyDecisionTree and it encapsu-
lates the DecisionTree class defined in the C++ library. The Python class must
implement two fundamental methods:

• fit(X,y)

• predict(X)

in order to be a subclass of the BaseEstimator class and be used in combination
with the sklearn package for the construction of ensemble model.

The predict_proba(X) method is the same of the original Python code but
uses the predict(X) bound to the new developed Python module. To complete
the methods exposed, there are also:

• load(file_path)

• save(file_path)

that load/save a model from/to a specified file. The strings are passed as streams
of bytes.

When a vector of strings is needed in the C++ code, it is passed instead a long
string where all the entries are concatenated by a comma. This long string is then
parsed on the C++ side to derive all single entries of the vector.

The main application must be responsible for the management of the arrays
passed to the C++ library. Matrices and vectors are passed as raw C pointers.
In the case of matrices the ordering must be determined by the main application.
Also numpy arrays can be passed as row pointers. The following snippet shows
how to get the raw C pointer referring to the data of a numpy matrix:

4.6 Python Binding 51

1 import numpy as np

2 import FFI

3

4 rows = 1000

5 cols = 1000

6 X = np.zeros((rows, cols), dtype='float64')

7 if not X.data.f_contiguous:

8 np.asfortranarray(X, dtype='float64')

9 pointer_x = FFI().cast('double*', X.ctypes.data)

The column-wise ordering is also enforced in this case. There must be consis-
tency between the Python type, float64, and the C type, double of the array
data. Once the raw C pointers are available, the functions on the middle layer
can be called from Python (see appendix B). It is worth to remind that in some
applications it is good to have a row-ordering (for example using the predict(X)
function) whether in the other cases it is mandatory a column-ordering of the in-
put matrix (for example using the fit(X,y) function). For this reason it is better
to wrap all this methods in a class that internally manages the storage of the
arrays and their ordering. Detailed examples of applications using the generated
Python module are reported in appendix B.

4.6 Python Binding The Treant algorithm optimization

Chapter 5

Conclusion and future work

The original Python code implementing the Treant algorithm has been suc-
cessfully translated to C++ and validated using real training sets. The construc-
tion of the robust decision tree has been studied also with different attack scenarios
that involve the solution of an optimization problem with the imposition of mul-
tiple constraints. The resulting trained model, in most of the unit tests, matched
perfectly, only few differences were recorded in the construction of some nodes due
to the different optimizer implementation: Python code and C++ use different
libraries to solve the min-max problem. In these cases, some limitations in the
Python library that can lead to unexpected behaviours has been found. These
inconsistencies proved that the new C++ code uses a better optimizer.

The code has been analysed from the memory point of view: the crucial dataset
storing strategy has been analyzed and optimized. The code has been tested
also with random generated dataset for a better understanding of the algorithm
behaviour when the training set has a big number of features.

The C++ code provided a significant boost to the algorithm performance,
the execution times using only one thread are 28 times smaller than the ones
recorded with the Python version. The multi-threading approach on the training
set features can even further increase the performance: when the computational
load is balanced among the feature columns, the execution running times scale
quite well increasing the number of involved threads. Usually, feature unbalancing
can be caused by the feature type (typically categorical features have less unique
values than numerical features) or by the attack applied on that feature (cost and
pre condition of an attack rule are parameters that control the aggressiveness of
the attacker).

An example of ensemble model class has been provided and tested: the tests
carried on proved that, when the load on feature columns is unbalanced, paralleliz-
ing over the training of the ensemble estimators can yield to a very good speed-up.

53

Conclusion and future work

In some cases, the logic behind the attack on a single instance can be improved
from the memory point of view: if the attacker needs to know only the value of
a single feature and its cost, then retrieving all the instance features is a waste
of memory and can yield to a lot of cache misses. Storing of all the possible
attacks on the dataset before running the application is another strategy that can
improve a bit the performance of the training phase, nevertheless it can have a
great memory cost.

Considering the case of multi-threading on features, when an unbalance is
present then the task organization among the threads can be improved: an alter-
native strategy can distributed uniformly among the threads the unique features
values. Future development of the C++ code can include multi-processing sup-
port with MPI library; in this way the code could also be launched on a cluster of
machines.

