

Mas
(D.M
in C

Fin

Mi
Ru

Supe
Ch. P

Grad
Crist
Matr

Acad
2014

ster’s
M. 270
Compu

al The

ning
ules

ervisor
Prof. Salv

duand
tian De Zo
iculation

demic Ye
4 / 2015

Degre
0/2004
uter Sc

esis

 Top

vatore Or

otti
Number

ear

e prog
4)
cience

p-K C

rlando

815356

gramm

Class

e – Se

ificat

econd

tion

Cycle

ii

Abstract

In this thesis we present a classi�er that uses the associative classi�ca-
tion approach. Speci�cally, we exploit the mined top-k patterns to extract
classi�cation rules from a transactional dataset, where each transaction is
associated with a class attribute. The top-k patterns extracted are approx-
imate and are aimed to concisely describe the dataset. The top-k pattern
discovery problem is commonly stated as an optimization one, where the
goal is to minimize a given cost function, watching the accuracy of the data
description.

Indeed, for generating of candidate rules, we used a greedy algorith-
mic framework named PaNDa+, which extracts top-k patterns directly from
training data. The pattern extraction is performed by partitioning the train-
ing set according to the attribute class. On each disjoint partition so ob-
tained, we apply PaNDa+ by �rstly removing the attribute class, thus ob-
taining a set of patterns that are strictly related to a speci�c class label. This
allows us to naturally derive so-called classi�cation rules, in turn exploited to
classify. Once extracted the rules, however, we also calculate the prediction
power of each rules by using many measures. Such measures are used to rank
the rules that match a given test transaction, and permit us to identify the
best rule to apply for classifying the transaction.

Finally, we evaluate the goodness of the our rule-based classi�er by mea-
suring the quality and the accuracy of the extracted rules. The evaluation
was conducted on UCI data sets, and the results are compared with other
classi�ers, such as JCBA, CPAR, Weighted Classi�er, SVM, and C4.5.

iv

Contents

1 Introduction 1

1.1 Overview . 1
1.2 Problem Statement . 3

2 Background 5

2.1 Association Rules . 5
2.2 Classi�cation . 6
2.3 Classi�cation Association Rules 6
2.4 Top-k Pattern . 7

3 Contribution 9

3.1 PaNDa Algorithm . 9
3.2 Using PaNDa to extract classi�cation rules 10

3.2.1 PaNDaη . 12
3.2.2 PaNDaconf . 13
3.2.3 PaNDasupp . 13
3.2.4 PaNDalaplace . 13

4 Other Classi�cation Algorithm 15

4.1 JCBA . 15
4.2 CPAR . 15
4.3 Weighted Classi�er . 16
4.4 SVM . 16
4.5 C4.5 . 16

5 Experimental setting 19

5.1 Dataset . 19
5.2 Data structure for the experiments 20
5.3 Weka . 21
5.4 Algorithms setting . 22

5.4.1 PaNDa . 22

v

vi CONTENTS

5.4.2 CPAR . 23
5.4.3 JCBA . 24
5.4.4 Weighted Classi�er . 26
5.4.5 SVM . 27
5.4.6 C4.5 . 29

5.5 Experimental design . 30

6 Experimental evaluation 31

6.1 Evaluation Metrics . 31
6.2 Experimental Results . 32

6.2.1 Cost function . 33
6.2.2 Error Rate . 35
6.2.3 Randomization . 37
6.2.4 Randomization+Error 39
6.2.5 Execution Time . 41

7 Conclusion 43

Bibliography 45

List of Tables

5.1 Characteristics of the UCI datasets used for the experiments . 20

6.1 Accuracy (%) . 32
6.2 Accuracy (%) Default Parameters 32
6.3 Accuracy (%) Norm 2 Cost Function 33
6.4 Accuracy (%) Naive XOR Cost Function 33
6.5 Accuracy (%) Typed XOR Cost Function 34
6.6 PaNDaη Accuracy (%) Error Rate variation 35
6.7 PaNDaconf Accuracy (%) Error Rate variation 35
6.8 PaNDasupp Accuracy (%) Error Rate variation 36
6.9 PaNDalaplace Accuracy (%) Error Rate variation 36
6.10 PaNDaη Accuracy (%) Randomization variation 37
6.11 PaNDaconf Accuracy (%) Randomization variation 37
6.12 PaNDasupp Accuracy (%) Randomization variation 38
6.13 PaNDalaplace Accuracy (%) Randomization variation 38
6.14 Accuracy (%) Error Rate, Randomization and Norm 1 Cost

Function . 39
6.15 Accuracy (%) Error Rate, Randomization and Naive XOR

Cost Function . 40
6.16 Accuracy (%) Error Rate, Randomization and Typed XOR

Cost Function . 40
6.17 Execution Time (sec) . 41
6.18 Execution Time (sec) Default Parameter 42
6.19 Execution Time (sec) Error Rate, Randomization and Typed

XOR Cost Function . 42

vii

viii LIST OF TABLES

Chapter 1

Introduction

1.1 Overview

In this era of data over�ow, Knowledge Discovery and Data Mining (KDD)
is playing an important role in extracting knowledge. KDD consists of many
methods and techniques that can be applied to di�erent data to extract
knowledge. Some of the methods include association, classi�cation, and clus-
tering. In this thesis, we primarily focus on association and classi�cation.

Association rule mining was introduced to extract associations from mar-
ket basket data [1]. Association rule mining has proven useful in many other
domains (e.g. microarray data analysis, recommender systems, and network
intrusion detection), and it can be used, in general, to �nd out the associa-
tion relationships among a set of items in a dataset. Association rule mining
has become an important data mining technique due to the descriptive and
easily understandable nature of the rules. In the domain of market basket
analysis, data consists of transactions where each is a set of items purchased
by a customer. A method to measuring the usefulness of association rules,
is to use the support that is the percentage of transactions that contain all
the items of the rule, and the con�dence, that is the percentage of the trans-
actions that carry all the items of the rule among those transactions that
contain the items of the antecedent of the rule. This method was introduced
by [1].

The problem of association rule mining can be stated as: Given a dataset
of transactions, a threshold support (minsupport), and a threshold con�dence
(mincon�dence); Generate all association rules from the set of transactions
that have support greater than or equal to minsupport and con�dence greater

1

2 CHAPTER 1. INTRODUCTION

than or equal to mincon�dence.

Classi�cation is another method of data mining. Classi�cation can be de-
�ned as learning a function that maps (classi�es) a data instance into one of
several prede�ned class labels [2]. Classi�cation function or model is learned
from a training set of data containing observations (or instances) whose class
label membership is known, for identifying to which of a set of categories
(sub-populations) a new observation belongs. To test the classifying ability
of the learned model or function is used a testing set, where it is checked if
the function or model correctly classi�es instances. Examples of classi�cation
models include decision trees, Bayesian models, and neural nets. Classi�ca-
tion rules are of the form P → c, where P is a pattern in the training data
and c is a prede�ned class label.

In this thesis, we study a di�erent way of association rules extraction,
based on the extraction of top-k pattern, and compare di�erent ways of
building models or classi�er rules extracted from this, and with other exist-
ing classi�er. In this work top-k pattern mining is an alternative approach to
pattern extraction. It aims at discovering the (small) set of k patterns that
best describes, or models, the input data. State-of-the-art algorithms di�er
in the formalization of the concept of dataset description. The goodness of a
description is measured with some cost function, and the top-k mining task
is casted into an optimization of such cost [3]. The pattern top-k extracted
by the set of data are approximated pattern that are able to brie�y describe
the input data, and are then used as a classi�cation rule in prediction, within
our rule-based classi�er.

For generating of candidate rules, we used a greedy algorithmic frame-
work named PaNDa+, that extract top-k pattern directly from training data.
With this method, a pattern set Πk is extracted from a training set where the
class labels have been removed in advance. For what regard the test set, we
say that an approximate pattern P ∈ Πk occurs in an unseen test transaction
t if and only if P intersection ratio is greater or equal than the minimum in-
tersection ratio calculated for every training transaction. The rationale is to
accept a pattern P for a test transaction t if it does not generate more noise
than what it has been observed in the training set [4]. The previous opera-
tions allows us to determine whether a given pattern extracted by PaNDa is
a valid rule, i.e., it is a possibile candidate rule to be applied for classifyng
test transaction t. At the end, we have a set of valid rules for every test
set transaction t. After mapping the transactions into such pattern space,
the class labels are restored in the transformed training set, which is used

1.2. PROBLEM STATEMENT 3

to train our classi�ers. Classi�ers named PaNDaη, PaNDaconf , PaNDasupp,
and PaNDalaplace were implemented with 4 di�erent approaches, based on 4
di�erent scoring functions that sort the valid rules, for every test set transac-
tion, using measures like intersection ratio, con�dence, support and Laplace
accuracy. Finally, the classi�ers are evaluated with accuracy measure on the
mapped test set and results collected compared with each other and with
other existing classi�ers like JCBA, CPAR, Weighted Classi�er, SVM and
C4.5.

