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PREFACE

Economic forecasting has always held an important role as a decision-making tool for both

businesses and governments as they formulate financial policy and strategy.  Nevertheless, when

dealing  with  real  data  (not  only  for  what  concerns  economics,  but  also  in  sociology,  biology,

engineering,  etc...)  it  rarely happens that we have perfect information about the phenomenon of

interest. Even in the case in which a precise and deterministic model describing the system we want

to analyse  is available,  there is  always the possibility to omit  some explicative variables,  or to

commit  measurement  errors.  Thus,  a given amount  of uncertainty will  be always  present  when

analysing economic phenomena. This is why we cannot consider economic forecasting as an exact

science.

According to the Bayesian paradigm, uncertainty should be described by means of probability

by applying the rules of probability theory, which defines how to assign probabilities consistently,

in order to avoid contradictions and undesired consequences. In fact, the problem of “learning from

experience” about a specific phenomenon is solved thanks to the application of probability rules: in

particular, it is necessary to compute the conditional probability of the event of interest, given the

experimental  information.  For this  purpose,  the basic rule to be applied is expressed by Bayes'

theorem, stating that, given two events A and B, the joint probability of them occurring is given by

P (A∩B)=P (A∣B)P (B)=P (B∣A)P (A) ,  where P (A∣B) is  the  conditional  probability  of  A

given B and P(B) is the marginal probability of B. Bayes' theorem, also referred to as the theorem of

inverse probability, is a consequence of the equalities reported above and states that

P (A∣B)=
P (B∣A)P (A)

P (B)
.

In the last  few years there has been an increasing interest  for the application of state-space

models for time series analysis purposes. The models belonging to this category describe a given

time series as the union of a dynamic system and a random disturbance component. Their powerful

probabilistic structure provides us with a flexible framework which can be exploited for a wide

range  of  applications.  Estimation  and  forecasting  problems  are  solved  by  means  of  recursive



algorithms, which iteratively compute the distribution of the quantities of interest, conditional on

the available information. In this sense, they naturally follow the Bayesian approach.

Moreover, state-space models can be used for modelling both univariate and multivariate time

series, even in situations of non-stationarity, structural changes or irregular patterns. This flexibility

is what had led us to choose a subclass of state-space models, namely  dynamic linear models, in

order to identify a forecasting model for the nominal Gross Domestic Product of the United States.

In a paper entitled Real-Time Nowcasting Nominal GDP Under Structural Break, published in

2014  by William A.  Barnett,  Marcelle  Chauvet  and  Danilo  Leiva-Leon,  the  construction  of  a

multivariate state space model is proposed, aiming at forecasting the trend of the American GDP.

From  the  evaluation  of  the  predictive  capability  of  the  different  models  proposed,  including

different sets of explicative variables, it is concluded that, if we want to create a model including

three macroeconomic factors affecting the American GDP, we could select the Industrial Production

Index,  the  Consumer  Price  Index  and  the  3-Month  Treasury  Bill  interest  rate  as  explicative

variables,  as  these  factors,  together  with  the  GDP itself,  provide  one  of  the  best  four-variable

combinations  which  can be used in  order  to  forecast  the  trend of  the  GDP. Consequently,  the

purpose of this paper is that of verifying whether the choice of these variables is suitable for the

construction of a dynamic linear model aiming at providing forecasts for the American GDP.

The paper is structured as follows. In the first chapter we will present a general overview of

Bayesian statistics, with the aim of describing the tools it provides for both inference and decision-

making under conditions of uncertainty. In the second chapter we will illustrate the mathematical

structure of the dynamic linear model. In the third chapter we will describe the procedures which

can be utilised to derive the correct specification of a dynamic linear model for time series analysis

purposes. The fourth chapter concludes the treatment with a practical application, where we will

illustrate the procedure followed in order to identify a dynamic linear model for the American GDP.



Chapter 1

Bayesian statistics

In this chapter we will present an overview of the Bayesian methods for statistic analysis, which

provide a complete set of tools for both inference and decision making in conditions of uncertainty.

The main bibliographical references used for this topic are the Chapter Bayesian Statistics, by J. M.

Bernardo, published in the  volume Probability and Statistics  of the Encyclopedia of Life Support

Systems  (Oxford, UK: UNESCO, 2003) and  Metodi MCMC nell'inferenza statistica  by Maria M.

Barbieri (Centro d'Informazione e Stampa Universitaria, 1996).

1.1. Introduction

With the expression Bayesian statistics  we indicate a subset of the field of statistics in which

the evidence about the true state of the aspect we want to analyse is expressed in terms of degrees of

belief or, more specifically, Bayesian probabilities. This interpretation of probability is what mainly

distinguishes  Bayesian  methods  from  other  statistical  approaches,  such  as,  for  instance,  the

frequentist approach. One of the advantages of the Bayesian approach is constituted by its wider

field  of  applicability,  since  it  provides  a  solution  to  many  of  the  problematic  issues  faced  by

conventional  statistical  methods.  For  example,  by  introducing  the  notion  of  prior  distribution,

Bayesian methods allow us to incorporate scientific hypotheses in our analysis, and the peculiar

situation where only documented data provides us with acceptable information is dealt with as a

particular case by objective Bayesian methods.



Coherently  with  the  ordinary  meaning  of  the  word  probability,  the  Bayesian  paradigm

conceives it as a rational, or better as a conditional measure of uncertainty. The aim of statistical

inference  about  a  specific  parameter  of  interest  is  that  of  describing  the  modification  in  the

uncertainty about its value on the basis of evidence, and the procedure to perform this modification

is specified by the Bayes' theorem.

1.2. The Bayesian interpretation of probability

As we have already mentioned in the introduction, Bayesian statistics interprets probability as a

measure of the uncertainty regarding the occurrence of a specific event, conditional on the available

information and the accepted assumptions.

Thus, to introduce some notation, we will indicate with Pr(E|C) the measure of the rational

degree  of  belief  in  the  occurrence  of  the  event  E given that  the  condition  C is  satisfied.  It  is

important  to  emphasize  that  we  never  compute  “unconditional”  probabilities,  because  in  any

application there exists a condition, which is generally constituted by the set of the available data,

the set of the assumptions concerning the process generating the data, and the relevant knowledge.

In some particular situations, it is possible to estimate the probability of a certain event under given

conditions  by  associating  it  to  the  relative  frequency  of  comparable  events  under  comparable

conditions.

1.3. Exchangeability and representation theorem

The  concept  of  exchangeability refers  to  the  fact  that  the  data  set {x1 ,... , xn} consists  of

“homogeneous” observations, in the sense that the only thing that matters is their  value, and not

their  order of appearance. Statistically speaking, the set of random vectors {x1 ,... , xn} is said to

be “exchangeable” if  and only if  their  joint distribution is invariant under permutations,  and an

infinite  sequence {x j} of  random  vectors  is  exchangeable  if  all  its  finite  subsequences  are

exchangeable.  In particular,  a  typical  example  of an exchangeable  sequence is  constituted  by a

generic random sample. In fact, the representation theorem states that if we assume that a given set

of observations is a subset of an exchangeable sequence,  then it can be described as a random

sample  from  some  probability  density  function {p( x∣ω ) ,ω∈Ω}, x∈X ,  depending  on  some

parameter  vector  ω,  defined  as  the  limiting  value  as n→∞ of some function  of  the  data.  Of



course, the available information concerning the value of ω is also described by some probability

distribution p(ω|C).

Thus, the concept of exchangeability can be considered as an extension of the notion of random

sample. In fact, any i.i.d. random sample is exchangeable, since a generic probability distribution

p (x1 , ... , xn∣ω )=∏
i=1

n

p (x i∣ω) is  invariant  under  permutations.  Of  course,  when  dealing  with

forecasting, the assumption of independence among the observations of a random sample would be

of no use, for in such a case knowing xn could not provide us with any information in order to

predict xn+1 , thus this assumption only concerns the distribution of the observations conditional

on the parameter ω.

Moreover,  under  conditions  of  exchangeability,  the  representation  theorem  has  two  main

important consequences. The first one is the existence theorem for a probability distribution p(ω|C)

on the parameter space Ω, and the second one is the formal definition of the parameter ω, which is

identified  as  the  limiting  value,  for n→∞ ,  of  some  function f (x1 , ... , xn) of  the  observed

sample.

1.4. The Bayesian paradigm

When  doing  a  statistical  analysis,  one  generally  starts  by  suggesting  a  probability  model

{p(D∣ω ) ,ω∈Ω} with the aim of representing the probabilistic process which has generated the

observations  D,  for  some  unknown  value  of  the  parameter  ω.  This  implies  the  necessity  of

establishing a prior distribution p(ω|K) over the parameter space Ω, which describes the available

knowledge K about the value of ω before obtaining any information coming from the data. If the

probability model hypothesized is the correct one, then, after the data information  D has become

available it is possible to derive a posterior distribution p(ω|D, A, K) including all the knowledge

about the value of the parameter ω that has been obtained from the observations. Such distribution

can be easily derived from the Bayes' theorem as follows,

p (ω∣D , A , K )=
p(D∣ω) p (ω∣K )

∫
Ω

p(D∣ω ) p(ω∣K )dω
,

where A indicates the assumptions made on the probability model. The application of this theorem

in order to include in the model the information provided by the data justifies the qualification of

Bayesian attributed to this paradigm. Of course, if the prior distribution attributes zero density to a



given value, such value will also have zero posterior density. Thus, a common assumption is that

prior distributions must be strictly positive. If it was necessary to assign null probability to a given

value of ω, one should appropriately restrict the parameter space Ω.

1.5. The learning process

In the Bayesian approach, the Bayes' theorem is systematically applied in order to implement a

learning process where the available prior information is combined with the information derived

from the data in order to obtain the posterior distribution. The computation of a generic posterior

density is simplified by the possibility to express the Bayes' theorem in terms of proportionality, as

follows:

p (ω∣D)∝ p (D∣ω) p (ω ) ,

where we have omitted the acceptable assumptions  A and the prior information  K to simplify the

notation.  Indeed,  the proportionality  constant [∫
Ω

p (D∣ω) p (ω )dω ]
−1

can always  be  obtained

thanks to the property that the integral of any probability density  p(ω|D) must be equal to one.

Thus, any posterior distribution can be completely specified by a kernel, which is a function k(ω)

such that p(ω|D) = c(D)k(ω) for some c(D) which does not depend on ω.

A positive function π(ω) such that ∫Ω π (ω )dω is not finite is defined as an improper prior

function. The expression of the Bayes' theorem remains still valid in the cases in which p(ω) is an

improper  prior  function,  and  it  is  then  possible  to  obtain  a  proper  posterior  distribution

π (ω∣D)∝ p (D∣ω)π (ω ) .

The  likelihood  function,  defined as  l(ω, D)  =  p(D|ω),  also  plays  a  role  in  determining  the

posterior distribution of ω. In fact, if we assume that the same prior p(ω) is used, two different data

sets D1 and D2 ,  coming  from  different  probability  models p1(D1∣ω ) and p2(D 2∣ω ) but

having  proportional  likelihood  functions,  will  provide  equal  posterior  distributions  for  ω.  This

property is also known as the likelihood principle.

Of course, the definitions of prior and posterior are relative to a specific data set, and if the data

D={x1 , ... , xn} are sequentially processed, so that the “posterior” distribution at a given time  t

becomes the “prior” at the next time, in accordance with the proportionality property that, for i = 1,

…, n – 1, the final result will be the same one would obtain if the data were globally processed.

In most cases, the posterior distribution is “sharper” than the prior, since the uncertainty about

the true parameter value decreases after taking into account the observed data. However, there are



occasional situations in which an “unforeseen” observation may increase the parameter variance,

instead of decreasing it.

For a given probability model, it is always possible to find some function of the data  t = t(D)

such that t is a sufficient statistic, which means that t(D) includes all information about ω which is

contained in  D. According to the formal definition,  t = t(D) is sufficient if and only if there exist

non-negative functions f and g such that the likelihood function may be factorized in the form p(D|

ω) =  f(ω|t)g(D). The simplest example of a sufficient statistic is, of course,  t(D) =  D. However,

there are many situations in which it is possible to find a much simpler sufficient statistic, having a

fixed dimensionality which does not depend on the sample size. This particularly happens when the

probability  model  belongs  to  the  generalized  exponential  family.  It  may  be  proved that  if  t is

sufficient, then the posterior distribution of  ω only depends on  t  itself, and may be calculated in

terms of p(t|ω) as follows: p (ω∣D)=p (ω∣t)∝ p (t∣ω ) p(ω ) .

It can be easily deduced that, for any given data set and model assumptions, different priors

imply different posteriors, but it is important to evaluate the impact that a sensible change in the

prior would induce in the posterior. This kind of evaluations constitutes what is commonly referred

to as sensitivity analysis.

We will now consider the situation where the quantity of interest is not the parameter vector ω

itself,  but  some  function  θ = θ(ω),  possibly  of  lower  dimension  than  ω.  If  we  assume

{p(D∣ω ) ,ω∈Ω} to  be  a  probability  model  describing  the  statistical  mechanism  that  has

generated the data  D, let  p(ω) be the prior distribution of  ω, describing the available information

about its value, and let θ=θ (ω)∈Ω be a function of the parameters over whose value inference

has to be made, any deduction about the vector of interest  θ will then be based on its posterior

distribution  p(θ|D),  which  will  of  course  also  depend  on  the  accepted  probability  model

{p(D∣ω ) ,ω∈Ω} and on the prior knowledge provided by p(ω). In fact, the posterior p(θ|D) can

be derived by using standard probability calculus procedures. In particular, from the Bayes' theorem

we obtain that p (ω∣D)∝ p (D∣ω) p (ω ) , and if we let λ=λ(ω )∈Λ be some function of ω such

that ψ = {θ, λ} is a one-to-one transformation of the original parameter, and let J (ω )=(∂ψ /∂ω )

be the corresponding Jacobian matrix, it is possible to compute the posterior distribution of  ψ by

using the standard change-of-variable tool, as follows:

p (ψ∣D)= p(θ ,λ∣D)=[ p(ω∣D)
∣J (ω )∣ ]ω=ω(ψ ) ;

consequently,  the posterior  density of  θ  is  the corresponding marginal  distribution,  obtained by

integrating over the nuisance parameter λ, as follows:

p (θ∣D)=∫Λ p(θ ,λ∣D)d λ .



In some cases it may be useful to restrict the range of possible values of ω. For example, if ω is

known to belong to Ωc⊂Ω , we will assume the prior distribution to be only positive in Ωc , and

the restricted posterior will be computed by exploiting the Bayes' theorem in the following way:

p (ω∣D ,ω∈Ωc )=
p(ω∣D)

∫
Ωc

p (ω∣D)
,      ω∈Ωc .

Thus, in order to impose a constraint on the possible parameter values, it will be sufficient to

renormalize the unrestricted posterior density to the set Ωc⊂Ω satisfying the required condition.

1.6. Predictive distributions

Let us suppose that D={x1 ,... , xn}, x i∈χ is a set of exchangeable observations, and we want

to predict the value of a future observation x∈χ generated by the same probabilistic mechanism

that has produced the data set D. It can be naturally deduced that the solution to a problem of this

kind is contained in the  predictive distribution  p(x|D). If we assume that the data  D  constitute a

random sample coming from a distribution in the family {p( x∣ω ) ,ω∈Ω} , and that p(ω) is a prior

density  function  describing  the  available  information  concerning  the  parameter  ω,  then,  since

p (x∣ω , D)=p (x∣ω) ,  it  follows  that  the  predictive  density  is  given  by

p (x∣D)=∫Ω p (x∣ω) p (ω∣D)d ω ,  which  corresponds to  the average  of  the  distributions  of  x

conditional on the parameter  ω, weighted with the posterior distribution of  ω  conditional on the

data.

If the model is based on correct assumptions, the posterior predictive distribution  p(x|D) will

converge to the distribution p(x|ω) generating the data, as the sample size increases. Thus, in order

to evaluate the inferential capability of the posterior p(ω|D), it is possible to compare the results of

a simulation produced by the predictive distribution p(x|D) generated by p(ω|D) with the observed

data.

1.7. Asymptotic behaviour

We will now consider the asymptotic behaviour of posterior distributions, whose importance is

mainly due to two reasons: 



1)  when  large  sample  sizes  are  available,  it  may  be  useful  to  exploit  asymptotic  results  as

approximations;

2) objective Bayesian methods typically depend on the asymptotic behaviour of the assumed model.

In  formal  terms,  if  we  assume D={x1 ,... , xn}, x∈χ to  be  a  random  sample  with  n

observations  from {p( x∣ω ) ,ω∈Ω} ,  it  may  be  proved  that,  when n→∞ ,  the  posterior

distribution p(ω|D) of a discrete parameter ω converges to a degenerate distribution where the true

value of ω has probability one, and the posterior distribution of a continuous parameter ω converges

to  a  normal  distribution  whose  mean  equals  its  maximum  likelihood  estimate ω̂ and  whose

variance decreases with the speed of the order of infinity 1/n.

In particular, if we consider the case in which Ω={ω 1 ,ω 2 , ...} is constituted by a  countable

set  of  values,  where  the  probability  model  corresponding  to  the  true  parameter ωt is

distinguishable from the others, which means that the discrepancy δ {p (x∣ω i) , p( x∣ω t)} of each

one of the p (x∣ω i) from p (x∣ω t) is strictly positive, it may be proved that

lim
n→∞

p(ω t∣x1 , ... , xn)=1 ,     lim
n→∞

p(ω i∣x1 ,... , xn)=0 ,     i ≠ t.

To express this in words, the posterior probability of the true parameter value converges to one as 

when the sample size tends to infinity.

Let us now take into account the case in which ω is a k-dimensional continuous parameter. If we

express  the  Bayes'  theorem as p (ω∣x1 , ... , xn)∝exp( log [ p (ω )]+∑
j=1

n

log [ p( x j∣ω)]) and  expand

∑ j
log [ p( x j∣ω)] about  its  maximum  (the  MLE ω̂ ),  it  can  be  shown  that  the  posterior

distribution of ω can be approximated by using a k-variate normal density function:

p (ω∣x1 , ... , xn)≈N k {ω̂ , S (D ,ω̂ )},      S−1
(D ,ω)=(−∑

l=1

n ∂
2 log [ p( x l∣ω)]
∂ω i∂ω j ) .

It is also possible to use a simpler, even though poorer, approximation obtained by applying the

law of large numbers to the sums contained in the previous expression. In this way we would obtain

that S−1
(D ,ω̂ )≈nF (ω̂) , where F(ω) is the Fisher's information matrix, whose general element

is equal to

F ij (ω )=−∫χ p (x∣ω)
∂

2 log [ p (x∣ω)]
∂ω i∂ω j

dx .

In conclusion, in the continuous case, assuming very general regularity conditions, the posterior

probability density of the parameter vector ω converges, as the sample size grows, to the one of a

multivariate normal density centred in the MLE ω̂ , with a variance that decreases with n with the

speed of 1/n.



If we decompose the parameter vector into  ω = (θ,  λ) and partition the Fisher's information

matrix accordingly, obtaining:

F (ω )=F (θ ,λ )=(Fθθ (θ ,λ ) Fθ λ (θ ,λ )
Fλ θ (θ ,λ ) F λ λ (θ ,λ )) ,

and

S (θ ,λ)=F−1
(θ ,λ )=(Sθ θ (θ ,λ) Sθ λ (θ ,λ )

S λθ (θ ,λ ) Sλ λ (θ ,λ )) ,

then we will have that the marginal posterior distribution of θ will be given by

p (θ∣D)≈N {θ∣θ̂ , n−1 Sθθ (θ̂ , λ̂ )} ,

and the posterior distribution of λ conditional on θ will be given by

p (λ∣θ , D)≈N {λ∣λ̂−F λ λ
−1
(θ , λ̂)F λθ (θ , λ̂)(θ̂ −θ ) , n−1 Fλ λ

−1
(θ , λ̂)} .

In the situation where θ and λ are asymptotically independent, which would imply F to be block

diagonal, we have that F λ λ
−1
=S λ λ .

1.8. Bayesian estimation

When we are dealing with parameter vectors in one or two dimensions, a useful tool in order to

convey an intuitive summary of what can be deduced about the quantity of interest is a graphical

representation  of  its  posterior  distribution.  Anyway,  the  main  drawback  of  drawing  one's

conclusions uniquely from a graphical representation is that this is not easily feasible when we need

to  estimate  parameters  with  more  than  two  dimensions.  Beyond  this  dimensionality,  in  fact,

quantitative conclusions are often necessary.

Point estimation

If  we  assume  D  to  be  the  available  data  sample,  generated  by  a  probability  model

{p(D∣ω ) ,ω∈Ω} ,  and  assume θ=θ (ω)∈Θ to  be the  parameter  of  interest,  some function

θ̃ =θ̃ (D) is defined a point estimator of θ if it can be considered as a proxy for the actual value

of a  θ. From a formal viewpoint, choosing a point estimate for  θ can be regarded as a decision

problem, where the action space corresponds to the parameter space Θ. In fact, the choice of a point

estimate θ̃ for some quantity θ determines the decision whether to act as if θ were equal to θ̃ or

not.  Coherently  with  decision  theory,  to  solve  this  decision  problem we need to  define  a  loss

function l (θ̃ ,θ ) with the aim of measuring the loss one could suffer if he acted as if θ̃ were the

true value of the parameter of interest, when it is instead equal to θ. Such function is computed as

l [θ̃ ∣D ]=∫Θ l(θ̃ ,θ ) p (θ∣D)dθ ,



and  the  corresponding  Bayesian  estimator θ̂ is  that  function  of  the  data, θ̂ =θ̂ (D) ,  which

minimizes this expectation.

Region estimation

In order to get an intuition of the posterior distribution of the quantity of interest p(θ|D) it may

be useful to identify regions R⊂Θ of specified probabilities under p(θ|D). Any region Rq such

that

Rq⊂Ω ,      ∫Rq

p (θ∣D)dθ =q ,      0 < q < 1,

is defined as the  q-credible region  of  θ.  A credible  region is invariant  under reparametrization,

which means that, for any q-credible region Rq of θ, ϕ (Rq) is a q-credible region of φ = φ(θ).

Of course, for any given value of q there exist generally infinitely many credible regions.

The notion of credible region for a function  θ =  θ(ω) of the parameter vector can be easily

extended to prediction problems, and in this case we will define as a posterior q-credible region for

x∈X any subset Rq of the outcome space X with posterior predictive probability  q, so that

∫Rq

p (x∣D)dx=q .