If the original Python code will still be maintained, a possible enhancement
can involve the integration of NLopt library, the one used in the C++ code. NLopt
authors provide a Python wrapper for that library.

Appendix A

Code distribution

A.1 Random datasets generation

In chapter 4.4 has been tested the C++ code with random generated datasets,
these dataset has been generated using the following simple Python code.

1 import numpy as np

2

3 cols = 16

4 rows = 300000

5 header_list = ['feature_%d' % i for i in range(0, cols + 1)]

6 header_list[-1] = "LABEL"

7 header_str = ' '.join(header_list)

8 X = np.random.randint(100, size=(rows * (cols + 1))).reshape(rows, ...

cols + 1)

9 X[:, -1] = X[:, -1] % 2

10 output_file = "data/random_%d-%d.txt" % (rows, cols + 1)

11 np.savetxt(output_file, X, fmt='%d', header=header_str, delimiter=' ', ...

comments='')

A.2 Compilation process workflow

The code has been compiled using CMake [44]. The nlohmann header-only
library has been used for json parsing (see include/ folder). The NLopt library,
used to solve the optimization problem, has been compiled and installed in the
3rdparty/ folder. The C++ Standard Template Library, distributed usually with
the C++ compiler, is widely used through the project.

The folder py_decision_tree contains the code for the Python binding. The
data/ folder contains typically the training sets, the attacker file and, in general,
all the input files needed to run the program. In the following the directory tree
of the project.

55

A.2 Compilation process workflow Code distribution

treant/
3rdparty/

nlopt-2.6.1/
include/
lib/

data/
include/

Attacker.h
BaggingClassifier.h
Constraint.h
Dataset.h
DecisionTree.h
FeatureColumn.h
Logger.h
nlohmann
json.hpp
Node.h
SplitOptimizer.h
types.h
utils.h

main.cpp
py_decision_tree/

implementation/
c_cpp_interface.cpp
cpp_implementation.cpp
cpp_implementation.hpp

interface_file_names.cfg
CMakeLists.txt
py_decision_tree.h

README.md
src/

Attacker.cpp
BaggingClassifier.cpp
Constraint.cpp
Dataset.cpp
DecisionTree.cpp
FeatureColumn.cpp
Logger.cpp
Node.cpp
SplitOptimizer.cpp
utils.cpp

test_py_decision_tree.py
CMakeLists.txt
tests/

Appendix B

Examples of usage

The following section is dedicated to present some use cases of the C++ library
and the generated Python module. The include part in the C++ code is avoided.

B.1 Python

In order to use properly all the methods exposed by the Python module, an
intermediate Python class called DecisionTree should be designed. This class
is responsible for the memory management (for example row-wise or column-
wise ordering of matrices) and the management of the arguments passed to the
middle layer exposed methods. This class is a subclass of BaseEstimator and
ClassifierMixin and can be used as estimator by the BaggingClassifier class
of the sklearn package.

1 class DecisionTree(BaseEstimator, ClassifierMixin):

2

3 # Constructor

4 def __init__(self, column_names_str, attacker_file, budget, ...

threads, useICML2019):

5 # Init all private members

6 self.py_dt = py_decision_tree.new()

7 # used by fit(X, y)

8 self.column_names_str = column_names_str

9 self.attacker_file = attacker_file

10 self.budget = budget

11 self.threads = threads

12 self.useICML2019 = useICML2019

13 self.max_depth = 4

14 self.min_per_node = 20

15 self.is_affine = False

16 # variables initialized by fit()

17 self.categorical_entries = None

18 self.column_names = None # needed by the attacker

57

B.1 Python Examples of usage

19 self.is_numeric = None

20

21 # This function also sets self.is_numeric and ...

self.categorical_entries if they are None

22 def transform_to_all_floats(self, X):

23 if self.is_numeric is None:

24 numerics = ['integer', 'floating']

25 self.is_numeric = np.isin(np.apply_along_axis(lambda x: ...

pd.api.types.infer_dtype(x, skipna=True), 0, X),

26 numerics)

27 if False in self.is_numeric:

