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Introduction

In modern finance world, normality represents a concept that is fundamental to shape our
expectations through financial modeling. However, often this assumption fails to realistically
represent financial markets, which frequently show non-normality features. Recent periods
were characterized by extreme events: European debt crisis, covid19 and Ukraine war jeop-
ardized financial markets stability. Normality assumption is not suitable for this kind of events
that are characterized by non-linearity, fat tails and volatility clusters. The impact by negative
shocks on financial markets obviously lead to portfolio losses. In this thesis we are interested
in discovering a better way to describe financial world data to minimize risk. As stated before,
normality assumption is not an effective solution to shape extreme events and their effects
on financial firms. Thus, we need more sophisticated tools to effectively analyze financial data.
Through this thesis we show different methods that allow to study extreme events. From ex-
treme value theory to copula function, our aim is to establish which kind of model better de-
scribes price movements between two stock indexes and how the two are related. In our anal-
ysis we need to find an optimal fit for the stock indexes and determine marginal distributions
for constructing copulas. We choose two stock indexes since they are formed by many com-
panies. CAC 40 and FTSE MIB respectively represent French and Italian most important stock
index.

Firstly, we verify if our stock indexes follow either a normal or student’s t distribution, then
we analyze Extreme value theory fit to our data. Once we established optimal marginal distri-
butions we can build copulas on our findings and plotting optimal risk measures.
Copula functions represent a way to study relationship between price movements of financial
products and how deep is the influence of one over the other.

Concluding our thesis, we summarize various risk measures introduced during our dissertation
and add a new concept: stress testing. By merging risk measures and stress test we realize a
complete portfolio management system. For instance, a kind of risk measure that is computed
when considering stress test is the probability of experiencing a simultaneous loss in a portfo-
lio composed by CAC 40 and FTSE MIB.






1. EVT: Block Maxima and Peaks over Threshold

Extreme Value Theory (EVT) focus on studying the behavior of tails in random variables. In
financial market, a tail event could reveal disruptive and threatening towards market stability.
In statistics these events are usually considered as higher quantile of the loss distribution. Our
study is an example of extreme and possible risk measures to account for it.
Applying Extreme Value theory in risk management allows to investigate what can be the im-
pact of a relative rare event and model the possible outcomes.

In this paragraph we are going to analyze Extreme value theory following two different ap-
proaches: Block Maxima Method and Peaks Over Threshold.

The Fisher-Tippet theorem describe the probabilistic behavior of maxima and random varia-
bles in terms of Generalized Extreme value distribution:

“Consider a sequence of i.i.d. random variables x1, x5, ..., X,,,, representing risks or losses with
an unknown cumulative distribution function F(x) = Pr(X; < x). For financial applications, X;
describes negative returns (or losses).

, M, — Uy T n _
lim Pr — <x)=limF"(o,x + u,) = H(x)
n n—oo

n—-oo

for a non-degenerate distribution function H(x). If this condition holds, F is said to be in the
maximum domain of attraction of H, and H is of type Hg, namely, a Generalized Extreme Value
(GEV) distribution

exp{—(1+&2)7Y¢} &#01+éz>0
exp{—exp{-z)}  £=0-w<z<w

He(z) = {
then H is of the type Hg, for some parameter &'s value.™
In this case u, and g, can be considered as location and scale parameters, whereas ¢ is a
shape parameter that determines the tail behavior of H;. In particular, ¢ determines the shape

of H¢ resulting in three different distributions type:

e $<0: Hg is a Weibull type distribution;
e ¢=0: H; is a Gumbel type distribution;

! viviana Fernandez, extreme value theory: value at risk and returns dependence around the world

Axel Bucher (2018), An overview of nonparametric tests of extreme-value dependence and of some related sta-
tistical procedures



e $>0: H is a Fréchet type distribution.

Weibull type distribution differentiates itself from the other type having finished tails. In fact,
Gumbel type presents thin tails while Frechét type is characterized by thick tails.
We are particularly interested in Frechét type since usually returns distributions are leptokur-
tic. This is particularly true if we analyze riskier assets such as stocks.

Generalized Extreme Value Cdf Generalized Extreme Value Pdf
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Figure 1 Cumulative and Probability distribution functions for the GEV variable, with u=0 and o=1.

Comparing Block Maxima and Peaks Over Threshold

To apply the Fisher-Tippet theorem we need to estimate i, o and €. This cannot be possible if
we focus just on a unique maximum, to solve this issue we implement Fisher-Tippet theorem
either through Block Maxima or through Peaks Over Thresholds (POT). The former consists of
dividing the dataset into equal length blocks and finding a maxima for each of them. This
mechanism is based on two principles that can be contradictory: to guarantee convergence to
GEV we need large blocks. Nevertheless, we need a large amount of block ending up having
many observations. In fact, this lead to have lower variances of Maximum likelihood esti-
mates. The likelihood for these “local” maxima is written as:
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As seen before, we have another trade-off between Maximum Likelihood Estimator bias and
variance. If block size is increased the bias is lowered, while variance increases. It is true also
the opposite, when number of blocks increase variance reduces and simultaneously bias
raises.

_\'m
i=1

In this paragraph we are going to study why Peaks Over Threshold (POT) can be an improved
strategy while applying Extreme Value Theory. POT is based on modeling the behavior of ex-
treme values above some high threshold. This kind of modeling enable to exploit a larger
amount of data. Furthermore, POT offers the benefit of easily computing risk measures such
as Value-At-Risk and Expected Shortfall.

“Let X4, X5, ..., X;, be a sequence of i.i.d. random variables representing risks or losses with an
unknown CDF, F. For the class of distributions F such that the Cumulative Distribution Func-
tion of the standardized value of M,, converges to a GEV distribution, it can be shown that for
large enough u, there exists a positive function S (u) such that the excess distribution F, (z):

F(z+u)—F(u)
1-F(u)

FE@Z)=PX—-u<sz|X>u = ,z>0

is  approximated by the generalized Pareto  distribution  (GPD) G.?”
This postulate suggests that Excess distribution and cumulative pareto distribution G are

equivalent. In particular:
&z -1/
(14 () ) o0
(G ) ¢
z

Gf'ﬁ(u)(Z) ) 1 —exp {— } E=0

pw)

The parameter ¢ determines the shape of the distribution:

2 Viviana Fernandez, extreme value theory: value at risk and returns dependence around the world



e ¢<0: H; is a Pareto type Il distribution;
e ¢=0: H; is an Exponential type distribution;
e ¢>0: H; is a Pareto type I distribution.

It is important to note that GEV and GPD shows a close relationship, in fact, £ represents
in both cases the shape parameter. Whereas f(u) corresponds to u and o.

The major issue when dealing with POT is deciding the optimal threshold u. There are several
methods which can be chosen to find u. These include a rule of thumb and a graphical method
based on the empirical mean excess function. The former method recommends setting u such
that P(X>u) =~ 10% — 15%. The graphical method is built on the empirical mean excess func-
tion:

Ny
1
oW = — > gy — v)
M

Where X(;y represents value of X which are above the previously set u and n,, is the number
of occurrences. Theoretically, it can be proved that if the GEV approx. works, then e(u) should
be linear in u.

By analyzing é(u) plot we can establish the optimal u. When é(u) is linear we expect the GDP
convergence is appropriate, thus choosing the smaller value of é(u) from which the empirical
mean excess function is linear and increasing as threshold u. The rationale behind this follows

the mean excess function e(u) principle, where e(u) is linear in u3.

In this section we explain the concept of threshold u using Google stock daily prices. Using R
programming language, we transformed daily prices into daily returns, which are fundamental
into threshold u estimation. Creating an Empirical mean excess plot applying data observed
allows to find the optimal threshold wu.

3 Viviana Fernandez, extreme value theory: value at risk and returns dependence around the world
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Threshold

Figure 2 Google mean excess plot (from = "2004/12/31", to = "2022/12/31")

The empirical mean excess plot reported above shows that an optimal value for threshold u
could be 2 or 2.5, where the linear shape is evident, and the slope of the curve is increasing.

One of the main differences between Block Maxima method and POT is that the former is
affected by inefficiency as it is time-consuming and can lead to extreme values exclusion. Fur-
thermore, POT utilizes more data ending up being a more efficient way of modeling extreme
values.

In conclusion, we can state that POT allow for an easier risk measure computation. Value at
Risk (VaR) and Expected Shortfall (ES) can be easily computed in the context of POT. As evi-
dence of how simple it is to compute this kind of risk measure, we are going to show and
explain them, including an example based on Google returns:

“The Value-at-Risk at level a for the losses, where usually a ranges between 0.95 to 0.99, is: 4
Pr(X >VaR,)=1—-F(VaRy) =1—-«a
VaR, = F 1(a)

By setting a and inverting F (x), an estimate for the VaR, can be computed as:

4 Formulae taken from Professor Raggi course on Risk Management.
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Here u is the threshold chosen; B and f are respectively the scale and shape parameter esti-
mates; n is the number of observations and k the number of losses exceeding the threshold
u. The optimal solution to find estimates is by applying maximum likelihood methods to our
sample.

VaR, =u +

v | T

It is easy to prove that Expected Shortfall (ES) is defined as the average loss given that VaR,,
is exceeded, in case of GPD it can be shown that:

— A~

— VaR —
ES, = ”ﬁ+ﬁ
1-¢§ 1-

éu
¢

In the next lines we show an application of these two formulas on Google return time series.
By applying Maximum likelihood estimation to Google data, we obtain the following parame-
ter estimates; based on u=2:

Py

e ¢=0.2335823

e [3=1.0690140

The shape parameter estimates f indicates that Google distribution is affected by heavy tails.
Estimating Value at Risk and Expected Shortfall is particularly straightforward, giving that we
just need to compute our estimates through the previous formulas.

90% 95% 99% 99.5% 99.9%

VaR 188 266 505 6.39 10.48
ES 3.23 425 737 9.12 14.46

Table 1 Estimating Value at Risk and Expected Shortfall (GOOGLE)

The table above, contains estimates for VaR and ES based on different a levels.
VaR, g5 = 2.66, means that with 5% probability losses will be higher than 2.66%, while ESj g5=
4.25 is the average loss given that VaR, 5 is exceeded. On graphical inspection, VaR g5 is
represented by the first vertical line whereas ES, 95 by the second vertical line. As we can

11



notice, the two risk measures are in the right tail of the distribution. In fact, we are analyzing
Google negative returns because we want our risk measure expressed in positive values.

Histogram of GOOG Returns with Fitted GPD Density

40-

30-

20~ VaR(0.95)= 2.66

E£S(0.95)=4.25

-10 0 10
Returns

Figure 3 Histogram of GOOGLE returns with fitted GPD density
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2.Copula

At the beginning of this thesis, we introduced the idea that classic finance is based on the
concept of gaussianity. This assumption has revealed to be not satisfactory while dealing with
financial markets due to its features: nonlinear dependence, fat tails and volatility clusters.
While in the latter section we showed how Extreme Value theory makes it possible to deal
with fat tails, now we show how copulas treat nonlinear dependencies. Copulas offer a useful
way to measure the dependence structure between two or more random variables, while
considering nonlinear dependence.

It is straightforward to think copula as a distribution between two marginals that described
how they are related. The process starts with the marginal distributions of each random vari-
able and after combining them, end up with a copula function. The copula function joins the
random variables into a unique multivariate distribution. Choosing marginals is crucial in Cop-
ula construction, thus we focus on various kinds of models.

In this chapter we are going to analyze different copula types, starting from their distribution.
The element we are focusing on is the possible application of copulas in the context of Extreme
Value Theory. Particularly, copulas are graphically represented to provide an intuition on their
behavior. We have chosen among the most important copula families and represented them
using probability density function and cumulative density function.

Copula is defined as “a distribution function on [0,1]* with standard uniform marginal distri-
butions, and is denoted as C(uq, Uy, ..., Uy)”. >

As stated before, the aim of a copula is to describe the correlation between marginal distribu-
tions. This concept was first studied in Sklar that stated the following result:

“Let F be a k-variate joint distribution with marginal distributions F,, F,, ..., F}.. Then there ex-
ists a copula C: [0,1]X—>[0,1] such that for all x;, x5, ..., X,

F(xy, %3, 0, %) = C(F1 (1), F2(x2), -, Fie (%)
= C(uq, Uy, ..., Ug)
Additionally, if the marginals are continuous then C is unique”. ®

Sklar’s theorem is the foundation of copula theory and it explains a modern approach to meas-
ure dependence structure. It is important to note that Sklar’s theorem has two main implica-
tions. On one hand, it demonstrates that copulas can be originated using any known marginal
distributions.

On the other hand, as previously stated copula is unique when its margins are continuous.

SFinancial Econometrics Notes, Kevin Sheppard University of Oxford, February 2, 2021 p.44

5 Financial Econometrics Notes, Kevin Sheppard University of Oxford, February 2, 2021 p.44
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In conclusion, we can also imagine a Copula as a function that allows us to extract information
on the association between the random variables analyzed. In order to do that, we study the
marginal distributions and their copula independently, knowing Copula is the function that
merge marginal distributions into joint distribution’.

Copulas families

Copulas are divided in two main families: elliptical and Archimedean copulas.
Elliptical Copulas are derived from a standard distribution, among this kind of copulas we have
Gaussian and Student’s t copula, which are directly derived from the two famous univariate
distribution. On the other hand, Archimedean copulas are not based on Sklar’s theorem as
reported by Stander in “The use of copulas in risk management”. This kind of copulas have a
closed form expression and allow to perform an analysis with broader assumptions: such as
hypotesing asymmetrical dependence structure.® In other words, Archimedean copulas rep-
resent a more suitable tool to shape correlation regarding the financial world as in many cases
we face asymmetric correlation. For example, it is easier to observe higher correlation value
in big losses than correlation value in significant profit.

Gaussian

The Gaussian is one of the most used copulas. It is defined as:

CU,V) = @, (@7H(U), 7H(V))

Where @(-) denote the normal cumulative probability function and ®~1(-) itsinverse. U,V €
[0,1] are uniform random variables and @, (-) the bivariate normal with correlation coefficient

p."

This function allows us to merge the two univariate distributions into a single bivariate distri-
bution, making possible analysis on various types of correlation dependence

7 Financial risk forecasting, Jon Danielsson p.26

& Modelling Dependence with Copulas and Applications to Risk Management, Paul Embrechts, Filip Lindskog
and Alexander McNeil

% Financial risk forecasting, Jon Danielsson 1.8.1 p.25
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Figure 4 CDF and PDF Normal Copula (p=0.8)

The two plots represent the Cumulative distribution function (CDF) and the Probability density
function (PDF) of a Normal Copula with correlation coefficient p equals to 0.8, indicating a
strong positive interdependence between the two marginals. The perspective CDF points out
the simultaneous probability of two random variables 14, u, being less than or equal to spe-
cific values. Subsequently, by analyzing this graph, it is possible to estimate the probability of
various joint events occurring. This property is crucial in risk management since it allows us to
assume on specific marginal distributions identifying the correct correlation structure. The
PDF’s surface expresses the probability density at different points within the unit square, un-
derlying concentration in probability mass. By examining this perspective plot, we get an over-
view of how density changes across the unit square. For example, peaks in the plot represent
area with higher or lower probability to observe determined combinations of u;, u,. The PDF
perspective plot allows us to understand how much it is probable for a joint event to take
place.

