

Master's Degree Program – Second Cycle (*D.M. 270/2004*) in Economia e gestione delle aziende

Final Thesis

Ca' Foscari Dorsoduro 3246 30123 Venezia

Inequality and Growth: A Time Series Perspective for the Group of Seven

Supervisor

Prof. Dino Rizzi Dr. Antonio Paradiso

Graduand Anna Lindt 857959

Academic Year 2015 / 2016

Acknowledgments

I would like to thank all those people who made this thesis possible and an unforgettable experience for me.

First, I would like to thank my thesis advisor Dr. Antonio Paradiso of the Department of Economics at the Ca'Foscari University of Venice, who offered his continuous advice and encouragement throughout the course of this thesis. I thank Dr. Paradiso for the highly appreciated guidance and support whenever I struggled or got stuck while working on this thesis. I would also like to thank the second supervisor Prof. Dino Rizzi of the Department of Economics at the Ca'Foscari University for being part of this elaboration.

In addition, I would like to point out that due to Prof. Chiara Saccon's of the Department of Management at the Ca'Foscari University of Venice great appreciated support and introduction, I was able to get to know and experience the Venetian life the way I did. Speaking of my participation in the Double Degree Program at the University of Hohenheim, I would like to point out Mr. Lars Banzhaf's assistance and his passionate and permanent support whenever I needed his help. I would like to thank Mrs. Marta Colombini for her administrative and technical assistance in Venice.

I would also like to thank my colleagues Elke Engelbrecht, Nina Wetzka as well as my new Italian friends for the help and support during my stay in Venice.

Finally, I would like to take this opportunity to express my very profound gratitude to my beloved parents, siblings and best friends for providing me with unfailing support and continuous encouragement throughout my years of study and throughout the process of researching and writing this elaboration. Special thanks I owe to Tim Hampel, who never lost faith in me. This accomplishment would not have been possible without them. Thank you.

Contents

Acknowledgments	II
List of Abbreviations	V
List of Figures	VI
List of Tables	VII
1. Introduction	1
2. Is Technological Progress Rising Inequality?	2
3. The Economic Model	8
4. The Econometric Model	
4.1. Data and Unit Root Tests	
4.2. Engle-Granger Two-Step Cointegration Approach	19
4.3. Error Correction Model	24
5. Empirical Results	
5.1. Canada	27
5.2. France	
5.3. Germany	
5.4. United Kingdom	
5.5. United States	
5.6. Exceptions	
5.6.1. ARDL Bounds Testing Approach: Italy	50
5.6.2. <i>I</i> (2) Cointegration Approach: Germany, Italy and Japan	53
6. Conclusions	
References	
Appendix	
List of Appendix Figures	
List of Appendix Tables	67

A.	Data Sources and Variable Descriptions	. 73
B.	Further Results of Engle-Granger Two-Step Analysis	139
C.	Further Results of Bounds Testing Analysis	248

List of Abbreviations

ADF	Augmented Dickey-Fuller test		
AIC	Akaike information criterion		
ARDL	Autoregressive distributed lag model		
ASEAN	Association of southeast Asian nations		
CAGR	Compound annual growth rate		
DW	Durbin-Watson statistic		
ECM	Error correction model		
ERS DF-GLS	Elliott-Rothenberg-Stock Dickey-Fuller GLS test		
FRED	Federal Reserve Bank of St. Louis		
G-7	Group of seven countries		
GDP	Gross domestic product		
GLS	Generalized least squares		
НАС	Heteroskedasticity and autocorrelation consistent		
HQ	Hannan-Quinn information criterion		
i.i.d.	Independent and identically distributed		
KPSS	Kwiatkowski-Phillips-Schmidt-Shin test		
LM	Lagrange multiplier		
OLS	Ordinary least squares		
R&D	Research and development		
RESET	Regression specification error test		
RGDP	Real gross domestic product		
RTFP	Real total factor productivity		
SIC	Schwarz information criterion		
TFP	Total factor productivity		
UK	United Kingdom		
U.S.	United States of America		
VAR	Vector autoregression		
WID	The World Wealth and Income Database		

List of Figures

Figure 1: Evolution of TFP at Constant National Prices for G-7 Countries, 1950–2014	4
Figure 2: Evolution of Income Shares for G-7 countries, 1950–2014	5
Figure 3: Time Series Comparison of Income Shares and TFP of Canada	28
Figure 4: Time Series Comparison of Income Shares and TFP of France	32
Figure 5: Time Series Comparison of Income Shares and TFP of Germany	37
Figure 6: Time Series Comparison of Income Shares and TFP of the UK	42
Figure 7: Time Series Comparison of Income Shares and TFP of the U.S	46

List of Tables

Table 1: ADF Test Results	
Table 2: Cointegration Test Results	
Table 3: Regression Results Canada, Model I	
Table 4: Regression Results Canada, Model II	
Table 5: Regression Results Canada, Model III	
Table 6: Regression Results France, Model I	
Table 7: Regression Results France, Model II	
Table 8: Regression Results France, Model III	
Table 9: Integrating Order of Variables in Germany	
Table 10: Regression Results Germany, Model I	
Table 11: Regression Results Germany, Model II	
Table 12: Regression Results UK, Model I	
Table 13: Regression Results UK, Model II	
Table 14: Regression Results UK, Modell III	
Table 15: Regression Results U.S., Model I	
Table 16: Regression Results U.S., Model II and Model III	
Table 17: Integrating Order of Exceptional Variables	
Table 18: ARDL Regression Results Italy, Model I and Model II	

1. Introduction

History proofs the existence of inequality in most egalitarian human social systems like age, gender and income (Cf. Feinman, 1995, p. 256). In this context, a controversial discussed but still unresolved issue is the relationship between inequality and growth. Summarizing the literature, a plethora of empirical studies has accumulated over time in investigating this inequality-growth relationship. However, they are often based on crosssectional data due to a lack of time series data. Thus, this thesis is using time series data from the world's most industrialized economies, in that case the Group-of-Seven (G-7): Canada, France, Germany, Italy, Japan, the United Kingdom and the United States. Most of the empirical studies indicate that inequality reduces an economy's rate of growth, but there are also empirical findings of inequality promoting different measurements of growth. Consequently, reasons for the change in inequality are potentially various. According to Kuznets' (1955) hypothesis of the inverted U-shaped curve of growthhampering inequality at the initial phase and growth-promoting inequality in advanced stages, one can assume that as technological and economic performances are rising, inequality should decrease. Since there is surprisingly relative little research existent about the effect of technological progress on inequality¹, the underlying elaboration aims to close that gap slightly. Transferring this interim conclusion into a research question, the thesis will demonstrate the empirical effects of economic growth in terms of total factor productivity (TFP) on the upper end of the income distribution as a determinant of income inequality. The upper end of the income distribution are in that case the top 10%, top 5% and the top 1% income shares, which is the most powerful measure of income inequality (Cf. Piketty and Saez, 2014, p. 839). The evolvement over the past 50 years is distinguished in short-term and long-term effects, which is ensued by the use of cointegrating and error correction estimation techniques.

Within the scope of this thesis, Section 2 presents a brief summary about the state of research as well as an overview about the evolution of income inequality and TFP in the G-7 countries. Section 3 describes the theoretical model. Section 4 introduces the econometric model and provides an explanation about the estimation methods. The empirical results and exceptions of each country are depicted in Section 5. Finally, conclusions are given in Section 6.

¹ See among others Galor and Tsiddon (1997), Caselli (1999), and Rubinstein and Tsiddon (2004).

2. Is Technological Progress Rising Inequality?

The emergence of inequality and its maintenance over time has been a major research component of several scientist. Kuznets (1955, 1963) was one of the first dealing with the question whether the inequality in income distribution increases or decreases due to economic growth. As he was confronted with a scarcity of data, he firstly defined five specifications about income distribution as a measurement of income inequality in developed countries. (1) The data recording should consider family-expenditure units and (2) it should ensure a completeness of the distribution covering all units. Using income data required (3) the distinction between learning and retired stages and (4) a definition of income as national income. (5) Lastly, he suggested clustering the units by secular levels of income (Cf. Kuznets, 1955, p. 1f.). For answering the question whether changes in the production process affects the distribution of income, Kuznets (1963) assumed within his cross-section as well as time series analysis that, caused by the industrial revolution, the increasing income inequality hampers economic growth. Albeit, income inequality decreases afterwards in a consequence of the saturation of the labour force and benefits thereby economic growth (inverted U-shape curve).

Going to the present day, the pioneering findings of Kuznets (1955, 1963) and Deininger and Squire (1996)² paved the way for deepening studies about inequality and growth.³ Some scientists proved a positive relationship between inequality and growth. Meaning, that inequality is fostering growth mechanism by stimulating high-return projects or R&D activities (see among others Rosenzweig and Binswanger, 1993; and Foellmi and Zweimüller, 2006). On the other hand, by promoting fiscal policies or by interfering human capital, growth is expected to be interfered by inequality (see among others Perotti, 1993; Alesina and Rodrik, 1994; Persson and Tabellini, 1994; and Bénabou, 1996). Aghion *et al.* (1999) provided new theoretical perspectives for analysing the effects of inequality on growth. Questioning and challenging the Kuznets' hypothesis (1963) of the inverted U-shaped impact of growth on income inequality, Aghion *et al.* (1999) clarified the need for new theories for explaining the inequality-growth relationship because trade liberalization, technological change, as well as the emergence of new organizational forms affect the evolution of economic growth (Cf. Aghion *et al.*, 1999, pp. 1616f.). Analysing the impact of economic growth on inequality, both wage and

² Deininger and Squire (1996) provided a primal database on inequality in the distribution of income.

³ A comprehensive summary about this literature can also be found in Bénabou (1996, pp. 13ff.).

wealth inequality, using cross-country regressions leads to limitations, which evoke the need for further empirical evidences like time series analyses and experiments, as the authors mentioned themselves (Cf. Aghion *et al.*, 1999, p. 1655).

Additionally, recent empirical studies do not follow a consistent opinion about the inequality-growth relationship whether it is negative, positive, or insignificant. Voitchovsky (2005) pointed out the complexity of this relationship. In this study, the profile of inequality, in particular the different parts of the income distribution, should be considered as a determinant of economic growth. Using 5-year panel data, Voitchovsky (2005) examined different consequences for growth in wealthy democratic countries. The top end of the income distribution has a positive impact on growth, whereas the bottom end is negatively correlated to growth. Additionally, Barro (2000), Banerjee and Duflo (2003), as well as Chen (2003) argue that these diverse results about the inequalitygrowth relationship can be explained by a non-linearity behaviour in this relationship. Furthermore, these conflicting results of the effects of the inequality-growth relationship differ due to the considered time spans. Halter et al. (2014) investigated the effects of inequality on economic performance developing a parsimonious theoretical model. Using panel data averaged over a 5-year period, their empirical findings show that an increasing inequality pushes the performance in the short-run, but decelerates in the long-run (negative lagged effect) expanding their data to a 10-year period.⁴

Setting the focus on the total factor productivity, the literature reflects a scarcity of studies about the relationship between income inequality and TFP.⁵ However, there are many studies trying to measure the relationship between production factors and economic growth (see among others Klenow and Rodriguez-Clare, 1997; and Bosworth and Collins, 2003), which was initiated by Solow (1957). Easterly and Levine (2001) have maintained that the TFP growth is an important issue within the overall growth. Speaking of TFP – TFP is a variable for the productivity and is calculated as the Solow-residual. It states which part of the production growth cannot be explained by the growth of the commitment of production factors labour and capital (Cf. Carone *et al.*, 2006, p. 10). Trying to connect TFP and income inequality gives rise to different assumptions. As an example,

⁴ For more discussion about panel data analyses, see among others Partridge (1997, 2005), Barro (2000), Forbes (2000), Frank (2009) and Atems and Jones (2015).

⁵ Some efforts in examine the mutual dependencies of income inequality, TFP, human capital and institutions are already available by Fuentes *et al.* (2014) and Sequeira *et al.* (2014).

Foellmi and Zweimüller (2006) have investigated that the increasing inequality is enhancing growth due to promoting R&D activities. However, Bénabou (1996) ascertained that inequality hinders growth by hampering human capital formation. Thus, it is not clearly stated, how TFP is behaving in the inequality-growth relationship. Attempting to find out whether TFP is increasing or decreasing over time and how it affects the inequality is the major incentive of this thesis.

Starting with a graphical investigation of income inequality and TFP, Figure 1 and Figure 2 show the passage of time of all G-7 countries. Specifically, there are shown the country-individual TFP evolutions, subscripted 2011 as 1 (Figure 1), as well as the trends in the top 10%, top 5% and top 1% income shares for each of the G-7 countries between 1950 and 2014 (Figure 2).

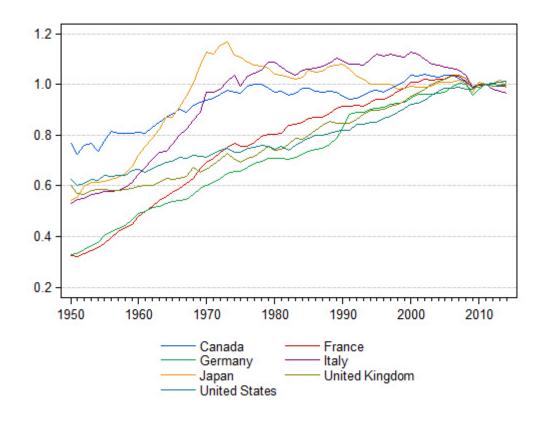


Figure 1: Evolution of TFP at Constant National Prices for G-7 Countries, 1950–2014

Source: Own depiction based on Feenstra *et al.* (2015). Notes: Index scaling with 2011 = 1. Commencing with Figure 1, the TFPs of Canada, the UK and the U.S. increase at a steady pace, with an observed slower movement in the case of Canada. The UK's TFP outdistances the U.S. in 1980. Japan and Italy show the most rapid growth in the figure. Japan's TFP starts below Canada, the UK and the U.S. in 1950, but grows very rapidly between 1960 and 1970; however, after 1980 it drops below Canada, France and Italy. Italy has a similar trajectory. It begins below Canada, the UK, the U.S. and Japan, and shows from 1980 until 2010 the highest TFP value. Finally, speaking of Germany's and France's TFP, they both start out on similar levels and experience a steady growth until the 1960s. Beginning 1960, the France's TFP grows stronger than the TFP progress of Germany and can catch up with the UK and the U.S. Recently, Germany was able to catch up with the UK and the U.S. TFP is stronger than Japan's and UK's. Germany's TFP is stronger than France's many and UK's. Germany's TFP is stronger than France's many and UK's. Germany's TFP is stronger than France's many and UK's. Germany's TFP is stronger than France's many's TFP is stronger than France

Figure 2: Evolution of Income Shares for G-7 countries, 1950-2014

Source: Own depiction based on Alvaredo et al. (2016).

Shifting the focus towards Figure 2 and starting with Canada's income shares, it is evident that all three shares have a similar shape over time. The top 10%, top 5% and top 1%

income shares are showing a marginal increasing compound annual growth rate (CAGR) of 0.08%, 0.12% and 0.19%, respectively. However, in the period of 1980 to 1990, there was a slight loss for all three shares. Considering the income shares of France, the graphs depict a smooth pattern for the top 1% income share, whereas the top 10% and top 5% income shares have a peak around 1960 and a trough in the 1980s. With an almost flat CAGR of 0.02% of the top 10% income share and -0.01% of both the top 5% and top 1% income shares, the income inequality remains steady between 1950 and 2012 in France. The top 10% and top 5% income shares of Germany are showing a slight increasing curve, whereas the top 1% income share fluctuates around the share value of 11.0% between 1950 and 2011. In the case of Italy, the data recording for income shares was not available before 1974, thus there is a fundamental lack of necessary information before the era of 1974. Nevertheless, the data reveals an upward trend of income inequality for all income shares. Having a closer look at Japan, there is a massive increase of the top 10% income share from 1950 to 2010 with a CAGR of 0.41%. The income inequality in terms of the top 5% and top 1% income shares are showing a similar behaviour, however, they slope more slightly. Speaking to the UK, there is also an enormous rise in all three income shares, but there is a trough in the 1980s and a peak becoming apparent around 2000. Finally yet importantly, the U.S. outpace a tremendous increasing development regarding the income inequality within the country. Considering the CAGR and the behaviour of the curves, the U.S. demonstrates the highest constantly growth of all income shares with a CAGR of 0.53%, 0.60% and 0.74%, respectively, between 1950 and 2014.

Comparing the income inequality between these G-7 countries, there seems to be an obvious overall upward trend. However, Canada and especially France remain more or less steady from 1950 to 2010. Additionally, France shows the lowest inequality in comparison to the other G-7 countries with a decile share value of 32.3% in 2010. In contrary to France, the passage of time of the U.S. is remarkable. It shows the highest inequality compared to the other G-7 countries in 2010, where its decile income share is 46.4%, meaning that the top 10% of income earners in the U.S. hold short of the half of the total income. As evident of the graphical investigation, between 1980 and 1990, the inequality has obviously decreased in Canada, France, Germany and Italy; however, Japan, the UK and the U.S. are sharply increased during this period. This phenomenon can be explained by country-specific institutions and historical circumstances as Piketty and Saez (2014) mentioned. One major source for the phenomenon in Europe could be the

end of the cold war and the deregulation of the European labour market during that period. For now, this finding shall remain unanswered in this elaboration and will be left for further research. Besides the European countries, Japan, the UK and the U.S. show a different course. The increasing secular trend can be caused by technological changes like the internet or personal computers. As Goldin and Katz (2008) described, there is a race between education and technology. Meaning that technological progress results in an upward demand for skills, whereas education increases the supply of skills. Therefore, this thesis investigates the relationship between economic growth and income inequality with focus on changes in inequality caused by technological progress to examine whether there is a long-run relationship between income inequality and TFP.

3. The Economic Model

The previously detected increasing inequality by the data of income shares can be associated with the increasing course of the total factor productivity. Piketty and Saez (2014) proposed the theory that the global competition for skills, which is for instance based on skill-biased technological change or the growth of information technologies, can lead to rising income inequality. Seizing on the skill-biased technological change as a possible TFP character, which was explained by Violante (2008, p. 1) as "a shift in the production technology that favours skilled [...] labor over unskilled labor by increasing its *relative productivity* [...]", and stating further required assumptions, a simple model can be formulated for explaining a potential relationship between income inequality and TFP. The underlying analysis is using income data without capital gains, which accepts the conclusion of having labour incomes. Assuming additionally, that the labour income represents the major revenue source of household incomes and the consideration of skillbiased technological changes opens the question whether the introduction of innovations and new technologies leads to changes in labour income. Hereby, this thesis assumes that employees have the same skill-levels but differ in their productivities due to new and old technologies. This implicates different incomes for the households leading to inequality. Thus, for answering the previously stated research question whether there is a long-run relationship between income inequality and TFP as a determinant of technological progress and under consideration of the stated assumptions, one can formulate a simple economic model, which is referring to Aghion et al. (1999).

According to Solow (1957), the TFP of a country can be expressed within the production function having a Cobb-Douglas form with constant returns to scale:

$$Y_t = K_t^{\alpha} (B_t L_t)^{1-\alpha}, \qquad 0 < \alpha < 1,$$
(3.1)

where Y_t is the aggregate final output or aggregate income, B_t is the TFP, and K_t and L_t are the economy's stock of capital and its labour force, respectively, and where α depicts a given parameter (Cf. Aghion *et al.*, 1999, p. 1646). If the level of TFP changes as technological progress occurs, the increasing TFP variable B_t is called the Harrod-neutral

or labour-augmenting technological change.⁶ Technological progress can be associated with innovations of new technologies and since it is an exogenous variable, it can rise or fall due to unfamiliar reasons as for instance by economic reforms, by government regulations, by changes in work organizations, or by different education and skill-levels of the employees.

Taking logarithms and differentiating Equation (3.1), where the minuscule variables corresponds to the logarithms of the majuscule variables, the production function can be expressed with growth rates (Cf. Sorensen and Whitta-Jacobsen, 2005, p. 130):

$$y_t - y_{t-1} = \alpha \left(k_t - k_{t-1} \right) + (1 - \alpha) \left[(b_t - b_{t-1}) + (l_t - l_{t-1}) \right].$$
(3.2)

Denoting the growth rate of Y_t as g_t^{γ} and defining it as $g_t^{\gamma} = \ln Y_t - \ln Y_{t-1} = y_t - y_{t-1}$, Equation (3.2) can be rewritten as:

$$g_t^{\gamma} = \alpha g_t^k + (1 - \alpha)(g_t^b + g_t^l).$$
(3.3)

This equation permits the calculation of the TFP, knowing all other variables. As a result, the growth of TFP is separated into observable elements, which is also labelled as the Solow residual (Cf. Carone *et al.*, 2006, p. 10). However, for the underlying analysis the TFP data are obtained from the Federal Reserve Bank of St. Louis data base (in short FRED), which calculates the real TFP as:

$$RTFP_{jt,t-1} = \frac{RGDP_{jt}}{RGDP_{jt-1}} / Q_T (v_{jt}, v_{jt-1}, w_{jt}, w_{jt-1}), \qquad (3.4)$$

where the data is based on constant national prices over time.⁷

Reverting to the construction of the simple economic model, which is based on Aghion *et al.* (1999), the thesis assumes further that the model experiences an embodied technological change, meaning that the new technological knowledge is internalised in technologies an organization is applying to. For the examination how inequality can occur even when skill-levels are equal, the model considers two types of technologies: old

⁶ According to Harrod (1939), Harrod-neutral technological progress signifies a neutral innovation in the production function, which remains the relative input share unchanged for a given capital-output ratio. ⁷ See Feenstra *et al.* (2015) for more discussion.

(vintage) technology and new (innovative) technology. At one point in time, the employees are randomly matched with a technology type. If an employee is allocated to an old technology, she or he can improve her or his skills and productivity via learningby-doing. Aghion *et al.* (1999) argued that if the employee moves to a new technology, which is more productive, she or he would lose most of her or his acquired skills. Therefore, operating on different types of technology emerges distinct technology-specific skills and hence a heterogeneity among employees and the labour market. In fact, an increasing variety in productivity and especially in salaries is generated due to different employee allocations and technology-specific skills. As assumed previously, using income data without capital gains leads to the conclusion that the major revenue source of household incomes are the labour incomes and salaries. A simple model can shed light on this assumption.

Assuming that these new technologies are embodied in capital goods and last for two periods only, each period a new technology emerges the organization acquires capital to replace its old equipment. The final output of the organization is stated in Equation (3.1), where K_t is the amount of capital, however, L_t will be replaced by X_t , which is the amount of efficiency units of labour used for technology t. B_t still depicts the technology parameter, our TFP. As profit maximization will lead to an optimal amount of capital, which is equivalent to the level of technology B_t , then, for simplicity one can assume that $K_t = B_t$ in the steady state. Therefore, the equilibrium level of final output is:

$$Y_t^N = B_t X_t^{1-\alpha}, \qquad 0 < \alpha < 1.$$
 (3.5)

As new technologies lead to an increase in productivity, the new technology is τ times more productive than the previous one:

$$B_t = \tau B_{t-1}, \quad \tau > 1,$$
 (3.6)

where τ measures the amount of technological progress. At any point in time, there are only two technologies in operation, which are the old and new one. The new technology is operating according to Equation (3.5), whereas the old technology is operating as:

$$Y_t^0 = B_{t-1} X_{t-1}^{1-\alpha}, \qquad 0 < \alpha < 1.$$
(3.7)

If employees are paid according to their marginal productivity, the salary will depend on two crucial factors. Firstly, the type of technology she or he is currently operating and secondly, the type of technology she or he operated in the previous period. Therefore, the main source of inequality in that case is the fact that not all employees can move to the new technology. Thus, 1 denotes the new technology and 0 denotes the old technology, where X_1 and X_0 are the amount of efficiency units for the new and old technologies, respectively. The rate of learning-by-doing on the same type of technology over two periods is denoted with φ and the fraction of acquired knowledge that an employee can transfer to the new technology is denoted with σ . In addition, the spillover of acquired knowledge to new employees can be depicted by θ . Thus, the resulting efficiency equations can be stated as:

$$X_1 = (1 + \sigma \varphi) x_{11} + x_{01} , \qquad (3.8)$$

$$X_0 = (1 + \theta \,\varphi) \, x_{00} + (1 + \varphi) \, x_{10} \,. \tag{3.9}$$

In this case, Aghion *et al.* (1999) depicts x_{ij} as the labour flow from the i^{th} technology of the last period to the j^{th} technology in the current period, which are in steady state. To examine how relative salaries change, one can assume the following case: Imagine that all employees want to move to the new and productive technology. Then, the factors influencing the ratio of salaries are φ and τ . The ratio of salaries can be expressed as:

$$\frac{s_1}{s_0} = \left(\frac{1-\mu}{\mu}\right)^2 \frac{\tau}{(1+\varphi)^{1-\alpha}} > 1, \qquad (3.10)$$

where the salaries of employees operating the new technology are determined as $s_1 = (1 - \alpha) \tau B_1 X_1^{-\alpha}$ and the salaries of those using the old technology are $s_0 = (1 - \alpha)(1 + \varphi) B_1 X_0^{-\alpha}$. If the relocation constraint μ is binding,⁸ that is all employees want to move to the new technology, the salary ratio between these two types of employees were given in Equation (3.10). A higher rate of learning-by-doing, depicted by φ , reduces the salary ratio in that term, that the productivity of the employees operating with the old technology increases relatively more. In addition, a faster technological change depicted by τ will

⁸ If the constraint is slack, employees are indifferent between the new and the old technology.

result in a more unequal earning between employees on the old and new technology (Cf. Aghion *et al.*, 1999, p. 1648).

The previous model shows that there might occur inequality in salaries due to technological change even when skill-levels are equal. Since the salaries are a source of revenues, one can conclude that technological change leads to income inequality. Further models could also allow for skill-level differences to cover real world phenomena. In this instance, skilled employees or workers might adapt smoother to technological change in machinery, information technology or automation. One reason for this could be the need of skilled manpower to design and control new technologies, rather than operating them in production directly. This could affect wages of low-skilled workers negatively due to technology induced higher competition in low skilled jobs. Having this in mind, the top earners will benefit from this phenomena by assuming that their skill-level is relatively high. This current research field has already been addressed by some authors like Chang and Huynh (2016), who claimed that 56% of all jobs in the ASEAN-5 are at high risk of displacement due to automation over the next decade.

4. The Econometric Model

This section tries to answer the question whether total factor productivity has a statistical impact on the top 10%, top 5% and top 1% income shares by testing for a long-run equilibrium relationship between them. It first proposes unit root tests for all variables used in the analysis and a short explanation about the emerging trends. Synthesising at the unit root test results and the accordingly integrated order of the variables, there are different methodologies, which need to be used for estimating the long-run relationship between income inequality and growth. The thesis focuses on the residual-based two-step cointegration approach followed by an estimation of the inherent error correction model (ECM) introduced by Engle and Granger (1987). Here, the cointegrating regression describes the long-run dynamics, whereas the ECM estimates the short-run dynamics.

Since the data presents additionally two special cases of variables, which are either integrated of order zero, I(0), or integrated of order two, I(2), the theory offers two more methodologies to estimate a cointegrating relationship. In situations where one variable may be integrated of order zero, I(0) and the other might be integrated of order one, I(1), the autoregressive distributed lag model (in short ARDL) including the bounds testing approach of Pesaran and Shin (1999) and Pesaran *et al.* (2001) is appropriate. This model enables to investigate long-run relationships using a single equation estimation, which allows for straightforward model interpretations. On the other hand, the likelihood-based vector autoregressive (VAR) approach of Johansen (1991, 1996) is appropriate for the investigation of a mixture of I(1) and I(2) variables. However, this regression analysis follows an autoregressive formulation, which necessitates for explicit assumptions. Another important point worth mentioning is the potential cointegration of the I(2) variable with its own difference, which makes this analysis more complicated.

4.1. Data and Unit Root Tests

The variables used in the analysis of the relationship between inequality and growth includes data of the top 10%, top 5% and top 1% income shares for each G-7 country as well as the TFP.⁹ The income data was found in The World Wealth and Income Database (WID), which is income before direct taxes excluding government contributions and capital gains (Cf. Alvaredo *et al.*, 2016). The Federal Reserve Bank of St. Louis (FRED)

⁹ Detailed information about the data sources are reported in Appendix A.

provides the data for TFP based on constant national prices over time (Cf. Feenstra *et al.*, 2015). The variables of these three income shares are denoted as *top10*, *top5* and *top1*; all are natural logarithmized. In the underlying analysis, the natural logarithm variable for TFP is termed as *tfp*.¹⁰ The summary statistics as well as the time series plots of all variables for all G-7 countries used for the estimations can be found in Appendix A.

Since economic time series often change over time and possess trends or breaks, it is initially necessary to examine whether there are trends in the data and additionally to test for stationarity and non-stationarity, respectively. The reasons of time series trending over time are related to unobserved factors. However, neglecting the trend component from the regression can lead to a false interpretation of the time series processes as well as result in a spurious regression (Cf. Wooldridge, 2013, pp. 363ff.). Thus, it is important to recognize whether the data follows a trend. It can be distinguished between two types of trends: deterministic and stochastic. The deterministic trend is a non-random function of time, whereas a stochastic trend is random and varies over time (Cf. Stock and Watson, 2015, p. 598). A time series can be trend stationary, meaning that the series follows a stationary process around a deterministic trend. In practice, there can be either a linear deterministic trend $Y_t = \alpha + \beta t + u_t$, where $u_t \sim i. i. d. (0, \sigma^2)$ and $t = 1, 2, \dots, T$, or a quadratic deterministic trend $Y_t = \alpha + \beta t + \gamma t^2 + u_t$, where $u_t \sim i.i.d.(0,\sigma^2)$ and $t = 1, 2, \dots, T$ (Cf. DeJong *et al.*, 1992, pp. 423f.). Watson (1994) emphasized the important issues about deterministic components in time series, which have often been ignored. They affect both the efficiency and distribution of estimated cointegrating vectors as well as the power of cointegration tests. On the other hand, a time series Y_t with a stochastic trend, can either follow a random walk $Y_t = Y_{t-1} + u_t$, where u_t is i.i.d. and has zero conditional mean $E(u_t|Y_{t-1}, Y_{t-2}, \dots) = 0$, or a random walk with drift $Y_t = \beta_0 + Y_{t-1} + \beta_0 + Y_{t-1} + \beta_0 + Y_{t-1}$ u_t , where $E(u_t|Y_{t-1}, Y_{t-2}, \dots) = 0$ and β_0 depicts the "drift". This drift is the adjustment for the tendency of the series to increase or decrease. If the time series follows a random walk, it is not stationary. Additionally, Stock and Watson (2015) presented problems, which can be accompanied by the presence of a stochastic trend. The first problem is that the standard distribution theory cannot be used. The usual *t*-statistic can have a nonnormal distribution and is not readily tabulated since the distribution depends on the

¹⁰ Taking the natural logarithm of the variables enables to determine the rate of changes using their first differences.

dependent and explanatory variables. However, there is one exceptional case, where it is possible to tabulate the distribution of the *t*-statistic – unit root testing. Another risk associated with stochastic trends is the spurious regression. Two series, which are independent, will mistakenly appear to be related.¹¹ Nevertheless, if two series include a common stochastic trend, they are cointegrated. One aim of this thesis is to show whether there are cointegrating relationships between the variables *tfp*, *top10*, *top5* and *top1* for each G-7 country, which will be proven in the next sections. For detecting stochastic trends and ascertaining if a series is non-stationary, the series will be tested for a unit root. The statistical procedure for this test will be depicted afterwards.

Reverting to the question of cointegration, distinctions between deterministic and stochastic cointegration are shown by Park (1992) and Perron and Campbell (1993). There, stochastic cointegration is present, if there are linear independent combinations of the variables that are stationary. According to Perron and Campbell (1993), these combinations may have non-zero deterministic trends. Whereas deterministic cointegration does not allow the presence of a deterministic trend within the linear independent combinations. Using the residual-based cointegration approach of Engle and Granger (1987), the cointegration definition is equal to a deterministic cointegration, where the cointegrating vectors eliminate both, the stochastic and deterministic nonstationarity. However, according to the Granger representation theorem, there is only an error correction representation if there is also a stochastic cointegrating relationship and vice versa (Cf. Engle and Granger, 1987, pp. 255f.). Further features and effects of trending components in a cointegrating relationship are analysed for instance by Hansen (1992), Engle and Kozicki (1993), Hassler (1999) and Xiao and Phillips (1999). As can be evident from Figure 1 and Figure 2, all G-7 countries show a long-term increase for the TFP and a small long-term increasing fluctuation in the income shares. This suggests that at least the inclusion of a linear trend in the income inequality equation, which will be introduced afterwards in Equation (4.4), should be considered in the regression, eventually. As found out from above, if the underlying variables *tfp*, *top10*, *top5* and *top1* share a common stochastic trend, they have a cointegrating relationship and thus an error correction representation.

¹¹ See also Phillips (1986) for more discussion.

For starting the analysis, initially all variables should be tested whether they follow a trend. Detecting trends preserves from wrong interpretations and a false use of distribution statistics. For detecting stochastic trends, the series is testing for a unit root. There are several formal statistical procedures to test the hypothesis of a unit root and therefore of the presence of a trend against the alternative that there is no unit root. If the univariate time series Y_t has a unit root, Y_t is said to be non-stationary. In this thesis, the so-called augmented Dickey-Fuller (ADF) test based on Dickey and Fuller (1979) is used for computing unit root tests for all variables within the analysis. This is the most commonly used test in practice and is one of the most reliable. In addition to the ADF test, time series can be tested for a unit root using the Phillips-Perron test¹², the KPSS test¹³, the GLS-detrending Dickey-Fuller test (ERS DF-GLS)¹⁴ and the Ng-Perron test¹⁵.

The ADF method tests the null hypothesis $H_0: \delta = 0$, meaning that there is a unit root present (non-stationarity) against the one-sided alternative $H_1: \delta < 0$, where no unit root is existing (stationarity). The following ADF test regression represents a random walk with drift (Cf. Stock and Watson, 2015, p. 605):

$$\Delta Y_t = \beta_0 + \delta Y_{t-1} + \mu_1 \Delta Y_{t-1} + \mu_2 \Delta Y_{t-2} + \dots + \mu_p \Delta Y_{t-p} + u_t.$$
(4.1)

Since the Dickey-Fuller statistic is augmented by lags of ΔY_t , the unknown lag length p can be estimated using a lag length selection method, such as the Akaike Information Criterion (AIC), the Schwarz Information Criterion (SIC) or the Hannan-Quinn Information Criterion (HQ). Another issue refers to the integration of exogenous variables in the test regression. In that case, the remaining null hypothesis of non-stationarity against the changing alternative hypothesis of stationarity around a deterministic linear time trend tmust be tested. The ADF regression becomes then:

$$\Delta Y_t = \beta_0 + \alpha t + \delta Y_{t-1} + \mu_1 \Delta Y_{t-1} + \mu_2 \Delta Y_{t-2} + \dots + \mu_p \Delta Y_{t-p} + u_t, \tag{4.2}$$

where α is an unknown coefficient (Cf. Stock and Watson, 2015, pp. 604f.). In both cases, Equation (4.1) and Equation (4.2), the null hypothesis is rejected, if the ADF-statistic is

¹² See Phillips and Perron (1988).

¹³ See Kwiatkowski *et al.* (1992).

¹⁴ See Elliott *et al.* (1996).

¹⁵ See Ng and Perron (2001).

less than the specified Dickey-Fuller critical values. Dickey and Fuller (1979) demonstrated that the ADF-statistic does not follow the Student's *t*-distribution and therefore simulated critical values for various sample sizes. In addition to these tabulated critical values, MacKinnon (1991, 1996) provided response surfaces for obtaining useful critical values as well as *p*-values for arbitrary sample sizes:

$$C_k(p) = \beta_{\infty} + \beta_1 T_k^{-1} + \beta_2 T_k^{-2} + u_k,$$
(4.3)

where $C_k(p)$ is the estimated critical value from the k^{th} experiment and T_k is the sample size. As T tends to infinity, T^{-1} and T^{-2} both tend to zero. The parameter β_{∞} is an estimate of the asymptotic critical value for a test at level p. The parameters β_1 and β_2 are the shape of the response surface for finite values of *T*. The parameters β_{∞} , β_1 and β_2 are given in MacKinnon (1996, 2010). This proper method permits the calculation of the corrected critical values appropriate to the sample size; otherwise, this would lead to an overrejection of the null hypothesis.¹⁶ The corrected estimated critical values for both cases, Equation (4.1) as intercept only and Equation (4.2) as intercept and time trend, and for the underlying sample sizes of the analyses for each G-7 country are listed in Appendix B. Since this elaboration tries to work out whether there exists any long-run cointegrating equilibrium between income inequality and TFP, the transformation of the time series in terms of differentiating is not required.¹⁷ In the following sections, the two-step approach of Engle and Granger (1987), which allows for the presence of stochastic trends, are explained in more detail. But initially, there is an explanation about the orders of integration required, which depicts an extension of the random walk model. A time series Y_t is integrated of order d, I(d), meaning that Y_t must be differenced d times to eliminate its stochastic trend and make it stationary, that is $\Delta^d Y_t$ is stationary. Reverting to the question of cointegration, Engle and Granger (1987) defined cointegrating components of the series Y_t , which are said to be cointegrated of order d, b, denoted $Y_t \sim CI(d, b)$, only if (i) all components of Y_t are I(d) and if (ii) there exists a coefficient $\theta \neq 0$ so that $z_t =$ $\theta' Y_t \sim I(d - b)$, where θ is called the cointegrating coefficient. The evidence that the TFP processes and the three income shares of all G-7 countries could be cointegrated of order

¹⁶ See Engle and Granger (1987), Engle and Yoo (1987) and Phillips and Ouliaris (1990) for more discussion. ¹⁷ Transforming time series means using first differences for eliminating random walk trends in a series, which, however, only refers to short-run movements. Another method for detrending a series is the trend estimation. See Nelson and Plosser (1982), Watson (1986), Stock and Watson (1988) and Rudebusch (1992) for discussion.

CI(d, b) are presented in Table 1 to follow. In specific, the univariate analysis of each variable referring to Equation (4.2), where each test equation includes an intercept and a linear time trend provides empirical test results. The lag length is selected using the SIC.

Country	Statistics	tfp	top10	top5	top1
Canada	Level	-1.93	-1.63	-1.48	-1.76
	First difference	-9.56***	-8.21***	-7.51***	-6.33***
France	Level	-0.63	-1.98	-1.65	-1.33
	First difference	-6.99***	-7.35***	-7.01***	-6.31***
Germany	Level	-2.44	-2.61	-2.38	-0.72
	First difference	-6.02***	-5.70***	-5.90***	-1.49
	Second difference				-4.78***
Italy	Level	-0.59	-7.36***	-5.41***	-2.92
	First difference	-4.91***			-2.99
	Second difference				-6.90***
Japan	Level	-2.12	-1.68	-1.55	-1.69
	First difference	-2.45	-7.42***	-6.88***	-5.74***
	Second difference	-9.15***			
UK	Level	-2.90	-2.11	-2.24	-2.06
	First difference	-7.87***	-6.59***	-6.19***	-6.23***
US	Level	-2.76	-3.06	-3.14	-2.99
	First difference	-9.85***	-7.44***	-7.20***	-7.20***

Table 1: ADF Test Results

Source: Own depiction based on data of Feenstra *et al.* (2015) and Alvaredo *et al.* (2016). Notes: *, ** and *** denote null hypothesis of a unit root are rejected at the 10%, 5% and 1% critical values, respectively.

As Table 1 depicts, the test statistics for all logarithmized time series show different results for each G-7 country. Canada's time series tfp, top10, top5 and top1 failed to reject the null hypothesis of a unit root on the level test. Using the same statistics, tfp, top10, top5 and top1 are stationary on the first-difference unit root test and thus are all integrated of order one, I(1). In case of France, none of the test statistics of the time series is rejecting the null hypothesis of non-stationarity on the level test. However, on the first-difference test, all variables are also stationary and consequently integrated of order one, I(1), as the series of Canada. While Germany's time series top1 fails to reject the null hypothesis

of a unit root on the level as well as on the first-difference tests, the time series *tfp*, *top10* and *top5* missed to reject the null hypothesis of a unit root only on the level test, but they are stationary on the first-difference test. The variable *top1* is said to be integrated of order two, *I*(2); *tfp*, *top10* and *top5* are integrated of order one, *I*(1). Referring to Italy, the displayed time series in Table 1 are exceptional in that only *tfp* is integrated of order one, *I*(1). The time series *top10* and *top5* both reject the null hypothesis of a unit root on the level test at the 1% critical value, meaning they are integrated of order zero, I(0). Using the same statistics, *top1* is stationary on the second-difference unit root test, which indicates that *top1* is integrated of order two, *I*(2). With regard to Japan, *tfp* failed to reject the null hypothesis of a unit root on the level and on the first-difference test. Reclaiming the same statistics, *tfp* is stationary on the second-difference unit root test and therefore integrated of order two, I(2). Since top10, top5 and top1 of Japan all reject the null hypothesis of non-stationarity on the first-difference unit root test at the 1% critical value, they are integrated of order one, I(1). In case of the UK and the U.S., all time series missed to reject the null hypothesis of a unit root on the level test, however, using the same statistics, all variables are stationary on the first-difference unit root test and hence are integrated of order one, I(1).

After detecting the integrating order of all variables, it is now possible to examine the potentially cointegrating relationships among the income shares and TFP.

4.2. Engle-Granger Two-Step Cointegration Approach

It is well known that most of the economic variables are non-stationary and contain a time trend component. As already discussed in Subsection 4.1., a regression with I(1) variables can lead to misleading results as well as to a spurious regression. However, the pioneering work of Engle and Granger (1987), Phillips and Hansen (1990), Sims *et al.* (1990), Johansen (1991), Phillips (1991) and Phillips and Loretan (1991) provided alternative estimation and hypothesis testing procedures for the analysis of I(1) variables. These new approaches allow for cointegration between non-stationary variables, if, in the case of the Engle-Granger approach, a linear combination of them has a stationary distribution. The basis of cointegration is a common stochastic trend of all series used in the regression. According to the results of the unit root tests in Subsection 4.1., this thesis suggests to apply different approaches for estimating long-run cointegrating relationships among income inequality and TFP: the residual-based two-step cointegration approach of Engle

and Granger (1987) and the bounds testing approach of Pesaran *et al.* (2001). In this elaboration, the focus lies on the Engle-Granger two-step approach. The investigation of the mixture of I(0) and I(1) variables will be presented in Subsection 5.6.1. The investigation of the mixture of I(1) and I(2) variables is excluded since this investigation follows a very different procedure.¹⁸ The case that the underlying analysis could probably not find any cointegration, meaning the I(1) variables within the regression do not have a common stochastic trend as well as no linear combination of them that is I(0), is called spurious regression. Phillips (1986) explained the behaviour of the estimated cointegrating coefficient $\hat{\theta}$ from the regression of the series Y_t and X_t , which are not cointegrated: $Y_t = \hat{\theta}X_t + \hat{u}_t$. Since Y_t is not cointegrated with X_t , $\hat{u}_t \sim I(1)$ and $\hat{\theta}$ converges to a non-normal distribution. Furthermore, the coefficient of determination, *R-squared*, tend to unity as $T \to \infty$ and misleads the model to fit well although it is misspecified. A possible solution of this problem is the differencing of the series. This ensures that all of the series are being stationary; however, it only displays the short-run dynamics and besides could also have omitted constraints.

Starting with the residual-based two-step cointegration approach of Engle and Granger (1987), the first step of this approach contains an estimation of the parameters of the cointegrating relationship. In the second step, these parameters are then used in the appropriate error correction mechanism, which will be explicated in Subsection 4.3. In relation to the present investigation of a feasible relationship between income inequality and growth, the use of a fully modified OLS (FMOLS) regression analysis is suitable. Because of the limited linear restrictions, Hansen (1992) recommended not using and interpreting the non-linear restriction test results, which includes trend regressors as it is the case for the regressions of the G-7 countries. Banerjee *et al.* (1993) further recommended using the FMOLS for cointegrating issues proposed by Phillips and Hansen (1990), because of misleading regression results for small sample sizes, as it is for instance the case for Italy.