1.9. Hypothesis testing

By analysing the posterior distribution  p(θ|D) of the parameter  of interest  θ,  we can get an

immediate intuition about those values having a relatively high probability density, which may be

considered compatible with the set of observations D. In several situations, in fact, we may identify

a restriction θ∈Θ0⊂Θ of the possible values of the quantity of interest which deserves a special

consideration.  Thus,  the  hypothesis H 0≡{θ∈Θ0} should  be  accepted  as  compatible with  the

observed data D if the subset Θ0 contains values with a relatively high posterior density. From a

formal viewpoint, testing the hypothesis H 0≡{θ∈Θ0} is a decision problem with an action space

including  only  two  elements:  to  accept (a0) or  to  reject (a1) the  restriction  considered.  A

decision problem of this kind can be solved by defining an appropriate loss function, l (a i ,θ ) ,

measuring the consequences of accepting or rejecting H 0 as a function of the actual value θ of the

parameter  of  interest.  The  decision a1 is  defined  as  an  alternative  to a0 ,  thus  it  is  not

necessarily the best possible decision, but it is better than anything else that has been imagined.

If we consider the loss function l (a i ,θ ) for a given action a i , we obtain that the optimal

decision will be rejecting H 0 if and only if the expected posterior loss deriving from accepting the



null hypothesis, ∫Θ l (a0 ,θ ) p (θ∣D)dθ , is larger than the expected posterior loss deriving from

rejecting the null, ∫Θ l (a1 ,θ ) p(θ∣D)d θ , which is equivalent to saying, if and only if

∫Θ [ l (a0 ,θ )−l (a1 ,θ )] p (θ∣D)dθ =∫Θ Δ l(θ ) p(θ∣D)dθ>0 .

As a consequence,  we only need to specify the loss difference Δ l(θ )=l (a0 ,θ )−l(a1 ,θ ) ,

representing the advantage deriving from the rejection of H 0 as a function of the parameter θ. In

particular, if this difference is positive, one should reject the null H 0 .

It is important to emphasize that, while accepting a0 by assumption means to act as if H 0

were true, that is to act as if θ∈Θ0 in our case, there exist at least two possible interpretations of

the alternative choice a1 . In fact, this may either mean the negation of H 0 , which would imply

that θ∉Θ0 , or, differently, that the restriction proposed by the null hypothesis is rejected, and we

keep  the  unrestricted  model  whose  parameter  space  includes  all θ∈Θ .  Generally,  however,

hypothesis testing techniques are more suitable in the second case. Indeed, a restricted model where

the  null  hypothesis H 0≡{θ∈Θ0} is  realized  is  often  embedded  into  a  more  general  model,

{θ ∈Θ ,Θ0⊂Θ} built in order to include the possibility of departures from H 0 , and the purpose

of our analysis would be to verify whether the available data D present some compatibility with the

hypothesis under which θ∈Θ0 .

1.10. Approximation techniques in Bayesian inference

It frequently happens that difficulties may be encountered in obtaining analytical solutions to

inferential problems, which often leads to the adoption of simplification procedures, such as the

usage of probability  distributions  belonging to the exponential  family,  or assumptions  of linear

dependence. Such a circumstance caused the necessity to develop some techniques which might be

used  as  an  alternative  to  analytical  calculus,  in  the  cases  in  which  the  model  considered  is

particularly complex. All of the proposed techniques could be classified in one of the following

three categories:

1) analytical approximation methods;

2) efficient numerical integration methods;

3) simulation-based methods.

Generally,  analytical  approximation  methods  are  the  ones  whose  application  is  the  most

straightforward,  even  though  they  are  often  unable  to  provide  particularly  accurate  solutions.



Numerical integration methods possess the drawback that they do not take into account the fact that

the functions involved in the optimization or integration procedure we want to perform are related

to  probabilistic  laws.  On  the  contrary,  simulation-based  methods  make  inference  about  the

parameters of interest on the basis of simulated numerical values, without considering the analytical

properties of the functions involved. Numerical methods generally lead to reliable results when the

function of interest  has a  regular  shape and the size of  the problem is  quite  reduced,  while  in

complex situations the simulation-based approach is preferable.

Recently, a different paradigm was developed, which uses a sample of values obtained from a

finite  realization  of  a  Markov chain in  order  to  provide the required inferences.  If  the utilized

method satisfies regularity conditions, the generated sample may be used for inferential purposes as

if it  was an independent sample.  The methods belonging to this  category,  commonly known as

Markov Chain  Monte Carlo  (MCMC)  provide  a  tool  for  the  analysis  of  extremely  complex

models, and their usage is generally quite simple and flexible.

In the last few years, MCMC methods became particularly popular thanks to their applications

in the field of Bayesian inference, since they provide a solution to problems where the computation

of complex integrals is needed in order to estimate the parameters of interest.

1.10.1. Markov chains

A discrete parameter stochastic process {Z t ; t=0,1,2,...} , whose values are comprised in a

set Z, is said to be a  Markov chain if and only if the conditional distribution of Z t , given the

values z0 , z1 , ... , zt−1 previously presented by the process, is only dependent on z t−1 . Formally,

a process can be defined as such if

Pr {Z t
∈A∣Z 0

=z0 , Z 1
=z1 ,... ,Z t−1

=zt−1
}=

Pr {Z t
∈A∣Z t−1

=z t−1
}

for any measurable A⊆Z .

This property is commonly referred to as Markovianity and expresses the circumstance that the

future is independent on the past, conditional on the present. Each one of the values presented by

the process at a given point in time is defined to be a state occupied by the chain, and the set Z is

said to be state space. 

In order to define a Markov chain it is necessary to define the probability distribution of Z t

conditional on Z t−1 , also called transition probability distribution.



1.10.2. Markov Chain Monte Carlo algorithms

As we have previously explained, in the real world it happens quite frequently that the posterior

distribution of a parameter  of interest  is  not easy to be determined.  In order to face this  issue,

MCMC methods are commonly utilised. In fact, if we suppose that the posterior distribution of a

given parameter is equal to  π and we draw from it a random sample which we name  N ,...,1

(i.i.d.), then, by means of the Monte Carlo method, it is possible to estimate the mean of any given

function g(ψ) with a finite expected value of the posterior, by using the following approximation:





N

j
jgNgE

1

1 )())((  .

Even if independent samples from the posterior of the parameters cannot be easily obtained, this

approximation method generally works quite effectively in the cases of dependent samples, and in

particular for Markov chains.

If we consider a given Markov chain 1}{ tt  distributed according to an invariant probabilistic

law π, it is possible to show that for any initial value 1  the distribution of t  tends to π when t

tends  to  infinity.  In  particular,  for  M large  enough,  the  parameters  NMM   ,...,1  follow  the

distribution of π and their statistical properties are comparable to those possessed by an independent

sample from π. It is useful to notice how, even if the Markov chain is not aperiodic, the law of large

numbers mentioned above still applies. 

Moreover,  if  we assume that  1  is  distributed  according  to  π,  we are  allowed  to  use  the

traditional formula for the estimation of the variance to assess the amount of uncertainty associated

to the calculation of the ergodic averages. If we denote with Ng  the right-hand side of the equation

reported before, we obtain that

)())(()( 1
1 ggVarNgVar N 

with 





t

tg  )(  and ))(),(( tsst ggcorr   . Thus, we can estimate the quantity ))(( 1gVar

by using the sample variance of )(),...,( 1 Ngg  . In order to provide an estimate of τ(g), we must

substitute theoretical correlations with empirical correlations for all of the N iterations, as follows:





nt

tn  ˆˆ .

In the paragraphs which follow we will illustrate the most frequently used MCMC algorithms

for the simulation of ergodic means from a theoretical distribution π.



1.10.3. Gibbs sampling

There are many situations where the parameter whose distribution we are willing to determine

is multidimensional, and consequently we have to derive a sample from a multivariate distribution.

In such a case we depart from the expression  ),( )2()1(    where  )1(  and  )2(  may be both

one-dimensional and multidimensional. Furthermore, we assume that the target density is given by

),()( )2()1(   .  The  Gibbs  sampling  procedure  starts  from an  arbitrary  state  denoted  by

),( )2(
0

)1(
00   , and then alternates the updating of the two single parameters by simulating from

the respective conditional  distributions.  We can summarise the algorithms in the following five

steps.

1. Set j = 1.

2. Draw 
)1(

j  from the conditional density )( )2(
1

)2()1(
 j .

3. Draw 
)2(

j  from the conditional density )( )1()1()2(
j  .

4. Set j = j + 1.

5. If j ≤ N go back to step 2, otherwise stop.

1.10.4. Metropolis-Hastings algorithm

The Metropolis-Hastings algorithm allows us to generate a simulation of the next state of a

Markov chain departing from an arbitrary density function, and the invariance of the distribution is

guaranteed by a step at which we are forced to decide whether to accept or to reject the result of the

simulation itself.

Let  us  assume  that  the  current  state  of  a  given  chain  is  equal  to  ψ.  We define  proposal

distribution the conditional probability of proposing a state  ~  given that we are in the state  ψ,

which we denote with ),( q . Then we define acceptance distribution the conditional probability of

accepting the proposed state  ~  given that we are in the state  ψ, which we denote with  )~,(  .

The proposed value will be accepted with a probability given by:












)~,()(

),~()~(
,1min)~,(




q

q

where the numerator ),~()~(  q indicates the probability that we are in the state ~  and we pass to

the state ψ, while the denominator )~,()(  q  indicates the probability that we are in the state ψ

and we pass to the state ~

Of  course,  the  simulated  parameter  will  be  always  accepted  if  the  acceptance  distribution

presents a value larger than 1, and will be rejected accordingly to the chosen confidence level if this

value is smaller than 1.

The choice of the proposal density and of the related rejection level is quite important for the

performance of the Markov chain. In fact, a proposal distribution implying a high rejection level

will  lead to  a higher rigidity  of the chain,  which means that  the state  will  tend to remain at  a

constant level for a larger number of iterations. The disadvantage of such a situation is that the

computation of ergodic averages by means of the formula provided previously will not probably

result in satisfying approximations. On the contrary, if the distribution implies a low rejection level,

this may result in a chain which does not correctly follow the target density.

The whole procedure  of  the Metropolis-Hastings  algorithm is  summarised  in  the following

steps.

1. Set j = 1.

2. Draw j~  from the proposal distribution ),( 1 jq  .

3. Calculate )~,( 1 jj   .

4. Draw an independent sample from the random variable )Ber(~ jU .

5. If 1jU  set jj  ~ , otherwise set 1 jj  .

6. Set j = j + 1.

7. If j ≤ N go back to step 2, otherwise stop.



Chapter 2

The dynamic linear model

In this chapter we will describe and analyse the mathematical structure of the general class of

dynamic linear models, with the goal of providing a basis for the understanding of the special cases

and generalisations  that  will  be presented in  the subsequent chapters.  The main bibliographical

source we referred to for what concerns this topic is Bayesian Forecasting and Dynamic Models by

M. West and J. Harrison (Springer-Verlag New York, Inc., 1997).

2.1. Introduction

Dynamic  linear  models,  commonly  referred  to  as  DLMs,  constitute  the  most  widely  used

subclass of dynamic models, where the word dynamic means that the parameters of such models are

automatically modified in consequence of changes caused by the passage of time. In fact, with the

evolving of time, the modeller is able to take into account information which was not available in

the past, and can use it to revise his forecasts, whether such revision involve modifications at the

quantitative, formal or conceptual level, which we shortly define hereafter. 

The quantitative level involves the values assigned to the parameters, the formal level regards

the selection of the appropriate variables and the definition of relationships between them, and the

conceptual level provides an abstract view of the model describing for example the scientific or

socio-economic laws and the behavioural features the model itself is based upon. The conceptual

basis of a model is expected to be very stable and rarely modified, while the quantitative aspect is

the one for which changes occur most frequently.



In order  to  exemplify  the  dynamic  updating  process,  we suppose that  t =  0 represents  the

present time, and the available information at that time is denoted by 0D . A forecaster will produce

his views about  the future time  t > 0 on the  basis  of such information,  by means of  studying

conditional distributions of the kind  0DYt . As time evolves and  t  becomes the present time our

existing information will be denoted by tD . Consequently, when making projections at time t about

any quantity of interest, a forecaster will have to take into account the information available at time

t; for example, in order to produce a forecast concerning time  s >  t  we will need to consider the

distribution of ts DY .

If we focus on the information available at a generic time t, we can see that it is composed of

the information which already existed at time t  -1 and the amount of information which was only

acquired at time t and includes the observation of tY , which we indicate by tI . In order to express

this with formulas, we can write: 

},{ 1 ttt DID  for every t = 1, 2, ...

Thus, forecasting will be performed thanks to the use of conditional distributions based on the

knowledge of past information and on the estimation of specific parameters, which we will denote

by t . If we consider a forecast concerning the variable  tY  one step ahead, we can state that the

beliefs of the forecaster are based on a parametric probability model of this kind:

),( 1ttt DYp  .

This  representation  will  allow decision makers  to  choose the  behaviour  that  will  lead  to  a

favourable result with the highest probability.

The indexing of t  by t indicates that such parameter is subject to a dynamic updating process.

Furthermore, though in the majority of cases the number and the meaning of the parameters are

constant over time, there are situations in which such number will be modified or the variables will

be changed in consequence  of  updates  in  the  information  about  the actual  time  series.  This  is

particularly  frequent  in  the  case  of  open  systems,  such  as  social,  economic  and  biological

environments, where the state of the system itself  affects  the factors influencing the time series

process. In such cases, variations in the parameters are often necessary in order to reflect the effects

of the system learning, but, since it is generally difficult to foresee such effects, modellers usually

include such changes only after they have caused remarkable results in the system. 

Thus, we can state that the learning process allows modellers to continually revise the state of

their  knowledge  as  regards  the  parameters.  In  fact,  the  Bayesian  approach,  consisting  in  a

probabilistic  representation  of  reality,  concerns  both  observable  quantities  of  interest,  such  as



consumption or the Gross Domestic Product, and unobservable quantities such as the parameters of

a forecasting model. 

For example,  at  time  t the forecaster’s  knowledge can be summarised by a so called  prior

distribution of the future parameters, where the term prior indicates that such knowledge precedes

the observation of tY . We indicate such distribution by )( 1tt Dp  .

Of course, there will also be a posterior distribution, which takes into account the observation

of tY  and all of the information available at time t, which we denote by )( tt Dp  .

These two distributions symbolise the way in which the model improves its parameters over

time  thanks  to  the  acquisition  of  new  information.  In  particular,  inference  about  the  future

developments of the analysed system is derived from the knowledge of such distributions by means

of a standard statistical approach. 

We present hereafter the formal definition of the simplest form of dynamic linear model.

Definition 2.1. For every t, we define univariate, uniparameter normal dynamic linear model,

indicated by the quadruple },,,{ tttt WVF   the set of the following expressions:

          Observation equation:               ,tttt vFY                                   ],VN[0,~ ttv

          System equation:                       ,1 ttt                                 ],WN[0,~ tt

          Initial information:                    ],C,N[m~)( 0000 D

where the error terms  tv  and  t  are both singularly and mutually independent, and are also

independent  of  00 D .    identifies  a  known constant  and  tF  is  a  known sequence of values.

Differently, the variance sequences tV  and tW  might be unknown.

2.2. The first-order polynomial model

We  believe  it  is  important  to  introduce  dynamic  linear  models  by  examining  firstly  their

simplest and most widely used example, which is the first-order polynomial model.

In this DLM model the observed variable tY  is represented as follows:

ttt vY   ,              with ],VN[0,~ ttv



where t  is referred to as the level of the variable at time t and tv  denotes the observational error.

The evolution of the level over time can be simply modelled as a random walk expressed by the

process which follows:

ttt   1 ,             with ],WN[0,~ tt

where t  is called evolution error.

We also assume that for all t and s such that t ≠ s, tv  is independent of sv , t  is independent of

s , tv  and s  are mutually independent. In the initial phase, we will also assume that the variances

tV  and  tW  are  known for  every time  t.  The  conditional  distributions  of  the observational  and

evolution equation are expressed as follows:

].W,N[~)(

],V,N[~)(

t1-t1-tt

tt



 ttY
                   for every t = 1, 2, ...

At an intuitive level, the mean t  may be considered as a function of time with a smoothing effect,

which can be represented by the following expression:

)()( ttt   + higher-order terms,

where the higher-order terms identify the white-noise distribution of the error term.

As it can be seen from the equations presented, in the DLM model the level is a locally constant

approximation for the evolution underlying the fluctuations of the variable of interest. The expected

value k-steps ahead of a given series conditionally to its present value is calculated as follows:

ttkttkt EYE    ][][ .

Consequently, at time t, conditionally to the available information tD , the posterior distribution

of t  will have a mean equal to tm , and the forecast function )(tf  will be constant and given by:

ttttktt mDEDYEkf   ][][)( 

for every k > 0. We can deduce that the use of this kind of DLM can only provide good results

for short-term forecasts, and particularly when the variability of the single observation, expressed

by tV  is notably higher than the variability at the systematic level, indicated by tW .



2.3. Definition and updating equations

According to Definition 2.1, the first-order polynomial model is identified by the quadruple

},,1,1{ tt WV and defined by the following set of equations:

Definition 2.2. For every t, the DLM expressed by the quadruple },,1,1{ tt WV  is defined by:

            Observation equation:                      ttt vY                               with ],VN[0,~ ttv

            System equation:                             ttt   1                          with ],WN[0,~ tt

            Initial information:                          ],C,N[m~)( 0000 D

where  we  assume  that  the  error  terms  tv  and  t  are  independent  of  time  t,  mutually

independent and also independent of the conditional mean 00 D , whose distribution represents all

the available information at the initial  time, and the variance is a measure of the corresponding

uncertainty.

We present hereafter the prior and posterior distribution of the level and the distribution of the

one-step-ahead forecast for this kind of model.

1) Posterior for 1t :                                          ]C,N[m~)( 1-t1-t11  tt D

2) Prior for t :                                                   ]R,N[m~)( t1-t1tt D

3) Posterior for t :                                             ]C,N[m~)( tttt D

4) 1-step-ahead forecast:                                     ]Q,N[f~)( tt1tt DY

where we make the following assumptions:

   

 ttt WCR  1

 1 tt mf

 ttt VRQ 

 tttt eAmm  1

 ttt VAC 



 ttt QRA /

 ttt fYe  .

In  particular,  the  distribution  of  the  posterior  for  t  can  be  demonstrated  through  the

application  of  the  standard  theory  of  bivariate  normal  distribution,  and  we present  such  proof

hereafter.

We depart from the consideration that any linear function involving tY  and t  can be expressed

as a linear combination of the independent normal distributions of tv , t  and 1t ; thus, any linear

function such as this possesses a normal distribution conditionally on 1t . As a consequence we

obtain  that  the  joint  distribution  1, ttt DY   is  a  bivariate  normal.  By  taking  into  account  the

expressions in 2) and 4) and the independence of t  and tv  we are able to calculate the covariance

between our two normal quantities, and we obtain:

tttttt RDVDYC   ][],[ 11  .

We deduce that the joint distribution is given by:
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In order to derive the distribution of the posterior for t  it is necessary to apply the following

property of the bivariate normal: if 1X  and 2X  are two normal random variables, whose respective

means are 1  and 2 , whose respective standard deviations are 1  and 2 , and whose correlation

coefficient is equal to  , the distribution of  1X  conditional on 2X  is given by:

))-(1),-(xN(~ 2
1

2
22

2

1
1221 




  xXX .

From this formula we derive that:

]C,N[m~, tt1ttt DY

where

)( 1
2

1   ttttt mYmm 

and

tttttttt VAQVRRC  /)1( 2



where tA  corresponds both to the squared correlation and to the regression coefficient of t  on

tY .

2.4. General theorem of the DLMs

The  general,  univariate,  dynamic  linear  model  is  exactly  specified  by  the  following  two

equations:

,tttt vFY    with ),0(N tmt V~v

,1 tttt wG    with ),,0(N tpt W~w

where we assume that both tF  and tG  are known matrices and that the error terms tv  and tw

are mutually independent white noise random variables, with zero mean and covariance matrices tV

and tW  respectively. The first equation is called the observational equation, while the second one

is named the state equation or system equation. A further assumption we make is that 0  presents

a Gaussian distribution,

),(N~ 00p0 Cm ,

where 0m  is the vector of the mean values of the independent variables involved and 0C  is the

covariance matrix.  0  is also assumed to be independent of tv  and tw . It is easily visible that the

general DLM satisfies the conditions corresponding to the features of the first-order polynomial

model, which are )V,N(F~ ttt ttY  and )W,N(G~ t1-tt1  tt .

Differently  from the  general  dynamic  linear  model,  the  general  state  space  model  can  be

otherwise expressed in the form:

),(

),(

1 tttt

tttt

wg

vhY







where th  and  tg  are two given functions. The advantage of using a model such as this is its

higher flexibility, because the utilisation of a DLM implies that we are assuming the functions th

and  tg  to be linear, and the data to have a Gaussian distribution. A possible drawback deriving

from the use of a general state space model is the fact that removing the Normality assumption may

cause additional computational difficulties. 



Definition 2.3. We define hereby two particular subclasses of the DLMs.

1. A dynamic linear model is referred to as a time series DLM, or TSDLM if the pair

of matrices tGF },{  is constant for all values of t.

2. A TSDLM having constant observation and evolution variances for all values of t is

called a constant TSDLM.

Therefore, a constant DLM can be completely specified by a single quadruple of the kind 

{F, G, V, W}.

Any general univariate DLM is thus completely defined by the quadruple: 

},,,{ tttt WVGF ,

which leads to the following distributions for the observation

 ttttt VF~Y ,N)(  

and for the level

 ttttt WG~ ,N)( 11   .

From these distributions, we can derive the full definition of the model.

      Observation equation:                        ,tttt vFY                                        ),,0(N~ m tt Vv

      System equation:                               ,1 tttt wG                                     ),,0(N~ p tt Ww

      Initial information:                               0000 N ,Cm~Dθ

2.5. Updating equations: the univariate DLM

In  order  to  simplify,  we assume  that  at  any time  DLMs are  closed  in  respect  to  external

information, which means that given the initial information  0D  available at time  t  = 0, for any

future time t ≥ 1 the available amount of information is simply given by:

},{ 1 ttt DYD .

We also assume that 0D  incorporates in itself the knowledge of the quadruples },,,{ tttt WVGF

for every t. The results of the analysis of such model are as follows.

1) Posterior at time t -1:



]C,N[m~)( 1-t1-t11  tt D

2) Prior at time t:

]R,N[a~)( tt1tt D

3) Posterior at time t:

]C,N[m~)( tttt D

4) One-step-ahead forecast:

]Q,N[f~)( tttt DY

where 

 1 ttt mGa

 ttttt WGCGR  1  

 ttt aFf 

 ttttt VFRFQ   

 tttt eAam 

 ttttt AQARC   

 1 tttt QFRA

 ttt fYe  .

In order to prove statement 3) concerning the distribution of the posterior it is possible to utilise

some theoretical rules applying in cases of normality of all distributions.

In  particular,  the  system  equation  ,1 tttt wG    where  ),,0(N~ p tt Ww  and  the  prior

distribution ]C,N[m~)( 1-t1-t11  tt D  immediately lead to the conclusion that ]R,N[a~)( tt1tt D .

The observation equation ,tttt vFY    where ),,0(N~ m tt Vv  jointly with the distribution of

the prior lead to the conclusion that  tttttttt VFRF,aF~)DY  N( 1  and consequently demonstrate

that the joint distribution of tY  and t  is Gaussian.