28 mask_col_not_numerics = (self.is_numeric == False)

29 # update self.categorical_entries_str

30 if self.categorical_entries is None:

31 self.categorical_entries = [i for i in set(X[:, ...

mask_col_not_numerics].flatten())]

32 dict = {k: self.categorical_entries.index(k) for k in ...

self.categorical_entries}

33 X_all_float = np.array(X, copy=True)

34 X_all_float[:, mask_col_not_numerics] = ...

np.vectorize(dict.get)(X_all_float[:, ...

mask_col_not_numerics])

35 return X_all_float

36 else:

37 return X

38

39 def fit(self, X, y):

40

41 # set the number of classes (needed for predict_proba in the ...

BaggingClassifier)

42 self.classes_ = np.unique(y)

43

44 X_all_float = self.transform_to_all_floats(X)

45 assert (self.is_numeric is not None)

46 assert (self.categorical_entries is not None)

47 if not X_all_float.data.f_contiguous:

48 np.asfortranarray(X_all_float, dtype='float64')

49 assert (X_all_float.data.contiguous)

50 assert (X_all_float.data.f_contiguous)

51

52 rows, cols = X_all_float.shape

53 y = y.astype('float64')

54 pointer_y = FFI().cast('double*', y.ctypes.data)

55 X_all_float = X_all_float.astype('float64')

56 pointer_x = FFI().cast('double*', X_all_float.ctypes.data)

57 # Launch fit

58 is_numeric_joint = ...

(','.join(self.is_numeric.astype('str'))).encode('ascii')

59 cat_joint = (','.join(self.categorical_entries)).encode('ascii')

60 py_decision_tree.fit(self.py_dt,

B.1 Python 59

61 pointer_x, rows, cols,

62 pointer_y,

63 is_numeric_joint,

64 cat_joint,

65 self.column_names_str,

66 self.attacker_file,

67 self.budget,

68 self.threads,

69 self.useICML2019,

70 self.max_depth,

71 self.min_per_node,

72 self.is_affine)

73

74 def predict(self, X):

75 if self.is_trained():

76 predictions = np.empty(X.shape[0])

77 predictions = predictions.astype('float64')

78 X_all_float = self.transform_to_all_floats(X)

79 rows, cols = X_all_float.shape

80 if not X_all_float.data.c_contiguous:

81 X_all_float = np.ascontiguousarray(X_all_float)

82 assert(X_all_float.data.contiguous)

83 assert(X_all_float.data.c_contiguous)

84 X_all_float = X_all_float.astype('float64')

85 pointer_x = FFI().cast('double*', X_all_float.ctypes.data)

86 pointer_predictions = FFI().cast('double*', ...

predictions.ctypes.data)

87 return_scores = True

88 is_rows_wise = True

89 py_decision_tree.predict(self.py_dt, pointer_x, rows, ...

cols, pointer_predictions, return_scores, is_rows_wise)

90 return predictions

91 else:

92 raise "decisionTree is not trained, predict() cannot be ...

called"

93

94 # Needed to use BaggingClassifier (see original python code)

95 def predict_proba(self, X, y=None):

96 probs_0 = np.empty(X.shape[0])

97 probs_1 = np.empty(X.shape[0])

98

99 # Check if the current tree is trained

100 if self.is_trained:

101 # Get the prediction scores for class 1

102 probs_1 = self.predict(X)

103 # Get the prediction scores for class 0

104 probs_0 = (1 - probs_1)

105

106 return np.column_stack((probs_0, probs_1))

107

B.1 Python Examples of usage

108

109 def save(self, filename):

110 py_decision_tree.save(self.py_dt, filename.encode('ascii'))

111

112 def load(self, filename):

113 py_decision_tree.load(self.py_dt, filename.encode('ascii'))

114

115 def is_trained(self):

116 return py_decision_tree.is_trained(self.py_dt)

117

118 def pretty_print(self):

119 py_decision_tree.pretty_print(self.py_dt)

120

121 # Destructor

122 def __del__(self):

123 py_decision_tree.free(self.py_dt)

The following example shows how to use the previously defined class to train
a single decision tree and to train a bagging classifier. The ensemble model is
trained and a set of predictions is calculated.