In the context of risk management perspective PDF is critical to understand the likelihood of
extreme financial market events. In this PDF plot we observe higher value in the initial and
final value of the unit square, indicating a high probability of extreme events.
Analyzing perspective plot can be challenging due to its 3-dimensional representation and its
complexity examination. For this reason, we utilize a contour plot which allows us to display a
3-dimensional graph on a 2-dimension plot.In the next section, we analyze a contour plot of
the Cumulative distribution function and of the PDF.

15



CDF Contour plot PDF Contour plot

Figure 5 Contours plot for CDF and PDF (Normal Copula, p=0.8)

The first graph displays the normal copula’s cumulative distribution function. Contours link
points with same cumulative probability in the unit square, easing the visualization of areas
with the equal likelihood. To offer a clearer explanation, by following contour lines we can
identify regions with similar probabilities of observing determined joint events.

The second plot describes normal copula’s probability density function. Different contours in-
dicate different probabilities, while a single line represents ranks with the same likelihood
along the unit square. In line with our previous observation, we can state that PDF contour
plot indicates higher extreme event probability in the tail. In fact, contour plot shows darker
shades in upper right and in lower left corners. This kind of visualization helps us to compre-
hend tail heaviness and correlation of various financial assets.

In conclusion, we can say that contour plots are very important tools for understanding fea-
tures and characteristics of normal copula and other kinds of copulas. In the next paragraphs
we are going to show a variety of copulas, both theoretically and graphically, that will be cru-
cial in our analysis.

16



Student’s t

One of the most important elliptical copulas is Student’s t copula, which is described by:

c(uy, ouy) =T, (85 (W), oo, t; Huy))

Where T, ,, represents the standardized Student t-distribution with v degrees of freedom, p
denotes correlation matrix and t;1(.) is the inverse of the univariate marginal distribution
function.’t0

Student’s t copula is a suitable tool to model symmetric dependence structure characterized
by relatively heavy tails, meaning that the two marginal distributions assign high probability
on tail events. In financial markets this is a classical scenario, where returns usually do not
follow normal distribution. For this reason, student’s t copula represents a better solution to
shape correlation between random variables and an improvement compared to gaussian’s
copula capacity to capture heavy tails.

Student's t Copula PDF Contour Student's t Copula PDF
o |
@©
o
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& ©
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o
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Figure 6 Student’s t Copula PDF (p=0.8; DoF=3)

10 The use of copulas in risk management (Stander) p.7
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The plot above shows two kinds of PDF representations, already introduced while talking
about Gaussian copulas. The Student’s t copula has correlation parameter rho=0.8 and 3 de-
grees of freedom, indicating a high grade of codependence and kurtosis.
Student’s t copula shows symmetric tail heaviness, influenced by the degrees of freedom. The
main difference compared to Gaussian’s copula lies in kurtosis specifications, as we can note
higher values in the tails for student’s t copula.

On the other hand, the plot below describes two kinds of CDF representations for the same

student’s t copula. Graphically, this is also similar to Gaussian’s CDF copula where cumulative
probability increases gradually.

Student's t Copula CDF Contour Student's t Copula CDF

Figure 7 Student’s t Copula CDF (p=0.8; DoF=3)
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Archimedean Copulas

Now, we are going to show one of the most frequently used copula, namely, the Archime-
dean copula.

Archimedean Clayton Copula
Clayton Copula is described by the following equation:

Cuv)=uw?d+v?o- 1)_1/6

where 0 < § < o.11 This kind of copulas only shows lower tail dependence.
Clayton Copula is crucial in describing random variables that show left tail dependence. This
is important for returns distribution analysis. For example, considering Google and Apple
stocks is more likely that a sharp decrease of Google share price determines a strong decrease
in Apple price with higher probability. In other words, simultaneous negative movement are
more likely than simultaneous positive movement in stock prices. The plot below shows Clay-
ton Copula PDF with §= 0.8, highlighting left tail dependence.

11 Eric Zivot and Jiahui Wang (2005), Modelling Financial Time Series with S-PLUS, Second Edition, p. 729

19



Clayton Copula PDF Contour Clayton Copula PDF

Figure 8 Clayton Copula PDF (6= 0.8)

Gumbel

As reported in Zivot and Wang (2005) Gumbel Copula is characterized by a dependence pa-
rameter §:

C(u,v) = exp {— [(—ln w)?® + (~In (v)5]1/6},5 >1

6 is defined between 1 and +oo, in case 6=1 is called Independence copula.
The higher the value of the dependence parameter, the larger the correlations between the
two random variables. Gumbel Copula is particularly famous because it shows upper tail de-
pendence, making it a suitable copula to model Loss distribution or others typical financial
phenomena.

20



Gumbel Copula PDF Contour Gumbel Copula PDF
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Figure 9 Gumbel Copula PDF (6=8)

The plot above describes PDF of a Gumbel copula with §=8. As we can see the right tail of the
distribution is heavier than the left tail, indicating tail dependence asymmetry. This feature
can be helpful when dealing with Loss distribution or negative returns distribution. In fact,
both kinds of distribution are usually right skewed showing a higher probability of extreme
events in the upper tail.

Frank

Frank Copula is based on the following copula function!?:

(e70u1 —1)(e % — 1)
s }

1
CFr(uL Uy) = — Elog

12D, Ruppert (2011), Copulas, Washington
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Where 6 is defined in (-00,+0) in case 8=0 the Frank Copula is the Independence Copula.
Frank Copula is considered a symmetric dependence copula, as elliptical copulas.
In the example below, we choose 6=8 as our correlation parameter. The PDF plot exhibits joint

distribution of two marginals. The structure is clearly symmetric, as we can observe in both
graphs.

Frank Copula PDF

Contour Frank Copula PDF
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Figure 10 Frank Copula PDF (9=8)

BB1

BB1 Copula is described by the following equation:*?

Cluv) = <1 + [(u‘g - 1)(S + (v—e _ 1)6]—1/9)

13 Modelling Financial Time Series with S-PLUS, Second Edition, Eric Zivot and Jiahui Wang
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Where 8 > 0,6 = 1 are the copula dependence parameters. BB1 copula shows high model-
ling flexibility, allowing case with either left or right tail correlation depending on the parama-
ters chosen.* From BB1 copula derives two types of copula we have already encountered:

e When 6=0, BB1 copula is the Clayton Copula;
e When §=1, BB1 copula is the Gumbel Copula.

BB1 Copula PDF BB1 Copula PDF
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Figure 11 BB1 Copula PDF (9=2, 6=3)

In the plot above is displayed a BB1 copula with =2 and §=3. In this case we constructed BB1
copula starting by two marginal distributions, we chose two student’s t with 3 degrees of free-
dom.

14 Copula-based top-down approaches in financial risk aggregation, December 2006, Christian Cech
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Copula analysis on Google and Apple stocks

In this paragraph we show which kind of copula could be the best fit while analyzing depend-
ence structure between Google and Apple returns. We start by cleaning time series data in R
obtaining negative returns for both stocks. After that, we fit different copula models and verify
their fit to data through loglikelihood, AIC and BIC.

COPULA FAMILY LOGLIKELIHOOD AIC BIC

GAUSSIAN 812.75 -1623.51 -1617.09
STUDENT'S T 1019.44 -2034.87 -2022.04
CLAYTON 820.74 -1639.48 -1633.06
GUMBEL 816.46 -1630.93 -1624.51
BB1 969.67 -1935.34 -1922.50

Table 2 GOOGLE and APPLE copulas fit

Analyzing this table allow us to choose between various copula families which one represents
the best fit for our data. It appears clear from the results that student’s t copula is the best fit,
it has the higher loglikelihood while having lower values for both AIC and BIC, ensuring the
best tradeoff between fit and model complexity. Following the same criteria, we can consider
BB1 copula as a good shaping for our data. In the end, we chose as third example Gumbel
Copula for its upper tail dependence. Parameter estimates are summarized in the following
table:

COPULA FAMILY 1° PARAMETER 2° PARAMETER KENDALL’'S TAU
STUDENT'ST 0.56 3.06 0.38
BB1 0.54 1.29 0.39
GUMBEL 1.57 = 0.36

Table 3 Copulas parameter estimates

Student’s t parameters refer respectively to correlation parameter p and degree of freedoms.
BB1 is defined by 6=0.54 and 6=1.29. On the other hand, Gumbel is defined by just depend-
ence parameter 6=1.57. The three models have similar Kendall’s tau, which is a correlation
coefficient explained in the next paragraph.
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Now, we are going to show graphical representation of the three copula models fitted to the
data, using parameter estimates to underline correlation structure between Google and Ap-

ple.

APPLE/GOOGLE Copula (t) APPLE/GOOGLE Copula (t)

Figure 12 Apple-Google Copula PDF Student’s t (p=0.56, DoF=3)

The student’s t copula PDF suggests that dependence structure between these two stocks can
be shaped with a symmetric tail heaviness, meaning that the likelihood of extreme co-move-
ment in the left tail is equal to extreme co-movement in the right tail. For instance, a sharp
decrease in Google prices has probability equal to a sharp decrease in Apple price. This is also
valid for increase in value, they show the same relationship. Apple/Google copula (t) has the
same degree of freedoms of the example in paragraph (copula student t) while a lower corre-
lation parameter rho, ending up having fewer extreme observations in both tails.

In the second model we can observe how left tail is heavier, determining asymmetry depend-
ence. This means that is more probable to observe positive co-movement than observing neg-
ative co-movement in the two tails. In this context, this implies that a significant rise in Apple
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stock price following a considerable increase in Google stock price is more probable than ob-
serving two consequential huge losses.

APPLE/GOOGLE Copula PDF (BB1) APPLE/GOOGLE Copula PDF (BB1)
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Figure 13 Apple-Google Copula PDF BB1 (§=0.54, 6=1.29)

Gumbel copula is the last model chosen among the possible copula fits. We decide to shape
dependence through Gumbel copula due to its tail asymmetry and to show how different cop-
ulas can originate various dependence structure. As we can notice in the plot, the right tail is
heavier than the left tail. Showing an opposite situation if compared to BB1 fit, in fact, a
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negative co-movement in the price of both stocks is more probable than a synchronized pos-
itive increase in the price of both stocks.

APPLE/GOOGLE Copula PDF (Gumbel) APPLE/GOOGLE Copula PDF (Gumbel)

Q
-

Figure 14 Apple-Google copula PDF Gumbel (6=1.57)
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Tail Dependence

Tail Dependence is a crucial concept when considering copulas. It measures the dependence
between two random variables in the tails of the copula distributions, both upper and lower?>:

A,(X,Y) = limPr (Y > VaR,(Y) | X > VaR,(X)
q-1

L (X,Y) =limPr (Y < VaR, (Y) | X < VaR, (X)
q-0

Applying the first equation we find the probability that Y is larger than a high g-quantile given
X is already extreme. On the other hand, this latter formula shows the probability by which Y
is lower than a g-quantile of Y given X is below a g-quantile. In the first case q tends to 1, while
in the second one tends to zero. If 1;, 4, = 0 our copula does not exhibit any tail dependence.
An example of copulas that show tail independence are Gaussian and student’s t copulas.
A;, A, # 0 our copula shows tail dependence. As we already discussed before Archimedean
Copulas usually are defined as tail dependent copulas. Gumbel copula is an upper tail depend-
ent function, whereas Clayton is a lower tail dependent copula.

Correlation measures

Embrechts, Lindskog and Mcneil (2001) stated that Pearson’s linear correlation is a measure
of dependence driven by both the univariate distribution and a copula, while Kendall’s tau and
Spearman’s rho rely only on the copula?®.

Embrechts, Lindskog and Mcneil (2001) theorized four essential properties that a universal,
single value measure of dependence must follow:

1 §(X,Y)=58(Y,X)
2 —1<8(xX,Y)<1

3 6(X,Y)=1if X andY are co-monotonic; §(X,Y) = —1if X and Y are counter-mon-
otonic

4 If T is strictly monotonic, then:

15 Modelling Financial Time Series with S-PLUS, Second Edition, Eric Zivot and Jiahui Wang pag. 727

16 Quantitative Risk Management: Concepts, Techniques and Tools, Darrell Duffie and Stephen Schaefer, p.206
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_(6(X,Y) Tincreasing ,,
5(T(X),Y) = {—6(X, Y) T decreasing

It is crucial to note that Pearson’ s linear correlation satisfies only the two-initial conditions,
meaning that Pearson’ s linear correlation is considered a symmetric dependence measure
that range between -1 and 1. Whereas the two rank correlation measures satisfy all the con-
ditions above. In the next sections we define the three measures of dependence and furtherly
explore their features and differences.

Linear correlation is defined as a ‘measure of linear dependence:

Let (X,Y)T be a vector of random variables with nonzero finite variances. The linear correla-
tion coefficient for (X, Y)7 is:

_ Cov (X,Y)
B J/Var (X),/Var ()

p(X,Y)

where Cov (X,Y) = E(XY) — E(X)E(Y) is the covariance of (X,Y)”, and Var (X) and
Var (Y) are the variances of X and y .18

Pearson’s correlation is defined as perfect positively dependent when its value is +1, perfect
negatively dependent when is -1. Moreover, Pearson’s correlation is considered null when it
equals 0. The last case becomes particularly evident when two random variables are inde-
pendent.

In the financial world, two assets that are perfectly positively dependent move together by
the same amount. Obviously, this is a truly low probability event if not deemed impossible.
Pearson’s correlation is the most widely known measure of correlation, but we should bear in
mind that might not be the most appropriate method, especially when analyzing non-elliptical
distributions.

As stated before, Pearson linear correlation counts among its properties only two of the four
required to be a proper measure of dependence. The absence of these properties in Pearson’s
linear correlation underlines the interest on other estimation method for correlation.
In this paragraph we define two measures of dependence that are directly related with the
concept of copula function and are considered measure of concordance?®.