Moreover, we calculate the covariance between tY  and t , given by:

ttttttttttttttt QAFRFDVDvFCDYC   0][],[],[ 111  .

On the basis of these results, we can derive the joint distribution of tY  and t .
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By knowing that the regression vector of t  on tY  is tA , and by applying the standard normal

theory in the same way we illustrated when dealing with the first order polynomial model, it is

easily verifiable that the distribution of the posterior is the one presented in 3).

2.6. State estimation and forecasting

As in any statistical application, in the case of DLMs the most important step is constituted by

the model specification; notwithstanding this, in order to simplify, in the following paragraphs we

will focus on the phases involving estimation and forecasting, and we will therefore assume that the

model is given, which means that the density functions )( ttyf   and )( 1ttp   have been correctly

specified.

In order to solve problems involving statistical inference and prediction of future observations,

we have to calculate  the conditional  distributions  of the quantities  of interest,  departing from a

known data sequence.

In particular, in order to estimate the state vector we have to calculate the conditional densities

of the type: ),...,( 1 ts yyp  . Such issues are usually distinguished in the following categories:

 problems of filtering (when s = t),

 problems of state prediction (when s > t),

 problems of smoothing (when s < t).

We will firstly analyse in detail the procedures which are commonly used in order to deal with

problems of filtering, where our goal is to estimate the current value of the state vector based on the

available  information up to time  t,  and to update our estimates  and predictions every time new

observations become available. In the case of DLMs, the Kalman filter provides a procedure to pass



from the density  ),...,( 1 tt yyp   to  ),...,( 111  tt yyp  , which is equivalent to updating the current

estimate on the state vector as new data are available. If a researcher is interested in estimating the

evolution of the system k steps ahead from time t, which we assume to be the present time, he must

compute the  k-steps-ahead predictive density of the observations,  ),...( 1 tkt yyyf  , on the basis of

the k-steps-ahead predictive density of the level, ),...,( 1 tkt yyp  . 

We will show hereafter how to compute predictive densities by means of recursive procedure.

2.7. Filtering

As we have seen, one of the advantages of state space models is that the filtered and predictive

densities can be computed by means of a recursive algorithm. For example,  by departing from

)()( 0000 Dpp~ 0    it is possible to calculate recursively:

1. the one-step-ahead predictive density of 0  conditional on 1tD , on the basis of the

filtering density )( 11  tt Dp   and of the DLM general theorem;

2. the one-step-ahead predictive density for the next observation;

3. the  filtering  density  )( tt Dp   by  using  the  prior  density  )( 1tt Dp   and  the

likelihood function )( ttyf  .

In particular, the recursive filtering procedure is explained hereafter.

1. The one-step-ahead predictive density for the level is computable as follows:

   )()()()( 11111 ttttttt dvDppDp  .

2. The one-step-ahead predictive density for the observations is computable as follows:

   )()()()( 111 ttttttt dvDpDyfDyf 

3. By applying the Bayes’ theorem, the filtering density can be calculated starting from

the densities reported above in the following way:
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The  proof  departs  from  the  conditional  independence  relationship  ttt YY  ),...,( 11  ,  from

which we obtain:


 




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1111

111111111

ttttt

tttttttttttt

dvDpp

dvDpDpdvDpDp





Then, from the conditional independence ttt YYY ),...,( 11   we derive:

    )()()()()(),()(),( 1111 ttttttttttttttt dvDpyfdvDpDyfdvDyf 

Finally,  by  applying  the  Bayes’  theorem  and  the  conditional  independence  property

ttt YYY ),...,( 11  , we obtain:
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On the basis of these results, we are able to compute the k-steps ahead predictive densities by

means of a recursive algorithm. In particular, we obtain the following formulas:

   )()()()( 111 kttktktkttkt dvDppDp  ,

   )()()()( kttktktkttkt dvDpyfDyf  .

2.8. The Kalman filter for DLM

The  procedure  illustrated  until  now  provide  a  solution  for  any  generic  filtering  problem;

nevertheless,  in general,  the computation of conditional  densities is  not straightforward.  On the

contrary,  in the specific  case of dynamic linear models,  the recursive procedure can be notably

simplified thanks to the assumptions concerning the Gaussian distribution of the random vector

),...,,,...,,( 110 tt YY , with variances w t and v t , for any t ≥ 1. As all the marginal distributions

are also Gaussian, it will be sufficient to calculate their mean values, variances and covariances.

We illustrate hereafter the Kalman filter.

Considering a generic DLM model, if

)C,N(m ~ 1-t1-t11  tt D  with t ≥ 1,

then:



1. the one-step-ahead predictive density of t  conditional on 1tD  is Gaussian, and its

parameters are as follows:
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2. the one-step-ahead predictive density of tY  conditional on 1tD  is Gaussian, and its

parameters are as follows:
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3. the filtering density of  t  conditional on  tD  presents a Gaussian distribution, with

parameters:
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where ttt fYe   identifies the forecast error.

Therefore, the Kalman filter provides a recursive procedure in order to calculate the predictive

and filtering  densities;  trying  to  summarise,  by starting from the knowledge of the distribution

)C ,N(m~ 0000 D  and  then  computing  the  density  )( 11 Dp  ,  it  is  possible  to  derive  the

subsequent  densities  as  soon  as  new  data  are  available,  thanks  to  the  use  of  the  conditional

distribution tt D . Of course, the point estimate of θ t given the information Dt , with respect

to a loss function of the type L(θ t , a )=(θ t−a)' H (θ t−a ) , is equal to the conditional expected

value mt=E (θ t∣Dt) ,  which  is  the  quantity  minimizing  the  conditional  expected  loss

E ((θ t−a)' H (θ t−a )∣Dt−1) . In particular, mt may be expressed as the sum of the prediction

mean and a correction component which refers to the amount of the discrepancy between the new

observation and its prediction, where the weight of the correction term is expressed by the  gain

matrix

K t=R t F ' t Qt
−1 .

Thus,  the  weight  of  the  available  information Y t depends  on Qt ,  which  is  built  by

departing from the observation covariance matrix V t , and on Rt , calculated as:

Rt=Var (θ t∣Dt−1)=G t C t−1G ' t+W t .

One of the drawbacks deriving from the computation of C t by using the iterative algorithms

provided by the  theorem of  the  Kalman  filter,  is  that  this  method  may  lead  to  having a  non-

symmetric or even negative definite covariance matrix. The two strategies which are most widely



used to overcome this problem are the square root filter,  providing a formula for the sequential

updating of the square root of C t , and the SVD-based filter, aiming at sequentially updating the

singular value decomposition of C t .

The authors G. Petris, S. Petrone and P. Campagnoli, in their volume entitled Dynamic Linear

Models with R  (2007), in order to illustrate the role of filtering, provide a graphical comparison

between the actual level of the Nile river and the corresponding filtered levels obtained by means of

two  random  walk  plus  noise  models  having  different  signal-to-noise  ratios.  We  report  this

comparison in Figure 2.1.

Figure 2.1. Filtered values of the Nile river level for two different signal-to-noise ratios

What clearly appears from the graphic is how in the second model, whose signal-to-noise ratio

is ten times larger than it is in the first model, the filtered values generally follow more closely the

actual data.

2.9. Smoothing

The aim of smoothing is that of retrospectively reconstructing the structure of the system on the

basis of the available observations, in order to study, for example, the socio-economic phenomenon

underlying the observations. Similarly to what happens in the case of filtering, even in this case we



can use a backward-recursive algorithm to compute the conditional densities of θ t∣DT for each t

< T, by starting from the filtering density p (θ T∣DT ) .

In  particular,  the  backward  transition  probability  of  the  state  sequence  (θ 0 , ... ,θ T)

conditional on DT  is given by:

p (θ t∣θ t+1 , DT )=
p(θ t+1∣θ t) p (θ t∣Dt)

p (θ t+1∣Dt)
,

and  the  smoothing  densities  of θ t conditional  on DT are  computed  by  applying  the

following backward recursion method starting from p (θ T∣DT ) :

p (θ t∣DT )= p(θ t∣Dt)∫ p(θ t+1∣θ t)

p (θ t+1∣Dt)
p(θ t+1∣DT )d μ(θ t+1) .

In the specific situation of a DLM, if  θ t+1∣DT∼N (st+1 , S t+1) ,  then  θ t∣DT∼N (st , S t) ,

where

st=mt+C t G ' t+1 Rt+1
−1
(st+1−a t+1)

S t=C t+C tG ' t+1 Rt+1
−1
(S t+1−Rt+1)Rt+1

−1 Gt+1C t .

In conclusion, the smoothing procedure departing from the Kalman filter allows us to calculate

the densities of θ t given DT in a recursive way, starting from t = T – 1, where we know that

θ T∣DT≃N (sT=mT , ST=CT ) , and then proceeding backward in order to compute the densities of

θ t∣DT where t = T – 2, t = T – 3, and so forth.

In Figure 2.2 we provide a visual evidence of the smoothing effect, by showing a comparison

between the data concerning the actual  level  of the Nile river and the corresponding smoothed

values, accompanied by their 95% confidence intervals.



Figure 2.2. Smoothed values of the Nile river level, with 95% probability limits

2.10. Forecasting

The forecasting procedure allows us to predict the future values of the observations Y t+k or of

the state vectors θ t+ k based on the available data Dt .

One of the most frequent usages of forecasting is the computation of one-step-ahead forecasts,

which are mainly useful in two situations: firstly, when we need to update our forecasts related to

data which become available sequentially, such as in the case of the price of a stock, and secondly,

when we want  to  check the  performance  of  a  model  (in  this  case  we will  compute  in-sample

forecasts).

As we presented in the theorem of the Kalman filter, the one-step-ahead predictive densities for

states and observations are obtained as a by-product of the filter itself.

In the case of forecasting, the meaning of the gain matrix K is the same that we had in the case

of  filtering.  In  fact,  if  we consider  the  one-step-ahead  forecasts  of  the  observations,  given  by

f t=E (Y t∣Dt) for each t, since f t is a function of the filtering mean mt−1 , the magnitude of

K indicates  the  influence  of  an  unexpected  observation Y t−1 in  determining  the  value  of  the

forecast f t .

In order to provide a visual evidence of the usage of forecasting for model checking purposes,

we present in Figure 2.3 a graphical comparison between the actual data concerning the level of the



Nile river and two in-sample one-step-ahead forecasts deriving from two random walk plus noise

models having different signal-to-noise ratios.

Figure 2.3. One-step-ahead forecasts of the Nile level by using different signal-to-noise ratios

When we are interested in providing forecasts concerning the k-steps-ahead behaviour of a time

series,  we  need  to  exploit  the  property  that  the  joint  distribution  of  present  and  future  states

(θ t+ k)k⩾0 and  future  observations (Y t+k )k⩾1 is  that  of  a  DLM  having  initial  distribution

p (θ t∣Dt) ,  and  the  available  data  only  provide  us  with  some  knowledge  related  to  this

distribution,  in  particular  the  mean mt .  Consequently,  we  can  state  that  knowing mt is

sufficient in order to realize predictions.

The flow of information we need to exploit works as follows: the data (Y 1 ,... ,Y t) provide us

with some information about θ t , which allows us to obtain some insight on the state evolution

until θ t+ k and subsequently about Y t+k . Of course, the larger the value of k, the lower will be

the predictive capability of the model.

At this point we present the recursive methods for computing the first and second moments of

the forecast distributions. We firstly define:

a t(k )=E (θ t+k∣Dt)

Rt(k )=Var (θ t+ k∣Dt)

f t(k )=E (Y t+ k∣Dt)



Qt(k )=Var (Y t+k∣D t)

If we set a t(0)=mt and Rt(0)=C t , then for k ≥ 1 we obtain the following distributions:

1. the predictive state θ t+ k conditional on Dt presents a Gaussian distribution, with

moments

a t(k )=G t+ k a t , k−1 ,

Rt(k )=Gt+k Rt ,k−1G ' t+k+W t+k ;

2. the  predictive  observation Y t+k conditional  on Dt presents  a  Gaussian

distribution, with moments

f t(k )=F t+ k a t(k ) ,

Qt(k )=F t+k Rt(k )F ' t+k+V t .



Chapter 3

Model specification

In  this  chapter  we  will  illustrate  the  procedures  utilised  in  order  to  arrive  to  the  correct

specification  of  a  dynamic  linear  model  for  a  univariate  or  multivariate  time  series.  The  main

bibliographical reference we used for this topic is the treatment Dynamic linear models with R by

G. Petris, S. Petrone, P. Campagnoli (Springer, 2007).

3.1. Introduction

In this chapter we will illustrate some specific categories of DLMs that are commonly used in

order to model both univariate and multivariate time series. In fact, as we will explain hereafter, a

time series can be more easily analysed if we consider it as originated from the union of different

components, such as, for example, the composition of a long term trend, a seasonal component and

an error term presenting a white noise distribution.

In particular,  we will  firstly analyse some basic models which have to be combined by the

researcher to derive a useful model specification; secondly, we will take into account the case in

which the model matrices are dependent of a vector of unknown parameters, and thus an estimation

process will be needed.



3.2. Superposition of models

In  general,  it  can  be  useful  to  consider  a  time  series  as  a  sum  of  different  elementary

components, each one of which describes a specific characteristic of the series itself, such as, for

example,  its  long  term  trend,  its  seasonal  component  and  its  relationship  with  some  given

explanatory variables. In particular, it is possible to model each individual component by means of a

DLM and  subsequently  combine  these  single  components  into  a  unique  DLM,  which  aims  at

providing a good explanation of the whole time series.

For example, if we take into account a univariate series which we denote by tY , we will be able

to rewrite such series in the following form:

thtt YYY ,,1 ... ,

where all the  tiY ,  represent given independent components, such as trend, seasonality, and so

forth.

Every tiY ,  component might be modelled by a DLM as follows:

titititi vFY ,,,,   ,                                                                )VN(0,~ ti,,tiv ,

titititi wG ,1,,,   ,                                                            )WN(0,~ ti,,tiw ,

where all  the  vectors  composed by the  observation  and its  respective  state  vector,  such as

),( ,, titiY   and ),( ,, tjtjY  , are independent for any i ≠ j. On the basis of the independence assumption,

we obtain that 



h

i
tit YY

1
,  and that the given time series can be described by the following DLM:

tttt vFY   ,                                                                   )VN(0,~ ttv ,

tttt wG  1 ,                                                                )WN(0,~ ttw .

The state vector and the F matrix are defined as follows:
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tG  and tW  are defined by the following diagonal matrices:
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Finally, the covariance matrix tV  is given by the following sum: 



j

i
tit VV

1
, .

3.3. Trend models

The trend of a time series indicates its smooth long term development over time, which can be

considered as the expected future behaviour of ktY   for any k ≥ 1, given the information available at

the  present  time  t.  In  general,  any reasonable  trend shape  can  be  approximated  by an  n-order

polynomial  model,  which consists  of a DLM with steady matrices  F and  G,  known covariance

matrices tV  and tW , and a forecast function defined as follows:

1
1,1,0, ...)()( 

  n
nttttktt kakaaDYEkf ,               with k ≥ 0,

where 1,0, ,..., ntt aa  indicate linear functions of )( tt DEm   and are independent of the term k.

The  larger  the  polynomial  order  n,  the  more  precise  the  approximation;  anyway,  the  most

widely used polynomial models are the one with order n = 1 (random walk plus noise model) and

the one with order n = 2 (linear growth model).

3.4. The random walk plus noise model

The random walk plus noise, also referred to as local level model, is defined by the following

equations:

ttt vY   ,                                                    )VN(0,~ ttv ,

ttt w 1 ,                                                )WN(0,~ ttw .

It  can  be  shown  that  the  trajectory  of  the  process  is  strongly  affected  by  the  ratio  W/V,

denominated signal-to-noise ratio.

The k-steps-ahead predictive distribution for this kind of model is given by:

(k))Q,N(m~ tttkt DY  ,               with k ≥ 1,



where the variance is given by VkWCVWCkQ tkt

k

j
jttt  




1

)(  and the forecast function

is  constant  and given by  ttktt mDYEkf   )()( .  It  can  be easily  noticed  how the  uncertainty

related to the future observations increases as the time horizon k becomes further.

An advantage of utilising this kind of model is that it allows us to compute a lower bound for

the variance )(kQt . In fact, as t tends to infinity, it is possible to derive the limit of tK , which is

given by:
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where  r = W/V. This result implies that, when  t is large enough,  tC  converges to  KVCt  ,

which  allows  us  to  derive  the  lower  bound  for  the  variance  of  the  predictive  distribution,

corresponding to an upper bound for the precision attainable in the estimation of the current value

of t .

3.5. The local linear trend model

The  local  linear  trend  model,  also  referred  to  as  linear  growth model,  is  defined  by  the

following equations:

ttt vY   ,                                                       V)N(0,~tv ,

tttt w ,111    ,                                  )N(0,~ 2
w1,1 tw ,

ttt w ,21   ,                                           )N(0,~ 2
w2,2 tw ,

where the error terms are assumed to be uncorrelated.

The state vector is constituted by ),(  ttt  , where the term t  usually indicates the local

average level of the series and t  identifies the local growth rate. In this model both the current

level and the growth rate are assumed to evolve over time,  which allows us to obtain a higher

degree of flexibility if compared to the model presented previously.

If we denote with 1tm  the vector ),( 11  tt  , and if we indicate with ta  the matrix given by:

we obtain that the filtering state estimate is equal to:
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The forecast function is given by:

ttt kkf  ˆˆ)(  ;

since this  is  a  linear  function  of  k,  we can  say that  the local  linear  trend model  consists  of  a

polynomial DLM of order 2.

Since the variances are assumed to be constant, it is possible to demonstrate that, as t tends to

infinity,  tK  converges to a given vector  ),( 21 kk  which we denote with  K. Thus, we obtain the

asymptotic formulas of the state vector.
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3.6. The nth order polynomial model

The nth order polynomial model is based upon an n-dimensional state space and is specified by

the following matrices:

)0,...,0,1(F
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The equations composing this model are as follows:
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               with j = 1, ... , n-1



The first element of the state vector 1,t  for any time t represents the average level of the series,

and for  j = 2, ... ,  n  the  jth element of the state vector indicates the change of the  j-1th element

during the subsequent time interval.

It can be proved that the forecast function consists of a polynomial of order n - 1 in k.

This kind of model includes the special case in which  0... 11  nWW , also referred to as

integrated random walk model. In this case the level satisfies the condition tt
n   , where   is

the determinant of the diagonal matrix W and t  identifies a white noise error term.

3.7. The representation of seasonality

In order to simplify our explanation, we will assume that the series we are analysing presents no

trend component,  thus  it  is  stationary  and  has  mean  equal  to  zero.  In  particular,  the  effect  of

seasonality might be expressed by a different coefficient for every different quarter of the year,

which we denote with i  for i = 1, ... , 4. If we assume that t-1 is referred to the first quarter, t to the

second quarter, and so on, we might describe the series by the following model.

tt

tt

vY

vY


 

2

111




If we suppose that the state vector at time t -1 is equal to )',,,( 23411  t  and the matrix

tF  is given by F = (1,0,0,0) for every t, we obtain that the model can be written according to the

DLM form as follows:

ttt vFY   .

Our goal is to create a permutation matrix which returns the following modification of the state

vector:  ),,,( 3412  t ,  so  that,  for  the  second quarter  of  the  year,  we have  the  equation

tttt vvFY  2 .  Such permutation can be obtained thanks to the use of the following  G

matrix:
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Thanks to this permutation, we can write the state equation as follows:



tttt wwG   ),,,( 34121  .

If we assume that the seasonal effects may change over time, tW  is not a null matrix.

In general, we can state that it is possible to describe a seasonal time series by means of an s-

dimensional state vector t , an F matrix of the type F = (1,0, ... ,0) and an s by s permutation matrix

G. 

The seasonal coefficients are aimed at describing the variations of the series around a given

mean value; for this reason they are usually imposed to sum to zero, with the constraint which

follows:





s

j
j

1

0 .

An alternative procedure to model seasonal variations is to consider one of the coefficients as

the  normal  value  in  the  absence  of  seasonal  effect,  and  the  remaining  ones  as  indicators  of

periodical  variations.  In  this  way,  our  state  vector  will  be  an  (s -  1)-dimensional  one,  and

consequently the F and G matrices will also be (s - 1)-dimensional. For example, when the seasonal

coefficient must pass from 1  to 2 , we will need to transform the state vector ),,( 3411  t

into ),,( 412  t . In order to do this, we must utilise the following permutation matrix:
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In general, if the period of the seasonal model is equal to s, we must consider F = (1,0,...,0) and
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The  variance  of  the seasonal  components  is  expressed  by a  system evolution  error  matrix,

which we define as W=diag (σ w
2 , 0 , ... , 0) .

 



3.8. Discount factors

Till now we have underlined several times how the influence that past observations have on the

state estimation and forecasting is described by the matrix tW . In particular, if this matrix includes

large quantities, this means that passing from 1t  to t  causes a huge loss of information, because

the estimation of tt y :1  is mainly determined by the real values of the current observation ty .

In fact, the amount of uncertainty on  1t  conditional on the data  1:1 ty  is expressed by the

conditional covariance matrix )( 1:111   ttt yVC  . If we move to the subsequent state vector t  we

obtain that the variance of its estimate is given by ttttt WPRyV  )( 1:1 , where tP  corresponds

to the variance component which is uniquely influenced by the previous state vector  1t , and is

given by:

ttttttt GCGDGVP   111 )(  .

3.9. Simulation-based Bayesian inference

If a DLM includes in its specification the observations y1: T and a multidimensional unknown

parameter ψ, the posterior distribution of the parameters and the unobservable states is given by

π (ψ ,θ 0 :T∣y1 :T ) .

As it was mentioned in the first chapter, there exist many situations where it is not possible to

compute  this  distribution  analytically,  and  it  is  then  necessary  to  resort  to  simulation-based

methods, such as, for instance, MCMC methods. In order to come up with posterior summaries, in

the MCMC approach a sample is generated from the posterior itself, and subsequently summaries

are drawn from the simulated sample and evaluated. Even in the case in which one is only interested

in the posterior distribution of the unknown parameter, π (ψ∣y1: T ) , it may be useful to include the

states in the posterior, as it contributes to designing an efficient sampler. Indeed, drawing a random

variable from π (ψ∣θ 0 :T , y1 :T ) is generally much simpler than drawing it from π (ψ∣y1: T ) . In

addition, there also exist efficient algorithms allowing to generate the states conditionally on the

data and the unknown parameter. In fact, a sample from the posterior distribution of the parameter

and the unobservable states can be obtained by using a Gibbs sampler which alternates draws from



π (ψ∣θ 0 :T , y1 :T ) and π (θ 0 :T∣ψ , y1 :T ) . The results of the simulation of the posterior may then

be utilised as an input in order to generate a sample from the predictive distribution of states and

observables, π (θ T+1: T+k , yT+1: T+k∣y1 :T ) . Indeed,

π (θ T+1: T+k , yT+1: T+k ,ψ ,θ T∣y1 :T )=π (θ T+1 : T+k , yT+1: T+k∣ψ ,θ T )⋅π (ψ ,θ T∣y1 : T ) .