1.2 Problem Statement

The overall goal of this thesis is to design and develop a classi�cation sys-
tem that is based on Association Rule with using a Mining top-k algorithm.
Our problem can be further broken down as follows:

� Adapt the training set data to generate classi�cation association rules
with PaNDa.

� Build Classi�cation Models:

- Select the association rule valid for each test set transaction.

- For each test set transaction, apply the association rule valid and
calculate the relative measure.

- For each test set transaction, select as class the class pointed to
the association rule that has the highest measure.

� Calculate the Accuracy of the Classi�cation Model and the time of the
execution.

� Compare our Classi�cation Model with existing classi�er like JCBA,
CPAR, Weighted Classi�er, SVM and C4.5.

4 CHAPTER 1. INTRODUCTION

Chapter 2

Background

In this chapter we present brie�y what is the association rule, the classi�ca-
tion, the classi�cation association rule and the pattern top-k.

2.1 Association Rules

Association rule mining was introduced in [1] for discovered interesting
relations between products in market basket data. Market basket data con-
sist of transactions where a transaction is a set of products purchased by a
customer. The motivation for applying this data mining approach on market
basket data was that such information can be used as the basis for decisions
about marketing activities, catalog design, promotional pricing or store lay-
out design. Association rules are studied and employed today in many other
domains including web usage mining, credit card fraud, intrusion detection,
genetic data analysis. In every domain, there is a need to analyze data to
identify patterns associating di�erent attributes. Association rule mining,
addresses this need.

Let I be a set of n attributes called items, D be a multiset of transactions
(subset of the items in I) and t be a transaction. A rule extracted from D is
de�ned as an implication of the form: X ⇒ Y , where X, Y ⊆ I and X∩Y =
∅. To illustrate the concepts, we use a small example from the supermarket
domain. The set of items is I = {milk, bread, butter, beer, diapers} and
in the table is shown a small dataset containing the items, where, in each
entry, the value 1 or 0 means the presence or the absence of the item in the
corresponding transaction.

An example rule for the supermarket could be {butter, bread} ⇒ {milk}
meaning that if butter and bread are bought, customers also buy milk. To

5

6 CHAPTER 2. BACKGROUND

ID milk bread butter beer diapers

1 1 1 0 0 0
2 0 0 1 0 0
3 0 0 0 1 1
4 1 1 1 0 0
5 0 1 0 0 0

select interesting rules from the set of all possible rules, constraints on sup-
port and con�dence measures are used. The support value of the rule X is
the percentage of transactions t in dataset D which contains the item-set X.
In our supermarket example, the item-set {milk, bread, butter} has a support
of 1/5 = 0.2 since we can easily see it occurs in 20% of all transactions (1
out of 5 transactions). The con�dence value of a rule, X ⇒ Y is, among
all the transactions that contain X, the percentage that contain Y as well.
Con�dence is de�ned as: conf(X ⇒ Y) = supp(X ∪ Y)/supp(X). For our
example, the rule {butter, bread} ⇒ {milk} has a con�dence of 0.2/0.2 = 1.0
in the dataset, which means that for 100% of the transactions containing but-
ter and bread the rule is correct (100% of the times a customer buys butter
and bread, milk is bought as well). Given a minimum support and minimum
con�dence threshold, a dataset of transaction where each transaction is a
set of items, we can de�ne a problem of association rule mining as a prob-
lem of �nd all association rules R that satisfy given support and con�dence
threshold.

2.2 Classi�cation

Classi�cation is the problem of identifying a function or a model from a
data set (training set) where the class membership is known, so as to predict
to which class a new observation belongs.
Classi�cation models are frequently represented as rules of this form: P → c
where P is a pattern in the training data (P forms the set of predicting
attribute(s)) and c is the class label.

2.3 Classi�cation Association Rules

Associative classi�cation di�ers from general association rule mining by in-
troducing a constraint as the attribute that must appear on the consequent of
the rule. This association rules are produced with only a particular attribute
in the consequent [5]. This particular case of constrained association rules

2.4. TOP-K PATTERN 7

are called class association rules (CARs), and can be used to build a model
or classi�er. There has been several studies in this �eld concerning the in-
tegration of these constraints into the mining phase rather than �ltering the
enormous number of rules produced using the constraints as post-processing
�lters, with the goal of obtaining general advantages like faster execution and
lower memory utilization. Many methods of classi�cation rules extraction,
once extracted all the frequent rules, which are all the rules that ful�ll the
constraints of support and con�dence threshold, performing a pruning, to
avoid that during the application of the rules are too many candidates appli-
cable to a test transaction. In practice, only keep the rules "cover" quite the
dataset from which they are extracted. In this way we have the best class
association rules to use for the classi�cation of new instances.

2.4 Top-k Pattern

A top-k pattern is an approximate pattern extracted from a matrix thus
corresponds to a pair of sets, items and transactions, where the items of the
former set are mostly included in all the transactions of the latter set. Top-k
pattern mining is an alternative approach to pattern enumeration. It aims
at discovering the (small) set of k patterns that best describes, or models,
the input dataset. The goodness of a description is measured with some cost
function, and the top-k mining task is casted into an optimization of such
cost. There are greedy strategies adopted to solve this optimization problem.
At each iteration, the pattern that best optimizes the given cost function is
added to the solution, and this is repeated until k patterns have been found
or until it is not possible to improve the cost function [3].

8 CHAPTER 2. BACKGROUND

A simple example of patterns extraction, we can see in the �gure above.
Given a dataset with some noise all around, that simply �ipped some of the
bits in our representation, we can simply see that the patterns extracted
are two: items {BCDEF} occurring in transactions {2, 3, 4, 5, 6} and items
{IJKL} occurring in transactions {7, 8, 9, 10, 11, 12, 13}. Patterns are repre-
sented as a hyper-rectangle, and may contain false positives, i.e. holes, which
are missing items in the transactions supporting a given pattern. Inside the
dataset, due to the noise, there may be false negatives, spurious occurrences,
which may belong to any patterns, that are ignored in the pattern extraction.

Chapter 3

Contribution

In this chapter, we discuss the structure of our project, starting from the
algorithm to extract patterns and rules, up to the exploitation of these rules
to build a classi�er. The rest of this chapter is organized as follows: Sec-
tion 3.1 presents PaNDa, the algorithm to extract important patterns from
a dataset, and Section 3.2 discusses how PaNDa is used in the project to
classify unseen transactional records.

3.1 PaNDa Algorithm

An alternative approach to pattern enumeration, which has been very pop-
ular in the �eld of Market Basket Analysis, is top-k pattern mining. The
set of top-k patterns extracted aims to best describes, or models, the input
data, namely a transactional dataset where each record stores a subset of
items. The goodness of the dataset description, made possible by the top-k
patterns, is measured in terms of some cost function, and the objective of
the top-k mining task is to optimize such cost.

This family of top-k pattern mining algorithms usually adopts a greedy
strategy and adds, at each iteration, a pattern to the solution set if and only
if it best optimizes (either minimize or maximize) the given cost function.
This operation is repeated until either k patterns have been found, or it is
no more possible to improve the cost function.

PaNDa[3] is a new algorithmic framework for mining top-k patterns,
which improves the accuracy of each mined pattern, and can deal with a
variety of cost functions. In addition, it is capable to deal with error noise
tolerance thresholds. To extract patterns, PaNDa adopts a greedy strategy
that consists in extracting an ordered sequence of patterns, by progressively
increasing the degree of coverage of the dataset. We can decompose the

9

10 CHAPTER 3. CONTRIBUTION

problem of pattern detection into two simpler problems:

1. Discovering of a noise-less pattern.

2. Pattern extension by allowing false positives to occur in the pattern.

PaNDa assumes that, even in presence of noise, it is possible to detect
a core noise-less pattern, composed of a set of items actually occurring in a
group of transactions. The core pattern, which is indeed an exact pattern, is
then transformed into an approximate pattern P , where P identi�es a group
of transactions that mostly include a given itemset.

In order to obtain P , PaNDa starts from the core pattern, and considers
all the items and transactions to further enlarge the core, to �nally obtain its
largest extension that minimizes the cost function. If the pattern obtained
from this last operation reduces the current cost of the model, P is added to
the result pattern set Π. PaNDa stops generating further patterns when:

� The one under examination does not improve the cost of the model.

� It has reached the maximum value of user provided parameter k.

Concerning the detection of core patterns, PaNDa at each iteration starts
to discover them from portions of the dataset (residual dataset) not yet
covered by any previous pattern.

3.2 Using PaNDa to extract classi�cation rules

In this thesis we aim at using the pattern extracted by PaNDa to build a
classi�er based on classi�cation rules. We start from a transactional dataset
where every transaction is labeled with a discrete class attribute, i.e., a train-
ing set. The pattern extraction is performed by �rst partitioning the training
set according to the attribute class. On each disjoint partition so obtained,
we apply PaNDa by �rstly removing the attribute class, thus obtaining a set
of patterns that are related to the speci�c class label, and can be used to
derive so-called classi�cation rules. Once we got the patterns, we use them
to make the classi�cation.