17 Modelling Financial Time Series with S-PLUS, Second Edition, Eric Zivot and Jiahui Wang, pag. 724

18 Modelling Dependence with Copulas and Applications to Risk Management, Paul Embrechts, Filip Lindskog
and Alexander McNeil pag. 9/10

19 Concordance: A pair (u;, v;) and (u]-, vj) of the sample is called concordant if either u; < u; and v; < v; or

u; > w; and v; > v;. Itis called discordant if either u; < u; and v; > v; or u; > u; and v; < v;. Taken from
chapter 9 p.725
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Kendall’s tau is defined as:
X, Y)=P{(X-X)(Y -V) >0} -P{(X - X)(Y —Y) <0},
where (X, Y)T is an independent copy of (X, Y). Hence Kendall's tau for (X, Y)T is simply the

probability of concordance minus the probability of discordance. Let (X,Y)T be a vector of
continuous random variables with copula C. Then Kendall's tau for (X, Y)7 is given by

T(X,Y)=0Q(C,C) = 4[[{0 ” C(u,v)dC(u,v) — 1.

Note that the integral above is the expected value of the random variable C(U, V), where
U,V ~ U(0,1) with joint distribution function C, i.e. 7(X,Y) = 4E(C(U,V)) — 1"

In this thesis we are interested in estimating empirically T using an estimator:

f:(n%) z sign ((xi—xj)(yl'—y]'))21
5 ) 1<izj<n

7 is computed as the difference between concordant pairs and discordant pairs divided by g

Sample’s concordant pairs are simply ranked observations of the two random variables that
move together, the ranked observation of one change in the same direction of the other. The
mechanism behind discordant pairs is the opposite, we want to know when ranked observa-
tion do not move in opposite direction.

Spearman’s rho is defined as:

“Let (X,Y)T be a vector of continuous random variables with copula C. Then Spearman's rho
for (X,Y)T is given by

ps(X,Y) =3Q(C, 1) = 12f uvdC(u,v) —3 =12 ff C(u,v)dudv — 3.
[0,1]2

[0,1]2

Hence,if X ~FandY ~ G,andweletU = F(X) and V = G(Y), then

20 https://people.math.ethz.ch/~embrecht/ftp/copchapter.pdf pag.13

21 Modelling Financial Time Series with S-PLUS, Second Edition, Eric Zivot and Jiahui Wang
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ps(X,Y) =12 ff uwdC(u,v) —3 =12E(UV) -3
[0,1]?
_EWQV)-1/4 Cov (U,V)
IEVIVE J/Var (U)/Var (V)
=p(F(X),G(Y)). 2

The estimator for pg(X,Y) is: 23

n

i=1

The underlying concept of this formula is to exploit squared rank differences to derive the
estimator.

As mentioned above, the fundamental difference between rank correlation and linear corre-
lation rely on the capacity of the former to detect both co-monotonicity and counter-mono-
tonicity.

22 Modelling Financial Time Series with S-PLUS, Second Edition, Eric Zivot and Jiahui Wang

23 Modelling Financial Time Series with S-PLUS, Second Edition, Eric Zivot and Jiahui Wang, p.726

31



20

10 [ ] * L] *
. R
} Kendall: 0.38 T S TR OK
< Spearman: 0.52 « “y e
. i ° ..‘0 *
° o o ° :. B
] .O
) L4 * '.
.:0':0..::..’
° . ® . ®’ .
10 . ’ ° iy
-10 0 10
GOOG

Figure 15 Correlation Scatterplot and correlation measures

In this plot we analyze returns of Apple (AAPL), Google (GOOG) and three different measures
of dependence. As we can notice by observing this scatterplot, all the correlation measures
detect positive dependence between Apple and Google, while Kendall’s tau assumes a lower
value than both Spearman’s rho and Pearson’s rho. Pearson’s correlation, shown in green,
quantifies the linear correlation between Apple and Google as 0.55. On the same level is
Spearman’s correlation value (0.52), displayed in red. In the end, Kendall’s correlation, shown
in blue, has a value equal to 0.38 which implicates a lower correlation compared to the other
rank correlation and linear correlation.

Overall, the rationale behind utilizing rank correlation in the context of financial returns de-
pendence is profoundly based on the rank correlation ability to deal with skewed data and
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nonlinear dependence. As a matter of fact, Financial Markets often exhibit non-normal returns
and nonlinear correlation challenging Pearson’s correlation as a method of analysis in this
context.

Generally financial products show irregular correlation meaning that they co-move with dif-
ferent magnitude. Obviously, nonlinearity increases as the grade of complexity of the product
rises.

As previously stated, normality assumptions, is a fundamental property of linear correlation.
However, normality assumption is rarely respected by market returns, preferring other
skewed or fat-tails distributions.

Copula represents an intuitive and flexible way to shape interdependence between financial
returns. Rank correlation plays a significant role in copula modelling, allowing to choose meas-
ure of dependence suited to the complexity of nonlinear and nonnormal scenarios. To sum
up, rank correlation and copula are a better solution in analyzing and interpreting financial
risk, reducing the potential underestimation of risk.
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3. Stock Index Analysis: CAC 40 and FTSE MIB

In this chapter we are going to analyze two European main stock indexes: CAC 40 and FTSE
MIB. These two stock indexes represent respectively French and Italian top 40 listed compa-
nies. Our analysis is based on testing normality assumption, evaluating heavy tailed models
and using EVT along with Copula application. Our primary goal is to obtain an optimal fit for
our stock indexes to compute risk measures and finding marginal distributions to create our
copula. Starting by verifying if the normal assumption is suitable for our data, we are going to
fit student’s t to our stock indexes and then applying EVT through POT and BM methods.
In the last paragraph we will observe a Copula analysis. By selecting marginals obtained by
optimal fit and creating optimal copula using maximum likelihood estimation, we aim to show
how CAC 40 and FTSE MIB are related to each other.

Analysis on Normality Assumptions

We start by cleaning data and obtaining a bivariate time series on returns. The time series
covers the period from December 31, 2004 to December 315, 2022. In the first plot CAC 40
returns are displayed, while in the second FTSE MIB returns. At first glance we can observe
how the two returns are correlated in times, showing the same direction movements with
slightly different peaks.

CAC40 Returns FTSE.MIB Returns
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Figure 16 CAC 40 and FTSE MIB returns time series
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Graphically, we can notice how the returns are clustered in certain periods. These periods
coincide with recent crisis. If we display time series on the same plot we can be even more
accurate to describe this pattern.

FTSE.MIB and CAC40 Returns
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Figure 17 CAC 40 and FTSE MIB returns time series

By including in the same plot the two series, we highlight their interdependency. CAC 40 and
FTSE MIB seem to be correlated even on high volatility movements. Now, we want to be more
informative about which distributions CAC 40 and FTSE MIB returns follow and particularly if
they can be considered Gaussian. In this first part of our dissertation, we are going to discuss
normality assumption by considering basic statistics as mean, standard deviation, skewness
and kurtosis. In the table below we summarize the results obtained:
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CAC40 FTSE.MIB

MEAN 0.002672 -0.01811
STANDARD DEVIATION 1.371719 1.561517
SKEWNESS 0.4798222 0.9571906
KURTOSIS 8.651679 12.04192

Table 4 CAC 40 and FTSE MIB statistics

By looking at these statistics we can determine if the two returns time series are distributed
as a Normal distribution. Mean is close to 0 for both stocks suggesting that returns are, on
average, null. CAC 40 standard deviation is 1.37 while FTSE MIB is even higher, meaning that
FTSE MIB returns are more volatile. For a normal distribution skewness is equal to 0 and indi-
cates returns symmetry. In our analysis both FTSE MIB and CAC 40 appear to be asymmetric.
In fact, CAC 40 skewness is equal to 0.48 and FTSE MIB to 0.96 suggesting that the two returns
distribution are characterized by positive asymmetry. This feature is also demonstrated by
minimum and maximum value observed in the two distributions. In the table n.4 we can notice
that both right tails are longer than respective left tail. This condition implies that positive
returns are more likelihood compared to losses. In the end we analyze Kurtosis, which refers
to the amount of probability concentrated in center and tails distribution rather than in the
shoulders. Kurtosis in normal distribution is equal to 3, which means that the distribution is
not characterized by heavy tails. Other distributions, like Student’s t, are characterized by high
kurtosis which indicates more probability for tail event. Our results significantly exceed 3,
therefore implying both returns time series are characterized by fat tails.
In the end if we analyze CAC 40 and FTSE MIB extreme values, it becomes evident that we
expect to observe more positive extreme returns than extreme negative losses.

CAC40 FTSE.MIB
MIN -10.052669 -10.30386
15T QUARTILE -0.674465 -0.77715
3RP QUARTILE 0.606872 0.72322
MAX 13.994896 20.37733

Table 5 CAC 40 and FTSE MIB statistics

Given all these signals it becomes evident that normality assumption is not a suitable fit for
our data. To solidify this assumption, we introduce normality statistical tests and other graph-
ical visualization such as Q-Q plot and histogram.
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In the two tables below, we summarized statistic values for each test. We choose four differ-
ent statical tests, each of them tests normality assumption. Anderson-Darling and Kolmogo-
rov-Smirnov tests verify if CAC 40 and FTSE MIB data are drawn from a normal distribution
while Jarque-Bera test points out if there any fat tails in the distribution.

TEST VALUE P-VALUE
ANDERSON-DARLING 68.975 <2.2e-16
KOLMOGOROV-SMIRNOV 0.56604 <2.2e-16
JARQUE- BERA TEST 14377 <2.2e-16
LJUNG-BOX 3.7216 0.05371

Table 6 CAC 40 Normality tests

As reported above, the results clearly show how normality distribution does not fit our data.
In fact, each test rejects the null hypothesis which clearly refers to gaussianity assumption.
Anderson-Darling test value is 68,975 and its p-value is less than 2.2e-16 strongly indicating a
departure from normality. Kolmogorov-Smirnov test value is above critical value whereas its
p-value is almost null. Also, Jarque-Bera test takes value that allows to reject normal hypoth-
esis. By analyzing these values, we can state that CAC 40 distribution is not normal.

TEST VALUE P-VALUE
ANDERSON-DARLING 62.121 <2.2e-16
KOLMOGOROV-SMIRNOV 0.55381 <2.2e-16
JARQUE-BERA 28212 <2.2e-16
LJUNG-BOX 4.6634 0.03081

Table 7 FTSE MIB Normality tests

Moving to the second table, our analysis extends to FTSE MIB data. Statistic values follows
CAC 40 results, confirming our conviction on non-normal nature of FTSE MIB data.
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Even if both CAC 40 and FTSE MIB show departure from normality we want to explore this
feature graphically. In the next lines, we represent the two stocks by plotting their histograms
and Q-Q Plots. These two tools allow us to visualize how returns from each stock are distrib-
uted and how these impact on tails distribution.
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Figure 18 Normal QQ-plot CAC 40

The plot above displays a Q-Q Plot which compares normal quantiles against quantile of CAC
40 returns. At first glance we can notice how many returns observations deviates from nor-
mality. In fact, CAC 40 returns lied far away from the Normal line forming a S-shaped matching.
So, now we have another tool that suggests departure from normality for CAC 40 returns. In
fact, it seems clear that normal distribution is not a suitable fit for our sample data.

We have also another graphical tool that will allow us to firmly exclude gaussianity assumption
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for CAC 40 data. Histogram helps to visualize returns frequency distributions while the overlay
of a normal curve aids to assess if returns follow a normal distribution.

Histogram and Normal curve for CAC40
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Figure 19 Histogram and Normal curve for CAC 40

Once again, the CAC 40 histogram describes a situation where there is a strong deviation from
normality. Bars plot in the tails overcome systematically normal curve. It is important to note
that also the central part of CAC 40 distribution is not well described by normal distribution,
as evidenced by the bars surpassing normal curve in the plot’s middle section.
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Figure 20 Normal QQ-plot FTSE MIB

The plot above displays a Q-Q Plot which compares normal quantiles against quantile of FTSE
MIB returns. We can notice the same dynamic as in CAC 40 with a strong departure from
normality. In fact, also CAC 40 returns lied far away from Normal line forming a structure S-
shaped. We can conclude that normal distribution is not a suitable fit for FTSE MIB returns.

Now, we are going to see how FTSE MIB histogram fit into Gaussian curve, knowing that likely
histogram bars overcome normal curve.
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Histogram and Normal curve for FTSE.MIB
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Figure 21 Histogram and Normal curve for FTSE MIB

As anticipated before we can notice how histogram bars represent an almost perfect fit for
the central part of the distribution, while normal curve is systemically surpassed in the tails.

In the end, normality assumptions on our returns distributions cannot be considered a credi-
ble fit. We should introduce another kind of distribution that allows to better describe our
returns, which are characterized by fatter tails than normal distribution.

In other words, our aim is to find a model distribution that could better describe sample data
characterized by extreme values, and thus, fatter tails. We will use student-t as a reference
distribution and trying to find the best fit using R language. Once we have found the best
student-t fit we will show how it represents each of our return distribution.

As reported before, using R language we are going to find the best possible student t in terms
of fit for FTSE MIB and CAC 40 by using “fitdist” function. Fitdist estimates parameters that
best match our return distribution. The outcome of R analysis is summarized in the table be-
low:
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CACA40 FTSE MIB

MEAN -0.05515526 -0.05302316
STANDARD DEVIATION 1.47670674 1.64009850
DEGREE OF FREEDOM 3.00482283 3.20365077

Table 8 Student's t estimates for CAC 40 and FTSE MIB

Fitdist indicates that the degree of freedom (DoF) for CAC 40 is around 3, while FTSE MIB DoF
estimate is slightly higher. The same trend can be observed for standard deviation, where FTSE
MIB estimates is higher than the one computed for CAC 40. Mean estimates are nearly iden-
tical.

It is interesting to analyze the graphical representation of student-t fitting model and see if
tails are well described by this kind of distribution.

QQ Plot of Sample Data versus Student-t with 3 Degrees of freedom
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Figure 22 Student’s t QQ-plot for CAC 40

Q-Q plot of CAC 40 against Student t with 3 degree of freedom is displayed above. We can
appreciate how accurately described are CAC 40 tails. In fact, CAC 40 returns are aligned with
student’s t distribution. Furthermore, if we compare this Q-Q plot with Normal Q-Q Plot CAC
40 (FIG.) we can note how the two shapes differ. The former appears to be linear while the
latter is S-shaped.
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The better fit is also highlighted in the next graph. Returns frequency distributions never over-
come Student’s t with 3 DoF in both extremities. On the other hand, histogram bars in the
central part of the plot systematically surpass student’s t line indicating sub-optimal fit in the
central part. It is interesting to note that the normal line has opposite fitting pattern compared
to the student-t line. Given poor results in describing the central part of the distribution we
should consider using student-t to assess tail events.

Histogram and Student-t curve for CAC40
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Figure 23 Histogram and Student’s t curve for CAC 40
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FTSE MIB analysis will follow the same steps of CAC 40. We will analyze Q-Q plot of FTSE MIB
against student-t with 3.2 DoF and then we focus on histogram visualization.