Thus, for every couple (ψ ,θ−T ) drawn from π (ψ ,θ T∣y1 : T ) , it is possible to generate the

future  values θ T+1: T+k , yT+1 :T+k from π (θ T+1: T+k , yT+1: T+k∣ψ ,θ T ) and  obtain  a  sample  from

the predictive distribution.

This  approach  presents  the  remarkable  advantage  that  it  provides  a  simple  solution  to  the

filtering, smoothing and forecasting problem for a DLM with unknown parameters.  However, it

also has the drawback that, if we wanted to update the posterior after a new set of observations

becomes available, we should apply the Gibbs sampling algorithm all over again, which could turn

out to be quite inefficient.

3.10. Forward Filtering Backward Sampling

If our goal is doing a Gibbs sampling from ),( :1:0 TT y , we need to do a simulation from the

conditional  distributions  ),( :1:0 TT y  and  ),( :1:0 TT y ,  but while the first one is completely

specified by the problem itself,  the second one can only be determined by means of simulation

techniques.

Thus, in order to determine such distribution, we depart from the information concerning the

mean and the variance of the density of t  conditional on Ty :1  and ψ, for t = 0, 1, ..., T, which can

be derived by means of the smoothing recursive algorithm. Then, as we are assuming that such

density is Gaussian, we can consider this posterior conditional distribution as completely specified.

Consequently, if one wanted to derive the joint posterior of T:0  conditional on Ty :1  and ψ, it would

be also necessary to determine the covariances between t  and s  for every t ≠ s.

Coherently with what we explained about Gibbs sampling, the distribution ),( :1:0 TT y  will

periodically have the role of full conditional, thus we need to devise a procedure which allows us to

generate a sample from such distribution, and the Forward Filtering Backward Sampling (FFBS)

method was developed with this objective.

This  methods departs  from the formula  for  the joint  distribution of   T ,...,, 10  given  TD ,

which is easily obtainable by applying the Bayes’ theorem:
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TTttTT DD

0
110 ),,...,(),...,,(  .

Of course, the last factor of the product is given by )( TT D , whose distribution is ),( TT CmN

. Thus, in order to draw a sample from the joint density, we could start from an estimation of T

and then recursively simulate the values of t  from ),,...,( 1 TTtt D   for t = T - 1, T - 2, ..., 0. It

can be shown that 

),(),,...,( 11 TttTTtt DD   

and its distribution is ),( tt HhN  where

)( 11
1
11 


  ttttttt aRGCmh  ,

ttttttt CGRGCCH 1
1
11 
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Thus, once we have obtained the simulated sample   Tt  ,...,1  we have to simulate  t  from a

),( tt HhN  distribution, where the mean th  depends on the value of 1t  generated previously.

In order to summarise, the FFBS procedure is composed of the following phases:

1. Apply Kalman filter;

2. Simulate T  from a ),( TT CmN  density function;

3. For values of t comprised between T - 1 and 0, simulate  t  from a ),( tt CmN  density

function.



Chapter 4

Identification of a DLM for the 
American GDP

As it was mentioned in the preface, W. A. Barnett, M. Chauvet and D. Leiva-Leon, in their

paper  entitled  Real-Time  Nowcasting  Nominal  GDP  Under  Structural  Break,  dating  to  2014,

proposed  a  multivariate  state-space  model  with  the  goal  of  forecasting  the  future  trend  of  the

nominal GDP of the United States based on specific macroeconomic indicators. In this chapter we

want to verify the validity of a model of this kind, by estimating a dynamic linear model for the

American GDP taking into account the same indicators.  For this purpose, we will utilise the R

statistical software.

4.1. Introduction

Taking as a reference the above mentioned paper, as explicative variables for the American

GDP we considered the following macroeconomic indicators: the Industrial Production Index (IPI),

the Consumer Price Index (CPI) and the 3-Month Treasury Bill interest rate (TBILL).

We retrieved the numerical information from the website of the Federal Reserve Bank of St.

Louis,  http://research.stlouisfed.org/fred2, and chose to consider quarterly observations  from the

considered  variables  in  the  course  of  51 years,  from January 1963 to October  2013,  obtaining

http://research.stlouisfed.org/fred2


overall a sample of 204 instances. The values of the American GDP are expressed in billions of

dollars.

We illustrate the graphs of the four time series considered in the Figures 4.1 to 4.4.

Figure 4.1. Plot of the American nominal GDP



Figure 4.2. Plot of the American Industrial Production Index

Figure 4.3. Plot of the American Consumer Price Index



Figure 4.4. Plot of the 3-month Treasury-Bill rate

In the course of this chapter we will propose four different models, in particular: a 2nd order

polynomial model without the inclusion of any seasonal component, a 2nd order polynomial model

including  a  seasonal  component  related  to  the  T-Bill  rate,  and  two  dynamic  linear  regression

models, the first of which considers contemporary values of the interest variable and the regressors,

while the second one considers lagged values of the regressors. The decision to include a seasonal

component for the T-Bill rate in one of the models was due the fact that it was not possible to

retrieve a seasonally adjusted time series for this variable, which was instead possible for all the

other considered factors.

For our analysis purposes, we will exploit the R package dlm, which is available at the address:

http://CRAN.R-project.org/package=dlm, and provides us with an integrated set of functions for

Bayesian  inference  using  DLMs.  This  package  includes  tools  for  filtering,  smoothing  and

forecasting accordingly to the Kalman procedure, as well as maximum likelihood estimation and

Markov Chain  Monte  Carlo  simulation.  The algorithms  used in  this  package  are  based on the

singular value decomposition of the relevant matrices, which has the advantage of guaranteeing a

higher numerical stability if compared to other kinds of algorithms.

http://CRAN.R-project.org/package=dlm


4.2. Acquisition of the numerical information and specification of the 

first model proposal

In the first  part  of  the  R program,  whose  code is  reported in  Appendix  A,  we import  the

numerical  information  from the dataset  database.txt,  reported  in Appendix B, and create

some graphs in order to establish whether a DLM could be suitable for modelling our data, and to

decide which kinds of DLM constitute an acceptable model specification, by running the portion of

code utilised for the acquisition of the numerical information.

In the first line we load the package  tseries, which provides us with some tools for time

series analysis purposes and includes some functions related to computational finance.

After  importing  the data,  we run the  str  command,  which allows us  to  see the types  of

objects which are contained in our data frame. The output of this command, reported hereafter,

shows that our database is composed of one nominal vector, (called factor in the R terminology)

corresponding to the array of the observation dates, and four numeric vectors, corresponding to the

variables we wish to analyse.

'data.frame':   204 obs. of  5 variables:

 $ observation_date: Factor w/ 204 levels "1963-01-01","1963-04-01",..: 1 2 3

4 5 6 7 8 9 10 ...

 $ GDP             : num  623 632 645 655 671 ...

 $ INDPRO          : num  26.1 26.8 27 27.4 27.8 ...

 $ CPI             : num  30.5 30.5 30.7 30.8 30.9 ...

 $ TB3MS           : num  2.91 2.94 3.29 3.5 3.53 3.48 3.5 3.68 3.89 3.87 ...

For a large part of the analysis, we will need to deal with time-series objects. For this reason,

we transform the vectors  GDP,  INDPRO,  CPI and  TB3MS, which are currently numeric vectors,

into time-series objects by applying the function ts, which also allows us to specify the time range

and the frequency of the observations.

From the time series plots, we can see how all of the series follow the same type of dynamics,

and in particular for each one of them it is reasonable to assume that the state vector is composed of

a level and a slope component. For this reason, as a first model proposal, we decided to analyse

each series by using a linear growth model.



In order to evaluate whether we should assume the existence of some degree of dependence

among the variables, we start by creating a matrix of scatterplots, using the function pairs. The

output is showed in Figure 4.5.

Figure 4.5. Scatterplot matrix of NGDP, IPI, CPI and TBILL

The graph shows an evident positive correlation between the GDP, the Industrial Production

Index and the Consumer Price Index, while we can notice the presence of a negative correlation

between all these variables and the T-Bill rate.

Such a circumstance leads us to suppose the possibility to estimate one of the variables we are

analysing by using the information contained in the three other ones. In order to verify whether this

is a reasonable assumption, since our purpose is that of building a forecasting model for the nominal

GDP, we proceed with the estimation of a linear regression model where the GDP is the so-called

response variable.

From the output of the estimation, reported hereafter, it appears that the p-values associated to

the regression coefficients of the explicative variables are lower than 0.01. Consequently, we can

state that all the regressors considered affect significantly the American GDP. Moreover, the value

of the multiple R-squared is equal to 0.9802, which means that the proportion of the variability of

the  GDP explained  by this  model  is  equal  to  98.02%,  which  is  almost  equivalent  to  the  total

variability.



Residuals:

     Min       1Q   Median       3Q      Max 

-1357.15  -650.39   -10.01   508.77  1502.37 

Coefficients:

             Estimate Std. Error t value Pr(>|t|)    

(Intercept) -2396.395    286.111  -8.376 9.54e-15 ***

IPI            66.320      9.582   6.922 5.93e-11 ***

CPI            48.139      3.372  14.276  < 2e-16 ***

TBILL        -226.006     19.106 -11.829  < 2e-16 ***

---

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 717.4 on 200 degrees of freedom

Multiple R-squared:  0.9802,    Adjusted R-squared:  0.9799 

F-statistic:  3299 on 3 and 200 DF,  p-value: < 2.2e-16

In Figure 4.6 we present three graphs related to the regression residuals, from which it is evident

how they do not appear centred around a constant mean value, but, on the contrary,  there exist

periods  in  which  the  residuals  are  clearly  positive  and other  periods  in  which they are clearly

negative. This is consistent with the gradually decreasing trend of the autocorrelation function and

the p-values of the Ljung-Box test, which evidence how these residuals are non-stationary.



Figure 4.6. Diagnostic plots for the linear regression model

On the basis of these results, we decided to build a more sophisticated model in order to reduce

the  amount  of  residual  autocorrelation  presented  by  the  linear  regression  model,  keeping  the

assumption that, in our case, the evolution of the levels and of the slopes of the series are affected

by correlated inputs. Consequently, for our first model proposal, we decided to apply the so-called

Seemingly Unrelated Time Series Equations  (SUTSE) paradigm, comprising a class of models

which allow us to deal with dependent state vectors.

4.3. Seemingly unrelated time series equations

As we have just mentioned, SUTSE are a category of the dynamic linear models by means of

which it  is possible to specify the dependence structure among the state vectors θ 1, t , ... ,θ m ,t ,

where m is equivalent to the number of the variables we are analysing.



If, as in our specific case, it is reasonable to study each series with a linear growth model, the

assumption underlying this class of models is that, at any given time, the components of the system

error corresponding to the levels of the different series may be correlated, and the same holds for

the components of the system error corresponding to the different slopes. Thus, in order to describe

the joint evolution of the state vectors it is convenient to group together both the levels and the

slopes  of  each  series  in  a  single  state  vector θ t=(μt1 , ... , μtm , β t1 , ... , β tm) ' .  It  will  then  be

possible to express the system error of this overall state vector with a block-diagonal covariance

matrix composed by two blocks, a first  m by m block describing the correlation among the levels

and a second m by m block accounting for the correlation among the slopes.

To go back to our specific situation, since we have m = 4 series, our common state vector will

be θ t=(μt1 ,μ t2 ,μ t3 ,μ t4 ,β t1 ,β t2 ,β t3 , β t4) ' and  the  system  equation  will  be  expressed  in  the

following way:

[
μ t1
μ t2
μ t3
μ t4

β t1

β t2

β t3

β t4

]=[
1 0 0 0 1 0 0 0
0 1 0 0 0 1 0 0
0 0 1 0 0 0 1 0
0 0 0 1 0 0 0 1
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1

][
μ t−1,1
μ t−1,2
μ t−1,3
μ t−1,4

β t−1,1

β t−1,2

β t−1,3

β t−1,4

]+[
wt1

wt2

wt3

wt4

wt5

w t6

w t7

wt8

]
where (w t1 ,w t2 ,wt3 , wt4 ,w t5 ,w t6 ,wt7 ,w t8)'∼N (0,W ) and 

W=[ W μ

0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

W β ] .

The  observation  equation  for  the  multivariate  time  series (( yt1 , yt2 , yt3 , y t4): t⩾1) will  be

given by:



[
Y t1

Y t2

Y t3

Y t4
]=[

1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0

]θ t+[
v t1

v t2

v t3

v t4
] ,

where (v t1 , v t2 , v t3 , v t4) '∼N (0,V ) . If the covariance matrix V is assumed to be non-diagonal, we

are introducing a further source of correlation among the series.

Let us consider the general case of m univariate time series where Y t denotes the multivariate

observation at time t, and suppose that the observation equation of the i-th variable is described by

the DLM

Y ti=Fθ t
(i)
+v ti

θ t
(i)
=Gθ t−1

(i )
+wt

(i )
,

where θ t
(i )
=(θ t1

(i) , ... ,θ tp
(i )
) ' , with i = 1, …, m and p equal to the number of parameters of the state

vector. We obtain a SUTSE model for Y t ,  whose observation and system equations have the

following form:

Y t=(F⊗I m)θ t+v t ,
θ t=(G⊗I m)θ t−1+wt ,

          v t∼N (0,V ) ,
w t∼N (0,W ) ,

where θ t=(θ t1
(1 ) ,θ t1

(2) ,... ,θ tp
(m−1 ) ,θ tp

(m )
) ' .

The block-diagonal structure of the covariance matrix W derives from the common assumption

that  for  each  variable  the w t
(i) have  diagonal  variances.  This  circumstance  implies  that  the

forecasts of θ t+ k
(i ) or Y t+k ,i made at time t  are uniquely based on the conditional distribution of

θ t
(i ) given Dt .

4.4. SUTSE model

By running the piece of code concerning the SUTSE model, we set up a model of this kind in

accordance with the structure just described.

As a first thing, we define the training set, which will be used for the estimation of the model

parameters, and the test set, which will be used in order to evaluate the predictive capability of the

model. In our case, we decided to include in the test set the last three years of the available data set,

which were consequently excluded from the training set.

After this, we load the dlm package, and assign arbitrarily an initial value of 0 to the variance

of the observational error for all of the three variables, by creating a vector of four zeros named



varEpsilon, and do the same for the variance of the evolution error of the level and of the slope,

by creating respectively the vectors  varLevel and  varSlope. Then we initialize to zero the

values of the covariances among the observational errors (covEpsilon), the levels (covLevel)

and the slopes (covSlope) of the three variables. After that we join together all these vectors in a

single vector  named  parameters.  We will  use this  array in  order to  compute  the maximum

likelihood estimators for the parameters contained in it.

At this point, we need to program a function that we call  build taking as an argument the

parameter vector, in order to be able to construct a DLM based on the parameters assigned. Inside

this function, we start by specifying that we wish to build a polynomial model of the 2nd order (mod

= dlmModPoly(2)), which is equivalent to a linear growth model, and then redefine the F and

G matrices according to the observation and system equations presented for the SUTSE models, by

using  the  Kronecker  products.  Then  we  define  the  matrices  V,  W1 and  W2,  corresponding

respectively to the covariance matrices of the observational errors, of the levels and of the slopes,

and initialize them by taking the exponential of the sections of the parameter vector referring to the

respective variances, in order to ensure their positivity, and by taking the actual initial values of the

parameter  vector  for  the  respective  covariances.  Moreover,  we  construct  the  matrix  W of  the

evolution  errors  as  a  block-diagonal  matrix  including  W1 and  W2.  Finally,  we  specify  our

assumptions relatively to the mean (m0) and the variance (C0) of the prior distribution of the state

vector.

After building the function, we organize the four series into a matrix and launch the command

dlmMLE in order to optimize the parameters of the model according to the maximum likelihood

criterion. In our case this command returns a convergence code equal to 0, which indicates that the

algorithm has been completed successfully.

We are now able to construct the final SUTSE model by running again the  build function,

this time taking as an argument the parameter vector obtained thanks to the maximum likelihood

estimator. The observational and state variance of the model obtained are showed hereafter.

V

1.009829e+03 0.06863831 0.0812761 0.02230113

6.863831e-02 0.17378985 0.1514390 0.19460946

8.127610e-02 0.15143902 0.1825120 0.15535255

2.230113e-02 0.19460946 0.1553526 0.22050462



W

0.501 0.075  0.041  0.037 0       0     0     0

0.075 0.351  0.309  0.350 0       0     0     0

0.041 0.309  0.348 -0.055 0       0     0     0

0.037 0.350 -0.055  0.406 0       0     0     0

0     0      0      0     488.105 0.246 0.079 0.088

0     0      0      0     0.246   0.333 0.166 0.256

0     0      0      0     0.079   0.166 0.266 0.273

0     0      0      0     0.088   0.256 0.273 0.309

4.5. Filtering

In this section of the analysis, we will compute the filtering distribution of the GDP by taking

into  account  the  model  we  have  just  illustrated,  in  order  to  be  able  to  evaluate  its  predictive

capability. We believe it is important to recall that, if for any pair of integers (i, j), with i  ≤ j, we

denote by y i : j the observations from the ith to the jth inclusive, then the filtering distribution at a

given time t is the conditional distribution of the state vector θ t given y i :t , for t = 0, 1, …, n,

where n is equal to the number of observations. The number of filtering distributions will then be

equal  to  n + 1,  and for  t = 0 such density is  conventionally assumed to be equal  to the prior

distribution of θ 0 .

The first thing we do in the code is computing the filtering distribution by using the command

dlmFilter, by taking the parameters previously estimated as known. In the list returned by this

command,  the  components  U.C and  D.C  correspond  respectively  to  the  U and  D matrices

constituting the singular value decomposition (SVD) of the variances C0 , ... ,Cn of the filtering

distributions, where the SVD of a symmetric nonnegative definite covariance matrix Σ is given by

Σ=UDDU ' , where U is orthogonal and D is diagonal. In our particular situation, since we are

considering 204 observations and the state vector is composed by 8 elements, U.C consists of a list

of 205 8 by 8 matrices, and D.C consists of a matrix with 205 rows and 8 columns storing in each

row the diagonal entries of all the successive D matrices. The function dlmSvd2var reconstructs

the variances of the filtering distributions departing from their SVD, which allows us to compute

confidence intervals for such densities.

In Figure 4.7 we present a graphical comparison between the actual GDP time series (in green)

and its filtering distribution (in brown) accompanied by the relevant 90% confidence intervals (in

brown).



Figure 4.7. Nominal GDP with filtered level (SUTSE model)

From the graph it is easy to notice how an almost perfect identity exists between the actual data

and the relevant filtered level. The probability intervals cannot be easily distinguished because of

the reduced relative variance of the filtered level. Thus, we can state that the level of fitting obtained

through the filtered series is, in the case of this model, very satisfying.

4.6. Evaluation of the predictive performance

As we have mentioned in the section dedicated to forecasting of the second chapter, it can be

useful to compute one-step-ahead forecasts based on the filtered level of a time series as a tool for

checking the predictive capability of a DLM model, which is exactly what we do in the relevant

portion of code. In addition, we create a comparative graph of the actual data and of the relevant

one-step-ahead forecast values, and evaluate the predictive capability of this model by computing

some forecast performance measures which will be illustrated hereafter.



The R software returns the one-step-ahead forecasts f t=E (Y t∣Dt) in the matrix f contained

in the output of the function dlmFilter, and we use the first column of this matrix to compare

the results with the actual data of the nominal GDP. Since the forecast observation f t is a linear

function of the filtering mean mt−1 , what we need to evaluate on the basis of the graph is the

degree of sensitivity of f t to an unexpected observation Y t−1 . The result obtained is illustrated

in Figure 4.8. It is easily visible how the one-step-ahead forecasts adapt very rapidly to the sudden

changes of the observations, which leads us to obtain quite accurate forecasts.

Figure 4.8. One-step-ahead forecasts of the nominal GDP (SUTSE model)

Let us now pursue with the analysis of the following forecast performance measures: the Root

Mean Square Error, defined by:

√ ∑
t=T+1

T+h

( ŷ t− y t)
2
/h ,

the Mean Absolute Error, defined by:

√ ∑
t=T+1

T+h

∣ŷ t− y t∣/h ,

and the Theil Inequality Coefficient, defined by:



√ ∑
t=T+1

T+h

( ŷ t− y t)
2
/h

√ ∑
t=T+1

T+ h

ŷ t
2/h+√ ∑

t=T+1

T+h

y t
2/ h

.

In the piece of code reported hereafter, we compute these indicators based on series of the one-

step-ahead  forecasts  previously  obtained,  excluding  from  the  computation  the  very  first

observations, whose forecast is still affected by the prior distribution of the model parameters.

IN-SAMPLE FORECAST

Root Mean Square Error

57.39284

Mean Absolute Error

5.731953

Theil Inequality Coefficient

0.003838805

The first two indicators are expressed in the measurement unit of the dependent variable y t ,

whose  forecasts  we  are  interested  in  evaluating,  and  therefore  do  not  provide  us  with  much

information  if  considered  inside  a  single  forecast,  and  will  turn  out  to  be  more  useful  when

comparing this forecast with the ones provided by the alternative models we will propose. Anyway,

since the values of the American  nominal  GDP range from about  500 to more than 15000 (in

billions of dollars), with a root mean square error equal to 57.39 and a mean absolute error of 5.73

we can  reasonably  deduce  that  this  model  presents  a  quite  good  predictive  capability.  On the

contrary, the Theil inequality coefficient is comprised between 0 and 1, and the closer it is to 0, the

better the forecast. Thus, it  provides a measure which is invariant in respect to the scale of the

interest variable. In our case, in particular, this coefficient is equal to 0.00384, which is very close

to 0: this  indicates that the one-step-ahead forecasts  provided by this model  only present slight

discrepancies with the series of the actual data.

We  will  now  take  into  account  the  forecast  errors ϵ t , also  known  as  innovations.  This

terminology  is  justified  by  the  expression Y t= f t+ϵ t ,  since  a  given  observation Y t can  be

represented as the sum of f t , the component which is predictable based on past observations, and

ϵ t , the component which is independent of the past and consequently provides the actually new

information which is contained in the observation Y t .

If  the  assumptions  underlying  the  model  were  correct,  the  sequence ϵ 1 , ... ,ϵ t of  the

innovations  computed  from  the  data  should  look  like  a  white  noise.  In  order  to  verify  this



circumstance,  we  report  in  Figure  4.9  a  plot  of  the  empirical  autocorrelation  function  of  the

innovations.

Figure 4.8. Diagnostic plots for the SUTSE model

Figure 4.9. Diagnostic plots for the SUTSE model

The diagnostic plots clearly reveal the presence of residual heteroskedasticity, which can be

justified by the fact the GDP itself presents a higher degree of variability in the most recent period

considered, and autocorrelation, which might suggest the existence of a variability component that

is not explained by the model.