Drawing the attention to Engle and Granger (1987), they defined a cointegrating equation with cointegrating vectors, which represent the stationary linear combination of the I(1) series. In economic theory, this linear combination depicts the long-run equilibrium

¹⁸ For more discussion of the likelihood-based vector autoregressive (VAR) approach see Engle and Yoo (1991) and Johansen (1991, 1995).

relationship. According to this long-run relationship, the I(1) series cannot drift too far apart from this equilibrium, since economic forces will restore the equilibrium and push the equilibrium error back to zero. In the regression analysis, the effect on the logarithmized depended variable y_t will be ascertained, which appears due to the change of a logarithmized independent variable x_t . Since the cointegrating coefficient θ is unknown, it is advisable to conduct an estimation. Assuming the existence of a single cointegrating relationship, the general long-run equilibrium equation for this underlying analysis is denoted by:

$$y_t = \beta + \theta x_t + \delta_1 t + \delta_2 t^2 + u_t, \tag{4.4}$$

where y_t depicts the natural logarithms of the top 10%, top 5% and top 1% income shares, respectively, x_t represents the natural logarithm of TFP, t and t^2 in this case are quadratic deterministic trend regressors and u_t depicts the random disturbance term, namely the residuals. Running a regression of y_t and x_t can detect the cointegration order CI(1,1), only if the series are both I(1). The corresponding residuals represent the measure of disequilibrium, meaning the above mentioned linear combination of the random variables, which has the from:

$$\hat{u}_t = y_t - \hat{\beta} - \hat{\theta} x_t - \hat{\delta}_1 t - \hat{\delta}_2 t^2, \qquad (4.5)$$

and which is stationary. The stationarity of this error term predicates the realization of the second step of the two-step approach. Engle and Granger (1987) hereby suggested the performance of a unit root test on the residuals of the cointegrating equation (4.4) using the ADF test. But, in this case, the extracted residuals are tested according to Equation (4.1), where each test equation includes only an intercept. The lag length is again selected by using the SIC. Since the ADF-statistic does not follow the Student's *t*-distribution, Appendix B provides the corrected critical values for the unit root test of the no trend case. Additionally, this elaboration gives a quick review of further cointegration tests, in order to show the different powers and results of the test statistics. Besides testing the residuals with the ADF test, the underlying elaboration verifies these results with the additionally system-provided Engle-Granger cointegration test, as well as with the parameter instability test of Hansen (1992). The Engle-Granger method uses the parametric ADF approach, which tests the null hypothesis of no cointegration against the alternative of cointegration. Lag length selection for the Engle-Granger test ensued with the SIC. The test output provides the Engle-Granger tau-statistic (*t*-statistic) as well as the normalized autocorrelation coefficient (*z*-statistic). The Hansen Instability test examines the null hypothesis of cointegration against the alternative of no cointegration. According the alternative hypothesis, Hansen (1992) outlined the evidence of parameter instability using the L_c test statistic, which tests time variation from the estimated equation.

With respect to Table 1, the presented tests for the presence of cointegration within the Engle and Granger (1987) two-step approach are examined for the countries Canada, France, Germany (except *top1* since it is I(2)), the UK and the U.S., since the variables of these countries are all integrated of order one, I(1). Thereby, there are the three models depicted: Model I – regression of *tfp* and *top10*, Model II – regression of *tfp* and *top5* and Model III – regression of *tfp* and *top1*.

As represented in Table 2, the most interesting aspects of Canada are evident in Model II and Model III. All tests show no cointegrating relationships, however, the residuals' ADF t statistic for these models are marginally significant at the 10% critical value (-3.164). By assuming that there could be a feasible existence of a cointegrating relationship, the analysis of Canada will pursue the estimation of an ECM using the Engle-Granger methodology. Regarding to France, in all three models the Hansen Instability test indicates the presence of cointegration among the variables. Because the t-statistic of the residuals' ADF test of Model I and Model II are showing a non-stationarity, one can say that there are spurious regressions within these models. However, an ECM will be estimated to examine consistent short-run dynamics, since the Hansen Instability test provides cointegrating relationships. By contrast, Germany is an example par excellence. In Model I and Model II, the ADF t-statistic of the residuals, the Engle-Granger test statistics as well as the Hansen Instability L_c -statistic confirm the existence of cointegrating relationships. Since the residuals are stationary at the 1% critical value, the cointegrating regressions in Model I and Model II in Germany are said to be superconsistent. Concerning the UK, only the Hansen Instability test reveals cointegration for all three models. However, in Model I, the ADF t-statistic of the tested residuals is slightly significant at the 10% critical value (-3.160). In case of the U.S., all three models show a marginally significance at the 10% critical value (-3.157) in the ADF test of the residuals. Hereby, a super consistency in the U.S. regressions might be persist.

	Model I: <i>tfp</i> a	nd <i>top10</i>			
Canada	France	Germany	UK	US	
-3.60**	-2.45	-6.08***	-2.87	-2.96	
-2.88	-3.07	-6.11+++	-2.46	-2.55	
-14.57	-11.01	-100.50***	-11.54	-6.92	
ty					
1.18000	0.23	0.29	0.40	0.66°°	
	Model II: <i>tfp</i> a	and <i>top5</i>			
Canada	France	Germany	UK	US	
-2.92	-2.64	-5.81***	-2.64	-3.02	
-2.42	-3.15	-5.86+++	-2.28	-2.72	
-11.67	-11.86	-86.54+++	-10.30	-6.84	
ty					
1.40°°°	0.21	0.52	0.43	0.69°°°	
	Model III: tfp	and top1			
Canada	France	Germany	UK	US	
-2.69	-3.35*		-2.05	-3.02	
-2.64	-3.63		-1.87	-2.71	
z-statistic –19.44 –			-7.72	-6.61	
Hansen Instability					
1.29°°°	0.17		0.52	0.66°°	
	$ \begin{array}{c} -3.60^{**} \\ -2.88 \\ -14.57 \\ \hline $	CanadaFrance -3.60^{**} -2.45 -2.88 -3.07 -14.57 -11.01 ty 0.23 Model II: tfpCanadaFrance -2.92 -2.64 -2.92 -2.64 -2.42 -3.15 -11.67 -11.86 ty 0.21 Model III: tfpCanadaFrance -2.69 -3.35^* -2.69 -3.35^* -2.64 -3.63 -19.44 -17.84	-3.60^{**} -2.45 -6.08^{***} -2.88 -3.07 -6.11^{+++} -14.57 -11.01 -100.50^{+++} ty 0.23 0.29 Model II: tfp and top5 Model II: tfp and top5 Canada France Germany -2.92 -2.64 -5.81^{***} -2.92 -2.64 -5.81^{***} -2.42 -3.15 -5.86^{+++} -11.67 -11.86 -86.54^{+++} ty $1.40^{\circ\circ\circ}$ 0.21 0.52 Model III: tfp and top1 Canada France Germany -2.69 -3.35^{*} -2.64 -3.63 -19.44 -17.84 4 4	CanadaFranceGermanyUK -3.60^{**} -2.45 -6.08^{***} -2.87 -2.88 -3.07 -6.11^{+++} -2.46 -14.57 -11.01 -100.50^{+++} -11.54 by $1.18^{\circ\circ\circ}$ 0.23 0.29 0.40 Model II: tfp and top5CanadaFranceGermanyUK -2.92 -2.64 -5.81^{***} -2.64 -2.92 -2.64 -5.81^{***} -2.64 -2.42 -3.15 -5.86^{+++} -2.28 -11.67 -11.86 -86.54^{+++} -10.30 by $1.40^{\circ\circ\circ}$ 0.21 0.52 0.43 Model III: tfp and top1CanadaFranceGermanyUK -2.69 -3.35^{*} -2.05 -2.64 -3.63 -1.87 -19.44 -17.84 -7.72 -7.72 -7.72	

Table 2: Cointegration Test Results

Source: Own depiction based on Feenstra *et al.* (2015) and Alvaredo *et al.* (2016). Notes: *, ** and *** denote null hypothesis of a unit root are rejected at the 10%, 5% and 1% critical values, respectively. ⁺, ⁺⁺ and ⁺⁺⁺ denote null hypothesis of no cointegration are rejected at the 10%, 5% and 1% significance levels, respectively. ^o, ^{oo} and ^{ooo} denote null hypothesis of cointegration are rejected at the 10%, 5% and 1% significance levels, respectively.

The next subchapter introduces the error correction estimations of the feasible and obvious cointegrating relationships according to the Engle-Granger methodology.

4.3. Error Correction Model

After the execution of the two-step cointegration approach and the examination of the cointegration tests, Engle and Granger (1987) proposed furthermore the conduction of an error correction model, in which the estimated linear combination of random variables from Equation (4.5) enters as the error correction term. Rendering the Granger Representation Theorem, there exists only an ECM if the two variables y_t and x_t are cointegrated (Cf. Engle and Granger, 1987, pp. 255f.). In this instance, the cointegration depicts the long-run relationship between the variables, whereas the ECM presents the short-run relationship. The basic error correction equation can have the form:

$$\Delta y_t = \mu + \sum_{i=1}^n \phi_i \Delta y_{t-i} + \sum_{i=0}^n \varphi_i \Delta x_{t-i} + \alpha \hat{u}_{t-1} + \varepsilon_t$$
(4.6)

where *n* is the number of lags, \hat{u}_{t-1} is the first lagged value of the error term from the cointegrating regression (4.4) and α is the adjustment mechanism of the error term, the so-called speed-of-adjustment coefficient (Cf. Glasure and Lee, 1997, p. 19). This adjustment coefficient depicts the extent to what it corrects the previous period disequilibrium. This speed-of-adjustment coefficient must be negative and significant. If this is true, α confirms the existence of a long-run equilibrium relationship among the variables.

The procedure of finding the appropriate lagged changes of the variables is a countryspecific one. The unrestricted error correction estimation includes a number of lags of all differenced variables, which are selected (e.g. up to four differences). In the next step, all significant lagged changes are entering the final restricted ECM. This final model contains the error correction term, which was estimated from the cointegrating regression (4.4) as well as all significant lagged differences of the variables from the unrestricted error correction estimation. These procedure is conducted for each G-7 country with variables integrated of order one, I(1). The results are represented in Section 5.

For testing whether the final ECM is valid and consistent, the model needs to pass some diagnostic test procedures. The residuals of the ECM are testing for serial correlation, for a normally distribution as well as for heteroskedasticity. In other words, serial correlation may not be presented; the residuals should have a normal distribution and should be homoskedastic in the standard errors. Additionally, the residuals can generally be examined for the presence of correlations over time. To start, one can check the Durbin-Watson

(DW) statistic, which is part of the regression output. Durbin and Watson (1950) displayed the evidence that there is no serial correlation with a DW statistic around the value 2. Is the DW statistic located between 2 and 4, the residuals are negatively correlated. Whereas a positive correlation exists if the DW statistic comes within 2. An alternative to the DW statistic is the Breusch-Godfrey Lagrange multiplier (LM) test. This test is adaptable for lagged dependent variables. The Breusch-Godfrey LM test statistic is the so-called Obs*R-squared-statistic and examines the null hypothesis of no serial correlation up to lag order p against the alternative of serial correlation.¹⁹ For testing whether the residuals are normally distributed, the Jarque-Bera statistic under the null hypothesis of a normal distribution is a good indicator. Testing for heteroskedasticity is conducted using White's (1980) findings. The test examines the null hypothesis of no heteroskedasticity (= homoskedasticity) against the alternative of heteroskedasticity. If there is an indication of heteroskedasticity, it is advisable to include the HAC standard errors, which was derived from Newey and West (1987). These HAC standard errors are consistent if both, potentially heteroskedasticity and possibly correlation over time of unidentified form, are entering the regression. For ensuring stability of the ECM, Ramsey's (1969) regression specification error test (RESET) is appropriate, which detects general model misspecifications in forms of omitted variables and incorrect functional form. The *F*-statistic depicts hereby the RESET statistic. A significant *F*-statistic indicates some functional misspecification (Wooldridge, 2013, pp. 303–305ff.)

After explaining the applied econometric model and its testing procedure, the next section presents the empirical results of each G-7 country.

¹⁹ See Godfrey (1989) for further discussion.

5. Empirical Results

Having discussed the theoretical and statistical model, this section gives empirical evidence about the question whether there is a relationship between inequality and growth. More precisely, this section demonstrates that there is indeed empirical effects of TFP on the upper end of the income distribution of the G-7 countries.

As the availability of the data varies from country to country, the exact number of observations will be established in the corresponding subsections for each G-7 country individually. The variables *top10, top5* and *top1* depicts the natural logarithms of the top 10%, top 5% and top 1% income shares, respectively. The natural logarithm of TFP is termed as *tfp*. Since this thesis elucidates that there are different ways in testing for long-run dynamics, the results of the Engle-Granger analysis are separate depicted for each country in alphabetical order. Subsection 5.6. summarizes the approaches of investigating the mixture of *I*(0) and *I*(1) variables as well as the mixture of *I*(1) and *I*(2) variables.

Starting with the ADF test for all G-7 series, the distinction of the integrating order of the variables is necessary for the further procedure of testing for a cointegrating relationship. Referring to Table 1, Canada, France, Germany²⁰, the UK and the U.S. are analysed rendering the Engle and Granger (1987) two-step approach, since all variables accomplish the requirement of being integrated of order one, I(1). On the other hand, the variables top10 and top5 of Italy²¹ are trend stationary, I(0), which renders the implementation of the Engle-Granger approach impossible in that case. Here, the ARDL bounds testing approach of Pesaran and Shin (1999) and Pesaran *et al.* (2001) is appropriate. In addition to the top1 variables of Germany and Italy, respectively, the analysis of Japan, unfortunately, is not achievable, since the variable tfp is integrated of order two, I(2). Therefore, the Engle-Granger approach is again not applicable in the case of the Model III analysis of tfp and top1 for Germany and Italy, as well as of all three models for Japan.

In relation to the present investigation of a feasible relationship between income inequality and growth, the use of a FMOLS regression analysis is suitable, as already explained previously. Here, the effect on the depended variable y_t , which depicts *top10*, *top5* and *top1* in Model I, Model II and Model III, respectively, is ascertained by changes of the independent variable x_t (*tfp*). Therefore, Model I investigates the effect of *tfp* on *top10*,

²⁰ Investigating of Germany ensued in the absence of the variable *top1*, since it is integrated of order two.

²¹ The variable *top1* of Italy is also integrated of order two, *I*(2).

Model II the effect of *tfp* on *top5* and Modell III the effect of *tfp* on *top1*, respectively. Referring to the general long-run equilibrium equation (4.4), the applied equations for Canada, France, Germany, the UK and the U.S. for Model I, Model II and Model III, respectively, are:

Model I $top10_t = \beta + \theta tfp_t + \delta_1 t + \delta_2 t^2 + u_t$ (5.1)

Model II
$$top5_t = \beta + \theta tfp_t + \delta_1 t + \delta_2 t^2 + u_t$$
 (5.2)

Model III
$$top1_t = \beta + \theta tfp_t + \delta_1 t + \delta_2 t^2 + u_t$$
 (5.3)

Each model consists of three columns, where column (1) represents the cointegrating FMOLS regression, column (2) the unrestricted error correction estimation and column (3) the restricted ECM, which includes various independent variables. The incidental test results of the cointegrating regression in (1) are already stated in Subchapter 4.2. Ascertaining whether the FMOLS regression in (1) has an error correction system, the unrestricted error correction estimation in (2) was assessed with the extracted residuals from (1) as well as the lagged changes of the *top10*, *top5* and *top1* variables, respectively, and the corresponding quantity of lagged changes of *tfp*. The lag length decision is detected by the easy model building strategy, which estimates the simplest ECM first and then tests for added lags of y_t and x_t (Engle and Granger, 1987, p. 272). Out of this regression, only the significant coefficients are entering the restricted ECM in (3). The test results of the final ECM are listed in Appendix B.

5.1. Canada

The analysis is initiated with Canada having an obtainable valid data basis. For the top 10% income share, data is available from 1941; in case of the top 5% and top 1% income shares, there are data from 1920. However, for the TFP, data is only available from 1950. For a better comparison, the analysis of both, income shares and TFP in Canada, starts from 1950 until 2010 and provides therefore 60 observations. As previously stated, the examination of a feasible cointegrating relationship between inequality and growth is separated into three models: Model I, Model II and Model III.

Beginning with the visual inspection of the data, Figure 3 plots all four logarithmized variables in one graph using a normalized scale. All three income shares show kind of

cyclical upward trend, whereas *tfp* displays a positive secular trend. Computing the autocorrelation coefficients, a stochastic trend can be assumed for *tfp*, *top10*, *top5* and *top1*, as the first autocorrelation coefficient is near 1.

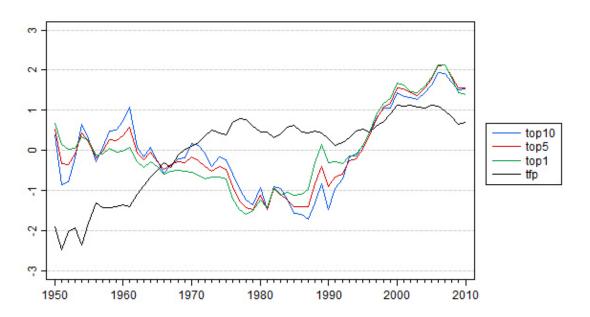


Figure 3: Time Series Comparison of Income Shares and TFP of Canada

Source: Own depiction based on Feenstra et al. (2015) and Alvaredo et al. (2016).

Using formal statistical procedures, the assumptions made above can be confirmed. Calling to mind the ADF test of a unit root from Subsection 4.1., the variables *tfp*, *top10*, *top5* and *top1* failed to reject the null hypothesis of a unit root on the level test but are stationary on the first-difference test and thus are integrated of order one, I(1). These test results are also evident for the presence of stochastic trends in the data. Furthermore, this property enables to use the Engle-Granger two-step approach for examine possible cointegrating relationships. Trying to answer the question whether Canada shows a long-run relationship between the income shares and TFP, Table 3, Table 4 and Table 5 show the regression results of all models.

Model I (Table 3) represents the FMOLS estimation (1) of the effect of TFP on the top 10% income share in Canada including a quadratic deterministic trend, which shows evidence for a spurious regression. However, testing the residuals from (1) with the ADF test shows that the error term (here depicted as *resid10*) is stationary. The ADF test results are previously presented in Subchapter 4.1. According to Engle and Granger (1987), this

stationary error term represents the linear combination, which makes the regression super-consistent. Thus, the variables top10 and tfp are sharing the same stochastic trend. Regression (2) is an OLS estimation of the change in the top 10% income share on six lags of $\Delta top10$ and Δtfp plus the error correction term with one lag. Since the coefficient of the error term is negative and significant, the generation of the restricted ECM in (3) is now possible. Of all lagged changes, the first, third, fourth and sixth lags of $\Delta top10$ as well as the fourth, fifth and sixth lags of Δtfp are significant. Thus, the final ECM has the error correction term estimated from (1) and the previous listed lagged changes in top10 and tfp. Referring to Equation (4.6), the coefficient on the lagged error correction term is negative and highly significant. This speed-of-adjustment coefficient states that on average 38.1% of the last period's equilibrium error is corrected in this period. Since the diag-

	(1)	(2)	(3)
Dep. Var.:	top10	$\Delta top 10$	$\Delta top 10$
tfp	0.345** (2.3)		
resid10(–1)		-0.551***(-3.8)	-0.381***(-3.9)
$\Delta top10(-1)$		0.314* (1.8)	0.202 (1.3)
∆ <i>top10</i> (-2)		0.281 (1.4)	
$\Delta top10(-3)$		0.348** (2.1)	0.269** (2.5)
$\Delta top10(-4)$		0.379***(3.4)	0.308***(3.6)
$\Delta top10(-5)$		0.141 (1.3)	
∆ <i>top10</i> (–6)		0.242** (2.2)	0.221** (2.5)
$\Delta tfp(-1)$		0.057 (0.4)	
$\Delta tfp(-2)$		0.029 (0.2)	
$\Delta tfp(-3)$		0.021 (0.1)	
$\Delta tfp(-4)$		0.254** (2.5)	0.219* (1.9)
$\Delta tfp(-5)$		0.219* (1.7)	0.132 (1.1)
$\Delta tfp(-6)$		0.227* (2.0)	0.161 (1.3)
const	6.797***(10.6)	-0.004 (-1.6)	-0.002 (-0.8)
trend	-0.011***(-4.8)		
trend ²	0.000***(6.1)		
R-squared	0.638	0.330	0.263
SER	0.026	0.013	0.013
DW		1.98	2.06

Table 3: Regression Results Canada, Model I

Source: Own depiction based on Feenstra et al. (2015) and Alvaredo et al. (2016).

Notes: SER = standard error of regression. *, ** and *** denote the 10%, 5% and 1% significance levels, respectively. The *t*-statistics are in parentheses, even though they are not valid for regression (1).

nostic tests for serial correlation, normally distribution, heteroskedasticity as well as the RESET test are all generally good, the final ECM demonstrates the existence of a cointegrating relationship between the top 10% income share and TFP in Canada.

	_		
	(1)	(2)	(3)
Dep. Var.:	top5	$\Delta top 5$	$\Delta top 5$
tfp	0.389* (2.0)		
resid5(–1)		-0.398***(-2.8)	-0.203** (-2.4)
$\Delta top5(-1)$		0.378* (1.9)	0.250 (1.3)
$\Delta top5(-2)$		0.234 (1.1)	
$\Delta top5(-3)$		0.173 (1.2)	
$\Delta top5(-4)$		0.176 (1.6)	
$\Delta top5(-5)$		0.161 (1.4)	
$\Delta tfp(-1)$		0.090 (0.5)	
$\Delta tfp(-2)$		0.099 (0.6)	
$\Delta tfp(-3)$		0.158 (0.9)	
$\Delta tfp(-4)$		0.142 (1.0)	
$\Delta tfp(-5)$		0.366** (2.2)	0.246** (2.3)
const	6.213***(7.4)	-0.004 (-1.1)	0.001 (0.2)
trend	-0.016***(-5.5)		
trend ²	0.000***(7.5)		
R-squared	0.767	0.237	0.142
SER	0.035	0.018	0.018
DW	_	2.15	2.03

Table 4: Regression Results Canada, Model II

Source: Own depiction based on Feenstra *et al.* (2015) and Alvaredo *et al.* (2016). *Notes*: SER = standard error of regression. *, ** and *** denote the 10%, 5% and 1% significance levels, respectively. The *t*-statistics are in parentheses, even though they are not valid for regression (1).

Modell II (Table 4) represents the FMOLS estimation (1) of the effect of TFP on the top 5% income share in Canada. Testing the residuals from (1) with the ADF test shows a marginally significance at the 10% critical value. By assuming a feasible existence of a cointegrating relationship, model (2) is estimated in order to find the final restricted ECM in (3). Regression (2) includes five lagged changes of *top5* and *tfp*. The significant first lag of $\Delta top5$ as well as the fifth lag of Δtfp are entering the final ECM in (3). The speed-of-adjustment coefficient is negative and significant at the 5% significance level and is equal to -0.203. The diagnostic tests are again valid. Despite the weak ADF test result, the

assumption stated previously of the feasible presence of a cointegrating relationship can be verified.

Modell III (Table 5) shows the FMOLS estimation (1) of the impact of TFP on the top 1% income share in Canada. The ADF test of the residuals from (1) are again marginally significant at the 10% critical value as it was the same instance for regression (1) in Model II. Once more, the assumption is made that there exists a cointegrating relationship. Regression (2) detects the significant lagged changes of *top1* and *tfp*, which structures the restricted ECM in (3). The speed-of-adjustment coefficient of the final ECM in (3) is -0.258 and highly significant. All diagnostic tests show good test results. Back to the assumption made at regression (1), it can be verified that there is a long-run equilibrium as well as short-run dynamics of the top 1% income share and TFP in Canada.

	(1)	(2)	(3)
Dep. Var.:	top1	$\Delta top1$	$\Delta top1$
tfp	0.112 (0.3)		
resid1(–1)		-0.510***(-3.3)	-0.258***(-2.9)
$\Delta top1(-1)$		0.600***(2.9)	0.429** (2.1)
$\Delta top1(-2)$		0.258 (1.4)	
$\Delta top1(-3)$		0.168 (1.1)	
$\Delta top1(-4)$		0.194* (1.8)	0.085 (1.0)
$\Delta top1(-5)$		0.175* (1.8)	0.087 (1.0)
$\Delta tfp(-1)$		0.572 (1.6)	
$\Delta tfp(-2)$		0.221 (0.7)	
$\Delta tfp(-3)$		0.565* (1.7)	0.148 (1.0)
$\Delta tfp(-4)$		0.258 (0.9)	
$\Delta tfp(-5)$		0.778***(2.8)	0.523***(2.9)
const	6.557***(4.1)	-0.013 (-1.6)	-0.001 (-0.2)
trend	-0.025***(-4.5)		
trend ²	0.000***(7.2)		
R-squared	0.835	0.286	0.204
SER	0.066	0.036	0.036
DW	_	2.09	2.10

Table 5: Regression Results Canada, Model III

Source: Own depiction based on Feenstra *et al.* (2015) and Alvaredo *et al.* (2016). *Notes*: SER = standard error of regression. *, ** and *** denote the 10%, 5% and 1% significance levels, respectively. The *t*-statistics are in parentheses, even though they are not valid for regression (1). Summarizing the empirical results of Canada, Model I shows that the technological progress has a positive significant long-run effect on the top 10% income share on average by 0.345 percentage points. The top 5% income share in Model II is increasing by 0.389 percentage points in the long run. Only in Model III, the effect of TFP on the top 1% income share is not significant. However, overall it is evident that there is a long-run relationship between income inequality and economic growth. Considering the short-run dynamics, the speed-of-adjustment coefficients of Model I, Model II and Model III are relatively quick with 38.1%, 20.3% and 25.8%, respectively.

5.2. France

To continue with France, the situation of available data is the same as it was for Canada. For the top 10% and top 5% income shares, the data recording starts at 1919. The data of the top 1% income share was recording since 1915; TFP, however, initially since 1950. Again, for a better comparison, the analysis of France starts from 1950 until 2012 and results in a total amount of 62 observations.

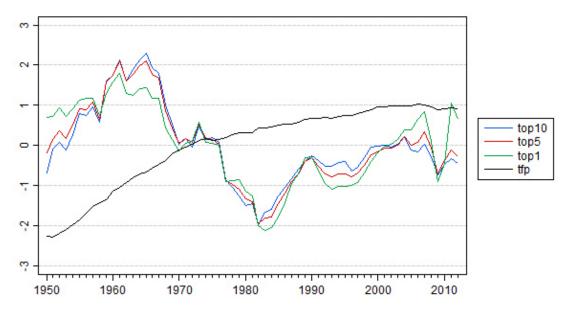


Figure 4: Time Series Comparison of Income Shares and TFP of France

Source: Own depiction based on Feenstra et al. (2015) and Alvaredo et al. (2016).

As evident from Figure 4, the logarithmized variables *top10*, *top5* and *top1* show barely upward or downward trends, however, there are peaks and troughs indicating a cyclical character. The natural logarithm of TFP, *tfp*, shows a positive secular trend. A stochastic

trend can be assumed for *tfp*, *top10*, *top5* and *top1*, as the first autocorrelation coefficient of all variables is near 1. Introducing the next steps, the variables *tfp*, *top10*, *top5* and *top1* are tested for a unit root and stochastic trend, respectively, using the ADF test. All four variables are integrated of order one, I(1), meaning that none of them are rejecting the null hypothesis of a unit root on the level test, however, all are stationary on the firstdifference test, which allows for the application of the Engle-Granger two-step approach. Using this approach, the variables are investigating for long-run relationships. The succeeding Table 6, Table 7 and Table 8 are showing the results of the regression models used for analysing the long-run as well as the short-run dynamics of inequality and growth in France.

Table 6 depicts the results of Model I. Starting with the FMOLS estimation in column (1), which analyses the effect of TFP on the top 10% income share in France and which includes a significant quadratic deterministic trend, the residuals from regression (1) are tested to be non-stationary. This implies that there is no stationary linear combination of the cointegrating regression and is also an evidence for a spurious regression. However, the Hansen Instability cointegration test provides cointegrating relationship (see Table 2). With this result, one can assume that there could be a possible cointegrating relationship between the top 10% income share and TFP. Therefore, the analysis proceeds further and estimates the unrestricted error correction mechanism in (2). This OLS regression estimates the change in the top 10% income share on eight lags of $\Delta top 10$ and Δtfp as well as the one-lagged error correction term, depicted as resid10(-1). The restricted ECM in (3) is built with the fourth lag of $\Delta top 10$ as well as with the fourth and eighth lags of $\Delta t f p$. The speed-of-adjustment coefficient is -0.133 and significant at the 5% level, which means that the disequilibrium in the last period is corrected in this period by around 13.3%. The diagnostic tests are all generally good, although the DW statistic of 1.77 shows a positive correlation. The final ECM confirms the assumption of a cointegrating relationship between the *top10* and *tfp* in France.

	(1)	(2)	(3)
Dep. Var.:	top10	$\Delta top 10$	Δtop10
tfp	0.452* (1.9)		
resid10(–1)		-0.232** (-2.3)	-0.133** (-2.4)
$\Delta top10(-1)$		0.117 (0.8)	
∆ <i>top10</i> (–2)		0.224 (1.6)	
$\Delta top10(-3)$		0.008 (0.1)	
$\Delta top10(-4)$		0.349** (2.4)	0.355***(2.9)
$\Delta top10(-5)$		0.167 (1.1)	
∆ <i>top10</i> (–6)		0.081 (0.8)	
∆ <i>top10</i> (–7)		-0.007 (-0.1)	
∆ <i>top10</i> (-8)		0.080 (0.9)	
$\Delta tfp(-1)$		0.101 (0.9)	
$\Delta tfp(-2)$		0.200 (1.4)	
$\Delta tfp(-3)$		0.021 (0.2)	
$\Delta tfp(-4)$		0.421** (2.4)	0.484***(4.6)
$\Delta tfp(-5)$		-0.095 (-0.9)	
$\Delta tfp(-6)$		-0.143 (-1.1)	
$\Delta tfp(-7)$		-0.020 (-0.1)	
$\Delta tfp(-8)$		-0.506***(-3.9)	-0.591***(-4.0)
const	6.626***(8.2)	0.003 (1.0)	0.003 (1.3)
trend	-0.025** (-2.3)		
trend ²	0.000** (2.3)		
R-squared	0.458	0.597	0.474
SER	0.038	0.013	0.013
DW	_	1.98	1.77

Table 6: Regression Results France, Model I

Source: Own depiction based on Feenstra *et al.* (2015) and Alvaredo *et al.* (2016). *Notes*: SER = standard error of regression. *, ** and *** denote the 10%, 5% and 1% significance levels, respectively. The *t*-statistics are in parentheses, even though they are not valid for regression (1).

Model II in Table 7 represents the FMOLS estimation in (1), which examines the effect of TFP on the top 5% income share in France. Being confronted with the same situation as in Model I, the residuals' ADF test statistic from (1) does not show a stationary behaviour. By assuming feasible cointegrating relationship due to the proof of the Hansen Instability cointegrating test, the unrestricted error correction estimation is conducted in (2). Here, there are again eight lags of $\Delta top5$ and Δtfp as well as the error correction term, which is lagged one time. Generating the restricted ECM in (3) with the fourth lag of $\Delta top5$ and the fourth and eighth lags of Δtfp leads to a significant speed-of-adjustment coefficient of

-0.129. The DW statistic of 1.56 indicates a positive correlation. However, the diagnostic tests are again generally good with one exception: the residuals are not normally distributed. According to the assumption of the feasible presence of a cointegrating relationship stated previously, the ECM test results can verify it marginally.

	(1)	(2)	(3)
Dep. Var.:	top5	$\Delta top 5$	$\Delta top 5$
tfp	0.629** (2.4)		
resid5(–1)		-0.323** (-2.3)	-0.129* (-1.9)
$\Delta top5(-1)$		0.253 (1.7)	
$\Delta top5(-2)$		0.167 (1.0)	
$\Delta top5(-3)$		0.075 (0.5)	
$\Delta top5(-4)$		0.369** (2.4)	0.298** (2.2)
$\Delta top5(-5)$		0.124 (0.8)	
$\Delta top5(-6)$		0.202 (1.5)	
$\Delta top5(-7)$		0.048 (0.4)	
$\Delta top5(-8)$		0.115 (1.1)	
$\Delta tfp(-1)$		0.153 (1.0)	
$\Delta tfp(-2)$		0.164 (0.9)	
$\Delta tfp(-3)$		-0.021 (-0.1)	
$\Delta tfp(-4)$		0.493** (2.5)	0.518***(3.6)
$\Delta tfp(-5)$		-0.130 (-0.9)	
$\Delta tfp(-6)$		-0.102 (-0.6)	
$\Delta tfp(-7)$		0.058 (0.3)	
$\Delta tfp(-8)$		-0.565***(-3.5)	-0.661***(-3.6)
const	5.637***(6.3)	0.003 (0.5)	0.004 (1.1)
trend	-0.035***(-3.0)		
trend ²	0.000***(3.0)		
R-squared	0.567	0.531	0.401
SER	0.042	0.017	0.016
DW	-	1.85	1.56

Table 7: Regression Results France, Model II

Source: Own depiction based on Feenstra *et al.* (2015) and Alvaredo *et al.* (2016).

Notes: SER = standard error of regression. *, ** and *** denote the 10%, 5% and 1% significance levels, respectively. The *t*-statistics are in parentheses, even though they are not valid for regression (1).

Table 8 represents Model III, in which the impact of TFP on the top 1% income share in France is estimated with FMOLS in (1). In this case, the ADF test statistic of the residuals from (1) are significant at the 10% critical value. This indicates a stationary linear

combination, which proves the existence of a super-consistent cointegrating relationship between *top1* and *tfp*. The error correction estimate in (2) detects the significant lagged changes of *top1* and *tfp*, which enter the restricted ECM in (3). Since all diagnostic tests are verifying good test results, the last period disequilibrium will be corrected very quickly by around 43.8% in this period, accomplishing the requirement of being negative and significant. Additionally, the DW statistic is around 2, which implies that there is no correlation. Thus, in Model III, there is a long-run equilibrium as well as short-run dynamics between the top 1% income share and TFP in France.

	(1)	(2)	(3)
Dep. Var.:	top1	Δtop1	$\Delta top1$
tfp	0.886***(3.1)		
resid1(–1)		-0.685***(-2.8)	-0.438** (-2.6)
$\Delta top1(-1)$		0.642***(2.8)	0.440***(2.9)
$\Delta top1(-2)$		0.066 (0.3)	
$\Delta top1(-3)$		0.267 (1.3)	
$\Delta top1(-4)$		0.434** (2.1)	0.349 (1.5)
$\Delta top1(-5)$		0.180 (0.8)	
$\Delta top1(-6)$		0.270 (1.3)	
$\Delta top1(-7)$		0.083 (0.4)	
$\Delta top1(-8)$		0.254 (1.4)	
$\Delta tfp(-1)$		0.281 (0.9)	
$\Delta tfp(-2)$		-0.178 (-0.5)	
$\Delta tfp(-3)$		-0.088 (-0.3)	
$\Delta tfp(-4)$		0.653** (2.5)	0.281 (1.5)
$\Delta tfp(-5)$		-0.030 (-0.1)	
$\Delta tfp(-6)$		0.150 (0.5)	
$\Delta tfp(-7)$		0.273 (0.8)	
$\Delta tfp(-8)$		-0.573 (-1.7)	
const	3.875***(3.9)	-0.004 (-0.3)	-0.004 (-0.7)
trend	-0.053***(-4.1)		
trend ²	0.001***(4.4)		
R-squared	0.704	0.464	0.258
SER	0.050	0.032	0.032
DW	-	1.81	1.94

Table 8: Regression Results France, Model III

Source: Own depiction based on Feenstra et al. (2015) and Alvaredo et al. (2016).

Notes: SER = standard error of regression. *, ** and *** denote the 10%, 5% and 1% significance levels, respectively. The *t*-statistics are in parentheses, even though they are not valid for regression (1).

In conclusion, the statistical impact of technological progress on income inequality in France shows a generally positive one. If TFP is increasing by one unit above its long-run trend, the top 5% and top 1% income shares rise by about 0.629 and 0.886 percentage points, respectively. The top 10% income share will increase on average by 0.452 percentage points. Besides, only the diagnostic test results of the ECM in Model III, where the effect of TFP on the top 1% income share is investigating, are showing perfect outcomes. This indicates that there must be other omitted variables explaining the steady behaviour of income inequality in France.

5.3. Germany

Continuing the analysis with Germany, the situation of the available data is full with irregularities. For all income shares, the data recording starts at 1891, however, as time passed there have been some gaps. These gaps are closed with statistical interpolation techniques.²² The TFP data is again available from 1950. However, for a better comparison, the analysis for Germany is restricted to the period of 1950 until 2011 with the result of 61 observations.

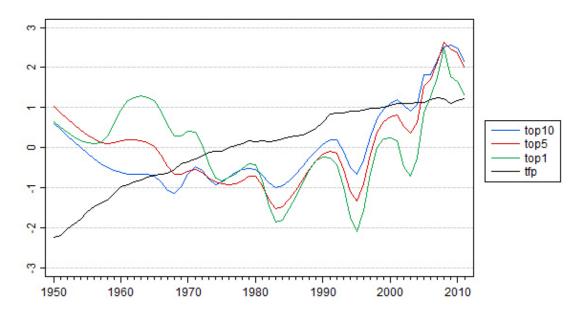


Figure 5: Time Series Comparison of Income Shares and TFP of Germany

Source: Own depiction based on Feenstra et al. (2015) and Alvaredo et al. (2016).

²² See Appendix A for more details of the applied interpolation technique.

Figure 5 allows the depiction of the logarithmized variables *top10*, *top5*, *top1*, as well as *tfp* being summarized within one chart due to the normalized scaling. The income share variables are showing a positive secular trend with random variation as well as *tfp* does. A stochastic trend can be assumed for *tfp*, *top10*, *top5* and *top1*, as the first autocorrelation coefficient of the variables is near 1. Consulting the ADF test results from Subsection 4.1., Table 9 shows the integrating order of each variable in Germany. Since *tfp*, *top10* and *top5* are stationary at first-difference, they are integrated of order one, *I*(1). However, *top1* failed to reject the null hypothesis of a unit root on the level and first-difference test. Being stationary on the second-difference means that *top1* is integrated of order two, *I*(2).

Table 9: Integrating Order of Variables in Germany

	tfp	top10	top5	top1
Integrating order	<i>I</i> (1)	<i>I</i> (1)	<i>I</i> (1)	<i>I</i> (2)

Source: Own depiction based on Alvaredo et al. (2016) and Feenstra et al. (2015).

Answering and proving the question whether TFP has an impact on the upper end of the income distribution in Germany, Table 10 and Table 11 are showing the results of the Model I and Model II, respectively. Model III is not computed, since *top1* is I(2) and hence needs another approach for estimating the long-run relationship between the top 1% income share and TFP, which will be explained briefly in Subsection 5.6.2.

Commencing with the first model in Table 10, the cointegrating regression in column (1) indicates a significant quadratic deterministic trend, which explains the movements of *tfp*. Omitting this time trend could result in a spurious regression. This can be seen by the coefficient of determination, *R-squared*, which is very high (0.925) and therefore implies a very good fit for the model. The additionally very high *t*-ratio of the constant coefficient indicates that the regression in (1) is spurious. However, the residuals from (1) are stationary at the 1% critical value (see Table 2). According to Engle and Granger (1987), this result suggests that the regression in (1) is not spurious. In specific, *top10* and *tfp* in Germany are cointegrated with certainty as well as are being super-consistent. Consulting the other cointegrating test results, they all confirm the test results of the residuals' ADF test. Constructing the ECM in (3) requires first the regression of the unrestricted error correction estimation in (2). This OLS model estimates the change in the top 10% income

	(1)	(2)	(3)
Dep. Var.:	top10	Δtop10	$\Delta top 10$
tfp	-0.016 (-0.1)		
resid10(–1)		-0.426***(-3.1)	-0.424***(-6.7)
$\Delta top10(-1)$		0.491* (1.8)	0.714***(3.6)
$\Delta top10(-2)$		0.097 (0.4)	
$\Delta top10(-3)$		0.030 (0.3)	
$\Delta top10(-4)$		-0.041 (-0.4)	
$\Delta top10(-5)$		0.372***(3.9)	0.281** (2.3)
∆ <i>top10</i> (–6)		-0.635***(-3.2)	-0.491***(-3.5)
∆ <i>top10</i> (-7)		0.479** (2.1)	0.414** (2.1)
$\Delta tfp(-1)$		0.203** (2.4)	0.114** (2.2)
$\Delta tfp(-2)$		-0.069 (-0.8)	
$\Delta tfp(-3)$		-0.083 (-0.9)	
$\Delta tfp(-4)$		-0.148 (-1.3)	
$\Delta tfp(-5)$		-0.103 (-1.1)	
$\Delta tfp(-6)$		-0.002 (-0.0)	
$\Delta tfp(-7)$		0.092 (0.8)	
const	8.185***(20.4)	0.004 (0.8)	-0.001 (-0.4)
trend	-0.008** (-2.1)		
trend ²	0.000** (6.1)		
R-squared	0.925	0.698	0.633
SER	0.021	0.010	0.010
DW	-	1.95	2.17

Table 10: Regression Results Germany, Model I

Source: Own depiction based on Feenstra et al. (2015) and Alvaredo et al. (2016).

Notes: SER = standard error of regression. *, ** and *** denote the 10%, 5% and 1% significance levels, respectively. The *t*-statistics are in parentheses, even though they are not valid for regression (1).

share on seven lags of $\Delta top 10$ and Δtfp plus the one-lagged error correction term from (1). Thus, the restricted ECM in (3) consists of the first, fifth, sixth and seventh lags of $\Delta top 10$ as well as of the first lag of Δtfp . The coefficient of the one-lagged error term is negative and statistical highly significant, This valid speed-of-adjustment coefficient as well as the generally good diagnostic test results²³ lead to the conclusion that the relationship

²³ Ramsey RESET test shows that the ECM in (3) is stable, however, the residuals are not showing a normal distribution. Furthermore, the residuals are heteroskedastic, although the OLS regression is computing with HAC. But the non-robust *F*-statistic and the robust Wald test of the regression output in (3) are both highly statistically significant at the 1% level, which indicates that the non-intercept coefficients are all statistically significant.

between the top 10% income share and TFP in Germany is a long-run relationship as well as have short-run dynamics. Meaning that the technological progress is decreasing the top 10% income share in Germany on average by 0.016 percentage points. However, the coefficient of *tfp* is not significant and its movement is explained by the quadratic deterministic trend. The short-run dynamics can be explained by the speed-of-adjustment coefficient, which indicates that the last period's disequilibrium is corrected in this period by about 42.4%.

	(1)	(2)	(3)
Dep. Var.:	top5	$\Delta top 5$	$\Delta top 5$
tfp	0.314* (1.8)		
resid5(–1)		-0.330***(-3.3)	-0.337***(-6.3)
$\Delta top5(-1)$		0.617***(3.1)	0.701***(6.9)
$\Delta top5(-2)$		-0.022 (-0.1)	
$\Delta top5(-3)$		0.162 (0.8)	
$\Delta top5(-4)$		-0.224 (-1.3)	
$\Delta tfp(-1)$		0.022 (0.2)	
$\Delta tfp(-2)$		-0.001 (-0.0)	
$\Delta tfp(-3)$		-0.198* (-1.8)	-0.224** (-2.1)
$\Delta tfp(-4)$		-0.127 (-1.1)	
const	6.733***(10.6)	0.007** (2.4)	0.005* (1.9)
trend	-0.023***(-4.0)		
trend ²	0.000***(6.7)		
R-squared	0.857	0.657	0.627
SER	0.029	0.013	0.013
DW	-	2.01	2.13

Table 11: Regression Results Germany, Model II

Source: Own depiction based on Feenstra et al. (2015) and Alvaredo et al. (2016).

Notes: SER = standard error of regression. *, ** and *** denote the 10%, 5% and 1% significance levels, respectively. The *t*-statistics are in parentheses, even though they are not valid for regression (1).

Turning the attention towards Model II in Table 11, column (1) represents the regression of *tfp* and *top5* with the inclusion of a significant quadratic deterministic trend. This implies that an innovation and technological progress, respectively, increases the top 5% income share on average by 0.314 percentage points, however, the significant quadratic deterministic trend explains additionally movements of *tfp*. Since the residuals of (1) are stationary, the cointegrating regression is super-consistent and hence not spurious. The

following investigation of the ECM in (3) is initiated with the unrestricted error correction estimate composed of four lags of $\Delta top5$ and Δtfp plus the one-lagged error correction term from regression (1), *resid5(-1)*. Since only the significant coefficients of (2) are entering the OLS regression in (3), the restricted ECM is constructed with the one-lagged error correction term, the first lag of $\Delta top5$ and the third lag of Δtfp . This model shows a good fit, since the R-squared value is 0.627, the standard error is 0.013 and the DW statistic is around 2. Besides, the diagnostic tests for serial correlation, normally distribution, heteroskedasticity as well as the RESET test are all showing generally good results. The short-run dynamics are depicted in the error correction coefficient, which states that the last periods' equilibrium error is corrected in this period by around 33.7%.

Finally, the increasing income inequality in Germany can be explained in some extent statistically by the technological progress. There are contrasting findings. Model I reveals a negative impact between technological progress and income inequality. Meaning that the increasing TFP will diminish the top 10% income share by about -0.016 percentage points. However, the movements of the insignificant coefficient *tfp* can be explained by the significant deterministic trend. On the other hand, Model II confirms the data behaviour of the increasing inequality in Germany. When TFP grows by 1 unit above its long-run trend, the top 5% income share will rise on average by 0.314 percentage points. The test results of the ECMs are deficient due to normal distributed residuals and the incidence of heteroskedasticity. Additionally, the analysis of the relationship between TFP and the top 1% income share, which is I(2), is lacking. This mentioned biases lead to the result that there must be other omitted variables explaining the increasing income inequality in Germany.

5.4. United Kingdom

Directing the attention to the UK, the data recording of the income shares are starting in 1918, however, there are huge gaps until the more or less regular recording from 1962 onwards. TFP data is still available from 1950. For better comparison, the analysis is limited to the period of 1950 to 2012, which results in 62 observations.

Plotting the logarithmized variables *top10*, *top5*, *top1* as well as *tfp* in one chart using a normalized scaling, allows for a first visual inspection of the data. Figure 6 shows that all four series have a positive secular trend with random variation. Formal statistic

procedures suggest first the computing of a unit root test. As described in Subsection 4.1., the time series *top10*, *top5*, *top1*, as well as *tfp* are tested with the ADF test, which arrives at the conclusion that the series are integrated of order one, I(1). These test results are also evident for the presence of stochastic trends in the data. Furthermore, this property enables to use the Engle-Granger two-step approach for examine whether there are cointegrating relationships. The following Table 12, Table 13 and Table 14 are presenting the regression results of Model I, Model II and Model III, respectively. All three models are showing a positive effect of TFP on the income shares. For instance, an innovation or technological progress in Model I increases the top 10% income share on average by 1.831 percentage points.