More formally, let D be the training set, which indeed is a multiset of
labelled transactions. Speci�cally, each element of D is a pair (t, c), where
transaction t is a subset of items, t ⊆ I, and c is a class label, c ∈ C.
Symbol I corresponds to the collection of all the possible items occurring in
a transaction, while C is the set of class attributes. Let Dc be the subset of
D whose transactions are labeled by c (∪c∈CDc = D), and let Dc be the same

3.2. USING PANDA TO EXTRACT CLASSIFICATION RULES 11

set Dc from which the class attribute have been eliminated for the purpose
of extracting patterns. Similarly, we denote by D the complete training set
from which we have got rid of all the class labels.

Let Πc be the set of approximate patterns extracted by PaNDa from Dc.
Each patterns is indeed a pairs 〈I, T 〉, where I is an itemset, and T ⊆ Dc is
the set of transactions where I �occurs�. However, since the pattern 〈I, T 〉 is
approximate, in principle we can have that given a transaction t ∈ T , we can
have that I 6⊆ T . Finally, the classi�cation rules extracted are of the form
I → c, where 〈I, T 〉 ∈ Πc.

Since 〈I, T 〉 is an approximate pattern, we need a quantitive method to
rede�ne the concept of inclusion of a pattern within a transaction. First we
de�ne the minimum intersection ratio, and then the approximate inclusion
concept.

De�nition 1. [Minimum intersection ratio [4]]
∀P = 〈I, T 〉 ∈ Πc, i.e., for each pattern extracted by PaNDa from the training
set Dc, let ρP be the minimum intersection ratio for every transaction t ∈ T
de�ned as follows:

ρP = min
t∈T

|I ∩ t|
|I|

Note that ρP = 1.0 i� ∀t ∈ T , we have that I ⊆ t.

De�nition 2. [Approximate inclusion]
Given a transaction t′ of the test set, and given a rule I → c derived from the
pattern P = 〈I, T 〉 ∈ Πc, the left hand of the rule is included in t′, denoted
by I⊆̃t′, i� |I ∩ t′|/|I| ≥ ρP .

The previous de�nition allows us to determine whether a given classi�-
cation rule I → c is a valid rule, i.e., it is a possible candidate rule to be
applied for classifying t′ as belonging to class c. According to this schema,
given R = {I → c} de�ned as the set of all the rules extracted by PaNDa,
and given a test transaction t′, the set of all the candidate rules for t′ is

R′ = {(I → c) ∈ R | I⊆̃t′}

Finally, from this set of candidate rules R′ for test transaction t′, we need
to select the rule that most "�ts" t′. To this end we can employ many scores
for ranking the candidate rules, to �nally select the best rule, and assign to
t′ the class c of the selected rule. In case of tie, the selected rule is the rule
with the greater lenght.

12 CHAPTER 3. CONTRIBUTION

In the following we discuss the possible scoring functions used in this
work. Since some of the methods need to exploit measures based on the
training set, in particular classical support and con�dence of a rule, in the
following we rede�ne these measures taking into account the approximate
nature of each rule.

De�nition 3. [Approximate support and con�dence]
Given a rule I → c derived from the pattern P = 〈I, T 〉 ∈ Πc, we de�ne
s̃upp(I) and s̃upp(I ∪ c) as follows:

s̃upp(I) =
|{t ∈ D | I⊆̃t}|

|D|

s̃upp(I ∪ c) =
|{t ∈ Dc | I⊆̃t}|

|D|

where for the second de�nition we limit ourself to Dc, i.e., the transactions
labeled by c.

Finally, the con�dence is de�ned as follows:

c̃onf (I → c) =
s̃upp(I ∪ c)
s̃upp(I)

3.2.1 PaNDaη

Given a test transaction, a very simple method to score the various candidate
valid rules, and thus guessing their prediction power, is to resort to a simple
intersection ratio, denoted by η. Speci�cally, given a valid classi�cation rule
r ≡ I → c for a test transaction t′, we de�ne η(r, t′), 0 ≤ η(r, t′) ≤ 1, as the
intersection ratio between the antecedent of the rule and t′:

η(r, t′) =
|I ∩ t′|
|I|

Therefore, if many valid rules there exist for t′, we eventually select the
rule with the maximum value of η. More formally, if R(t′) is the set of all
the valid rules for t′, we select the rule r ∈ R(t′) such that:

r = argmax
r∈R(t′)

η(r, t′)

3.2. USING PANDA TO EXTRACT CLASSIFICATION RULES 13

3.2.2 PaNDaconf

Like in PaNDaη, for making a prediction we calculate the intersection ratio
η for every rule. In addition, for each rule we also calculate the con�dence,
which measures the reliability of the inference made by a rule. Given a rule
r ≡ I → c, the traditional de�nition of con�dence is the ratio between the
proportion of transactions in the training set which contains itemset I ∪ c
and the proportion of transactions in the training set which contains itemset
I only.

conf (r) =
supp(I ∪ c)
supp(I)

where supp(I ∪ c) is given by the number of transactions of the training set
that contain all the elements of the rule r, and also the attribute class c, and
supp(I) is the number of train set transaction that contain all the elements
of the itemset I.

For our purpose, however, since itemsets detected by PaNDa are approxi-

mate, we exploit the de�nition above of con�dence c̃onf (r). Therefore, given
a test transaction t′ for which rule r is valid, the measure of the prediction
power of r is given by:

η(r, t′) ∗ c̃onf (r)

If many valid rules there exist for t′, we eventually select the rule with
the maximum value of the above measure. More formally, if R(t′) is the set
of all the valid rules for t′, we select the rule r ∈ R(t′) such that:

r = argmax
r∈R(t′)

η(r, t′) ∗ c̃onf (r)

3.2.3 PaNDasupp

This measure is similar to the one used in PaNDaconf . We only use the

approximate support s̃upp(I) rather than c̃onf (r). Given a test transaction
t′, if R(t′) is the set of all the valid rules for t′, where every rule is in the form
r ≡ I → c, we select the rule r ∈ R(t′) such that:

r = argmax
r∈R(t′)

η(r, t′) ∗ s̃upp(I)

3.2.4 PaNDalaplace

In this method we use as another measure in addition to η, the Laplace
expected error estimate [6], to predict the accuracy of rules. Given the rule

14 CHAPTER 3. CONTRIBUTION

r ≡ I → c, we have:

LaplaceAccuracy(r) =
(nc + 1)

(ntot + |C|)
where |C| is the number of classes, and ntot is the total number of trans-
actions in the training set satisfying the rule's body, and nc are the subset
of these transactions belonging to class c. Therefore ntot = s̃upp(I) and
nc = s̃upp(I ∪ c).

So, our measure of prediction power given a test transaction t′ and a valid
rule r is given by:

η(r, t′) ∗ LaplaceAccuracy(r)

Like in the other methods, given a test transaction t′, if R(t′) is the set
of all the valid rules for t′, we select the rule r ∈ R(t′) such that:

r = argmax
r∈R(t′)

η(r, t′) ∗ LaplaceAccuracy(r)

Chapter 4

Other Classi�cation Algorithm

In this chapter we present brie�y the other existing classi�cation algorithms,
used in our thesis to make comparisons with the performance of our imple-
mentations.

4.1 JCBA

JCBA is the java class implenting a java version of the CBA algorithm
using a CrTree with Apriori carMiner algorithm. The CBA algorithm is
described in: [5]. CBA �rst generates all the association rules with certain
support and con�dence thresholds as candidate rules. The rules extracted are
in the form < condset; y > where condset is a set of items, and y is the class
labels. For all rules that have the same condset, the one with the highest
con�dence is selected as the representative of those rules, thus obtaining a
small set of rules, to form a classi�er. When predicting the class label for an
example, the best rule (with the highest con�dence) whose body is satis�ed
by the example is chosen for prediction.

4.2 CPAR

CPAR (Classi�cation based on Predictive Association Rules) is classi�-
cation approach which combines the advantages of both associative classi�-
cation and traditional rule-based classi�cation. CPAR, in comparison with
associative classi�cation, has the following advantages:

1. Generates a much smaller set of high-quality predictive rules with lower
redundacy directly from the dataset;

15

16 CHAPTER 4. OTHER CLASSIFICATION ALGORITHM

2. To avoid generating redundant rules, CPAR generates each rule by
considering the set of "already-generated" rules;

3. When predicting the class label of an example, CPAR uses expected
accuracy to evaluate rules, and uses the best k rules that this example
satis�es.

CPAR results to be much more time-e�cient in both rule generation and
prediction but achieves as high accuracy as associative classi�cation. [7]

4.3 Weighted Classi�er

Weighted Classi�er is a java class implenting three di�erent weighted clas-
si�ers for class association rules:

1. All rules are weighted equally with weight one (default behaviour).

2. All rules are weighted linearly.

3. All rules are weighted using the inverse function 1/position in sort order
of mining algorithm.

The pruning step is omitted. All mined rules are used for classifcation, if not
speci�ed otherwise with the ruleLimit option. The extraction of the rule is
performed by the Apriori carMiner java class implemented in Weka.