We  can  now pursue  with  the  analysis  of  the  predictive  capability  of  this  model  for  what

concerns the out-of-sample data. In order to do this, we will perform a forecasting of the behaviour

of the nominal GDP in the last three years of the available data set, which were not included in the

sample utilised for the estimation of the model parameters, and will compare the forecast values

with  the  actual  values.  The  fundamental  function  we  have  utilised  for  this  purpose  is



dlmForecast, which computes the expected value and the variance of the future system states

and observations. In Figure 4.10 we present a plot illustrating the period of time going from January

2009 to October 2013: in particular, in the time range comprised in the test set (from October 2011

until October 2013) it shows a graphical comparison between the actual values of the nominal GDP

during the last three years of the sample and the corresponding forecast values accompanied by the

respective  90%  probability  intervals.  Moreover,  we  report  hereafter  the  forecast  performance

measures for the out-of-sample data associated to this model.

OUT-OF-SAMPLE FORECAST

Root Mean Square Error

289.0009

Mean Absolute Error

16.47265

Theil Inequality Coefficient

0.008867184

Figure 4.10. Forecast level for the nominal GDP (SUTSE model)

Both from the consideration of the forecast performance measures computed in the code and

from a visual comparison of the forecast curve with the actual one it is possible to state that the

predictive precision provided by this model is quite satisfying. In fact, a Root Mean Square Error of



289.00 and Mean Absolute Error of 16.47 denote a very slight discrepancy between the forecast

curve and the actual one, since, in the portion of the sample under analysis, the values of the GDP

vary approximately from 15500 to 17000, quite high values if compared with the forecast error.

This is confirmed by the value of the Theil Inequality Coefficient, which is very close to 0.

Moreover, if we observe the graph, with the exception of the first three observations of the test

set,  all  the  actual  values,  represented  by  the  black  curve,  are  included  inside  the  confidence

intervals, which means that the hypothesis that the forecast values do not remarkably wander off the

actual ones can be accepted with a significance level of 90%.

4.7. SUTSE model with seasonality

In this section we will present our second model proposal, consisting of a SUTSE model similar

to the one just described, with the addition of a seasonal component concerning the T-Bill rate. As

we have already mentioned in the introduction, we believed it was important to verify the presence

of any seasonal component in the T-Bill rate because it  was not possible to retrieve an already

seasonally adjusted time series for this variable.

In this case, for all the variables considered, we assume the vector of the unobservable states to

be equal to

θ t=(μt ,β t , st
(1) , s t

(2) , st
(3 )
) ' ,

where μ t is the current level, β t is the slope of the trend, st
(1) , st

(2) and st
(3) are the seasonal

components  related  to  the  current  quarter,  previous  quarter,  and  two  quarters  back.  Thus,  the

observation at time t is given by

y t=μ t+s t
(1)
+v t ,          v t∼N (0,σ 2

) .

The dynamics of the unobservable states is described by the following equations:

μ t=μ t−1+β t−1+w t
μ ,          w t

μ
∼N (0,σ μ

2
)

β t=β t−1+wt
β ,          w t

β
∼N (0,σ β

2
)

st
(1)
=−s t−1

(1)
−s t−1

(2)
−st−1

(3)
+wt

s ,          w t
s
∼N (0,σ s

2
)

st
(2)
=st−1

(1) ,

st
(3)
=st−1

(2) .

In the DLM representation of this model, we obtain that

V=[σ 2
] ,



W=[
σ μ

2 0 0 0 0

0 σ β
2 0 0 0

0 0 σ s
2 0 0

0 0 0 0 0
0 0 0 0 0

] .

As we want the seasonal component to be only related to the T-Bill rate, we assume the variance

σ s
2 to be strictly positive for the T-Bill, and null for the other variables.

The code utilised for the construction follows the same structure of the SUTSE model without

seasonality.  The only difference consists in the inclusion of the variance related to the seasonal

component of the T-Bill rate, that we have identified with varSeasTbill.

We report hereafter the variance parameters estimated by means of the maximum likelihood

method.

V

367.27726413 0.08903564 0.14523862 0.02939057

0.08903564   0.14095736 0.08226716 0.20005605

0.14523862   0.08226716 0.16031025 0.13129468

0.02939057   0.20005605 0.13129468 0.32597611

W

0.492 0.081  0.082  0.015 0        0     0     0     0 0 0 0     0 0 0 0 0 0 0 0

0.081 0.337  0.303  0.271 0        0     0     0     0 0 0 0     0 0 0 0 0 0 0 0

0.082 0.303  0.341 -0.128 0        0     0     0     0 0 0 0     0 0 0 0 0 0 0 0

0.015 0.271 -0.128  0.486 0        0     0     0     0 0 0 0     0 0 0 0 0 0 0 0

0     0      0      0     2.72e+03 0.125 0.059 0.005 0 0 0 0     0 0 0 0 0 0 0 0

0     0      0      0     1.25e-01 0.375 0.140 0.247 0 0 0 0     0 0 0 0 0 0 0 0

0     0      0      0     5.92e-02 0.140 0.230 0.211 0 0 0 0     0 0 0 0 0 0 0 0

0     0      0      0     5.25e-03 0.247 0.211 0.244 0 0 0 0     0 0 0 0 0 0 0 0

0     0      0      0     0        0     0     0     0 0 0 0     0 0 0 0 0 0 0 0

0     0      0      0     0        0     0     0     0 0 0 0     0 0 0 0 0 0 0 0

0     0      0      0     0        0     0     0     0 0 0 0     0 0 0 0 0 0 0 0

0     0      0      0     0        0     0     0     0 0 0 0.138 0 0 0 0 0 0 0 0

0     0      0      0     0        0     0     0     0 0 0 0     0 0 0 0 0 0 0 0

0     0      0      0     0        0     0     0     0 0 0 0     0 0 0 0 0 0 0 0

0     0      0      0     0        0     0     0     0 0 0 0     0 0 0 0 0 0 0 0

0     0      0      0     0        0     0     0     0 0 0 0     0 0 0 0 0 0 0 0

0     0      0      0     0        0     0     0     0 0 0 0     0 0 0 0 0 0 0 0

0     0      0      0     0        0     0     0     0 0 0 0     0 0 0 0 0 0 0 0

0     0      0      0     0        0     0     0     0 0 0 0     0 0 0 0 0 0 0 0



0     0      0      0     0        0     0     0     0 0 0 0     0 0 0 0 0 0 0 0

4.8. Filtering

In this section we compute the filtering distribution based on the DLM including a seasonal

component, and, in Figure 4.11, we report a graph of the filtered level of the GDP time series.

Figure 4.11. Nominal GDP with filtered level (SUTSE + seasonal model)

Similarly to what we obtained with the model previously analysed, we can notice how, even in

this case, the series of the filtered levels possesses a quite good adherence to the actual data.

4.9. Evaluation of the predictive performance

In  this  section  we will  evaluate  the  predictive  capability  of  the  SUTSE model including  a

seasonal component, by exploiting the same indicators used in the case of the simple SUTSE model.

An analysis of the one-step-ahead forecasts provided the following results.



IN-SAMPLE FORECAST

Root Mean Square Error

51.43722

Mean Absolute Error

5.660481

Theil Inequality Coefficient

0.003413109

If we compare these performance measures with the ones related to the one-step-ahead forecasts

provided by the simple SUTSE model, previously analysed, we can notice that all the indicators

considered are in favour of the model including a seasonal component, even though the difference

may be judged quite negligible.

In  Figure  4.12 a  graphical  representation  of  the  one-step-ahead forecasts  is  provided,  from

which it appears clearly that, even in this case, the model seems to possess a very good predictive

capability.

Figure 4.12. One-step-ahead forecasts of the nominal GDP (SUTSE + seasonal model)

In Figure 4.13 we present some residual diagnostic plots, similarly to what we did in the case of

the previous model.



Figure 4.13. Diagnostic plots for the SUTSE model including a seasonal component

Similarly to what happened in the case of the simple SUTSE model, the plots reveal a clear

presence of heteroskedasticity. As compensation, differently from the model previously proposed,

this one does not seem to present relevant departures from uncorelatedness.

Figure 4.14 illustrates  a  plot  of  the out-of-sample  forecasts  provided by the  SUTSE model

including a seasonal component, and the forecast performance measures associated to this model

are reported hereafter.

OUT-OF-SAMPLE FORECAST

Root Mean Square Error

232.1847

Mean Absolute Error

14.82537

Theil Inequality Coefficient



0.007135454

Figure 4.14. Forecast level for the nominal GDP (SUTSE + seasonal model)

From the plot we can notice how, in this case, the credible region includes the actual GDP

values even with the only exception of the first observation, while, with the simple SUTSE model,

the credible region did not include the first  three observations.  Furthermore,  if we consider the

forecast performance measures related to the out-of-sample forecast, we can notice how all of them

denote that the forecast error of the SUTSE model including a seasonal component is smaller, if we

compare these results with the ones obtained from the previous model.

4.10. Multiple regression DLM

Since the relationship between the explicative variables we have chosen and the American GDP

has been verified in previous studies, and has been confirmed by the significance level of these

variables in the static linear regression model, as a third model proposal, we decided to construct a

dynamic linear regression model, whose main feature is that the coefficients are allowed to change

over time.



The DLM representation of the model we want to build is constituted by the following set of

equations:

y t=α t+X tβ t+v t ,
α t=α t−1+wα ,t ,
β t=β t−1+wβ , t ,

          
v t∼N (0,V )

wα , t∼N (0,Wα )

wβ , t∼N (0,W β )

where the  system state  is  represented  by the vector θ t=(α t ,β t) ' .  In  particular, β t is  a

vector containing the regression coefficients related to the three explicative variables at time t, and

X t is the matrix of the covariates (x1, t , x2, t , x3, t) at time t.  In this case, the matrix F t is time-

varying and is given by F t=[1 , x1, t , x2, t , x3, t ] .

The estimated observational and system variances are as follows.

V

0.7330774

W

0.9013384  0.00000000  0.00000000  0.00000000

0.0000000  0.02140005 -0.06606129  0.09459783

0.0000000 -0.06606129  0.22187471 -0.22540229

0.0000000  0.09459783 -0.22540229  0.64054191

4.11. Evaluation of the predictive performance

It is important to evidence that, in the case of the multiple regression DLM, the state vector is

not composed by the means and the slopes of the considered variables at a given time  t, but consists

of the intercept and the regression coefficients related to the different explicative variables. Thus,

for our purposes, it would not be so meaningful to report the results of the filtering distribution,

because these results could only be expressed in terms of coefficients. Therefore, we decided to

analyse directly the distribution of the one-step-ahead forecasts of the GDP.

IN-SAMPLE FORECAST

Root Mean Square Error

58.32701

Mean Absolute Error

6.223159

Theil Inequality Coefficient

0.003918419



Figure 4.15. One-step-ahead forecasts of the nominal GDP (multiple regression model)

If we observe the series of the forecast values provided in Figure 4.15, this model seems to

possess  a  predictive  capability  quite  similar  to  the  one  of  the  models  previously  proposed.

Nevertheless,  if  we  consider  the  forecast  performance  measures  related  to  the  one-step-ahead

forecast, we can see how the results obtained from this model reveal a lower predictive precision.

Moreover, if we analyse the plot of the residuals illustrated in Figure 4.16, we can notice a

remarkable presence of autocorrelation.

The results  obtained from the out-of-sample forecast  are presented in Figure 4.17.  The plot

reveals that, even for what concerns the out-of-sample data, this model provides forecast values

which differ from the actual values of the nominal GDP in larger measure if compared to what

happened  in  the  case  of  the  two  SUTSE models.  This  is  also  confirmed  by  the  performance

measures provided hereafter.



Figure 4.16. Diagnostic plots for the multiple regression DLM

Figure 4.17. Forecast level for the nominal GDP (multiple regression DLM)



OUT-OF-SAMPLE FORECAST

Root Mean Square Error

321.0583

Mean Absolute Error

15.9085

Theil Inequality Coefficient

0.009995773

4.12. Multiple regression DLM with lagged regressors

We now want  to  verify whether  the inclusion of  lagged values  of the  explicative  variables

allows us to improve the performance of the multiple regression model. Therefore, in this section

we will  construct  a  DLM having a  similar  structure  to  the  one  previously described,  with the

difference  that  the  matrix  of  regressors X t is  substituted  by  the  corresponding  lagged  matrix

X t−1 . Formally speaking, the DLM representation of the model we want to build is as follows.

y t=α t+X t−1β t+v t ,
α t=α t−1+wα ,t ,
β t=β t−1+wβ , t ,

          
v t∼N (0,V )

wα , t∼N (0,Wα )

wβ , t∼N (0,W β )

In this case, being X t−1 the matrix of the covariates (x1,t−1 , x2, t−1 , x3, t−1) at time  t – 1, the

matrix F t will be given by [1, x1, t−1 , x2, t−1 , x3, t−1] .

The estimated observational and systematic variances, similarly to the ones obtained from the

previous model, are as follows.

V

0.7330774

W

0.9013384  0.00000000  0.00000000  0.00000000

0.0000000  0.02140005 -0.06606129  0.09459783

0.0000000 -0.06606129  0.22187471 -0.22540229

0.0000000  0.09459783 -0.22540229  0.64054191



4.13. Evaluation of the predictive performance

Similarly to what we did for the previous model, we report in Figure 4.18 a plot of the one-step-

ahead  forecasts  based  on  the  multiple  regression  DLM  based  on  the  lagged  regressors.  The

performance measures based on the one-step-ahead ahead forecasts are presented hereafter.

IN-SAMPLE FORECAST

Root Mean Square Error

82.31051

Mean Absolute Error

7.379575

Theil Inequality Coefficient

0.005531399

Figure 4.18. One-step-ahead forecasts for nominal GDP (lagged multiple regression DLM)

The  plot  does  not  present  relevant  discordances  with  the  regression  model  based  on

contemporary regressors, even though the performances measures reveal a slightly lower predictive

precision of the model based on lagged regressors.



Moreover, if we observe the residual diagnostic plot in Figure 4.19, it is possible to notice how

this model does not solve the autocorrelation problem presented by the multiple regression model

previously proposed.

Figure 4.19. Diagnostic plots for the lagged multiple regression DLM

The results obtained form the out-of-sample forecast confirm this behaviour. In fact, both the

graph in Figure 4.20 and the performance measures reported hereafter reveal a weaker predictive

capability of this model, if compared to the previous multiple regression DLM.

OUT-OF-SAMPLE FORECAST

Root Mean Square Error

371.1428

Mean Absolute Error

16.83304

Theil Inequality Coefficient



0.01157599

Figure 4.20. Forecast level for the nominal GDP (lagged multiple regression DLM)

4.14. Model selection and filtering

On the basis of the forecast performance measures considered for the three models we have

proposed, we will choose as a benchmark for our further analyses the SUTSE model including a

seasonal component.

In order to evaluate the accurateness of this model in relation to the other variables included in

it, we provide in Figures 4.21 to 4.23 a graphical comparison between the actual data concerning the

Industrial  Production Index,  the Consumer  Price Index and the T-Bill  rate  and their  respective

filtered states, accompanied by the relevant 90% credible interval.



Figure 4.21. Industrial Production Index with filtered level

Figure 4.22. Consumer Price Index with filtered level



Figure 4.23. T-Bill rate with filtered level

From the graphs it  appears clearly how in all  the cases there is  a  good level  of adherence

between the series of the actual data and the relevant filtered level. The main difference among the

three series resides in the width of the credible intervals.

In particular, in the case of the Industrial Production Index and of the Consumer Price Index, the

actual series and the filtered levels overlap almost perfectly, and it is not easy to distinguish the

credible interval, probably because of the reduced variance of the filtering distribution. In the case

of the T-Bill rate, instead, this interval seems to be notably wider, even though the actual data series

remains comprised between the upper and lower limit of the interval almost throughout the whole

period considered.

4.15. Smoothing

Similarly to what we did as regards the filtering, in this section of the program, we will perform

a  smoothing for the American GDP and the three explicative variables under analysis. We recall



that the smoothing distribution at time t  is equal to the conditional distribution of θ 0 : t given the

observations y1: t , or, in an equivalent way, any one of its marginals, which means the conditional

distribution of θ s given y1: t , for each s ≤ t. As a natural consequence, when s = t this marginal

density coincides with the filtering density.

In the relevant code utilised, we exploit the function dlmSmooth in order to compute means

and  variances  of  the  smoothing  distributions,  by  using  as  an  argument  the  “filtered  DLM”

previously obtained thanks to the function dlmFilter. Similarly to what we did previously, we

compute the covariance matrices of the smoothing errors by reconstructing them departing from

their  singular  value  decomposition,  which  we are  provided  with  by  the  function  dlmSmooth

thanks to the matrices U.S and D.S.

We illustrate in the Figures 4.24 to 4.27 the results obtained by means of the Kalman smoother.

Figure 4.24. Nominal GDP with smoothed level



Figure 4.25. Industrial Production Index with smoothed level

Figure 4.26. Consumer Price Index with smoothed level



Figure 4.27. T-Bill rate with smoothed level

It is visible from the plots of all the series how there is an optimal fit of the smoothed level to

the actual data. Furthermore, similarly to what happened in the case of filtering, the smoothed level

of the American GDP and the indices related to the industrial production and the consumer price

present very narrow probability intervals, while we have obtained quite the large intervals in the

case of the 3-month T-Bill rate, due to the higher degree of volatility of this variable.

4.16. Forecasting

In the code which follows, for each one of the explicative variables considered we construct a

similar  graph to the ones  utilised in  order  to  evaluate  the predictive  capability  of the different

models as far as the GDP in concerned, and compute some forecast performance measures related

to these variables. It is important to say that, in this case, some “absolute” performance measures

must be utilised, which are not affected by the scale of the interest variable, because we cannot

compare these results with the ones provided by different models for these variables. Therefore, we

decided not to use the Root Mean Square Error and the Mean Absolute Error, as we have done for



the  previous  forecast  evaluations,  and  to  substitute  these  indicators  with  the  Mean  Absolute

Percentage Error, given by:

100 ∑
t=T+1

T+h

∣ ŷ t− y t

y t
∣/h ,

returning a percentage measure of the forecast error.

IPI

Mean Absolute Percentage Error

0.3680098

Theil Inequality Coefficient

0.002087563

 

CPI

Mean Absolute Percentage Error

1.583648

Theil Inequality Coefficient

0.008136327

 

TBILL

Mean Absolute Percentage Error

1379.146

Theil Inequality Coefficient

0.8367708

As regards the Industrial Production Index and the Consumer Price Index, both the performance

indicators and the graphs illustrated in the Figures 4.28 and 4.29 show that the model provides quite

reliable forecasts of their future trend. Instead, if we consider the T-Bill rate, we can notice how,

even  though  the  graph  reported  in  Figure  4.30  seems  to  demonstrate  ad  adequate  predictive

precision,  the performance measures denote a remarkable discrepancy between the series of the

forecast values and the actual data. However, this circumstance might be justified by the reduced

scale of the values of this time series.

In conclusion, we can state that the model possesses a satisfying predictive performance, both

for what concerns the nominal GDP itself and the macroeconomic factors affecting its behaviour.



Figure 4.28. Forecast level of the Industrial Production Index

Figure 4.29. Forecast level of the Consumer Price Index



Figure 4.30. Forecast level of the T-Bill rate

4.17. Markov Chain Monte Carlo simulations

In this section we will provide an example of the usage of Gibbs sampling, which we will apply

to the four time series we have considered, and will compare the predictive capability of the model

we have previously analysed with the results obtained by estimating the unknown parameters by

using a simulation algorithm.

In fact, since the objective of MCMC simulations consists in making inference about the joint

posterior distribution of the unobservable states and the unknown parameters, we will now assume

that the variances of the DLM are unknown, and will not take into account the values previously

obtained by means of the maximum likelihood estimator. This kind of model is commonly referred

to as d-inverse-gamma model.

We will anyway retain the assumption according to which the nominal GDP and the indices

related to the industrial production and the consumer price can be modelled by using a simple linear

growth DLM, while the T-Bill interest rate can be described by a linear growth model containing a

seasonal component. Of course, all of these models should include a noise component.



As we have  described  in  the  section  dedicated  to  the  SUTSE model  with  seasonality,  the

unknown parameters in a DLM of this kind are constituted by the observational variance, indicated

with

V=[σ 2
] ,

and the system variance, given by

W=[
σ μ

2 0 0 0 0

0 σ β
2 0 0 0

0 0 σ s
2 0 0

0 0 0 0 0
0 0 0 0 0

] ,

where σ μ
2 ,σ β

2 and σ s
2 respectively identify the variances of the level, the slope and the seasonal

component of the variable considered.

Therefore,  in  our  specific  case,  the  unknown  parameters  correspond  to  the  variances

σ 2 ,σ μ
2 ,σ β

2 and σ s
2 . For the relevant precision measures, corresponding to the inverses of the

variances  themselves,  we  assume  independent  gamma  prior  distributions  with  means

a , aθ ,1 , aθ , 2 , aθ ,3 and variances b , bθ , 1 , bθ ,2 ,bθ , 3 respectively.

It is possible to verify that, by using the unobservable states as latent variables, a Gibbs sampler

can be applied on the basis of the following full conditional densities:

θ 0 : n∼N ( ) ,

σ 2
∼IG(a2

b
+

n
2

,
a
b
+

1
2

SS y) ,

σ μ
2
∼IG(aθ , 1

2

bθ , 1

+
n
2

,
aθ ,1

bθ , 1

+
1
2

SSθ ,1) ,

σ β
2
∼IG(aθ , 2

2

bθ ,2

+
n
2

,
aθ ,2

bθ , 2

+
1
2

SSθ , 2) ,

σ s
2
∼IG(aθ ,3

2

bθ ,3

+
n
2

,
aθ , 3

bθ ,3

+
1
2

SSθ ,3) ,

where

SS y=∑
t=1

t=n

( y t−F tθ t)
2 ,

SSθ , i=∑
t=1

t=T

(θ t ,i−(G tθ t−1)i)
2 ,          i = 1, 2, 3.



At the moment the R package for dynamic linear models does not include a function which is

able to simulate the unknown parameters for a multivariate model. For this reason, in the piece of

code  reported  below,  we  had  to  implement  the  Gibbs  sampler  by  using  the  function

dlmGibbsDIG,  which  can  only  deal  with  constant  univariate  DLMs.  This  function  runs  the

sampling procedure on the basis of the full conditional densities just described, and includes inside

its algorithm the forward filtering backward sampling phase, which implies that it is not necessary

to derive explicitly the mean and the variance of the full conditional density of the states θ 0 : n ,

because they are automatically generated from their appropriate distribution thanks to this sampling

procedure.

In the final part of the code, for each of the four series considered, we perform a 1100-iterations

Gibbs sampling procedure, where the first 100 iterations are discarded as  burn-in1. Subsequently,

we provide a graphical illustration of the simulated values of the observation and system variances,

accompanied by the plots of their relevant ergodic means, a graph of the simulated levels of the

state vector for what concerns the training set, and an analysis of the predictive capability of a DLM

built by using the parameter values resulting from this simulation algorithm.

For what concerns the nominal GDP, the results obtained from the simulation are as follows.