QQ Plot of Sample Data versus Student-t with 3.2 Degrees of freedom
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Figure 24 Student’s t QQ-plot for FTSE MIB

As observed before, student’s t Q-Q plot represents a better fit for our data. This is true also
for FTSE MIB, we can notice how returns align to student’s t line indicating a better fit com-
pared to normal line.

The histogram below is another graphical confirmation of student’s t good fitting for FTSE MIB
returns. In fact, histogram bars rarely overcome student’s t line confirming our presage about

the distribution nature.

These visual representations confirm that student’s t with 3.2 DoF optimally describes FTSE
MIB returns.
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Figure 25 Histogram and Student's t curve for FTSE MIB
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Extreme value Theory: CAC 40 and FTSE MIB analysis

In the last paragraph we established that our data cannot be described by normal distribution.
In fact, Student’s t looks as improvement for both CAC 40 and FTSE MIB. Now, we want to
investigate how the two distributions behave in their tails, particularly concerning about ex-
treme losses. In financial market tail event can be disruptive and threatening market stability.
As showed in the previous chapter Extreme Value Theory (EVT) is a crucial analytical tool that
allows to study returns distribution tails. In our CAC 40 and FTSE MIB analysis we want to
estimate and model the impact of certain rare events on the market and on the two indexes.
Our approach involves determining optimal fit for our data using Block Maxima method and
Peaks over threshold. Our analysis ends with a focus on risk measurement, to estimate likeli-
hood and magnitude of extreme losses.

As we are studying loss distribution we look at negative returns. R language allows us to find
optimal fit for both Extreme value theory applications. Firstly, we are going to show Block
Maxima method estimations and subsequently explaining Peaks over the threshold findings.

Block Maxima analysis

As explained in the previous chapter, we are going to divide our data into blocks. Each block
has one month size, thus having a maxima observation for each month from 2004 to 2022. In
the plot below we can notice how maxima from each distribution are distributed in similar
positions, highlighting correlation between the two indexes.
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Figure 26 CAC 40 and FTSE MIB monthly maxima
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In the table below we can analyze BM parameter estimates for CAC 40 loss distribution. Pa-
rameter estimates are obtained using gevdist (ML estimation in R). Shape parameter ¢ is equal
to 0.2973, determining a Fréchet distribution. This kind of distribution is characterized by fat
tails, implying higher probabilities for extreme losses. Location parameter u is around 1.7,
while scale parameter [ is around 0.73.

BM: CAC 40 COEFFICIENTS STANDARD ERROR
3 0.2973228 0.004187933
u 1.6987367 0.003997467
B 0.7299249 0.003361472

Table 9 BM coefficients for CAC 40

Analyzing residuals is crucial to understand if results above are optimal estimates for our
losses distributions. Goodness of fit is basilar to correctly studying loss distribution and com-
puting risk measure. GEV residual histogram has an exponential shape suggesting we have
obtained optimal parameters. Additionally, the scatterplot of residuals reinforces our idea
since there is no clear pattern in residuals. Once again Q-Q plot of residuals confirms our in-
tuition, as our data perfectly align to exponential quantiles. All the graphs indicate perfect
fitting, meaning that our estimates seem reliable.
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Block Maxima GEV Residual Histogram
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Figure 27 CAC 40 residuals

Now, we analyze BM parameter estimates for FITSE MIB. Similar to CAC 40, shape parameter
(&) suggest we are facing a Fréchet distribution. Location parameter u is around 1.9, while
scale parameter 8 is around 0.88.

BM: FTSE MIB COEFFICIENT STANDARD ERROR
3 0.216673 0.004225543
u 1.917174 0.004837545
B 0.875330 0.003884456

Table 10 BM coefficients for FTSE MIB
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Even for FITSE MIB our fit seems optimal. By checking at residuals below we can state good-
ness of fit for BM parameter estimates. In fact, they follow similar CAC 40 pattern.
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Figure 28 FTSE MIB Residuals

Now we are going to compute some risk measures. While we know that maximum loss ob-
served is 10.05% and 10.30% respectively for CAC 40 and FITSE MIB, our analysis extends be-
yond these values. Our objective is to recognize the probability of experiencing similar losses
in the future and the frequency with which such events occur.

A crucial risk measure is probability to observe a loss in the next block larger than max loss
observed. For example, in the CAC 40 case, we want to know what is the probability to ob-
serve a loss L higher than 10,05% during the next month. To do that we compute P(L > 10,05%),
which is equal to 1 minus the probability to observe a loss equal to 10,05%.
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Another fundamental risk measure is return level. The kn-block return level can be inter-
preted as “the level that is exceeded once out of every kn-blocks on average. Formally, the
return level Ry, ;. is such that:

1
Pr (M, > R,;) = m

Note that by construction Ry, is the (1 — 1/k) quantile of H¢ (1, o), and then:

Rk ~ Hg‘}t,a <1 — %) =u —g(l - (—ln (1 _ %)>—€>

The n-block in which the return level is exceeded is called a stress period”.*
It represents the maximum expected loss in a given time period. For instance, computing
which the max loss expected in the next year will be.

The kn-block return period, k;, ,, is the last risk measure we are going to see regarding Block
Maxima method. It is defined as the “average number of blocks we must wait before we ob-
serve the extreme event M,, > u, for a given u.

Since Hg ,, = Pr (M,, <u), then the event Y = (M,, > u) is observed the first time after k
blocks has probability Pr (Y = k) = g;la(l — Hf,u,o)' This is a geometric distribution with
average 1/1 — H; , .. Therefore the k-block return period is*:

1
1- Hf,ﬂra (U.)

kn,u =

For example, we can compute how many months we must wait before observing a loss higher
than the previous maximum loss.

In the table below we have summarized results for each of the risk measures previously ex-
plained.

24 Formulae taken from Professor Raggi course on Risk Management.

5 Definition and formula taken from Professor Raggi course on Risk Management.
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TEST CAC40 FITSE MIB

MAXIMUM LOSS 10.05267% 10.30386%
PROBABILITY OF EXCEEDANCE 0.6814% 0.558%
K-BLOCK RETURN PERIOD (IN MONTHS) 146.75 179.22
K-BLOCK RETURN LEVEL (1 YEAR) 4.3176 4.7343

Table 11 Risk measures (BM)

Comparing CAC 40 and FITSE MIB results reveals insightful patterns but also distinctions. De-
spite both stock indexing share a maximum observed loss of around 10%, the probability of
exceedance slightly differs, standing at approximately 0.68% for CAC 40 and 0.56% for FITSE
MIB. This difference in probabilities reflects various market dynamics of each stock index.

The k-block return periods computed on maximum loss observed are around 147 months for
CAC 40 and 179 months for FITSE MIB suggesting a large difference in frequencies of extreme
events. For CAC 40 we expect a loss equal or higher than 10.05% in 12 years, while for FITSE
MIB we expect a loss equal or higher than 10.30% in 15 years. A loss around 10% is an extreme
event that happens once in more than 10 years, thus we are also interested in analyzing more
frequent events. To do that we can compute k-block return level within 1 year. In this case the
k-block return levels are 4.32% for CAC 40 and 4.73% for FITSE MIB over a 12-month period,
signify distinct expectations for the maximum losses within a year. In both case we observe a
probability equal to 8,33%. Another method to study probability of more frequent events is
to define a determined loss and then computes risk measures seen above. There is a proba-
bility of 5,53% to observe a loss of 5% for CAC 40 and 7,04% for FITSE MIB. K-block return
period for CAC 40 is 18 months, whereas FITSE MIB return period is 14 months.

Risk measures show how FITSE MIB can be considered a riskier asset if compared to CAC 40.
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Peaks over threshold analysis

After having analyzed how Block maxima performs on data and, on that basis, risk measures
are computed, we are going to show Peaks over thresholds (POT) results. To determine an
optimal threshold for both stock indexes we display mean-excess plots and find where é(u)
begins to be linear. In the section below we show mean-excess plot for each stock index and
decide the optimal threshold wu.
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Figure 29 Mean Excess plot for CAC 40 and FTSE MIB

Analyzing CAC 40 Mean-excess plot we can conclude that optimal threshold could be around
1.5 or 2, whereas observing FTSE MIB optimal threshold u could be around 2 or 2.5.

After deciding optimal u, we can find POT best fit for our losses. By computing Maximum like-
lihood estimates, we obtain the following parameter estimates:
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POT: CAC40 COEFFICIENT STANDARD ERROR

é 0.1901761 0.0008146189
u 1.5
i} 0.7491697 0.0008173213
Table 12 POT coefficients for CAC 40
POT: FTSE MIB COEFFICIENT STANDARD ERROR
2’ 0.2036028 0.00100696
u 2
i} 0.7742930 0.001010949

Table 13 POT coefficients for FTSE MIB

CAC 40 shape parameter é estimate indicates that CAC 40 losses are heavy tailed. We can

notice as also FTSE MIB shape parameter é suggests higher kurtosis for the Italian stock index
distribution as well.
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As usual, our analysis is accompanied by visual representations that help to visualize our intu-
itions. In this paragraph we observe histograms of our returns with fitted GPD line. First his-
togram represents CAC 40 loss distribution, while FTSE MIB loss distribution is represented
just below.

Histogram of CAC40 Returns with Fitted GPD Density
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Figure 30 Histogram with fitted GPD density of CAC 40

By observing CAC 40 histogram we can notice that GPD properly fits the data. CAC 40 losses
are well approximated below GPD line. We observe similar results in FTSE MIB histogram, even
if in some area losses are not perfectly distributed. For instance, histogram central part does
not fit optimally GPD line.
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Histogram of FTSE Returns with Fitted GPD Density

density
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Figure 31 Histogram with fitted GPD density of FTSE MIB

At first glance we can state that POT method appears to be an optimal solution to model FTSE
MIB and CAC 40. To confirm this idea, we will conduct a detailed analysis on residuals mirror-
ing the approach used for BM method. Residuals analysis aims to understand POT suitability
and reliability for these stock indexes.

Analyzing residuals is crucial to understand if results above are credible enough for the losses
distributions. Goodness of fit is key to correctly study loss distribution and compute risk meas-
ure. GEV residual histogram has an exponential shape suggesting we have obtained optimal
parameters. Additionally, the scatterplot of residuals reinforces our idea since there is no clear
pattern in residuals. Once again Q-Q plot of residuals confirms our intuition, as our data per-
fectly align to exponential quantiles. All the graphs indicate perfect fitting, meaning that our
estimates seem reliable
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In the next paragraph we observe excess distribution and tail of underlying distribution, while
just below there are residuals plot. We start by analyzing CAC 40 graphs.

In the top left plot are depicted losses over threshold against GPD distribution. Excess distri-
bution follows GPD distribution indicating optimal fit. On the top right graph, we observe how
CAC 40 tail fit GPD distribution. Given that only few observations don’t follow GPD line we can
state that CAC 40 tail are well described by GPD model. Moving to residuals we can notice that
in scatterplot of the residuals lack of any clear pattern. residuals quantiles align quite well
against exponential quantiles in the Q-Q plot. Considering these signals, we can state that GPD
represents a valid solution to model CAC 40 losses.
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Figure 32 GPD Residuals for CAC 40
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FTSE MIB plots indicate that GPD model provides an accurate representation of FTSE MIB
losses. In fact, excess distribution follows GPD distribution, while we observe GPD goodness
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of fit in the top right graph. Even residuals confirm our hypothesis, no patterns in the scatter-
plot and residuals quantiles perfectly align with exponential quantiles.
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Risk measures: VaR, and ES,,

We found optimal fit both for CAC 40 and FTSE MIB in POT context. Now we are interested in
analyzing potential extreme losses. To do that we use VaR, and ES, choosing different a. A
higher oo corresponds to more extreme losses with decreased probability. We compute VaR,,
and ES, following the same procedure used in Google example.

CAC 40 (o) VaR, ES,

0.95 1.94% 2.97%
0.99 3.51% 4.91%
0.999 6.78% 8.95%

Table 14 VaR, and ES,, for CAC 40

The table above show CAC40VaR, and ES, estimates. VaR o5 indicates a loss equal or higher
than 1.94% with 5% probability. While average loss if VaR o5 is exceeded is ES; g5 =2.97%.
As explained before as the coverage level increases, we observe higher losses with lower prob-
ability.

On the CAC 40 histogram below are depicted VaR g5 and ESj o5.

Histogram of CAC 40 Returns with Fitted GPD Density
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Figure 34 Histogram of CAC 40 with plotted VaR 45 and ES o5
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In the table below VaR, and ES, estimates for FTSE MIB are plotted. We observe slightly

higher losses if compared to CAC 40 estimates.

FTSE MIB (o) VaR, ES,

0.95 2.24% 3.27%
0.99 3.78% 5.22%
0.999 7.13% 9.41%

Table 15 Table 13 VaR, and ES,, for CAC 40

As already showed in the CAC 40 example, the plot below depicts FTSE MIB histogram with

VaRj 95 and ESj o5.

Histogram of FTSE MIB Returns with Fitted GPD Density
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Figure 35 Figure 35 Histogram of FTSE MIB with plotted VaR, o5 and ESj o5

95)= 2.24%

F£S(0.95)= 3.27%
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Copula: CAC 40 and FTSE MIB analysis

In this paragraph our aim is to create copulas that optimally capture interdependences be-
tween CAC 40 and FTSE MIB. We will use two different approaches. Firstly, we build copulas
using marginals obtained in the previous analysis, such as Student’s t, POT and BM estimates.
The copula is estimated by using maximum likelihood estimation to obtain the parameters. In
the second case we directly fit the optimal copula on our return time series using the library
Copulain R.

After introducing possible copula families, we show our fit results. Based on them, we choose
some copulas which will help us analyze correlation between the two indexes.

Our marginal models estimates are summarized below:

STUDENT T CAC 40 FTSE MIB
MEAN -0.05515526 -0.05302316
STANDARD DEVIATION 1.47670674 1.64009850
DEGREE OF FREEDOM 3.00482283 3.20365077
BM ESTIMATES CAC 40 FTSE MIB

§ 0.2973228 0.216673

u 1.6987367 1.917174

B 0.7299249 0.875330
POT ESTIMATES CAC 40 FTSE MIB

¢ 0.1901761 0.2036028

u 1.5 2

B 0.7491697 0.7742930

Table 16 parameter estimates summary

From these marginals, we create three different copulas by using R language in our estimation
process.