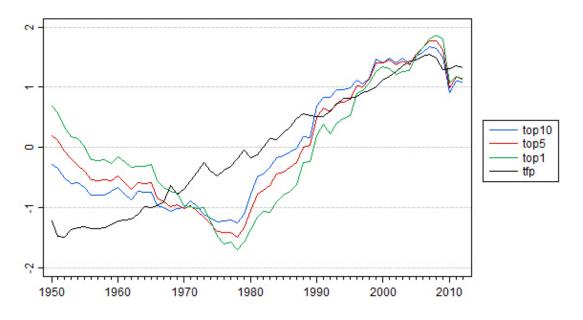


Figure 6: Time Series Comparison of Income Shares and TFP of the UK

Source: Own depiction based on Feenstra et al. (2015) and Alvaredo et al. (2016).

Starting with the statistical results of Model I in Table 12, the movements of *tfp* can additionally be explained by a significant quadratic deterministic trend. According to Engle and Granger (1987), the residuals of the regression in (1) must be tested for a unit root. Is this linear combination stationary, the regression is said to be super-consistent. Consulting the cointegration test results from Table 2 creates a disillusioning scenery. The ADF test value is -2.87, which is not rejecting the 10% critical value of -3.16. However, one can assume that the residuals could be marginally rejecting the 10% critical value. This assumption will be underpinned with the Hansen Instability test result, which

indicates a cointegrating relationship. As already implemented previously for Canada, France and Germany, the unrestricted error correction estimate in (2) will be computed in order to find the restricted ECM in (3). In the case of UK, the estimation in (2) was assessed with the extracted residual from (1) as well as eight lagged changes of *top10* and the corresponding quantity of lagged changes of *tfp*. The restricted ECM in (3) consists of the first-lagged error correction term from (1), the first, sixth and eighth lags of $\Delta top10$ as

	(1)	(2)	(3)
Dep. Var.:	top10	$\Delta top 10$	Δtop10
tfp	1.831***(3.3)		
resid10(–1)		-0.148** (-2.2)	-0.113** (-2.0)
$\Delta top10(-1)$		0.234** (2.3)	0.222* (1.7)
$\Delta top10(-2)$		0.176 (1.2)	
$\Delta top10(-3)$		0.093 (0.6)	
∆ <i>top10</i> (-4)		0.002 (0.0)	
$\Delta top10(-5)$		-0.070 (-0.6)	
∆ <i>top10</i> (–6)		0.275* (1.8)	0.256* (2.0)
∆ <i>top10</i> (–7)		-0.031 (-0.2)	
∆ <i>top10</i> (–8)		0.225* (1.7)	0.224** (2.1)
$\Delta tfp(-1)$		0.170 (0.5)	
$\Delta tfp(-2)$		-0.106 (-0.6)	
$\Delta tfp(-3)$		0.016 (0.1)	
$\Delta tfp(-4)$		-0.214* (-1.8)	-0.137 (-1.2)
$\Delta tfp(-5)$		-0.149 (-0.5)	
$\Delta tfp(-6)$		-0.418* (-1.9)	-0.314 (-1.4)
$\Delta tfp(-7)$		-0.176 (-0.7)	
$\Delta tfp(-8)$		-0.029 (-0.2)	
const	0.730 (0.3)	0.011 (1.1)	0.007 (1.4)
trend	-0.025***(-3.5)		
trend ²	0.000***(3.9)		
R-squared	0.880	0.246	0.177
SER	0.052	0.024	0.022
DW		2.08	2.09

Source: Own depiction based on Feenstra *et al.* (2015) and Alvaredo *et al.* (2016). *Notes*: SER = standard error of regression. *, ** and *** denote the 10%, 5% and 1% significance levels, respectively. The *t*-statistics are in parentheses, even though they are not valid for regression (1). well as fourth and sixth lags of $\Delta t f p$. The negative and significant error correction coefficient (-0.113) as well as the generally good diagnostic test results imply that Model I has a cointegrating relationship between *top10* and *tfp*, as well as an ECM, which explains the short-run dynamics of this relationship.

	(1)	(2)	(3)
Dep. Var.:	top5	$\Delta top 5$	$\Delta top 5$
tfp	2.263***(3.1)		
resid5(–1)		-0.117** (-2.1)	-0.128** (-2.1)
$\Delta top5(-1)$		0.258** (2.1)	0.239** (2.3)
$\Delta top5(-2)$		0.207** (2.2)	0.265***(3.5)
$\Delta top5(-3)$		0.113 (0.7)	
$\Delta top5(-4)$		-0.099 (-0.6)	
$\Delta top5(-5)$		-0.038 (-0.3)	
$\Delta top5(-6)$		0.317 (1.6)	
$\Delta tfp(-1)$		0.453 (1.1)	
$\Delta tfp(-2)$		-0.161 (-0.7)	
$\Delta tfp(-3)$		0.104 (0.6)	
$\Delta tfp(-4)$		-0.214 (-1.6)	
$\Delta tfp(-5)$		0.095 (0.4)	
$\Delta tfp(-6)$		-0.423* (-1.9)	-0.271* (-1.8)
const	-1.307 (-0.4)	0.004 (0.5)	0.006 (1.6)
trend	-0.039***(-4.2)		
trend ²	0.000***(5.3)		
R-squared	0.866	0.318	0.168
SER	0.068	0.027	0.027
DW	_	2.10	2.00

Table 13: Regression Results UK, Model II

Source: Own depiction based on Feenstra et al. (2015) and Alvaredo et al. (2016).

Notes: SER = standard error of regression. *, ** and *** denote the 10%, 5% and 1% significance levels, respectively. The *t*-statistics are in parentheses, even though they are not valid for regression (1).

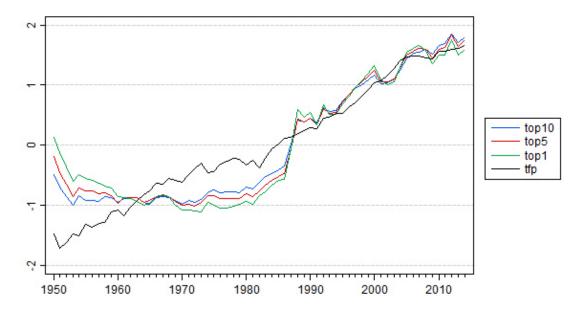
Changing the perspective towards Model II (Table 13) and Model III (Table 14), the disillusioning scenery continues. Testing both models for cointegrating relationships, demonstrates only positive test results with the Hansen Instability test. However, the construction of ECMs for Model II and Model III leads to the evidence of long-run and short-run dynamics within these models. The speed-of-adjustment coefficient in Model II corrects the last period disequilibrium in this period on average by 12.8%, whereas the

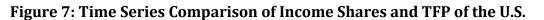
speed-of-adjustment coefficient in Model III corrects the equilibrium error by 17.9%. The diagnostic test results of Model II and Model III are again generally good.

Table 14. Regression Results or, Modell III			
	(1)	(2)	(3)
Dep. Var.:	top1	$\Delta top1$	$\Delta top1$
tfp	2.981** (2.3)		
resid1(–1)		-0.151***(-3.8)	-0.179***(-3.4)
$\Delta top1(-1)$		0.178* (1.8)	0.192** (2.5)
$\Delta top1(-2)$		0.269** (2.4)	0.245***(2.8)
$\Delta top1(-3)$		0.277** (2.1)	0.287** (2.1)
$\Delta top1(-4)$		-0.105 (-0.6)	
$\Delta top1(-5)$		-0.036 (-0.3)	
$\Delta top1(-6)$		0.299 (1.7)	
$\Delta top1(-7)$		-0.022 (-0.2)	
$\Delta tfp(-1)$		1.117 (1.6)	
$\Delta tfp(-2)$		0.012 (0.0)	
$\Delta tfp(-3)$		0.173 (0.4)	
$\Delta tfp(-4)$		-0.342 (-1.2)	
$\Delta tfp(-5)$		0.201 (0.6)	
$\Delta tfp(-6)$		-0.821* (-1.8)	-0.501 (-1.6)
$\Delta tfp(-7)$		-0.696* (-1.8)	-0.498* (-1.8)
const	-4.835 (-0.9)	0.007 (0.5)	0.013** (2.2)
trend	-0.069***(-4.2)		
trend ²	0.001***(6.4)		
R-squared	0.842	0.442	0.251
SER	0.116	0.045	0.047
DW	_	2.03	1.88

Table 14: Regression Results UK, Modell III

Source: Own depiction based on Feenstra et al. (2015) and Alvaredo et al. (2016).


Notes: SER = standard error of regression. *, ** and *** denote the 10%, 5% and 1% significance levels, respectively. The *t*-statistics are in parentheses, even though they are not valid for regression (1).


The empirical results of the UK show evidence for a statistically significant long-run relationship between income inequality and economic growth. As already supposed in Section 2 due to the data behaviour of the income ratios and the constructed economic model in Section 3, technological progress leads to a rise of income inequality in the UK. If the TFP increases by one unit, the top 10%, top 5% and top 1% income shares increase in the long-run by about 1.831, 2.263 and 2.981 percentage points, respectively.

Considering the short-run dynamics, the disequilibrium in the previous period of Model I will be corrected in this period by 11.3%. Model II and Model III are adjusted faster by 12.8% and 17.9%, respectively. Thus, it is proven that technological progress leads to a rise of income inequality in the UK.

5.5. United States

It is well known that the U.S. provides a valid data basis, starting with the top 10% and top 5% income shares in 1917 and the top 1% income share in 1913. Since TFP data is only available from 1950 until 2014, the analysis of both, income shares and TFP in the U.S., is limited to the period between 1950 and 2014. Thus, there are 64 observations. The logarithmized variables *top10*, *top5*, *top1* as well as *tfp* are again plotted in one chart using a normalized scaling (see Figure 7). As it was the case for the previous countries, the series *top10*, *top5*, *top1* and *tfp* of the U.S. show a positive secular trend with random variation.

Source: Own depiction based on Feenstra et al. (2015) and Alvaredo et al. (2016).

Changing the perspective towards the formal statistic procedures, a stochastic trend can be assumed for *tfp*, *top10*, *top5* and *top1*, as the first autocorrelation coefficient of the variables is near 1. Testing the series additionally for a unit root and stochastic trend wit the ADF test, respectively, as is already done in Subsection 4.1., the assumption made with the autocorrelation coefficients can be confirmed. Summarizing these ADF test results, it comes to the realization that the variables *top10*, *top5*, *top1* as well as *tfp* of the U.S. are integrated of order one, *I*(1). This finding allows the use of the Engle-Granger two-step approach. Running the FMOLS regression for all three models shows that there is no need for the inclusion of a deterministic trend. Subsequently, testing the residuals of these regressions with the ADF test leads to a slightly significance at the 10% critical value. Hereby a super consistency might be persist. However, this assumption is very weak since all other cointegrating tests are indicating that there is no cointegrating relationship between *top10* and *tfp*, *top5* and *tfp*, as well as between *top1* and *tfp*.

	(1)	(2)	(3)
Don Var			
Dep. Var.:	<i>top10</i>	Δtop10	$\Delta top 10$
tfp	0.915***(9.3)	0.102* (1.0)	0.100* (1.0)
resid10(-1)		-0.102* (-1.9)	-0.100* (-1.9)
$\Delta top10(-1)$		0.104 (0.7)	
∆ <i>top10</i> (–2)		0.172* (2.0)	0.198***(2.8)
$\Delta top10(-3)$		-0.220* (-1.9)	-0.170** (-2.1)
$\Delta top10(-4)$		0.178 (1.0)	
$\Delta top10(-5)$		0.296** (2.5)	0.322** (2.3)
∆ <i>top10</i> (–6)		-0.131 (-0.9)	
∆ <i>top10</i> (–7)		0.156* (1.9)	0.062 (0.7)
∆ <i>top10</i> (–8)		0.286***(2.8)	0.347***(3.7)
$\Delta tfp(-1)$		0.044 (0.4)	
$\Delta tfp(-2)$		0.238** (2.1)	0.254* (2.0)
$\Delta tfp(-3)$		0.080 (0.5)	
$\Delta tfp(-4)$		0.139 (0.8)	
$\Delta tfp(-5)$		-0.102 (-0.7)	
$\Delta tfp(-6)$		-0.098 (-0.5)	
$\Delta tfp(-7)$		0.015 (0.1)	
$\Delta tfp(-8)$		-0.232 (-1.0)	
const	4.208***(9.8)	0.000 (-0.0)	-0.001 (-0.5)
R-squared	0.884	0.377	0.269
SER	0.051	0.014	0.014
DW	-	1.89	1.69

Table 15: Regression Results U.S., Model I

Source: Own depiction based on Feenstra *et al.* (2015) and Alvaredo *et al.* (2016). *Notes*: SER = standard error of regression. *, ** and *** denote the 10%, 5% and 1% significance levels, respectively. The *t*-statistics are in parentheses, even though they are not valid for regression (1). Starting with Model I, Table 15 shows the already mentioned FMOLS regression in column (1), as well as the unrestricted error correction estimate in (2). The latter is an OLS estimation of the change in the top 10% income share on eight lags of $\Delta top10$ and Δtfp plus the one-lagged error correction term of (1), *resid10(-1)*. Generating the restricted ECM in (3), only the significant lagged changes are entering. Thus, of all lagged changes, the second, third, fifth seventh and eighth lags of $\Delta top10$ as well as the second lag of Δtfp are significant and hence build the ECM in (3). The speed-of-adjustment coefficient is negative, however, significant on the 10% statistical level. One can argue about this significant level, but this elaboration accepts the 10% significance level. Thus, the equilibrium error in the last period is corrected in this period by around 10.0%. The diagnostic test results are generally good; however, the residuals are not normally distributed. Furthermore, the DW statistic of 1.69 suggests a positive correlation within the model.

Adapting the same procedure to Model II and Model III gives surprising results. Since the residuals' ADF test from the FMOLS regression are suggesting a marginally significance at the 10% critical value, an unrestricted error correction estimate is computed according to the previously models. However, even after 20 lagged changes of *top5* and *top1*, respectively, as well as of 20 lagged changes of *tfp*, the error correction term according to Equation (4.5) is still not significant.²⁴ The conclusion out of this is that there is evidently no cointegration relationship in the U.S. between the top 5% income share and TFP as well as between the top 1% income share and TFP.

If there is no cointegrating relationship, the only possible way to estimate the series is to differencing the data (see Table 16). This ensures that the series are stationary and avoids furthermore spurious regression. However, differencing the data gives only interpretation of the short-run dynamics, but no statement about the long-run effects. The estimation of an ECM is therefore not appropriate. Thus, Table 16 presents the regression of the first-differences of Model II and Model III in the U.S. The inclusion of a quadratic deterministic time trend is appropriate, since the differenced series $\Delta top5$ and Δtfp as well as $\Delta top1$ and Δtfp are trend stationary.

 $^{^{\}rm 24}$ The regression outputs of the failed ECM are compiled in Appendix B.

	Model II	Model III
Dep. Var.:	$\Delta top 5$	$\Delta top1$
Δtfp	0.168 (1.1)	0.406* (1.9)
const	-0.027***(-10.4)	-0.056***(-19.8)
trend	0.002***(11.3)	0.004***(19.3)
trend ²	0.000***(-9.3)	0.000***(-16.0)
R-squared	0.201	0.182
SER	0.023	0.048
DW	1.97	2.03

Table 16: Regression Results U.S., Model II and Model III

Source: Own depiction based on Feenstra et al. (2015) and Alvaredo et al. (2016).

Notes: SER = standard error of regression. *, ** and *** denote the 10%, 5% and 1% significance levels, respectively. The *t*-statistics are in parentheses.

Recalling the tremendous increasing income inequality in the U.S., the analysis of this country was special since most of the technological changes have their fountainhead in the U.S., like for instance the personal computer or communication technology. Additionally, the income shares of the U.S. are showing the highest rise in the G-7 group. However, summarizing the empirical results, the analysis of the U.S. finds evidence that the top 5% and top 1% income shares, respectively, and TFP are not cointegrated. Nevertheless, Model I depicts a cointegrating relationship between income inequality and growth. If the TFP is rising by one unit above its long-run trend, the top 10% income share increases on average by 0.915 percentage points. Thus, there is little evidence for technological progress increasing the income inequality in the U.S.

5.6. Exceptions

As previously stated, there are some exceptions within the data. Table 17 summarizes the test results of the ADF unit root tests of the exceptional series. The top 1% income share of Germany is integrated of order two, I(2). The top 10% and top 5% income shares of Italy are trend stationary, I(0), whereas the top 1% income share is I(2) and TFP is integrated of order one, I(1). In the case of Japan, the income shares are integrated of order order one, I(1), however, TFP is I(2). These characteristics introduce the need for different approaches as the one of Engle and Granger (1987): the bounds testing approach of Pesaran *et al.* (2001) for the mixture of I(0) and I(1) variables, and the polynomial cointegration for analysing the mixture of I(1) and I(2) variables.

	tfp	top10	top5	top1
Germany	<i>I</i> (1)			<i>I</i> (2)
Italy	<i>I</i> (1)	<i>I</i> (0)	<i>I</i> (0)	<i>I</i> (2)
Japan	<i>I</i> (2)	<i>I</i> (1)	<i>I</i> (1)	<i>I</i> (1)

Table 17: Integrating Order of Exceptional Variables

Source: Own depiction based on Feenstra et al. (2015) and Alvaredo et al. (2016).

5.6.1. ARDL Bounds Testing Approach: Italy

In the case of Italy, the investigation of feasible cointegrating relationships in Model I (effect of *tfp* on *top10*) and Model II (effect of *tfp* on *top5*) ensue with the use of the bounds testing approach of Pesaran *et al.* (2001). The combination of an ARDL model and an unrestricted (conditional) error correction model permits the investigation for long-run relationships with a mixture of I(0) and I(1) variables (Cf. Pesaran *et al.*, 2001, p. 290). Pesaran and Shin (1999) mentioned further some advantages of computing an ARDL model for investigating long-run relationships. Firstly, a simple interpretation is given due to the use of single equation estimation. Secondly, the model gives the possibility of different lag lengths of the variables, which makes it more flexible.

The general autoregressive distributed lag model, ARDL(p, q), can be stated as:

$$y_t = \alpha_0 + \alpha_1 t + \sum_{i=1}^p \delta_i \Delta y_{t-i} + \phi x_t + \sum_{i=0}^q \phi_i \Delta x_{t-i} + u_t , \qquad (5.4)$$

where $(\alpha_0 + \alpha_1 t)$ is the linear deterministic trend and u_t the serial independent disturbance term (Cf. Pesaran and Shin, 1999, p. 371). The variable y_t is explained by its own lagged values as well as by the explanatory variable x_t and its lags. For determining the appropriate lag length of the model in Equation (5.4), Pesaran and Shin (1999) suggested the use of the SIC, since it performed slightly better in their experiments as the AIC did. Concerning the limited time series data of Italy, it is important to select the "perfect" lag length of the model, which should firstly remedy the problem of the residual serial correlation and should secondly not end in over-parametrisation (Cf. Pesaran *et al.*, 2001, p. 308). In particular, the model in (5.4) has to be tested with the Breusch-Godfrey Serial Correlation LM test, in order to ascertain that the residuals are not serial correlated. The dynamic stability is tested with the Ramsey RESET test (see Subsection 4.3. for more

discussion about the Breusch-Godfrey test as well as the Ramsey RESET test). The next step contains the implementation of the bounds test, which enables to spot whether longrun relationships are existing. Under the null hypothesis of no long-run relationship between the variables, the bounds test computes an F-test. However, due to the mixture of I(0) and I(1) variables, the distribution of this test statistic does not follow the Student's distribution. Hence, Pesaran et al. (2001) provided bounds of the critical values, where the lower bound is referred to the polar case of purely I(0) variables, and the upper bound is based on purely I(1) variables. If the examined F-statistic of the bounds test is greater than the upper bound, then there is a long-run relationship between the variables. In comparison, there is no cointegration if the F-statistic is located under the lower bound. The last possibility of the examined F-statistic concerns the position between these bounds. If this is the case, the test result is inconclusive (Cf. Pesaran et al., 2001, p. 304).

Applying this approach to Italy, the results for Model I and Model II are depicted in Table 18. Model I is an ARDL(4, 2) model with a linear deterministic trend and Model II an ARDL(6, 0) model with a linear deterministic trend as well. Both models are tested negative for serial correlation. The bounds test *F*-statistic of Model I and Model II are 5.118 and 16.299, respectively, where both are located above the critical value bounds of Pesaran et al. (2001). This indicates the existence of a cointegrating relationship between the top 10% income share and TFP, as well as between the top 5% income share and TFP in Italy. A change of one unit in TFP will result in a long-run rise of 0.278 percentage points of the top 10% income share, whereas the top 5% income share will increase on average by 0.591 percentage points in the long-run. Additionally, the speed-of-adjustment coefficients are relatively quick with 26.0% and 55.3%, respectively. Further regression results of the ARDL estimation are compiled in Appendix C.

	top10	
Dep. Var.:	Model I	Long-Run Coefficients
top10(-1)	0.990***(4.3)	
top10(-2)	-0.303 (-1.0)	
top10(-3)	0.132 (0.9)	
top10(-4)	-0.079 (-1.0)	
tfp	0.435***(3.1)	0.278 (0.8)
<i>tfp</i> (-1)	-0.296 (-1.3)	
<i>tfp</i> (-2)	-0.066 (-0.4)	
const	1.693***(3.0)	6.515***(4.1)
trend	0.003***(3.0)	0.011***(12.2)
R-squared	0.994	
SER	0.008	
DW	2.09	
	top5	
Dep. Var.:	Model II	Long-Run Coefficients
top5(-1)	0.850***(5.8)	
top5(-2)	-0.232 (-1.2)	
top5(-3)	0.028 (0.1)	
top5(-4)	-0.355** (-2.2)	
top5(-5)	0.384***(4.4)	
top5(-6)	-0.228***(-3.8)	
tfp	0.327***(4.4)	0.591***(5.9)
const	2.545***(6.1)	4.599***(9.8)
trend	0.007***(6.8)	0.012***(36.8)
R-squared	0.997	
SER	0.007	

Table 18: ARDL Regression Results Italy, Model I and Model II

Source: Own depiction based on Feenstra et al. (2015) and Alvaredo et al. (2016).

Notes: SER = standard error of regression, DW = Durbin Watson statistic. *, ** and *** denote the 10%, 5% and 1% significance levels, respectively. The *t*-statistics are in parentheses.

5.6.2. *I*(2) Cointegration Approach: Germany, Italy and Japan

The emergence of I(2) variables within this elaboration framework arises in the case of Germany, Italy and Japan. In Germany and Italy, the logarithmized top 1% income share variable, *top1*, is integrated of order two, I(2). On the other hand, Japan's logarithmized variable for TFP, *tfp*, is I(2), which does not allow to investigate long-run relationships of Japan in Model I, Model II, or Model III according to the Engle-Granger approach, since *tfp* enters in each model as explanatory variable. The appropriate methodology in this case is the likelihood-based vector autoregressive (VAR) approach, which was first introduced by Johansen (1991, 1996). Since this is a very different methodology as the Engle-Granger approach, a number of scientists provided some proposed actions of modelling cointegrating relationships between I(1) and I(2) variables according to the literature of the Johansen's VAR procedure: see among others Johansen (1992, 1995, 1997, 2006), Paruolo (1996, 2000), Haldrup (1998), Rahbek *et al.* (1999), Boswijk (2000) and Kurita (2008).

6. Conclusions

The thesis has analysed the inequality-growth relationship for the G-7 countries during the period of 1950 to 2014 using the Engle and Granger (1987) two-step cointegration approach. The measures for inequality are depicted by the upper end of the income distribution, in particular the top 10%, top 5% and top 1% income shares, where the total income is solely labour income; while the TFP is declared as a determinant of economic growth. Using time series data and the Engle-Granger approach, this elaboration offers a relative new attempt in measuring the effect of TFP on income inequality. Based on the suggestion of Piketty and Saez (2014) that global competition in forms of globalization or skill-biased technological change are leading to higher income inequality, and the additionally consideration of growth mechanisms, give rise to a theoretical framework, which explains the effect of skill-biased technological progress as a characteristic of TFP on the income inequality. As apparent from the discussed data behaviour in Section 2, the upward trend of the technological progress calls for advanced skills of employees. A higher acquired level of qualifications in combination with the practise on and with new technologies enables to rise one's own productivity as well as the one of the organization and hence the productivity of the country. Since this underlying analysis assumes that the employees have the same skill-levels, the new acquired skills emerge only if the employee can adapt to the new technologies. Whereas the employee, who is not able to adapt to new technologies is losing twice. Illiterate operating with new technologies results a priori in the loss of the old knowledge and *a posteriori* in the nosedive of one's own productivity. Assuming further that the labour income is the main source of a household's income and the employee is paid accordingly to her or his productivity, the heterogeneity on the labour market leads to salary and income inequalities.

The corresponding statistical model is built according to the Engle-Granger two-step cointegration approach, where firstly a cointegrating relationship is investigating the long-run equilibrium and secondly the convenient error correction model is examining the short-run dynamics. From this analysis, the long-run inequality-growth relationship is found to be acceptably positive. A rise in the TFP of Canada, the United Kingdom, the United States and partly in France and Germany leads to an increasing income inequality in these countries. The investigation of the long-run relationship in Italy is only possible with an ARDL model and the inherent bounds testing approach of Pesaran *et al.* (2001), since the variables demonstrate a mixture of I(0) and I(1) characteristics. Applying the

Engle-Granger approach to Japan, there is no feasible investigation possible of the relationship between income inequality and economic growth, since the variable of TFP is integrated of order two, I(2), and hence is not accomplishing the necessary requirement of being integrated of order one, I(1).

Reviewing the results of each state, they are ensuing in an alphabetical sequence. Starting with Canada, the data shows, that technological progress increases income inequality in the long run. The empirical analysis of France demonstrates a positive relationship between technological progress and income inequality. However, as Figure 2 in Section 2 shows, income inequality in the presented three income ratios are remaining steady between 1950 and 2012. Nevertheless, there are clearly visible peaks and troughs over time. This will imply that there are omitted variables influencing income inequality in France varyingly strong, maybe due to economic reforms, political interventions or by changes in work organizations. The general effect of TFP on income inequality in Germany is ambiguous. The top 10% income share is decreasing whereas the top 5% income share is increasing by changes of TFP. Additionally, the investigation of relationship between the top 1% income share and TFP is absent in consequence of the *top1* variable being I(2). These findings can be associated with the findings of France: there have to exist omitted variables explaining the ambiguous behaviour of the income shares in Germany. Changing the perspective towards Italy and the United Kingdom, the empirical analysis proves that technological progress has a positive effect on income inequality in both countries. However, the relationship between the top 1% income share and TFP in Italy could not be examined due to the integrating order of *top1*, which is in that case I(2). Concluding the empirical results with the United States, the investigation of the relationship between income inequality and growth is almost inconclusive. There is only evidence for a cointegrating relationship between the top 10% income share and TFP. Since the top 5% and top 1% income shares, respectively, and TFP are not cointegrated, it is advisable to include a third variable like education or skill-level in the cointegrating regression. However, this third variable should be integrated of order one, I(1).

Recapitulating the findings of this underlying elaboration, the statistical investigation demonstrates that the income inequalities within each G-7 country (except Japan) are increasing due to technological progress. However, this analysis necessitates further empirical evidence. Referring to the results of France, Germany and the U.S., one can

reflect over the inclusion of more variables, which are integrated of order one, I(1). Examples are already mentioned previously. Further empirical deliberations lead to the conclusion to use generally the Johansen's (1991, 1996) likelihood-based VAR approach and the vector error correction model (VECM) for investigating the long-run relationships and short-run dynamics, respectively, between income inequality and economic growth. Given further the fact that the increasing impact of TFP on income inequality is only investigated for the upper end of the income distribution, this analysis can supplementary be extended to the lower end of the income distribution. As Voitchovsky (2005) already detected in her panel analysis of Gini coefficients for 21 developed countries, there are different consequences for each income distribution ratio. Aside from that, the investigation and comparison of developed and developing countries can be initiated. Some studies already revealed this issue by using cross-section data for democracies and non-democracies or by investigating a panel of high-income and low-income countries.²⁵ Nevertheless, the skill-biased technological change is an important progress for each state and cannot be prevented. Indeed, the concomitant income inequality calls for intervention from the organizations but also from the countries. The globalization enhanced the labour market and therefore the competition between organizations hiring fully trained employees. In some degree, this can be a good strategy to increase the productivity. However, considering the matter of expenses and the long-run development, fully trained employees tend to fluctuate between the best offering organizations. This can be prevented due to long lasting commitments to the organization. Implementing this bonding can happen with affording opportunities like promoting and training the existing employees. This opportunity for advancement motivates the employee to stick with the organization, to enhance her or his skill level, to get a higher salary and to escape from her or his inequality.

Comparing furthermore the empirical findings with Kuznets' (1963) hypothesis of the inverted U-shaped curve of income inequality, the investigated industrialized economies are now situated at the advanced stages of Kuznets' assuming passage of time and should accordingly show decreasing income inequality due to the saturation of the labour force.

²⁵ For more discussion of cross-section analyses, see among others Alesina and Rodrik (1994), Persson and Tabellini (1994), Clarke (1995), Perotti (1996), and Deininger and Squire (1998). For more panel data discussion, see among others Barro (2000), Forbes (2000), Castellò (2010), and Halter et al. (2014).

Yet, the data of the G-7 countries are demonstrating the very reverse: income inequality is increasing. One can suggest that as Kuznets was developing his theory of the inverted U-shaped curve of income inequality in 1963, he did not account for the dimension of technological progress we face today. However, new models have to be designed to incorporate the different levels of innovations and technological changes to investigate on the phenomena of the inequality-growth relationship.

References

- Aghion, P., Caroli, E. and García-Peñalosa, C. (1999), Inequality and Economic Growth: The Perspective of the New Growth Theories, *Journal of Economic Literature*, **37(4)**, 1615–1660.
- Alesina, A. and Rodrik, D. (1994), Distributive Politics and Economic Growth, *Quarterly Journal of Economics*, **109(2)**, 465–490.
- Alvaredo, F., Atkinson, A. B., Piketty, T., Saez, E. and Zucman, G. (2016), *WID- The World Wealth and Income Database*, <u>http://www.wid.world/</u>, 16/07/2016.
- Atems, B. and Jones, J. (2015), Income Inequality and Economic Growth: A Panel VAR Approach, *Empirical Economics*, **48(4)**, 1541–1561.
- Banerjee, A. V., Dolado, J., Galbraith, J. W. and Hendry, D. F. (1993), *Co-Integration, Error-Correction, and the Econometric Analysis of Non-Stationary Data*, Oxford University Press Inc., New York.
- Banerjee, A. V. and Duflo, E. (2003), Inequality and Growth: What Can the Data Say?, *Journal of Economic Growth*, **8(3)**, 267–299.
- Barro, R. J. (2000), Inequality and Growth in a Panel of Countries, *Journal of Economic Growth*, **5(1)**, 5–32.
- Bénabou, R. (1996), Inequality and Growth, NBER Macroeconomics Annual, 11, 11–74.
- Boswijk, H. P. (2000), Mixed Normality and Ancillarity in I(2) Systems, *Econometric Theory*, **16(6)**, 878–904.
- Bosworth, B. P. and Collins, S. M. (2003), The Empirics of Growth: An Update, *Brookings Papers on Economic Activity*, **34(2)**, 113–206.
- Carone, G., Denis, C., Mc Morrow, K., Mourre, G. and Röger, W. (2006), *Long-Term Labour Productivity and GDP Projections for the EU25 Member States: A Production Function Framework*, European Commission Directorate General for Economic and Financial Affairs, Economic Papers, No. 253.
- Caselli, F. (1999), Technological Revolutions, *American Economic Review*, **89(1)**, 78–102.
- Chang, J.-H. and Huynh, P. (2016), *ASEAN in Transformation: The Future of Jobs at Risk of Automation*, International Labour Office, Bureau for Employers' Activities, Working Paper No. 9.

- Chen, B.-L. (2003), An Inverted-U Relationship Between Inequality and Long-Run Growth, *Economics Letters*, **78(2)**, 205–212.
- Deininger, K. W. and Squire, L. (1996), A New Data Set Measuring Income Inequality, *The World Bank Economic Review*, **10(3)**, 565–591.
- DeJong, D. N., Nankervis, J. C., Savin, N. E. and Whiteman, C. H. (1992), Integration Versus Trend Stationary in Time Series, *Econometrica*, **60(2)**, 423–433.
- Dickey, D. A. and Fuller, W. A. (1979), Distributions of the Estimators for Autoregressive Time Series with a Unit Root, *Journal of the American Statistical Association*, **74(366)**, 427–431.
- Durbin, J. and Watson, G. S. (1950), Testing for Serial Correlation in Least Squares Regression: I, *Biometrika*, **37(3/4)**, 409–428.
- Easterly, W. and Levine, R. (2001), It's Not Factor Accumulation: Stylized Facts and Growth Models, *The World Bank Economic Review*, **15(2)**, 177–219.
- Elliott, G., Rothenberg, T. J. and Stock, J. H. (1996), Efficient Tests for an Autoregressive Unit Root, *Econometrica*, **64(4)**, 813–836.
- Engle, R. F. and Granger, C. W. J. (1987), Co-Integration and Error Correction: Representation, Estimation, and Testing, *Econometrica*, **55(2)**, 251–276.
- Engle, R. F. and Kozicki, S. (1993), Testing for Common Features, *Journal of Business & Economic Statistics*, **11(4)**, 369–380.
- Engle, R. F. and Yoo, B. S. (1987), Forecasting and Testing in Co-Integrated Systems, *Journal of Econometrics*, **35(1)**, 143–159.
- Engle, R. F. and Yoo, B. S. (1991), Cointegrated Economic Time Series: A Survey With New Results, in *Long-Run Economic Relations. Readings in Cointegration*, ed. by C. W. J. Granger and R. F. Engle, Oxford University Press, Oxford, 237–266.
- Feenstra, R. C., Inklaar, R. and Timmer, M. P. (2015), The Next Generation of the Penn World Table, *American Economic Review*, **105(10)**, 3150–3182.
- Feinman, G. M. (1995), The Emergence of Inequality. A Focus on Strategies and Processes, in *Foundations of Social Inequality*, ed. by T. D. Price and G. M. Feinman, Springer Science+Business Media, New York, 255–279.
- Foellmi, R. and Zweimüller, J. (2006), Income Distribution and Demand-Induced Innovations, *Review of Economic Studies*, **73(4)**, 941–960.

- Forbes, K. J. (2000), A Reassessment of the Relationship Between Inequality and Growth, *The American Economic Review*, **90(4)**, 869–887.
- Frank, M. W. (2009), Inequality and Growth in the United States: Evidence From A New State-Level Panel of Income Inequality Measures, *Economic Inquiry*, **47(1)**, 55–68.
- Fuentes, R., Mishra, T., Scavia, J. and Parhi, M. (2014), On Optimal Long-Term Relationship between TFP, Institutions, and Income Inequality Under Embodied Technical Progress, *Structural Change and Economic Dynamics*, **31**, 89–100.
- Galor, O. and Tsiddon, D. (1997), Technological Progress, Mobility, and Economic Growth, *American Economic Review*, **87(3)**, 363–382.
- Glasure, Y. U. and Lee, A.-R. (1997), Cointegration, Error-Correction, and the Relationship between GDP and Energy: The Case of South Korea and Singapore, *Resource and Energy Economics*, **20(1)**, 17–25.
- Godfrey, L. G. (1989), *Misspecification Tests in Econometrics: The Lagrange Multiplier Principle and Other Approaches*, Cambridge University Press, Cambridge.
- Goldin, C. D. and Katz, L. F. (2008), *The Race Between Education and Technology*, Belknap Press of Harvard University Press, Cambridge.
- Haldrup, N. (1998), An Econometric Analysis of I(2) Variables, *Journal of Economic Surveys*, **12(5)**, 595–650.
- Halter, D., Oechslin, M. and Zweimüller, J. (2014), Inequality and Growth: The Neglected Time Dimension, *Journal of Economic Growth*, **19(1)**, 81–104.
- Hansen, B. E. (1992), Efficient Estimation and Testing of Cointegrating Vectors in the Presence of Deterministic Trends, *Journal of Econometrics*, **53(1–3)**, 87–121.
- Harrod, R. F. (1939), An Essay in Dynamic Theory, *The Economic Journal*, **49(193)**, 14–33.
- Hassler, U. (1999), (When) Should Cointegrating Regressions be Detrended? The Case of a German Money Demand Function, *Empirical Economics*, **24(1)**, 155–172.
- Johansen, S. (1991), Estimation and Hypothesis Testing of Cointegration Vectors in Gaussian Vector Autoregressive Models, *Econometrica*, **59(6)**, 1551–1580.
- Johansen, S. (1992), A Representation of Vector Autoregressive Processes Integrated of Order 2, *Econometric Theory*, **8(2)**, 188–202.
- Johansen, S. (1995), A Statistical Analysis of Cointegration for I(2) Variables, *Econometric Theory*, **11(1)**, 25–59.

- Johansen, S. (1996), *Likelihood-based Inference in Cointegrated Vector Autoregressive Models*, Oxford University Press, Oxford.
- Johansen, S. (1997), Likelihood Analysis of the I(2) Model, *Scandinavian Journal of Statistics*, **24(4)**, 433–462.
- Johansen, S. (2006), Statistical Analysis of Hypotheses on the Cointegrating Relations in the I(2) Model, *Journal of Econometrics*, **132(1)**, 81–115.
- Klenow, P. J. and Rodrigues-Clare, A. (1997), Economic Growth: A Review Essay, *Journal* of Monetary Economics, **40(3)**, 597–617.
- Kurita, T. (2008), Likelihood Analysis of Weak Exogeneity in I(2) Systems and Reduced Econometric Representations, Fukuoka University, Department of Economics, CAES Working Paper WP 2008-001.
- Kuznets, S. (1955), Economic Growth and Income Inequality, *American Economic Review*, **45(1)**, 1–28.
- Kuznets, S. (1963), Quantitative Aspects of the Economic Growth of Nations, *Economic Development and Cultural Change*, **11(2)**, 1–80.
- Kwiatkowski, D., Phillips, P. C. B., Schmidt, P. and Shin, Y. (1992), Testing the Null Hypothesis of Stationary against the Alternative of a Unit Root, *Journal of Econometrics*, 54(1-3), 159–178.
- MacKinnon, J. G. (1991), Critical Values for Cointegration Tests, in Long-Run Economic Relationships: Readings in Cointegration, ed. by R. F. Engle and C. W. J. Granger, Oxford University Press, Oxford, 267–276.
- MacKinnon, J. G. (1996), Numerical Distribution Functions for Unit Root and Cointegration Tests, *Journal of Applied Econometrics*, **11(6)**, 601–618.
- MacKinnon, J. G. (2010), *Critical Values for Cointegration Tests*, Queen's University, Department of Economics, Working Paper No. 1227.
- Nelson, C. R. and Plosser, C. I. (1982), Trends and Random Walks in Macroeconomic Time Series, *Journal of Monetary Economics*, **10(2)**, 139–162.
- Newey, W. K. and West, K. D. (1987), A Simple Positive Semi-Definite, Heteroskedasticity and Autocorrelation Consistent Covariance Matrix, *Econometrica*, **55(3)**, 703–708.
- Ng, S. and Perron, P. (2001), Lag Length Selection and the Construction of Unit Root Tests with Good Size and Power, *Econometrica*, **69(6)**, 1519–1554.

- Park, J. Y. (1992), Canonical Cointegrating Regressions, *The Econometric Society*, **60(1)**, 119–143.
- Partridge, M. D. (1997), Is Inequality Harmful for Growth? Comment, *American Economic Review*, **87(5)**, 1019–1032.
- Partridge, M. D. (2005), Does Income Distribution Affect U.S. State Economic Growth?, *Journal of Regional Science*, **45(2)**, 363–394.
- Paruolo, P. (1996), On the Determination of Integration Indices in I(2) Systems, *Journal of Econometrics*, **72(1–2)**, 313–356.
- Paruolo, P. (2000), Asymptotic Efficiency of the Two Stage Estimator in I(2) Systems, *Econometric Theory*, **16(4)**, 524–550.
- Perotti, R. (1993), Political Equilibrium, Income Distribution, and Growth, *Review of Economic Studies*, **60(4)**, 755–776.
- Perotti, R. (1996), Growth, Income Distribution and Democracy: What the Data Say, *Journal of Economic Growth*, **1(2)**, 149–187.
- Perron, P. and Campbell, J. Y. (1993), A Note on Johansen's Cointegration Procedure When Trends are Present, *Empirical Economics*, **18(4)**, 777–789.
- Persson, T. and Tabellini, G. (1994), Is Inequality Harmful for Growth?, *American Economic Review*, **84(3)**, 600–621.
- Pesaran, M. H. and Shin, Y. (1999), An Autoregressive Distributed Lag Modelling Approach to Cointegration Analysis, in *Econometrics and Economic Theory in the 20th Century: The Ragnar Frisch Centennial Symposium*, ed. by S. Strom, Cambridge University Press, Cambridge, 371–413.
- Pesaran, M. H., Shin, Y. and Smith, R. J. (2001), Bounds Testing Approaches to the Analysis of Level Relationships, *Journal of Applied Econometrics*, **16(3)**, 289–326.
- Phillips, P. C. B. (1986), Understanding Spurious Regression in Econometrics, *Journal of Econometrics*, **33(3)**, 311–340.
- Phillips, P. C. B. and Hansen, B. E. (1990), Statistical Inference in Instrumental Variables Regression with I(1) Processes, *Review of Economic Studies*, **57(1)**, 99–125.
- Phillips, P. C. B. and Loretan, M. (1991), Estimating Long-Run Economic Equilibria, *Review* of Economic Studies, **58(3)**, 407–436.

- Phillips, P. C. B. and Ouliaris, S. (1990), Asymptotic Properties of Residual Based Tests for Cointegration, *Econometrica*, **58(1)**, 165–193.
- Phillips, P. C. B. and Perron, P. (1988), Testing for a Unit Root in Time Series Regression, *Biomètrika*, **75(2)**, 335–346.
- Phillips, R. F. (1991), A Constrained Maximum-Likelihood Approach To Estimating Switching Regressions, *Journal of Econometrics*, **48(1–2)**, 241–262.
- Piketty, T. and Saez, E. (2014), Inequality in the Long Run, *Science*, **334(6186)**, 838–843.
- Rahbek, A., Kongsted, H. C. and Jorgensen, C. (1999), Trend Stationarity in the I(2) Cointegration Model, *Journal of Econometrics*, **90(2)**, 265–289.
- Ramsey, J. B. (1969), Tests for Specification Errors in Classical Linear Least-Squares Regression Analysis, *Journal of the Royal Statistical Society. Series B*, **31(2)**, 350– 371.
- Rosenzweig, M. R. and Binswanger, H. P. (1993), Wealth, Weather Risk and the Composition and Profitability of Agricultural Investments, *The Economic Journal*, **103(416)**, 56–78.
- Rubinstein, Y. and Tsiddon, D. (2004), Coping with Technological Change: The Role of Ability in Making Inequality so Persistent, *Journal of Economic Growth*, 9(3), 305– 346.
- Rudebusch, G. D. (1992), Trends and Random Walks in Macroeconomic Time Series: A Re-Examination, *International Economic Review*, **33(3)**, 661–680.
- Sequeira, T., Santos, M. and Ferreira-Lopes, A. (2014), *Income Inequality, TFP, and Human Capital*, MPRA Paper No. 55471.
- Sims, C. A., Stock, J. H. and Watson, M. W. (1990), Inference in Linear Time Series Models With Some Unit Roots, Econometrica, 58(1), 113–144.
- Solow, R. M. (1957), Technical Change and the Aggregate Production Function, *The Review* of Economics and Statistics, **39(3)**, 312–320.
- Sorensen, P. B. and Whitta-Jacobsen, H. J. (2005), *Introducing Advanced Macroeconomics: Growth and Business Cycles*, McGraw-Hill Education, London.
- Stock, J. H. and Watson, M. W. (1988), Variable Trends in Economic Time Series, *Journal of Economic Perspectives*, **2(3)**, 147–174.

- Stock, J. H. and Watson, M. W. (2015), *Introduction to Econometrics*, updated 3. ed., Pearson Education Limited, Harlow.
- Violante, G. L. (2008), Skill-Biased Technical Change, in *The New Palgrave Dictionary of Economics Online*, ed. by S. N. Durlauf and L. E. Blume, Palgrave Macmillan, http://www.dictionaryofeconomics.com/article?id=pde2008_S000493, 29/09/2016.
- Voitchovsky, S. (2005), Does the Profile of Income Inequality Matter for Economic Growth?: Distinguishing between the Effects of Inequality in Different Parts of the Income Distribution, *Journal of Economic Growth*, **10(3)**, 273–96.
- Watson, M. W. (1986), Univariate Detrending Methods with Stochastic Trends, *Journal of Monetary Economics*, **18(1)**, 49–75.
- Watson, M. W. (1994), Vector Autoregressions and Cointegration, in *Handbook of Econometrics*, ed. by R. F. Engle and D. L. McFadden, Vol. IV, Elsevier Science B. V., Amsterdam, 2843–2915.
- White, H. (1980), A Heteroskedasticity-Consistent Covariance Matrix Estimator and a Direct Test for Heteroskedasticity, *Econometrica*, **48(4)**, 817–838.
- Wooldridge, J. M. (2013), *Introductory Econometrics: A Modern Approach*, 5. ed., South-Western Cengage Learning, Mason.
- Xiao, Z. and Phillips, P. C. B. (1999), Efficient Detrending in Cointegrating Regression, *Econometric Theory*, **15(4)**, 519–548.