NGDP - GIBBS SAMPLING

AVERAGE OBSERVATIONAL AND SYSTEM VARIANCES

      V        W μ      W β

  0.022835   0.001694   0.144844 

FORECAST PERFORMANCE MEASURES

Root Mean Square Error

217.6508

Mean Absolute Error

14.365

Theil Inequality Coefficient

0.006691617

The simulated observation and system variances, with their relevant ergodic means, and the

simulated levels are respectively represented in the Figures 4.31 and 4.32.

1Burn-in is a colloquial term that refers to the practice of discarding a given number of iterations at the beginning of an 
MCMC algorithm. The meaning of the notion is that, for the burn-in period, the results obtained from the simulation are
not retained, but after that period the simulations are run normally, using every iteration of the MCMC procedure.



Figure 4.31. Plots of simulated variances (top) and ergodic means (bottom) for the nominal

GDP

If we compare the average observational and system variances estimated by means of the Gibbs

sampler,  returned by the function  mcmcMean,  with the ones computed by using the maximum

likelihood method in the treatment of the SUTSE model with seasonality, we can notice how the

Gibbs sampler provides remarkably smaller values for these variances, which can be interpreted as a

signal of the higher precision of this algorithm in estimating the states. However, if we consider the

levels simulated by means of the Gibbs sampler and the ones computed by the Kalman filter (Figure

4.11),  there  does  not  appear  to  be  any  remarkable  discrepancy  between  two  state  estimation

methods, and both of them seem to provide an adequate data fitting.



Figure 4.32. Nominal GDP levels simulated by the Gibbs sampler

Figure 4.33. Forecast level of the nominal GDP (Gibbs sampler)



As far as the predictive capability is concerned, if we look at the graph in Figure 4.33, and

compare it with the one presented in Figure 4.14, there does not appear to exist any substantial

difference between the two models, for what concerns the forecast values. Both of them, in fact,

provide a slightly overestimated forecast of the future trend of the GDP. The main discrepancy

between  the  two  models,  in  fact,  resides  in  the  width  of  the  confidence  intervals,  which  is

remarkably greater in the case of the multivariate SUTSE model, allowing the credible region to

include the actual values of the GDP. If we consider the performance measures, we can notice how

all of them seem to be in favour of the model whose variance parameters have been computed by

means of the Gibbs sampler, but the fact that the credible region provided by the SUTSE model

contains the real GDP values should lead us to judge that model as preferable.

We  will  now  consider  the  results  provided  by  the  Gibbs  sampler  for  what  concerns  the

Industrial Production Index.

IPI – GIBBS SAMPLING

AVERAGE OBSERVATIONAL AND SYSTEM VARIANCES

     V       W μ     W β   

  0.00500   0.02298   0.56242

FORECAST PERFORMANCE MEASURES

Mean Absolute Percentage Error

2.265835

Theil Inequality Coefficient

0.01357749

In the Figures 4.34 and 4.35 the simulated variances, together with the ergodic means, and the

simulated levels are respectively illustrated.



Figure 4.34. Plots of simulated variances (top) and ergodic means (bottom) for the IPI

Figure 4.35. IPI levels simulated by the Gibbs sampler



Similarly to what we have observed for the GDP, even in the case of the IPI the variances

estimated  by the Gibbs sampler  possess overall  smaller  values  than the ones  computed  for the

multivariate  SUTSE model.  Then,  if  we  compare  the  simulated  levels  with  the  filtered  levels

illustrated in Figure 4.21, the SUTSE model and the Gibbs sampler seem to provide substantially

indifferent results from the viewpoint of the data fitting.

As regards the predictive capability,  instead, the graph reported in Figure 4.36 demonstrates

that the Gibbs sampling procedure has led to an underestimation of the future values of the index,

which did not happen in the case of the previous model (Figure 4.28). A comparison between the

performance measures of the two models confirms these results.

Figure 4.36. Forecast level of the IPI (Gibbs sampler)

We will now continue with the analysis of the results obtained as regards the Consumer Price

Index. The code we used for the Gibbs sampling is the following.

CPI – GIBBS SAMPLING

AVERAGE OBSERVATIONAL AND SYSTEM VARIANCES

     V       W μ      W β  

  0.13188   0.00392   0.23855 

FORECAST PERFORMANCE MEASURES



Mean Absolute Percentage Error

1.035389

Theil Inequality Coefficient

0.005438035

We present in the Figures 4.37 and 4.38 the results of the simulation for what concerns the

variances and the levels.

Figure 4.37. Plots of simulated variances (top) and ergodic means (bottom) for the CPI

Even for what concerns the CPI,  the variances computed by the Gibbs sampler  are overall

smaller  than  the  ones  estimated  with  the  maximum  likelihood  method  for  the  SUTSE model.

Notwithstanding this,  if  we compare  the levels  derived from the simulation  algorithm with the

filtered  levels  based  on the  SUTSE model  (Figure  4.22),  it  is  possible  to  notice  how the  two

methods do not present important discrepancies.



Figure 4.38. CPI levels simulated by the Gibbs sampler

In fact, if we evaluate the predictive capability,  from the graph reported in Figure 4.39 it is

visible how, similarly to what happened in the case of the SUTSE model (Figure 4.29), the model

obtained by means of the Gibbs sampling underestimates the future trend of the CPI. Anyway, the

performance  measures  computed  in  the  code  demonstrate  that  the  model  based  on  the  Gibbs

sampling provides a slightly more accurate forecast of this macroeconomic factor.



Figure 4.39. Forecast level of the CPI (Gibbs sampler)

In conclusion, we present the results obtained for what concerns the T-Bill rate.

TBILL – GIBBS SAMPLING

AVERAGE OBSERVATIONAL AND SYSTEM VARIANCES

      V        W μ      W β       W s

  2.26e-01   7.79e-03   1.35e-01   7.62e-04 

FORECAST PERFORMANCE MEASURES

Mean Absolute Percentage Error

624.754

Theil Inequality Coefficient

0.6511368

The simulated variances, accompanied by the relevant ergodic means, and the simulated levels

are reported in the Figures 4.40 and 4.41.



Figure 4.40. Plots of simulated variances (top) and ergodic means (bottom) for the 3-month T-

Bill rate

Similarly to what we have verified about the other three variables analysed, even in the case of

the T-Bill interest rate the variances estimated by means of the Gibbs sampler are lower than the

ones previously obtained when estimating the SUTSE model. Anyway, the graph illustrating the

levels does not remarkably differ from the one reported in Figure 4.23, representing the filtered

levels based on the SUTSE model.

Finally, if we observe the graph reported in Figure 4.42, illustrating the forecast level for the

last three years of the available data set, we can notice that the Gibbs-sampler-based model slightly

overestimates  the  future  trend  of  the  interest  rate.  The same thing  happens  in  the  case  of  the

multivariate SUTSE model (Figure 4.30), but, in that case, the forecast error is remarkably greater.

This circumstance is confirmed by the performance measures, which are all in favour of the Gibbs-

sampler-based model.



Figure 4.41. 3-month T-Bill rate with levels simulated by the Gibbs sampler

Figure 4.42. Forecast level of the 3-month T-Bill rate (Gibbs sampler)



4.18. Summary of the models proposed

IN-SAMPLE FORECAST PERFORMANCE MEASURES

SUTSE MODEL SUTSE + SEASONAL MODEL

Rmse = 57.39284 Rmse = 51.43722

Mae = 5.73195 Mae = 5.66048

Theil = 0.00384 Theil = 0.00341

REGRESSION DLM REGRESSION DLM WITH LAGS

Rmse = 58.32701 Rmse = 82.31051

Mae = 6.22316 Mae = 7.37958

Theil = 0.00392 Theil = 0.00553

OUT-OF-SAMPLE FORECAST PERFORMANCE MEASURES

SUTSE MODEL SUTSE + SEASONAL MODEL

Rmse = 289.00090 Rmse = 232.18470

Mae = 16.47265 Mae = 14.82537

Theil = 0.00887 Theil = 0.00714

REGRESSION DLM REGRESSION DLM WITH LAGS

Rmse = 321.05830 Rmse = 371.14280

Mae = 15.90850 Mae = 16.83304

Theil = 0.01000 Theil = 0.01158

MCMC SIMULATION

Rmse = 217.65080 Mae = 14.36500 Theil = 0.00669



CONCLUDING REMARKS

In this paper we have proposed four different dynamic linear models with the goal to identify

the one possessing the highest  predictive capability for what concerns the nominal  GDP of the

United States. The structure of the first two models proposed (the multivariate SUTSE models) is

quite similar to the Mixed Frequency Dynamic Factor Model proposed by Barnett,  Chauvet and

Leiva in the paper we have taken as a reference for this thesis, while the other two models we have

analysed (the multiple regression DLMs) were proposed in order to provide an example of a DLM

with time-varying parameters. The results obtained have shown that the model presenting the best

forecast performance is constituted by a multivariate SUTSE model including the four variables

considered (nominal GDP, Industrial Production Index, Consumer Price Index and 3-month T-Bill

rate) allowing for the presence of a seasonal component as regards the T-Bill rate.

Furthermore, for each one of the four variables under control, we have examined the predictive

capability of a univariate DLM whose parameters have been estimated by using the Gibbs sampling

simulation technique, and have verified that, for what concerns the Consumer Price Index and the

T-Bill interest rate, a model of this kind is able to provide more accurate forecasts, while it returns

quite unreliable results as far as the GDP and the Industrial  Production Index are concerned, if

compared with the results obtained for the same variables by using the multivariate SUTSE model.

A  possible  explanation  of  the  inefficiencies  we  have  encountered  as  regards  the  Gibbs-

sampling-based models may be that, at present, the R package for DLM only allows to apply the

Gibbs sampling algorithm to estimate the parameters of a constant and univariate DLM. This is the

reason why we could not use this method with respect to the multivariate SUTSE model we had

selected as the best-performing one. Consequently, among all the models proposed, we believe that

the multivariate SUTSE including a seasonal component can be judged as the most useful one, as a

forecasting  tool,  because,  differently  from the  corresponding  model  for  the  GDP estimated  by

means of the Gibbs sampler, it possesses the advantage that it allows to account for the relationship



between the GDP itself and the macroeconomic factors considered. Such a relationship, in fact, has

been confirmed  by the  forecast  performance  of  all  the  multivariate  models  analysed,  which  is

overall quite satisfying.

It  is,  anyway,  strongly  probable  that,  in  the  next  few years,  it  will  be  possible  to  exploit

simulation techniques for the estimation of multivariate models including time-varying parameters,

which could allow to obtain even more accurate  forecast results  than the ones provided in this

paper.
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Appendix A

> # ACQUISITION OF THE NUMERICAL INFORMATION

> library(tseries)

> data = read.table('database.txt', header = TRUE)

> str(data)

> data.ts = data[, -1]

> attach(data.ts)

> NGDP = ts(GDP, start = c(1963, 1), end = c(2013, 4), freq = 4)

> IPI = ts(INDPRO, start = c(1963, 1), end = c(2013, 4), freq = 4)

> CPI = ts(CPI, start = c(1963, 1), end = c(2013, 4), freq = 4)

> TBILL = ts(TB3MS, start = c(1963, 1), end = c(2013, 4), freq = 4)

> ts.plot(NGDP)

> ts.plot(IPI)

> ts.plot(CPI)

> ts.plot(TBILL)

> pairs(~ NGDP + IPI + CPI + TBILL)

> 

> # LINEAR REGRESSION MODEL

> lm0 = lm(NGDP ~ IPI + CPI + TBILL)

> summary(lm0)

> lm0.stdres = rstandard(lm0)

> plot(lm0.stdres, ylab = '', main = 'Standardized Residuals')

> abline(0, 0)

> acf(lm0.stdres, main = 'ACF of Residuals')

> library(FitAR)

> LBQPlot(lm0.stdres)

> 

> # DEFINITION OF THE TRAINING AND TEST SET

> data.tr = data.ts[1:(dim(data.ts)[1]-12), ]

> NGDP.tr = NGDP[1:dim(data.tr)[1]]

> IPI.tr = IPI[1:dim(data.tr)[1]]

> CPI.tr = CPI[1:dim(data.tr)[1]]

> TBILL.tr = TBILL[1:dim(data.tr)[1]]

> NGDP.test = NGDP[(dim(data.tr)[1]+1):(length(NGDP))]



> IPI.test = IPI[(dim(data.tr)[1]+1):(length(IPI))]

> CPI.test = CPI[(dim(data.tr)[1]+1):(length(CPI))]

> TBILL.test = TBILL[(dim(data.tr)[1]+1):(length(TBILL))]

>

> # DYNAMIC LINEAR MODEL

> 

> # MODEL 1: SUTSE MODEL

> library(dlm)

> varEpsilon = rep(0, 4)

> varLevel = rep(0, 4)

> varSlope = rep(0, 4)

> covEpsilon = rep(0, 6)

> covLevel = rep(0, 6)

> covSlope = rep(0, 6)

> parameters = c(varEpsilon, covEpsilon, varLevel, covLevel, varSlope, covSlope)

> build = function(x) {

+ mod = dlmModPoly(2)

+ mod$FF = mod$FF %x% diag(4)

+ mod$GG = mod$GG %x% diag(4)

+ V = diag(exp(x[1:4]))

+ k = 5

+ for (i in 1:3) {

+ for (j in (i+1):4) {

+ V[i,j] = V[j,i] = x[k]

+ k = k + 1

+ }

+ }

+ mod$V = V

+ W.mu = diag(exp(x[11:14]))

+ k = 15

+ for (i in 1:3) {

+ for (j in (i+1):4) {

+ W.mu[i,j] = W.mu[j,i] = x[k]

+ k = k + 1

+ }

+ }

+ W.beta = diag(exp(x[21:24]))

+ k = 25

+ for (i in 1:3) {

+ for (j in (i+1):4) {

+ W.beta[i,j] = W.beta[j,i] = x[k]

+ k = k + 1



+ }

+ }

+ mod$W = bdiag(W.mu, W.beta)

+ mod$m0 = rep(0, 8)

+ mod$C0 = diag(8) * 1e7

+ return (mod)

+ }

> matrix.tr = matrix(c(NGDP.tr, IPI.tr, CPI.tr, TBILL.tr), nrow = dim(data.tr)

[1], ncol = dim(data.tr)[2])

> fit = dlmMLE(matrix.tr, parameters, build)

> fit$conv

[1] 0

> modSUTSE = build(fit$par)

>

> # FILTERING

> filter = dlmFilter(matrix.tr, modSUTSE)

> attach(filter)

> v = dlmSvd2var(U.C, D.C)

> v.ngdp = rep(0, length(v))

> plot(NGDP, type = 'l', col = 'seagreen')

> ngdpFilt = ts(dropFirst(m[, 1]), start = c(1963, 1), freq = 4)

> lines(ngdpFilt, col = 'brown')

> for (i in 1:length(v)) {

+ v.ngdp[i] = v[[i]][1, 1]

+ }

> lwr.ngdp = ngdpFilt + qnorm(0.05, sd = sqrt(v.ngdp[-1]))

> upr.ngdp = ngdpFilt + qnorm(0.95, sd = sqrt(v.ngdp[-1]))

> lines(lwr.ngdp, lty = 2, col = 'brown')

> lines(upr.ngdp, lty = 2, col = 'brown')

> legend('topleft', legend = c('data', 'filtered level', '90% confidence 

interval'), col = c('green', 'brown', 'brown'), lty = c(1, 1, 2))

> detach(filter)

>

> # EVALUATION OF THE PREDICTIVE CAPABILITY (IN-SAMPLE DATA)

> sdevSUTSE = residuals(filter)$sd[, 1]

> ngdpFore = ts(filter$f[, 1], start = c(1963, 1), freq = 4)

> lwrSUTSE = ngdpFore + qnorm(0.05) * sdevSUTSE

> uprSUTSE = ngdpFore + qnorm(0.95) * sdevSUTSE

> plot(NGDP, type = 'l', col = 'green')

> lines(ngdpFore, type = 'l', col = 'blue')

> lines(lwrSUTSE, lty = 2, col = 'blue')

> lines(uprSUTSE, lty = 2, col = 'blue')



> legend('topleft', legend = c('data', 'one-step-ahead forecast', '90% 

prediction interval'), col = c('green', 'blue', 'blue'), lty = c(1, 1, 2))

> rmse = sqrt(mean((ngdpFore[-(1:2)] - NGDP.tr[-(1:2)])^2))

> mae = sqrt(mean(abs(ngdpFore[-(1:2)] - NGDP.tr[-(1:2)])))

> tic = sqrt(mean((ngdpFore[-(1:2)] - NGDP.tr[-(1:2)])^2))/(sqrt(mean(ngdpFore[-

(1:2)]^2)) + sqrt(mean(NGDP.tr[-(1:2)]^2)))

> tsdiag(filter)

> 

> # EVALUATION OF THE PREDICTIVE CAPABILITY (OUT-OF-SAMPLE DATA)

> forecast = dlmForecast(filter, nAhead = 12)

> attach(forecast)

> sqrtRngdp = sapply(R, function(x) sqrt(x[1, 1]))

> ngdpFore = ts(a[, 1], start = c(2011, 1), freq = 4)

> lwr.ngdp = ngdpFore + qnorm(0.05, sd = sqrtRngdp)

> upr.ngdp = ngdpFore + qnorm(0.95, sd = sqrtRngdp)

> x.ngdp = ts.union(window(NGDP, start = c(2009, 1)),

+ ngdpFore, lwr.ngdp, upr.ngdp)

> plot(x.ngdp, plot.type = 'single', type = 'o', pch = c(1, 20, 3, 3),

+ col = c('black', 'brown', 'yellow', 'yellow'), ylab = 'NGDP')

> legend('topleft', legend = c('observed', 'forecast level', '90% confidence 

interval'),

+ bty = 'n', pch = c(1, 20, 3, 3), lty = 1,

+ col = c('black', 'brown', 'yellow', 'yellow'))

> detach(forecast)

> rmse.ngdp = sqrt(mean((ngdpFore - NGDP.test)^2))

> mae.ngdp = sqrt(mean(abs(ngdpFore - NGDP.test)))

> tic.ngdp = sqrt(mean((ngdpFore - NGDP.test)^2))/(sqrt(mean(ngdpFore^2)) + 

sqrt(mean(NGDP.test^2)))

>

> # SUTSE WITH SEASONAL COMPONENT ON TBILL

> varSeasTbill = 0

> paramSeas = c(varEpsilon, covEpsilon, varLevel, covLevel, varSlope, covSlope, 

varSeasTbill)

> buildSeas = function(x) {

+ mod = dlmModPoly(2) + dlmModSeas(4)

+ mod$FF = mod$FF %x% diag(4)

+ mod$GG = mod$GG %x% diag(4)

+ V = diag(exp(x[1:4]))

+ k = 5

+ for (i in 1:3) {

+ for (j in (i+1):4) {

+ V[i,j] = V[j,i] = x[k]



+ k = k + 1

+ }

+ }

+ mod$V = V

+ W.mu = diag(exp(x[11:14]))

+ k = 15

+ for (i in 1:3) {

+ for (j in (i+1):4) {

+ W.mu[i,j] = W.mu[j,i] = x[k]

+ k = k + 1

+ }

+ }

+ W.beta = diag(exp(x[21:24]))

+ k = 25

+ for (i in 1:3) {

+ for (j in (i+1):4) {

+ W.beta[i,j] = W.beta[j,i] = x[k]

+ k = k + 1

+ }

+ }

+ W.s1 = diag(c(0, 0, 0, exp(x[31])))

+ W.s2 = diag(rep(0, 4))

+ W.s3 = diag(rep(0, 4))

+ mod$W = bdiag(W.mu, W.beta, W.s1, W.s2, W.s3)

+ mod$m0 = rep(0, 20)

+ mod$C0 = diag(20) * 1e7

+ return (mod)

+ }

> fitSeas = dlmMLE(matrix.tr, paramSeas, buildSeas)

> fitSeas$conv

[1] 0

> modSUTSEseas = buildSeas(fitSeas$par)

>

> # FILTERING

> filterSeas = dlmFilter(matrix.tr, modSUTSEseas)

> attach(filterSeas)

> vSeas = dlmSvd2var(U.C, D.C)

> vSeas.ngdp = rep(0, length(vSeas))

> plot(NGDP, type = 'l', col = 'seagreen')

> ngdpFiltSeas = ts(dropFirst(m[, 1]), start = c(1963, 1), freq = 4)

> lines(ngdpFiltSeas, col = 'brown')

> for (i in 1:length(vSeas)) {



+ vSeas.ngdp[i] = vSeas[[i]][1, 1]

+ }

> lwrSeas.ngdp = ngdpFiltSeas + qnorm(0.05, sd = sqrt(vSeas.ngdp[-1]))

> uprSeas.ngdp = ngdpFiltSeas + qnorm(0.95, sd = sqrt(vSeas.ngdp[-1]))

> lines(lwrSeas.ngdp, lty = 2, col = 'brown')

> lines(uprSeas.ngdp, lty = 2, col = 'brown')

> legend('topleft', legend = c('data', 'filtered level', '90% confidence 

interval'), col = c('green', 'brown', 'brown'), lty = c(1, 1, 2))

> detach(filterSeas)

>

> # EVALUATION OF THE PREDICTIVE CAPABILITY (IN-SAMPLE DATA)

> sdevSeas = residuals(filterSeas)$sd[, 1]

> ngdpForeSeas = ts(filterSeas$f[, 1], start = c(1963, 1), freq = 4)

> lwrSeas = ngdpForeSeas + qnorm(0.05) * sdevSeas

> uprSeas = ngdpForeSeas + qnorm(0.95) * sdevSeas

> plot(NGDP, type = 'l', col = 'green')

> lines(ngdpForeSeas, type = 'l', col = 'blue')

> lines(lwrSeas, lty = 2, col = 'blue')

> lines(uprSeas, lty = 2, col = 'blue')

> legend('topleft', legend = c('data', 'one-step-ahead forecast', '90% 

prediction interval'), col = c('green', 'blue', 'blue'), lty = c(1, 1, 2))

> rmseSeas = sqrt(mean((ngdpForeSeas[-(1:5)] - NGDP.tr[-(1:5)])^2))

> maeSeas = sqrt(mean(abs(ngdpForeSeas[-(1:5)] - NGDP.tr[-(1:5)])))

> ticSeas = sqrt(mean((ngdpForeSeas[-(1:5)] - NGDP.tr[-(1:5)])^2))/

(sqrt(mean(ngdpForeSeas[-(1:5)]^2)) + sqrt(mean(NGDP.tr[-(1:5)]^2)))

> tsdiag(filterSeas)

> 

> # EVALUATION OF THE PREDICTIVE CAPABILITY (OUT-OF-SAMPLE DATA)

> forecastSeas = dlmForecast(filterSeas, nAhead = 12)

> attach(forecastSeas)

> sqrtRngdpSeas = sapply(R, function(x) sqrt(x[1, 1]))

> ngdpForeSeas = ts(a[, 1], start = c(2011, 1), freq = 4)