Rotated Tawn type 1 90 degrees is derived from Student’s t marginals, while BM and POT
marginals respectively generate a Tawn type 2 and a Frank copula. Lastly, we create a copula
by fitting the optimal copula on our return time series. Parameter estimates for each copula
are summarized below:
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COPULA FAMILY 1° PARAMETER 2° PARAMETER KENDALL'S TAU

BB1 0.81 2.24 0.68
TAWN (TYPE 2) 3.21 0.78 0.57
FRANK -0.38 = -0.04
TAWN (TYPE 1) 90 -13.36 0.00 0.00

We have already introduced BB1 and Frank copula in previous chapter, while Tawn copula
refers to a particular kind of copula that describes dependence structure characterized by
asymmetric dependency. Tawn copula is a particular version of the Gumbel copula, in which
two dependency parameters are added. This copula is an extension of the Gumbel copula
because the new parameters allow to describe either upper or lower tails dependencies.
In R, Tawn copula is defined in two versions: each one has one parameter equals to 1. Thus,
Tawn type 1 refers to right skewed Tawn, while Tawn type 2 is characterized by heavier left
tail.2®

We are interested to know which copula is an optimal representation of CAC 40 and FTSE MIB
interdependence. The goodness of fit results are depicted below:

COPULA FAMILY LOGLIKELIHOOD AIC BIC

BB1 3519.04 -7034.08 -7021.22
TAWN (TYPE 2) 120.13 -236.27 -229.59
FRANK 2 -1.99 2.91
TAWN (TYPE 1) 90 -13.36 0.00 0.00

Table 17 Copula family fit estimates

Analyzing this table allow us to choose between various copula families which represents the
best fit for our data. BB1 copula stands out as the best fit, it has the higher loglikelihood while
having lower values for both AIC and BIC, ensuring the best tradeoff between fit and model
complexity. On the other hand, both Frank and Tawn type 1 copula show poor fit with value
around 0. We also consider Tawn type 2 as a good possible model to shape correlation be-
tween the two stock indexes as it shows higher loglikelihood and lower AIC/BIC value if com-
pared with the other two copulas.

Considering goodness of fit we can relate on the first two copula models depicted in the table
below. BB1 is a flexible kind of copula allowing to model both left and right tail dependence,
in this case our parameter estimates suggest that we can observe more events in left tail.

%6 https://cran.r-project.org/web/packages/VineCopula/readme/README.html
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Tawn type 2, which is the second model chosen for our analysis, suggests similar behaviour
for the two stock indexes. In the next paragraph we are going to expand this analysis also
considering copulas graphical representation.

We chose to start by analyzing the BB1 copula since it represents optimal one for thhe stock
indexes. BB1 Copula allows to model various kind of interdependence thanks to its flexible
approach. As already stated in chapter 1, BB1 copula can be used to described copula affected
by either right or left tail dependence.
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Figure 36 BB1 Copula PDF (§=0.81, 6=2.24, tau=0.68)

The BB1 copula is created by directly applying optimal fitting copula to the data. Its PDF sug-
gests that correlation structure between CAC 40 and FTSE MIB can be modeled with an asym-
metric tail heaviness. In fact, this copula shows slightly left tail dependence, denoting asym-
metry regarding dependence structure. Left tail dependence means that there is higher like-
lihood of extreme positive co-movement compared to co-movement in the right tail. Thus, we
expect to observe more positive returns than losses. We can notice a central cluster signaling

62



that the two stock indexes move together. However, this cluster decrease while we analyze
more extreme losses.

Tawn copula is built merging two BM marginals distribution. Both marginals distributions are
Fréchet distribution, thus showing heavy tails.
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Figure 37 Tawn type 2 Copula PDF (1st parameter= 3.21; 2nd parameter= 0.78 tau=0.57)

Tawn type 2 Copula PDF highlights asymmetric dependence structure between the two stock
indexes. In fact, we can notice a higher concentration in the left tail compared to the right
one. Left tail dependence, observed both in BB1 copula and Tawn type 2 copula, seems to be
a characteristic of CAC 40 and FTSE MIB correlation structure.
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If we compare the two copulas, we can spot a difference in the dependence structure: Tawn
Copula shows distribution cluster on the center-left rather than on the center. The main dif-
ference between these two copulas is that probably for Tawn Copula model FTSE MIB experi-
ences more extreme losses than CAC 40, thus exhibiting left asymmetry.

4. The role of Copula in stress testing: analysis on CAC 40
and FTSE MIB

To conclude this analysis, we introduce a new concept in this thesis: the stress testing. Widely
applied by regulators and financial actors, stress testing is a fundamental concept in risk man-
agement. In fact, stress tests help regulators and financial firms to assess potential losses in
different scenarios. On this purpose, we can cite Bank for International Settlement (BIS):

“Stress tests are forward-looking exercises that aim to evaluate the impact of severe but plau-
sible adverse scenarios on the resilience of financial firms. They involve the use of models and
data at the firm or system-wide level and may rely on historical or hypothetical scenarios.”?’

They give the opportunity to simulate eventual losses under various scenarios and verify if a
financial firm capital is enough to cover for potential losses. Flexibility and data driven analysis
represent its perks, while its main limitation depends on the fact that we do not know with
which probability the loss will happen.?® As a way to address this weakness we decide to im-
plement a specific type of stress loss, by considering copula in the analysis. Our stress test is
based on our two stock indexes CAC 40 and FITSE MIB. In the table below we summarize var-
ious information both regarding portfolio characteristics and risk related to portfolio itself.
Regarding risk measure we compute stress move and stress loss and related probability to
happen. Obviously, to have an optimal view on the risk, we integrate VaR, and ES, in our
stress test.

We assume an investment of 100 000€ for each stock indexes with December 2023 average
price chosen as stock indexes price. To compute stress move we set a loss equal to 5% and a
loss equal to 10%, we investigate which is the probability to simultaneously observing these
kinds of losses. We use Empirical cumulative distribution function (ECDF) on the two time
series and CDF on BB1 copula to compute likelihood of loss happening, while we used POT
estimates to compute VaR, and ES,,.

STOCK INDEX PRICE PORTFOLIO VALUE STRESS MOVE STRESS LOSS PROBABILITY

CAC40 7420 100000 5% 5000 0.23%

27 https://www.bis.org/fsi/fsisummaries/stress_testing.pdf

28 https://www.bis.org/fsi/fsisummaries/stress_testing.pdf
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FTSE.MIB 30440 100000 5% 5000

Table 18 Stress test (stress loss equal to 5%)

In our stress testing scenario, loss is equal to 5000€ for each stock index determining a 10000€
total portfolio loss. We are interested in discovering with which probability we will observe a
simultaneous plunge by 5% in CAC 40 and FTSE MIB price. A 5% decrease in both stock indexes
has probability equal to 0.23%. As stated before, we are going to use ECDF and copula CDF in
this process. To compute probability that stress losses happen simultaneously in both stock
indexes we adapt the following formula:

P(Ml > xl,MZ > xz) - 1 _P(Ml S Xl) _P(MZ S xz) +P(M1 S xl,Mz S xz)
=1- H1(x1) - Hz(xz) + Hoo(xbxz)
=1 — Hcac 40(%1) — Hprsemis (X2) + C(HCAC 40(x1)'HFTSE.MIB(x2))

Where Hcpac 40(x1) and Herse mig (X2) refer respectively to CAC 40 and FTSE MIB ECDF at their
stress loss point; C(HCAC 20(x1), HFTSE_MIB(xZ)) is copula cumulative distribution function at
CAC 40 and FTSE MIB at their stress loss point.?*

This method is very straightforward and flexible to be applied, allowing to investigate various
types of market losses and their likelihood. For example, we could be interested in knowing
which is the probability of a 5% CAC 40 decrease while FTSE MIB shows a 3% plunge. The
probability of this simultaneous decrease is 0.31%.

Now we analyze a 10% simultaneous stress move:

STOCK INDEX PRICE PORTFOLIO VALUE STRESS MOVE STRESS LOSS PROBABILITY

CAC40 7420 100000 10% 10 000 0.018%
FTSE.MIB 30440 100000 10% 10 000

Table 19 Stress test (stress loss equal to 10%)

In this scenario, we observe a relevant intensification in large losses experienced by our port-
folio. For instance, we expect a 20 000€ loss with 0.018% probability. Likelihood of

2 The use of copulas in risk management (Stander) p.43
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experiencing such a loss is notably decreased if compared to 5% downturn, underscoring rarity
and magnitude of this particular event.

Lastly, we analyze VaR, and ES, with a=0.95 and 0.99. We already introduced these kinds
of risk measures in previous chapter, now we are going to analyze their risk management ap-
plication and how they can be useful to state frequency and magnitude extreme movement
in market prices.

CAC 40 (o) VaR, ES,
0.95 ‘ 1.94% 2.97%
0.99 3.51% 4.91%
FTSE MIB (c) VaR, ES,
0.95 ‘ 2.24% 3.27%
0.99 3.78% 5.22%

Table 20 VaR, and ES,, for CAC 40 and FTSE MIB

Both risk measures are computed on a daily horizon. In CAC 40 risk scenario, VaR g5 indicates
a loss equal or higher than 1.94% with 5% probability. On the other hand, ESjq5 = 2.97% is
the average stock index loss given VaR o5 is surpassed. Obviously, with o= 0.99 we observe
higher intensity in loss magnitude while on the same time we notice a lower probability to
happen.

If we compare VaR, and ES, between CAC 40 and FTSE MIB we can notice higher magnitude
for the same probability. Once again, FTSE MIB emerges as the riskier stock index between
the two. We created a simple system capable of checking various level of losses and their
probabilities. What is innovative is its ability to assess with which probability we are going to
experience a certain simultaneous loss. For example, we can compute VaR o9 for each stock
index and utilize this amount as possible stress loss. Then, we can determine probability of
simultaneous loss in the two stock indexes.
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Conclusion

In conclusion, our CAC 40 and FTSE MIB analysis clearly denied normality assumption. During
this thesis empirical data show features representing departure from normality. Fat tails and
nonlinear dependence characterizing our data need alternative distribution models to capture
their complexities. We start by fitting student’s t distribution to CAC 40 and FTSE MIB negative
returns suggest that data are characterized by heavy tails, validated by optimal goodness of
fit results. Furthermore, extreme values theory applications including POT and BM confirm
extreme nature of the data revealed by Student’s t fit.

These alternative representations along with ECDF offer us a new point of view on depend-
ence between CAC 40 and FTSE MIB. In fact, we created various copulas starting by detailed
marginal distributions. In this case copula functions show how interdependence evolves when
market conditions deteriorate, consistently observing left asymmetric dependence.

Each of this distribution models helped us to compute risk measure that could quantify mag-
nitude and probability of extreme events. For instance, we used classical risk measures such
as VaR and ES and less known such as return level and period. All these risk measures contrib-
ute to identify potential extreme losses and thus contribute assessing risk management on a
portfolio composed by listed companies.

In the last paragraph, we focus on stress testing concept by exploring impact of 5% and 10%
simultaneous drop in CAC 40 and FTSE MIB prices. These analyses show two possible adverse
scenarios and their probability to happen. Stress tests are crucial for financial firms and insti-
tutions in assessing financial stability.

In summary, our study on risk management highlights normality assumption limitations when
dealing with financial markets. On the other hand, our thesis unveils cruciality of alternative
model distributions such as student’s t and extreme value theory applications. Through risk
measures, copulas and stress testing we offer a comprehensive framework to evaluate and
manage risks in financial portfolios, thus providing a tool, for market experts, able to mitigate
or avoid the impact of market extreme events effectively.
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Thesis Code (R language):

library(quantmod)
library(zoo)

library(lubridate)

library(car)

library(copula)
library(tseries)
library(nortest)

myStocks <-lapply(c("*FCHI", "FTSEMIB.MI"), function(x) {getSymbols(x,
from = "2004/12/31","daily",)
FR_data <- myStocks[[1]]
ITA_data <- myStocks[[2]]
head(FR_data)

head(ITA_data)

tail(FR_data)

tail(ITA_data)

length(FR_data)
length(ITA_data)

# Find positions of missing values in France data
missing_positions_FR <- which(is.na(FR_data), arr.ind = TRUE)
# Find positions of missing values in Italy data
missing_positions_ITA <- which(is.na(ITA_data), arr.ind = TRUE)
# Print the positions

print("Missing Positions in France Data:")
print(missing_positions_FR)

print("Missing Positions in Italy Data:")
print(missing_positions_ITA)
which(is.na(ITA_data$FTSEMIB.MI.Adjusted), arr.ind = TRUE)
which(is.na(FR_data$FCHI.Adjusted), arr.ind = TRUE)
to="2022/12/31",

periodicity = auto.assign=FALSE)}

F_Ret <- c(-diff(FR_data$FCHI.Adjusted)/FR_data$FCHI.Adjusted[-1]*100)
head(F_Ret)

F_Ret_Date <- data.frame(date = as.Date(index(F_Ret)),

F_Ret = F_Ret$FCHI.Adjusted)

head(F_Ret_Date)

F_Ret_Date

I_Ret <- ¢(-diff(ITA_data$FTSEMIB.MI.Adjusted) / ITA_data$FTSEMIB.MI.Adjusted[-1] * 100)
I_Ret_Date <- data.frame(date = as.Date(index(I_Ret)),

I_Ret = _Ret)

head(I_Ret_Date)

which(is.na(F_Ret_Date), arr.ind = TRUE)

which(is.na(I_Ret_Date), arr.ind = TRUE)

F_Ret_Date <- na.omit(F_Ret_Date)

I_Ret_Date <- na.omit(I_Ret_Date)

head(I_Ret_Date)

length(F_Ret_Date$date)

length(I_Ret_Date$date)

plot(I_Ret_Date$FTSEMIB.MI.Adjusted)

#grafico#

plot(I_Ret_Date$date,I_Ret_Date$FTSEMIB.MI.Adjusted, type="1", main="FTSE.MIB Returns",
xlab="t", ylab="r")

plot(FI_RET$date,FI_RETS$FITSE.MIB, type="1", main="FTSE.MIB Returns", xlab="t",
ylab="r")
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plot(F_Ret_Date$FCHI.Adjusted)

######missingpositions ret####

# Find positions of missing values in France data

missing_positions_FRret <- which(is.na(F_Ret_Date$FCHI.Adjusted), arr.ind = TRUE)
# Find positions of missing values in Italy data

missing_positions_ITAret <- which(is.na(I_Ret_Date$FTSEMIB.MI.Adjusted), arr.ind = TRUE)
# Print the positions

print("Missing Positions in France Data:")

print(missing_positions_FRret)

print("Missing Positions in Italy Data:")

print(missing_positions_ITAret)

FI_RET <- merge(F_Ret_Date, [_Ret_Date)

head(FI_RET)

length(FI_RET$FCHI.Adjusted)

length(FI_RET$FTSEMIB.MI.Adjusted)

names(FI_RET)[2] <- "CAC 40"

names(FI_RET)[3] <- "FITSE.MIB"

head(FI_RET)

mean(FI_RET$CAC 40)

mean(FI_RET$FITSE.MIB)

print(FI_RET$FITSE.MIB[600:800])

returns_equal_to_minus_100 <- sapply(FI_RET, function(x) any(x == -100))
is_infinite <- sapply(FI_RET, function(x) any(is.infinite(x)))
plot(FI_RET$date,FI_RET$FITSE.MIB, type="1", main="FTSE.MIB Returns", xlab="t",
ylab="r")

geom_hline(yintercept = 20, color = "black”, size = 1) +

annotate("text", x =-10, y = 20, label = "cacca", color = "black", size = 4, hjust =