4.4 SVM

SVM in Weka is implemented by LIBSVM, that is a library for support
vector classi�cation, (C-SVC, nu-SVC), regression (epsilon-SVR, nu-SVR)
and distribution estimation (one-class SVM). It supports multi-class classi-
�cation [8]. SVM (Support Vector Machines) is an algorithm that analyze
data and recognize patterns. Given a trainig set examples, each with a class
label, SVM algorithm build a model, that is a representation of the examples
as points in space, divided by a clear gap that is as wide as possible. New
examples are assigned into one class or the other, based on which side of the
gap they fall on.

4.5 C4.5

C4.5 is a decision tree algorithm [9], implemented in Weka by java class
J48 [10]. Decision trees are a very e�ective method of supervised learning.

4.5. C4.5 17

It aims at partitioning of a dataset into groups as homogeneous as possible
in terms of the variable to be predicted. It takes as input a set of classi�ed
data, and outputs a tree that resembles to an orientation diagram where
the root nodes are the top node of the tree and it considers all samples and
selects the attributes that are most signi�cant, each end node (leaf) is a
decision (a class) and each non-�nal node (internal) represents a test. Each
leaf node represents the decision of belonging to a class, and the rule are
generated by illustrating the path from the root node to leaf node. C4.5
constructs a very big tree by considering all attribute values and �nalizes the
decision rule by pruning. Pruning consists in: if a sub-tree can only lead to
a unique solution, then all sub-tree can be reduced to the simple conclusion,
this simpli�es the process and does not change the �nal result. Dealing huge
data with computational e�ciency is one of the major problem of C4.5.

18 CHAPTER 4. OTHER CLASSIFICATION ALGORITHM

Chapter 5

Experimental setting

We have conducted an extensive performance study to evaluate accuracy and
execution time of our implementation and compare it with that of CPAR [7],
JCBA, Weighted Classi�er, SVM and C4.5. As in [7], 10 datasets from UCI
Machine Learning Repository are used. All the experiments are performed
on an Intel Core i7 PC with 16GB main memory.

5.1 Dataset

We tested the classi�cation system with the following datasets obtained
from the UCI Machine Learning Repository [11], where datasets continuous
valued attributes were discretized for pattern mining [12].:

� abalone.

� ecoli.

� glass.

� ionosphere.

� iris.

� penDigits.

� segment.

� vehicle.

� wine.

� zoo.

19

20 CHAPTER 5. EXPERIMENTAL SETTING

Table 5.1 shows the properties of these datasets. As part of pre-processing,
continuous valued attributes were discretized for pattern mining [12], to allow
the use of the datasets by the algorithms used.

classes # items # transaction

abalone 3 8 4177
ecoli 8 7 336
glass 7 9 214

ionosphere 2 33 351
iris 3 4 150

penDigits 10 16 10992
segment 7 19 2310
vehicle 4 18 846
wine 3 13 178
zoo 7 16 101

Table 5.1: Characteristics of the UCI datasets used for the experiments

5.2 Data structure for the experiments

A modi�ed version of 10-fold cross validation is used for every dataset. For
the construction of the train and test set, we following these steps:

� The rows of the dataset are composed of a �rst element which corre-
sponds to the class, and all of the other elements that make up the
transaction. First of all we sorted rows according to the attribute
class, and then subsequently we divided the data set according to the
attribute class.

� Each newly created partition is divided into 10 parts. We take one part
for each class partition and we merge to create the test set. With the
remainder of each partition we create the training set, which consists
of a nine parts for each class.

� The process is then repeated 10 times (the folds). We used for each
class a di�erent test partition among the 10 available, thus obtaining
that each partition is used only once. For each run we also changes
the training set, which is constructed using the remaining partitions of
each class that is not used for the test.

Let's take a simple example to understand better the operations. We take
the case of a dataset with two classes:

5.2. DATA STRUCTURE FOR THE EXPERIMENTS 21

As we can see in the �gure below, we sort the dataset and then partition it
according to the attribute class. We get two partitions of the initial dataset.

We split each partition into 10 parts. Take 1 part for the test set, and the
remaining we use for the training. In our case, we have 10 transactions
per class. We take one transaction per class to form the test set and the
remaining 9 we use for the training.

22 CHAPTER 5. EXPERIMENTAL SETTING

Repeat the previous step, changing at each iteration the transaction that was
used as a test, until the completion of the planned 10 fold.

The advantage of this method over repeated random sub-sampling is that
all observations are used for both training and test, and each observation is
used for test exactly once. Also by selecting the same amount of elements
for each class, in each sub-sampling, there is a greater uniformity of the data
in each experiment performed.

5.3 Weka

"WEKA" stands for the Waikato Environment for Knowledge Analysis,
which was developed at the University of Waikato in New Zealand. Weka
is extensible and has become a collection of machine learning algorithms for
solving real-world data mining problems. It is written in Java and runs on
almost every platform. Weka is easy to use and to be applied at several
di�erent levels. You can access the Weka class library from your own Java
program, and implement new machine learning algorithms.

Weka contains tools for data pre-processing, classi�cation, regression,
clustering, association rules, and visualization. Weka is open source soft-
ware issued under the GNU General Public License and is used for research,
education, and applications.

Weka, o�ering a wide range of classi�cation algorithms, is used in our
thesis for testing comparison of our implementations with other classi�cation
algorithms existing tools to obtain data about the quality of our implemen-
tations. In the particular case we use implementations in Weka of CBA,
Weighted Classi�er, SVM and C4.5.

5.4 Algorithms setting

In this section we show how are the setting of the various algorithms that
were used to make our tests, showing the parameters used and the commands
to perform the execution.

5.4. ALGORITHMS SETTING 23

5.4.1 PaNDa

For the execution of PaNDa algorithm we can specify this series of param-
eter:

� -d <dataset>: input data �le.

� -k <# patterns>: maximum number of patterns to be extracted
(default: -1 → in�nite).

� -s <strategy>: strategy for extraction f - for frequency, c - for child
frequency, o - for correlated, h - for charm (default: f).

� -r <# rnd iter>: number of random iteration (0: no randomness),
(default: 0).

� -c <cost f>: 1 - norm 1, w - norm s with weight, 2 - norm 2, x -
typed xor, n - naive xor (default: 1).

� -w <weight>: weight to be used for the "-c w" option.

� -o <output>: default: non output �le.

� -a <data struct>: f - for fptree, v - for full vertical (default: f).

� -y: row tolerance ratio.

� -t: column tolerance ratio.

� -v: verbose mode. Outputs cost per iteration.

For make our tests we use this four series of options to set PaNDa algo-
rithm. For the test with default parameters we execute PaNDa we use the
following sequence options:

./panda/panda -d <dataset> -k 5 -o out.w1

Instead to run with the cost function typed xor, we specify the parameter
to option -c:

./panda/panda -d <dataset> -k 5 -c x -o out.w1

To run with error rate values, we specify the parameter to option -y for
the row tolerance, and -t for the column tolerance:

./panda/panda -d <dataset> -k 5 -y 0.3 - t 0.3 -o out.w1

24 CHAPTER 5. EXPERIMENTAL SETTING

Instead to run with randomization value, we specify the parameter to
option -r:

./panda/panda -d <dataset> -k 5 -r 10 -o out.w1

For the �nal tests we mix every parameter to obtain the maximun value
of accuracy:

./panda/panda -d <dataset> -k 5 -r 10 -c x -y 0.3 -t 0.3 -o out.w1

5.4.2 CPAR

For the test with the algorithm CPAR use an implementation in java as
indicated in [7], which has the following preset parameters that can not be
changed:

� Rules per class label (k): 6

� totalWeightFactor: 0.001

� decayFactor: 0.25

� minGain: 1.0

To make a prediction on our test set, starting from our training set, we
should be using the following command, which produces in output our test
set with the label predicted by CPAR:

./predict train_set.w1 test_set.w1 label_test_set.w1

5.4.3 JCBA

Weka on the various algorithms classi�cation association rule we chose to
use JCBA which is an implementation of Java in CBA. We used by setting
it with the following parameters to get the best performance:

� CF: Sets the con�dence value for the optional pessimistic error rate
based pruning step.

� CBA: If set to false, a simple decision list classi�cation without pruning
(no opt. and no obligatory pruning step) is performed, otherwise JCBA
performs at least its obligatory pruning step.

� carMiner: The class association rule miner with its options.

5.4. ALGORITHMS SETTING 25

� debug: If set to true, classi�er may output additional info to the
console.

� doNotCheckCapabilities: If set, classi�er capabilities are not checked
before classi�er is built.

� optPruning: Enables or disabled the optional pessimistic error rate
based pruning step.

� treeOutput: Enables/Disables the output of the mined rule set.

The parameters relating to the con�dence value to make the pruning (CF)
have been lowered from 0.25 to 0.1 to thus obtain the performace further by
the algorithm.

As CAR miner within JCBA, Apriori algorithm it is used with the pa-
rameters that you see in the �gure:

� car: If enabled class association rules are mined instead of (general)
association rules.

� classIndex: Index of the class attribute. If set to −1, the last attribute
is taken as class attribute.

� delta: Iteratively decrease support by this factor. Reduces support
until min support is reached or required number of rules has been gen-
erated.

� doNotCheckCapabilities: If set, associator capabilities are not checked
before asssociator is built.

26 CHAPTER 5. EXPERIMENTAL SETTING

� lowerBoundMinSupport: Lower bound for minimun support.