> lwrSeas.ngdp = ngdpForeSeas + qnorm(0.05, sd = sqrtRngdpSeas)

> uprSeas.ngdp = ngdpForeSeas + qnorm(0.95, sd = sqrtRngdpSeas)

> xSeas.ngdp = ts.union(window(NGDP, start = c(2009, 1)),

+ ngdpForeSeas, lwrSeas.ngdp, uprSeas.ngdp)

> plot(xSeas.ngdp, plot.type = 'single', type = 'o', pch = c(1, 20, 3, 3),

+ col = c('black', 'brown', 'yellow', 'yellow'), ylab = 'NGDP')

> legend('topleft', legend = c('observed', 'forecast level', '90% confidence 

interval'),

+ bty = 'n', pch = c(1, 20, 3, 3), lty = 1,

+ col = c('black', 'brown', 'yellow', 'yellow'))



> detach(forecastSeas)

> rmseSeas.ngdp = sqrt(mean((ngdpForeSeas - NGDP.test)^2))

> maeSeas.ngdp = sqrt(mean(abs(ngdpForeSeas - NGDP.test)))

> ticSeas.ngdp = sqrt(mean((ngdpForeSeas - NGDP.test)^2))/

(sqrt(mean(ngdpForeSeas^2)) + sqrt(mean(NGDP.test^2)))

>

> # MULTIPLE REGRESSION DLM

> X.tr = data.tr[, -1]

> varObs = 0

> varInt = 0

> varSlope = rep(0, 3)

> covSlope = rep(0, 3)

> paramReg = c(varObs, varInt, varSlope, covSlope)

> buildReg = function(x) {

+ mod = dlmModReg(X.tr)

+ V = exp(x[1])

+ W.int = exp(x[2])

+ W.beta = diag(exp(x[3:5]))

+ k = 6

+ for (i in 1:2) {

+ for (j in (i+1):3) {

+ W.beta[i,j] = W.beta[j,i] = x[k]

+ k = k + 1

+ }

+ }

+ mod$V = V

+ mod$W = bdiag(W.int, W.beta)

+ mod$m0 = rep(0, 4)

+ mod$C0 = diag(4) * 1e7

+ return(mod)

+ }

> fitReg = dlmMLE(NGDP.tr, paramReg, buildReg)

> fitReg$conv

[1] 0

> modReg = buildReg(fitReg$par)

>

> # FILTERING

> modRegFilt = dlmFilter(NGDP.tr, modReg)

> sdev = residuals(modRegFilt)$sd

> modReg1Ahead = ts(modRegFilt$f, start = c(1963, 1), freq = 4)

> lwr = modReg1Ahead + qnorm(0.05) * sdev

> upr = modReg1Ahead + qnorm(0.95) * sdev



> plot(NGDP, type = 'l', col = 'green')

> lines(modReg1Ahead, type = 'l', pch = 20, col = 'blue')

> lines(lwr, lty = 2, col = 'blue')

> lines(upr, lty = 2, col = 'blue')

> legend('topleft', legend = c('data', 'one-step-ahead forecast', '90% 

prediction interval'), col = c('green', 'blue', 'blue'), lty = c(1, 1, 2))

>

> # EVALUATION OF THE PREDICTIVE CAPABILITY (IN-SAMPLE DATA)

> rmseReg = sqrt(mean((modReg1Ahead[-1] - NGDP.tr[-1])^2))

> maeReg = sqrt(mean(abs(modReg1Ahead[-1] - NGDP.tr[-1])))

> ticReg = sqrt(mean((modReg1Ahead[-1] - NGDP.tr[-1])^2))/

(sqrt(mean(modReg1Ahead[-1]^2)) + sqrt(mean(NGDP.tr[-1]^2)))

> tsdiag(modRegFilt)

>

> # MULTIPLE REGRESSION DLM WITH LAGGED REGRESSORS

> IPI.L = c(0, IPI[-length(IPI)])

> CPI.L = c(0, CPI[-length(CPI)])

> TBILL.L = c(0, TBILL[-length(TBILL)])

> IPI.L.tr = IPI.L[1:length(IPI.tr)]

> CPI.L.tr = CPI.L[1:length(CPI.tr)]

> TBILL.L.tr = TBILL.L[1:length(TBILL.tr)]

> XL.tr = matrix(c(IPI.L.tr, CPI.L.tr, TBILL.L.tr), nrow = dim(data.tr)[1], ncol

= 3)

> buildRegL = function(x) {

+ mod = dlmModReg(XL.tr)

+ V = exp(x[1])

+ W.int = exp(x[2])

+ W.beta = diag(exp(x[3:5]))

+ k = 6

+ for (i in 1:2) {

+ for (j in (i+1):3) {

+ W.beta[i,j] = W.beta[j,i] = x[k]

+ k = k + 1

+ }

+ }

+ mod$V = V

+ mod$W = bdiag(W.int, W.beta)

+ mod$m0 = rep(0, 4)

+ mod$C0 = diag(4) * 1e7

+ return(mod)

+ }

> fitRegL = dlmMLE(NGDP.tr, paramReg, buildRegL)



> fitRegL$conv

[1] 0

> modRegL = buildRegL(fitReg$par)

>

> # FILTERING

> modRegFiltL = dlmFilter(NGDP.tr, modRegL)

> sdevL = residuals(modRegFiltL)$sd

> modReg1AheadL = ts(modRegFiltL$f, start = c(1963, 1), freq = 4)

> lwrL = modReg1AheadL + qnorm(0.05) * sdevL

> uprL = modReg1AheadL + qnorm(0.95) * sdevL

> plot(NGDP, type = 'l', col = 'green')

> lines(modReg1AheadL, type = 'l', pch = 20, col = 'blue')

> lines(lwrL, lty = 2, col = 'blue')

> lines(uprL, lty = 2, col = 'blue')

> legend('topleft', legend = c('data', 'one-step-ahead forecast', '90% 

prediction interval'), col = c('green', 'blue', 'blue'), lty = c(1, 1, 2))

>

> # EVALUATION OF THE PREDICTIVE CAPABILITY (IN-SAMPLE DATA)

> rmseRegL = sqrt(mean((modReg1AheadL[-1] - NGDP.tr[-1])^2))

> maeRegL = sqrt(mean(abs(modReg1AheadL[-1] - NGDP.tr[-1])))

> ticRegL = sqrt(mean((modReg1AheadL[-1] - NGDP.tr[-1])^2))/

(sqrt(mean(modReg1AheadL[-1]^2)) + sqrt(mean(NGDP.tr[-1]^2)))

> ticRegL

> tsdiag(modRegFiltL)

>

> # EVALUATION OF THE PREDICTIVE CAPABILITY (OUT-OF-SAMPLE DATA)

> XL.whole = matrix(c(IPI.L, CPI.L, TBILL.L), nrow = dim(data.ts)[1], ncol = 3)

> NGDP.whole = c(NGDP.tr, rep(NA, 12))

> dlmRegL.test = dlmModReg(XL.whole, dV = modReg$V, dW = diag(modReg$W))

> dlmForeL = dlmFilter(NGDP.whole, dlmRegL.test)

> ngdpForeRegL = dlmForeL$f[-(1:length(NGDP.tr))]

> ngdpForeRegL = ts(ngdpForeRegL, start = c(2011, 1), freq = 4)

> plot(window(NGDP, start = c(2009, 1)), type = 'o', col = 'seagreen', ylab = 

'NGDP')

> lines(ngdpForeRegL, type = 'o', pch = 20, col = 'brown')

> legend('topleft', legend = c('Observed', 'Forecast'), col = c('seagreen', 

'brown'), pch = c(1, 20))

> rmseRegL.ngdp = sqrt(mean((ngdpForeRegL - NGDP.test)^2))

> maeRegL.ngdp = sqrt(mean(abs(ngdpForeRegL - NGDP.test)))

> ticRegL.ngdp = sqrt(mean((ngdpForeRegL - NGDP.test)^2))/

(sqrt(mean(ngdpForeRegL^2)) + sqrt(mean(NGDP.test^2)))

>



> # We select second model (SUTSE with seasonal component on T-Bill)

> 

> # FILTERING

> attach(filterSeas)

>

> # IPI

> v.ipi = rep(0, length(v))

> plot(IPI, type = 'l', col = 'seagreen')

> ipiFilt = ts(dropFirst(m[, 2]), start = c(1963, 1), freq = 4)

> lines(ipiFilt, col = 'brown')

> for (i in 1:length(v)) {

+ v.ipi[i] = v[[i]][2, 2]

+ }

> lwr.ipi = ipiFilt + qnorm(0.05, sd = sqrt(v.ipi[-1]))

> upr.ipi = ipiFilt + qnorm(0.95, sd = sqrt(v.ipi[-1]))

> lines(lwr.ipi, lty = 2, col = 'brown')

> lines(upr.ipi, lty = 2, col = 'brown')

> legend('topleft', legend = c('data', 'filtered level', '90% confidence 

interval'), col = c('seagreen', 'brown', 'brown'), lty = c(1, 1, 2))

> 

> # CPI

> v.cpi = rep(0, length(v))

> plot(CPI, type = 'l', col = 'seagreen')

> cpiFilt = ts(dropFirst(m[, 3]), start = c(1963, 1), freq = 4)

> lines(cpiFilt, col = 'brown')

> for (i in 1:length(v)) {

+ v.cpi[i] = v[[i]][3, 3]

+ }

> lwr.cpi = cpiFilt + qnorm(0.05, sd = sqrt(v.cpi[-1]))

> upr.cpi = cpiFilt + qnorm(0.95, sd = sqrt(v.cpi[-1]))

> lines(lwr.cpi, lty = 2, col = 'brown')

> lines(upr.cpi, lty = 2, col = 'brown')

> legend('topleft', legend = c('data', 'filtered level', '90% confidence 

interval'), col = c('seagreen', 'brown', 'brown'), lty = c(1, 1, 2))

> 

> # TBILL

> v.tbill = rep(0, length(v))

> plot(TBILL, type = 'l', col = 'seagreen')

> tbillFilt = ts(dropFirst(m[, 4]), start = c(1963, 1), freq = 4)

> lines(tbillFilt, col = 'brown')

> for (i in 1:length(v)) {

+ v.tbill[i] = v[[i]][4, 4]



+ }

> lwr.tbill = tbillFilt + qnorm(0.05, sd = sqrt(v.tbill[-1]))

> upr.tbill = tbillFilt + qnorm(0.95, sd = sqrt(v.tbill[-1]))

> lines(lwr.tbill, lty = 2, col = 'brown')

> lines(upr.tbill, lty = 2, col = 'brown')

> legend('topleft', legend = c('data', 'filtered level', '90% confidence 

interval'), col = c('seagreen', 'brown', 'brown'), lty = c(1, 1, 2))

>

> detach(filterSeas)

>

> # SMOOTHING

> smooth = dlmSmooth(filterSeas)

> attach(smooth)

> v = dlmSvd2var(U.S, D.S)

> 

> # NGDP

> v.ngdp = rep(0, length(v))

> plot(NGDP, type = 'l', col = 'seagreen')

> ngdpSmooth = ts(dropFirst(s[, 1]), start = c(1963, 1), freq = 4)

> lines(ngdpSmooth, col = 'brown')

> for (i in 1:length(v)) {

+ v.ngdp[i] = v[[i]][1, 1]

+ }

> lwr.ngdp = ngdpSmooth + qnorm(0.05, sd = sqrt(v.ngdp[-1]))

> upr.ngdp = ngdpSmooth + qnorm(0.95, sd = sqrt(v.ngdp[-1]))

> lines(lwr.ngdp, lty = 2, col = 'brown')

> lines(upr.ngdp, lty = 2, col = 'brown')

> legend('topleft',

+ legend = c('data', 'smoothed level', '90% confidence interval'),

+ col = c('seagreen', 'brown', 'brown'),

+ pch = c(1, 20, NA),

+ lty = c(NA, NA, 2))

> 

> # IPI

> v.ipi = rep(0, length(v))

> plot(IPI, type = 'l', col = 'seagreen')

> ipiSmooth = ts(dropFirst(s[, 2]), start = c(1963, 1), freq = 4)

> lines(ipiSmooth, col = 'brown')

> for (i in 1:length(v)) {

+ v.ipi[i] = v[[i]][2, 2]

+ }

> lwr.ipi = ipiSmooth + qnorm(0.05, sd = sqrt(v.ipi[-1]))



> upr.ipi = ipiSmooth + qnorm(0.95, sd = sqrt(v.ipi[-1]))

> lines(lwr.ipi, lty = 2, col = 'brown')

> lines(upr.ipi, lty = 2, col = 'brown')

> legend('topleft',

+ legend = c('data', 'smoothed level', '90% confidence interval'),

+ col = c('seagreen', 'brown', 'brown'),

+ pch = c(1, 20, NA),

+ lty = c(NA, NA, 2))

> 

> # CPI

> v.cpi = rep(0, length(v))

> plot(CPI, type = 'l', col = 'seagreen')

> cpiSmooth = ts(dropFirst(s[, 3]), start = c(1963, 1), freq = 4)

> lines(cpiSmooth, col = 'brown')

> for (i in 1:length(v)) {

+ v.cpi[i] = v[[i]][3, 3]

+ }

> lwr.cpi = cpiSmooth + qnorm(0.05, sd = sqrt(v.cpi[-1]))

> upr.cpi = cpiSmooth + qnorm(0.95, sd = sqrt(v.cpi[-1]))

> lines(lwr.cpi, lty = 2, col = 'brown')

> lines(upr.cpi, lty = 2, col = 'brown')

> legend('topleft',

+ legend = c('data', 'smoothed level', '90% confidence interval'),

+ col = c('seagreen', 'brown', 'brown'),

+ pch = c(1, 20, NA),

+ lty = c(NA, NA, 2))

> 

> # TBILL

> v.tbill = rep(0, length(v))

> plot(TBILL, type = 'l', col = 'seagreen')

> tbillSmooth = ts(dropFirst(s[, 4]), start = c(1963, 1), freq = 4)

> lines(tbillSmooth, col = 'brown')

> for (i in 1:length(v)) {

+ v.tbill[i] = v[[i]][4, 4]

+ }

> lwr.tbill = tbillSmooth + qnorm(0.05, sd = sqrt(v.tbill[-1]))

> upr.tbill = tbillSmooth + qnorm(0.95, sd = sqrt(v.tbill[-1]))

> lines(lwr.tbill, lty = 2, col = 'brown')

> lines(upr.tbill, lty = 2, col = 'brown')

> legend('topleft',

+ legend = c('data', 'smoothed level', '90% confidence interval'),

+ col = c('seagreen', 'brown', 'brown'),



+ pch = c(1, 20, NA),

+ lty = c(NA, NA, 2))

>

> detach(smooth)

>

> # FORECASTING

> forecast = dlmForecast(filterSeas, nAhead = 12)

> attach(forecast)

> 

> # IPI

> sqrtRipi = sapply(R, function(x) sqrt(x[2, 2]))

> ipiFore = ts(a[, 2], start = c(2011, 1), freq = 4)

> lwr.ipi = ipiFore + qnorm(0.05, sd = sqrtRipi)

> upr.ipi = ipiFore + qnorm(0.95, sd = sqrtRipi)

> x.ipi = ts.union(window(IPI, start = c(2009, 1)),

+ ipiFore, lwr.ipi, upr.ipi)

> plot(x.ipi, plot.type = 'single', type = 'o', pch = c(1, 0, 20, 3, 3),

+ col = c('black', 'darkgrey', 'brown', 'yellow', 'yellow'), ylab = 'IPI')

> legend('topleft', legend = c('observed', 'smoothed', 'forecast level', '90% 

confidence interval'),

+ bty = 'n', pch = c(1, 0, 20, 3, 3), lty = 1,

+ col = c('black', 'darkgrey', 'brown', 'yellow', 'yellow'))

> 

> # EVALUATION OF THE PREDICTIVE CAPABILITY (OUT-OF-SAMPLE DATA)

> mape.ipi = 100 * mean(abs((ipiFore - IPI.test)/IPI.test))

> tic.ipi = sqrt(mean((ipiFore - IPI.test)^2))/(sqrt(mean(ipiFore^2)) + 

sqrt(mean(IPI.test^2)))

> 

> # CPI

> sqrtRcpi = sapply(R, function(x) sqrt(x[3, 3]))

> cpiFore = ts(a[, 3], start = c(2011, 1), freq = 4)

> lwr.cpi = cpiFore + qnorm(0.05, sd = sqrtRcpi)

> upr.cpi = cpiFore + qnorm(0.95, sd = sqrtRcpi)

> x.cpi = ts.union(window(CPI, start = c(2009, 1)),

+ cpiFore, lwr.cpi, upr.cpi)

> plot(x.cpi, plot.type = 'single', type = 'o', pch = c(1, 20, 3, 3),

+ col = c('black', 'brown', 'yellow', 'yellow'), ylab = 'CPI')

> legend('topleft', legend = c('observed', 'forecast level', '90% confidence 

interval'),

+ bty = 'n', pch = c(1, 20, 3, 3), lty = 1,

+ col = c('black', 'brown', 'yellow', 'yellow'))

> 



> # EVALUATION OF THE PREDICTIVE CAPABILITY (OUT-OF-SAMPLE DATA)

> mape.cpi = 100 * mean(abs((cpiFore - CPI.test)/CPI.test))

> tic.cpi = sqrt(mean((cpiFore - CPI.test)^2))/(sqrt(mean(cpiFore^2)) + 

sqrt(mean(CPI.test^2)))

> 

> # TBILL

> sqrtRtbill = sapply(R, function(x) sqrt(x[4, 4]))

> tbillFore = ts(a[, 4], start = c(2011, 1), freq = 4)

> lwr.tbill = tbillFore + qnorm(0.05, sd = sqrtRtbill)

> upr.tbill = tbillFore + qnorm(0.95, sd = sqrtRtbill)

> x.tbill = ts.union(window(TBILL, start = c(2009, 1)),

+ tbillFore, lwr.tbill, upr.tbill)

> plot(x.tbill, plot.type = 'single', type = 'o', pch = c(1, 20, 3, 3),

+ col = c('black', 'brown', 'yellow', 'yellow'), ylab = 'TBILL')

> legend('topleft', legend = c('observed', 'forecast level', '90% confidence 

interval'),

+ bty = 'n', pch = c(1, 20, 3, 3), lty = 1,

+ col = c('black', 'brown', 'yellow', 'yellow'))

> 

> # EVALUATION OF THE PREDICTIVE CAPABILITY (OUT-OF-SAMPLE DATA)

> mape.tbill = 100 * mean(abs((tbillFore - TBILL.test)/TBILL.test))

> tic.tbill = sqrt(mean((tbillFore - TBILL.test)^2))/(sqrt(mean(tbillFore^2)) + 

sqrt(mean(TBILL.test^2)))

> 

> detach(forecast)

>

> # MCMC SIMULATION

>

> # NGDP - GIBBS SAMPLING

> ngdpGibbs = dlmGibbsDIG(NGDP.tr, dlmModPoly(2), a.y = 1, b.y = 1000,

+ a.theta = 1, b.theta = 1000, n.sample = 1100, ind = c(1, 2))         

> burn = 100

> attach(ngdpGibbs)

> dV = dV[-(1:burn)]

> dW = dW[-(1:burn), ]

> detach()

> par(mfrow = c(2, 3), mar = c(3.1, 2.1, 2.1, 1.1))

> plot(dV, type = 'l', xlab = "", ylab = "", main = 

expression(sigma[epsilon]^2))

> plot(dW[, 1], type = 'l', xlab = "", ylab = "", main = 

expression(sigma[mu]^2))



> plot(dW[, 2], type = 'l', xlab = "", ylab = "", main = 

expression(sigma[beta]^2))

> use = length(dV) - burn

> from = 0.05 * use

> at = pretty(c(0, use), n = 3)

> at = at[at >= from]

> plot(ergMean(dV, from), type = 'l', xaxt = 'n', xlab = "", ylab = "")

> axis(1, at = at - from, labels = format(at))

> plot(ergMean(dW[, 1], from), type = 'l', xaxt = 'n', xlab = "", ylab = "")

> axis(1, at = at - from, labels = format(at))

> plot(ergMean(dW[, 2], from), type = 'l', xaxt = 'n', xlab = "", ylab = "")

> axis(1, at = at - from, labels = format(at))

> mcmcMean(cbind(dV, dW))

> graphics.off()

> plot(NGDP, type = 'o', col = 'seagreen')

> ngdpMCMC = ts(dropFirst(ngdpGibbs$theta[1:length(NGDP.tr), 1, 1091:1100]), 

start = c(1963, 1), freq = 4)

> for (i in 1:10)

+ lines(ngdpMCMC[, i], col = 'brown')

> legend('topleft', legend = c('data', 'simulated level'), col = c('seagreen', 

'brown'), pch = c(1, NA), lty = c(NA, 1))

> 

> # FORECASTING

> parmMCMC = mcmcMean(cbind(dV, dW))[c(1, 3, 5)]

> ngdpModMCMC = dlmModPoly(2, dV = parmMCMC[1], dW = parmMCMC[c(2:3)])

> ngdpFiltMCMC = dlmFilter(NGDP.tr, mod = ngdpModMCMC)

> forecastMCMC = dlmForecast(ngdpFiltMCMC, nAhead = 12)

> sqrtR = sapply(forecastMCMC$R, function(x) sqrt(x[1, 1]))

> ngdpForeMCMC = ts(forecastMCMC$a[, 1], start = c(2011, 1), freq = 4)

> pl = ngdpForeMCMC + qnorm(0.05, sd = sqrtR)

> pu = ngdpForeMCMC + qnorm(0.95, sd = sqrtR)

> x = ts.union(window(NGDP, start = c(2009, 1)),

+ ngdpForeMCMC, pl, pu)

> plot(x, plot.type = 'single', type = 'o', pch = c(1, 20, 3, 3),

+ col = c('black', 'brown', 'yellow', 'yellow'),

+ ylab = 'NGDP')

> legend('topleft', legend = c('Observed', 'Forecast level', '90% confidence 

interval'), bty = 'n', pch = c(1, 20, 3, 3), lty = 1, col = c('black', 'brown', 

'yellow', 'yellow'))

> 

> # FORECAST PERFORMANCE MEASURES

> rmse.ngdpMCMC = sqrt(mean((ngdpForeMCMC - NGDP.test)^2))



> mae.ngdpMCMC = sqrt(mean(abs(ngdpForeMCMC - NGDP.test)))

> tic.ngdpMCMC = sqrt(mean((ngdpForeMCMC - NGDP.test)^2))/

(sqrt(mean(ngdpForeMCMC^2)) + sqrt(mean(NGDP.test^2)))

> rm(dV)

> rm(dW)

>

> # IPI

> ipiGibbs = dlmGibbsDIG(IPI.tr, dlmModPoly(2), a.y = 1, b.y = 1000,

+ a.theta = 1, b.theta = 1000, n.sample = 1100, ind = c(1, 2))

> burn = 100

> attach(ipiGibbs)

> dV = dV[-(1:burn)]

> dW = dW[-(1:burn), ]