1 import os

2 import sys

3 import numpy as np

4 import pandas as pd

5 from nilib import load_atk_train_valid_test

6 import ctypes

7 from cffi import FFI

8 from sklearn.base import BaseEstimator, ClassifierMixin

9 from sklearn.ensemble import BaggingClassifier

10 import time

11

12 import py_decision_tree

13

14 if __name__ == '__main__':

15 cwd = os.path.dirname(os.path.abspath(__file__))

16 attacker_file = (cwd + "/data/attacks.json").encode('ascii')

17 budget = 0

18 threads = 1

19 max_depth = 4

20 use_icml_2019 = False

21 min_per_node = 20

22 is_affine = False

23 -

24 options = {}

25 options['training_set'] = cwd + '/data/census/train.csv.bz2'

26 options['valid_set'] = cwd + '/data/census/valid.csv.bz2'

27 options['test_set'] = cwd + '/data/census/test.csv.bz2'

28 options['jobs'] = 1

B.1 Python 61

29 options['n_instances'] = 1000

30 options['n_estimators'] = 1

31 # Building the decision tree

32 # Get dataset X like done in the old python code

33 train = load_atk_train_valid_test(

34 options['training_set'], options['valid_set'], ...

options['test_set'])[0]

35 # Get X and y

36 y = train.iloc[:, -1].replace(-1, 0).values[:options['n_instances']]

37 X = train.iloc[:, :-1].values[:options['n_instances']]

38 column_names_str = ...

','.join(train.columns.tolist()[:-1]).encode('ascii')

39

40 decision_tree = DecisionTree(column_names_str, attacker_file, ...

budget, threads, use_icml_2019)

41 decision_tree.fit(X, y)

42 assert decision_tree.is_trained() == True

43 decision_tree.pretty_print()

44 print("Saving the trained decision tree:")

45 file_path = "decision_tree_example.txt"

46 decision_tree.save(file_path)

47 # Calculates prediction scores

48 dt_predictions = decision_tree.predict(X)

49

50 # Create a copy of the previously defined decision_tree from file

51 decision_tree_copy = DecisionTree(column_names_str, attacker_file, ...

budget, threads, use_icml_2019)

52 decision_tree_copy.load(file_path)

53 # Get predictions on the decision tree copy

54 dt_predictions_copy = decision_tree_copy.predict(X)

55

56 decision_tree_for_bagging = DecisionTree(column_names_str, ...

attacker_file, budget, threads, use_icml_2019)

57 bagging = BaggingClassifier(base_estimator=decision_tree_for_bagging,

58 n_estimators=options['n_estimators'],

59 max_features=1.0, max_samples=1.0,

60 bootstrap=False, bootstrap_features=False,

61 n_jobs=options['jobs'])

62 bagging.fit(X, y)

63 bagging_predictions = bagging.predict(X)

B.2 C++ Examples of usage

B.2 C++

The following code reads the input data from a file and from command line,
builds a Dataset and an Attacker, finally trains a DecisionTree and calls
predict on a test set. The code also uses load and save methods to build a
copy of the decision tree and make predictions on the same test set.

1 int main(int argc, char **argv) {

2

3 if (argc < 2) {

4 std::cout << "Usage: possible flags are:\n"

5 << "-a <name of the attacker json file>, "

6 << "-b <budget>, "

7 << "-d <max depth>, "

8 << "-f <dataset file path>, "

9 << "-j <number of threads>\n"

10 << "Example:\n./" << argv[0]

11 << " -a ../data/attacks.json -b 60 -d 4 -f "

12 "../data/test_training_set_n-1000.txt";

13 }

14 // Parse the input arguments

15 const auto [attackerFile, datasetFile, maxDepth, budget,

16 threads] = utils::parseArguments(argc, argv);

17

18 // Allocate dataset matrix X and label vector y

19 const auto [rows, columnNames] = ...