� metricType: Set the type of metric by which to rank rules. Con�-
dence is the proportion of the examples covered by the premise that are
also covered by the consequence (Class association rules can only be
mined using con�dence). Lift is con�dence divided by the proportion
of all examples that are covered by the consequence. This is a measure
of the importance of the association that is independent of support.
Leverage is the proportion of additional examples covered by both the
premise and consequence above those expected if the premise and con-
sequence were independent of each other. The total number of examples
that this represents is presented in brackets following the leverage. Con-
viction is another measure of departure from independence. Conviction
is given by P (premise)P (!consequence)/P (premise, !consequence).

� minMetric: Minimun metric score. Consider only rules with scores
higher than this value.

� numRules: Number of rules to �nd.

� outputItemSets: If enabled the itemset are output as well.

� removeAllMissingCols: Remove columns with all missing values.

� signi�canceLevel: Signi�cance level.

� treatZeroAsMissing: If enabled, zero (that is, the �rst value of a
nominal) is treated in the same way as a missing value.

� upperBoundMinSupport: Upper bound for a minimun support.
Start iteratively decreasing minimun support from this value.

� verbose: If enabled the algorithm will be run in verbose mode.

5.4. ALGORITHMS SETTING 27

It been lowered the value of metric score (minMetric) that consider only
rules with scores higher than this value, from 0.9 to 0.2, so that we get so
many more rules for classi�cation.

5.4.4 Weighted Classi�er

Another classi�cation association rule algorithm used for comparison is
the weighted classi�er that is located between the various algorithms avail-
able on Weka. The algorithm was set to perform our tests with the default
parameters that you see in the �gure below:

� carMiner: The class association rule miner with its options.

� debug: If set to true, classi�er may output additional info to the
console.

� doNotCheckCapabilities: If set, classi�er capabilities are not checked
before classi�er is built (Use with caution to reduce runtime).

� ruleLimit: If set to -1 or 0, all rules in the pruned rule set are used
for classi�cation (default), otherwise it uses the speci�ed number of top
ranked rules in the pruned rule set.

28 CHAPTER 5. EXPERIMENTAL SETTING

� weightScheme: Specify the type of the weighting scheme: equal(default),
linear, invers. Equal weights all instances equally with 1, linear uses
a linear weighting function depending on the sort order of the mining
algorithm, and inverse uses the inverse function 1/(rank in the sort
order).

As in the case of JCBA, also the Weighted Classi�er uses Apriori algo-
rithm as CAR miner. In this case it is used with the following parameters:

� car: If enabled class association rules are mined instead of (general)
association rules.

� classIndex: Index of the class attribute. If set to −1, the last attribute
is taken as class attribute.

� delta: Iteratively decrease support by this factor. Reduces support
until min support is reached or required number of rules has been gen-
erated.

� doNotCheckCapabilities: If set, associator capabilities are not checked
before associator is built.

� lowerBoundMinSupport: Lower bound for minimum support.

� metricType: Set the type of metric by which to rank rules. Con�-
dence is the proportion of the examples covered by the premise that are
also covered by the consequence (Class association rules can only be
mined using con�dence). Lift is con�dence divided by the proportion
of all examples that are covered by the consequence. This is a measure
of the importance of the association that is independent of support.
Leverage is the proportion of additional examples covered by both the

5.4. ALGORITHMS SETTING 29

premise and consequence above those expected if the premise and con-
sequence were independent of each other. The total number of examples
that this represents is presented in brackets following the leverage. Con-
viction is another measure of departure from independence. Conviction
is given by P (premise)P (!consequence)/P (premise, !consequence).

� minMetric: Minimum metric score. Consider only rules with scores
higher than this value.

� numRules: Number of rules to �nd.

� outputItemSets: If enabled the itemsets are output as well.

� removeAllMissingCols: Remove columns with all missing values.

� signi�canceLevel: Signi�cance level.

� treatZeroAsMissing: If enabled, zero (that is, the �rst value of a
nominal) is treated in the same way as a missing value.

� upperBoundMinSupport: Upper bound for minimum support. Start
iteratively decreasing minimum support from this value.

� verbose: If enabled the algorithm will be run in verbose mode.

30 CHAPTER 5. EXPERIMENTAL SETTING

5.4.5 SVM

To perform another comparison with classi�cation algorithms of di�erent
type use SVM within Weka, running it with the following parameters as
shown in the �gure below:

� SVMType: The type of SVM to use.

� cacheSize: The cache size in MB.

� coef0: The coe�cient to use.

� cost: The cost parameter C for C-SVC, epsilon-SVR and nu-SVR.

� debug: If set to true, classi�er may output additional info to the
console.

� degree: The degree of the kernel.

� doNotCheckCapabilities: If set, classi�er capabilities are not checked
before classi�er is built.

5.4. ALGORITHMS SETTING 31

� doNotReplaceMissingValues: Whether to turn o� automatic re-
placement of missing values.

� eps: The tolerance of the termination criterion.

� gamma: The gamma to use, if 0 then 1/maxindexisused.

� kernelType: The type of kernel to use.

� loss: The epsilon for the loss function in epsilon-SVR.

� modelFile: The �le to save the libsvm-internal model to; no model is
saved if pointing to a directory.

� normalize: Whether to normalize the data.

� nu: The value of nu for nu-SVC, one-class SVM and nu-SVR.

� probabilityEstimates: Whether to generate probability estimates in-
stead of -1/+1 for classi�cation problems.

� seed: The random number seed to be used.

� shrinking: Whether to use the shrinking heuristic.

� weights: The weights to use for the classes (blank-separated list, eg,
"1 1 1" for a 3-class problem), if empty 1 is used by default.

32 CHAPTER 5. EXPERIMENTAL SETTING

5.4.6 C4.5

As a �nal test, to diversify the types of classi�ers and have a broader
comparison, we use the implementation of C4.5 tree classi�er in Weka. How
we use the following parameters in C4.5:

� binarySplits: Whether to use binary splits on nominal attributes
when building the trees.

� collapseTree: Whether parts are removed that do not reduce training
error.

� con�denceFactor: The con�dence factor used for pruning (smaller
values incur more pruning).

� debug: If set to true, classi�er may output additional info to the
console.

5.4. ALGORITHMS SETTING 33

� doNotCheckCapabilities: If set, classi�er capabilities are not checked
before classi�er is built.

� doNotMakeSplitPointActualValue: If true, the split point is not
relocated to an actual data value. This can yield substantial speed-ups
for large datasets with numeric attributes.

� minNumObj: The minimum number of instances per leaf.

� numFolds: Determines the amount of data used for reduced-error
pruning. One fold is used for pruning, the rest for growing the tree.

� reduceErrorPruning: Whether reduced-error pruning is used instead
of C.4.5 pruning.

� saveInstanceData: Whether to save the training data for visualiza-
tion.

� seed: The seed used for randomizing the data when reduced-error
pruning is used.

� subtreeRaising: Whether to consider the subtree raising operation
when pruning.

� unpruned: Whether pruning is performed.

� useLaplace: Whether counts at leaves are smoothed based on Laplace.

� useMDLcorrection: Whether MDL correction is used when �nding
splits on numeric attributes.

34 CHAPTER 5. EXPERIMENTAL SETTING

With Weighted Class�er, SVM, and C4.5 we use the default parameters
because it is the better solutions to obtain the best results of accuracy with
this algorithms.

5.5 Experimental design

From our training set just created with the 10-fold cross validation, and
set all the parameters of the various algorithms as shown in the previous sec-
tions, we start with the execution of the various tests. First we begin to run
PaNDa with the default parameters, do the validation pattern extracted and
send them to the vaults PaNDaη, PaNDaconf , PaNDasupp and PaNDalaplace .
After �nishing the classi�cation, the accuracy is calculated according to the
test set that we have available. It also calculated the running time from the
start of that part of pandas and �nishes by calculating the accuracy.

We repeat the test by changing the parameters of the cost function, error
rate and randomization of PaNDa to see the performance di�erence. Later we
modify the training set by adding at the end of each transition the attribute

5.5. EXPERIMENTAL DESIGN 35

class and perform the algorithm CPAR with the training set just modi�ed,
calculating on completion the value of accuracy and execution time. Once
completed the execution of CPAR, we send the training set and the test set
to Weka where we execute the algorithms JCBA, Weighted Classi�er, SVM
and C4.5, to collecting more data on the accuracy and execution time. Once
�nished the execution of various algorithms, and repeated for the 10 fold, the
�nal results are calculated with the arithmetic mean of the di�erent values
of accuracy, and execution time and stored on a text �le.

36 CHAPTER 5. EXPERIMENTAL SETTING

Chapter 6

Experimental evaluation

In this chapter, we describe the experiments carried out to compare and
evaluate our classi�cation system. We break down this section into data de-
scription, evaluation metrics and experimental results. We show the perfor-
mance related to accuracy and execution time of our classi�ers and classi�ers
JCBA, CPAR, Weighted Classi�er, SVM and C4.5.