0)

plot(FI_RET$date,FI_RET$CAC 40, type="1", main="CAC 40 Returns", xlab="t",
ylim=c(-10,20),ylab="r")

par(mfrow=c(1,1))

par(mar=c(5, 4, 4, 8) + 0.1) # Adjust margin for better y-axis label display
#grafico#

plot(FI_RETS$FITSE.MIB, type="1", col="blue", main="FTSE.MIB and CAC 40 Returns",
xlab="t", ylab="r", ylim=c(-10,20))

lines(FI_RET$CAC 40, col="red")

legend("topleft", legend=c("FTSE.MIB", "CAC 40"), col=c("blue", "red"), lty=1, cex=0.8)
#summary statistics#

summary(FI_RET$CAC 40)

summary(FI_RET$FITSE.MIB)

sd(FI_RET$CAC 40)

sd(FI_RET$FITSE.MIB)

kurtosis(FI_RET$CAC 40)

kurtosis(FI_RET$FITSE.MIB)

skewness(FI_RET$FITSE.MIB)

skewness(FI_RET$CAC 40)

# Perform Anderson-Darling test

ad.test(FI_RET$CAC 40)

ad.test(FI_RET$FITSE.MIB)

# Perform Kolmogorov-Smirnov test

ks.test(FI_RET$CAC 40, "plnorm")

ks.test(FI_RET$FITSE.MIB, "plnorm")

jarque.bera.test(FI_RET$CAC 40)

jarque.bera.test(FI_RET$FITSE.MIB)

Box.test(FI_RET$CAC 40, lag=1, type = "Ljung-Box")

Box.test(FI_RET$FITSE.MIB, lag=1, type = "Ljung-Box")

#QQ-plot utilizzando qqnorm QUESTO E' QUELLO GIUSTO

gqqnorm(FI_RET$CAC 40, main = "NORMAL QQ-PLOT CAC 40", pch = 1, col = "black")
# Aggiungi manualmente la linea normale

qqline(FI_RET$CAC 40, distribution = function(p) gnorm(p, mean = mean(FI_RET$CAC 40), sd =



sd(FI_RET$CAC 40)), col = "red")

legend('topleft’, legend = c('CAC 40 observation','Normal line'), col = c('black’,

'red"), lwd = 2)

#grafico#

gqqnorm(FI_RET$FITSE.MIB, main = "NORMAL QQ-PLOT FTSE MIB", pch = 1, col = "black")
# Aggiungi manualmente la linea normale

qqline(FI_RET$FITSE.MIB, distribution = function(p) qnorm(p, mean = mean(FI_RET$CAC 40),

sd = sd(FI_RET$CAC 40)), col = "red")

legend('topleft’, legend = c('FITSE MIB observation','Normal line"), col = c('black’,
'red"), lwd = 2)

library(Dowd)

TQQPIlot(FI_RET$CAC 40, df=3)

legend( 'topleft’, legend= c('CAC 40 observation', 't-distribution line') ,col =
c('black’, 'red"), lwd = 2)

TQQPlot(FI_RET$FITSE.MIB, df = 3.2)

legend( 'topleft’, legend= c('FITSE MIB observation', 't-distribution line") ,col =
c('black’, 'red"), lwd = 2)

title(main = "QQ PLOT FTSE MIB vs student's t with 4 DoF")

par(mfrow=c(1,1))

#hist cac 40 student and normal#grafico#

hist(FI_RET$CAC 40)

hist(FI_RET$FITSE.MIB)

set.seed(3)

x <- rt(800, df= 3.2)

x2 <- seq(min(x), max(x), length = 50)

fun <- dt(x2, df=3.2)

plot(fun)

hist(FI_RET$CAC 40, prob = TRUE, breaks=100, col = "skyblue3", xlab =
names(FI_RET$CAC 40),

ylim = ¢(0, max(0.5)), xlim=c(-8,8),

main = paste("Histogram and Student-t curve for CAC 40", names(FI_RET$CAC 40)))
lines(x2, fun, col = 1, lwd = 2)

set.seed(3)

y <- rnorm(800)

y2 <- seq(min(y), max(y), length = 50)

fun2 <- dnorm(y2, mean = mean(y), sd = sd(y))

hist(FI_RET$CAC 40, prob = TRUE, breaks=100, col = "skyblue3", xlab =
names(FI_RET$CAC 40),

ylim = ¢(0, max(0.5)), xlim=c(-8,8),

main = paste("Histogram and Normal curve for CAC 40", names(FI_RET$CAC 40)))
lines(y2, fun2, col = 1, lwd = 2)

#hist fitse mib#grafico#

hist(FI_RET$FITSE.MIB, prob = TRUE, breaks=200, col = "skyblue3", xlab =
names(FI_RET$FITSE.MIB),

ylim = ¢(0, 0.4), xlim=c(-8,8),

main = paste("Histogram and Student-t curve for FTSE.MIB",
names(FI_RET$FITSE.MIB)))

lines(x2, fun, col = 1, lwd = 2)

hist(FI_RET$FITSE.MIB, prob = TRUE, breaks=100, col = "skyblue3", xlab =
names(FI_RET$FITSE.MIB),

ylim = ¢(0, max(fun2)), xlim=c(-8,8),

main = paste("Histogram and Normal curve for FTSE.MIB", names(FI_RET$FITSE.MIB)))
lines(y2, fun2, col = 1, lwd = 2)

bivRet <- merge(FI_RET$CAC 40, FI_RET$FITSE.MIB)

tail(bivRet)

cor.test(FI_RET$CAC 40, FI_RET$FITSE.MIB, method = "pearson”, use = "complete.obs")
cor_K <- cor.test(FI_RET$CAC 40, FI_RET$FITSE.MIB, method = "kendall", use =
"complete.obs")

print(cor_K)

cor_spearman <- cor.test(FI_RET$CAC 40, FI_RETS$FITSE.MIB, method = "spearman", use =
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"complete.obs")

cor_spearman

#GPD+COPULA#

library(POT)

library(evd)

library(extRemes)

library(quantmod)

library(fExtremes)

library(SpatialExtremes) #for the gev qgqplot

library(EnvStats) #for the gev qqplot

library(readxl)

library(lubridate)

library(zoo)

#Plot and correlation checks

plot(FI_RET$CAC 40,FI_RET$FITSE.MIB, pch="")
abline(Im(FI_RET$CAC 40~FI_RETS$FITSE.MIB),col="red',lwd=1)
cor(FI_RET$CAC 40,FI_RETS$FITSE.MIB, method='spearman")
#COPULA from two ecdf#

library(VineCopula)

u <- pobs(as.matrix(cbind(-FI_RET$CAC 40,-FI_RET$FITSE.MIB)))[,1]
v <- pobs(as.matrix(cbind(-FI_RET$CAC 40,-FI_RET$FITSE.MIB)))[,2]
selectedCopula <- BiCopSelect(u,v,familyset=NA)
head(selectedCopula)

ul <- pobs(as.matrix(cbind(-FI_RET$CAC 40, -FI_RET$FITSE.MIB)))[, 1]
u2 <- pobs(as.matrix(cbind(-FI_RET$CAC 40, -FI_RET$FITSE.MIB)))[, 2]
result <- BiCopEstList(ul, u2, familyset = 7)

print(result)

# Set the parameters

par <- selectedCopula$par

par2 <- selectedCopula$par2

taub <-selectedCopula$tau

print(par)

# Specify your copula parameters

par <- 0.81

par2 <-2.23

# Create a BB1 copula

bb1_copula <- BiCop(family = 7, par = par, par2 = par2)

bb1_copula

#first plot#

simulated_CAC 40 <- quantile(-FI_RET$CAC 40, probs = u)
simulated_FITSE <- quantile(-FI_RET$FITSE.MIB, probs = v)
# Plot the results

plot(-FI_RET$CAC 40, -FI_RETS$FITSE.MIB, main="Returns')
points(simulated_CAC 40, simulated_FITSE, col="red')
legend('bottomright’,c('Observed’,'Simulated'),col=c('black’,'red"),pch=21)
# Estimate marginals parameters

CAC 40_mu <- mean(-FI_RET$CAC 40)

CAC 40_sd <- sd(-FI_RET$CAC 40)

FITSE_mu <- mean(-FI_RET$FITSE.MIB)

FITSE_sd <- sd(-FI_RET$FITSE.MIB)

#downoading data

CAC40_mu

FITSE_mu

#fitting t student#

fitCAC <- fitdist(distribution = 'std', FI_RET$CAC 40)

fitCAC

fitFtse <- fitdist(distribution = 'std’, FI_RET$FITSE.MIB)
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fitFtse

par(mfrow=c(1,1))

#threshold POT#

mrlplot(-FI_RET$CAC 40, u.range = c(-1, 2.5), col = c("green", "black", "green"), nt =
200,main="Cac 40 Mean-excess plot')

warnings

mrlplot(-FI_RET$FITSE.MIB, u.range = c(-1, 2.5), col = c("green", "black", "green"), nt
=200, main="Ftse Mean-excess plot')

threshCACmrl= 2

threshFtsemrl= 2.5

threshCACq= (quantile(-FI_RET$CAC 40, probs=0.9)+quantile(-FI_RET$CAC 40, probs=0.85))/2
threshFtseq= (quantile(-FI_RET$FITSE.MIB, probs=0.9)+quantile(-FI_RET$FITSE.MIB,
probs=0.85))/2

threshFtseq

#qqplot pareto#

qqparetoPlot(-FI_RET$CAC 40, xi = 0.2836, threshold = threshCACmrl)
qqparetoPlot(-FI_RET$CAC 40, xi = 0.2836, threshold = threshCACq)
qqparetoPlot(-FI_RET$FITSE.MIB, xi = 0.2018, threshold = threshFtsemrl)
qqparetoPlot(-FI_RET$FITSE.MIB, xi = 0.2018, threshold = threshFtseq)
#histogram con var e es#

ggplot(data = data.frame(Returns = -GA_Ret$GO0G.Adjusted), aes(x = Returns)) +
geom_histogram(binwidth = 0.02, fill = "lightblue”, color = "lightblue") +
geom_density(color = "red", adjust = 0.001) +

geom_vline(xintercept = 2.66, color = "black", size = 1) +

geom_vline(xintercept = 4.25, color = "black", size = 1) +

annotate("text", x = 2.66, y = 20, label = "VaR(0.95)= 2.66", color = "black", size =

4, hjust=0) +

annotate("text", x = 4.25, y = 15, label = "ES(0.95)= 4.25", color = "black", size =

4, hjust=0) +

labs(title = "Histogram of GOOG Returns with Fitted GPD Density") +
geom_hline(yintercept = 20, color = "black”, size = 1) +

annotate("text", x =-10, y = 20, label = "cacca", color = "black", size = 4, hjust =

0)

k=length(-FI_RET$CAC 40[-FI_RET$CAC 40 > threshCACmrl])
k

length(-FI_RET$CAC 40)
l1=length(-FI_RETS$FITSE.MIB[-FI_RET$FITSE.MIB > threshFtsemrl])
1

length(-FI_RETS$FITSE.MIB)

#optimal POT fit for CAC 40#

CACfit = gpdFit(as.numeric(-FI_RET$CAC 40), u = 1.5)
summary(CACfit)

sefxi= 0.06803024/67.56

sefbeta= 0.06829971/67.56

plot(CACfit)

print(CACfit)

length((FI_RET$date))

xcacfit= gpdSim(model = list(xi=0.2836882, mu=2, beta= 0.7380928), n=4500)
plot(xcacfit)

length(xcacfit)

class(xcacfit)

class(CACfit)

attributes(xcacfit)

attributes(CACfit)

str(CACfit)

#risk measures:VaR and ES#

gpdSfallPlot(xcacfit,0.99,0.95, 50)
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gpdSfallPlot(CACfit,0.99,0.95, 50)

gpdSfallPlot(CACfit@fit$par.ests, 0.99, 0.95, 50)
gpdSfallPlot(CACfit@fit$par.ests, CACfit@fit$threshold, 0.99, 0.95, 50)
args(gpdSfallPlot)

gpdSfallPlot(CACfit@fit$par.ests, CACfit@fit$threshold, 0.99, 0.95, like.num = 50)
FTSEfit

FTSEfit= gpdFit(as.numeric(-FI_RET$FITSE.MIB), u= 2)

summary(FTSEfit)

plot(FTSEfit)

plot(FTSEfit)

#VAR and ES for pot#

gpdRiskMeasures(FTSEfit)

gpdRiskMeasures(CACfit)

secacxi= 0.05503565/67.56

secacbeta= 0.05521823/67.56

tailPlot(CACfit)

tailPlot(FTSEfit)

threshFtsemrl

gpdRiskMeasures(FTSEfit, prob=0.99)

gpdRiskMeasures(CACfit, prob=0.99)

thresholds <- quantile(-FI_RET$CAC 40, probs = (0.9, 0.95, 0.99))

thresholds

###xicac=0.283688 betacac=0.73809 ftsexi=0.20175 betaftse=0.88126 uguali
library(ggplot2)

#HIST X VAR ED ES

ggplot(data = data.frame(Returns = -FI_RET$CAC 40), aes(x = Returns)) +
geom_histogram(binwidth = 0.02, fill = "lightblue”, color = "lightblue") +
geom_density(color = "red", adjust = 0.001) +

geom_vline(xintercept = 2.66, color = "black", size = 1) +

geom_vline(xintercept = 4.25, color = "black”, size = 1) +

annotate("text", x = 3, y = 20, label = "VaR(0.95)= 1.94%", color = "black", size = 4,
hjust=0) +

annotate("text", x = 4.25, y = 15, label = "ES(0.95)= 2.97%", color = "black", size =
4, hjust=0) +

labs(title = "Histogram of CAC 40 Returns with Fitted GPD Density")
par(mfrow=c(1,1))

#grafico#

ggplot(data = data.frame(Returns = -FI_RET$FITSE.MIB), aes(x = Returns)) +
geom_histogram(binwidth = 0.02, fill = "lightblue”, color = "lightblue") +
geom_density(color = "red", adjust = 0.001) +

geom_vline(xintercept = 2.66, color = "black", size = 1) +

geom_vline(xintercept = 4.25, color = "black", size = 1) +

annotate("text", x = 2.66, y = 20, label =" VaR(0.95)= 2.24%", color = "black”, size
=4, hjust=0) +

annotate("text", x = 4.25, y = 15, label = "ES(0.95)= 3.27%", color = "black", size =
4, hjust=0) +

labs(title = "Histogram of FTSE MIB Returns with Fitted GPD Density")