Dataset::getDatasetInfoFromFile(datasetFile);

20 const unsigned cols = columnNames.size();

21 // The principal program must manage the memory of X and Y

22 feature_t *X = (feature_t *)malloc(sizeof(feature_t) * rows * cols);

23 label_t *y = (label_t *)malloc(sizeof(label_t) * rows);

24 const auto [isNumerical, notNumericalEntries] =

25 Dataset::fillXandYfromFile(X, rows, cols, y, datasetFile);

26 Dataset dataset(X, rows, cols, y, utils::join(isNumerical, ','),

27 utils::join(notNumericalEntries, ','),

28 utils::join(columnNames, ','));

29 //

30 DecisionTree dt;

31 const bool useICML2019 = false;

32 const unsigned minPerNode = 20;

33 const bool isAffine = false;

34 dt.fit(dataset, attackerFile, budget, threads, useICML2019, maxDepth,

35 minPerNode, isAffine, Impurity::SSE);

36

37 std::cout << "Is the decision tree trained? " << dt.isTrained() << ...

std::endl;

38 std::cout << "Decision tree height: " << dt.getHeight() << std::endl;

39 std::cout << "Decision tree node count: " << dt.getNumberNodes() << ...

B.2 C++ 63

std::endl;

40

41 dt.save("example.txt");

42 DecisionTree dt_copy;

43 dt_copy.load("example.txt");

44 // Get X as C-order

45 feature_t *X_test = (feature_t *)malloc(sizeof(feature_t) * rows * ...

cols);

46 std::size_t index = 0;

47 for (std::size_t i = 0; i < rows; i++) {

48 for (std::size_t j = 0; j < cols; j++) {

49 X_test[index] = dataset(i, j);

50 index++;

51 }

52 }

53 double *predictions = (double *)malloc(sizeof(double) * rows);

54 dt.predict(X_test, rows, cols, predictions, true, false);

55 std::cout << "Predictions (rows-wise X):" << std::endl;

56 std::cout << std::setprecision(1) << predictions[0];

57 for (index_t i = 1; i < rows; i++) {

58 std::cout << "," << std::setprecision(1) << predictions[i];

59 }

60 std::cout << std::endl;

61 // Predict with the decision tree loaded from file

62 double *predictions_copy = (double *)malloc(sizeof(double) * rows);

63 dt_copy.predict(X_test, rows, cols, predictions_copy, true, false);

64 std::cout << "Predictions of dataset loaded from file:" << std::endl;

65 std::cout << std::setprecision(1) << predictions_copy[0];

66 for (index_t i = 1; i < rows; i++) {

67 std::cout << "," << std::setprecision(1) << predictions_copy[i];

68 }

69 std::cout << std::endl;

70

71 // Free memory

72 free((void *)X);

73 free((void *)y);

74 free((void *)X_test);

75 free((void *)predictions);

76 free((void *)predictions_copy);

77

78 return 0;

B.2 C++ Examples of usage

The following code reads the data from the command line or from file and then
trains a BaggingClassifier object.

1 int main(int argc, char **argv) {

2

3 assert(argc ≥ 2);

4 // Parse the input arguments

5 const auto [attackerFile, datasetFile, maxDepth, budget,

6 threads] = utils::parseArguments(argc, argv);

7 // Allocate dataset matrix X and label vector y

8 const auto [rows, columnNames] = ...

Dataset::getDatasetInfoFromFile(datasetFile);

9 const unsigned cols = columnNames.size();

10 // The principal program must manage the memory of X and Y

11 double *X = (double *)malloc(sizeof(double) * rows * cols);

12 double *y = (double *)malloc(sizeof(double) * rows);

13 const auto [isNumerical, notNumericalEntries] =

14 Dataset::fillXandYfromFile(X, rows, cols, y, datasetFile);

15 //

16 Dataset dataset(X, rows, cols, y, utils::join(isNumerical, ','),

17 utils::join(notNumericalEntries, ','),

18 utils::join(columnNames, ','));

19

20 assert (budget ≥ 0);

21 Attacker attacker(dataset, attackerFile, budget);

22 std::cout << "The dataset size is: " << dataset.size() << std::endl;

23 //

24 const bool useICML2019 = false;

25 const unsigned minPerNode = 20;

26 const bool isAffine = false;