6.1 Evaluation Metrics

We evaluate the classi�er based on accuracy rate, and we also evaluate
the execution time to execute the model. The accuracy rate signi�es the
number of correct predictions over the total number of predictions, while the
execution time is calculated from the start of generation of the association
rules, until the completion of the classi�cation of the test set transaction.

accuracy =
number of correct classifications

total number of classifications made

A prediction involves selecting an appropriate class label for a case whose
class label is unknown. For example, let < x1, x2, ...xk, ? > be a data instance
whose class label is unknown (denoted by a question mark). xi represents the
value of attribute i of the instance. If this data instance is given as an input
to a model, the rule that "covers" this instance (the rule with the highest
cover measure related to this instance) will determine the class label for the
data instance.

37

38 CHAPTER 6. EXPERIMENTAL EVALUATION

6.2 Experimental Results

In this set of experiments, we compared the performances of PaNDaη,
PaNDaconf , PaNDasupp, and PaNDalaplace with well-know classi�ers such as
JCBA, CPAR, Weighted Classifer, SVM, and C4.5. JCBA, Weighted Clas-
sifer, SVM, and C4.5 are performed using Weka, while our implementations
and CPAR are performed directly using the source code.

Below we are presented the results collected relating to accuracy:

JCBA CPAR Weighted SVM C4.5

abalone 23.48 46.27 20.79 31.06 31.33
ecoli 43.80 2.26 23.03 77.92 75.36
glass 16.66 23.33 26.00 59.44 60.93

ionosphere 80.27 2.35 37.14 86.79 79.15
iris 94.00 33.33 50.00 89.00 91.00

penDigits 20.49 37.57 10.15 98.48 95.51
segment 13.33 63.38 15.15 93.99 93.48
vehicle 32.86 42.93 20.63 62.86 60.00
wine 49.54 71.25 40.74 89.02 85.68
zoo 60.00 100.00 50.00 100.00 100.00

Average 43.44 42.27 29.36 78.56 77.24

Table 6.1: Accuracy (%)

PaNDaη PaNDaconf PaNDasupp PaNDalaplace
abalone 50,10 48,89 50,02 50,07
ecoli 80,00 78,71 79,68 80,32

glass 48,89 48,33 50,00 50,00

ionosphere 72,06 70,59 71,47 72,35

iris 94,00 94,00 94,00 94,00
penDigits 61,89 41,69 61,87 61,89

segment 60,65 56,62 60,74 60,65
vehicle 50,12 47,32 49,76 50,00
wine 60,63 61,25 61,88 62,50

zoo 67,50 67,50 70,00 70,00

Average 64,58 61,49 64,94 65,18

Table 6.2: Accuracy (%) Default Parameters

Table 6.1 shows the accuracy results for the UCI datasets using JCBA,
CPAR, Weighted Classi�er, SVM and C4.5, while Table 6.2 shows the accu-

6.2. EXPERIMENTAL RESULTS 39

racy results of our implementations with default parameters on PaNDa. We
can see, using this dataset that the best of our implementations is that of
PaNDalaplace , followed closely by PaNDasupp and then by PaNDaη and �nally
PaNDa_conf . Compared to CPAR, JCBA and Weighted Classi�er, our im-
plementations have an accuracy much higher. In the case of SVM and C4.5
our classi�ers have a value of accuracy lowest.

6.2.1 Cost function

In the following tables we show how the behavior of accuracy is modi�ed,
by changing the cost function of PaNDa algorithm:

PaNDaη PaNDaconf PaNDasupp PaNDalaplace
abalone 0,00 0,00 0,00 0,00
ecoli 45,16 45,16 45,16 45,16
glass 0,00 0,00 0,00 0,00

ionosphere 64,71 0,00 0,00 0,00
iris 0,00 0,00 0,00 0,00

penDigits 10,41 10,41 10,41 10,41
segment 14,29 0,00 0,00 0,00
vehicle 0,00 0,00 0,00 0,00
wine 31,25 31,25 31,25 31,25
zoo 36,25 1,25 1,25 1,25

Average 20,21 8,81 8,81 8,81

Table 6.3: Accuracy (%) Norm 2 Cost Function

PaNDaη PaNDaconf PaNDasupp PaNDalaplace
abalone 49,71 48,75 49,64 49,71

ecoli 79,03 79,35 78,71 79,35

glass 58,33 53,89 58,33 59,44

ionosphere 72,35 70,29 71,76 72,65

iris 90,67 90,67 90,67 90,67
penDigits 59,82 41,98 59,83 59,82
segment 60,65 47,23 60,65 60,65

vehicle 52,32 48,17 51,83 52,32

wine 75,63 68,75 75,00 75,63

zoo 42,50 42,50 42,50 42,50

Average 64,10 59,16 63,89 64,27

Table 6.4: Accuracy (%) Naive XOR Cost Function

40 CHAPTER 6. EXPERIMENTAL EVALUATION

PaNDaη PaNDaconf PaNDasupp PaNDalaplace
abalone 48,75 45,67 48,68 48,70
ecoli 78,06 78,06 77,74 78,39

glass 51,11 51,11 46,11 50,00
ionosphere 75,00 71,18 73,24 75,00

iris 91,33 95,33 95,33 95,33

penDigits 51,74 38,12 51,75 51,74
segment 37,75 36,32 37,75 37,75

vehicle 52,44 45,24 51,95 52,32
wine 78,13 69,38 77,50 78,75

zoo 98,75 96,25 97,50 97,50

Average 66,31 62,67 65,76 66,55

Table 6.5: Accuracy (%) Typed XOR Cost Function

Table 6.3, 6.4, 6.5, shows the accuracy obtained using PaNDa with Norm
2 cost function, Naive XOR and Typed XOR cost function. The worst solu-
tion between the three cost function is the Norm 2, because it obtained the
lowest values of accuracy with respect to any other.
Compared to the version with the default parameter, Naive XOR have a
decrease in the average of accuracy of all our implementation. Typed XOR
instead it achieved an increase in the average of accuracy of all our imple-
mentations respect to the version with the default parameters.
Ultimately, cost functions better than the default (Norm 1) for PaNDaη,
PaNDasupp, PaNDalaplace and PaNDaconf is the Typed XOR cost function.

6.2. EXPERIMENTAL RESULTS 41

6.2.2 Error Rate

In the following tables we show how the behavior of accuracy is modi�ed,
by changing the error rate parameter of PaNDa algorithm. Error rate was
varied to the rows and columns with identical values, starting from 0,0 up to
1,0 with steps of 0,1:

0,0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 1,0

abalone 36,78 36,78 46,56 48,58 47,98 49,28 49,01 48,61 48,73 48,75 48,75
ecoli 68,06 68,06 70,00 70,32 73,87 78,06 78,06 78,06 78,06 78,06 78,06

glass 56,11 56,11 59,44 57,78 52,22 52,78 51,67 52,22 51,67 51,11 51,11
ionosphere 82,06 80,59 81,76 77,35 73,24 75,29 66,18 75,88 74,71 74,71 75,00

iris 90,67 92,67 92,67 92,67 92,67 93,33 93,33 93,33 93,33 93,33 93,33

penDigits 73,50 73,53 74,32 74,37 74,05 72,35 62,66 58,21 54,75 52,84 51,74
segment 70,04 70,04 65,37 62,81 57,14 43,29 38,44 37,71 37,71 37,75 37,75
vehicle 42,80 42,80 47,80 50,12 50,37 52,44 52,56 52,93 52,80 52,44 52,44
wine 76,88 76,88 77,50 85,63 80,63 76,88 78,13 77,50 77,50 78,13 78,13
zoo 96,25 96,25 98,75 97,50 97,50 98,75 98,75 98,75 98,75 98,75 98,75

Average 69,32 69,37 71,42 71,71 69,97 69,24 66,88 67,32 66,80 66,59 66,51

Table 6.6: PaNDaη Accuracy (%) Error Rate variation

Table 6.6, show the accuracy of PaNDaη obtained using PaNDa with er-
ror rate variation. Looking at the average of the values for accuracy, we can
see that for error values of 0,3, we have the best accuracy performance.

0,0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 1,0

abalone 41,20 41,20 44,11 47,26 48,41 48,12 47,00 45,84 45,65 45,67 45,67
ecoli 68,39 68,39 70,00 70,32 73,87 78,06 78,06 78,06 78,06 78,06 78,06

glass 52,78 52,78 56,67 57,22 56,11 53,89 51,67 51,67 51,11 51,11 51,11
ionosphere 82,06 80,59 82,06 77,35 72,94 64,41 72,06 70,29 71,18 71,18 71,18

iris 94,67 94,67 94,67 94,67 94,67 95,33 95,33 95,33 95,33 95,33 95,33

penDigits 73,53 73,56 74,13 73,58 70,61 61,10 45,39 38,98 38,52 38,49 38,12
segment 70,09 70,09 65,41 62,90 57,14 41,73 36,32 36,41 36,36 36,41 36,32
vehicle 45,12 45,12 46,95 50,24 51,59 50,61 46,34 45,73 45,49 45,12 45,24
wine 76,88 76,88 77,50 85,00 76,88 72,50 69,38 69,38 69,38 69,38 69,38
zoo 96,25 96,25 98,75 96,25 95,00 96,25 96,25 96,25 96,25 96,25 96,25

Average 70,10 69,95 71,02 71,48 69,72 66,20 63,78 62,79 62,73 62,70 62,67

Table 6.7: PaNDaconf Accuracy (%) Error Rate variation

In the case of PaNDaconf , the average value of the accuracy shown in
table 6.7, achieves the best accuracy by using value 0,3 of error rate.