# Plot QQ-plots and MRL-plots for both GOOG and AAPL
qqparetoPlot(-FI_RET$CAC 40, xi = 0.2836, threshold = threshCACmrl)
mrlplot(-FI_RET$CAC 40, u.range = c(-1, 2.5), col = c("green", "black", "green"), nt =
200)

qqparetoPlot(-FI_RET$FITSE.MIB, xi = 0.2, threshold = threshFtsemrl)
mrlplot(-FI_RET$FITSE.MIB, u.range = c(-1, 2.5), col = c("green", "black", "green"), nt
=200)

#Var and ES#

n=4500

k=401

1=304

alpha=0.95

length(FI_RET$CAC 40)



xiFTSE= 0.2036028

betaFTSE=0.7742930

vriskFTSE= threshFtsemrl + betaFTSE * ( (n*(1-alpha)/1)**(-xiFTSE)-1) / xiFTSE
vriskFTSE

esriskFTSE= (vriskFTSE + betaFTSE - xiFTSE*threshFtsemrl) /(1-xiFTSE)
esriskFTSE

threshFtsemrl=2

threshCACmrl=1.5

xiCAC=0.1901761

betaCAC= 0.7491697

vriskCAC= threshCACmrl + ((n*(1-alpha)/k)**(-xiCAC) -1) * betaCAC/xiCAC
vriskCAC

eriskCAC= (vriskCAC + betaCAC - xiCAC*threshCACmrl)/(1-xiCAC)

eriskCAC

betaCACPOT=0.7380928

xiCACPOT=0.2836882

betaFTSEPOT=0.8812683

xiFTSEPOT=0.2017511

meanPOTCest=1.795167228

meanPOTFest=2.01078314

CACQUANTPOT <- qgpd(0.99, loc=threshCACmrl, scale=betaCACPOT, shape=xiCACPOT)
CACQUANTPOT

FTSEQUANTPOT <- qgpd(0.99, loc=threshFtsemrl], scale=betaFTSEPOT, shape=xiFTSEPOT)
FTSEQUANTPOT

portfolioPOT <- data.frame(

Stock = c("CAC 40", "FTSE.MIB"),

Price = c( 7000, 20000), # Update with actual prices if needed

Nominal = ¢(-2000, -5000),

StressMove = c(CACQUANTPOT, FTSEQUANTPOT)

)

portfolioPOT

portfolioPOT$StressLoss <- portfolio§Nominal * portfolio$StressMove / 100
portfolioPOT

cdfBB1 <- BiCopCDF(0.99,0.99, family = 7, par = par, par2 = par2)
CAC_BB1Q <- pgpd(9.006515, loc=threshCACmrl, scale=betaCACPOT, shape=xiCACPOT)
FTSE_BB1Q <- pgpd(9.192905, loc=threshFtsemrl, scale=betaFTSEPOT, shape=xiFTSEPOT)
p_stress_movesPOT <- 1+ cdfBB1 - CAC_BB1Q - FTSE_BB1Q
p_stress_movesPOT

cat("Probability of joint stress moves:", p_stress_movesPOT*100,"%" ,"\n")
#stressmoves#

library(creditmodel)

#esempio ch.19#

library(ismev)

# Load necessary libraries

library(copula)

# Calculate daily returns for AAPL and GOOG

CAC_gReturns <- -FI_RET$CAC 40

FTSE_qReturns <- -FI_RET$FITSE.MIB

tail(CAC_qReturns)

length_C <- length(FI_RET$CAC 40)

length_C

C_BM <- blockMaxima(-FI_RET$CAC 40, block= 22)

C_BM

F_BM <- blockMaxima(-FI_RET$FITSE.MIB, block= 22)

F_BM

C_BM F_BM

gev.fitse
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VaR(F_BM, 0.01,tail="upper")

VaR(gev.fitse, 0.99)

CvaR(C_BM, 0.95)

VaR(F_BM, 0.99)

CVaR(F_BM, 0.95)

#BM plot #

cmax= ts(C_BM, frequency=12, start=c(2005, 1, 1))

length(cmax)

Xn = sort(cmax)

plot.ts(cmax, main="CAC 40 Maxima')

qqPlot(C_BM, distribution= "gevd", estimate.params=TRUE, main="1 Month Maxima",
xlab="GEV Quantiles", ylab="1 Month CAC 40 Maxima Quantiles")
abline(0, 1, col = 'red')

par(mfrow=c(2,2))

fmax= ts(F_BM, frequency=12, start=c(2005, 1, 1))

length(fmax)

Yn = sort(fmax)

plot.ts(fmax, main="FTSE MIB Maxima')

qqPlot(F_BM, distribution= "gevd", estimate.params=TRUE, main="1 Month Maxima",
xlab="GEV Quantiles", ylab="1 Month FITSE MIB Maxima Quantiles")
abline(0, 1, col = 'red")

#altro metodo ma va bene uguale#

par(mfcol = c(4, 1))

gev.cac 40= gevFit(as.numeric(-FI_RET$CAC 40), block = 22, type = "mle")
summary(gev.cac 40)

length(gev.cac 40)

#supergiusti

xigev.cac 40=0.2973228

mugev.cac 40=1.6987367

betagev.cac 40= 0.7299249

s.exi= 0.06030624/14.40

s.eemu= 0.05756353/14.40

s.e.beta= 0.04840520/14.40

# probability to observe a loss in the next block larger than maxloss#
MAXloss= max(-FI_RET$CAC 40)

maxloss=10.05267

pExceedcac 40=pgev(4.43, 1.795167228, 1.090684418, -0.008133936, lower-.tail = FALSE)
pExceedcac 40

gev.fitse= gevFit(as.numeric(-FI_RET$FITSE.MIB), block = 22, type = "mle")
summary(gev.fitse)

#giusti, non e vero

xigev.cac 40=-0.008133936

mugev.cac 40=1.795167228

betagev.cac 40=1.090684418

xigev.fitse=-0.02224511

mugev.fitse= 2.01078314

betagev.fitse= 1.15902679

#ts giusta negativa

xigev.cac 40=0.2973228

mugev.cac 40=1.6987367

betagev.cac 40= 0.7299249

xigev.fitse= 0.216673

mugev.fitse= 1.917174

betagev.fitse= 0.875330

s.exif=0.06084782/14.40

s.emuf= 0.06966065/14.40

s.e.betaf=0.05593616/14.40

#BM Risk measures#

MAXloss= max(-FI_RET$FITSE.MIB)

maxlossfitse=10.30386
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pExceedfitse= pgev(4.77, 2.01078314, 1.15902679, -0.02224511, lower.tail = FALSE)
pExceedfitse

plot(C_BM)

#level which is exceeded in one out of every k blocks of size n#
gevrlevelPlot(gev.cac 40, kBlocks = 12, ci = ¢(0.95, .9), plottype = c("plot", "add"),
labels = TRUE)

gevrlevelPlot(gev.fitse, kBlocks = 12, ci = ¢(0.95, .9), plottype = c("plot", "add"),
labels = TRUE)

# Fit the Generalized Extreme Value (GEV) distribution to the max returns

u=5 #settheloss

kreturncac= 1/pgev(4.43, 1.795167228, 1.090684418, -0.008133936, lower.tail = FALSE)
kreturncac

u=5 #settheloss

kreturnfitse= 1/pgev(4.77, 2.01078314, 1.15902679, -0.02224511, lower.tail = FALSE)
kreturnfitse

CAC_GEVDist <- gevFit(C_BM)

FTSE_GEVDist <- gevFit(F_BM)

CAC_GEVDist

FTSE_GEVDist

summary(CAC_GEVDist)

#stress test using BM#

meanBMC <- mean(C_BM)

sdBMC <- sd(C_BM)

meanBMC

sdBMC

meanBMF <- mean(F_BM)

sdBMF <- sd(F_BM)

meanBMF

sdBMF

betaCACBM=0.7299249

xiCACBM=-0.2973228

betaFTSEBM=0.875330

xiFTSEBM=-0.216673

meanBMCest= 2.409749

meanBMFest= 2.650639

CACQUANT <- qgev(p=0.99, loc=meanBMCest, scale=betaCACBM, shape = xiCACBM)
CACQUANT

CACQUANT?24 <- qgev(p=0.99, 2.409749, 0.7299249, 0.2973228)

CACQUANT24 <-4.3176

FTSEQUANT <- qgev(p=0.99, loc=meanBMFest, scale=betaFTSEBM, shape = xiFTSEBM)
FTSEQUANT24 <- 4.7343

portfolio <- data.frame(

Stock = c("CAC 40", "FTSE.MIB"),

Price = c( 7420, 30440), # Update with actual prices if needed

Nominal = ¢(-10000, -10000),

StressMove = c(CACQUANTZ24, FTSEQUANT24)

)

portfolio

portfolio$StressLoss <- portfolio$Nominal * portfolio$StressMove / 100

portfolio

#copula x cac fitse= BM x prob

g <- rCopula(200, tawnt2copfi)

cdftawn2 <- pCopula(c(0.99,0.99),tawnt2copfi)

CAC_GCOPQ <- pgev(4.3176,10c=1.6987367, scale=0.7299249, shape=0.2973228)
CAC_GCOPQ <- pgev(6.719771,10oc=1.795167228, scale=1.090684418, shape=-0.008133936)
FTSE_GCOPQ <- pgev(4.7343,10c=2.01078314,scale=1.15902679 ,shape=-0.02224511)
##questi giustif##



CAC_GCOPQ <- pgev(6.912062, 1.6987367,0.7299249,0.2973228)
FTSE_GCOPQ <- pgev(7.270003,1.917174,0.875330,0.216673)
#fine risk measures bm

#BM copula#

g <- rCopula(200, tawnt2copfi)

cdftawn2 <- pCopula(c(0.9785406,0.9798418),tawnt2copfi)
p_stress_movesBM <- 1+ cdftawn2 - CAC_GCOPQ -FTSE_GCOPQ
p_stress_movesBM <- 1+ cdftawn2 - 0.99-0.99

p_stress_movesBM

cat("Probability of joint stress moves:", p_stress_movesBM*100,"%" ,"\n")
portfolio$probOffointStressMoves <- p_stress_movesBM

portfolio

portfolio <- data.frame(

Stock = c("CAC 40", "FTSE.MIB"),

Price = c( 7420, 30440), # Update with actual prices if needed
Nominal = ¢(-10000, -10000),

StressMove = ¢(8.883084, 8.822931)

)

portfolio

portfolio$StressLoss <- portfolio$Nominal * portfolio$StressMove / 100
portfolio

##STRESS MOVES ftse cac 40 BB1##giusta#

CAC_GCOPQ2 <- quantile(FI_RET$CAC 40, 0.99)

CAC_GCOPQ2 <- 0.9982521

FTSE_GCOPQ2 <- 0.9989076

ecdf CAC 40 <- ecdf(-FI_RET$CAC 40)

ecdf _FITSE <- ecdf(-FI_RET$FITSE.MIB)

CAC_GCOPQ2 <-ecdf CAC 40(5)

FTSE_GCOPQ2 <-ecdf_FITSE(3)

#ECDF marginals copula#

BB1copfi <- VC2copula::BB1Copula(param = c(0.81, 2.24))

v <- rCopula(4500, BB1copfi)

cdfBB1 <- pCopula(c(CAC_GCOPQZ,FTSE_GCOPQ2),BB1copfi)
p_stress_movesfi <- 1+ cdfBB1 - CAC_GCOPQZ2 -FTSE_GCOPQ2
p_stress_movesfi

dCopula(c(0.1,0.1),BB1copfi)

#copula by loss

u <- pobs(as.matrix(cbind(-FI_RET$CAC 40,-FI_RET$FITSE.MIB)))[,1]
v <- pobs(as.matrix(cbind(-FI_RET$CAC 40,-FI_RET$FITSE.MIB)))[,2]
selectedCopula <- BiCopSelect(u,v,familyset=NA)
head(selectedCopula)

ul <- pobs(as.matrix(cbind(-FI_RET$CAC 40, -FI_RET$FITSE.MIB)))[, 1]
u2 <- pobs(as.matrix(cbind(-FI_RET$CAC 40, -FI_RET$FITSE.MIB)))[, 2]
result <- BiCopEstList(ul, u2, familyset = 7)

result

#t stud (par=0.88, par2=4.47, tau=0.68)

#copula with BM marginals

C_BM <- blockMaxima(-FI_RET$CAC 40, block= 22)

length(C_BM)

F_BM <- blockMaxima(-FI_RET$FITSE.MIB, block= 22)

length(F_BM)

uBM <- pobs(as.matrix(cbind(C_BM)))[,1]

vBM <- pobs(as.matrix(cbind(F_BM)))[,1]

stocks_copulal <- BiCopSelect(uBM,vBM, familyset=NA)
stocks_copulal

tawnresult <- BiCopEstList(uBM, vBM, familyset =204)

#tawn type 2 (par = 3.21, par2=0.78, tau = 0.6)#

# Load the copula package

#copula from 2 student's t marginals#

set.seed(123)
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# Simulate data from the provided distributions

marginals <- c("t", "t")

params <- list(list(mean =-0.05515526, sd = 1.47670674, df = 3.00482283),
list(mean =-0.05302316, sd = 1.64009850, df = 3.20365077))

# Simulate data for each marginal distribution

var_a <- pobs(rt(1000, df = params[[1]]$df, ncp = params[[1]]$mean))
var_b <- pobs(rt(1000, df = params[[2]]$df, ncp = params[[2]]$mean))
simulated_data <- cbind(var_a, var_b)

# Fit copula to the data

selectedCopulatawn <- BiCopSelect(simulated_data], 1], simulated_data], 2], familyset =
NA)

selectedCopulatawn

# Fit bivariate copula models and compare them

comparison_result <- BiCopEstList(simulated_data[, 1], simulated_datal, 2], familyset =
124)

# Display the summary of log-likelihoods, AICs, and BICs
print(comparison_result)

summary(comparison_result)

#Rotated Tawn type 2 180 degrees (par = 2.02, par2 = 0.01, tau = 0.01) # 11(2.15) aic
(-0.31) bic(9.51)

# Fit GPD model for CAC 40

CACfit <- gpdFit(as.numeric(-FI_RET$CAC 40), u = 1.5)

summary(CACfit)

simulated_data[, 1] <- qgpd(runif(1000), xi = 0.1901761, beta = 0.7491697)
# Simulate data from GPD distributions

simulated_data31 <- matrix(0, nrow = 1000, ncol = 2)

simulated_data31[, 1] <- rgpd(1000, xi = 0.1901761)

simulated_data31][, 2] <- rgpd(1000, xi = 0.2973228)

# Transform data to copula space (probability space)

u31 <- pobs(simulated_data31)

# Fit copula to the data

selectedCopula <- BiCopSelect(u31][, 1], u31|[, 2], familyset = NA)