27 BaggingClassifier baggingClassifier;

28 std::cout << "Fitting the BaggingClassifier\n";

29 baggingClassifier.setMaxFeatures(0.5);

30 baggingClassifier.setEstimators(8);

31 std::cout << "Jobs for training the forest = " << threads << std::endl;

32 baggingClassifier.setJobs(threads);

33 baggingClassifier.setWithReplacement(false);

34 baggingClassifier.fit(dataset, attacker, useICML2019, maxDepth, ...

minPerNode, isAffine);

35 // Free memory

36 free((void *)X);

37 free((void *)y);

38

39 return 0;

Bibliography

[1] S. Calzavara, C. Lucchese, G. Tolomei, S. Assefa, and S. Orlando, “Treant:
Training evasion-aware decision trees,” Data Mining and Knowledge Discov-
ery, 06 2020.

[2] X. Wu, V. Kumar, R. Quinlan, J. Ghosh, Q. Yang, H. Motoda, G. Mclach-
lan, S. K. A. Ng, B. Liu, P. Yu, Z.-H. Zhou, M. Steinbach, D. Hand, and
D. Steinberg, “Top 10 algorithms in data mining,” Knowledge and Informa-
tion Systems, vol. 14, 12 2007.

[3] A. Maas, Q. Le, T. neil, O. Vinyals, P. Nguyen, and A. Ng, “Recurrent
neural networks for noise reduction in robust asr,” 13th Annual Conference of
the International Speech Communication Association 2012, INTERSPEECH
2012, vol. 1, 01 2012.

[4] B. Schölkopf, C. J. C. Burges, and A. J. Smola, Eds., Advances in Kernel
Methods: Support Vector Learning. Cambridge, MA, USA: MIT Press, 1999.

[5] C. Neocleous, C.and Schizas, “Artificial neural network learning: A compar-
ative review,” Neural Networks, pp. 300–313, 2002.

[6] J. Schmidhuber, “Deep learning in neural networks: An overview,” CoRR,
vol. abs/1404.7828, 2014. [Online]. Available: http://arxiv.org/abs/1404.7828

[7] M. N. H. Siddique and M. O. Tokhi, “Training neural networks: backpropaga-
tion vs. genetic algorithms,” in IJCNN’01. International Joint Conference on
Neural Networks. Proceedings (Cat. No.01CH37222), vol. 4, 2001, pp. 2673–
2678.

[8] M. A. Kon and L. Plaskota, “Information complexity of neural networks,”
Neural Networks, vol. 13, no. 3, pp. 365–375, 2000.

[9] S. B. Kotsiantis, “Supervised machine learning: A review of classification
techniques,” in Proceedings of the 2007 Conference on Emerging Artificial In-
telligence Applications in Computer Engineering: Real Word AI Systems with
Applications in EHealth, HCI, Information Retrieval and Pervasive Technolo-
gies. NLD: IOS Press, 2007, p. 3–24.

65

http://arxiv.org/abs/1404.7828

BIBLIOGRAPHY BIBLIOGRAPHY

[10] A. R. Barron, “Universal approximation bounds for superpositions of a sig-
moidal function,” IEEE Transactions on Information Theory, vol. 39, no. 3,
pp. 930–945, 1993.

[11] S. Haykin, Neural Networks: A Comprehensive Foundation, ser.
International edition. Prentice Hall, 1999. [Online]. Available: https:
//books.google.it/books?id=bX4pAQAAMAAJ

[12] V. N. Vapnik, The Nature of Statistical Learning Theory. Berlin, Heidelberg:
Springer-Verlag, 1995.

[13] J. C. Platt, “Using analytic qp and sparseness to speed training of support
vector machines,” in Proceedings of the 1998 Conference on Advances in Neu-
ral Information Processing Systems II. Cambridge, MA, USA: MIT Press,
1999, p. 557–563.

[14] D. Wettschereck, D. W. Aha, and T. Mohri, A Review and Empirical Evalu-
ation of Feature Weighting Methods for a Class of Lazy Learning Algorithms.
USA: Kluwer Academic Publishers, 1997, p. 273–314.