42 CHAPTER 6. EXPERIMENTAL EVALUATION

0,0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 1,0

abalone 41,20 41,20 44,11 47,14 48,13 49,18 49,25 48,51 48,65 48,68 48,68
ecoli 65,48 65,48 67,42 68,06 71,61 77,74 77,74 77,74 77,74 77,74 77,74

glass 50,56 50,56 54,44 53,33 50,00 48,33 46,67 47,22 46,67 46,11 46,11
ionosphere 79,12 77,65 79,12 74,71 72,06 74,71 64,12 74,12 72,94 72,94 73,24

iris 94,67 94,67 94,67 94,67 94,67 95,33 95,33 95,33 95,33 95,33 95,33

penDigits 73,56 73,59 74,37 74,37 74,03 72,31 62,64 58,23 54,76 52,86 51,75
segment 70,13 70,13 65,45 62,94 57,23 43,20 38,44 37,75 37,71 37,75 37,75
vehicle 45,24 45,24 47,68 49,88 50,12 52,07 52,20 52,44 52,32 51,95 51,95
wine 73,13 73,13 75,00 81,88 77,50 76,88 77,50 76,88 76,88 77,50 77,50
zoo 96,25 96,25 98,75 96,25 96,25 97,50 97,50 97,50 97,50 97,50 97,50

Average 68,93 68,79 70,10 70,32 69,16 68,73 66,14 66,57 66,05 65,84 65,76

Table 6.8: PaNDasupp Accuracy (%) Error Rate variation

0,0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 1,0

abalone 41,20 41,20 44,11 47,12 48,13 49,18 49,28 48,56 48,68 48,70 48,70
ecoli 68,71 68,71 70,65 71,29 74,84 78,39 78,39 78,39 78,39 78,39 78,39

glass 53,33 53,33 57,22 57,22 53,89 52,22 50,56 51,11 50,56 50,00 50,00
ionosphere 82,06 80,59 82,06 77,65 74,41 75,59 66,76 75,88 74,71 74,71 75,00

iris 94,67 94,67 94,67 94,67 94,67 95,33 95,33 95,33 95,33 95,33 95,33

penDigits 73,53 73,56 74,35 74,37 74,05 72,35 62,65 58,21 54,75 52,84 51,74
segment 70,09 70,09 65,41 62,90 57,14 43,29 38,44 37,71 37,71 37,75 37,75
vehicle 45,12 45,12 47,44 49,63 50,00 52,32 52,56 52,93 52,80 52,32 52,32
wine 76,88 76,88 77,50 85,00 80,63 78,13 78,75 78,13 78,13 78,75 78,75
zoo 96,25 96,25 98,75 96,25 96,25 97,50 97,50 97,50 97,50 97,50 97,50

Average 70,18 70,04 71,22 71,61 70,40 69,43 67,02 67,37 66,85 66,63 66,55

Table 6.9: PaNDalaplace Accuracy (%) Error Rate variation

To PaNDasupp and PaNDalaplace instead, observing the tables 6.8 and 6.9,
we can see that they get the maximum of accuracy average of 70,32 and 71,61
respectively, using error rates of 0,3 for PaNDasupp and 0,3 for PaNDalaplace .

6.2. EXPERIMENTAL RESULTS 43

6.2.3 Randomization

In this section we see how it changes the value of accuracy for PaNDaη,
PaNDaconf , PaNDasupp and PaNDalaplace , by changing the randomization pa-
rameter of PaNDa algorithm. The randomization was varied using 1, 5, 10,
15, 20 as values:

1 5 10 15 20

abalone 48,58 48,89 44,30 41,92 42,79
ecoli 80,32 77,74 78,71 79,68 79,03
glass 61,67 54,44 58,89 59,44 57,78

ionosphere 70,29 76,18 74,41 71,18 72,06
iris 91,33 92,67 93,33 93,33 93,33

penDigits 64,56 55,31 57,37 57,53 53,81
segment 57,88 52,60 53,55 55,89 56,84
vehicle 48,66 51,10 53,54 53,17 53,90

wine 83,75 85,00 81,88 82,50 81,25
zoo 98,75 96,25 98,75 98,75 97,50

Average 70,58 69,02 69,47 69,34 68,83

Table 6.10: PaNDaη Accuracy (%) Randomization variation

1 5 10 15 20

abalone 42,64 45,94 40,60 41,66 40,79
ecoli 80,65 78,71 78,39 78,71 79,03
glass 56,67 51,11 52,78 53,89 51,67

ionosphere 72,06 74,71 74,12 75,00 73,24
iris 95,33 95,33 94,67 94,67 95,33

penDigits 35,84 26,72 24,86 25,53 24,47
segment 49,83 43,90 43,29 43,90 44,63
vehicle 46,83 45,49 45,73 43,90 47,20

wine 81,88 81,25 79,38 81,25 81,88

zoo 96,25 93,75 96,25 96,25 95,00

Average 65,80 63,69 63,01 63,48 63,32

Table 6.11: PaNDaconf Accuracy (%) Randomization variation

Observing the values of the average accuracy in Tables 6.10 and 6.11 we
can see that we get the maximum value with value 1 of randomization for
PaNDaη and 1 for PaNDaconf .

44 CHAPTER 6. EXPERIMENTAL EVALUATION

1 5 10 15 20

abalone 48,63 49,11 44,25 41,90 42,76
ecoli 80,00 77,42 78,39 79,35 78,71
glass 56,11 51,67 53,89 55,56 53,33

ionosphere 69,41 75,29 73,24 69,71 70,29
iris 95,33 95,33 94,67 94,67 95,33

penDigits 64,58 55,31 57,39 57,55 53,82
segment 57,58 52,47 53,42 55,71 56,58
vehicle 50,98 51,22 53,66 53,05 54,39

wine 82,50 82,50 79,38 79,38 78,75
zoo 97,50 95,00 97,50 97,50 96,25

Average 70,26 68,53 68,58 68,44 68,02

Table 6.12: PaNDasupp Accuracy (%) Randomization variation

1 5 10 15 20

abalone 48,65 49,16 44,30 41,92 42,76
ecoli 80,65 78,06 79,03 80,00 79,35
glass 59,44 54,44 56,67 57,78 56,11

ionosphere 70,88 76,47 74,41 71,18 72,06
iris 95,33 95,33 94,67 94,67 95,33

penDigits 64,55 55,31 57,37 57,53 53,81
segment 57,88 52,60 53,55 55,89 56,84
vehicle 51,10 50,98 53,41 53,17 54,27

wine 83,75 83,13 81,88 82,50 80,00
zoo 97,50 95,00 97,50 97,50 96,25

Average 70,97 69,05 69,28 69,21 68,68

Table 6.13: PaNDalaplace Accuracy (%) Randomization variation

For PaNDasupp the value of randomization for the accuracy average max-
imum is 1 and also for PaNDalaplace is 1. The data collected are shown in
Tables 6.12 and 6.13 above.

6.2. EXPERIMENTAL RESULTS 45

6.2.4 Randomization+Error

This section shows the results of accuracy for every our implementation,
using for each one, the parameters of error rate and randomization, which
obtained in the above tables the maximum value of average accuracy. The
following table contains the values of error rate and randomization used for
the tests:

Error Rate Randomization

PaNDaη 0,3 1
PaNDaconf 0,3 1
PaNDasupp 0,3 1
PaNDalaplace 0,3 1

Using the same parameters of error rate and randomization, we did a
test for each of the three cost functions with best average values of accuracy
(Norm 1, Naive XOR and Typed XOR).

In the following tables we can see the results of accuracy obtained from
the tests described above. As we can see in the three tables, the best result of
accuracy average gets PaNDalaplace , followed by PaNDaη, then by PaNDasupp
and �nally PaNDaconf . PaNDalaplace gets the highest average accuracy using
the PaNDa algorithm with the following parameters: Typed XOR cost func-
tion, error rate of 0,3 and randomization value of 10. PaNDaη however, gets
his best result with default cost function, error rate of 0.3 and randomization
1, while for PaNDasupp we get it with Typed XOR cost function, error rate
0,3 and randomization 1, and PaNDaconf �nally, gets the best result with
default cost function, error rate 0,3 and randomization 1.