Appendix

List o	List of Appendix Figures		
List of Appendix Tables 67			
A. C	Data Sources and Variable Descriptions		
A.1	. Data Sources		
A.2	. Variable Descriptions and Time Series Plots	74	
A.3	. Unit Root Tests of Logarithmized Variables		
B. F	Further Results of Engle-Granger Two-Step Analysis		
B.1	. Calculated Critical Values for ADF Test		
B.2	. Test Results of ECM	140	
B.3	. Canada		
B.4	. France		
B.5	. Germany		
B.6	. United Kingdom	206	
B.7	. United States	230	
C. F	Further Results of Bounds Testing Analysis		
C.1	. Critical Bounds	248	
C.2.	. Italy		

List of Appendix Figures

Figure A.1: Time Series Plots of Canada	75
Figure A.2: Time Series Plots of France	76
Figure A.3: Time Series Plots of Germany	77
Figure A.4: Time Series Plots of Italy	78
Figure A.5: Time Series Plots of Japan	79
Figure A.6: Time Series Plots of UK	80
Figure A.7: Time Series Plots of U.S	81

Figure B.1: Canada Model I, ECM Jarque-Bera Normal Distribution Test	146
Figure B.2: Canada Model II, ECM Jarque-Bera Normal Distribution Test	154
Figure B.3: Canada Model III, ECM Jarque-Bera Normal Distribution Test	162
Figure B.4: France Model I, ECM Jarque-Bera Normal Distribution Test	170
Figure B.5: France Model II, ECM Jarque-Bera Normal Distribution Test	178
Figure B.6: France Model III, ECM Jarque-Bera Normal Distribution Test	186
Figure B.7: Germany Model I, ECM Jarque-Bera Normal Distribution Test	194
Figure B.8: Germany Model II, ECM Jarque-Bera Normal Distribution Test	202
Figure B.9: UK Model I, ECM Jarque-Bera Normal Distribution Test	210
Figure B.10: UK Model II, ECM Jarque-Bera Normal Distribution Test	218
Figure B.11: UK Model III, ECM Jarque-Bera Normal Distribution Test	226
Figure B.12: U.S. Model I, ECM Jarque-Bera Normal Distribution Test	234

List of Appendix Tables

Table A.1: Descriptive Statistics	74
Table A.2: Canada Unit Root Test at Level of tfp	
Table A.3: Canada Unit Root Test at First-Difference of tfp	83
Table A.4: Canada Unit Root Test at Level of top10	
Table A.5: Canada Unit Root Test at First-Difference of top10	85
Table A.6: Canada Unit Root Test at Level of top5	
Table A.7: Canada Unit Root Test at First-Difference of top5	87
Table A.8: Canada Unit Root Test at Level of top1	
Table A.9: Canada Unit Root Test at First-Difference of top1	
Table A.10: France Unit Root Test at Level of tfp	90
Table A.11: France Unit Root Test at First-Difference of tfp	91
Table A.12: France Unit Root Test at Level of top10	92
Table A.13: France Unit Root Test at First-Difference of top10	93
Table A.14: France Unit Root Test at Level of top5	94
Table A.15: France Unit Root Test at First-Difference of top5	95
Table A.16: France Unit Root Test at Level of top1	96
Table A.17: France Unit Root Test at First-Difference of top1	97
Table A.18: Germany Unit Root Test at Level of tfp	98
Table A.19: Germany Unit Root Test at First-Difference of tfp	
Table A.20: Germany Unit Root Test at Level of top10	100
Table A.21: Germany Unit Root Test at First-Difference of top10	101
Table A.22: Germany Unit Root Test at Level of top5	102
Table A.23: Germany Unit Root Test at First-Difference of top5	103
Table A.24: Germany Unit Root Test at Level of top1	104
Table A.25: Germany Unit Root Test at First-Difference of top1	105
Table A.26: Germany Unit Root Test at Second-Difference of top1	106
Table A.27: Italy Unit Root Test at Level of tfp	107
Table A.28: Italy Unit Root Test at First-Difference of tfp	108
Table A.29: Italy Unit Root Test at Level of top10	109
Table A.30: Italy Unit Root Test at Level of top5	110
Table A.31: Italy Unit Root Test at Level of top1	111
Table A.32: Italy Unit Root Test at First-Difference of top1	112

Table A.33: Italy Unit Root Test at Second-Difference of top1	113
Table A.34: Japan Unit Root Test at Level of tfp	114
Table A.35: Japan Unit Root Test at First-Difference of tfp	115
Table A.36: Japan Unit Root Test at Second-Difference of tfp	116
Table A.37: Japan Unit Root Test at Level of top10	117
Table A.38: Japan Unit Root Test at First-Difference of top10	118
Table A.39: Japan Unit Root Test at Level of top5	119
Table A.40: Japan Unit Root Test at First-Difference of top5	120
Table A.41: Japan Unit Root Test at Level of top1	121
Table A.42: Japan Unit Root Test at First-Difference of top1	122
Table A.43: UK Unit Root Test at Level of tfp	123
Table A.44: UK Unit Root Test at First-Difference of tfp	124
Table A.45: UK Unit Root Test at Level of top10	125
Table A.46: UK Unit Root Test at First-Difference of top10	126
Table A.47: UK Unit Root Test at Level of top5	127
Table A.48: UK Unit Root Test at First-Difference of top5	128
Table A.49: UK Unit Root Test at Level of top1	129
Table A.50: UK Unit Root Test at First-Difference of top1	130
Table A.51: U.S. Unit Root Test at Level of tfp	131
Table A.52: U.S. Unit Root Test at First-Difference of tfp	132
Table A.53: U.S. Unit Root Test at Level of top10	133
Table A.54: U.S. Unit Root Test at First-Difference of top10	134
Table A.55: U.S. Unit Root Test at Level of top5	135
Table A.56: U.S. Unit Root Test at First-Difference of top5	136
Table A.57: U.S. Unit Root Test at Level of top1	137
Table A.58: U.S. Unit Root Test at First-Difference of top1	138

Table B.1: Critical Values for No Trend Case	.139
Table B.2: Critical Values for Linear Trend Case	.139
Table B.3: ECM Test Results	.140
Table B.4: Canada Model I, FMOLS Regression	.142
Table B.5: Canada Model I, FMOLS Hansen Instability Test	.142
Table B.6: Canada Model I, FMOLS ADF Unit Root Test of Residuals	.143

Table B.7: Canada Model I, FMOLS Engle-Granger Cointegration Test	144
Table B.8: Canada Model I, Unrestricted Error Correction Estimation	145
Table B.9: Canada Model I, Restricted Error Correction Model (ECM)	146
Table B.10: Canada Model I, ECM Breusch-Godfrey Serial Correlation LM Test	147
Table B.11: Canada Model I, ECM Heteroskedasticity Test	148
Table B.12: Canada Model I, ECM RESET Test	149
Table B.13: Canada Model II, FMOLS Regression	150
Table B.14: Canada Model II, FMOLS Hansen Instability Test	150
Table B.15: Canada Model II, FMOLS ADF Unit Root Test of Residuals	151
Table B.16: Canada Model II, FMOLS Engle-Granger Cointegration Test	152
Table B.17: Canada Model II, Unrestricted Error Correction Estimation	153
Table B.18: Canada Model II, Error Correction Model (ECM)	154
Table B.19: Canada Model II, ECM Breusch-Godfrey Serial Correlation LM Test	155
Table B.20: Canada Model II, ECM Heteroskedasticity Test	156
Table B.21: Canada Model II, ECM RESET Test	157
Table B.22: Canada Model III, FMOLS Regression	158
Table B.23: Canada Model III, FMOLS Hansen Instability Test	158
Table B.24: Canada Model III, FMOLS ADF Unit Root Test of Residuals	159
Table B.25: Canada Model III, FMOLS Engle-Granger Cointegration Test	160
Table B.26: Canada Model III, Unrestricted Error Correction Estimation	161
Table B.27: Canada Model III, Error Correction Model (ECM)	162
Table B.28: Canada Model III, ECM Breusch-Godfrey Serial Correlation LM Test	163
Table B.29: Canada Model III, ECM Heteroskedasticity Test	164
Table B.30: Canada Model III, ECM RESET Test	
Table B.31: France Model I, FMOLS Regression	166
Table B.32: France Model I, FMOLS Hansen Instability Test	166
Table B.33: France Model I, FMOLS ADF Unit Root Test of Residuals	167
Table B.34: France Model I, FMOLS Engle-Granger Cointegration Test	
Table B.35: France Model I, Unrestricted Error Correction Estimation	
Table B.36: France Model I, Restricted Error Correction Model (ECM)	170
Table B.37: France Model I, ECM Breusch-Godfrey Serial Correlation LM Test	171
Table B.38: France Model I, ECM Heteroskedasticity Test	172
Table B.39: France Model I, ECM RESET Test	173

Table B.40: France Model II, FMOLS Regression	174
Table B.41: France Model II, FMOLS Hansen Instability Test	174
Table B.42: France Model II, FMOLS ADF Unit Root Test of Residuals	175
Table B.43: France Model II, FMOLS Engle-Granger Cointegration Test	176
Table B.44: France Model II, Unrestricted Error Correction Estimation	177
Table B.45: France Model II, Restricted Error Correction Model (ECM)	178
Table B.46: France Model II, ECM Breusch-Godfrey Serial Correlation LM Test	179
Table B.47: France Model II, ECM Heteroskedasticity Test	180
Table B.48: France Model II, ECM RESET Test	181
Table B.49: France Model III, FMOLS Regression	182
Table B.50: France Model III, FMOLS Hansen Instability Test	
Table B.51: France Model III, FMOLS ADF Unit Root Test of Residuals	183
Table B.52: France Model III, FMOLS Engle-Granger Cointegration Test	184
Table B.53: France Model III, Unrestricted Error Correction Estimation	185
Table B.54: France Model III, Restricted Error Correction Model (ECM)	186
Table B.55: France Model III, ECM Breusch-Godfrey Serial Correlation Test	187
Table B.56: France Model III, ECM Heteroskedasticity Test	188
Table B.57: France Model III, ECM RESET Test	189
Table B.58: Germany Model I, FMOLS Regression	190
Table B.59: Germany Model I, FMOLS Hansen Instability Test	190
Table B.60: Germany Model I, FMOLS ADF Unit Root Test of Residuals	191
Table B.61: Germany Model I, FMOLS Engle-Granger Cointegration Test	192
Table B.62: Germany Model I, Unrestricted Error Correction Estimation	193
Table B.63: Germany Model I, Restricted Error Correction Model (ECM)	194
Table B.64: Germany Model I, ECM Breusch-Godfrey Serial Correlation LM Test	195
Table B.65: Germany Model I, ECM Heteroskedasticity Test	196
Table B.66: Germany Model I, ECM RESET Test	197
Table B.67: Germany Model II, FMOLS Regression	198
Table B.68: Germany Model II, FMOLS Hansen Instability Test	198
Table B.69: Germany Model II, FMOLS ADF Unit Root Test of Residuals	199
Table B.70: Germany Model II, FMOLS Engle-Granger Cointegration Test	200
Table B.71: Unrestricted Error Correction Estimation	201
Table B.72: Germany Model II, Restricted Error Correction Model (ECM)	202

Table B.73: Germany Model II, ECM Breusch-Godfrey Serial Correlation LM Test	203
Table B.74: Germany Model II, ECM Heteroskedasticity Test	204
Table B.75: Germany Model II, ECM RESET Test	205
Table B.76: UK Model I, FMOLS Regression	206
Table B.77: UK Model I, FMOLS Hansen Instability Test	206
Table B.78: UK Model I, FMOLS ADF Unit Root Test of Residuals	207
Table B.79: UK Model I, FMOLS Engle-Granger Cointegration Test	208
Table B.80: UK Model I, Unrestricted Error Correction Estimation	209
Table B.81: UK Model I, Restricted Error Correction Model (ECM)	210
Table B.82: UK Model I, ECM Breusch-Godfrey Serial Correlation LM Test	211
Table B.83: UK Model I, ECM Heteroskedasticity Test	212
Table B.84: UK Model I, ECM RESET Test	213
Table B.85: UK Model II, FMOLS Regression	214
Table B.86: UK Model II, FMOLS Hansen Instability Test	214
Table B.87: UK Model II, FMOLS ADF Unit Root Test of Residuals	215
Table B.88: UK Model II, FMOLS Engle-Granger Cointegration Test	216
Table B.89: UK Model II, Unrestricted Error Correction Estimation	217
Table B.90: UK Model II, Restricted Error Correction Model (ECM)	218
Table B.91: UK Model II, ECM Breusch-Godfrey Serial Correlation LM Test	219
Table B.92: UK Model II, ECM Heteroskedasticity Test	220
Table B.93: UK Model II, ECM RESET Test	221
Table B.94: UK Model III, FMOLS Regression	222
Table B.95: UK Model III, FMOLS Hansen Instability Test	222
Table B.96: UK Model III, FMOLS ADF Unit Root Test of Residuals	223
Table B.97: UK Model III, FMOLS Engle-Granger Cointegration Test	224
Table B.98: UK Model III, Unrestricted Error Correction Estimation	225
Table B.99: UK Model III, Restricted Error Correction Model (ECM)	226
Table B.100: UK Model III, ECM Breusch-Godfrey Serial Correlation LM Test	227
Table B.101: UK Model III, ECM Heteroskedasticity Test	228
Table B.102: UK Model III, ECM RESET Test	229
Table B.103: U.S. Model I, FMOLS Regression	230
Table B.104: U.S. Model I, FMOLS Hansen Instability Test	230
Table B.105: U.S. Model I, FMOLS ADF Unit Root Test of Residuals	231

Table B.106: U.S. Model I, FMOLS Engle-Granger Cointegration Test	232
Table B.107: U.S. Model I, Unrestricted Error Correction Estimation	233
Table B.108: U.S. Model I, Restricted Error Correction Model (ECM)	234
Table B.109: U.S. Model I, ECM Breusch-Godfrey Serial Correlation LM Test	235
Table B.110: U.S. Model I, ECM Heteroskedasticity Test	236
Table B.111: U.S. Model I, ECM RESET Test	237
Table B.112: U.S. Model II, FMOLS Regression	238
Table B.113: U.S. Model II, FMOLS Hansen Instability Test	238
Table B.114: U.S. Model II, FMOLS ADF Unit Root Test of Residuals	239
Table B.115: U.S. Model II, FMOLS Engle-Granger Cointegration Test	240
Table B.116: U.S. Model II, Failed Unrestricted Error Correction Estimation	241
Table B.117: U.S. Model II, First-Difference Regression	242
Table B.118: U.S. Model III, FMOLS Regression	243
Table B.119: U.S. Model III, FMOLS Hansen Instability Test	243
Table B.120: U.S. Model III, FMOLS ADF Unit Root Test of Residuals	244
Table B.121: U.S. Model III, FMOLS Engle-Granger Cointegration Test	245
Table B.122: U.S. Model III, Failed Unrestricted Error Correction Estimation	246
Table B.123: U.S. Model III, First-Difference Regression	247

Table C.1: Critical Values for Unrestricted Intercept and Unrestricted Trend Case	248
Table C.2: Italy Model I, ARDL Regression	248
Table C.3: Italy Model I, ARDL Bounds Test	249
Table C.4: Italy Model I, ARDL Cointegrating and Long-Run Form	250
Table C.5: Italy Model I, ARDL Breusch-Godfrey Serial Correlation LM Test	251
Table C.6: Italy Model I, ARDL RESET Test	252
Table C.7: Italy Model II, ARDL Regression	253
Table C.8: Italy Model II, ARDL Bounds Test	254
Table C.9: Italy Model II, ARDL Cointegrating and Long-Run Form	255
Table C.10: Italy Model II, ARDL Breusch-Godfrey Serial Correlation LM Test	256
Table C.11: Italy Model II, ARDL RESET Test	257

A. Data Sources and Variable Descriptions

A.1. Data Sources

The data for income is based on the World Wealth and Income Database (WID), where 90 researchers are maintaining almost 70 countries worldwide. The five co-directors F. Alvaredo, A. B. Atkinson, T. Piketty, E. Saez and G. Zucman coordinate and supervise the development efforts of this database. The estimates of the selected G-7 country incomes are not including capital gains. Besides, the database is not entire since there are some missing values due to a lack of data recording in some periods. These values are estimated by interpolation using the Catmull-rom spline method. The resulting series should be viewed as approximate and imperfect. Interpolation was used in Germany, Italy and in the United Kingdom analyses.

The Federal Reserve Bank of St. Louis (FRED) provides the data for the total factor productivity based on constant national prices over time. Feenstra *et al.* (2015) calculated the total factor productivity at constant national prices using growth rates of real GDP from national accounts data in addition to the growth rates of capital stocks over time and the labour force with base year 2011.

	14	DIC IIII	Descriptiv	e statistics		
Country	Variable	Obs.	Mean	Std. Dev.	Min.	Max.
Canada	TFP	65	0.94	0.09	0.73	1.04
	Top 10% share	61	37.68	1.57	35.05	40.80
	Top 5% share	61	24.58	1.76	22.10	28.46
	Top 1% share	61	9.92	1.64	7.60	13.72
France	TFP	65	0.77	0.23	0.32	1.04
	Top 10% share	63	33.13	1.69	29.93	37.15
	Top 5% share	63	21.91	1.38	19.37	24.94
	Top 1% share	63	8.47	0.74	6.99	9.88
Germany	TFP	65	0.72	0.21	0.33	1.00
	Top 10% share	62	33.03	2.50	30.30	39.64
	Top 5% share	62	23.11	1.81	20.53	28.13
	Top 1% share	62	10.93	1.08	8.84	13.89
Italy	TFP	65	0.94	0.20	0.53	1.13
	Top 10% share	36	30.15	2.65	26.04	34.12
	Top 5% share	36	20.16	2.25	16.68	23.60
	Top 1% share	36	7.99	1.10	6.34	9.86
Japan	TFP	65	0.95	0.17	0.54	1.17
	Top 10% share	61	33.18	3.61	28.89	41.03
	Top 5% share	61	21.49	2.12	18.87	26.39
	Top 1% share	61	7.84	0.81	6.77	9.71
UK	TFP	65	0.79	0.16	0.57	1.04
	Top 10% share	63	33.72	5.05	27.78	42.61
	Top 5% share	63	22.74	4.19	17.11	30.77
	Top 1% share	63	9.64	2.77	5.72	15.72
U.S.	TFP	65	0.79	0.12	0.60	1.01
	Top 10% share	65	36.96	5.70	31.38	47.81
	Top 5% share	65	25.41	5.22	20.37	35.35
	Top 1% share	65	11.60	3.82	7.74	18.88

A.2. Variable Descriptions and Time Series Plots

Table A.1: Descriptive Statistics

Source: Own depiction based on data of Feenstra *et al.* (2015) and Alvaredo *et al.* (2016). *Notes*: Obs. = observations, Min. = minimum value, Max. = maximum value

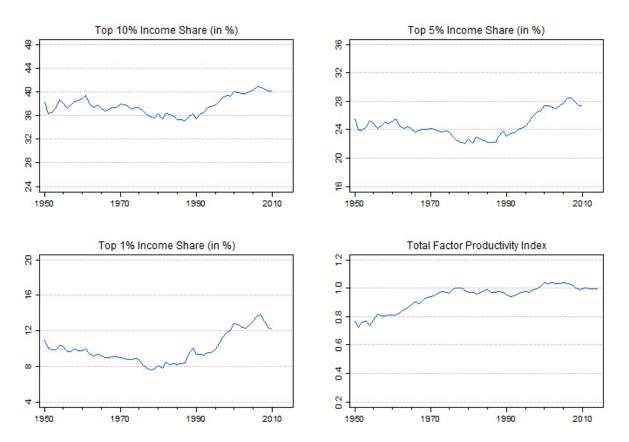
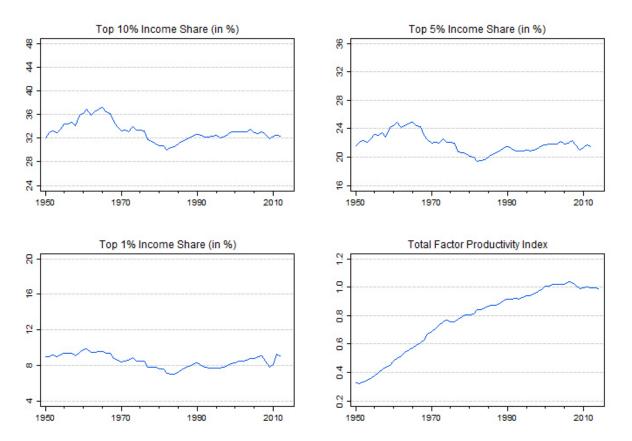
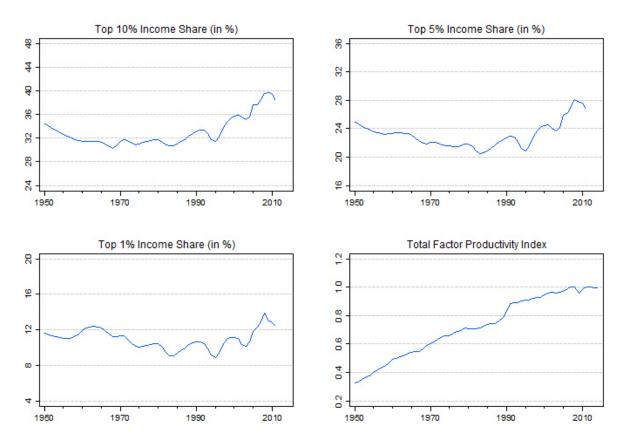
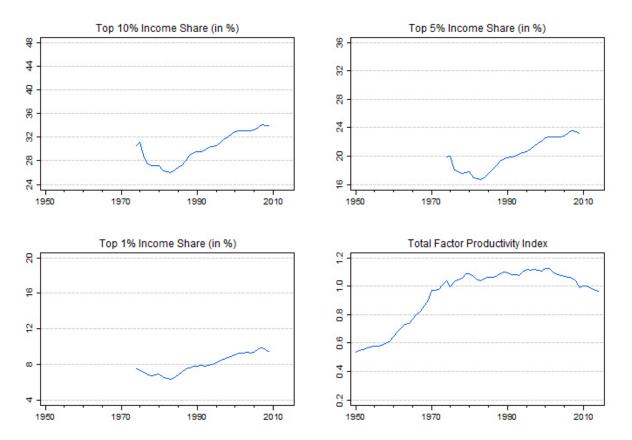


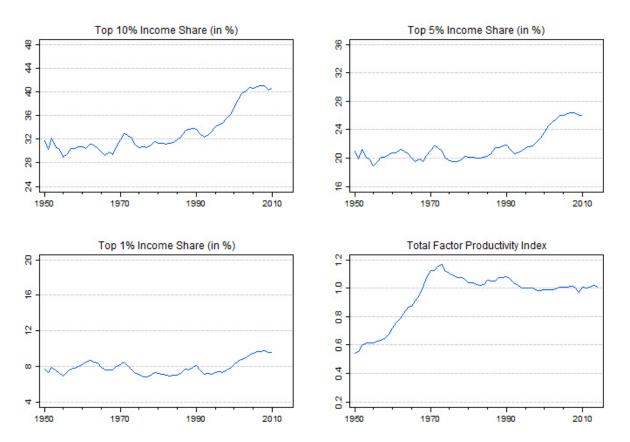
Figure A.1: Time Series Plots of Canada

Source: Own depiction based on data of Feenstra et al. (2015) and Alvaredo et al. (2016).

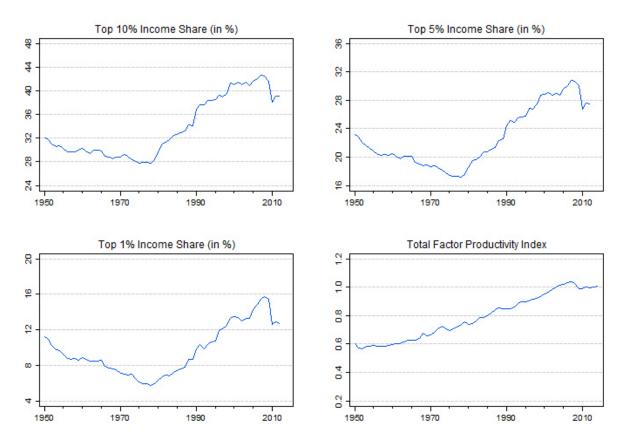




Figure A.2: Time Series Plots of France

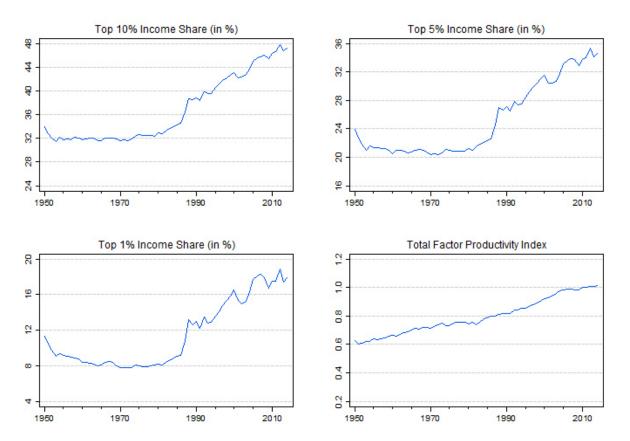
Source: Own depiction based on data of Feenstra et al. (2015) and Alvaredo et al. (2016).


Figure A.3: Time Series Plots of Germany

Source: Own depiction based on data of Feenstra et al. (2015) and Alvaredo et al. (2016).


Figure A.4: Time Series Plots of Italy

Source: Own depiction based on data of Feenstra et al. (2015) and Alvaredo et al. (2016).


Figure A.5: Time Series Plots of Japan

Source: Own depiction based on data of Feenstra et al. (2015) and Alvaredo et al. (2016).

Figure A.6: Time Series Plots of UK

Source: Own depiction based on data of Feenstra et al. (2015) and Alvaredo et al. (2016).

Figure A.7: Time Series Plots of U.S.

Source: Own depiction based on data of Feenstra et al. (2015) and Alvaredo et al. (2016).

A.3. Unit Root Tests of Logarithmized Variables

Table A.2: Canada Unit Root Test at Level of tfp

Null Hypothesis: TFP has a unit root Exogenous: Constant, Linear Trend Lag Length: 1 (Automatic - based on SIC, maxlag=10)

		t-Statistic	Prob.*
Augmented Dickey-Ful Test critical values:	ler test statistic 1% level 5% level	-1.929493 -4.110440 -3.482763	0.6274
	10% level	-3.169372	

*MacKinnon (1996) one-sided p-values.

Augmented Dickey-Fuller Test Equation Dependent Variable: D(TFP) Method: Least Squares Date: 09/09/16 Time: 16:54 Sample (adjusted): 1952 2014 Included observations: 63 after adjustments

Variable	Coefficient	Std. Error	t-Statistic	Prob.
TFP(-1) D(TFP(-1)) C @TREND("1950")	-0.080257 -0.031259 0.367392 5.77E-05	0.041595 0.112995 0.182451 0.000220	-1.929493 -0.276638 2.013644 0.262919	0.0585 0.7830 0.0486 0.7935
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.158206 0.115403 0.015991 0.015087 173.2243 3.696129 0.016593	Mean depende S.D. dependen Akaike info crite Schwarz criteri Hannan-Quinn Durbin-Watson	t var erion on criter.	0.005051 0.017002 -5.372201 -5.236129 -5.318683 1.791348

Table A.3: Canada Unit Root Test at First-Difference of tfp

Null Hypothesis: D(TFP) has a unit root Exogenous: Constant, Linear Trend Lag Length: 0 (Automatic - based on SIC, maxlag=10)

		t-Statistic	Prob.*
Augmented Dickey-Ful Test critical values:	er test statistic 1% level 5% level 10% level	-9.560051 -4.110440 -3.482763 -3.169372	0.0000

*MacKinnon (1996) one-sided p-values.

Augmented Dickey-Fuller Test Equation Dependent Variable: D(TFP,2) Method: Least Squares Date: 09/09/16 Time: 16:54 Sample (adjusted): 1952 2014 Included observations: 63 after adjustments

Variable	Coefficient	Std. Error	t-Statistic	Prob.
D(TFP(-1)) C @TREND("1950")	-1.078377 0.015453 -0.000306	0.112800 0.004430 0.000115	-9.560051 3.487983 -2.647469	0.0000 0.0009 0.0103
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.605488 0.592337 0.016350 0.016039 171.2968 46.04327 0.000000	Mean depende S.D. dependen Akaike info crit Schwarz criteri Hannan-Quinn Durbin-Watson	it var erion on criter.	0.000990 0.025607 -5.342757 -5.240703 -5.302618 1.774364

Table A.4: Canada Unit Root Test at Level of top10

Null Hypothesis: TOP10 has a unit root Exogenous: Constant, Linear Trend Lag Length: 0 (Automatic - based on SIC, maxlag=10)

		t-Statistic	Prob.*
Augmented Dickey-Fuller test statistic		-1.625955	0.7709
Test critical values:	1% level	-4.118444	
	5% level	-3.486509	
	10% level	-3.171541	

*MacKinnon (1996) one-sided p-values.

Augmented Dickey-Fuller Test Equation Dependent Variable: D(TOP10) Method: Least Squares Date: 09/09/16 Time: 16:54 Sample (adjusted): 1951 2010 Included observations: 60 after adjustments

Variable	Coefficient	Std. Error	t-Statistic	Prob.
TOP10(-1) C @TREND("1950")	-0.086759 0.708819 0.000204	0.053359 0.437986 0.000125	-1.625955 1.618359 1.625109	0.1095 0.1111 0.1097
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.064685 0.031867 0.015807 0.014242 165.2414 1.971016 0.148697	Mean depende S.D. dependen Akaike info crite Schwarz criteri Hannan-Quinn Durbin-Watson	t var erion on criter.	0.000800 0.016065 -5.408045 -5.303328 -5.367084 1.751106

Table A.5: Canada Unit Root Test at First-Difference of top10

Null Hypothesis: D(TOP10) has a unit root Exogenous: Constant, Linear Trend Lag Length: 0 (Automatic - based on SIC, maxlag=10)

		t-Statistic	Prob.*
Augmented Dickey-Ful Test critical values:	1% level	-8.210268 -4.121303	0.0000
	5% level 10% level	-3.487845 -3.172314	

*MacKinnon (1996) one-sided p-values.

Augmented Dickey-Fuller Test Equation Dependent Variable: D(TOP10,2) Method: Least Squares Date: 09/09/16 Time: 16:55 Sample (adjusted): 1952 2010 Included observations: 59 after adjustments

Variable	Coefficient	Std. Error	t-Statistic	Prob.
D(TOP10(-1)) C @TREND("1950")	-1.000295 0.000171 4.90E-05	0.121835 0.004043 0.000115	-8.210268 0.042333 0.426699	0.0000 0.9664 0.6712
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.548635 0.532515 0.014864 0.012373 166.1407 34.03410 0.000000	Mean depende S.D. dependen Akaike info crite Schwarz criteri Hannan-Quinn Durbin-Watson	t var erion on criter.	0.000890 0.021740 -5.530192 -5.424555 -5.488955 1.971164

Table A.6: Canada Unit Root Test at Level of top5

Null Hypothesis: TOP5 has a unit root Exogenous: Constant, Linear Trend Lag Length: 0 (Automatic - based on SIC, maxlag=10)

		t-Statistic	Prob.*
Augmented Dickey-Fuller test statistic		-1.478559	0.8262
Test critical values:	1% level	-4.118444	
	5% level	-3.486509	
	10% level	-3.171541	

*MacKinnon (1996) one-sided p-values.

Augmented Dickey-Fuller Test Equation Dependent Variable: D(TOP5) Method: Least Squares Date: 09/09/16 Time: 16:55 Sample (adjusted): 1951 2010 Included observations: 60 after adjustments

Variable	Coefficient	Std. Error	t-Statistic	Prob.
TOP5(-1) C @TREND("1950")	-0.060602 0.463488 0.000347	0.040987 0.317806 0.000163	-1.478559 1.458402 2.128718	0.1448 0.1502 0.0376
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.080069 0.047791 0.019899 0.022571 151.4266 2.480594 0.092687	Mean depende S.D. dependen Akaike info crite Schwarz criteri Hannan-Quinn Durbin-Watson	t var erion on criter.	0.001194 0.020393 -4.947555 -4.842837 -4.906594 1.689889

Table A.7: Canada Unit Root Test at First-Difference of top5

Null Hypothesis: D(TOP5) has a unit root Exogenous: Constant, Linear Trend Lag Length: 0 (Automatic - based on SIC, maxlag=10)

		t-Statistic	Prob.*
Augmented Dickey-Ful Test critical values:	1% level 5% level	-7.509192 -4.121303 -3.487845	0.0000
	10% level	-3.172314	

*MacKinnon (1996) one-sided p-values.

Augmented Dickey-Fuller Test Equation Dependent Variable: D(TOP5,2) Method: Least Squares Date: 09/09/16 Time: 16:55 Sample (adjusted): 1952 2010 Included observations: 59 after adjustments

Variable	Coefficient	Std. Error	t-Statistic	Prob.
D(TOP5(-1)) C @TREND("1950")	-0.932934 -0.002012 0.000134	0.124239 0.005205 0.000149	-7.509192 -0.386501 0.903482	0.0000 0.7006 0.3701
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.504287 0.486583 0.018986 0.020186 151.7019 28.48434 0.000000	Mean depende S.D. dependen Akaike info crit Schwarz criteri Hannan-Quinn Durbin-Watson	t var erion on criter.	0.001016 0.026497 -5.040742 -4.935104 -4.999505 1.953070

Table A.8: Canada Unit Root Test at Level of top1

Null Hypothesis: TOP1 has a unit root Exogenous: Constant, Linear Trend Lag Length: 0 (Automatic - based on SIC, maxlag=10)

		t-Statistic	Prob.*
Augmented Dickey-Full Test critical values:	er test statistic 1% level 5% level	-1.756817 -4.118444 -3.486509	0.7131
	10% level	-3.171541	

*MacKinnon (1996) one-sided p-values.

Augmented Dickey-Fuller Test Equation Dependent Variable: D(TOP1) Method: Least Squares Date: 09/09/16 Time: 16:55 Sample (adjusted): 1951 2010 Included observations: 60 after adjustments

Variable	Coefficient	Std. Error	t-Statistic	Prob.
TOP1(-1) C @TREND("1950")	-0.061811 0.402292 0.000824	0.035183 0.237659 0.000317	-1.756817 1.692725 2.601611	0.0843 0.0960 0.0118
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.110411 0.079197 0.037046 0.078228 114.1378 3.537261 0.035637	Mean depende S.D. dependen Akaike info crit Schwarz criteri Hannan-Quinn Durbin-Watson	t var erion on criter.	0.001936 0.038607 -3.704594 -3.599877 -3.663634 1.541065

Table A.9: Canada Unit Root Test at First-Difference of top1

Null Hypothesis: D(TOP1) has a unit root Exogenous: Constant, Linear Trend Lag Length: 0 (Automatic - based on SIC, maxlag=10)

t-Statistic	Prob.*
-6.334199 -4.121303 -3.487845 2.172214	0.0000
	-6.334199 -4.121303

*MacKinnon (1996) one-sided p-values.

Augmented Dickey-Fuller Test Equation Dependent Variable: D(TOP1,2) Method: Least Squares Date: 09/09/16 Time: 16:55 Sample (adjusted): 1952 2010 Included observations: 59 after adjustments

Variable	Coefficient	Std. Error	t-Statistic	Prob.
D(TOP1(-1)) C @TREND("1950")	-0.808376 -0.006978 0.000320	0.127621 0.010090 0.000289	-6.334199 -0.691503 1.107419	0.0000 0.4921 0.2728
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.419378 0.398642 0.036512 0.074655 113.1187 20.22415 0.000000	Mean depende S.D. dependen Akaike info crite Schwarz criteri Hannan-Quinn Durbin-Watson	t var erion on criter.	0.001282 0.047084 -3.732838 -3.627200 -3.691601 1.944106

Table A.10: France Unit Root Test at Level of tfp

Null Hypothesis: TFP has a unit root Exogenous: Constant, Linear Trend Lag Length: 0 (Automatic - based on SIC, maxlag=10)

		t-Statistic	Prob.*
Augmented Dickey-Ful	er test statistic	-0.632551	0.9735
Test critical values:	1% level	-4.107947	
	5% level	-3.481595	
	10% level	-3.168695	

*MacKinnon (1996) one-sided p-values.

Augmented Dickey-Fuller Test Equation Dependent Variable: D(TFP) Method: Least Squares Date: 09/09/16 Time: 17:04 Sample (adjusted): 1951 2014 Included observations: 64 after adjustments

Variable	Coefficient	Std. Error	t-Statistic	Prob.
TFP(-1) C @TREND("1950")	-0.008676 0.073999 -0.000599	0.013716 0.051074 0.000260	-0.632551 1.448860 -2.304469	0.5294 0.1525 0.0246
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.493522 0.476916 0.014443 0.012725 181.9269 29.71978 0.000000	Mean depende S.D. depender Akaike info crit Schwarz criteri Hannan-Quinn Durbin-Watsor	it var erion on criter.	0.017370 0.019970 -5.591466 -5.490269 -5.551600 1.362957

Table A.11: France Unit Root Test at First-Difference of tfp

Null Hypothesis: D(TFP) has a unit root Exogenous: Constant, Linear Trend Lag Length: 0 (Automatic - based on SIC, maxlag=10)

		t-Statistic	Prob.*
Augmented Dickey-Ful		-6.994490	0.0000
Test critical values:	1% level 5% level 10% level	-4.110440 -3.482763 -3.169372	

*MacKinnon (1996) one-sided p-values.

Augmented Dickey-Fuller Test Equation Dependent Variable: D(TFP,2) Method: Least Squares Date: 09/09/16 Time: 17:04 Sample (adjusted): 1952 2014 Included observations: 63 after adjustments

Variable	Coefficient	Std. Error	t-Statistic	Prob.
D(TFP(-1)) C @TREND("1950")	-0.779595 0.035737 -0.000663	0.111458 0.005763 0.000121	-6.994490 6.200937 -5.490961	0.0000 0.0000 0.0000
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.453389 0.435168 0.012611 0.009542 187.6546 24.88362 0.000000	Mean depende S.D. dependen Akaike info crit Schwarz criteri Hannan-Quinn Durbin-Watson	it var erion on criter.	1.21E-06 0.016780 -5.862050 -5.759996 -5.821911 1.995448

Table A.12: France Unit Root Test at Level of top10

Null Hypothesis: TOP10 has a unit root Exogenous: Constant, Linear Trend Lag Length: 0 (Automatic - based on SIC, maxlag=10)

		t-Statistic	Prob.*
Augmented Dickey-Full	er test statistic	-1.983998	0.5983
Test critical values:	1% level	-4.113017	
	5% level	-3.483970	
	10% level	-3.170071	

*MacKinnon (1996) one-sided p-values.

Augmented Dickey-Fuller Test Equation Dependent Variable: D(TOP10) Method: Least Squares Date: 09/09/16 Time: 17:05 Sample (adjusted): 1951 2012 Included observations: 62 after adjustments

Variable	Coefficient	Std. Error	t-Statistic	Prob.
TOP10(-1) C @TREND("1950")	-0.094556 0.773355 -0.000216	0.047660 0.388282 0.000134	-1.983998 1.991737 -1.615489	0.0519 0.0510 0.1115
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.071310 0.039829 0.016633 0.016324 167.5363 2.265191 0.112767	Mean depende S.D. depender Akaike info crit Schwarz criteri Hannan-Quinn Durbin-Watsor	it var erion on criter.	0.000186 0.016975 -5.307624 -5.204698 -5.267213 1.785951

Table A.13: France Unit Root Test at First-Difference of top10

Null Hypothesis: D(TOP10) has a unit root Exogenous: Constant, Linear Trend Lag Length: 0 (Automatic - based on SIC, maxlag=10)

		t-Statistic	Prob.*
Augmented Dickey-Ful		-7.353766	0.0000
Test critical values:	1% level	-4.115684	
	5% level	-3.485218	
	10% level	-3.170793	

*MacKinnon (1996) one-sided p-values.

Augmented Dickey-Fuller Test Equation Dependent Variable: D(TOP10,2) Method: Least Squares Date: 09/09/16 Time: 17:05 Sample (adjusted): 1952 2012 Included observations: 61 after adjustments

Variable	Coefficient	Std. Error	t-Statistic	Prob.
D(TOP10(-1)) C @TREND("1950")	-0.943038 0.001046 -4.24E-05	0.128239 0.004510 0.000124	-7.353766 0.231824 -0.343539	0.0000 0.8175 0.7324
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.482961 0.465133 0.016917 0.016600 163.8268 27.08866 0.000000	Mean depende S.D. dependen Akaike info crit Schwarz criteri Hannan-Quinn Durbin-Watson	it var erion on criter.	-0.000576 0.023132 -5.273009 -5.169196 -5.232324 2.041850

Table A.14: France Unit Root Test at Level of top5

Null Hypothesis: TOP5 has a unit root Exogenous: Constant, Linear Trend Lag Length: 0 (Automatic - based on SIC, maxlag=10)

		t-Statistic	Prob.*
Augmented Dickey-Full Test critical values:	ler test statistic 1% level 5% level 10% level	-1.650237 -4.113017 -3.483970 -3.170071	0.7612

*MacKinnon (1996) one-sided p-values.

Augmented Dickey-Fuller Test Equation Dependent Variable: D(TOP5) Method: Least Squares Date: 09/09/16 Time: 17:06 Sample (adjusted): 1951 2012 Included observations: 62 after adjustments

Variable	Coefficient	Std. Error	t-Statistic	Prob.
TOP5(-1) C @TREND("1950")	-0.078197 0.607133 -0.000186	0.047385 0.367111 0.000165	-1.650237 1.653813 -1.128085	0.1042 0.1035 0.2639
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.045814 0.013469 0.019966 0.023519 156.2152 1.416398 0.250713	Mean depende S.D. dependen Akaike info crit Schwarz criteri Hannan-Quinn Durbin-Watson	t var erion on criter.	-0.000105 0.020102 -4.942426 -4.839501 -4.902015 1.744508

Table A.15: France Unit Root Test at First-Difference of top5

Null Hypothesis: D(TOP5) has a unit root Exogenous: Constant, Linear Trend Lag Length: 0 (Automatic - based on SIC, maxlag=10)

		t-Statistic	Prob.*
Augmented Dickey-Ful Test critical values:	ler test statistic 1% level 5% level 10% level	-7.005251 -4.115684 -3.485218 -3.170793	0.0000

*MacKinnon (1996) one-sided p-values.

Augmented Dickey-Fuller Test Equation Dependent Variable: D(TOP5,2) Method: Least Squares Date: 09/09/16 Time: 17:06 Sample (adjusted): 1952 2012 Included observations: 61 after adjustments

Variable	Coefficient	Std. Error	t-Statistic	Prob.
D(TOP5(-1)) C @TREND("1950")	-0.910514 -2.27E-05 -1.31E-05	0.129976 0.005408 0.000148	-7.005251 -0.004203 -0.088522	0.0000 0.9967 0.9298
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.458380 0.439704 0.020355 0.024030 152.5439 24.54311 0.000000	Mean depende S.D. depender Akaike info crit Schwarz criteri Hannan-Quinn Durbin-Watsor	it var erion on criter.	-0.000497 0.027193 -4.903080 -4.799267 -4.862395 2.033234

Table A.16: France Unit Root Test at Level of top1

Null Hypothesis: TOP1 has a unit root Exogenous: Constant, Linear Trend Lag Length: 0 (Automatic - based on SIC, maxlag=10)

		t-Statistic	Prob.*
Augmented Dickey-Full Test critical values:	er test statistic 1% level 5% level 10% level	-1.331567 -4.113017 -3.483970 -3.170071	0.8707

*MacKinnon (1996) one-sided p-values.

Augmented Dickey-Fuller Test Equation Dependent Variable: D(TOP1) Method: Least Squares Date: 09/09/16 Time: 17:06 Sample (adjusted): 1951 2012 Included observations: 62 after adjustments

Variable	Coefficient	Std. Error	t-Statistic	Prob.
TOP1(-1) C @TREND("1950")	-0.076316 0.513950 4.06E-06	0.057313 0.390622 0.000282	-1.331567 1.315724 0.014386	0.1881 0.1934 0.9886
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.038649 0.006061 0.034579 0.070547 122.1627 1.185979 0.312622	Mean depende S.D. dependen Akaike info crite Schwarz criteri Hannan-Quinn Durbin-Watson	t var erion on criter.	-7.20E-05 0.034684 -3.843957 -3.741031 -3.803546 1.637360

Table A.17: France Unit Root Test at First-Difference of top1

Null Hypothesis: D(TOP1) has a unit root Exogenous: Constant, Linear Trend Lag Length: 1 (Automatic - based on SIC, maxlag=10)

		t-Statistic	Prob.*
Augmented Dickey-Ful Test critical values:		-6.310931	0.0000
Test childar values.	1% level 5% level 10% level	-4.118444 -3.486509 -3.171541	

*MacKinnon (1996) one-sided p-values.