[15] D. Lee, J. Park, J. Shim, and S.-g. Lee, “An efficient similarity join algorithm
with cosine similarity predicate,” in Database and Expert Systems Applica-
tions, P. G. Bringas, A. Hameurlain, and G. Quirchmayr, Eds. Berlin,
Heidelberg: Springer Berlin Heidelberg, 2010, pp. 422–436.

[16] Y. Park, S. Park, S.-g. Lee, and W. Jung, “Greedy filtering: A scalable
algorithm for k-nearest neighbor graph construction,” in Database Systems for
Advanced Applications, S. S. Bhowmick, C. E. Dyreson, C. S. Jensen, M. L.
Lee, A. Muliantara, and B. Thalheim, Eds. Cham: Springer International
Publishing, 2014, pp. 327–341.

[17] T.-S. Lim, W.-Y. Loh, and Y.-S. Shih, “A comparison of prediction accu-
racy, complexity, and training time of thirty-three old and new classification
algorithms,” Machine Learning, vol. 40, pp. 203–228, 2000.

[18] S. Ruggieri, “Efficient c4.5 [classification algorithm],” Knowledge and Data
Engineering, IEEE Transactions on, vol. 14, pp. 438 – 444, 04 2002.

[19] T. Y. Olcay and D. Onur, “Parallel univariate decision trees,” Pattern
Recognition Letters, vol. 28, no. 7, pp. 825 – 832, 2007. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S0167865506002923

[20] K. Jansson, H. Sundell, and H. Boström, “gpuRF and gpuERT: Efficient and
Scalable GPU Algorithms for Decision Tree Ensembles,” IEEE International

https://books.google.it/books?id=bX4pAQAAMAAJ
https://books.google.it/books?id=bX4pAQAAMAAJ
http://www.sciencedirect.com/science/article/pii/S0167865506002923

BIBLIOGRAPHY 67

Parallel and Distributed Processing Symposium Workshops, pp. 1612–1621,
2014.

[21] B. Panda, J. S. Herbach, S. Basu, and R. J. Bayardo, “PLANET: Massively
parallel learning of tree ensembles with MapReduce,” Proceeding of VLDB
Endowment, vol. 2, pp. 1426–1437, 8 2009.

[22] D. Miyamoto, H. Hazeyama, and Y. Kadobayashi, “An evaluation of machine
learning-based methods for detection of phishing sites,” Australian Journal
of Intelligent Information Processing Systems, vol. 10, pp. 539–546, 11 2008.

[23] R. N. Rojas-Bello, L. F. Lago-Fernández, G. Martínez-Muñoz, and M. A.
Sánchez-Montañés, “A comparison of techniques for robust gender recogni-
tion,” in 2011 18th IEEE International Conference on Image Processing, 2011,
pp. 561–564.

[24] S. Aruna, D. Rajagopalan, and L. Nandakishore, “An empirical comparison
of supervised learning algorithms in disease detection,” International Journal
of Information Technology Convergence and Services, vol. 1, 08 2011.

[25] L. Huang, A. D. Joseph, B. Nelson, B. I. Rubinstein, and J. D. Tygar,
“Adversarial machine learning,” in Proceedings of the 4th ACM Workshop on
Security and Artificial Intelligence, ser. AISec ’11. New York, NY, USA:
Association for Computing Machinery, 2011, p. 43–58. [Online]. Available:
https://doi.org/10.1145/2046684.2046692

[26] B. Biggio and F. Roli, “Wild patterns: Ten years after the rise of adversarial
machine learning,” Pattern Recognition, vol. 84, pp. 317–331, 2018.

[27] J. Angwin, J. Larson, S. Mattu, and L. Kirchner, “Machine bias,” ProPublica,
2016.

[28] A. Lambrecht and C. E. Tucker, “Algorithmic bias? an empirical
study into apparent gender-based discrimination in the display of stem
career ads,” Available at SSRN: https://ssrn.com/abstract=2852260 or
http://dx.doi.org/10.2139/ssrn.2852260, 2018.

[29] “Regulation (eu) 2016/679 of the european parliament and of the council of 27
april 2016 on the protection of natural persons with regard to the processing of
personal data and on the free movement of such data, and repealing directive
95/46/ec (general data protection regulation),” p. 1–88, May 2016, official J.
European Union.