> detach()

> par(mfrow = c(2, 3), mar = c(3.1, 2.1, 2.1, 1.1))

> plot(dV, type = 'l', xlab = "", ylab = "", main = 

expression(sigma[epsilon]^2))

> plot(dW[, 1], type = 'l', xlab = "", ylab = "", main = 

expression(sigma[mu]^2))

> plot(dW[, 2], type = 'l', xlab = "", ylab = "", main = 

expression(sigma[beta]^2))

> use = length(dV) - burn

> from = 0.05 * use

> at = pretty(c(0, use), n = 3)

> at = at[at >= from]

> plot(ergMean(dV, from), type = 'l', xaxt = 'n', xlab = "", ylab = "")

> axis(1, at = at - from, labels = format(at))

> plot(ergMean(dW[, 1], from), type = 'l', xaxt = 'n', xlab = "", ylab = "")

> axis(1, at = at - from, labels = format(at))

> plot(ergMean(dW[, 2], from), type = 'l', xaxt = 'n', xlab = "", ylab = "")

> axis(1, at = at - from, labels = format(at))

> mcmcMean(cbind(dV, dW))

> graphics.off()

> plot(IPI, type = 'o', col = 'seagreen')

> ipiMCMC = ts(dropFirst(ipiGibbs$theta[1:length(IPI.tr), 1, 1091:1100]), start 

= c(1963, 1), freq = 4)

> for (i in 1:10)

+ lines(ipiMCMC[, i], col = 'brown')

> legend('topleft', legend = c('data', 'simulated level'), col = c('seagreen', 

'brown'), pch = c(1, NA), lty = c(NA, 1))

> 

> # FORECASTING



> parmMCMC = mcmcMean(cbind(dV, dW))[c(1, 3, 5)]

> ipiModMCMC = dlmModPoly(2, dV = parmMCMC[1], dW = parmMCMC[c(2:3)])

> ipiFiltMCMC = dlmFilter(IPI.tr, mod = ipiModMCMC)

> forecastMCMC = dlmForecast(ipiFiltMCMC, nAhead = 12)

> sqrtR = sapply(forecastMCMC$R, function(x) sqrt(x[1, 1]))

> ipiForeMCMC = ts(forecastMCMC$a[, 1], start = c(2011, 1), freq = 4)

> pl = ipiForeMCMC + qnorm(0.05, sd = sqrtR)

> pu = ipiForeMCMC + qnorm(0.95, sd = sqrtR)

> x = ts.union(window(IPI, start = c(2009, 1)),

+ ipiForeMCMC, pl, pu)

> plot(x, plot.type = 'single', type = 'o', pch = c(1, 20, 3, 3),

+ col = c('black', 'brown', 'yellow', 'yellow'),

+ ylab = 'IPI')

> legend('topleft', legend = c('Observed', 'Forecast level', '90% confidence 

interval'), bty = 'n', pch = c(1, 20, 3, 3), lty = 1, col = c('black', 'brown', 

'yellow', 'yellow'))

> 

> # FORECAST PERFORMANCE MEASURES

> mape.ipiMCMC = 100 * mean(abs((ipiForeMCMC - IPI.test)/IPI.test))

> tic.ipiMCMC = sqrt(mean((ipiForeMCMC - IPI.test)^2))/

(sqrt(mean(ipiForeMCMC^2)) + sqrt(mean(IPI.test^2)))

> rm(dV)

> rm(dW)

>

> # CPI

> cpiGibbs = dlmGibbsDIG(CPI.tr, dlmModPoly(2), a.y = 1, b.y = 1000,

+ a.theta = 1, b.theta = 1000, n.sample = 1100, ind = c(1, 2))

> burn = 100

> attach(cpiGibbs)

> dV = dV[-(1:burn)]

> dW = dW[-(1:burn), ]

> detach()

> par(mfrow = c(2, 3), mar = c(3.1, 2.1, 2.1, 1.1))

> plot(dV, type = 'l', xlab = "", ylab = "", main = 

expression(sigma[epsilon]^2))

> plot(dW[, 1], type = 'l', xlab = "", ylab = "", main = 

expression(sigma[mu]^2))

> plot(dW[, 2], type = 'l', xlab = "", ylab = "", main = 

expression(sigma[beta]^2))

> use = length(dV) - burn

> from = 0.05 * use

> at = pretty(c(0, use), n = 3)



> at = at[at >= from]

> plot(ergMean(dV, from), type = 'l', xaxt = 'n', xlab = "", ylab = "")

> axis(1, at = at - from, labels = format(at))

> plot(ergMean(dW[, 1], from), type = 'l', xaxt = 'n', xlab = "", ylab = "")

> axis(1, at = at - from, labels = format(at))

> plot(ergMean(dW[, 2], from), type = 'l', xaxt = 'n', xlab = "", ylab = "")

> axis(1, at = at - from, labels = format(at))

> mcmcMean(cbind(dV, dW))

> graphics.off()

> plot(CPI, type = 'o', col = 'seagreen')

> cpiMCMC = ts(dropFirst(cpiGibbs$theta[1:length(CPI.tr), 1, 1091:1100]), start 

= c(1963, 1), freq = 4)

> for (i in 1:10)

+ lines(cpiMCMC[, i], col = 'brown')

> legend('topleft', legend = c('data', 'simulated level'), col = c('seagreen', 

'brown'), pch = c(1, NA), lty = c(NA, 1))

> 

> # FORECASTING

> parmMCMC = mcmcMean(cbind(dV, dW))[c(1, 3, 5)]

> cpiModMCMC = dlmModPoly(2, dV = parmMCMC[1], dW = parmMCMC[c(2:3)])

> cpiFiltMCMC = dlmFilter(CPI.tr, mod = cpiModMCMC)

> forecastMCMC = dlmForecast(cpiFiltMCMC, nAhead = 12)

> sqrtR = sapply(forecastMCMC$R, function(x) sqrt(x[1, 1]))

> cpiForeMCMC = ts(forecastMCMC$a[, 1], start = c(2011, 1), freq = 4)

> pl = cpiForeMCMC + qnorm(0.05, sd = sqrtR)

> pu = cpiForeMCMC + qnorm(0.95, sd = sqrtR)

> x = ts.union(window(CPI, start = c(2009, 1)),

+ cpiForeMCMC, pl, pu)

> plot(x, plot.type = 'single', type = 'o', pch = c(1, 20, 3, 3),

+ col = c('black', 'brown', 'yellow', 'yellow'),

+ ylab = 'CPI')

> legend('topleft', legend = c('Observed', 'Forecast level', '90% confidence 

interval'), bty = 'n', pch = c(1, 20, 3, 3), lty = 1, col = c('black', 'brown', 

'yellow', 'yellow'))

> 

> # FORECAST PERFORMANCE MEASURES

> mape.cpiMCMC = 100 * mean(abs((cpiForeMCMC - CPI.test)/CPI.test))

> tic.cpiMCMC = sqrt(mean((cpiForeMCMC - CPI.test)^2))/

(sqrt(mean(cpiForeMCMC^2)) + sqrt(mean(CPI.test^2)))

> rm(dV)

> rm(dW)



>

> # TBILL

> tbillGibbs = dlmGibbsDIG(TBILL.tr, dlmModPoly(2) + dlmModSeas(4), a.y = 1, b.y

= 1000,

+ a.theta = 1, b.theta = 1000, n.sample = 1100, ind = c(1, 2, 3))               

> burn = 100

> attach(tbillGibbs)

> dV = dV[-(1:burn)]

> dW = dW[-(1:burn), ]

> detach()

> par(mfrow = c(2, 4), mar = c(3.1, 2.1, 2.1, 1.1))

> plot(dV, type = 'l', xlab = "", ylab = "", main = 

expression(sigma[epsilon]^2))

> plot(dW[, 1], type = 'l', xlab = "", ylab = "", main = 

expression(sigma[mu]^2))

> plot(dW[, 2], type = 'l', xlab = "", ylab = "", main = 

expression(sigma[beta]^2))

> plot(dW[, 3], type = 'l', xlab = "", ylab = "", main = expression(sigma[s]^2))

> use = length(dV) - burn

> from = 0.05 * use

> at = pretty(c(0, use), n = 3)

> at = at[at >= from]

> plot(ergMean(dV, from), type = 'l', xaxt = 'n', xlab = "", ylab = "")

> axis(1, at = at - from, labels = format(at))

> plot(ergMean(dW[, 1], from), type = 'l', xaxt = 'n', xlab = "", ylab = "")

> axis(1, at = at - from, labels = format(at))

> plot(ergMean(dW[, 2], from), type = 'l', xaxt = 'n', xlab = "", ylab = "")

> axis(1, at = at - from, labels = format(at))

> plot(ergMean(dW[, 3], from), type = 'l', xaxt = 'n', xlab = "", ylab = "")

> axis(1, at = at - from, labels = format(at))

> mcmcMean(cbind(dV, dW))

> graphics.off()

> plot(TBILL, type = 'o', col = 'seagreen')

> tbillMCMC = ts(dropFirst(tbillGibbs$theta[1:length(TBILL.tr), 1, 1091:1100]), 

start = c(1963, 1), freq = 4)

> for (i in 1:10)

+ lines(tbillMCMC[, i], col = 'brown')

> legend('topleft', legend = c('data', 'simulated level'), col = c('seagreen', 

'brown'), pch = c(1, NA), lty = c(NA, 1))

> 

> # FORECASTING

> parmMCMC = mcmcMean(cbind(dV, dW))[c(1, 3, 5, 7)]



> tbillModMCMC = dlmModPoly(2, dV = parmMCMC[1], dW = parmMCMC[c(2:3)]) + 

dlmModSeas(4, dV = 0, dW = c(parmMCMC[4], rep(0, 2)))

> tbillFiltMCMC = dlmFilter(TBILL.tr, mod = tbillModMCMC)

> forecastMCMC = dlmForecast(tbillFiltMCMC, nAhead = 12)

> sqrtR = sapply(forecastMCMC$R, function(x) sqrt(x[1, 1]))

> tbillForeMCMC = ts(forecastMCMC$a[, 1], start = c(2011, 1), freq = 4)

> pl = tbillForeMCMC + qnorm(0.05, sd = sqrtR)

> pu = tbillForeMCMC + qnorm(0.95, sd = sqrtR)

> x = ts.union(window(TBILL, start = c(2009, 1)),

+ tbillForeMCMC, pl, pu)

> plot(x, plot.type = 'single', type = 'o', pch = c(1, 20, 3, 3),

+ col = c('black', 'brown', 'yellow', 'yellow'),

+ ylab = 'TBILL')

> legend('topleft', legend = c('Observed', 'Forecast level', '90% confidence 

interval'), bty = 'n', pch = c(1, 20, 3, 3), lty = 1, col = c('black', 'brown', 

'yellow', 'yellow'))

> 

> # FORECAST PERFORMANCE MEASURES

> mape.tbillMCMC = 100 * mean(abs((tbillForeMCMC - TBILL.test)/TBILL.test))

> tic.tbillMCMC = sqrt(mean((tbillForeMCMC - TBILL.test)^2))/

(sqrt(mean(tbillForeMCMC^2)) + sqrt(mean(TBILL.test^2)))

> rm(dV)

> rm(dW)



Appendix B

File database.txt

observation_date GDP INDPRO CPI TB3MS

1963-01-01 622.700 26.125 30.477 2.910

1963-04-01 631.800 26.814 30.533 2.940

1963-07-01 645.000 26.993 30.720 3.290

1963-10-01 654.800 27.449 30.803 3.500

1964-01-01 671.100 27.825 30.930 3.530

1964-04-01 680.800 28.478 30.980 3.480

1964-07-01 692.800 28.934 31.050 3.500

1964-10-01 698.400 29.373 31.193 3.680

1965-01-01 719.200 30.482 31.290 3.890

1965-04-01 732.400 31.189 31.490 3.870

1965-07-01 750.200 31.842 31.583 3.870

1965-10-01 773.100 32.486 31.750 4.170

1966-01-01 797.300 33.417 32.047 4.610

1966-04-01 807.200 34.115 32.337 4.590

1966-07-01 820.800 34.643 32.617 5.040

1966-10-01 834.900 34.974 32.883 5.210

1967-01-01 846.000 34.781 32.967 4.510

1967-04-01 851.100 34.639 33.167 3.660

1967-07-01 866.600 34.877 33.500 4.300

1967-10-01 883.200 35.811 33.867 4.750

1968-01-01 911.100 36.322 34.200 5.050

1968-04-01 936.300 36.812 34.533 5.520

1968-07-01 952.300 37.097 35.000 5.200

1968-10-01 970.100 37.660 35.433 5.590

1969-01-01 995.400 38.393 35.867 6.090

1969-04-01 1011.400 38.561 36.433 6.200

1969-07-01 1032.000 39.024 36.933 7.020

1969-10-01 1040.700 38.779 37.500 7.350

1970-01-01 1053.500 37.839 38.100 7.210

1970-04-01 1070.100 37.631 38.633 6.680



1970-07-01 1088.500 37.497 39.033 6.330

1970-10-01 1091.500 36.686 39.600 5.350

1971-01-01 1137.800 37.393 39.933 3.840

1971-04-01 1159.400 37.732 40.300 4.250

1971-07-01 1180.300 37.848 40.700 5.010

1971-10-01 1193.600 38.726 41.000 4.230

1972-01-01 1233.800 40.368 41.333 3.440

1972-04-01 1270.100 41.138 41.600 3.770

1972-07-01 1293.800 41.659 41.933 4.220

1972-10-01 1332.000 43.122 42.367 4.860

1973-01-01 1380.700 44.349 43.033 5.700

1973-04-01 1417.600 44.710 43.933 6.600

1973-07-01 1436.800 45.098 44.800 8.320

1973-10-01 1479.100 45.771 45.933 7.500

1974-01-01 1494.700 45.355 47.300 7.620

1974-04-01 1534.200 45.391 48.567 8.150

1974-07-01 1563.400 45.190 49.933 8.190

1974-10-01 1603.000 43.402 51.467 7.360

1975-01-01 1619.600 40.532 52.567 5.750

1975-04-01 1656.400 40.010 53.200 5.390

1975-07-01 1713.800 41.008 54.267 6.330

1975-10-01 1765.900 41.887 55.267 5.630

1976-01-01 1824.500 43.173 55.900 4.920

1976-04-01 1856.900 43.719 56.400 5.160

1976-07-01 1890.500 44.289 57.300 5.150

1976-10-01 1938.400 45.083 58.133 4.670

1977-01-01 1992.500 46.016 59.200 4.630

1977-04-01 2060.200 47.434 60.233 4.840

1977-07-01 2122.400 47.964 61.067 5.500

1977-10-01 2168.700 48.274 61.967 6.110

1978-01-01 2208.700 48.136 63.033 6.390

1978-04-01 2336.600 50.069 64.467 6.480

1978-07-01 2398.900 50.508 65.967 7.310

1978-10-01 2482.200 51.419 67.500 8.570

1979-01-01 2531.600 51.644 69.200 9.380

1979-04-01 2595.900 51.557 71.400 9.380

1979-07-01 2670.400 51.394 73.700 9.670

1979-10-01 2730.700 51.581 76.033 11.840

1980-01-01 2796.500 51.787 79.033 13.350

1980-04-01 2799.900 49.618 81.700 9.620

1980-07-01 2860.000 48.834 83.233 9.150

1980-10-01 2993.500 50.700 85.567 13.610



1981-01-01 3131.800 50.832 87.933 14.390

1981-04-01 3167.300 50.994 89.767 14.910

1981-07-01 3261.200 51.472 92.267 15.050

1981-10-01 3283.500 50.336 93.767 11.750

1982-01-01 3273.800 49.313 94.600 12.810

1982-04-01 3331.300 48.696 95.967 12.420

1982-07-01 3367.100 48.016 97.633 9.320

1982-10-01 3407.800 47.120 97.933 7.910

1983-01-01 3480.300 47.655 98.000 8.110

1983-04-01 3583.800 48.712 99.133 8.400

1983-07-01 3692.300 50.381 100.100 9.140

1983-10-01 3796.100 51.695 101.100 8.800

1984-01-01 3912.800 53.215 102.533 9.170

1984-04-01 4015.000 54.039 103.500 9.800

1984-07-01 4087.400 54.422 104.400 10.320

1984-10-01 4147.600 54.464 105.300 8.800

1985-01-01 4237.000 54.616 106.267 8.180

1985-04-01 4302.300 54.666 107.233 7.460

1985-07-01 4394.600 54.574 107.900 7.110

1985-10-01 4453.100 54.902 109.000 7.170

1986-01-01 4516.300 55.222 109.567 6.900

1986-04-01 4555.200 54.898 109.033 6.140

1986-07-01 4619.600 55.121 109.700 5.520

1986-10-01 4669.400 55.730 110.467 5.350

1987-01-01 4736.200 56.470 111.800 5.540

1987-04-01 4821.500 57.460 113.067 5.660

1987-07-01 4900.500 58.515 114.267 6.040

1987-10-01 5022.700 59.950 115.333 5.860

1988-01-01 5090.600 60.493 116.233 5.720

1988-04-01 5207.700 60.994 117.567 6.210

1988-07-01 5299.500 61.237 119.000 7.010

1988-10-01 5412.700 61.669 120.300 7.730

1989-01-01 5527.400 61.946 121.667 8.540

1989-04-01 5628.400 61.728 123.633 8.410

1989-07-01 5711.600 61.319 124.600 7.840

1989-10-01 5763.400 61.567 125.867 7.650

1990-01-01 5890.800 61.985 128.033 7.760

1990-04-01 5974.700 62.470 129.300 7.750

1990-07-01 6029.500 62.720 131.533 7.480

1990-10-01 6023.300 61.745 133.767 6.990

1991-01-01 6054.900 60.565 134.767 6.020

1991-04-01 6143.600 60.934 135.567 5.560



1991-07-01 6218.400 61.749 136.600 5.380

1991-10-01 6279.300 61.874 137.733 4.540

1992-01-01 6380.800 61.794 138.667 3.890

1992-04-01 6492.300 62.872 139.733 3.680

1992-07-01 6586.500 63.342 140.800 3.080

1992-10-01 6697.600 64.018 142.033 3.070

1993-01-01 6748.200 64.591 143.067 2.960

1993-04-01 6829.600 64.724 144.100 2.970

1993-07-01 6904.200 64.984 144.767 3.000

1993-10-01 7032.800 65.966 145.967 3.060

1994-01-01 7136.300 66.794 146.700 3.240

1994-04-01 7269.800 68.020 147.533 3.990

1994-07-01 7352.300 68.906 148.900 4.480

1994-10-01 7476.700 70.308 149.767 5.280

1995-01-01 7545.300 71.067 150.867 5.740

1995-04-01 7604.900 71.328 152.100 5.600

1995-07-01 7706.500 72.019 152.867 5.370

1995-10-01 7799.500 72.622 153.700 5.260

1996-01-01 7893.100 73.105 155.067 4.930

1996-04-01 8061.500 74.613 156.400 5.020

1996-07-01 8159.000 75.530 157.300 5.100

1996-10-01 8287.100 76.548 158.667 4.980

1997-01-01 8402.100 78.013 159.633 5.060

1997-04-01 8551.900 79.208 160.000 5.050

1997-07-01 8691.800 81.077 160.800 5.050

1997-10-01 8788.300 83.126 161.667 5.090

1998-01-01 8889.700 84.041 162.000 5.050

1998-04-01 8994.700 84.565 162.533 4.980

1998-07-01 9146.500 85.143 163.367 4.820

1998-10-01 9325.700 86.319 164.133 4.250

1999-01-01 9447.100 87.230 164.733 4.410

1999-04-01 9557.000 88.045 165.967 4.450

1999-07-01 9712.300 88.872 167.200 4.650

1999-10-01 9926.100 90.493 168.433 5.040

2000-01-01 10031.000 91.446 170.100 5.520

2000-04-01 10278.300 92.629 171.433 5.710

2000-07-01 10357.400 92.541 173.000 6.020

2000-10-01 10472.300 92.253 174.233 6.020

2001-01-01 10508.100 90.927 175.900 4.820

2001-04-01 10638.400 89.652 177.133 3.660

2001-07-01 10639.500 88.340 177.633 3.170

2001-10-01 10701.300 87.325 177.500 1.910



2002-01-01 10834.400 87.952 178.067 1.720

2002-04-01 10934.800 89.352 179.467 1.720

2002-07-01 11037.100 89.879 180.433 1.640

2002-10-01 11103.800 89.824 181.500 1.330

2003-01-01 11230.100 90.400 183.367 1.160

2003-04-01 11370.700 89.695 183.067 1.040

2003-07-01 11625.100 90.283 184.433 0.930

2003-10-01 11816.800 91.040 185.133 0.920

2004-01-01 11988.400 91.606 186.700 0.920

2004-04-01 12181.400 92.013 188.167 1.080

2004-07-01 12367.700 92.495 189.367 1.490

2004-10-01 12562.200 93.779 191.400 2.010

2005-01-01 12813.700 95.093 192.367 2.540

2005-04-01 12974.100 95.604 193.667 2.860

2005-07-01 13205.400 95.187 196.600 3.360

2005-10-01 13381.600 95.989 198.433 3.830

2006-01-01 13648.900 96.895 199.467 4.390

2006-04-01 13799.800 97.472 201.267 4.700

2006-07-01 13908.500 97.848 203.167 4.910

2006-10-01 14066.400 98.041 202.333 4.900

2007-01-01 14233.200 98.925 204.317 4.980

2007-04-01 14422.300 100.119 206.631 4.740

2007-07-01 14569.700 100.388 207.939 4.300

2007-10-01 14685.300 100.567 210.490 3.390

2008-01-01 14668.400 100.223 212.770 2.040

2008-04-01 14813.000 98.863 215.538 1.630

2008-07-01 14843.000 95.740 218.861 1.490

2008-10-01 14549.900 91.648 213.849 0.300

2009-01-01 14383.900 86.689 212.378 0.210

2009-04-01 14340.400 84.243 213.507 0.170

2009-07-01 14384.100 85.313 215.344 0.160

2009-10-01 14566.500 86.626 217.030 0.060

2010-01-01 14681.100 88.369 217.341 0.110

2010-04-01 14888.600 90.240 217.320 0.150

2010-07-01 15057.700 91.667 217.990 0.160

2010-10-01 15230.200 92.010 219.668 0.140

2011-01-01 15238.400 92.578 221.951 0.130

2011-04-01 15460.900 92.850 224.655 0.050

2011-07-01 15587.100 94.026 226.125 0.020

2011-10-01 15785.300 94.920 226.997 0.010

2012-01-01 15956.500 96.132 228.179 0.070

2012-04-01 16094.700 97.024 228.964 0.090



2012-07-01 16268.900 97.402 229.939 0.100

2012-10-01 16332.500 97.976 231.314 0.090

2013-01-01 16502.400 98.980 231.998 0.090

2013-04-01 16619.200 99.445 232.230 0.050

2013-07-01 16872.300 100.053 233.476 0.030

2013-10-01 17078.300 101.250 234.136 0.060
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