Augmented Dickey-Fuller Test Equation Dependent Variable: D(TOP1,2) Method: Least Squares Date: 09/09/16 Time: 17:06 Sample (adjusted): 1953 2012 Included observations: 60 after adjustments

Variable	Coefficient	Std. Error	t-Statistic	Prob.
D(TOP1(-1)) D(TOP1(-1),2) C @TREND("1950")	-1.111127 0.307903 -0.007645 0.000204	0.176064 0.152370 0.009488 0.000258	-6.310931 2.020755 -0.805832 0.788576	0.0000 0.0481 0.4237 0.4337
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.468861 0.440407 0.034323 0.065971 119.2503 16.47794 0.000000	Mean depende S.D. dependen Akaike info crit Schwarz criteri Hannan-Quinn Durbin-Watson	t var erion on criter.	-0.000898 0.045882 -3.841676 -3.702053 -3.787062 1.961487

Table A.18: Germany Unit Root Test at Level of tfp

Null Hypothesis: TFP has a unit root Exogenous: Constant, Linear Trend Lag Length: 1 (Automatic - based on SIC, maxlag=10)

		t-Statistic	Prob.*
Augmented Dickey-Ful Test critical values:	er test statistic 1% level 5% level	-2.441498 -4.110440 -3.482763	0.3554
	10% level	-3.169372	

*MacKinnon (1996) one-sided p-values.

Augmented Dickey-Fuller Test Equation Dependent Variable: D(TFP) Method: Least Squares Date: 09/09/16 Time: 18:11 Sample (adjusted): 1952 2014 Included observations: 63 after adjustments

Variable	Coefficient	Std. Error	t-Statistic	Prob.
TFP(-1) D(TFP(-1)) C @TREND("1950")	-0.061629 0.258082 0.254568 0.000585	0.025242 0.117731 0.093318 0.000435	-2.441498 2.192139 2.727972 1.344929	0.0176 0.0323 0.0084 0.1838
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.422725 0.393372 0.014691 0.012734 178.5658 14.40145 0.000000	Mean depende S.D. dependen Akaike info crite Schwarz criteri Hannan-Quinn Durbin-Watson	t var erion on criter.	0.017428 0.018862 -5.541771 -5.405699 -5.488253 1.837653

Table A.19: Germany Unit Root Test at First-Difference of tfp

Null Hypothesis: D(TFP) has a unit root Exogenous: Constant, Linear Trend Lag Length: 0 (Automatic - based on SIC, maxlag=10)

		t-Statistic	Prob.*
Augmented Dickey-Ful Test critical values:	ler test statistic 1% level 5% level 10% level	-6.020577 -4.110440 -3.482763 -3.169372	0.0000

*MacKinnon (1996) one-sided p-values.

Augmented Dickey-Fuller Test Equation Dependent Variable: D(TFP,2) Method: Least Squares Date: 09/09/16 Time: 18:11 Sample (adjusted): 1952 2014 Included observations: 63 after adjustments

Variable	Coefficient	Std. Error	t-Statistic	Prob.
D(TFP(-1)) C @TREND("1950")	-0.737439 0.027156 -0.000435	0.122486 0.005913 0.000125	-6.020577 4.592738 -3.476429	0.0000 0.0000 0.0010
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.377251 0.356493 0.015286 0.014020 175.5340 18.17354 0.000001	Mean depende S.D. dependen Akaike info crit Schwarz criteri Hannan-Quinn Durbin-Watson	t var erion on criter.	-0.000216 0.019056 -5.477269 -5.375214 -5.437130 1.792278

Table A.20: Germany Unit Root Test at Level of top10

Null Hypothesis: TOP10 has a unit root Exogenous: Constant, Linear Trend Lag Length: 1 (Automatic - based on SIC, maxlag=10)

		t-Statistic	Prob.*
Augmented Dickey-Full		-2.609845	0.2776
Test critical values:	1% level	-4.118444	
	5% level	-3.486509	
	10% level	-3.171541	

*MacKinnon (1996) one-sided p-values.

Augmented Dickey-Fuller Test Equation Dependent Variable: D(TOP10) Method: Least Squares Date: 09/09/16 Time: 18:12 Sample (adjusted): 1952 2011 Included observations: 60 after adjustments

Variable	Coefficient	Std. Error	t-Statistic	Prob.
TOP10(-1) D(TOP10(-1)) C	-0.078618 0.561552 0.627574	0.030124 0.117423 0.241531	-2.609845 4.782276 2.598313	0.0116 0.0000 0.0120
@TREND("1950") 	0.000308	0.000127	2.432231	0.0182
Adjusted R-squared S.E. of regression	0.382328	Mean dependent var S.D. dependent var Akaike info criterion		0.015614
Sum squared resid	0.008433	Schwarz criterion Hannan-Quinn criter.		-5.759159 -5.844167
F-statistic Prob(F-statistic)	13.17330 0.000001	Durbin-Watson stat		1.667092

Table A.21: Germany Unit Root Test at First-Difference of top10

Null Hypothesis: D(TOP10) has a unit root Exogenous: Constant, Linear Trend Lag Length: 5 (Automatic - based on SIC, maxlag=10)

		t-Statistic	Prob.*
Augmented Dickey-Fuller test statistic Test critical values: 1% level		-5.697309 -4.133838	0.0001
	5% level 10% level	-3.493692 -3.175693	

*MacKinnon (1996) one-sided p-values.

Augmented Dickey-Fuller Test Equation Dependent Variable: D(TOP10,2) Method: Least Squares Date: 09/09/16 Time: 18:11 Sample (adjusted): 1957 2011 Included observations: 55 after adjustments

Variable	Coefficient	Std. Error	t-Statistic	Prob.
D(TOP10(-1))	-2.010526	0.352890	-5.697309	0.0000
D(TOP10(-1),2)	1.339208	0.278485	4.808906	0.0000
D(TOP10(-2),2)	1.036052	0.249086	4.159417	0.0001
D(TOP10(-3),2)	0.757306	0.208277	3.636044	0.0007
D(TOP10(-4),2)	0.472133	0.174419	2.706888	0.0094
D(TOP10(-5),2)	0.417765	0.159787	2.614512	0.0120
С	-0.019095	0.005337	-3.578055	0.0008
@TREND("1950")	0.000720	0.000172	4.186864	0.0001
R-squared	0.499472	Mean dependent var		-0.000306
Adjusted R-squared	0.424925	S.D. dependent var		0.014891
S.E. of regression	0.011292	Akaike info criterion		-5.995652
Sum squared resid	0.005993	Schwarz criterion		-5.703676
Log likelihood	172.8804	Hannan-Quinn criter.		-5.882743
F-statistic	6.700115	Durbin-Watson stat		1.909077
Prob(F-statistic)	0.000016			

Table A.22: Germany Unit Root Test at Level of top5

Null Hypothesis: TOP5 has a unit root Exogenous: Constant, Linear Trend Lag Length: 1 (Automatic - based on SIC, maxlag=10)

		t-Statistic	Prob.*
Augmented Dickey-Full Test critical values:	1% level 5% level	-2.378893 -4.118444 -3.486509	0.3865
	10% level	-3.171541	

*MacKinnon (1996) one-sided p-values.

Augmented Dickey-Fuller Test Equation Dependent Variable: D(TOP5) Method: Least Squares Date: 09/09/16 Time: 18:12 Sample (adjusted): 1952 2011 Included observations: 60 after adjustments

Variable	Coefficient	Std. Error	t-Statistic	Prob.
TOP5(-1) D(TOP5(-1)) C @TREND("1950")	-0.069619 0.631693 0.533535 0.000177	0.029265 0.113247 0.225661 0.000128	-2.378893 5.577996 2.364325 1.379226	0.0208 0.0000 0.0216 0.1733
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.434502 0.404208 0.015522 0.013493 166.8622 14.34260 0.000000	Mean depende S.D. dependen Akaike info crite Schwarz criterie Hannan-Quinn Durbin-Watson	t var erion on criter.	0.001409 0.020110 -5.428742 -5.289119 -5.374127 1.648494

Table A.23: Germany Unit Root Test at First-Difference of top5

Null Hypothesis: D(TOP5) has a unit root Exogenous: Constant, Linear Trend Lag Length: 3 (Automatic - based on SIC, maxlag=10)

		t-Statistic	Prob.*
Augmented Dickey-Full		-5.896473	0.0000
Test critical values:	1% level 5% level	-4.127338 -3.490662	
	10% level	-3.173943	

*MacKinnon (1996) one-sided p-values.

Augmented Dickey-Fuller Test Equation Dependent Variable: D(TOP5,2) Method: Least Squares Date: 09/09/16 Time: 18:12 Sample (adjusted): 1955 2011 Included observations: 57 after adjustments

Variable	Coefficient	Std. Error	t-Statistic	Prob.
D(TOP5(-1)) D(TOP5(-1),2) D(TOP5(-2),2) D(TOP5(-3),2) C	-1.073197 0.678754 0.388404 0.421564 -0.012174	0.182007 0.153102 0.143120 0.147074 0.004943	-5.896473 4.433352 2.713839 2.866344 -2.463081	0.0000 0.0000 0.0090 0.0060 0.0172
@TREND("1950")	0.000424	0.000144	2.937008	0.0050
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.429529 0.373601 0.014362 0.010520 164.1497 7.679967 0.000019	Mean depende S.D. dependen Akaike info crite Schwarz criteri Hannan-Quinn Durbin-Watson	t var erion on criter.	-0.000324 0.018147 -5.549111 -5.334053 -5.465532 2.033859

Table A.24: Germany Unit Root Test at Level of top1

Null Hypothesis: TOP1 has a unit root Exogenous: Constant, Linear Trend Lag Length: 10 (Automatic - based on SIC, maxlag=10)

		t-Statistic	Prob.*
Augmented Dickey-Full	er test statistic	0.724785	0.9996
Test critical values:	1% level	-4.148465	
	5% level	-3.500495	
	10% level	-3.179617	

*MacKinnon (1996) one-sided p-values.

Augmented Dickey-Fuller Test Equation Dependent Variable: D(TOP1) Method: Least Squares Date: 09/09/16 Time: 18:13 Sample (adjusted): 1961 2011 Included observations: 51 after adjustments

Variable	Coefficient	Std. Error	t-Statistic	Prob.
TOP1(-1)	0.050649	0.069881	0.724785	0.4730
D(TOP1(-1))	0.924682	0.154964	5.967085	0.0000
D(TOP1(-2))	-0.487412	0.190140	-2.563442	0.0144
D(TOP1(-3))	-0.687629	0.298346	-2.304802	0.0267
D(TOP1(-4))	1.114892	0.436414	2.554665	0.0148
D(TOP1(-5))	-0.787545	0.443138	-1.777201	0.0835
D(TOP1(-6))	-1.523755	0.362819	-4.199773	0.0002
D(TOP1(-7))	3.927833	0.687288	5.714977	0.0000
D(TOP1(-8))	-4.648325	0.969419	-4.794960	0.0000
D(TOP1(-9))	3.199853	0.794532	4.027345	0.0003
D(TOP1(-10))	-1.159207	0.407052	-2.847807	0.0071
С	-0.376297	0.495999	-0.758665	0.4527
@TREND("1950")	0.000699	0.000346	2.022449	0.0502
R-squared	0.757007	Mean depende	nt var	0.000658
Adjusted R-squared	0.680272	S.D. dependen	t var	0.039910
S.E. of regression	0.022567	Akaike info crite	erion	-4.529091
Sum squared resid	0.019352	Schwarz criterion		-4.036665
Log likelihood	128.4918	Hannan-Quinn	criter.	-4.340921
F-statistic	9.865236	Durbin-Watson	stat	1.722439
Prob(F-statistic)	0.000000			

Table A.25: Germany Unit Root Test at First-Difference of top1

Null Hypothesis: D(TOP1) has a unit root Exogenous: Constant, Linear Trend Lag Length: 10 (Automatic - based on SIC, maxlag=10)

		t-Statistic	Prob.*
Augmented Dickey-Full	er test statistic	-1.494893	0.8183
Test critical values:	1% level	-4.152511	
	5% level	-3.502373	
	10% level	-3.180699	

*MacKinnon (1996) one-sided p-values.

Augmented Dickey-Fuller Test Equation Dependent Variable: D(TOP1,2) Method: Least Squares Date: 09/09/16 Time: 18:12 Sample (adjusted): 1962 2011 Included observations: 50 after adjustments

Variable	Coefficient	Std. Error	t-Statistic	Prob.
D(TOP1(-1)) D(TOP1(-1),2) D(TOP1(-2),2) D(TOP1(-3),2) D(TOP1(-4),2) D(TOP1(-5),2) D(TOP1(-6),2) D(TOP1(-6),2) D(TOP1(-7),2) D(TOP1(-8),2) D(TOP1(-9),2) D(TOP1(-10),2) C @TREND("1950")	-0.484009 0.568704 -0.203324 -0.487092 0.611483 -0.677330 -1.330474 2.342145 -3.171874 2.060338 -1.010858 -0.016137 0.000497	0.323775 0.306046 0.320907 0.322933 0.345905 0.359411 0.303720 0.471325 0.609015 0.522551 0.382209 0.009114 0.000241	-1.494893 1.858228 -0.633592 -1.508339 1.767779 -1.884559 -4.380601 4.969282 -5.208203 3.942843 -2.644776 -1.770494 2.057397	0.1434 0.0711 0.5302 0.1400 0.0853 0.0674 0.0001 0.0000 0.0000 0.0003 0.0119 0.0849 0.0467
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.767476 0.692063 0.020802 0.016011 130.2152 10.17694 0.000000	Mean depende S.D. dependen Akaike info crite Schwarz criteri Hannan-Quinn Durbin-Watson	nt var t var erion on criter.	-0.001172 0.037487 -4.688607 -4.191481 -4.499298 1.854729

Table A.26: Germany Unit Root Test at Second-Difference of top1

Null Hypothesis: D(TOP1,2) has a unit root Exogenous: Constant, Linear Trend Lag Length: 9 (Automatic - based on SIC, maxlag=10)

		t-Statistic	Prob.*
Augmented Dickey-Full Test critical values:	ler test statistic 1% level 5% level 10% level	-4.783392 -4.152511 -3.502373 -3.180699	0.0017

*MacKinnon (1996) one-sided p-values.

Augmented Dickey-Fuller Test Equation Dependent Variable: D(TOP1,3) Method: Least Squares Date: 09/09/16 Time: 18:13 Sample (adjusted): 1962 2011 Included observations: 50 after adjustments

Variable	Coefficient	Std. Error	t-Statistic	Prob.
D(TOP1(-1),2)	-4.893224	1.022961	-4.783392	0.0000
D(TOP1(-1),3)	4.055349	0.965498	4.200264	0.0002
D(TOP1(-2),3)	3.430468	0.873148	3.928852	0.0003
D(TOP1(-3),3)	2.562995	0.840582	3.049072	0.0042
D(TOP1(-4),3)	2.867707	0.716574	4.001970	0.0003
D(TOP1(-5),3)	1.855013	0.556626	3.332601	0.0019
D(TOP1(-6),3)	0.288291	0.562609	0.512418	0.6113
D(TOP1(-7),3)	2.533333	0.452489	5.598659	0.0000
D(TOP1(-8),3)	-0.932396	0.341448	-2.730715	0.0095
D(TOP1(-9),3)	1.202971	0.365757	3.288988	0.0022
С	-0.010258	0.008355	-1.227787	0.2271
@TREND("1950")	0.000329	0.000217	1.514501	0.1382
R-squared	0.873354	Mean depende	nt var	-0.000297
Adjusted R-squared	0.836693	S.D. dependen	t var	0.052306
S.E. of regression	0.021138	Akaike info crite	erion	-4.669963
Sum squared resid	0.016978	Schwarz criterion		-4.211077
Log likelihood	128.7491	Hannan-Quinn	criter.	-4.495217
F-statistic	23.82264	Durbin-Watson	stat	1.878935
Prob(F-statistic)	0.000000			

Table A.27: Italy Unit Root Test at Level of tfp

Null Hypothesis: TFP has a unit root Exogenous: Constant, Linear Trend Lag Length: 0 (Automatic - based on SIC, maxlag=9)

		t-Statistic	Prob.*
Augmented Dickey-Ful	er test statistic	-0.591633	0.9741
Test critical values:	1% level	-4.205004	
	5% level	-3.526609	
	10% level	-3.194611	

*MacKinnon (1996) one-sided p-values.

Augmented Dickey-Fuller Test Equation Dependent Variable: D(TFP) Method: Least Squares Date: 09/09/16 Time: 19:11 Sample (adjusted): 1975 2014 Included observations: 40 after adjustments

Variable	Coefficient	Std. Error	t-Statistic	Prob.
TFP(-1) C @TREND("1974")	-0.040402 0.196557 -0.000480	0.068289 0.319468 0.000226	-0.591633 0.615263 -2.119154	0.5577 0.5421 0.0409
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.109763 0.061642 0.016326 0.009862 109.4010 2.280978 0.116374	Mean depende S.D. depender Akaike info crit Schwarz criteri Hannan-Quinn Durbin-Watsor	nt var erion on criter.	-0.001834 0.016854 -5.320051 -5.193385 -5.274252 1.750347

Table A.28: Italy Unit Root Test at First-Difference of tfp

Null Hypothesis: D(TFP) has a unit root Exogenous: Constant, Linear Trend Lag Length: 1 (Automatic - based on SIC, maxlag=9)

		t-Statistic	Prob.*
Augmented Dickey-Full	er test statistic	-4.911531	0.0016
Test critical values:	1% level	-4.219126	
	5% level	-3.533083	
	10% level	-3.198312	

*MacKinnon (1996) one-sided p-values.

Augmented Dickey-Fuller Test Equation Dependent Variable: D(TFP,2) Method: Least Squares Date: 09/09/16 Time: 19:11 Sample (adjusted): 1977 2014 Included observations: 38 after adjustments

Variable	Coefficient	Std. Error	t-Statistic	Prob.
D(TFP(-1)) D(TFP(-1),2) C @TREND("1974")	-1.022983 0.178006 0.009255 -0.000523	0.208282 0.132701 0.005351 0.000232	-4.911531 1.341408 1.729661 -2.250383	0.0000 0.1887 0.0928 0.0310
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.478685 0.432687 0.013224 0.005946 112.5697 10.40657 0.000053	Mean depende S.D. dependen Akaike info crite Schwarz criteri Hannan-Quinn Durbin-Watson	t var erion on criter.	-0.001214 0.017558 -5.714197 -5.541819 -5.652866 1.856823

Table A.29: Italy Unit Root Test at Level of top10

Null Hypothesis: TOP10 has a unit root Exogenous: Constant, Linear Trend Lag Length: 1 (Automatic - based on SIC, maxlag=9)

		t-Statistic	Prob.*
Augmented Dickey-Ful Test critical values:	er test statistic 1% level 5% level 10% level	-7.355027 -4.252879 -3.548490 -3.207094	0.0000

*MacKinnon (1996) one-sided p-values.

Augmented Dickey-Fuller Test Equation Dependent Variable: D(TOP10) Method: Least Squares Date: 09/09/16 Time: 19:11 Sample (adjusted): 1976 2009 Included observations: 34 after adjustments

Variable	Coefficient	Std. Error	t-Statistic	Prob.
TOP10(-1) D(TOP10(-1)) C @TREND("1974")	-0.360109 0.125394 2.818587 0.003547	0.048961 0.104068 0.384701 0.000451	-7.355027 1.204927 7.326687 7.866396	0.0000 0.2377 0.0000 0.0000
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.715814 0.687396 0.011970 0.004298 104.3464 25.18826 0.000000	Mean depende S.D. dependen Akaike info crite Schwarz criteri Hannan-Quinn Durbin-Watson	t var erion on criter.	0.002415 0.021409 -5.902727 -5.723155 -5.841488 0.934106

Table A.30: Italy Unit Root Test at Level of top5

Null Hypothesis: TOP5 has a unit root Exogenous: Constant, Linear Trend Lag Length: 1 (Automatic - based on SIC, maxlag=9)

		t-Statistic	Prob.*
Augmented Dickey-Fuller test statistic		-5.410171	0.0005
Test critical values:	1% level	-4.252879	
	5% level	-3.548490	
	10% level	-3.207094	

*MacKinnon (1996) one-sided p-values.

Augmented Dickey-Fuller Test Equation Dependent Variable: D(TOP5) Method: Least Squares Date: 09/09/16 Time: 19:12 Sample (adjusted): 1976 2009 Included observations: 34 after adjustments

Variable	Coefficient	Std. Error	t-Statistic	Prob.
TOP5(-1) D(TOP5(-1)) C @TREND("1974")	-0.361997 0.134350 2.672660 0.004413	0.066911 0.129384 0.495489 0.000778	-5.410171 1.038379 5.393984 5.675178	0.0000 0.3074 0.0000 0.0000
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.562264 0.518491 0.017633 0.009327 91.17573 12.84484 0.000014	Mean depende S.D. dependen Akaike info crite Schwarz criteri Hannan-Quinn Durbin-Watson	t var erion on criter.	0.004268 0.025411 -5.127984 -4.948412 -5.066745 1.174358

Table A.31: Italy Unit Root Test at Level of top1

Null Hypothesis: TOP1 has a unit root Exogenous: Constant, Linear Trend Lag Length: 1 (Automatic - based on SIC, maxlag=9)

		t-Statistic	Prob.*
Augmented Dickey-Ful	er test statistic	-2.919982	0.1691
Test critical values:	1% level	-4.252879	
	5% level	-3.548490	
	10% level	-3.207094	

*MacKinnon (1996) one-sided p-values.

Augmented Dickey-Fuller Test Equation Dependent Variable: D(TOP1) Method: Least Squares Date: 09/09/16 Time: 19:12 Sample (adjusted): 1976 2009 Included observations: 34 after adjustments

Variable	Coefficient	Std. Error	t-Statistic	Prob.
TOP1(-1) D(TOP1(-1)) C @TREND("1974")	-0.215600 0.460318 1.389363 0.002869	0.073836 0.146994 0.474592 0.001047	-2.919982 3.131532 2.927492 2.741450	0.0066 0.0039 0.0065 0.0102
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.426758 0.369434 0.019490 0.011396 87.77068 7.444641 0.000722	Mean depende S.D. dependen Akaike info crite Schwarz criterie Hannan-Quinn Durbin-Watson	t var erion on criter.	0.007616 0.024544 -4.927687 -4.748115 -4.866448 1.926758

Table A.32: Italy Unit Root Test at First-Difference of top1

Null Hypothesis: D(TOP1) has a unit root Exogenous: Constant, Linear Trend Lag Length: 0 (Automatic - based on SIC, maxlag=9)

		t-Statistic	Prob.*
Augmented Dickey-Fuller test statistic		-2.993405	0.1487
Test critical values:	1% level	-4.252879	
	5% level	-3.548490	
	10% level	-3.207094	

*MacKinnon (1996) one-sided p-values.

Augmented Dickey-Fuller Test Equation Dependent Variable: D(TOP1,2) Method: Least Squares Date: 09/09/16 Time: 19:12 Sample (adjusted): 1976 2009 Included observations: 34 after adjustments

Variable	Coefficient	Std. Error	t-Statistic	Prob.
D(TOP1(-1)) C @TREND("1974")	-0.486790 0.003724 -4.59E-07	0.162621 0.008037 0.000401	-2.993405 0.463355 -0.001143	0.0054 0.6463 0.9991
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.243913 0.195133 0.021728 0.014635 83.51823 5.000283 0.013118	Mean depende S.D. dependen Akaike info crit Schwarz criteri Hannan-Quinn Durbin-Watson	it var erion on criter.	1.53E-05 0.024219 -4.736367 -4.601688 -4.690437 1.933649

Table A.33: Italy Unit Root Test at Second-Difference of top1

Null Hypothesis: D(TOP1,2) has a unit root Exogenous: Constant, Linear Trend Lag Length: 0 (Automatic - based on SIC, maxlag=9)

		t-Statistic	Prob.*
Augmented Dickey-Ful Test critical values:	ler test statistic 1% level	-6.900773 -4.262735	0.0000
	5% level 10% level	-3.552973 -3.209642	

*MacKinnon (1996) one-sided p-values.

Augmented Dickey-Fuller Test Equation Dependent Variable: D(TOP1,3) Method: Least Squares Date: 09/09/16 Time: 19:12 Sample (adjusted): 1977 2009 Included observations: 33 after adjustments

Variable	Coefficient	Std. Error	t-Statistic	Prob.
D(TOP1(-1),2) C @TREND("1974")	-1.226725 0.008299 -0.000449	0.177766 0.009575 0.000451	-6.900773 0.866799 -0.995530	0.0000 0.3929 0.3274
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.613507 0.587740 0.024411 0.017878 77.26687 23.81050 0.000001	Mean depende S.D. depender Akaike info crit Schwarz criteri Hannan-Quinn Durbin-Watsor	it var erion on criter.	-0.000586 0.038020 -4.501023 -4.364977 -4.455247 2.014318

Table A.34: Japan Unit Root Test at Level of tfp

Null Hypothesis: TFP has a unit root Exogenous: Constant, Linear Trend Lag Length: 1 (Automatic - based on SIC, maxlag=10)

2957 0.5231 0440 2763 9372

*MacKinnon (1996) one-sided p-values.

Augmented Dickey-Fuller Test Equation Dependent Variable: D(TFP) Method: Least Squares Date: 09/09/16 Time: 19:19 Sample (adjusted): 1952 2014 Included observations: 63 after adjustments

Variable	Coefficient	Std. Error	t-Statistic	Prob.
TFP(-1) D(TFP(-1)) C @TREND("1950")	-0.036342 0.382698 0.176905 -0.000189	0.017119 0.115100 0.074706 0.000191	-2.122957 3.324918 2.368006 -0.992580	0.0380 0.0015 0.0212 0.3250
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.423497 0.394183 0.019953 0.023489 159.2798 14.44706 0.000000	Mean depende S.D. dependen Akaike info crit Schwarz criteri Hannan-Quinn Durbin-Watson	t var erion on criter.	0.009502 0.025635 -4.929516 -4.793444 -4.875998 2.021595

Table A.35: Japan Unit Root Test at First-Difference of tfp

Null Hypothesis: D(TFP) has a unit root Exogenous: Constant, Linear Trend Lag Length: 2 (Automatic - based on SIC, maxlag=10)

		t-Statistic	Prob.*
Augmented Dickey-Ful Test critical values:	ler test statistic 1% level	-2.447248 -4.115684	0.3525
	5% level 10% level	-3.485218 -3.170793	

*MacKinnon (1996) one-sided p-values.

Augmented Dickey-Fuller Test Equation Dependent Variable: D(TFP,2) Method: Least Squares Date: 09/09/16 Time: 19:19 Sample (adjusted): 1954 2014 Included observations: 61 after adjustments

Variable	Coefficient	Std. Error	t-Statistic	Prob.
D(TFP(-1)) D(TFP(-1),2) D(TFP(-2),2) C @TREND("1950")	-0.359856 -0.278524 -0.215663 0.008936 -0.000197	0.147045 0.149972 0.124829 0.007341 0.000176	-2.447248 -1.857175 -1.727669 1.217290 -1.119319	0.0176 0.0685 0.0896 0.2286 0.2678
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.320737 0.272218 0.019379 0.021030 156.6119 6.610577 0.000198	Mean depende S.D. dependen Akaike info crit Schwarz criteri Hannan-Quinn Durbin-Watson	it var erion on criter.	-0.000548 0.022715 -4.970882 -4.797859 -4.903072 1.928743

Table A.36: Japan Unit Root Test at Second-Difference of tfp

Null Hypothesis: D(TFP,2) has a unit root Exogenous: Constant, Linear Trend Lag Length: 1 (Automatic - based on SIC, maxlag=10)

		t-Statistic	Prob.*
Augmented Dickey-Ful Test critical values:	ler test statistic 1% level 5% level 10% level	-9.147221 -4.115684 -3.485218 -3.170793	0.0000

*MacKinnon (1996) one-sided p-values.

Augmented Dickey-Fuller Test Equation Dependent Variable: D(TFP,3) Method: Least Squares Date: 09/09/16 Time: 19:19 Sample (adjusted): 1954 2014 Included observations: 61 after adjustments

Variable	Coefficient	Std. Error	t-Statistic	Prob.
D(TFP(-1),2) D(TFP(-1),3) C @TREND("1950")	-1.850765 0.344579 -0.003157 5.82E-05	0.202331 0.118018 0.005661 0.000148	-9.147221 2.919712 -0.557672 0.394485	0.0000 0.0050 0.5793 0.6947
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.733486 0.719459 0.020209 0.023279 153.5129 52.29083 0.000000	Mean depende S.D. dependen Akaike info crit Schwarz criteri Hannan-Quinn Durbin-Watson	t var erion on criter.	0.000486 0.038154 -4.902063 -4.763645 -4.847816 1.967622

Table A.37: Japan Unit Root Test at Level of top10

Null Hypothesis: TOP10 has a unit root Exogenous: Constant, Linear Trend Lag Length: 1 (Automatic - based on SIC, maxlag=10)

		t-Statistic	Prob.*
Augmented Dickey-Fulle Test critical values:	er test statistic 1% level 5% level 10% level	-1.682582 -4.121303 -3.487845 -3.172314	0.7466

*MacKinnon (1996) one-sided p-values.

Augmented Dickey-Fuller Test Equation Dependent Variable: D(TOP10) Method: Least Squares Date: 09/09/16 Time: 19:19 Sample (adjusted): 1952 2010 Included observations: 59 after adjustments

Variable	Coefficient	Std. Error	t-Statistic	Prob.
TOP10(-1) D(TOP10(-1)) C @TREND("1950")	-0.089802 0.072786 0.712195 0.000637	0.053372 0.128595 0.424043 0.000311	-1.682582 0.566007 1.679536 2.047729	0.0981 0.5737 0.0987 0.0454
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.076591 0.026223 0.021043 0.024355 146.1635 1.520640 0.219367	Mean depende S.D. dependen Akaike info crite Schwarz criterie Hannan-Quinn Durbin-Watson	t var erion on criter.	0.004935 0.021325 -4.819102 -4.678252 -4.764120 1.625828

Table A.38: Japan Unit Root Test at First-Difference of top10

Null Hypothesis: D(TOP10) has a unit root Exogenous: Constant, Linear Trend Lag Length: 0 (Automatic - based on SIC, maxlag=10)

		t-Statistic	Prob.*
Augmented Dickey-Fuller test statistic		-7.420321	0.0000
Test critical values:	1% level	-4.121303	
	5% level	-3.487845	
	10% level	-3.172314	

*MacKinnon (1996) one-sided p-values.

Augmented Dickey-Fuller Test Equation Dependent Variable: D(TOP10,2) Method: Least Squares Date: 09/09/16 Time: 19:19 Sample (adjusted): 1952 2010 Included observations: 59 after adjustments

Variable	Coefficient	Std. Error	t-Statistic	Prob.
D(TOP10(-1)) C @TREND("1950")	-0.959101 -0.001227 0.000193	0.129253 0.005817 0.000168	-7.420321 -0.210876 1.152651	0.0000 0.8337 0.2540
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.497006 0.479042 0.021384 0.025608 144.6828 27.66671 0.000000	Mean depende S.D. dependen Akaike info crit Schwarz criteri Hannan-Quinn Durbin-Watson	t var erion on criter.	0.000836 0.029627 -4.802807 -4.697169 -4.761570 1.626605

Table A.39: Japan Unit Root Test at Level of top5

Null Hypothesis: TOP5 has a unit root Exogenous: Constant, Linear Trend Lag Length: 1 (Automatic - based on SIC, maxlag=10)

		t-Statistic	Prob.*
Augmented Dickey-Fuller test statistic		-1.546766	0.8017
Test critical values:	1% level	-4.121303	
	5% level	-3.487845	
	10% level	-3.172314	

*MacKinnon (1996) one-sided p-values.

Augmented Dickey-Fuller Test Equation Dependent Variable: D(TOP5) Method: Least Squares Date: 09/09/16 Time: 19:20 Sample (adjusted): 1952 2010 Included observations: 59 after adjustments

Variable	Coefficient	Std. Error	t-Statistic	Prob.
TOP5(-1) D(TOP5(-1)) C @TREND("1950")	-0.080292 0.154559 0.604352 0.000486	0.051910 0.129014 0.391650 0.000271	-1.546766 1.198002 1.543091 1.793259	0.1277 0.2361 0.1285 0.0784
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.078421 0.028154 0.023265 0.029770 140.2404 1.560069 0.209458	Mean depende S.D. dependen Akaike info crite Schwarz criteri Hannan-Quinn Durbin-Watson	t var erion on criter.	0.004519 0.023600 -4.618319 -4.477469 -4.563336 1.665128

Table A.40: Japan Unit Root Test at First-Difference of top5

Null Hypothesis: D(TOP5) has a unit root Exogenous: Constant, Linear Trend Lag Length: 0 (Automatic - based on SIC, maxlag=10)

		t-Statistic	Prob.*
Augmented Dickey-Ful Test critical values:	ler test statistic 1% level	-6.881985 -4.121303	0.0000
	5% level 10% level	-3.487845 -3.172314	

*MacKinnon (1996) one-sided p-values.

Augmented Dickey-Fuller Test Equation Dependent Variable: D(TOP5,2) Method: Least Squares Date: 09/09/16 Time: 19:20 Sample (adjusted): 1952 2010 Included observations: 59 after adjustments

Variable	Coefficient	Std. Error	t-Statistic	Prob.
D(TOP5(-1)) C @TREND("1950")	-0.882881 -0.001360 0.000176	0.128289 0.006418 0.000185	-6.881985 -0.211914 0.952906	0.0000 0.8329 0.3447
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.459941 0.440653 0.023553 0.031065 138.9843 23.84619 0.000000	Mean depende S.D. dependen Akaike info crit Schwarz criteri Hannan-Quinn Durbin-Watson	t var erion on criter.	0.000880 0.031492 -4.609637 -4.503999 -4.568400 1.652789

Table A.41: Japan Unit Root Test at Level of top1

Null Hypothesis: TOP1 has a unit root Exogenous: Constant, Linear Trend Lag Length: 1 (Automatic - based on SIC, maxlag=10)

		t-Statistic	Prob.*
Augmented Dickey-Fuller test statistic		-1.685039	0.7456
Test critical values:	1% level	-4.121303	
	5% level	-3.487845	
	10% level	-3.172314	

*MacKinnon (1996) one-sided p-values.

Augmented Dickey-Fuller Test Equation Dependent Variable: D(TOP1) Method: Least Squares Date: 09/09/16 Time: 19:20 Sample (adjusted): 1952 2010 Included observations: 59 after adjustments

Variable	Coefficient	Std. Error	t-Statistic	Prob.
TOP1(-1) D(TOP1(-1)) C @TREND("1950")	-0.082188 0.328625 0.541721 0.000281	0.048775 0.128172 0.321906 0.000268	-1.685039 2.563939 1.682855 1.048075	0.0976 0.0131 0.0981 0.2992
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.134531 0.087324 0.032578 0.058374 120.3760 2.849796 0.045652	Mean depende S.D. dependen Akaike info crite Schwarz criteri Hannan-Quinn Durbin-Watson	t var erion on criter.	0.004529 0.034101 -3.944948 -3.804098 -3.889966 1.790501

Table A.42: Japan Unit Root Test at First-Difference of top1

Null Hypothesis: D(TOP1) has a unit root Exogenous: Constant, Linear Trend Lag Length: 0 (Automatic - based on SIC, maxlag=10)

		t-Statistic	Prob.*
Augmented Dickey-Ful Test critical values:	ler test statistic 1% level	-5.744953 -4.121303	0.0001
	5% level 10% level	-3.487845 -3.172314	

*MacKinnon (1996) one-sided p-values.

Augmented Dickey-Fuller Test Equation Dependent Variable: D(TOP1,2) Method: Least Squares Date: 09/09/16 Time: 19:20 Sample (adjusted): 1952 2010 Included observations: 59 after adjustments

Variable	Coefficient	Std. Error	t-Statistic	Prob.
D(TOP1(-1)) C @TREND("1950")	-0.724948 -0.000498 0.000129	0.126189 0.008995 0.000257	-5.744953 -0.055354 0.504098	0.0000 0.9561 0.6162
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.372342 0.349926 0.033109 0.061388 118.8910 16.61031 0.000002	Mean depende S.D. dependen Akaike info crit Schwarz criteri Hannan-Quinn Durbin-Watson	t var erion on criter.	0.000840 0.041064 -3.928510 -3.822873 -3.887273 1.741865

Table A.43: UK Unit Root Test at Level of tfp

Null Hypothesis: TFP has a unit root Exogenous: Constant, Linear Trend Lag Length: 0 (Automatic - based on SIC, maxlag=10)

		t-Statistic	Prob.*
Augmented Dickey-Fuller test statistic		-2.895313	0.1709
Test critical values:	1% level	-4.107947	
	5% level	-3.481595	
	10% level	-3.168695	

*MacKinnon (1996) one-sided p-values.

Augmented Dickey-Fuller Test Equation Dependent Variable: D(TFP) Method: Least Squares Date: 09/10/16 Time: 15:31 Sample (adjusted): 1951 2014 Included observations: 64 after adjustments

Variable	Coefficient	Std. Error	t-Statistic	Prob.
TFP(-1) C @TREND("1949")	-0.213966 0.859738 0.002294	0.073901 0.294450 0.000793	-2.895313 2.919805 2.893888	0.0052 0.0049 0.0053
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.121320 0.092510 0.016790 0.017196 172.2907 4.211141 0.019357	Mean depende S.D. dependen Akaike info crite Schwarz criteri Hannan-Quinn Durbin-Watson	t var erion on criter.	0.008061 0.017625 -5.290335 -5.189137 -5.250468 1.449627

Table A.44: UK Unit Root Test at First-Difference of tfp

Null Hypothesis: D(TFP) has a unit root Exogenous: Constant, Linear Trend Lag Length: 0 (Automatic - based on SIC, maxlag=10)

		t-Statistic	Prob.*
Augmented Dickey-Full Test critical values:	er test statistic 1% level 5% level 10% level	-7.868459 -4.110440 -3.482763 -3.169372	0.0000

*MacKinnon (1996) one-sided p-values.

Augmented Dickey-Fuller Test Equation Dependent Variable: D(TFP,2) Method: Least Squares Date: 09/10/16 Time: 15:32 Sample (adjusted): 1952 2014 Included observations: 63 after adjustments

Variable	Coefficient	Std. Error	t-Statistic	Prob.
D(TFP(-1)) C @TREND("1949")	-0.903211 0.010743 -7.33E-05	0.114789 0.004366 0.000111	-7.868459 2.460621 -0.658698	0.0000 0.0168 0.5126
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.510954 0.494652 0.016050 0.015455 172.4644 31.34391 0.000000	Mean depende S.D. depender Akaike info crit Schwarz criteri Hannan-Quinn Durbin-Watsor	nt var erion on criter.	0.000937 0.022577 -5.379822 -5.277768 -5.339683 2.008833

Table A.45: UK Unit Root Test at Level of top10

Null Hypothesis: TOP10 has a unit root Exogenous: Constant, Linear Trend Lag Length: 0 (Automatic - based on SIC, maxlag=10)

		t-Statistic	Prob.*
Augmented Dickey-Ful Test critical values:	ler test statistic 1% level 5% level 10% level	-2.110140 -4.110440 -3.482763 -3.169372	0.5301

*MacKinnon (1996) one-sided p-values.

Augmented Dickey-Fuller Test Equation Dependent Variable: D(TOP10) Method: Least Squares Date: 09/10/16 Time: 15:32 Sample (adjusted): 1950 2012 Included observations: 63 after adjustments

Variable	Coefficient	Std. Error	t-Statistic	Prob.
TOP10(-1) C @TREND("1949")	-0.069424 0.545355 0.000647	0.032900 0.259996 0.000260	-2.110140 2.097554 2.487910	0.0390 0.0402 0.0156
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.093659 0.063447 0.021232 0.027047 154.8366 3.100113 0.052330	Mean depende S.D. dependen Akaike info crite Schwarz criterie Hannan-Quinn Durbin-Watson	t var erion on criter.	0.003069 0.021939 -4.820209 -4.718155 -4.780071 1.700876

Table A.46: UK Unit Root Test at First-Difference of top10

Null Hypothesis: D(TOP10) has a unit root Exogenous: Constant, Linear Trend Lag Length: 0 (Automatic - based on SIC, maxlag=10)

		t-Statistic	Prob.*
Augmented Dickey-Full Test critical values:	ler test statistic 1% level 5% level 10% level	-6.591299 -4.113017 -3.483970 -3.170071	0.0000

*MacKinnon (1996) one-sided p-values.

Augmented Dickey-Fuller Test Equation Dependent Variable: D(TOP10,2) Method: Least Squares Date: 09/10/16 Time: 15:32 Sample (adjusted): 1951 2012 Included observations: 62 after adjustments

Variable	Coefficient	Std. Error	t-Statistic	Prob.
D(TOP10(-1)) C @TREND("1949")	-0.849488 -0.002293 0.000156	0.128880 0.005794 0.000158	-6.591299 -0.395742 0.985914	0.0000 0.6937 0.3282
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.424199 0.404680 0.021931 0.028376 150.3953 21.73297 0.000000	Mean depende S.D. dependen Akaike info crit Schwarz criteri Hannan-Quinn Durbin-Watson	t var erion on criter.	0.000112 0.028423 -4.754686 -4.651760 -4.714274 2.031430

Table A.47: UK Unit Root Test at Level of top5

Null Hypothesis: TOP5 has a unit root Exogenous: Constant, Linear Trend Lag Length: 0 (Automatic - based on SIC, maxlag=10)

		t-Statistic	Prob.*
Augmented Dickey-Full Test critical values:	ler test statistic 1% level 5% level 10% level	-2.238282 -4.110440 -3.482763 -3.169372	0.4605

*MacKinnon (1996) one-sided p-values.

Augmented Dickey-Fuller Test Equation Dependent Variable: D(TOP5) Method: Least Squares Date: 09/10/16 Time: 15:32 Sample (adjusted): 1950 2012 Included observations: 63 after adjustments

Variable	Coefficient	Std. Error	t-Statistic	Prob.
TOP5(-1) C @TREND("1949")	-0.059747 0.437880 0.000793	0.026693 0.200066 0.000259	-2.238282 2.188673 3.060797	0.0289 0.0325 0.0033
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.135183 0.106356 0.026402 0.041825 141.1050 4.689414 0.012815	Mean depende S.D. dependen Akaike info crite Schwarz criteri Hannan-Quinn Durbin-Watson	t var erion on criter.	0.002564 0.027929 -4.384286 -4.282232 -4.344147 1.611807

Table A.48: UK Unit Root Test at First-Difference of top5

Null Hypothesis: D(TOP5) has a unit root Exogenous: Constant, Linear Trend Lag Length: 0 (Automatic - based on SIC, maxlag=10)

		t-Statistic	Prob.*
Augmented Dickey-Ful Test critical values:	er test statistic 1% level 5% level	-6.188445 -4.113017 -3.483970	0.0000
	10% level	-3.170071	

*MacKinnon (1996) one-sided p-values.

Augmented Dickey-Fuller Test Equation Dependent Variable: D(TOP5,2) Method: Least Squares Date: 09/10/16 Time: 15:32 Sample (adjusted): 1951 2012 Included observations: 62 after adjustments

Variable	Coefficient	Std. Error	t-Statistic	Prob.
D(TOP5(-1)) C @TREND("1949")	-0.790893 -0.007369 0.000295	0.127802 0.007266 0.000199	-6.188445 -1.014111 1.479073	0.0000 0.3147 0.1444
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.393757 0.373206 0.027106 0.043349 137.2596 19.16033 0.000000	Mean depende S.D. depender Akaike info crit Schwarz criteri Hannan-Quinn Durbin-Watsor	t var erion on criter.	0.000114 0.034237 -4.330954 -4.228028 -4.290543 2.061362

Table A.49: UK Unit Root Test at Level of top1

Null Hypothesis: TOP1 has a unit root Exogenous: Constant, Linear Trend Lag Length: 0 (Automatic - based on SIC, maxlag=10)

		t-Statistic	Prob.*
Augmented Dickey-Ful Test critical values:	ler test statistic 1% level 5% level 10% level	-2.063475 -4.110440 -3.482763 -3.169372	0.5556

*MacKinnon (1996) one-sided p-values.

Augmented Dickey-Fuller Test Equation Dependent Variable: D(TOP1) Method: Least Squares Date: 09/10/16 Time: 15:33 Sample (adjusted): 1950 2012 Included observations: 63 after adjustments

Variable	Coefficient	Std. Error	t-Statistic	Prob.
TOP1(-1) C @TREND("1949")	-0.051105 0.312061 0.001207	0.024767 0.163301 0.000380	-2.063475 1.910959 3.179856	0.0434 0.0608 0.0023
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.147075 0.118644 0.046834 0.131604 104.9964 5.173078 0.008459	Mean depende S.D. dependen Akaike info crite Schwarz criteri Hannan-Quinn Durbin-Watson	t var erion on criter.	0.001617 0.049886 -3.237981 -3.135927 -3.197843 1.622089

Table A.50: UK Unit Root Test at First-Difference of top1

Null Hypothesis: D(TOP1) has a unit root Exogenous: Constant, Linear Trend Lag Length: 0 (Automatic - based on SIC, maxlag=10)

		t-Statistic	Prob.*
Augmented Dickey-Fuller Test critical values:	test statistic 1% level 5% level 10% level	-6.226345 -4.113017 -3.483970 -3.170071	0.0000

*MacKinnon (1996) one-sided p-values.