[30] A. Kerckhoffs, “La cryptographie militaire,” Journal des Sciences Militaires,
vol. 9, p. 5–83, 1883.

https://doi.org/10.1145/2046684.2046692

BIBLIOGRAPHY BIBLIOGRAPHY

[31] A. Nguyen, J. Yosinski, and J. Clune, “Deep neural networks are easily fooled:
High confidence predictions for unrecognizable images,” 2015 IEEE Confer-
ence on Computer Vision and Pattern Recognition (CVPR), pp. 427–436,
2015.

[32] D. Hendrycks, K. Zhao, S. Basart, J. Steinhardt, and D. Song, “Natural
adversarial examples,” CoRR, vol. abs/1907.07174, 2019. [Online]. Available:
http://arxiv.org/abs/1907.07174

[33] N. Papernot, P. McDaniel, and I. Goodfellow, “Transferability in machine
learning: from phenomena to black-box attacks using adversarial samples,”
arXiv preprint arXiv:1605.07277, 2016.

[34] F. Zhang, Y. Wang, S. Liu, and H. Wang, “Decision-based evasion attacks on
tree ensemble classifiers,” World Wide Web, 2020.

[35] A. Kantchelian, J. Tygar, and A. Joseph, “Evasion and hardening of tree
ensemble classifiers,” arXiv:1509.07892v2, 05 2017.

[36] H. Chen, H. Zhang, D. Boning, and C.-J. Hsieh, “Robust decision trees against
adversarial examples,” ICML 2019, pp. 1122–1131, 02 2019.

[37] M. Cheng, T. Lê, P.-Y. Chen, J. Yi, H. Zhang, and C.-J. Hsieh, “Query-
efficient hard-label black-box attack: An optimization-based approach,”
ArXiv, vol. abs/1807.04457, 2019.

[38] G. Tolomei, F. Silvestri, A. Haines, and M. Lalmas, “Interpretable predic-
tions of tree-based ensembles via actionable feature tweaking,” SIGKDD, p.
465–474, 2017.

[39] A. Madry, A. Makelov, L. Schmidt, D. Tsipras, and A. Vladu, “Towards deep
learning models resistant to adversarial attacks,” ICLR, 2018.

[40] E. B. Hunt, P. J. Stone, and J. Marin, Experiments in induction. Academic
Press New York, 1966.

[41] D. Kraft, A Software Package for Sequential Quadratic Programming, ser.
Deutsche Forschungs- und Versuchsanstalt für Luft- und Raumfahrt Köln:
Forschungsbericht. Wiss. Berichtswesen d. DFVLR, 1988.

[42] S. G. Johnson, “The NLopt nonlinear-optimization package,”
http://github.com/stevengj/nlopt.

[43] L. Dagum and R. Menon, “Openmp: an industry standard api for shared-
memory programming,” Computational Science & Engineering, IEEE, vol. 5,
no. 1, pp. 46–55, 1998.

http://arxiv.org/abs/1907.07174

BIBLIOGRAPHY 69

[44] R. Bast and R. Di Remigio, CMake Cookbook. Packt Publishing Ltd, 2018.

	Acknowledgements
	Abstract
	Introduction
	Machine learning overview
	Machine learning at large scale
	Neural networks
	Advantages and drawbacks
	Scalability

	Support vector machine
	Advantages and drawbacks
	Scalability

	k-Nearest Neighbor
	Advantages and drawbacks
	Scalability

	Decision trees
	Bootstrapping
	Bagging predictors
	Random forests
	Advantages and drawbacks
	Scalability

	Summary

	Adversarial machine learning
	Modelling an hostile environment
	Attacker knowledge
	Trick neural networks
	Trick decision trees
	Summary

	The Treant algorithm optimization
	Description of the problem
	Solving the optimization problem
	Multi-threading
	Memory management
	Code validation
	Single thread
	Internal parallelization
	External parallelization

	Python Binding

	Conclusion and future work
	Code distribution
	Random datasets generation
	Compilation process workflow

	Examples of usage
	Python
	C++

	Bibliography