PaNDaη PaNDaconf PaNDasupp PaNDalaplace
abalone 47,81 47,31 47,33 47,28
ecoli 77,10 76,13 75,48 77,74

glass 57,22 57,22 54,44 56,11
ionosphere 76,18 75,29 74,41 76,47

iris 93,33 94,00 94,00 94,00

penDigits 76,32 74,80 76,26 76,30
segment 63,68 62,77 63,77 63,85

vehicle 48,41 49,15 48,78 49,02
wine 80,00 79,38 76,88 79,38
zoo 98,75 97,50 98,75 98,75

Average 71,88 71,35 71,01 71,89

Table 6.14: Accuracy (%) Error Rate, Randomization and Norm 1 Cost
Function

46 CHAPTER 6. EXPERIMENTAL EVALUATION

PaNDaη PaNDaconf PaNDasupp PaNDalaplace
abalone 40,75 45,26 45,36 45,36

ecoli 77,10 76,77 75,81 78,06

glass 57,78 58,89 57,78 58,89

ionosphere 75,29 74,41 74,12 75,88

iris 94,00 94,67 94,67 94,67

penDigits 73,29 72,38 73,26 73,29

segment 67,71 67,53 67,88 67,88

vehicle 46,46 46,95 46,46 46,59
wine 82,50 83,13 83,13 82,50
zoo 53,75 53,75 53,75 53,75

Average 66,86 67,37 67,22 67,69

Table 6.15: Accuracy (%) Error Rate, Randomization and Naive XOR Cost
Function

PaNDaη PaNDaconf PaNDasupp PaNDalaplace
abalone 48,75 49,54 49,42 49,45
ecoli 79,35 78,39 78,71 79,68

glass 60,56 62,22 62,78 62,78

ionosphere 75,00 73,82 73,53 75,59

iris 93,33 94,00 94,00 94,00

penDigits 75,42 73,06 75,41 75,42

segment 71,47 70,17 71,34 71,47

vehicle 50,73 51,71 50,24 50,61
wine 83,75 81,25 82,50 83,13
zoo 73,75 73,75 77,50 78,75

Average 71,21 70,79 71,54 72,09

Table 6.16: Accuracy (%) Error Rate, Randomization and Typed XOR Cost
Function

6.2. EXPERIMENTAL RESULTS 47

6.2.5 Execution Time

Below we presented the results collected relating to execution time. Table
6.17, 6.18 and 6.19 shows respectively the execution time for JCBA, CPAR,
Weighted Classi�er, SVM, C4.5, our implementations with default parame-
ter on PaNDa and our implementation with Typed XOR cost function on
PaNDa, error rate value set to 0,3 and randomization value set to 10. The
execution time was measured starting from the training set newly generated,
until completion of the prediction operation. As you can see from the tables,
the execution time of our implementations is much higher than other classi-
�ers. The execution time so high is given by the time taken to perform the
extraction of the pattern top-k, with which, however, is possible to obtain
high values of accuracy. By changing parameters on Panda and using as
cost function the Typed XOR, set value of error rate and randomization we
get the execution times slightly lower compared to the test performed using
the default parameters, thus obtaining also the values of higher accuracy in
all of our implementation PaNDaη, PaNDaconf , PaNDasupp, and PaNDalaplace .

JCBA CPAR Weighted SVM C4.5

abalone 0.129 0.000076 0.07 1.225 0.069
ecoli 0.011 0.000076 0.01 0.025 0.001
glass 0.01 0.000083 0.01 0.023 0.001

ionosphere 0.137 0.000094 0.13 0.035 0.017
iris 0.002 0.000084 0.002 0.011 0.001

penDigits 1.463 0.000094 1.4 2.002 0.172
segment 0.486 0.000077 0.4 0.218 0.03
vehicle 0.05 0.000090 0.04 0.116 0.019
wine 0.0089 0.000070 0.003 0.016 0.001
zoo 0.0095 0.000091 0.001 0.054 0.001

Average 0.23064 0.000083 0.20660 0.3725 0.0213

Table 6.17: Execution Time (sec)

48 CHAPTER 6. EXPERIMENTAL EVALUATION

PaNDaη PaNDaconf PaNDasupp PaNDalaplace
abalone 0,872 0,880 0,873 0,873
ecoli 0,051 0,051 0,051 0,051
glass 0,073 0,072 0,073 0,073

ionosphere 0,091 0,090 0,090 0,091
iris 0,027 0,028 0,027 0,028

penDigits 7,417 7,410 7,431 7,474
segment 1,181 1,184 1,186 1,168
vehicle 0,260 0,263 0,262 0,263
wine 0,060 0,060 0,060 0,060
zoo 0,025 0,025 0,025 0,025

Average 1,006 1,006 1,008 1,011

Table 6.18: Execution Time (sec) Default Parameter

PaNDaη PaNDaconf PaNDasupp PaNDalaplace
abalone 0,777 0,785 0,773 0,780
ecoli 0,067 0,064 0,066 0,064
glass 0,037 0,037 0,037 0,037

ionosphere 0,078 0,078 0,079 0,078
iris 0,028 0,027 0,027 0,027

penDigits 6,122 6,119 6,118 6,116
segment 0,976 0,987 0,982 0,979
vehicle 0,194 0,196 0,193 0,195
wine 0,032 0,032 0,032 0,031
zoo 0,016 0,016 0,016 0,016

Average 0,833 0,834 0,832 0,832

Table 6.19: Execution Time (sec) Error Rate, Randomization and Typed
XOR Cost Function

Chapter 7

Conclusion

We developed a di�erent approach to classify with using a classi�er as-
sociation rule. When using associative classi�cation to produce an accurate
model, we require a large number of rules be generated, with the consequence
of having a large number of unclassi�ed instances. To solving this problem,
we mine itemsets for each class label separately, thereby using di�erent min-
imum supports for the classes. This ensure the presence of a good number
of strong rules for each class label.

To reduce the memory usage, and execution time of extraction of class
association rule we used a greedy algorithmic framework named PaNDa+ to
generate rules directly from training data. The greedy strategy, adopted in
PaNDa, consists in extracting an ordered sequence of patterns, by progres-
sively increasing the degree of coverage of the dataset, achieving an improved
accuracy of each mined pattern.

We developed four classi�cation systems to handle the prediction of class
attributes: PaNDaη, PaNDaconf , PaNDasupp and PaNDalaplace and we mea-
sure performance in terms of accuracy and execution time. We did further
testing to get the best performance of accuracy by changing the parame-
ters of noise tolerance, type of cost function and random iteration, of class
association rule extraction algorithm PaNDa. To have a parameter on the
goodness of our achievements, we compared our implementations with other
classi�cation algorithms such as JCBA, CPAR, Weighted Classi�er, SVM,
C4.5.

The performance of accuracy that we got from our tests have shown that,
for our set of datasets used, the better implementation of the four that we
realized, was PaNDalaplace , reaching an accuracy average of 72.09%. Com-

49

50 CHAPTER 7. CONCLUSION

paring our implementation with other classi�cation algorithms examined, we
see that the values of average accuracy of PaNDalaplace far exceed those of
JCBA (43.44%), CPAR (42.27%) and Weighted Classi�er (29.36%), while in
the case of C4.5 (77.24%) and SVM (78.56%), the values of average accuracy
are greater, and PaNDalaplace approaches to their performance.

Further work should be done to reduce the execution time. We think
this problem can be solved by optimizing both the rules extraction algorithm
PaNDa, that the step of prediction for the classi�cation. Further work should
also be done to test the performance on large datasets, or on real-world
datasets to see that behavior would in these cases our achievements, even in
comparison to other existing classi�ers.

Bibliography

[1] Rakesh Agrawal, Tomasz Imieli«ski, and Arun Swami. Mining associ-
ation rules between sets of items in large databases. SIGMOD Rec.,
22(2):207�216, June 1993.

[2] Thomas M. Mitchell. Machine Learning. McGraw-Hill, Inc., New York,
NY, USA, 1 edition, 1997.

[3] Salvatore Orlando Claudio Lucchese and Ra�aele Perego. A unifying
framework for mining approximate top-k binary patterns, 2014.

[4] Claudio Lucchese, Salvatore Orlando, and Ra�aele Perego. A unifying
framework for greedy mining approximate top-k binary patterns and
their evaluation.

[5] B. Liu, W. Hsu, and Y. Ma. Integrating classi�cation and associa-
tion rule mining. In Proceedings of the 4th international conference on
Knowledge Discovery and Data mining (KDD'98), pages 80�86. AAAI
Press, August 1998.

[6] Peter Clark and Robin Boswell. Rule induction with cn2: Some re-
cent improvements. In Proceedings of the European Working Session on
Machine Learning, EWSL '91, pages 151�163, London, UK, UK, 1991.
Springer-Verlag.

[7] Xiaoxin Yin and Jiawei Han. Cpar: Classi�cation based on predictive
association rules, 2003.

[8] Chih-Chung Chang and Chih-Jen Lin. Libsvm: A library for support
vector machines. ACM Trans. Intell. Syst. Technol., 2(3):27:1�27:27,
May 2011.

[9] J. Ross Quinlan. C4.5: Programs for Machine Learning. Morgan Kauf-
mann Publishers Inc., San Francisco, CA, USA, 1993.

51

52 BIBLIOGRAPHY

[10] Ian H. Witten and Eibe Frank. Data Mining: Practical Machine Learn-
ing Tools and Techniques, Second Edition (Morgan Kaufmann Series in
Data Management Systems). Morgan Kaufmann Publishers Inc., San
Francisco, CA, USA, 2005.

[11] M. Lichman. UCI machine learning repository, 2013.

[12] Frans Coenen. KDD, 2012.