Augmented Dickey-Fuller Test Equation Dependent Variable: D(TOP1,2) Method: Least Squares Date: 09/10/16 Time: 15:33 Sample (adjusted): 1951 2012 Included observations: 62 after adjustments

Variable	Coefficient	Std. Error	t-Statistic	Prob.
D(TOP1(-1)) C @TREND("1949")	-0.800530 -0.018881 0.000630	0.128571 0.013062 0.000358	-6.226345 -1.445529 1.760407	0.0000 0.1536 0.0835
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.396767 0.376319 0.047908 0.135414 101.9489 19.40319 0.000000	Mean depende S.D. dependen Akaike info crit Schwarz criteri Hannan-Quinn Durbin-Watson	t var erion on criter.	5.16E-05 0.060663 -3.191901 -3.088976 -3.151490 2.041631

Table A.51: U.S. Unit Root Test at Level of tfp

Null Hypothesis: TFP has a unit root Exogenous: Constant, Linear Trend Lag Length: 0 (Automatic - based on SIC, maxlag=10)

		t-Statistic	Prob.*
Augmented Dickey-Ful		-2.758866	0.2177
Test critical values:	1% level 5% level	-4.107947 -3.481595	
	10% level	-3.168695	

*MacKinnon (1996) one-sided p-values.

Augmented Dickey-Fuller Test Equation Dependent Variable: D(TFP) Method: Least Squares Date: 09/10/16 Time: 17:52 Sample (adjusted): 1951 2014 Included observations: 64 after adjustments

Variable	Coefficient	Std. Error	t-Statistic	Prob.
TFP(-1) C @TREND("1950")	-0.203092 0.837936 0.001688	0.073614 0.301453 0.000603	-2.758866 2.779658 2.799209	0.0076 0.0072 0.0068
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.113977 0.084927 0.012090 0.008916 193.3090 3.923469 0.024950	Mean depende S.D. dependen Akaike info crit Schwarz criteri Hannan-Quinn Durbin-Watson	t var erion on criter.	0.007601 0.012638 -5.947156 -5.845958 -5.907289 1.854485

Table A.52: U.S. Unit Root Test at First-Difference of tfp

Null Hypothesis: D(TFP) has a unit root Exogenous: Constant, Linear Trend Lag Length: 0 (Automatic - based on SIC, maxlag=10)

		t-Statistic	Prob.*
Augmented Dickey-Ful		-9.847550	0.0000
Test critical values:	1% level	-4.110440	
	5% level	-3.482763	
	10% level	-3.169372	

*MacKinnon (1996) one-sided p-values.

Augmented Dickey-Fuller Test Equation Dependent Variable: D(TFP,2) Method: Least Squares Date: 09/10/16 Time: 17:52 Sample (adjusted): 1952 2014 Included observations: 63 after adjustments

Variable	Coefficient	Std. Error	t-Statistic	Prob.
D(TFP(-1)) C @TREND("1950")	-1.127053 0.009976 -2.13E-05	0.114450 0.003075 7.95E-05	-9.847550 3.243862 -0.268193	0.0000 0.0019 0.7895
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.619566 0.606885 0.011460 0.007880 193.6821 48.85731 0.000000	Mean depende S.D. depender Akaike info crit Schwarz criteri Hannan-Quinn Durbin-Watsor	it var erion on criter.	0.000705 0.018278 -6.053402 -5.951347 -6.013263 2.005353

Table A.53: U.S. Unit Root Test at Level of top10

Null Hypothesis: TOP10 has a unit root Exogenous: Constant, Linear Trend Lag Length: 0 (Automatic - based on SIC, maxlag=10)

		t-Statistic	Prob.*
Augmented Dickey-Ful Test critical values:	er test statistic 1% level 5% level	-3.057560 -4.107947 -3.481595	0.1254
	10% level	-3.168695	

*MacKinnon (1996) one-sided p-values.

Augmented Dickey-Fuller Test Equation Dependent Variable: D(TOP10) Method: Least Squares Date: 09/10/16 Time: 17:52 Sample (adjusted): 1951 2014 Included observations: 64 after adjustments

Variable	Coefficient	Std. Error	t-Statistic	Prob.
TOP10(-1) C @TREND("1950")	-0.097326 0.771156 0.000976	0.031831 0.253552 0.000246	-3.057560 3.041417 3.966857	0.0033 0.0035 0.0002
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.227481 0.202152 0.014325 0.012517 182.4539 8.981224 0.000381	Mean depende S.D. dependen Akaike info crite Schwarz criteri Hannan-Quinn Durbin-Watson	t var erion on criter.	0.005232 0.016037 -5.607936 -5.506738 -5.568069 1.883289

Table A.54: U.S. Unit Root Test at First-Difference of top10

Null Hypothesis: D(TOP10) has a unit root Exogenous: Constant, Linear Trend Lag Length: 0 (Automatic - based on SIC, maxlag=10)

		t-Statistic	Prob.*
Augmented Dickey-Ful Test critical values:	ler test statistic 1% level 5% level 10% level	-7.440499 -4.110440 -3.482763 -3.169372	0.0000

*MacKinnon (1996) one-sided p-values.

Augmented Dickey-Fuller Test Equation Dependent Variable: D(TOP10,2) Method: Least Squares Date: 09/10/16 Time: 17:55 Sample (adjusted): 1952 2014 Included observations: 63 after adjustments

Variable	Coefficient	Std. Error	t-Statistic	Prob.
D(TOP10(-1)) C @TREND("1950")	-0.930471 -0.001866 0.000222	0.125055 0.003959 0.000110	-7.440499 -0.471235 2.017301	0.0000 0.6392 0.0481
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.480681 0.463370 0.015025 0.013545 176.6215 27.76798 0.000000	Mean depende S.D. dependen Akaike info crit Schwarz criteri Hannan-Quinn Durbin-Watson	t var erion on criter.	0.000716 0.020510 -5.511794 -5.409740 -5.471655 2.059973

Table A.55: U.S. Unit Root Test at Level of top5

Null Hypothesis: TOP5 has a unit root Exogenous: Constant, Linear Trend Lag Length: 0 (Automatic - based on SIC, maxlag=10)

		t-Statistic	Prob.*
Augmented Dickey-Ful Test critical values:	1% level 5% level	-3.135594 -4.107947 -3.481595	0.1071
	10% level	-3.168695	

*MacKinnon (1996) one-sided p-values.

Augmented Dickey-Fuller Test Equation Dependent Variable: D(TOP5) Method: Least Squares Date: 09/10/16 Time: 17:53 Sample (adjusted): 1951 2014 Included observations: 64 after adjustments

Variable	Coefficient	Std. Error	t-Statistic	Prob.
TOP5(-1) C @TREND("1950")	-0.099483 0.739191 0.001343	0.031727 0.238577 0.000324	-3.135594 3.098330 4.140715	0.0026 0.0029 0.0001
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.230809 0.205589 0.022731 0.031519 152.9020 9.152037 0.000334	Mean depende S.D. dependen Akaike info crite Schwarz criteri Hannan-Quinn Durbin-Watson	t var erion on criter.	0.005877 0.025503 -4.684437 -4.583239 -4.644570 1.828323

Table A.56: U.S. Unit Root Test at First-Difference of top5

Null Hypothesis: D(TOP5) has a unit root Exogenous: Constant, Linear Trend Lag Length: 0 (Automatic - based on SIC, maxlag=10)

		t-Statistic	Prob.*
Augmented Dickey-Full Test critical values:	er test statistic 1% level 5% level 10% level	-7.200030 -4.110440 -3.482763 -3.169372	0.0000

*MacKinnon (1996) one-sided p-values.

Augmented Dickey-Fuller Test Equation Dependent Variable: D(TOP5,2) Method: Least Squares Date: 09/10/16 Time: 17:53 Sample (adjusted): 1952 2014 Included observations: 63 after adjustments

Variable	Coefficient	Std. Error	t-Statistic	Prob.
D(TOP5(-1)) C @TREND("1950")	-0.898840 -0.004863 0.000336	0.124838 0.006338 0.000175	-7.200030 -0.767238 1.921947	0.0000 0.4459 0.0594
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.464316 0.446460 0.023882 0.034222 147.4243 26.00317 0.000000	Mean depende S.D. dependen Akaike info crit Schwarz criteri Hannan-Quinn Durbin-Watson	t var erion on criter.	0.001128 0.032100 -4.584898 -4.482844 -4.544760 2.057929

Table A.57: U.S. Unit Root Test at Level of top1

Null Hypothesis: TOP1 has a unit root Exogenous: Constant, Linear Trend Lag Length: 0 (Automatic - based on SIC, maxlag=10)

		t-Statistic	Prob.*
Augmented Dickey-Ful Test critical values:	ler test statistic 1% level 5% level	-2.994397 -4.107947 -3.481595	0.1419
	10% level	-3.168695	

*MacKinnon (1996) one-sided p-values.

Augmented Dickey-Fuller Test Equation Dependent Variable: D(TOP1) Method: Least Squares Date: 09/10/16 Time: 17:53 Sample (adjusted): 1951 2014 Included observations: 64 after adjustments

Variable	Coefficient	Std. Error	t-Statistic	Prob.
TOP1(-1) C @TREND("1950")	-0.100685 0.640638 0.002164	0.033625 0.220494 0.000556	-2.994397 2.905461 3.890809	0.0040 0.0051 0.0002
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.200179 0.173955 0.046796 0.133583 106.6893 7.633538 0.001100	Mean depende S.D. dependen Akaike info crit Schwarz criteri Hannan-Quinn Durbin-Watson	t var erion on criter.	0.007174 0.051488 -3.240290 -3.139092 -3.200423 1.871660

Table A.58: U.S. Unit Root Test at First-Difference of top1

Null Hypothesis: D(TOP1) has a unit root Exogenous: Constant, Linear Trend Lag Length: 0 (Automatic - based on SIC, maxlag=10)

		t-Statistic	Prob.*
Augmented Dickey-Fulle Test critical values:	er test statistic 1% level 5% level 10% level	-7.201613 -4.110440 -3.482763 -3.169372	0.0000

*MacKinnon (1996) one-sided p-values.

Augmented Dickey-Fuller Test Equation Dependent Variable: D(TOP1,2) Method: Least Squares Date: 09/10/16 Time: 17:53 Sample (adjusted): 1952 2014 Included observations: 63 after adjustments

Variable	Coefficient	Std. Error	t-Statistic	Prob.
D(TOP1(-1)) C @TREND("1950")	-0.915024 -0.013077 0.000637	0.127058 0.013217 0.000359	-7.201613 -0.989373 1.772523	0.0000 0.3265 0.0814
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.463975 0.446107 0.049734 0.148410 101.2106 25.96751 0.000000	Mean depende S.D. dependen Akaike info crite Schwarz criteri Hannan-Quinn Durbin-Watson	t var erion on criter.	0.001712 0.066826 -3.117797 -3.015743 -3.077659 2.032697

B. Further Results of Engle-Granger Two-Step Analysis

Country	Canada	France	Germany	UK	US
Observations	60	62	61	62	64
Variables	2	2	2	2	2
1% level	-4.474	-4.454	-4.464	-4.454	-4.436
5% level	-3.559	-3.552	-3.555	-3.552	-3.545
10% level	-3.164	-3.160	-3.162	-3.160	-3.157

B.1. Calculated Critical Values for ADF Test

Table B.1: Critical Values for No Trend Case

Source: Own depiction based on data of Feenstra *et al.* (2015) and Alvaredo *et al.* (2016). *Notes*: Calculated according MacKinnon (2010) using Equation (4.3).

Country	Canada	France	Germany	UK	US
Observations	60	62	61	62	64
Variables	2	2	2	2	2
1% level	-5.209	-5.180	-5.194	-5.180	-5.152
5% level	-4.153	-4.140	-4.146	-4.140	-4.129
10% level	-3.748	-3.740	-3.744	-3.740	-3.732

Table B.2: Critical Values for Linear Trend Case

Source: Own depiction based on data of Feenstra *et al.* (2015) and Alvaredo *et al.* (2016). *Notes*: Calculated according MacKinnon (2010) using Equation (4.3).

B.2. Test Results of ECM

Table B.3: ECM Test Results					
Model I: <i>tfp</i> and <i>top10</i>					
	Canada	France	Germany	UK	US
R-squared	0.26	0.47	0.63	0.18	0.27
DW	2.06	1.77	2.17	2.09	1.69
Breusch-Godfrey S	erial Correla	tion LM Test			
F-statistic	1.75	0.37	0.33	0.77	1.88
Obs*R-squared	4.07	0.85	0.77	1.77	4.23
Normality					
Jarque-Bera	0.34	5.57	36.25***	20.16***	18.28***
White Heteroskedd	asticity Test				
F-statistic	0.95	2.81++	3.84+++	0.29	0.18
Obs*R-squared	7.80	10.08++	17.77+++	1.91	1.47
Scaled explain SS	5.00	12.05++	40.45+++	3.59	2.36
Ramsey RESET Tes	st				
t-statistic	1.55	0.38	1.29	0.91	0.99
F-statistic	2.41	0.14	1.66	0.83	0.99
Likelihood ratio	2.88°	0.16	1.91	0.97	1.16
	Γ	Model II: <i>tfp</i> a	nd top5		
	Canada	France	Germany	UK	US
R-squared	0.14	0.40	0.63	0.17	
DW	2.03	1.56	2.13	2.00	
Breusch-Godfrey S	erial Correla	tion LM Test			
F-statistic	1.20	1.97	0.97	0.03	
Obs*R-squared	2.56	4.18	2.09	0.06	
Normality					
Jarque-Bera	0.77	8.21**	5.91*	44.73***	
White Heteroskedd	asticity Test				
F-statistic	1.12	1.50	4.94+++	0.27	
Obs*R-squared	3.40	5.91	12.49+++	1.15	
Scaled explain SS	2.82	6.52	19.28+++	2.89	

Table B.3: ECM Test Results

(continued)	Canada	France	Germany	UK	US	
Ramsey RESET Test						
<i>t</i> -statistic	1.32	0.12	1.48	1.64		
F-statistic	1.74	0.01	2.19	2.70		
Likelihood ratio	1.88	0.02	2.35	2.94°		
	Γ	Model II: <i>tfp</i> a	nd top1			
	Canada	France	Germany	UK	US	
R-squared	0.20	0.26		0.25		
DW	2.10	1.94		1.88		
Breusch-Godfrey S	Serial Correla	tion LM Test				
F-statistic	0.58	0.13		0.85		
Obs*R-squared	1.35	0.30		1.97		
Normality						
Jarque-Bera	0.16	5.87*		113.88***		
White Heterosked	asticity Test					
F-statistic	1.31	0.46		0.10		
Obs*R-squared	7.71	1.93		0.71		
Scaled explain SS	6.64	2.30		2.23		
Ramsey RESET Tes	st					
t-statistic	0.15	1.82°		0.14		
F-statistic	0.02	3.32°		0.02		
Likelihood ratio	0.03	3.59°		0.02		

Source: Own depiction based on data of Feenstra *et al.* (2015) and Alvaredo *et al.* (2016). Notes: *, ** and *** denote null hypothesis of normal distribution are rejected at the 10%, 5% and 1% significance levels, respectively. *, ⁺⁺ and ⁺⁺⁺ denote null hypothesis of homoskedasticity are rejected at the 10%, 5% and 1% significance levels, respectively. °, °° and °°° denote null hypothesis of dynamic stability are rejected at the 10%, 5% and 1% significance levels, respectively.

B.3. Canada

Table B.4: Canada Model I, FMOLS Regression

Dependent Variable: TOP10 Method: Fully Modified Least Squares (FMOLS) Date: 09/10/16 Time: 15:52 Sample (adjusted): 1951 2010 Included observations: 60 after adjustments Cointegrating equation deterministics: C @TREND @TREND^2 Long-run covariance estimate (Bartlett kernel, Newey-West automatic bandwidth = 6.4429, NW automatic lag length = 3)

Variable	Coefficient	Std. Error	t-Statistic	Prob.
TFP C @TREND @TREND^2	0.345266 6.797048 -0.010729 0.000162	0.149200 0.641703 0.002243 2.67E-05	2.314109 10.59220 -4.783785 6.074136	0.0244 0.0000 0.0000 0.0000
R-squared Adjusted R-squared S.E. of regression Long-run variance	0.637685 0.618276 0.025832 0.001184	Mean depende S.D. dependen Sum squared r	t var	8.233181 0.041810 0.037369

Source: EViews output based on data of Feenstra et al. (2015) and Alvaredo et al. (2016).

Table B.5: Canada Model I, FMOLS Hansen Instability Test

Cointegration Test - Hansen Parameter Instability Date: 09/10/16 Time: 16:49 Equation: TOP10_FMOLS Series: TOP10 TFP Null hypothesis: Series are cointegrated Cointegrating equation deterministics: C @TREND @TREND^2

	Stochastic	Deterministic	Excluded	
Lc statistic	Trends (m)	Trends (k)	Trends (p2)	Prob.*
1.180591	1	2	0	< 0.01

*Hansen (1992b) Lc(m2=1, k=2) p-values, where m2=m-p2 is the number of stochastic trends in the asymptotic distribution

Table B.6: Canada Model I, FMOLS ADF Unit Root Test of Residuals

Null Hypothesis: RESID10 has a unit root Exogenous: Constant Lag Length: 0 (Automatic - based on SIC, maxlag=10)

		t-Statistic	Prob.*
Augmented Dickey-Full Test critical values:	er test statistic 1% level 5% level	-3.598415 -3.546099 -2.911730	0.0087
	10% level	-2.593551	

*MacKinnon (1996) one-sided p-values.

Augmented Dickey-Fuller Test Equation Dependent Variable: D(RESID10) Method: Least Squares Date: 09/09/16 Time: 16:50 Sample (adjusted): 1952 2010 Included observations: 59 after adjustments

Variable	Coefficient	Std. Error	t-Statistic	Prob.
RESID10(-1) C	-0.305426 0.000487	0.084878 0.002115	-3.598415 0.230529	0.0007 0.8185
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.185116 0.170820 0.016237 0.015027 160.4084 12.94859 0.000671	Mean depende S.D. dependen Akaike info critu Schwarz criteri Hannan-Quinn Durbin-Watson	t var erion on criter.	0.000697 0.017831 -5.369775 -5.299350 -5.342284 1.840810

Source: EViews output based on data of Feenstra et al. (2015) and Alvaredo et al. (2016).

Table B.7: Canada Model I, FMOLS Engle-Granger Cointegration Test

Cointegration Test - Engle-Granger Date: 09/09/16 Time: 16:49 Equation: TOP10_FMOLS Specification: TOP10 TFP C @TREND @TREND^2 Cointegrating equation deterministics: C @TREND @TREND^2 Null hypothesis: Series are not cointegrated Automatic lag specification (lag=0 based on Schwarz Info Criterion, maxlag=10)

	Value	Prob.*	
Engle-Granger tau-statistic	-2.879747	0.5631	
Engle-Granger z-statistic	-14.57082	0.5681	

*MacKinnon (1996) p-values.

Intermediate Results:		
Rho - 1	-0.242847	
Rho S.E.	0.084329	
Residual variance	0.000262	
Long-run residual variance	0.000262	
Number of lags	0	
Number of observations	60	
Number of stochastic trends**	2	

**Number of stochastic trends in asymptotic distribution.

Engle-Granger Test Equation: Dependent Variable: D(RESID) Method: Least Squares Date: 09/09/16 Time: 16:49 Sample (adjusted): 1951 2010 Included observations: 60 after adjustments

Variable	Coefficient	Std. Error	t-Statistic	Prob.
RESID(-1)	-0.242847	0.084329	-2.879747	0.0055
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood Durbin-Watson stat	0.123214 0.123214 0.016178 0.015443 162.8128 1.762731	Mean depende S.D. dependen Akaike info crit Schwarz criteri Hannan-Quinn	t var erion on	8.60E-05 0.017278 -5.393759 -5.358853 -5.380105

Table B.8: Canada Model I, Unrestricted Error Correction Estimation

Dependent Variable: DTOP10
Method: Least Squares
Date: 09/08/16 Time: 16:08
Sample (adjusted): 1957 2010
Included observations: 54 after adjustments
HAC standard errors & covariance (Bartlett kernel, Newey-West automatic
bandwidth = 1.2340, NW automatic lag length = 3)

Variable	Coefficient	Std. Error	t-Statistic	Prob.
RESID10(-1)	-0.551201	0.146822	-3.754203	0.0006
DTOP10(-1)	0.313686	0.172691	1.816455	0.0768
DTOP10(-2)	0.280721	0.203189	1.381571	0.1748
DTOP10(-3)	0.348037	0.165097	2.108076	0.0413
DTOP10(-4)	0.379128	0.111449	3.401812	0.0015
DTOP10(-5)	0.140637	0.109235	1.287471	0.2053
DTOP10(-6)	0.242431	0.110733	2.189336	0.0345
DTFP(-1)	0.057464	0.129244	0.444616	0.6590
DTFP(-2)	0.029103	0.124284	0.234169	0.8160
DTFP(-3)	0.020950	0.155508	0.134719	0.8935
DTFP(-4)	0.253829	0.102419	2.478350	0.0175
DTFP(-5)	0.218792	0.128732	1.699599	0.0970
DTFP(-6)	0.227314	0.116040	1.958931	0.0571
C	-0.004373	0.002712	-1.612344	0.1148
R-squared	0.330434	Mean depende	nt var	0.001389
Adjusted R-squared	0.112825	S.D. dependen	t var	0.013648
S.E. of regression	0.012855	Akaike info criterion		-5.651720
Sum squared resid	0.006610	Schwarz criterion		-5.136058
Log likelihood	166.5964	Hannan-Quinn criter.		-5.452849
F-statistic	1.518474	Durbin-Watson	stat	1.979649
Prob(F-statistic)	0.153137	Wald F-statistic	;	4.077548
Prob(Wald F-statistic)	0.000295			

Source: EViews output based on data of Feenstra et al. (2015) and Alvaredo et al. (2016).

Table B.9: Canada Model I, Restricted Error Correction Model (ECM)

Dependent Variable: DTOP10 Method: Least Squares Date: 09/09/16 Time: 15:46 Sample (adjusted): 1957 2010 Included observations: 54 after adjustments HAC standard errors & covariance (Bartlett kernel, Newey-West automatic bandwidth = 3.5738, NW automatic lag length = 3)

	0			5 .
Variable	Coefficient	Std. Error	t-Statistic	Prob.
RESID10(-1)	-0.380631	0.097148	-3.918053	0.0003
DTOP10(-1)	0.201623	0.157086	1.283518	0.2059
DTOP10(-3)	0.268650	0.108379	2.478790	0.0170
DTOP10(-4)	0.308386	0.086061	3.583330	0.0008
DTOP10(-6)	0.220824	0.089164	2.476593	0.0171
DTFP(-4)	0.219393	0.114265	1.920028	0.0612
DTFP(-5)	0.131726	0.116442	1.131257	0.2639
DTFP(-6)	0.161218	0.123702	1.303279	0.1991
С	-0.002195	0.002686	-0.817192	0.4181
R-squared	0.262897	Mean dependent var		0.001389
Adjusted R-squared	0.131857	S.D. dependen	t var	0.013648
S.E. of regression	0.012717	Akaike info criterion		-5.740808
Sum squared resid	0.007277	Schwarz criterion		-5.409311
Log likelihood	164.0018	Hannan-Quinn criter.		-5.612963
F-statistic	2.006229	Durbin-Watson stat		2.057575
Prob(F-statistic)	0.067358	Wald F-statistic	;	4.906735
Prob(Wald F-statistic)	0.000214			

Source: EViews output based on data of Feenstra et al. (2015) and Alvaredo et al. (2016).

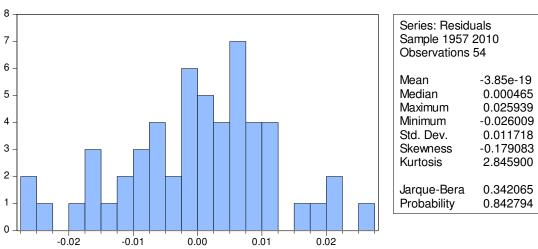


Figure B.1: Canada Model I, ECM Jarque-Bera Normal Distribution Test

Table B.10: Canada Model I, ECM Breusch-Godfrey Serial Correlation LM Test

Breusch-Godfrey Serial Correlation LM Test:	
---	--

F-statistic	Prob. F(2,43)	0.1855
Obs*R-squared	Prob. Chi-Square(2)	0.1307

Test Equation: Dependent Variable: RESID Method: Least Squares Date: 09/09/16 Time: 16:57 Sample: 1957 2010 Included observations: 54 Presample missing value lagged residuals set to zero.

Variable	Coefficient	Std. Error	t-Statistic	Prob.
RESID10(-1)	-0.109332	0.142360	-0.767996	0.4467
DTOP10(-1)	0.199806	0.293319	0.681192	0.4994
DTOP10(-3)	0.085807	0.150075	0.571759	0.5705
DTOP10(-4)	-0.008561	0.140406	-0.060975	0.9517
DTOP10(-6)	0.023458	0.113398	0.206868	0.8371
DTFP(-4)	0.051969	0.140705	0.369349	0.7137
DTFP(-5)	0.010870	0.101175	0.107437	0.9149
DTFP(-6)	0.037222	0.129626	0.287150	0.7754
С	-0.000754	0.002284	-0.330325	0.7428
RESID(-1)	-0.136061	0.375407	-0.362437	0.7188
RESID(-2)	0.324849	0.182291	1.782039	0.0818
R-squared	0.075358	Mean depende	nt var	-3.85E-19
Adjusted R-squared	-0.139675	S.D. dependen		0.011718
S.E. of regression	0.012509	Akaike info criterion		-5.745083
Sum squared resid	0.006729	Schwarz criterion		-5.339920
Log likelihood	166.1172	Hannan-Quinn criter.		-5.588827
F-statistic	0.350450	Durbin-Watson stat		1.969403
Prob(F-statistic)	0.960870			

Table B.11: Canada Model I, ECM Heteroskedasticity Test

Heteroskedasticity Test: White

F-statistic		Prob. F(8,45)	0.4860
Obs*R-squared		Prob. Chi-Square(8)	0.4529
Scaled explained SS	5.001851	Prob. Chi-Square(8)	0.7574

Test Equation: Dependent Variable: RESID^2 Method: Least Squares Date: 09/09/16 Time: 16:57 Sample: 1957 2010 Included observations: 54 HAC standard errors & covariance (Bartlett kernel, Newey-West automatic bandwidth = 4.3607, NW automatic lag length = 3)

Variable	Coefficient	Std. Error	t-Statistic	Prob.
С	0.000121	3.84E-05	3.158330	0.0028
RESID10(-1)^2	0.071487	0.050807	1.407047	0.1663
DTOP10(-1)^2	0.061517	0.121271	0.507269	0.6144
DTOP10(-3)^2	0.013465	0.105866	0.127185	0.8994
DTOP10(-4)^2	-0.023722	0.068491	-0.346350	0.7307
DTOP10(-6)^2	-0.098331	0.053218	-1.847690	0.0712
DTFP(-4)^2	-0.049871	0.046758	-1.066576	0.2919
DTFP(-5)^2	0.007311	0.071141	0.102762	0.9186
DTFP(-6)^2	0.026465	0.046501	0.569141	0.5721
R-squared	0.144518	Mean dependent var		0.000135
Adjusted R-squared	-0.007568	S.D. dependen	t var	0.000185
S.E. of regression	0.000186	Akaike info criterion		-14.19595
Sum squared resid	1.55E-06	Schwarz criterion		-13.86445
Log likelihood	392.2906	Hannan-Quinn criter.		-14.06810
F-statistic	0.950239	Durbin-Watson stat		1.994533
Prob(F-statistic)	0.486034			

Table B.12: Canada Model I, ECM RESET Test

Ramsey RESET Test Equation: TOP10_ECM Specification: DTOP10 RESID10(-1) DTOP10(-1) DTOP10(-3) DTOP10(-4) DTOP10(-6) DTFP(-4 TO -6) C Omitted Variables: Squares of fitted values

	Value	df	Probability
t-statistic	1.553818	44	0.1274
F-statistic	2.414351	(1, 44)	0.1274
Likelihood ratio	2.884629	1	0.0894
F-test summary:			
			Mean
	Sum of Sq.	df	Squares
Test SSR	0.000379	1	0.000379
Restricted SSR	0.007277	45	0.000162
Unrestricted SSR	0.006898	44	0.000157
LR test summary:			
	Value	df	
Restricted LogL	164.0018	45	_
Unrestricted LogL	165.4441	44	

Unrestricted Test Equation: Dependent Variable: DTOP10 Method: Least Squares Date: 09/09/16 Time: 16:57 Sample: 1957 2010 Included observations: 54 HAC standard errors & covariance (Bartlett kernel, Newey-West automatic bandwidth = 4.2554, NW automatic lag length = 3)

Variable	Coefficient	Std. Error	t-Statistic	Prob.
RESID10(-1)	-0.374403	0.082606	-4.532399	0.0000
DTOP10(-1)	0.153380	0.161547	0.949444	0.3476
DTOP10(-3)	0.231664	0.099825	2.320698	0.0250
DTOP10(-4)	0.348398	0.093695	3.718436	0.0006
DTOP10(-6)	0.235197	0.076852	3.060391	0.0038
DTFP(-4)	0.212028	0.110695	1.915427	0.0620
DTFP(-5)	0.131901	0.111726	1.180567	0.2441
DTFP(-6)	0.144990	0.121971	1.188721	0.2409
С	0.000165	0.003641	0.045296	0.9641
FITTED ²	-44.71215	29.05830	-1.538705	0.1310
R-squared	0.301239	Mean depend	ent var	0.001389
Adjusted R-squared	0.158311	S.D. depende	nt var	0.013648
S.E. of regression	0.012521	Akaike info criterion		-5.757190
Sum squared resid	0.006898	Schwarz criterion		-5.388860
Log likelihood	165.4441	Hannan-Quinn criter.		-5.615140
F-statistic	2.107625	Durbin-Watson stat		1.952643
Prob(F-statistic)	0.049274	Wald F-statist	ic	5.078553
Prob(Wald F-statistic)	0.000103			

Table B.13: Canada Model II, FMOLS Regression

Dependent Variable: TOP5 Method: Fully Modified Least Squares (FMOLS) Date: 09/08/16 Time: 16:09 Sample (adjusted): 1951 2010 Included observations: 60 after adjustments Cointegrating equation deterministics: C @TREND @TREND^2 Long-run covariance estimate (Bartlett kernel, Newey-West automatic bandwidth = 6.5686, NW automatic lag length = 3) Variable Coefficient Std. Error t-Statistic Prob

Variable	Coefficient	Std. Error	t-Statistic	Prob.
TFP	0.388615	0.195161	1.991252	0.0513
С	6.212886	0.839377	7.401781	0.0000
@TREND	-0.016016	0.002934	-5.459443	0.0000
@TREND^2	0.000260	3.49E-05	7.452136	0.0000
R-squared Adjusted R-squared S.E. of regression Long-run variance	0.766937 0.754451 0.035049 0.002026	Mean depende S.D. dependen Sum squared re	t var	7.804187 0.070731 0.068793

Source: EViews output based on data of Feenstra et al. (2015) and Alvaredo et al. (2016).

Table B.14: Canada Model II, FMOLS Hansen Instability Test

Cointegration Test - Hansen Parameter Instability Date: 09/09/16 Time: 16:51 Equation: TOP5_FMOLS Series: TOP5 TFP Null hypothesis: Series are cointegrated Cointegrating equation deterministics: C @TREND @TREND^2

	Stochastic	Deterministic	Excluded	
Lc statistic	Trends (m)	Trends (k)	Trends (p2)	Prob.*
1.396834	1	2	0	< 0.01

*Hansen (1992b) Lc(m2=1, k=2) p-values, where m2=m-p2 is the number of stochastic trends in the asymptotic distribution

Table B.15: Canada Model II, FMOLS ADF Unit Root Test of Residuals

Null Hypothesis: RESID5 has a unit root Exogenous: Constant Lag Length: 0 (Automatic - based on SIC, maxlag=10)

		t-Statistic	Prob.*
Augmented Dickey-Ful Test critical values:	1% level	-2.916334 -3.546099	0.0495
	5% level 10% level	-2.911730 -2.593551	

*MacKinnon (1996) one-sided p-values.

Augmented Dickey-Fuller Test Equation Dependent Variable: D(RESID5) Method: Least Squares Date: 09/09/16 Time: 16:52 Sample (adjusted): 1952 2010 Included observations: 59 after adjustments

Variable	Coefficient	Std. Error	t-Statistic	Prob.
RESID5(-1) C	-0.236870 0.000167	0.081222 0.002697	-2.916334 0.061854	0.0051 0.9509
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.129837 0.114571 0.020708 0.024443 146.0565 8.505005 0.005057	Mean depende S.D. dependen Akaike info crit Schwarz criteri Hannan-Quinn Durbin-Watson	t var erion on criter.	0.000325 0.022007 -4.883272 -4.812847 -4.855781 1.739530

Source: EViews output based on data of Feenstra et al. (2015) and Alvaredo et al. (2016).

Table B.16: Canada Model II, FMOLS Engle-Granger Cointegration Test

Cointegration Test - Engle-Granger Date: 09/09/16 Time: 16:51 Equation: TOP5_FMOLS Specification: TOP5 TFP C @TREND @TREND^2 Cointegrating equation deterministics: C @TREND @TREND^2 Null hypothesis: Series are not cointegrated Automatic lag specification (lag=0 based on Schwarz Info Criterion, maxlag=10)

	Value	Prob.*	
Engle-Granger tau-statistic	-2.419578	0.7875	
Engle-Granger z-statistic	-11.66945	0.7477	

*MacKinnon (1996) p-values.

Intermediate Results:		
Rho - 1	-0.194491	
Rho S.E.	0.080382	
Residual variance	0.000421	
Long-run residual variance	0.000421	
Number of lags	0	
Number of observations	60	
Number of stochastic trends**	2	

**Number of stochastic trends in asymptotic distribution.

Engle-Granger Test Equation: Dependent Variable: D(RESID) Method: Least Squares Date: 09/09/16 Time: 16:51 Sample (adjusted): 1951 2010 Included observations: 60 after adjustments

Variable	Coefficient	Std. Error	t-Statistic	Prob.
RESID(-1)	-0.194491	0.080382	-2.419578	0.0186
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood Durbin-Watson stat	0.089999 0.089999 0.020512 0.024825 148.5713 1.700043	Mean depende S.D. dependen Akaike info crit Schwarz criteri Hannan-Quinn	t var erion on	-0.000367 0.021503 -4.919043 -4.884137 -4.905389

Table B.17: Canada Model II, Unrestricted Error Correction Estimation

Dependent Variable: DTOP5	
Method: Least Squares	
Date: 09/09/16 Time: 15:55	
Sample (adjusted): 1956 2010	
Included observations: 55 after adjustments	
HAC standard errors & covariance (Bartlett kernel, Newey-West automatic)
bandwidth = 1.4123, NW automatic lag length = 3)	

Variable	Coefficient	Std. Error	t-Statistic	Prob.
RESID5(-1)	-0.397572	0.139676	-2.846389	0.0068
DTOP5(-1)	0.377820	0.194424	1.943274	0.0585
DTOP5(-2)	0.234251	0.210610	1.112252	0.2722
DTOP5(-3)	0.173127	0.148141	1.168670	0.2490
DTOP5(-4)	0.175551	0.108587	1.616686	0.1133
DTOP5(-5)	0.161164	0.112853	1.428087	0.1605
DTFP(-1)	0.090008	0.175255	0.513583	0.6102
DTFP(-2)	0.099345	0.172947	0.574426	0.5687
DTFP(-3)	0.158202	0.177649	0.890528	0.3781
DTFP(-4)	0.142111	0.143452	0.990655	0.3274
DTFP(-5)	0.366288	0.169070	2.166495	0.0359
C	-0.004293	0.003885	-1.104786	0.2754
R-squared	0.237283	Mean depende	nt var	0.001700
Adjusted R-squared	0.042170	S.D. dependen	t var	0.018679
S.E. of regression	0.018281	Akaike info crite	erion	-4.975716
Sum squared resid	0.014370	Schwarz criterie	on	-4.537753
Log likelihood	148.8322	Hannan-Quinn	criter.	-4.806352
F-statistic	1.216130	Durbin-Watson	stat	2.150354
Prob(F-statistic)	0.305864	Wald F-statistic	;	1.651859
Prob(Wald F-statistic)	0.118366			

Table B.18: Canada Model II, Error Correction Model (ECM)

Dependent Variable: DTOP5 Method: Least Squares Date: 09/08/16 Time: 16:12 Sample (adjusted): 1956 2010 Included observations: 55 after adjustments HAC standard errors & covariance (Bartlett kernel, Newey-West automatic bandwidth = 5.1033, NW automatic lag length = 3)

Variable	Coefficient	Std. Error	t-Statistic	Prob.
RESID5(-1) DTOP5(-1) DTFP(-5) C	-0.202619 0.249864 0.246245 0.000626	0.083457 0.191677 0.109360 0.002830	-2.427811 1.303570 2.251683 0.221265	0.0188 0.1982 0.0287 0.8258
R-squared	0.142240			0.001700
Adjusted R-squared	0.091784	Mean dependent var S.D. dependent var		0.018679
S.E. of regression Sum squared resid	0.017801 0.016160	Akaike info crite		-5.149188 -5.003200
Log likelihood F-statistic	145.6027 2.819072	Hannan-Quinn Durbin-Watson		-5.092733 2.026070
Prob(F-statistic) Prob(Wald F-statistic)	0.048122 0.065740	Wald F-statistic		2.552020

Source: EViews output based on data of Feenstra et al. (2015) and Alvaredo et al. (2016).

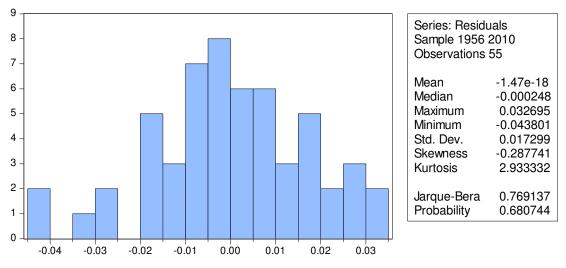


Figure B.2: Canada Model II, ECM Jarque-Bera Normal Distribution Test

Table B.19: Canada Model II, ECM Breusch-Godfrey Serial Correlation LM Test

F-statistic	1.196439	Prob. F(2,49)	0.3109
Obs*R-squared	2.560827	Prob. Chi-Square(2)	0.2779

Breusch-Godfrey Serial Correlation LM Test:

Test Equation: Dependent Variable: RESID Method: Least Squares Date: 09/09/16 Time: 16:59 Sample: 1956 2010 Included observations: 55 Presample missing value lagged residuals set to zero.

Variable	Coefficient	Std. Error	t-Statistic	Prob.
RESID5(-1) DTOP5(-1) DTFP(-5) C RESID(-1)	-0.089254 -0.047622 0.011584 0.000142 0.116760	0.120303 0.349910 0.125422 0.002556 0.424688	-0.741908 -0.136098 0.092361 0.055666 0.274931	0.4617 0.8923 0.9268 0.9558 0.7845
RESID(-2)	0.263172	0.175963	1.495611	0.1412
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.046560 -0.050729 0.017733 0.015408 146.9138 0.478576 0.790477	Mean depende S.D. dependen Akaike info crite Schwarz criterie Hannan-Quinn Durbin-Watson	t var erion on criter.	-1.47E-18 0.017299 -5.124140 -4.905158 -5.039458 2.062769

Table B.20: Canada Model II, ECM Heteroskedasticity Test

Heteroskedasticity Test: White

F-statistic	1.119626	Prob. F(3,51)	0.3498
Obs*R-squared	3.398494	Prob. Chi-Square(3)	0.3342
Scaled explained SS	2.824736	Prob. Chi-Square(3)	0.4194

Test Equation: Dependent Variable: RESID^2 Method: Least Squares Date: 09/09/16 Time: 16:59 Sample: 1956 2010 Included observations: 55 HAC standard errors & covariance (Bartlett kernel, Newey-West automatic bandwidth = 3.0146, NW automatic lag length = 3)

Variable	Coefficient	Std. Error	t-Statistic	Prob.
C RESID5(-1)^2 DTOP5(-1)^2 DTFP(-5)^2	0.000228 0.034302 0.180660 -0.068707	6.70E-05 0.053628 0.150852 0.042188	3.406171 0.639617 1.197596 -1.628598	0.0013 0.5253 0.2366 0.1096
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.061791 0.006602 0.000411 8.61E-06 352.8717 1.119626 0.349825	Mean depende S.D. dependen Akaike info crite Schwarz criteri Hannan-Quinn Durbin-Watson	t var erion on criter.	0.000294 0.000412 -12.68624 -12.54026 -12.62979 2.004204

Table B.21: Canada Model II, ECM RESET Test

Ramsey RESET Test Equation: TOP5_ECM Specification: DTOP5 RESID5(-1) DTOP5(-1) DTFP(-5) C Omitted Variables: Squares of fitted values

	Value	df	Probability
t-statistic	1.318180	50	0.1935
F-statistic	1.737600	(1, 50)	0.1935
Likelihood ratio	1.878898	1	0.1705
F-test summary:			
			Mean
	Sum of Sq.	df	Squares
Test SSR	0.000543	1	0.000543
Restricted SSR	0.016160	51	0.000317
Unrestricted SSR	0.015618	50	0.000312
LR test summary:			
	Value	df	
Restricted LogL	145.6027	51	
Unrestricted LogL	146.5421	50	

Unrestricted Test Equation: Dependent Variable: DTOP5 Method: Least Squares Date: 09/09/16 Time: 16:59 Sample: 1956 2010 Included observations: 55 HAC standard errors & covariance (Bartlett kernel, Newey-West automatic bandwidth = 4.8470, NW automatic lag length = 3)

Variable	Coefficient	Std. Error	t-Statistic	Prob.
RESID5(-1) DTOP5(-1) DTFP(-5) C FITTED^2	-0.232733 0.273424 0.248470 0.002891 -42.98329	0.065424 0.175858 0.095376 0.004036 46.69320	-3.557318 1.554805 2.605160 0.716385 -0.920547	0.0008 0.1263 0.0121 0.4771 0.3617
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic) Prob(Wald F-statistic)	0.171048 0.104732 0.017674 0.015618 146.5421 2.579283 0.048479 0.000191	Mean depend S.D. depende Akaike info cri Schwarz crite Hannan-Quin Durbin-Watso Wald F-statist	nt var iterion rion n criter. n stat	0.001700 0.018679 -5.146986 -4.964501 -5.076418 1.988735 6.787877

Source: EViews output based on data of Feenstra et al. (2015) and Alvaredo et al. (2016).

Table B.22: Canada Model III, FMOLS Regression

Dependent Variable: TOP1 Method: Fully Modified Least Squares (FMOLS) Date: 09/10/16 Time: 15:52 Sample (adjusted): 1951 2010 Included observations: 60 after adjustments Cointegrating equation deterministics: C @TREND @TREND^2 Long-run covariance estimate (Bartlett kernel, Newey-West automatic bandwidth = 6.3439, NW automatic lag length = 3) Variable Coefficient Std. Error t-Statistic

Variable	Coefficient	Std. Error	t-Statistic	Prob.
TFP C @TREND @TREND^2	0.111685 6.557455 -0.024893 0.000475	0.368216 1.583678 0.005535 6.58E-05	0.303315 4.140650 -4.497436 7.218427	0.7628 0.0001 0.0000 0.0000
R-squared Adjusted R-squared S.E. of regression Long-run variance	0.835136 0.826304 0.066391 0.007213	Mean depende S.D. dependen Sum squared r	t var	6.885732 0.159299 0.246832

Source: EViews output based on data of Feenstra et al. (2015) and Alvaredo et al. (2016).

Table B.23: Canada Model III, FMOLS Hansen Instability Test

Cointegration Test - Hansen Parameter Instability Date: 09/09/16 Time: 16:52 Equation: TOP1_FMOLS Series: TOP1 TFP Null hypothesis: Series are cointegrated Cointegrating equation deterministics: C @TREND @TREND^2

	Stochastic	Deterministic	Excluded	
Lc statistic	Trends (m)	Trends (k)	Trends (p2)	Prob.*
1.285531	1	2	0	< 0.01

*Hansen (1992b) Lc(m2=1, k=2) p-values, where m2=m-p2 is the number of stochastic trends in the asymptotic distribution

Table B.24: Canada Model III, FMOLS ADF Unit Root Test of Residuals

Null Hypothesis: RESID1 has a unit root Exogenous: Constant Lag Length: 1 (Automatic - based on SIC, maxlag=10)

		t-Statistic	Prob.*
Augmented Dickey-Fuller test statistic		-2.692907	0.0814
Test critical values:	1% level	-3.548208	
	5% level	-2.912631	
	10% level	-2.594027	

*MacKinnon (1996) one-sided p-values.