# Display the selected copula

selectedCopula

comparison_result <- BiCopEstList(ul, u2, familyset =5 )
print(comparison_result)

#Frank (par =-0.38, tau =-0.04) # family logLik 2 aic-1.99. bic 2.91

# Simulate data from GPD distributions

library(VineCopula)

# Le tue distribuzioni marginali e i relativi parametri

marginals <- c("t", "t")

params <- list(list(mean =-0.05515526, sd = 1.47670674, df = 3.00482283),
list(mean =-0.05302316, sd = 1.64009850, df = 3.20365077))

# Definisci il modello copula

copula_model <- mvdc(margins = marginals, paramMargins = params)

# Genera dati sintetici

set.seed(123)

obs <- rMvdc(1000, copula_model)

# Visualizza i dati sintetici

print(obs)

#copula from ecdf#

ul <- pobs(as.matrix(cbind(-FI_RET$CAC 40, -FI_RET$FITSE.MIB)))[, 1]

u2 <- pobs(as.matrix(cbind(-FI_RET$CAC 40, -FI_RET$FITSE.MIB)))[, 2]
result <- BiCopEstList(ul, u2, familyset = 2)

library(gumbel)

alphag=2.51

u4 <-¢(0.99,0.99)

cdfGumbel <- pgumbel(0.99,0.99, 3965,alpha=alphag)

cdfGumbel

CAC_GCOPQ <- pgev(6.719771,10oc=1.795167228, scale=1.090684418, shape=-0.008133936)
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FTSE_GCOPQ <- pgev(7.078753,loc=2.01078314,scale=1.15902679 ,shape=-0.02224511)
p_stress_movesBM <- 1+ cdfGumbel - CAC_GCOPQ -FTSE_GCOPQ

p_stress_movesBM

cat("Probability of joint stress moves:", p_stress_movesBM*100,"%" ,"\n")
portfolio$probOffointStressMoves <- p_stress_movesBM

portfolio

par(mfrow=c(1,2))

# Load the copula package

library(copula)

# Define the parameters for the normal copula

coef_<-0.8

mycopula <- normalCopula(coef_, dim = 2)

# Define the copulas

frank <- frankCopula(dim=2, param=-0.22)

clayton <- claytonCopula(dim = 2, param = 3.2)

gumbel <- gumbelCopula(dim = 2, param = 10)

clayton

# Define the parameters for the Student's t copula

rhol <- 0.8

dfl <-5

stul <- tCopula(dim = 2, rho1, df = df1)
persp(tCopula(dim=2,rho1,df=df1),dCopula,xlim = ¢(0, 1), ylim = ¢(0, 1), main =
"Student's t Copula PDF")

persp(tCopula(dim=2,rho1,df=df1),pCopula, xlim = c(0, 1), ylim = ¢(0, 1), main =
"Student's t Copula CDF")

contour(tCopula(dim=2,rho1,df=df1), dCopula, xlim = ¢(0, 1), ylim = ¢(0, 1), main =
"Contour Student's t Copula PDF")

contour(tCopula(dim=2,rho1,df=df1), pCopula, xlim = ¢(0, 1), ylim = ¢(0, 1), main =
"Contour Student's t Copula CDF")

# Construct multivariate distributions using mvdc

mv_frank <- mvdc(frank, c("norm", "norm"),

paramMargins = list(list(mean = 3, sd = 3), list(mean = 4, sd = 1)))

mv_clayton <- mvdc(clayton, c("norm", "norm"),

paramMargins = list(list(mean = 0, sd = 1), list(mean = 0, sd = 1)))

mv_gumbel <- mvdc(gumbel, c("norm", "norm"),

paramMargins = list(list(mean = 3, sd = 2), list(mean = 2, sd = 3)))

mv_stu <- mvdc(stul, c("norm", "norm"),

paramMargins = list(list(mean = 0, sd = 1.3), list(mean = 0, sd = 1.2)))

# Create 3D CDF plots for the multivariate distributions

persp(mv_frank, pMvdc, xlim = ¢(0, 1), ylim = ¢(0, 1), main = "Frank Copula CDF")
persp(mv_clayton, pMvdc, xlim = ¢(0, 1), ylim = c¢(0, 1), main = "Clayton Copula CDF")
persp(mv_gumbel, pMvdc, xlim = ¢(0, 1), ylim = ¢(0, 1), main = "Gumbel Copula CDF")
persp(mv_stu, pMvdc, xlim = ¢(0, 1), ylim = ¢(0, 1), main = "Student's t Copula CDF")
# Create 3D PDF plots for the multivariate distributions

persp(mv_frank, dMvdc, xlim = ¢(0, 1), ylim = ¢(0, 1), main = "Frank Copula PDF")
persp(mv_clayton, dMvdc, xlim = ¢(0, 1), ylim = c¢(0, 1), main = "Clayton Copula PDF")
persp(mv_gumbel, dMvdc, xlim = ¢(0, 1), ylim = ¢(0, 1), main = "Gumbel Copula PDF")
persp(mv_stu, dMvdc, xlim = ¢(0, 1), ylim = ¢(0, 1), main = "Student's t Copula PDF")
contour(frankCopula(0.8,2), dCopula)

persp(frankCopula(3,2), dCopula, zlim=c(0,2.5))

# Create contour plots for PDF and CDF

contour(mv_frank, dMvdc, xlim = c(0, 1), ylim = ¢(0, 1), main = "Contour Frank Copula
PDF")

contour(mv_frank, pMvdc, xlim = c(0, 1), ylim = ¢(0, 1), main = "Contour Frank Copula
CDF")

contour(mv_clayton, dMvdc, xlim = ¢(0, 1), ylim = ¢(0, 1), main = "Contour Clayton
Copula PDF")
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contour(mv_clayton, pMvdc, xlim = ¢(0, 1), ylim = ¢(0, 1), main = "Contour Clayton

Copula CDF")

contour(mv_gumbel, dMvdc, xlim = ¢(0, 1), ylim = ¢(0, 1), main = "Contour Gumbel Copula
PDF")

contour(mv_gumbel, pMvdc, xlim = ¢(0, 1), ylim = ¢(0, 1), main = "Contour Gumbel Copula
CDF")

contour(mv_stu, dMvdc, xlim = ¢(0, 1), ylim = ¢(0, 1), main = "Contour Student's t

Copula PDF")

contour(mv_stu, pMvdc, xlim = ¢(0, 1), ylim = ¢(0, 1), main = "Contour Student's t

Copula CDF")

#pagl9o8#

rhol=0.3

dfl=4

stulibro <- tCopula(dim = 2, rhol, df = dfl)

mv_stulibro <- mvdc(stul, c("norm", "norm"),

paramMargins = list(list(mean = 0, sd = 1), list(mean = 0, sd = 1)))

persp(mv_stulibro, dMvdc, xlim = ¢(0, 1), ylim = ¢(0, 1), main = "Student's t Copula

libro PDF")

persp(mv_stulibro, pMvdc, xlim = ¢(0, 1), ylim = ¢(0, 1), main = "Student's t Copula

libro PDF")

#Bivariate copula: BB1 (par = 0.54, par2 = 1.29, tau = 0.39)

#Bivariate copula: t (par = 0.56, par2 = 3.06, tau = 0.38)

#Bivariate copula: Gumbel (par = 1.57, tau = 0.36)

persp(gumbelCopula(1.57,2), dCopula, main = "APPLE/GOOGLE Copula PDF (Gumbel)")
contour(gumbelCopula(1.57,2), dCopula, main = "APPLE/GOOGLE Copula PDF (Gumbel)")
persp(tCopula(dim=2,0.8,df=3), dCopula, main = "APPLE/GOOGLE Copula (t)")
contour(tCopula(dim=2,0.8,df=3), pCopula, main = "APPLE/GOOGLE Copula (t)")
persp(claytonCopula(1,2),dCopula)

contour

#NO MARGINS PREIMPOSTATI#

#normal#

persp(normalCopula(0.8,2), dCopula, main = "Normal Copula PDF")
contour(normalCopula(0.2,2), dCopula,main = "Normal Contour Copula PDF")
persp(normalCopula(0.2,2), pCopula, main = "Normal Copula CDF")
contour(normalCopula(0.5,2), pCopula,main = "Normal Contour Copula CDF")
#studentt#

persp(tCopula(dim=2,0.56,df=3),dCopula,xlim = ¢(0, 1), ylim = ¢(0, 1), main = "Student's
t Copula PDF")

contour(tCopula(dim=2,0.8,df=3), dCopula, xlim = c(0, 1), ylim = ¢(0, 1), main =
"Contour Student's t Copula PDF")

persp(tCopula(dim=2,0.8,df=3),pCopula, xlim = ¢(0, 1), ylim = ¢(0, 1), main = "Student's
t Copula CDF")

contour(tCopula(dim=2,0.8,df=3), pCopula, xlim = ¢(0, 1), ylim = ¢(0, 1), main =
"Contour Student's t Copula CDF")

contour(tCopula(dim=2,0.8,df=14),pCopula, xlim = ¢(0, 1), ylim = ¢(0, 1), main =
"Contour Student's t Copula PDF")

#clayton#

persp(claytonCopula(0.8,2), dCopula, main = "Clayton Copula PDF")
contour(claytonCopula(0.8,2), dCopula,main = "Contour Clayton Copula PDF")
persp(claytonCopula(0.8,2), pCopula, main = "Clayton Copula CDF")
contour(claytonCopula(0.8,2), pCopula,main = "Contour Clayton Copula CDF")
#gumbel# non so come mai ma va solo con numeri interi#

gumby=0.8

dimy=2

persp(gumbelCopula(8,2), dCopula, main = "Gumbel Copula PDF")
contour(gumbelCopula(2,2), dCopula,main = "Contour Gumbel Copula PDF")
persp(gumbelCopula(8,2), pCopula, main = "Gumbel Copula CDF")
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contour(gumbelCopula(2,2), pCopula,main = "Contour Gumbel Copula CDF")

#frank copula cacfitse#

persp(frankCopula(-0.38,2), dCopula, main = "Frank Copula PDF")
contour(frankCopula(-0.38,2), dCopula, main = "Contour Frank Copula PDF")
persp(frankCopula(-0.38,2), pCopula,main = "Contour Frank Copula CDF")
contour(frankCopula(-0.38,2), pCopula, main = "Contour Frank Copula CDF")

#BB1 copula cac 40 fitse#

bb1lvc2studentcac <- VC2copula::BB1Copula(param = c(0.81, 2.24))
mv_bb1lvc2studentcac <- mvdc(bblvc2studentcac, c("t", "t"),

paramMargins = list(list(df = 3), list(df = 3)))

persp(mv_bb1lvc2studentcac, dMvdc, xlim = ¢(0, 1), ylim = ¢(0, 1), main = "BB1 Copula
PDF")

persp(mv_bb1lvc2studentcac, pMvdc, xlim = ¢(0, 1), ylim = ¢(0, 1), main = "BB1 Copula
CDF")

contour(mv_bblvc2studentcac, dMvdc, xlim = ¢(0, 1), ylim = ¢(0, 1), main = "BB1 Copula
PDF")

contour(mv_bblvc2studentcac, pMvdc, xlim = ¢(0, 1), ylim = ¢(0, 1), main = "BB1 Copula
CDF")

tawnt2copfi <- VC2copula::tawnT2Copula(param = c(3.21, 0.78))

mv_tawnt2copfi <- mvdc(tawnt2copfi, c("t", "t"),

paramMargins = list(list(df = 3), list(df = 3)))

persp(mv_tawnt2copfi, dMvdc, xlim = ¢(0, 1), ylim = ¢(0, 1), main = "Tawn Copula PDF")
persp(mv_tawnt2copfi, pMvdc, xlim = ¢(0, 1), ylim = ¢(0, 1), main = "Tawn Copula CDF")
contour(mv_tawnt2copfi, dMvdc, xlim = ¢(0, 1), ylim = c¢(0, 1), main = "TawnCopula PDF")
contour(mv_tawnt2copfi, pMvdc, xlim = ¢(0, 1), ylim = ¢(0, 1), main = "Tawn Copula CDF")
#tawnt2cop CAC 40FITSE#

# Creating Tawn Type 2 copula object with parameters c(2, 0.5)

copula_obj <- VC2copula::tawnT2Copula(param = c(3.21, 0.78))

# Visualizing the copula

persp(copula_obj, dCopula, zlim = c(0, 14))

copula_objt2 <- VC2copula::r90TawnT1Copula(param = c(-13.36,0))
persp(copula_objt2, dCopula, zlim = ¢(0, 2) )

persp(copula_objt2, pCopula, zlim = ¢(0, 1) )

n <- 3965 # Number of observations

#simulated_datal2 <- simu.BB1(3965, alpha=1,d=2,scale1=1,scale2=2,shape1=0.5,shape2=2)
simulated_datal <- BiCop(3965,214,2.02,0.01)

persp(simulated_datal, dMvdc, xlim = c(0, 1), ylim = ¢(0, 1), main = "BB1 Copula PDF")
# Create a copula object for a Tawn type 2 copula

copula_objectfi <- BiCop(214, 2.02, 0.01)

# Simulate data from the copula using BiCopSim

simulated_data1lfi <- BiCopSim(1000, copula_objectfi)

contour(simulated_datalfi, dMvdc, xlim = ¢(0, 1), ylim = ¢(0, 1), main = "Tawn Type 2
Copula PDF")

# Create a copula object for a Tawn Type 2 copula

copula_object <- BiCop(214, 2.02, 0.01)

# Simulate data from the copula using BiCopSim

simulated_data <- BiCopSim(4000, copula_object)

# Plot the copula density using persp

persp(simulated_data, dMvdc, xlim = c(0, 1), ylim = ¢(0, 1), main = "Tawn Type 2 Copula
PDF")

plot(simulated_data, dMvdc)

length(simulated_data)

persp(simulated_data[, 1],simulated_datal[, 2], pch =", col = 'red")

plot(simulated_datal, 1],simulated_datal, 2], pch =".", col = 'red")

##secondo pagina 19 di Copula Models for Dependence: Comparing Classical and Bayesian
Approaches

##Lidia Maria Branco Correia Martins Andrée sbagliata solo frank

##questa gumbel viene diversa

mvNN <- mvdc(gumbelCopula(3), c("norm", "norm"),

list(list(mean = 0, sd = 1), list(mean = 1)))
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persp(mvNN, dMvdc, xlim=c(0,1), ylim=c(0,1), zlim=c(0,1),main = "Density")
persp(mvNN, pMvdc, xlim=c(-2, 2), ylim=c(-1, 3), main = "Cumulative Distr.")
contour(mvNN, dMvdc, xlim=c(-2, 2), ylim=c(-1, 3), main = "Density")
contour(mvNN, pMvdc, xlim=c(-2, 2), ylim=c(-1, 3), main = "Cumulative Distr.")
par(mfrow=c(1,2))
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