Augmented Dickey-Fuller Test Equation Dependent Variable: D(RESID1) Method: Least Squares Date: 09/09/16 Time: 16:53 Sample (adjusted): 1953 2010 Included observations: 58 after adjustments

Variable	Coefficient	Std. Error	t-Statistic	Prob.
RESID1(-1) D(RESID1(-1)) C	-0.227311 0.345918 -0.000698	0.084411 0.133403 0.004693	-2.692907 2.593039 -0.148782	0.0094 0.0122 0.8823
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.158044 0.127427 0.035703 0.070111 112.5271 5.162038 0.008820	Mean depende S.D. dependen Akaike info crite Schwarz criterie Hannan-Quinn Durbin-Watson	t var erion on criter.	-0.001347 0.038222 -3.776798 -3.670223 -3.735285 1.986642

Table B.25: Canada Model III, FMOLS Engle-Granger Cointegration Test

Cointegration Test - Engle-Granger Date: 09/09/16 Time: 16:52 Equation: TOP1_FMOLS Specification: TOP1 TFP C @TREND @TREND^2 Cointegrating equation deterministics: C @TREND @TREND^2 Null hypothesis: Series are not cointegrated Automatic lag specification (lag=1 based on Schwarz Info Criterion, maxlag=10)

	Value	Prob.*	
Engle-Granger tau-statistic	-2.637740	0.6883	
Engle-Granger z-statistic	-19.44167	0.2957	

*MacKinnon (1996) p-values.

Intermediate Results:		
Rho - 1	-0.219684	
Rho S.E.	0.083285	
Residual variance	0.001254	
Long-run residual variance	0.002822	
Number of lags	1	
Number of observations	59	
Number of stochastic trends**	2	

**Number of stochastic trends in asymptotic distribution.

Engle-Granger Test Equation: Dependent Variable: D(RESID) Method: Least Squares Date: 09/09/16 Time: 16:52 Sample (adjusted): 1952 2010 Included observations: 59 after adjustments

Variable	Coefficient	Std. Error	t-Statistic	Prob.
RESID(-1) D(RESID(-1))	-0.219684 0.333321	0.083285 0.131759	-2.637740 2.529786	0.0107 0.0142
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood Durbin-Watson stat	0.143243 0.128212 0.035418 0.071501 114.3923 1.981931	Mean depende S.D. dependen Akaike info crit Schwarz criteri Hannan-Quinn	t var erion on	-0.001749 0.037933 -3.809909 -3.739484 -3.782418

Table B.26: Canada Model III, Unrestricted Error Correction Estimation

Dependent Variable: DTOP1
Method: Least Squares
Date: 09/09/16 Time: 16:30
Sample (adjusted): 1956 2010
Included observations: 55 after adjustments
HAC standard errors & covariance (Bartlett kernel, Newey-West automatic
bandwidth = 3.1331, NW automatic lag length = 3)

Variable	Coefficient	Std. Error	t-Statistic	Prob.
RESID1(-1)	-0.509693	0.152328	-3.346028	0.0017
DTOP1(-1)	0.600311	0.209564	2.864573	0.0064
DTOP1(-2)	0.257631	0.184845	1.393769	0.1705
DTOP1(-3)	0.167554	0.150562	1.112860	0.2720
DTOP1(-4)	0.193652	0.107373	1.803546	0.0783
DTOP1(-5)	0.174671	0.099395	1.757346	0.0860
DTFP(-1)	0.572318	0.353067	1.620988	0.1123
DTFP(-2)	0.220947	0.322305	0.685521	0.4967
DTFP(-3)	0.564915	0.324542	1.740652	0.0889
DTFP(-4)	0.258192	0.297400	0.868166	0.3901
DTFP(-5)	0.777771	0.278705	2.790662	0.0078
C	-0.013081	0.007997	-1.635837	0.1092
R-squared	0.285641	Mean depende	nt var	0.003303
Adjusted R-squared	0.102897	S.D. dependen	t var	0.038112
S.E. of regression	0.036098	Akaike info criterion		-3.614911
Sum squared resid	0.056033	Schwarz criterion		-3.176947
Log likelihood	111.4101	Hannan-Quinn criter.		-3.445547
F-statistic	1.563071	Durbin-Watson stat		2.088146
Prob(F-statistic)	0.144863	Wald F-statistic	;	2.939076
Prob(Wald F-statistic)	0.005546			

Table B.27: Canada Model III, Error Correction Model (ECM)

Dependent Variable: DTOP1 Method: Least Squares Date: 09/09/16 Time: 16:41 Sample (adjusted): 1956 2010 Included observations: 55 after adjustments HAC standard errors & covariance (Bartlett kernel, Newey-West automatic bandwidth = 4.0989, NW automatic lag length = 3)

Variable	Coefficient	Std. Error	t-Statistic	Prob.
RESID1(-1) DTOP1(-1) DTOP1(-4) DTOP1(-5) DTFP(-3) DTFP(-5) C	-0.258202 0.428675 0.085030 0.087389 0.148022 0.522842 -0.001128	0.088488 0.207203 0.086821 0.087689 0.150140 0.182740 0.005203	-2.917911 2.068863 0.979372 0.996582 0.985891 2.861128 -0.216884	0.0053 0.0440 0.3323 0.3240 0.3291 0.0062 0.8292
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic) Prob(Wald F-statistic)	0.203887 0.104373 0.036069 0.062445 108.4303 2.048826 0.077155 0.012150	Mean depende S.D. dependen Akaike info crit Schwarz criteri Hannan-Quinn Durbin-Watson Wald F-statistic	ent var erion on criter.	0.003303 0.038112 -3.688374 -3.432896 -3.589579 2.100782 3.092979

Source: EViews output based on data of Feenstra et al. (2015) and Alvaredo et al. (2016).

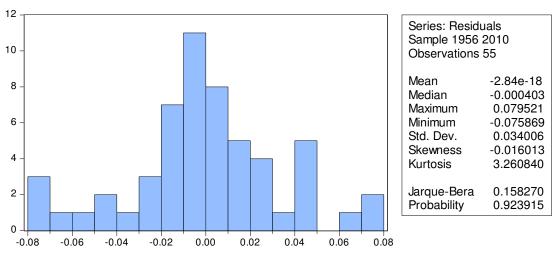


Figure B.3: Canada Model III, ECM Jarque-Bera Normal Distribution Test

Table B.28: Canada Model III, ECM Breusch-Godfrey Serial Correlation LM Test

F-statistic Obs*R-squared	0.576815 1.345594	Prob. F(2,46) Prob. Chi-Squa	re(2)	0.5657 0.5103
Test Equation: Dependent Variable: RES Method: Least Squares Date: 09/09/16 Time: 17 Sample: 1956 2010 Included observations: 55 Presample missing value	7:00 5	ls set to zero.		
Variable	Coefficient	Std. Error	t-Statistic	Prob.

Variable	Coefficient	Std. Error	t-Statistic	Prob.
RESID1(-1)	-0.028297	0.143878	-0.196674	0.8449
DTOP1(-1)	0.112357	0.405143	0.277326	0.7828
DTOP1(-4)	0.009830	0.148447	0.066220	0.9475
DTOP1(-5)	-0.006386	0.135770	-0.047039	0.9627
DTFP(-3)	-0.000648	0.321651	-0.002015	0.9984
DTFP(-5)	0.035845	0.280202	0.127927	0.8988
С	-0.000561	0.005805	-0.096592	0.9235
RESID(-1)	-0.136513	0.517852	-0.263613	0.7933
RESID(-2)	0.130189	0.252353	0.515901	0.6084
R-squared	0.024465	Mean depende	nt var	-2.84E-18
Adjusted R-squared	-0.145193	S.D. dependen	t var	0.034006
S.E. of regression	0.036391	Akaike info criterion		-3.640417
Sum squared resid	0.060918	Schwarz criterion		-3.311944
Log likelihood	109.1115	Hannan-Quinn criter.		-3.513394
F-statistic	0.144204	Durbin-Watson stat		2.010114
Prob(F-statistic)	0.996519			

Source: EViews output based on data of Feenstra et al. (2015) and Alvaredo et al. (2016).

Table B.29: Canada Model III, ECM Heteroskedasticity Test

Heteroskedasticity Test: White

F-statistic	1.305071	Prob. F(6,48)	0.2731
Obs*R-squared	7.713955	Prob. Chi-Square(6)	0.2598
Scaled explained SS	6.641620	Prob. Chi-Square(6)	0.3553

Test Equation: Dependent Variable: RESID^2 Method: Least Squares Date: 09/09/16 Time: 17:01 Sample: 1956 2010 Included observations: 55 HAC standard errors & covariance (Bartlett kernel, Newey-West automatic bandwidth = 2.8924, NW automatic lag length = 3)

Variable	Coefficient	Std. Error	t-Statistic	Prob.
C RESID1(-1)^2 DTOP1(-1)^2 DTOP1(-4)^2 DTOP1(-5)^2 DTFP(-3)^2	0.001528 0.018804 0.072562 -0.174312 0.019037 -0.557227	0.000474 0.043694 0.111887 0.075505 0.104958 0.246173	3.224958 0.430352 0.648533 -2.308609 0.181382 -2.263562	0.0023 0.6689 0.5197 0.0253 0.8568 0.0282
DTFP(-5)^2	-0.449591	0.129770	-3.464516	0.0011
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.140254 0.032785 0.001694 0.000138 276.6252 1.305071 0.273117	Mean dependent var S.D. dependent var Akaike info criterion Schwarz criterion Hannan-Quinn criter. Durbin-Watson stat		0.001135 0.001723 -9.804553 -9.549074 -9.705757 1.982144

Source: EViews output based on data of Feenstra et al. (2015) and Alvaredo et al. (2016).

Table B.30: Canada Model III, ECM RESET Test

Ramsey RESET Test Equation: TOP1_ECM Specification: DTOP1 RESID1(-1) DTOP1(-1) DTOP1(-4 TO -5) DTFP(-3) DTFP(-5) C Omitted Variables: Squares of fitted values

	Value	df	Probability	
t-statistic	0.146472	47	0.8842	
F-statistic	0.021454	(1, 47)	0.8842	
Likelihood ratio	0.025100	1	0.8741	
F-test summary:				
-			Mean	
	Sum of Sq.	df	Squares	
Test SSR	2.85E-05	1	2.85E-05	
Restricted SSR	0.062445	48	0.001301	
Unrestricted SSR	0.062417	47	0.001328	
LR test summary:				
	Value	df		
Restricted LogL	108.4303	48	_	
Unrestricted LogL	108.4428	47		

Unrestricted Test Equation: Dependent Variable: DTOP1 Method: Least Squares Date: 09/09/16 Time: 17:01 Sample: 1956 2010 Included observations: 55 HAC standard errors & covariance (Bartlett kernel, Newey-West automatic bandwidth = 4.0928, NW automatic lag length = 3)

Variable	Coefficient	Std. Error	t-Statistic	Prob.
RESID1(-1)	-0.260739	0.077994	-3.343073	0.0016
DTOP1(-1)	0.433582	0.198438	2.184978	0.0339
DTOP1(-4)	0.083782	0.090226	0.928579	0.3579
DTOP1(-5)	0.082672	0.096725	0.854717	0.3970
DTFP(-3)	0.143089	0.173557	0.824451	0.4138
DTFP(-5)	0.512005	0.259468	1.973291	0.0544
С	-0.000487	0.009531	-0.051063	0.9595
FITTED ²	-1.774518	20.04407	-0.088531	0.9298
R-squared	0.204250	Mean depend	ent var	0.003303
Adjusted R-squared	0.085734	S.D. depende	nt var	0.038112
S.E. of regression	0.036442	Akaike info cri	terion	-3.652467
Sum squared resid	0.062417	Schwarz criterion		-3.360491
Log likelihood	108.4428	Hannan-Quinn criter.		-3.539558
F-statistic	1.723400	Durbin-Watson stat		2.099915
Prob(F-statistic)	0.126469	Wald F-statist	ic	3.999714
Prob(Wald F-statistic)	0.001658			

B.4. France

Table B.31: France Model I, FMOLS Regression

Dependent Variable: TOP10 Method: Fully Modified Least Squares (FMOLS) Date: 09/08/16 Time: 16:23 Sample (adjusted): 1951 2012 Included observations: 62 after adjustments Cointegrating equation deterministics: C @TREND @TREND^2 Long-run covariance estimate (Bartlett kernel, Newey-West automatic bandwidth = 7.0213, NW automatic lag length = 3)

Variable	Coefficient	Std. Error	t-Statistic	Prob.
TFP C @TREND @TREND^2	0.452463 6.626370 -0.024739 0.000240	0.234534 0.810841 0.010532 0.000103	1.929203 8.172223 -2.348933 2.326163	0.0586 0.0000 0.0223 0.0235
R-squared Adjusted R-squared S.E. of regression Long-run variance	0.458130 0.430103 0.038175 0.004109	Mean dependent var S.D. dependent var Sum squared resid		8.104953 0.050569 0.084526

Source: EViews output based on data of Feenstra et al. (2015) and Alvaredo et al. (2016).

Table B.32: France Model I, FMOLS Hansen Instability Test

Cointegration Test - Hansen Parameter Instability Date: 09/09/16 Time: 17:09 Equation: TOP10_FMOLS Series: TOP10 TFP Null hypothesis: Series are cointegrated Cointegrating equation deterministics: C @TREND @TREND^2

	Stochastic	Deterministic	Excluded	
Lc statistic	Trends (m)	Trends (k)	Trends (p2)	Prob.*
0.229469	1	2	0	> 0.2

*Hansen (1992b) Lc(m2=1, k=2) p-values, where m2=m-p2 is the number of stochastic trends in the asymptotic distribution

Table B.33: France Model I, FMOLS ADF Unit Root Test of Residuals

Null Hypothesis: RESID10 has a unit root Exogenous: Constant Lag Length: 0 (Automatic - based on SIC, maxlag=10)

		t-Statistic	Prob.*
Augmented Dickey-Ful Test critical values:	ler test statistic 1% level	-2.451213 -3.542097	0.1325
	5% level 10% level	-2.910019 -2.592645	

*MacKinnon (1996) one-sided p-values.

Augmented Dickey-Fuller Test Equation Dependent Variable: D(RESID10) Method: Least Squares Date: 09/09/16 Time: 17:11 Sample (adjusted): 1952 2012 Included observations: 61 after adjustments

Variable	Coefficient	Std. Error	t-Statistic	Prob.
RESID10(-1) C	-0.144979 0.001035	0.059146 0.002199	-2.451213 0.470612	0.0172 0.6397
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.092426 0.077043 0.017170 0.017394 162.4012 6.008444 0.017219	Mean depende S.D. dependen Akaike info crite Schwarz criteri Hannan-Quinn Durbin-Watson	t var erion on criter.	0.000953 0.017872 -5.259055 -5.189846 -5.231931 1.884801

Source: EViews output based on data of Feenstra et al. (2015) and Alvaredo et al. (2016).

Table B.34: France Model I, FMOLS Engle-Granger Cointegration Test

Cointegration Test - Engle-Granger Date: 09/09/16 Time: 17:10 Equation: TOP10_FMOLS Specification: TOP10 TFP C @TREND @TREND^2 Cointegrating equation deterministics: C @TREND @TREND^2 Null hypothesis: Series are not cointegrated Automatic lag specification (lag=0 based on Schwarz Info Criterion, maxlag=10)

	Value	Prob.*	
Engle-Granger tau-statistic	-3.070492	0.4615	
Engle-Granger z-statistic	-11.00941	0.7865	

*MacKinnon (1996) p-values.

Intermediate Results:		
Rho - 1	-0.177571	
Rho S.E.	0.057831	
Residual variance	0.000322	
Long-run residual variance	0.000322	
Number of lags	0	
Number of observations	62	
Number of stochastic trends**	2	

**Number of stochastic trends in asymptotic distribution.

Engle-Granger Test Equation: Dependent Variable: D(RESID) Method: Least Squares Date: 09/09/16 Time: 17:10 Sample (adjusted): 1951 2012 Included observations: 62 after adjustments

Variable	Coefficient	Std. Error	t-Statistic	Prob.
RESID(-1)	-0.177571	0.057831	-3.070492	0.0032
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood Durbin-Watson stat	0.128961 0.128961 0.017957 0.019670 161.7551 1.680607	Mean depende S.D. dependen Akaike info crit Schwarz criteri Hannan-Quinn	t var erion on	0.001436 0.019241 -5.185648 -5.151339 -5.172177

Table B.35: France Model I, Unrestricted Error Correction Estimation

Dependent Variable: DTOP10 Method: Least Squares Date: 09/08/16 Time: 16:51 Sample (adjusted): 1959 2012 Included observations: 54 after adjustments HAC standard errors & covariance (Bartlett kernel, Newey-West automatic bandwidth = 4.7699, NW automatic lag length = 3)

Variable	Coefficient	Std. Error	t-Statistic	Prob.
RESID10(-1)	-0.231863	0.101196	-2.291233	0.0279
DTOP10(-1)	0.116822	0.143576	0.813658	0.4212
DTOP10(-2)	0.223685	0.144094	1.552355	0.1293
DTOP10(-3)	0.007911	0.133953	0.059057	0.9532
DTOP10(-4)	0.348671	0.142927	2.439506	0.0198
DTOP10(-5)	0.167233	0.154602	1.081703	0.2866
DTOP10(-6)	0.080874	0.097854	0.826476	0.4140
DTOP10(-7)	-0.006993	0.138601	-0.050451	0.9600
DTOP10(-8)	0.080443	0.087533	0.919004	0.3642
DTFP(-1)	0.100515	0.115560	0.869811	0.3902
DTFP(-2)	0.199896	0.145495	1.373899	0.1780
DTFP(-3)	0.021153	0.117690	0.179738	0.8584
DTFP(-4)	0.420594	0.172779	2.434284	0.0200
DTFP(-5)	-0.095198	0.108782	-0.875126	0.3873
DTFP(-6)	-0.142691	0.127649	-1.117842	0.2710
DTFP(-7)	-0.020456	0.169889	-0.120406	0.9048
DTFP(-8)	-0.505978	0.129799	-3.898172	0.0004
C	0.003302	0.003165	1.043446	0.3037
R-squared	0.597345	Mean depende	nt var	-0.000954
Adjusted R-squared	0.407202	S.D. dependen	t var	0.016782
S.E. of regression	0.012921	Akaike info crite	erion	-5.598752
Sum squared resid	0.006010	Schwarz criteri	on	-4.935757
Log likelihood	169.1663	Hannan-Quinn criter.		-5.343061
F-statistic	3.141563	Durbin-Watson stat		1.984968
Prob(F-statistic)	0.001901	Wald F-statistic	;	11.64199
Prob(Wald F-statistic)	0.000000			

Table B.36: France Model I, Restricted Error Correction Model (ECM)

Dependent Variable: DTOP10 Method: Least Squares Date: 09/08/16 Time: 16:30 Sample (adjusted): 1959 2012 Included observations: 54 after adjustments HAC standard errors & covariance (Bartlett kernel, Newey-West automatic bandwidth = 3.8518, NW automatic lag length = 3)

Variable	Coefficient	Std. Error	t-Statistic	Prob.
RESID10(-1)	-0.132998	0.056075	-2.371797	0.0217
DTOP10(-4)	0.354554	0.123068	2.880957	0.0059
DTFP(-4)	0.483599	0.105453	4.585939	0.0000
DTFP(-8)	-0.590939	0.146966	-4.020911	0.0002
С	0.003080	0.002346	1.312549	0.1954
R-squared	0.474370	Mean dependent var		-0.000954
Adjusted R-squared	0.431462	S.D. dependent var		0.016782
S.E. of regression	0.012654	Akaike info criterion		-5.813717
Sum squared resid	0.007846	Schwarz criterion		-5.629551
Log likelihood	161.9703	Hannan-Quinn criter.		-5.742691
F-statistic	11.05539	Durbin-Watson stat		1.774417
Prob(F-statistic)	0.000002	Wald F-statistic		9.886279
Prob(Wald F-statistic)	0.000006			

Source: EViews output based on data of Feenstra et al. (2015) and Alvaredo et al. (2016).

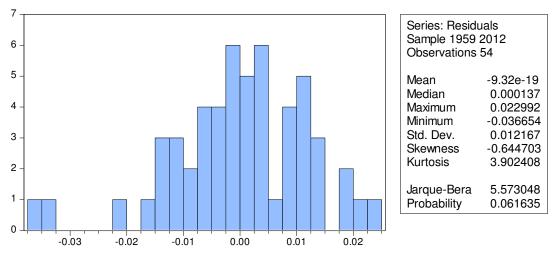


Figure B.4: France Model I, ECM Jarque-Bera Normal Distribution Test

Table B.37: France Model I, ECM Breusch-Godfrey Serial Correlation LM Test

F-statistic	0.374437	Prob. F(2,47)	0.6897
Obs*R-squared	0.846913	Prob. Chi-Square(2)	0.6548
Test Equation: Dependent Variable: RESID Method: Least Squares Date: 09/09/16 Time: 17:16 Sample: 1959 2012 Included observations: 54 Presample missing value lac)	ls set to zero	

Variable	Coefficient	Std. Error	t-Statistic	Prob.
RESID10(-1)	-0.012117	0.062685	-0.193306	0.8476
DTOP10(-4)	0.022240	0.115890	0.191910	0.8486
DTFP(-4)	0.007964	0.113166	0.070377	0.9442
DTFP(-8)	-0.001693	0.114778	-0.014751	0.9883
С	-4.07E-05	0.002801	-0.014541	0.9885
RESID(-1)	0.122172	0.159976	0.763692	0.4489
RESID(-2)	-0.060612	0.162329	-0.373391	0.7105
R-squared	0.015684	Mean depende	nt var	-9.32E-19
Adjusted R-squared	-0.109974	S.D. dependent var		0.012167
S.E. of regression	0.012818	Akaike info criterion		-5.755450
Sum squared resid	0.007723	Schwarz criterion		-5.497619
Log likelihood	162.3972	Hannan-Quinn criter.		-5.656015
F-statistic	0.124812	Durbin-Watson stat		1.995944
Prob(F-statistic)	0.992750			

Table B.38: France Model I, ECM Heteroskedasticity Test

Heteroskedasticity Test: White

F-statistic		Prob. F(4,49)	0.0353
Obs*R-squared	10.08214	Prob. Chi-Square(4)	0.0391
Scaled explained SS	12.04719	Prob. Chi-Square(4)	0.0170

Test Equation: Dependent Variable: RESID^2 Method: Least Squares Date: 09/09/16 Time: 17:16 Sample: 1959 2012 Included observations: 54 HAC standard errors & covariance (Bartlett kernel, Newey-West automatic bandwidth = 6.5475, NW automatic lag length = 3)

Variable	Coefficient	Std. Error	t-Statistic	Prob.
C	0.000100	2.57E-05	3.886340	0.0003
RESID10(-1)^2	-0.018189	0.021639	-0.840569	0.4047
DTOP10(-4)^2	-0.003678	0.038310	-0.096010	0.9239
DTFP(-4)^2	-0.032094	0.020118	-1.595285	0.1171
DTFP(-8)^2	0.117794	0.065138	1.808377	0.0767
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.186706 0.120315 0.000234 2.69E-06 377.3737 2.812210 0.035258	Mean depende S.D. dependen Akaike info crite Schwarz criteri Hannan-Quinn Durbin-Watson	t var erion on criter.	0.000145 0.000250 -13.79162 -13.60745 -13.72059 2.097178

Table B.39: France Model I, ECM RESET Test

Ramsey RESET Test Equation: TOP10_ECM Specification: DTOP10 RESID10(-1) DTOP10(-4) DTFP(-4) DTFP(-8) C Omitted Variables: Squares of fitted values

	Value	df	Probability
t-statistic	0.380110	48	0.7055
F-statistic	0.144484	(1, 48)	0.7055
Likelihood ratio	0.162300	1	0.6870
F-test summary:			
			Mean
	Sum of Sq.	df	Squares
Test SSR	2.35E-05	1	2.35E-05
Restricted SSR	0.007846	49	0.000160
Unrestricted SSR	0.007822	48	0.000163
LR test summary:			
-	Value	df	
Restricted LogL	161.9703	49	
Unrestricted LogL	162.0515	48	

Unrestricted Test Equation: Dependent Variable: DTOP10 Method: Least Squares Date: 09/09/16 Time: 17:16 Sample: 1959 2012 Included observations: 54 HAC standard errors & covariance (Bartlett kernel, Newey-West automatic bandwidth = 3.9458, NW automatic lag length = 3)

Variable	Coefficient	Std. Error	t-Statistic	Prob.
RESID10(-1) DTOP10(-4) DTFP(-4) DTFP(-8) C FITTED^2	-0.129868 0.346563 0.469439 -0.580610 0.002745 2.799824	0.059645 0.128891 0.117057 0.152570 0.002420 6.208933	-2.177359 2.688819 4.010354 -3.805534 1.134060 0.450935	0.0344 0.0098 0.0002 0.0004 0.2624 0.6541
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic) Prob(Wald F-statistic)	0.475948 0.421359 0.012766 0.007822 162.0515 8.718788 0.000006 0.000002	Mean depend S.D. depende Akaike info cri Schwarz criter Hannan-Quin Durbin-Watso Wald F-statist	nt var iterion rion n criter. n stat	-0.000954 0.016782 -5.779685 -5.558687 -5.694455 1.758706 9.467192

Table B.40: France Model II, FMOLS Regression

Dependent Variable: TOP5 Method: Fully Modified Least Squares (FMOLS) Date: 09/08/16 Time: 16:42 Sample (adjusted): 1951 2012 Included observations: 62 after adjustments Cointegrating equation deterministics: C @TREND @TREND^2 Long-run covariance estimate (Bartlett kernel, Newey-West automatic bandwidth = 6.9653, NW automatic lag length = 3) Variable Coefficient Std. Error t-Statistic F

Variable	Coefficient	Std. Error	t-Statistic	Prob.
TFP C @TREND	0.629038 5.636719 -0.035000	0.259816 0.898247 0.011667	2.421092 6.275244 -2.999840	0.0186 0.0000 0.0040
@TREND^2	0.000347	0.000114	3.035073	0.0036
R-squared Adjusted R-squared S.E. of regression Long-run variance	0.567077 0.544685 0.042374 0.005042	Mean depende S.D. dependen Sum squared r	t var	7.690505 0.062797 0.104141

Source: EViews output based on data of Feenstra et al. (2015) and Alvaredo et al. (2016).

Table B.41: France Model II, FMOLS Hansen Instability Test

Cointegration Test - Hansen Parameter Instability Date: 09/09/16 Time: 17:23 Equation: TOP5_FMOLS Series: TOP5 TFP Null hypothesis: Series are cointegrated Cointegrating equation deterministics: C @TREND @TREND^2

Lo ototiatio	Stochastic	Deterministic	Excluded	Drob *
Lc statistic	Trends (m)	Trends (k)	Trends (p2)	Prob.*
0.213034	1	2	0	> 0.2

*Hansen (1992b) Lc(m2=1, k=2) p-values, where m2=m-p2 is the number of stochastic trends in the asymptotic distribution

Table B.42: France Model II, FMOLS ADF Unit Root Test of Residuals

Null Hypothesis: RESID5 has a unit root Exogenous: Constant Lag Length: 0 (Automatic - based on SIC, maxlag=10)

		t-Statistic	Prob.*
Augmented Dickey-Ful		-2.644176	0.0899
Test critical values:	1% level 5% level 10% level	-3.542097 -2.910019 -2.592645	

*MacKinnon (1996) one-sided p-values.

Augmented Dickey-Fuller Test Equation Dependent Variable: D(RESID5) Method: Least Squares Date: 09/09/16 Time: 17:22 Sample (adjusted): 1952 2012 Included observations: 61 after adjustments

Variable	Coefficient	Std. Error	t-Statistic	Prob.
RESID5(-1) C	-0.167300 0.001187	0.063271 0.002608	-2.644176 0.455077	0.0105 0.6507
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.105948 0.090794 0.020368 0.024477 151.9821 6.991669 0.010475	Mean depende S.D. dependen Akaike info crite Schwarz criterie Hannan-Quinn Durbin-Watson	t var erion on criter.	0.001072 0.021361 -4.917446 -4.848237 -4.890323 1.835302

Source: EViews output based on data of Feenstra et al. (2015) and Alvaredo et al. (2016).

Table B.43: France Model II, FMOLS Engle-Granger Cointegration Test

Cointegration Test - Engle-Granger Date: 09/09/16 Time: 17:21 Equation: TOP5_FMOLS Specification: TOP5 TFP C @TREND @TREND^2 Cointegrating equation deterministics: C @TREND @TREND^2 Null hypothesis: Series are not cointegrated Automatic lag specification (lag=0 based on Schwarz Info Criterion, maxlag=10)

	Value	Prob.*	
Engle-Granger tau-statistic	-3.149305	0.4212	
Engle-Granger z-statistic	-11.85583	0.7378	

*MacKinnon (1996) p-values.

Intermediate Results:		
Rho - 1	-0.191223	
Rho S.E.	0.060719	
Residual variance	0.000440	
Long-run residual variance	0.000440	
Number of lags	0	
Number of observations	62	
Number of stochastic trends**	2	

**Number of stochastic trends in asymptotic distribution.

Engle-Granger Test Equation: Dependent Variable: D(RESID) Method: Least Squares Date: 09/09/16 Time: 17:21 Sample (adjusted): 1951 2012 Included observations: 62 after adjustments

Variable	Coefficient	Std. Error	t-Statistic	Prob.
RESID(-1)	-0.191223	0.060719	-3.149305	0.0025
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood Durbin-Watson stat	0.135705 0.135705 0.020969 0.026822 152.1418 1.670965	Mean depende S.D. dependen Akaike info crit Schwarz criteri Hannan-Quinn	it var erion on	0.001554 0.022555 -4.875541 -4.841233 -4.862071

Table B.44: France Model II, Unrestricted Error Correction Estimation

Dependent Variable: DTOP5 Method: Least Squares Date: 09/09/16 Time: 17:45 Sample (adjusted): 1959 2012 Included observations: 54 after adjustments HAC standard errors & covariance (Bartlett kernel, Newey-West automatic bandwidth = 4.3508, NW automatic lag length = 3)

Variable	Coefficient	Std. Error	t-Statistic	Prob.
RESID5(-1)	-0.322731	0.142642	-2.262524	0.0298
DTOP5(-1)	0.253088	0.151999	1.665067	0.1046
DTOP5(-2)	0.166571	0.164946	1.009852	0.3193
DTOP5(-3)	0.075118	0.156129	0.481124	0.6333
DTOP5(-4)	0.369475	0.151055	2.445970	0.0195
DTOP5(-5)	0.123975	0.164850	0.752048	0.4569
DTOP5(-6)	0.202255	0.139096	1.454072	0.1546
DTOP5(-7)	0.047668	0.132645	0.359365	0.7214
DTOP5(-8)	0.115400	0.105135	1.097644	0.2796
DTFP(-1)	0.152595	0.149573	1.020204	0.3144
DTFP(-2)	0.164372	0.178352	0.921617	0.3629
DTFP(-3)	-0.021429	0.154614	-0.138596	0.8905
DTFP(-4)	0.493260	0.193941	2.543350	0.0154
DTFP(-5)	-0.130191	0.148309	-0.877835	0.3859
DTFP(-6)	-0.102001	0.182174	-0.559908	0.5790
DTFP(-7)	0.058094	0.221260	0.262558	0.7944
DTFP(-8)	-0.564526	0.159564	-3.537929	0.0011
C	0.002774	0.005104	0.543421	0.5902
R-squared	0.530775	Mean depende	nt var	-0.001072
Adjusted R-squared	0.309196	S.D. dependent var		0.020329
S.E. of regression	0.016896	Akaike info criterion		-5.062233
Sum squared resid	0.010278	Schwarz criterion		-4.399238
Log likelihood	154.6803	Hannan-Quinn criter.		-4.806542
F-statistic	2.395423	Durbin-Watson stat		1.852016
Prob(F-statistic)	0.013604	Wald F-statistic	;	6.899239
Prob(Wald F-statistic)	0.000001			

Table B.45: France Model II, Restricted Error Correction Model (ECM)

Dependent Variable: DTOP5
Method: Least Squares
Date: 09/08/16 Time: 16:47
Sample (adjusted): 1959 2012
Included observations: 54 after adjustments
HAC standard errors & covariance (Bartlett kernel, Newey-West automatic
bandwidth = 4.7644, NW automatic lag length = 3)

Variable	Coefficient	Std. Error	t-Statistic	Prob.
RESID5(-1) DTOP5(-4) DTFP(-4) DTFP(-8) C	-0.129468 0.298046 0.518457 -0.660956 0.003824	0.067503 0.133951 0.143573 0.181431 0.003368	-1.917967 2.225031 3.611105 -3.643020 1.135269	0.0610 0.0307 0.0007 0.0006 0.2618
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic) Prob(Wald F-statistic)	0.401197 0.352315 0.016361 0.013116 148.0963 8.207469 0.000038 0.000409	Mean depende S.D. dependen Akaike info crit Schwarz criteri Hannan-Quinn Durbin-Watson Wald F-statistic	nt var t var erion on criter. stat	-0.001072 0.020329 -5.299865 -5.115699 -5.228839 1.559298 6.191693

Source: EViews output based on data of Feenstra et al. (2015) and Alvaredo et al. (2016).

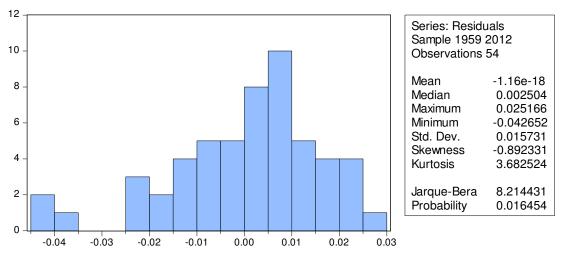


Figure B.5: France Model II, ECM Jarque-Bera Normal Distribution Test

Table B.46: France Model II, ECM Breusch-Godfrey Serial Correlation LM Test

Breusch-Godfrey Serial Correlation LM Te	est:
--	------

F-statistic Obs*R-squared	1.970430 4.177519	Prob. F(2,47) Prob. Chi-Squa	re(2)	0.1507 0.1238
Test Equation: Dependent Variable: RE Method: Least Squares Date: 09/09/16 Time: 1 Sample: 1959 2012 Included observations: 5 Presample missing value	7:39	ls set to zero.		
Variable	Coefficient	Std. Error	t-Statistic	Prob.

Variable	Coefficient	Std. Error	t-Statistic	Prob.
RESID5(-1)	-0.024841	0.073712	-0.336996	0.7376
DTOP5(-4)	0.047885	0.124532	0.384520	0.7023
DTFP(-4)	0.040000	0.139174	0.287408	0.7751
DTFP(-8)	-0.024091	0.142997	-0.168473	0.8669
С	-0.000113	0.003509	-0.032063	0.9746
RESID(-1)	0.271588	0.157190	1.727765	0.0906
RESID(-2)	-0.169394	0.159892	-1.059428	0.2948
R-squared	0.077361	Mean depende	nt var	-1.16E-18
Adjusted R-squared	-0.040422	S.D. dependen	t var	0.015731
S.E. of regression	0.016046	Akaike info crite	erion	-5.306308
Sum squared resid	0.012101	Schwarz criteri	on	-5.048477
Log likelihood	150.2703	Hannan-Quinn	criter.	-5.206873
F-statistic	0.656810	Durbin-Watson	stat	2.014001
Prob(F-statistic)	0.684512			

Table B.47: France Model II, ECM Heteroskedasticity Test

Heteroskedasticity Test: White

F-statistic	1.504531	Prob. F(4,49)	0.2154
Obs*R-squared	5.906759	Prob. Chi-Square(4)	0.2062
Scaled explained SS	6.523302	Prob. Chi-Square(4)	0.1633

Test Equation: Dependent Variable: RESID^2 Method: Least Squares Date: 09/09/16 Time: 17:41 Sample: 1959 2012 Included observations: 54 HAC standard errors & covariance (Bartlett kernel, Newey-West automatic bandwidth = 4.6348, NW automatic lag length = 3)

Variable	Coefficient	Std. Error	t-Statistic	Prob.
C RESID5(-1)^2 DTOP5(-4)^2 DTFP(-4)^2 DTFP(-8)^2	0.000221 -0.016227 -0.054371 -0.062329 0.145324	7.28E-05 0.033140 0.036393 0.030121 0.090050	3.030553 -0.489640 -1.494001 -2.069260 1.613820	0.0039 0.6266 0.1416 0.0438 0.1130
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.109384 0.036681 0.000394 7.61E-06 349.3006 1.504531 0.215402	Mean depende S.D. dependen Akaike info crit Schwarz criteri Hannan-Quinn Durbin-Watson	t var erion on criter.	0.000243 0.000402 -12.75188 -12.56771 -12.68085 1.884409

Table B.48: France Model II, ECM RESET Test

Ramsey RESET Test Equation: TOP5_ECM Specification: DTOP5 RESID5(-1) DTOP5(-4) DTFP(-4) DTFP(-8) C Omitted Variables: Squares of fitted values

	Value	df	Probability	
t-statistic	0.117147	48	0.9072	
F-statistic	0.013723	(1, 48)	0.9072	
Likelihood ratio	0.015437	1	0.9011	
F-test summary:				
-			Mean	
	Sum of Sq.	df	Squares	
Test SSR	3.75E-06	1	3.75E-06	
Restricted SSR	0.013116	49	0.000268	
Unrestricted SSR	0.013112	48	0.000273	
LR test summary:				
	Value	df	_	
Restricted LogL	148.0963	49		
Unrestricted LogL	148.1041	48		

Unrestricted Test Equation: Dependent Variable: DTOP5 Method: Least Squares Date: 09/09/16 Time: 17:40 Sample: 1959 2012 Included observations: 54 HAC standard errors & covariance (Bartlett kernel, Newey-West automatic bandwidth = 4.7458, NW automatic lag length = 3)

Variable	Coefficient	Std. Error	t-Statistic	Prob.
RESID5(-1) DTOP5(-4) DTFP(-4) DTFP(-8) C	-0.130533 0.300151 0.523237 -0.664250 0.003960	0.067823 0.134068 0.144625 0.181335 0.003422	-1.924613 2.238803 3.617890 -3.663108 1.157388	0.0602 0.0298 0.0007 0.0006 0.2528
FITTED ²	-0.924234	7.893924	-0.117082	0.9073
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic) Prob(Wald F-statistic)	0.401368 0.339010 0.016528 0.013112 148.1041 6.436559 0.000119 0.000809	Mean depend S.D. depende Akaike info cri Schwarz crite Hannan-Quin Durbin-Watso Wald F-statist	nt var iterion rion n criter. n stat	-0.001072 0.020329 -5.263113 -5.042115 -5.177883 1.561821 5.082344

Table B.49: France Model III, FMOLS Regression

Dependent Variable: TOP1 Method: Fully Modified Least Squares (FMOLS) Date: 09/08/16 Time: 16:52 Sample (adjusted): 1951 2012 Included observations: 62 after adjustments Cointegrating equation deterministics: C @TREND @TREND^2 Long-run covariance estimate (Bartlett kernel, Newey-West automatic bandwidth = 6.3508, NW automatic lag length = 3)

Variable	Coefficient	Std. Error	t-Statistic	Prob.
TFP C @TREND @TREND^2	0.885770 3.874545 -0.052979 0.000556	0.284958 0.985170 0.012796 0.000126	3.108422 3.932868 -4.140209 4.425414	0.0029 0.0002 0.0001 0.0000
R-squared Adjusted R-squared S.E. of regression Long-run variance	0.703807 0.688486 0.049574 0.006065	Mean depende S.D. dependen Sum squared r	t var	6.737084 0.088820 0.142537

Source: EViews output based on data of Feenstra et al. (2015) and Alvaredo et al. (2016).

Table B.50: France Model III, FMOLS Hansen Instability Test

Cointegration Test - Hansen Parameter Instability Date: 09/09/16 Time: 17:50 Equation: TOP1_FMOLS Series: TOP1 TFP Null hypothesis: Series are cointegrated Cointegrating equation deterministics: C @TREND @TREND^2

Lc statistic	Stochastic Trends (m)	Deterministic Trends (k)	Excluded Trends (p2)	Prob.*
0.170234	1	2	0	> 0.2

*Hansen (1992b) Lc(m2=1, k=2) p-values, where m2=m-p2 is the number of stochastic trends in the asymptotic distribution

Table B.51: France Model III, FMOLS ADF Unit Root Test of Residuals

Null Hypothesis: RESID1 has a unit root Exogenous: Constant Lag Length: 0 (Automatic - based on SIC, maxlag=10)

		t-Statistic	Prob.*
Augmented Dickey-Full Test critical values:	1% level 5% level	-3.345450 -3.542097 -2.910019	0.0170
	10% level	-2.592645	

*MacKinnon (1996) one-sided p-values.

Augmented Dickey-Fuller Test Equation Dependent Variable: D(RESID1) Method: Least Squares Date: 09/09/16 Time: 17:48 Sample (adjusted): 1952 2012 Included observations: 61 after adjustments

Variable	Coefficient	Std. Error	t-Statistic	Prob.
RESID1(-1) C	-0.282119 0.001612	0.084329 0.004076	-3.345450 0.395332	0.0014 0.6940
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.159449 0.145202 0.031837 0.059801 124.7369 11.19203 0.001433	Mean depende S.D. dependen Akaike info crite Schwarz criterie Hannan-Quinn Durbin-Watson	t var erion on criter.	0.001528 0.034435 -4.024162 -3.954953 -3.997039 1.662899

Source: EViews output based on data of Feenstra et al. (2015) and Alvaredo et al. (2016).

Table B.52: France Model III, FMOLS Engle-Granger Cointegration Test

Cointegration Test - Engle-Granger Date: 09/09/16 Time: 17:51 Equation: TOP1_FMOLS Specification: TOP1 TFP C @TREND @TREND^2 Cointegrating equation deterministics: C @TREND @TREND^2 Null hypothesis: Series are not cointegrated Automatic lag specification (lag=0 based on Schwarz Info Criterion, maxlag=10)

	Value	Prob.*	
Engle-Granger tau-statistic	-3.631547	0.2122	
Engle-Granger z-statistic	-17.84426	0.3789	

*MacKinnon (1996) p-values.

Intermediate Results:		
Rho - 1	-0.287811	
Rho S.E.	0.079253	
Residual variance	0.001016	
Long-run residual variance	0.001016	
Number of lags	0	
Number of observations	62	
Number of stochastic trends**	2	

**Number of stochastic trends in asymptotic distribution.

Engle-Granger Test Equation: Dependent Variable: D(RESID) Method: Least Squares Date: 09/09/16 Time: 17:51 Sample (adjusted): 1951 2012 Included observations: 62 after adjustments

Variable	Coefficient	Std. Error	t-Statistic	Prob.
RESID(-1)	-0.287811	0.079253	-3.631547	0.0006
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood Durbin-Watson stat	0.174853 0.174853 0.031869 0.061954 126.1893 1.607563	Mean depende S.D. dependen Akaike info crit Schwarz criteri Hannan-Quinn	t var erion on	0.002071 0.035084 -4.038363 -4.004054 -4.024892

Table B.53: France Model III, Unrestricted Error Correction Estimation

Dependent Variable: DTOP1 Method: Least Squares Date: 09/09/16 Time: 17:58 Sample (adjusted): 1959 2012 Included observations: 54 after adjustments HAC standard errors & covariance (Bartlett kernel, Newey-West automatic bandwidth = 2.3536, NW automatic lag length = 3)

Variable	Coefficient	Std. Error	t-Statistic	Prob.
RESID1(-1)	-0.685417	0.245765	-2.788913	0.0084
DTOP1(-1)	0.642215	0.227660	2.820933	0.0077
DTOP1(-2)	0.065880	0.249977	0.263544	0.7936
DTOP1(-3)	0.266830	0.203061	1.314042	0.1971
DTOP1(-4)	0.433951	0.209275	2.073594	0.0453
DTOP1(-5)	0.179570	0.235365	0.762942	0.4505
DTOP1(-6)	0.270374	0.206155	1.311508	0.1980
DTOP1(-7)	0.083395	0.194139	0.429564	0.6701
DTOP1(-8)	0.254338	0.180993	1.405233	0.1685
DTFP(-1)	0.280959	0.325923	0.862039	0.3944
DTFP(-2)	-0.178132	0.359311	-0.495760	0.6231
DTFP(-3)	-0.087668	0.300571	-0.291671	0.7722
DTFP(-4)	0.653380	0.263198	2.482469	0.0178
DTFP(-5)	-0.029961	0.387149	-0.077389	0.9387
DTFP(-6)	0.150377	0.330943	0.454390	0.6523
DTFP(-7)	0.272884	0.356090	0.766336	0.4485
DTFP(-8)	-0.572598	0.340323	-1.682512	0.1011
C	-0.004037	0.012259	-0.329336	0.7438
R-squared	0.464237	Mean depende	nt var	-0.000144
Adjusted R-squared	0.211238	S.D. dependen	t var	0.036483
S.E. of regression	0.032401	Akaike info crite	erion	-3.760054
Sum squared resid	0.037794	Schwarz criterion		-3.097059
Log likelihood	119.5215	Hannan-Quinn criter.		-3.504363
F-statistic	1.834934	Durbin-Watson stat		1.811025
Prob(F-statistic)	0.062107	Wald F-statistic	;	3.719250
Prob(Wald F-statistic)	0.000450			

Table B.54: France Model III, Restricted Error Correction Model (ECM)

Dependent Variable: DTOP1 Method: Least Squares Date: 09/09/16 Time: 17:59 Sample (adjusted): 1955 2012 Included observations: 58 after adjustments HAC standard errors & covariance (Bartlett kernel, Newey-West automatic bandwidth = 3.2200, NW automatic lag length = 3)

Variable	Coefficient	Std. Error	t-Statistic	Prob.
RESID1(-1)	-0.438056	0.165363	-2.649059	0.0106
DTOP1(-1) DTOP1(-4)	0.440337 0.348504	0.149592 0.234651	2.943591 1.485201	0.0048 0.1434
DTFP(-4) C	0.280993 -0.004166	0.187189 0.005604	1.501121 -0.743419	0.1393 0.4605
R-squared	0.257662	Mean depende	ent var	-0.000381
Adjusted R-squared	0.201637	S.D. dependent var		0.035667
S.E. of regression Sum squared resid	0.031869 0.053828	Akaike info crit Schwarz criteri		-3.972121 -3.794496
Log likelihood F-statistic	120.1915 4.599023	Hannan-Quinn Durbin-Watsor		-3.902932 1.940872
Prob(F-statistic) Prob(Wald F-statistic)	0.002915 0.024623	Wald F-statistic		3.049253

Source: EViews output based on data of Feenstra et al. (2015) and Alvaredo et al. (2016).

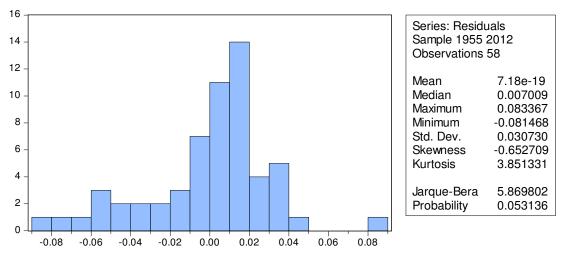


Figure B.6: France Model III, ECM Jarque-Bera Normal Distribution Test

Table B.55: France Model III, ECM Breusch-Godfrey Serial Correlation Test

Breusch-Godfrey Serial Correlation LM Test:

F-statistic	Prob. F(2,51)	0.8746
Obs*R-squared	Prob. Chi-Square(2)	0.8590
Test Equation:		

Dependent Variable: RESID Method: Least Squares Date: 09/09/16 Time: 18:02 Sample: 1955 2012 Included observations: 58 Presample missing value lagged residuals set to zero.

Variable	Coefficient	Std. Error	t-Statistic	Prob.
RESID1(-1)	0.049251	0.180237	0.273259	0.7858
DTOP1(-1)	0.002548	0.278804	0.009137	0.9927
DTOP1(-4)	-0.006343	0.173689	-0.036520	0.9710
DTFP(-4)	-0.030144	0.251593	-0.119811	0.9051
C	0.000354	0.006335	0.055817	0.9557
RESID(-1)	-0.030617	0.398173	-0.076894	0.9390
RESID(-2)	-0.106237	0.218807	-0.485530	0.6294
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.005241 -0.111789 0.032402 0.053545 120.3439 0.044787 0.999595	Mean depende S.D. dependen Akaike info critu Schwarz criteri Hannan-Quinn Durbin-Watson	t var erion on criter.	7.18E-19 0.030730 -3.908410 -3.659736 -3.811547 1.958548

Table B.56: France Model III, ECM Heteroskedasticity Test

Heteroskedasticity Test: White

F-statistic		Prob. F(4,53)	0.7671
Obs*R-squared	1.932491	Prob. Chi-Square(4)	0.7482
Scaled explained SS	2.300546	Prob. Chi-Square(4)	0.6807

Test Equation: Dependent Variable: RESID^2 Method: Least Squares Date: 09/09/16 Time: 18:03 Sample: 1955 2012 Included observations: 58 HAC standard errors & covariance (Bartlett kernel, Newey-West automatic bandwidth = 4.7629, NW automatic lag length = 3)

Variable	Coefficient	Std. Error	t-Statistic	Prob.
C RESID1(-1)^2 DTOP1(-1)^2 DTOP1(-4)^2 DTFP(-4)^2	0.001035 -0.007392 0.085996 -0.133085 -0.126042	0.000371 0.051969 0.039249 0.115729 0.137250	2.791685 -0.142234 2.191012 -1.149974 -0.918339	0.0073 0.8874 0.0329 0.2553 0.3626
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.033319 -0.039638 0.001612 0.000138 293.2784 0.456691 0.767088	Mean depende S.D. dependen Akaike info crit Schwarz criteri Hannan-Quinn Durbin-Watson	t var erion on criter.	0.000928 0.001581 -9.940633 -9.763008 -9.871445 1.993609

Table B.57: France Model III, ECM RESET Test

Ramsey RESET Test Equation: TOP1_ECM Specification: DTOP1 RESID1(-1) DTOP1(-1) DTOP1(-4) DTFP(-4) C Omitted Variables: Squares of fitted values

	Value	df	Probability
t-statistic	1.821113	52	0.0743
F-statistic	3.316452	(1, 52)	0.0743
Likelihood ratio	3.585946	1	0.0583
F-test summary:			
			Mean
	Sum of Sq.	df	Squares
Test SSR	0.003227	1	0.003227
Restricted SSR	0.053828	53	0.001016
Unrestricted SSR	0.050600	52	0.000973
LR test summary:			
	Value	df	
Restricted LogL	120.1915	53	_
Unrestricted LogL	121.9845	52	

Unrestricted Test Equation: Dependent Variable: DTOP1 Method: Least Squares Date: 09/09/16 Time: 18:03 Sample: 1955 2012 Included observations: 58 HAC standard errors & covariance (Bartlett kernel, Newey-West automatic bandwidth = 4.0384, NW automatic lag length = 3)

Variable	Coefficient	Std. Error	t-Statistic	Prob.
RESID1(-1)	-0.414337	0.144460	-2.868185	0.0060
DTOP1(-1)	0.462057	0.125841	3.671748	0.0006
DTOP1(-4)	0.415165	0.226816	1.830402	0.0729
DTFP(-4)	0.293581	0.198004	1.482702	0.1442
С	-0.009830	0.007748	-1.268650	0.2102
FITTED ²	16.69201	10.32137	1.617229	0.1119
R-squared	0.302169	Mean depend	ent var	-0.000381
Adjusted R-squared	0.235070	S.D. depende	nt var	0.035667
S.E. of regression	0.031194	Akaike info criterion		-3.999465
Sum squared resid	0.050600	Schwarz criterion		-3.786315
Log likelihood	121.9845	Hannan-Quinn criter.		-3.916439
F-statistic	4.503315	Durbin-Watson stat		1.888271
Prob(F-statistic)	0.001744	Wald F-statistic		3.895680
Prob(Wald F-statistic)	0.004494			

B.5. Germany

Table B.58: Germany Model I, FMOLS Regression

Dependent Variable: TOP10 Method: Fully Modified Least Squares (FMOLS) Date: 09/08/16 Time: 17:11 Sample (adjusted): 1951 2011 Included observations: 61 after adjustments Cointegrating equation deterministics: C @TREND @TREND^2 Long-run covariance estimate (Bartlett kernel, Newey-West automatic bandwidth = 3.2469, NW automatic lag length = 3)

Variable	Coefficient	Std. Error	t-Statistic	Prob.
TFP C @TREND @TREND^2	-0.016051 8.184506 -0.007668 0.000173	0.112963 0.401302 0.003575 2.84E-05	-0.142093 20.39488 -2.144755 6.102146	0.8875 0.0000 0.0362 0.0000
R-squared Adjusted R-squared S.E. of regression Long-run variance	0.924663 0.920698 0.020501 0.000872	Mean dependent var S.D. dependent var Sum squared resid		8.099185 0.072799 0.023956

Source: EViews output based on data of Feenstra et al. (2015) and Alvaredo et al. (2016).

Table B.59: Germany Model I, FMOLS Hansen Instability Test

Cointegration Test - Hansen Parameter Instability Date: 09/09/16 Time: 18:24 Equation: TOP10_FMOLS Series: TOP10 TFP Null hypothesis: Series are cointegrated Cointegrating equation deterministics: C @TREND @TREND^2

	Stochastic	Deterministic	Excluded	
Lc statistic	Trends (m)	Trends (k)	Trends (p2)	Prob.*
0.289039	1	2	0	> 0.2

*Hansen (1992b) Lc(m2=1, k=2) p-values, where m2=m-p2 is the number of stochastic trends in the asymptotic distribution

Table B.60: Germany Model I, FMOLS ADF Unit Root Test of Residuals

Null Hypothesis: RESID10 has a unit root Exogenous: Constant Lag Length: 1 (Automatic - based on SIC, maxlag=10)

		t-Statistic	Prob.*
Augmented Dickey-Fuller test statistic		-6.081239	0.0000
Test critical values:	1% level 5% level	-3.546099 -2.911730	
	10% level	-2.593551	

*MacKinnon (1996) one-sided p-values.

Augmented Dickey-Fuller Test Equation Dependent Variable: D(RESID10) Method: Least Squares Date: 09/09/16 Time: 18:23 Sample (adjusted): 1953 2011 Included observations: 59 after adjustments

Variable	Coefficient	Std. Error	t-Statistic	Prob.
RESID10(-1) D(RESID10(-1)) C	-0.435726 0.743980 -0.000379	0.071651 0.102442 0.001319	-6.081239 7.262449 -0.287545	0.0000 0.0000 0.7748
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.545293 0.529053 0.010127 0.005743 188.7832 33.57808 0.000000	Mean depende S.D. dependen Akaike info crit Schwarz criteri Hannan-Quinn Durbin-Watson	t var erion on criter.	-0.000702 0.014757 -6.297736 -6.192098 -6.256499 2.050093

Table B.61: Germany Model I, FMOLS Engle-Granger Cointegration Test

Cointegration Test - Engle-Granger Date: 09/09/16 Time: 18:24 Equation: TOP10_FMOLS Specification: TOP10 TFP C @TREND @TREND^2 Cointegrating equation deterministics: C @TREND @TREND^2 Null hypothesis: Series are not cointegrated Automatic lag specification (lag=1 based on Schwarz Info Criterion, maxlag=10)

ValueProb.*Engle-Granger tau-statistic-6.1078240.0005Engle-Granger z-statistic-100.49720.0000

*MacKinnon (1996) p-values.

Intermediate Results:		
Rho - 1	-0.431967	
Rho S.E.	0.070724	
Residual variance	0.000100	
Long-run residual variance	0.001504	
Number of lags	1	
Number of observations	60	
Number of stochastic trends**	2	

**Number of stochastic trends in asymptotic distribution.

Engle-Granger Test Equation: Dependent Variable: D(RESID) Method: Least Squares Date: 09/09/16 Time: 18:24 Sample (adjusted): 1952 2011 Included observations: 60 after adjustments

Variable	Coefficient	Std. Error	t-Statistic	Prob.
RESID(-1) D(RESID(-1))	-0.431967 0.742102	0.070724 0.101496	-6.107824 7.311649	0.0000 0.0000
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood Durbin-Watson stat	0.538746 0.530793 0.010002 0.005803 192.1761 2.026081	Mean dependent var S.D. dependent var Akaike info criterion Schwarz criterion Hannan-Quinn criter.		-0.000732 0.014602 -6.339204 -6.269393 -6.311897

Table B.62: Germany Model I, Unrestricted Error Correction Estimation

Dependent Variable: DTOP10 Method: Least Squares Date: 09/09/16 Time: 18:40 Sample (adjusted): 1958 2011 Included observations: 54 after adjustments HAC standard errors & covariance (Bartlett kernel, Newey-West automatic bandwidth = 2.3859, NW automatic lag length = 3)

Variable	Coefficient	Std. Error	t-Statistic	Prob.
RESID10(-1)	-0.426041	0.136408	-3.123289	0.0034
DTOP10(-1)	0.491015	0.268973	1.825515	0.0758
DTOP10(-2)	0.096779	0.227126	0.426101	0.6724
DTOP10(-3)	0.030097	0.119392	0.252088	0.8023
DTOP10(-4)	-0.041224	0.105106	-0.392210	0.6971
DTOP10(-5)	0.372243	0.095837	3.884139	0.0004
DTOP10(-6)	-0.635404	0.198854	-3.195333	0.0028
DTOP10(-7)	0.478693	0.231588	2.067002	0.0456
DTFP(-1)	0.202886	0.085121	2.383516	0.0222
DTFP(-2)	-0.069058	0.087461	-0.789585	0.4347
DTFP(-3)	-0.082944	0.090821	-0.913264	0.3669
DTFP(-4)	-0.147638	0.117888	-1.252357	0.2181
DTFP(-5)	-0.102797	0.090098	-1.140950	0.2610
DTFP(-6)	-0.002413	0.099325	-0.024297	0.9807
DTFP(-7)	0.092141	0.114982	0.801355	0.4279
C	0.003905	0.004708	0.829491	0.4120
R-squared	0.697808	Mean depende	nt var	0.003385
Adjusted R-squared	0.578522	S.D. dependent var		0.015890
S.E. of regression	0.010316	Akaike info criterion		-6.069092
Sum squared resid	0.004044	Schwarz criterion		-5.479764
Log likelihood	179.8655	Hannan-Quinn criter.		-5.841811
F-statistic	5.849860	Durbin-Watson	stat	1.952673
Prob(F-statistic)	0.000005	Wald F-statistic	;	20.12821
Prob(Wald F-statistic)	0.000000			

Table B.63: Germany Model I, Restricted Error Correction Model (ECM)

Dependent Variable: DTOP10 Method: Least Squares Date: 09/09/16 Time: 18:44 Sample (adjusted): 1958 2011 Included observations: 54 after adjustments HAC standard errors & covariance (Bartlett kernel, Newey-West automatic bandwidth = 2.9539, NW automatic lag length = 3)

Variable	Coefficient	Std. Error	t-Statistic	Prob.
RESID10(-1) DTOP10(-1) DTOP10(-5) DTOP10(-6) DTOP10(-7) DTFP(-1) C	-0.424360 0.713904 0.281154 -0.490570 0.414445 0.113666 -0.000772	0.063585 0.197938 0.122049 0.138488 0.200483 0.051487 0.02037	-6.673856 3.606706 2.303611 -3.542332 2.067227 2.207682	0.0000 0.0007 0.0257 0.0009 0.0442 0.0322 0.7066
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic) Prob(Wald F-statistic)	0.632517 0.585604 0.010229 0.004917 174.5839 13.48283 0.000000 0.000000	0.002037 -0.378703 Mean dependent var S.D. dependent var Akaike info criterion Schwarz criterion Hannan-Quinn criter. Durbin-Watson stat Wald F-statistic		0.003385 0.015890 -6.206810 -5.948979 -6.107375 2.165192 18.96310

Source: EViews output based on data of Feenstra et al. (2015) and Alvaredo et al. (2016).

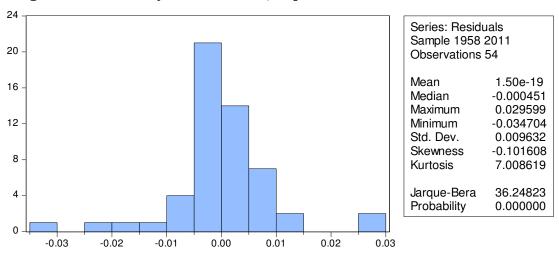


Figure B.7: Germany Model I, ECM Jarque-Bera Normal Distribution Test

Table B.64: Germany Model I, ECM Breusch-Godfrey Serial Correlation LM Test

0.7240 0.6806

F-statistic Obs*R-squared	0.325254 0.769486	Prob. F(2,45) Prob. Chi-Square	9(2)
Test Equation: Dependent Variable: RES Method: Least Squares Date: 09/09/16 Time: 18 Sample: 1958 2011 Included observations: 54 Presample missing value	:42 I	lls set to zero.	
Variable	Coefficient	Std. Error	t-Statistic

Breusch-Godfrey Serial Correlation LM Test:

Variable	Coefficient	Std. Error	t-Statistic	Prob.
RESID10(-1)	0.020716	0.121502	0.170500	0.8654
DTOP10(-1)	0.063926	0.142135	0.449754	0.6550
DTOP10(-5)	0.015071	0.150703	0.100006	0.9208
DTOP10(-6)	0.012980	0.190924	0.067983	0.9461
DTOP10(-7)	0.004059	0.185020	0.021938	0.9826
DTFP(-1)	0.010730	0.092857	0.115557	0.9085
С	-0.000473	0.002253	-0.209748	0.8348
RESID(-1)	-0.170283	0.255100	-0.667517	0.5079
RESID(-2)	-0.003464	0.223752	-0.015481	0.9877
R-squared	0.014250	Mean depende	nt var	1.50E-19
Adjusted R-squared	-0.160995	S.D. dependen	t var	0.009632
S.E. of regression	0.010379	Akaike info crite	erion	-6.147088
Sum squared resid	0.004847	Schwarz criterion		-5.815591
Log likelihood	174.9714	Hannan-Quinn criter.		-6.019243
F-statistic	0.081313	Durbin-Watson	stat	2.000729
Prob(F-statistic)	0.999556			

Source: EViews output based on data of Feenstra et al. (2015) and Alvaredo et al. (2016).

Table B.65: Germany Model I, ECM Heteroskedasticity Test

Heteroskedasticity Test: White

F-statistic	3.842943	Prob. F(6,47)	0.0034
Obs*R-squared	17.77270	Prob. Chi-Square(6)	0.0068
Scaled explained SS	40.44885	Prob. Chi-Square(6)	0.0000

Test Equation: Dependent Variable: RESID^2 Method: Least Squares Date: 09/09/16 Time: 18:43 Sample: 1958 2011 Included observations: 54 HAC standard errors & covariance (Bartlett kernel, Newey-West automatic bandwidth = 3.4631, NW automatic lag length = 3)

Variable	Coefficient	Std. Error	t-Statistic	Prob.
C	3.97E-05	3.55E-05	1.118862	0.2689
RESID10(-1)^2	-0.038065	0.026098	-1.458549	0.1513
DTOP10(-1)^2	0.233644	0.111897	2.088025	0.0422
DTOP10(-5)^2	-0.038667	0.035093	-1.101851	0.2761
DTOP10(-6)^2	-0.050466	0.041225	-1.224167	0.2270
DTOP10(-7)^2	0.185337	0.104847	1.767697	0.0836
DTFP(-1)^2	-0.006235	0.012695	-0.491130	0.6256
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.329124 0.243480 0.000196 1.81E-06 388.1518 3.842943 0.003367	Mean depende S.D. dependen Akaike info crite Schwarz criterie Hannan-Quinn Durbin-Watson	t var erion on criter.	9.11E-05 0.000225 -14.11673 -13.85890 -14.01730 1.285587

Source: EViews output based on data of Feenstra et al. (2015) and Alvaredo et al. (2016).

Table B.66: Germany Model I, ECM RESET Test

Ramsey RESET Test Equation: TOP10_ECM Specification: DTOP10 RESID10(-1) DTOP10(-1) DTOP10(-5 TO -7) DTFP(-1) C Omitted Variables: Squares of fitted values

	Value	df	Probability
t-statistic	1.287332	46	0.2044
F-statistic	1.657223	(1, 46)	0.2044
Likelihood ratio	1.911211	1	0.1668
F-test summary:			
-			Mean
	Sum of Sq.	df	Squares
Test SSR	0.000171	1	0.000171
Restricted SSR	0.004917	47	0.000105
Unrestricted SSR	0.004746	46	0.000103
LR test summary:			
,	Value	df	
Restricted LogL	174.5839	47	_
Unrestricted LogL	175.5395	46	

Unrestricted Test Equation: Dependent Variable: DTOP10 Method: Least Squares Date: 09/09/16 Time: 18:43 Sample: 1958 2011 Included observations: 54 HAC standard errors & covariance (Bartlett kernel, Newey-West automatic bandwidth = 3.4607, NW automatic lag length = 3)

Variable	Coefficient	Std. Error	t-Statistic	Prob.
RESID10(-1)	-0.508139	0.080893	-6.281609	0.0000
DTOP10(-1)	0.884772	0.174076	5.082665	0.0000
DTOP10(-5)	0.240827	0.136501	1.764290	0.0843
DTOP10(-6)	-0.381447	0.182568	-2.089349	0.0422
DTOP10(-7)	0.363606	0.219188	1.658875	0.1039
DTFP(-1)	0.091385	0.052687	1.734467	0.0895
C	0.000605	0.002436	0.248467	0.8049
FITTED^2	-10.13607	7.876749	-1.286834	0.2046
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic) Prob(Wald F-statistic)	0.645296 0.591319 0.010158 0.004746 175.5395 11.95506 0.000000 0.000000	Mean dependent var S.D. dependent var Akaike info criterion Schwarz criterion Hannan-Quinn criter. Durbin-Watson stat Wald F-statistic		0.003385 0.015890 -6.205166 -5.910502 -6.091526 2.150425 16.07281

Table B.67: Germany Model II, FMOLS Regression

Dependent Variable: TOP5 Method: Fully Modified Least Squares (FMOLS) Date: 09/08/16 Time: 17:21 Sample (adjusted): 1951 2011 Included observations: 61 after adjustments Cointegrating equation deterministics: C @TREND @TREND^2 Long-run covariance estimate (Bartlett kernel, Newey-West automatic bandwidth = 4.7069, NW automatic lag length = 3)

Variable	Coefficient	Std. Error	t-Statistic	Prob.
TFP C @TREND @TREND^2	0.313974 6.733470 -0.022583 0.000301	0.178867 0.635424 0.005661 4.49E-05	1.755355 10.59682 -3.989381 6.699303	0.0846 0.0000 0.0002 0.0000
R-squared Adjusted R-squared S.E. of regression Long-run variance	0.857166 0.849648 0.029367 0.002186	Mean depende S.D. dependen Sum squared r	t var	7.741471 0.075737 0.049159

Source: EViews output based on data of Feenstra et al. (2015) and Alvaredo et al. (2016).

Table B.68: Germany Model II, FMOLS Hansen Instability Test

Cointegration Test - Hansen Parameter Instability Date: 09/09/16 Time: 18:49 Equation: TOP5_FMOLS Series: TOP5 TFP Null hypothesis: Series are cointegrated Cointegrating equation deterministics: C @TREND @TREND^2

	Stochastic	Deterministic	Excluded	
Lc statistic	Trends (m)	Trends (k)	Trends (p2)	Prob.*
0.521003	1	2	0	0.1651

*Hansen (1992b) Lc(m2=1, k=2) p-values, where m2=m-p2 is the number of stochastic trends in the asymptotic distribution

Table B.69: Germany Model II, FMOLS ADF Unit Root Test of Residuals

Null Hypothesis: RESID5 has a unit root Exogenous: Constant Lag Length: 1 (Automatic - based on SIC, maxlag=10)

		t-Statistic	Prob.*
Augmented Dickey-Ful Test critical values:	ler test statistic 1% level	-5.812193 -3.546099	0.0000
	5% level 10% level	-2.911730 -2.593551	

*MacKinnon (1996) one-sided p-values.

Augmented Dickey-Fuller Test Equation Dependent Variable: D(RESID5) Method: Least Squares Date: 09/09/16 Time: 18:48 Sample (adjusted): 1953 2011 Included observations: 59 after adjustments

Variable	Coefficient	Std. Error	t-Statistic	Prob.
RESID5(-1) D(RESID5(-1)) C	-0.357758 0.757282 -0.000469	0.061553 0.099257 0.001672	-5.812193 7.629512 -0.280389	0.0000 0.0000 0.7802
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.559122 0.543376 0.012838 0.009229 174.7885 35.50964 0.000000	Mean depende S.D. dependen Akaike info crit Schwarz criteri Hannan-Quinn Durbin-Watson	t var erion on criter.	-0.000333 0.018998 -5.823339 -5.717702 -5.782103 1.975371

Table B.70: Germany Model II, FMOLS Engle-Granger Cointegration Test

Cointegration Test - Engle-Granger Date: 09/09/16 Time: 18:49 Equation: TOP5_FMOLS Specification: TOP5 TFP C @TREND @TREND^2 Cointegrating equation deterministics: C @TREND @TREND^2 Null hypothesis: Series are not cointegrated Automatic lag specification (lag=1 based on Schwarz Info Criterion, maxlag=10)

	Value	Prob.*	
Engle-Granger tau-statistic	-5.863741	0.0010	
Engle-Granger z-statistic	-86.53764	0.0000	

*MacKinnon (1996) p-values.

Intermediate Results:		
Rho - 1	-0.356609	
Rho S.E.	0.060816	
Residual variance	0.000161	
Long-run residual variance	0.002635	
Number of lags	1	
Number of observations	60	
Number of stochastic trends**	2	

**Number of stochastic trends in asymptotic distribution.

Engle-Granger Test Equation: Dependent Variable: D(RESID) Method: Least Squares Date: 09/09/16 Time: 18:49 Sample (adjusted): 1952 2011 Included observations: 60 after adjustments

Variable	Coefficient	Std. Error	t-Statistic	Prob.
RESID(-1) D(RESID(-1))	-0.356609 0.752749	0.060816 0.098003	-5.863741 7.680881	0.0000 0.0000
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood Durbin-Watson stat	0.553886 0.546195 0.012692 0.009343 177.8891 1.949138	Mean depende S.D. dependen Akaike info crit Schwarz criteri Hannan-Quinn	t var erion on	-0.000435 0.018840 -5.862969 -5.793157 -5.835661

Table B.71: Unrestricted Error Correction Estimation

Dependent Variable: DTOP5 Method: Least Squares Date: 09/09/16 Time: 18:51 Sample (adjusted): 1955 2011 Included observations: 57 after adjustments HAC standard errors & covariance (Bartlett kernel, Newey-West automatic bandwidth = 2.2706, NW automatic lag length = 3)

Variable	Coefficient	Std. Error	t-Statistic	Prob.
RESID5(-1)	-0.330303	0.098919	-3.339131	0.0017
DTOP5(-1)	0.617136	0.199708	3.090189	0.0034
DTOP5(-2)	-0.022220	0.224234	-0.099093	0.9215
DTOP5(-3)	0.162197	0.192236	0.843735	0.4031
DTOP5(-4)	-0.224283	0.167429	-1.339570	0.1868
DTFP(-1)	0.021560	0.130984	0.164602	0.8700
DTFP(-2)	-0.001012	0.139084	-0.007275	0.9942
DTFP(-3)	-0.198353	0.108664	-1.825376	0.0743
DTFP(-4)	-0.126546	0.112291	-1.126952	0.2655
C	0.006831	0.002899	2.356734	0.0227
R-squared	0.656713	Mean depende	nt var	0.002057
Adjusted R-squared	0.590978	S.D. dependen	t var	0.020433
S.E. of regression	0.013068	Akaike info crite	erion	-5.679342
Sum squared resid	0.008026	Schwarz criteri	on	-5.320912
Log likelihood	171.8612	Hannan-Quinn	criter.	-5.540044
F-statistic	9.990204	Durbin-Watson	stat	2.006188
Prob(F-statistic)	0.000000	Wald F-statistic	;	9.221458
Prob(Wald F-statistic)	0.000000			

Table B.72: Germany Model II, Restricted Error Correction Model (ECM)

Dependent Variable: DTOP5
Method: Least Squares
Date: 09/09/16 Time: 18:52
Sample (adjusted): 1954 2011
Included observations: 58 after adjustments
HAC standard errors & covariance (Bartlett kernel, Newey-West automatic
bandwidth = 3.4839, NW automatic lag length = 3)

Variable	Coefficient	Std. Error	t-Statistic	Prob.
RESID5(-1)	-0.336840	0.053847	-6.255484	0.0000
DTOP5(-1)	0.701261	0.101835	6.886271	0.0000
DTFP(-3)	-0.223987	0.104754	-2.138221	0.0370
C	0.004850	0.002558	1.895584	0.0634
R-squared	0.627224	Mean depende	ent var	0.001843
Adjusted R-squared	0.606515	S.D. dependen	it var	0.020318
S.E. of regression	0.012745	Akaike info crit	erion	-5.820818
Sum squared resid	0.008772	Schwarz criteri	on	-5.678719
Log likelihood	172.8037	Hannan-Quinn	criter.	-5.765468
F-statistic	30.28642	Durbin-Watson	i stat	2.126453
Prob(F-statistic)	0.000000	Wald F-statistic	c	39.51503
Prob(Wald F-statistic)	0.000000			

Source: EViews output based on data of Feenstra et al. (2015) and Alvaredo et al. (2016).

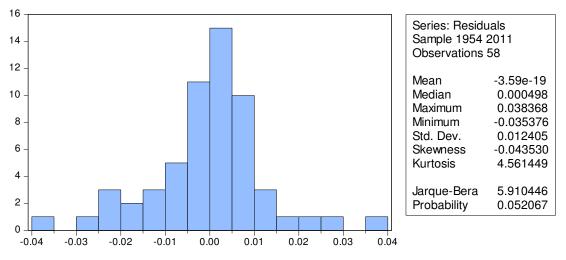


Figure B.8: Germany Model II, ECM Jarque-Bera Normal Distribution Test

Table B.73: Germany Model II, ECM Breusch-Godfrey Serial Correlation LM Test

	Soffelation Em	1001.		
F-statistic	0.972105	Prob. F(2,52)		0.3851
Obs*R-squared	2.090385	Prob. Chi-Squa	are(2)	0.3516
Test Equation: Dependent Variable: RES Method: Least Squares Date: 09/09/16 Time: 18 Sample: 1954 2011 Included observations: 50 Presample missing value	3:58 8	uls set to zero		
		10 2010.		
Variable	Coefficient	Std. Error	t-Statistic	Prob.
RESID5(-1)	0.067611	0.080639	0.838448	0.4056
DTOP5(-1)	0.099324	0.116949	0.849293	0.3996
DTFP(-3)	0.017435	0.103228	0.168894	0.8665
С	-0.000466	0.002654	-0.175744	0.8612
RESID(-1)	-0.270519	0.205320	-1.317550	0.1934
RESID(-2)	-0.201619	0.196416	-1.026488	0.3094
R-squared	0.036041	Mean depende	ent var	-3.59E-19
Adjusted R-squared	-0.056647	S.D. dependen	it var	0.012405
S.E. of regression	0.012752	Akaike info crit		-5.788559
Sum squared resid	0.008456	Schwarz criteri	on	-5.575410

Breusch-Godfrey Serial Correlation LM Test:

Log likelihood

Prob(F-statistic)

F-statistic

Source: EViews output based on data of Feenstra et al. (2015) and Alvaredo et al. (2016).

Hannan-Quinn criter.

Durbin-Watson stat

-5.705533

1.882592

173.8682

0.388842

0.854236

Table B.74: Germany Model II, ECM Heteroskedasticity Test

Heteroskedasticity Test: White

F-statistic	12.49098	Prob. F(3,54)	0.0042
Obs*R-squared		Prob. Chi-Square(3)	0.0059
Scaled explained SS	19.28079	Prob. Chi-Square(3)	0.0002

Test Equation: Dependent Variable: RESID^2 Method: Least Squares Date: 09/09/16 Time: 18:59 Sample: 1954 2011 Included observations: 58 HAC standard errors & covariance (Bartlett kernel, Newey-West automatic bandwidth = 6.4670, NW automatic lag length = 3)

Variable	Coefficient	Std. Error	t-Statistic	Prob.
C RESID5(-1)^2 DTOP5(-1)^2 DTFP(-3)^2	9.67E-05 -0.006005 0.165671 -0.009349	6.85E-05 0.010034 0.064989 0.038978	1.411553 -0.598529 2.549225 -0.239847	0.1638 0.5520 0.0137 0.8114
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.215362 0.171771 0.000262 3.71E-06 398.1045 4.940507 0.004195	Mean depende S.D. dependen Akaike info critu Schwarz criteri Hannan-Quinn Durbin-Watson	t var erion on criter.	0.000151 0.000288 -13.58981 -13.44771 -13.53446 1.181343

Table B.75: Germany Model II, ECM RESET Test

Ramsey RESET Test Equation: TOP5_ECM Specification: DTOP5 RESID5(-1) DTOP5(-1) DTFP(-3) C Omitted Variables: Squares of fitted values

	Value	df	Probability
t-statistic	1.481309	53	0.1444
F-statistic	2.194278	(1, 53)	0.1444
Likelihood ratio	2.352907	1	0.1250
F-test summary:			
			Mean
	Sum of Sq.	df	Squares
Test SSR	0.000349	1	0.000349
Restricted SSR	0.008772	54	0.000162
Unrestricted SSR	0.008423	53	0.000159
LR test summary:			
	Value	df	_
Restricted LogL	172.8037	54	
Unrestricted LogL	173.9802	53	

Unrestricted Test Equation: Dependent Variable: DTOP5 Method: Least Squares Date: 09/09/16 Time: 19:00 Sample: 1954 2011 Included observations: 58 HAC standard errors & covariance (Bartlett kernel, Newey-West automatic bandwidth = 4.0069, NW automatic lag length = 3)

Variable	Coefficient	Std. Error	t-Statistic	Prob.
RESID5(-1) DTOP5(-1)	-0.398357 0.832314	0.090563 0.146092	-4.398679 5.697183	0.0001
DTFP(-3)	-0.230995	0.100565	-2.296969	0.0256
C FITTED^2	0.006459 -6.667629	0.003422 6.162225	1.887525 -1.082017	0.0646 0.2841
R-squared	0.642044	Mean dependent var		0.001843
Adjusted R-squared	0.615029	S.D. dependent var		0.020318
S.E. of regression	0.012607	Akaike info criterion Schwarz criterion		-5.826903
Sum squared resid Log likelihood	0.008423 173.9802	Hannan-Quinn criter.		-5.649278 -5.757715
F-statistic	23.76575	Durbin-Watson stat		2.199681
Prob(F-statistic)	0.000000	Wald F-statistic		28.36093
Prob(Wald F-statistic)	0.000000			

Source: EViews output based on data of Feenstra et al. (2015) and Alvaredo et al. (2016).

B.6. United Kingdom

Table B.76: UK Model I, FMOLS Regression

Dependent Variable: TOP10 Method: Fully Modified Least Squares (FMOLS) Date: 09/08/16 Time: 19:57 Sample (adjusted): 1951 2012 Included observations: 62 after adjustments Cointegrating equation deterministics: C @TREND @TREND^2 Long-run covariance estimate (Bartlett kernel, Newey-West automatic bandwidth = 6.9086, NW automatic lag length = 3)

Variable	Coefficient	Std. Error	t-Statistic	Prob.
TFP C @TREND @TREND^2	1.830632 0.729786 -0.025165 0.000188	0.562026 2.237753 0.007143 4.83E-05	3.257200 0.326124 -3.522978 3.894008	0.0019 0.7455 0.0008 0.0003
R-squared Adjusted R-squared S.E. of regression Long-run variance	0.879777 0.873559 0.052426 0.011797	Mean dependent var S.D. dependent var Sum squared resid		8.113275 0.147437 0.159414

Source: EViews output based on data of Feenstra et al. (2015) and Alvaredo et al. (2016).

Table B.77: UK Model I, FMOLS Hansen Instability Test

Cointegration Test - Hansen Parameter Instability Date: 09/10/16 Time: 16:31 Equation: TOP10_FMOLS Series: TOP10 TFP Null hypothesis: Series are cointegrated Cointegrating equation deterministics: C @TREND @TREND^2

	Stochastic	Deterministic	Excluded	
Lc statistic	Trends (m)	Trends (k)	Trends (p2)	Prob.*
0.400094	1	2	0	> 0.2

*Hansen (1992b) Lc(m2=1, k=2) p-values, where m2=m-p2 is the number of stochastic trends in the asymptotic distribution

Table B.78: UK Model I, FMOLS ADF Unit Root Test of Residuals

Null Hypothesis: RESID10 has a unit root Exogenous: Constant Lag Length: 0 (Automatic - based on SIC, maxlag=10)

		t-Statistic	Prob.*
Augmented Dickey-Ful		-2.871873	0.0546
Test critical values:	1% level 5% level 10% level	-3.542097 -2.910019 -2.592645	

*MacKinnon (1996) one-sided p-values.

Augmented Dickey-Fuller Test Equation Dependent Variable: D(RESID10) Method: Least Squares Date: 09/10/16 Time: 16:30 Sample (adjusted): 1952 2012 Included observations: 61 after adjustments

Variable	Coefficient	Std. Error	t-Statistic	Prob.
RESID10(-1) C	-0.249012 -0.000596	0.086707 0.004412	-2.871873 -0.135147	0.0057 0.8930
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.122646 0.107776 0.034453 0.070032 119.9197 8.247654 0.005660	Mean depende S.D. dependen Akaike info crit Schwarz criteri Hannan-Quinn Durbin-Watson	t var erion on criter.	-0.000377 0.036474 -3.866219 -3.797010 -3.839096 1.858615

Source: EViews output based on data of Feenstra et al. (2015) and Alvaredo et al. (2016).

Table B.79: UK Model I, FMOLS Engle-Granger Cointegration Test

Cointegration Test - Engle-Granger Date: 09/10/16 Time: 16:31 Equation: TOP10_FMOLS Specification: TOP10 TFP C @TREND @TREND^2 Cointegrating equation deterministics: C @TREND @TREND^2 Null hypothesis: Series are not cointegrated Automatic lag specification (lag=0 based on Schwarz Info Criterion, maxlag=10)

	Value	Prob.*	
Engle-Granger tau-statistic	-2.457166	0.7709	
Engle-Granger z-statistic	-11.54214	0.7562	

*MacKinnon (1996) p-values.

Intermediate Results:		
Rho - 1	-0.186164	
Rho S.E.	0.075764	
Residual variance	0.000864	
Long-run residual variance	0.000864	
Number of lags	0	
Number of observations	62	
Number of stochastic trends**	2	

**Number of stochastic trends in asymptotic distribution.

Engle-Granger Test Equation: Dependent Variable: D(RESID) Method: Least Squares Date: 09/10/16 Time: 16:31 Sample (adjusted): 1951 2012 Included observations: 62 after adjustments

Variable	Coefficient	Std. Error	t-Statistic	Prob.
RESID(-1)	-0.186164	0.075764	-2.457166	0.0169
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood Durbin-Watson stat	0.089999 0.089999 0.029389 0.052686 131.2124 1.784222	Mean depende S.D. dependen Akaike info crit Schwarz criteri Hannan-Quinn	t var erion on	-0.000259 0.030808 -4.200400 -4.166091 -4.186929

Table B.80: UK Model I, Unrestricted Error Correction Estimation

Dependent Variable: DTOP10 Method: Least Squares Date: 09/10/16 Time: 16:42 Sample (adjusted): 1959 2012 Included observations: 54 after adjustments HAC standard errors & covariance (Bartlett kernel, Newey-West automatic bandwidth = 4.4505, NW automatic lag length = 3)

Variable	Coefficient	Std. Error	t-Statistic	Prob.
RESID10(-1)	-0.147895	0.068646	-2.154451	0.0380
DTOP10(-1)	0.234339	0.101830	2.301269	0.0273
DTOP10(-2)	0.175772	0.144506	1.216359	0.2318
DTOP10(-3)	0.092684	0.154802	0.598728	0.5531
DTOP10(-4)	0.002071	0.164389	0.012598	0.9900
DTOP10(-5)	-0.070257	0.120672	-0.582214	0.5641
DTOP10(-6)	0.275222	0.153626	1.791501	0.0816
DTOP10(-7)	-0.031273	0.196359	-0.159267	0.8743
DTOP10(-8)	0.224572	0.132411	1.696015	0.0985
DTFP(-1)	0.170390	0.368910	0.461874	0.6470
DTFP(-2)	-0.106084	0.187127	-0.566907	0.5743
DTFP(-3)	0.016089	0.154269	0.104291	0.9175
DTFP(-4)	-0.214245	0.121544	-1.762692	0.0864
DTFP(-5)	-0.148768	0.325749	-0.456696	0.6506
DTFP(-6)	-0.417557	0.223267	-1.870219	0.0696
DTFP(-7)	-0.175593	0.263269	-0.666973	0.5090
DTFP(-8)	-0.029496	0.159844	-0.184532	0.8546
C	0.010556	0.009526	1.108103	0.2752
R-squared	0.246043	Mean depende	nt var	0.005094
Adjusted R-squared	-0.109992	S.D. dependen	t var	0.022831
S.E. of regression	0.024054	Akaike info criterion		-4.355860
Sum squared resid	0.020829	Schwarz criterion		-3.692865
Log likelihood	135.6082	Hannan-Quinn criter.		-4.100169
F-statistic	0.691063	Durbin-Watson stat		2.081853
Prob(F-statistic)	0.790495	Wald F-statistic		3.530936
Prob(Wald F-statistic)	0.000714			

Table B.81: UK Model I, Restricted Error Correction Model (ECM)

Dependent Variable: DTOP10 Method: Least Squares Date: 09/10/16 Time: 16:44 Sample (adjusted): 1958 2012 Included observations: 55 after adjustments HAC standard errors & covariance (Bartlett kernel, Newey-West automatic bandwidth = 3.5592, NW automatic lag length = 3)

Variable	Coefficient	Std. Error	t-Statistic	Prob.
RESID10(-1)	-0.112943	0.056177	-2.010484	0.0500
DTOP10(-1)	0.221608	0.131971	1.679221	0.0996
DTOP10(-6)	0.255758	0.128090	1.996705	0.0515
DTOP10(-8)	0.223514	0.106521	2.098312	0.0412
DTFP(-4)	-0.136555	0.116913	-1.168003	0.2486
DTFP(-6)	-0.313603	0.219057	-1.431605	0.1587
С	0.006626	0.004767	1.389925	0.1710
R-squared	0.177026	Mean depende	nt var	0.005038
Adjusted R-squared	0.074154	S.D. dependent var		0.022622
S.E. of regression	0.021767	Akaike info criterion		-4.698405
Sum squared resid	0.022743	Schwarz criterion		-4.442926
Log likelihood	136.2061	Hannan-Quinn criter.		-4.599609
F-statistic	1.720836	Durbin-Watson stat		2.091490
Prob(F-statistic)	0.136493	Wald F-statistic		1.791015
Prob(Wald F-statistic)	0.120954			

Source: EViews output based on data of Feenstra et al. (2015) and Alvaredo et al. (2016).

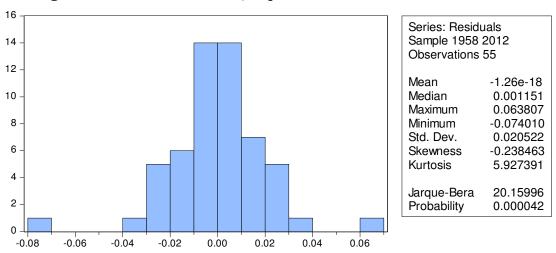


Figure B.9: UK Model I, ECM Jarque-Bera Normal Distribution Test

Table B.82: UK Model I, ECM Breusch-Godfrey Serial Correlation LM Test

Breusch-Godfrey Serial Correlation LM Test:

		0.4705 0.4120
--	--	------------------

Test Equation: Dependent Variable: RESID Method: Least Squares Date: 09/10/16 Time: 16:58 Sample: 1958 2012 Included observations: 55 Presample missing value lagged residuals set to zero.

Variable	Coefficient	Std. Error	t-Statistic	Prob.
RESID10(-1)	-0.007671	0.068956	-0.111240	0.9119
DTOP10(-1)	0.236032	0.364784	0.647047	0.5208
DTOP10(-6)	-0.010570	0.163589	-0.064612	0.9488
DTOP10(-8)	-0.004871	0.166049	-0.029334	0.9767
DTFP(-4)	-0.054344	0.220636	-0.246308	0.8065
DTFP(-6)	-0.038066	0.216503	-0.175823	0.8612
С	-1.23E-05	0.004589	-0.002674	0.9979
RESID(-1)	-0.281389	0.419273	-0.671134	0.5055
RESID(-2)	0.128492	0.170468	0.753760	0.4548
R-squared	0.032246	Mean depende	nt var	-1.26E-18
Adjusted R-squared	-0.136059	S.D. dependen	t var	0.020522
S.E. of regression	0.021874	Akaike info criterion		-4.658455
Sum squared resid	0.022010	Schwarz criterion		-4.329983
Log likelihood	137.1075	Hannan-Quinn criter.		-4.531432
F-statistic	0.191593	Durbin-Watson stat		2.029607
Prob(F-statistic)	0.990840			

Table B.83: UK Model I, ECM Heteroskedasticity Test

Heteroskedasticity Test: White

F-statistic	0.288392	Prob. F(6,48)	0.9396
Obs*R-squared	1.913710	Prob. Chi-Square(6)	0.9275
Scaled explained SS	3.591039	Prob. Chi-Square(6)	0.7318

Test Equation: Dependent Variable: RESID^2 Method: Least Squares Date: 09/10/16 Time: 16:59 Sample: 1958 2012 Included observations: 55 HAC standard errors & covariance (Bartlett kernel, Newey-West automatic bandwidth = 2.4349, NW automatic lag length = 3)

Variable	Coefficient	Std. Error	t-Statistic	Prob.
C RESID10(-1)^2 DTOP10(-1)^2 DTOP10(-6)^2 DTOP10(-8)^2 DTFP(-4)^2	0.000623 -0.033698 0.016338 -0.055802 -0.104968 -0.170625	0.000269 0.030203 0.041518 0.035265 0.053793 0.158995	2.317628 -1.115735 0.393528 -1.582373 -1.951332 -1.073142	0.0248 0.2701 0.6957 0.1201 0.0569 0.2886
DTFP(-6)^2	-0.013549	0.161987	-0.083639	0.9337
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.034795 -0.085856 0.000965 4.47E-05 307.5705 0.288392 0.939625	Mean depende S.D. dependen Akaike info crite Schwarz criteri Hannan-Quinn Durbin-Watson	t var erion on criter.	0.000414 0.000926 -10.92984 -10.67436 -10.83104 1.845900

Source: EViews output based on data of Feenstra et al. (2015) and Alvaredo et al. (2016).

Table B.84: UK Model I, ECM RESET Test

Ramsey RESET Test Equation: TOP10_ECM Specification: DTOP10 RESID10(-1) DTOP10(-1) DTOP10(-6) DTOP10(-8) DTFP(-4) DTFP(-6) C Omitted Variables: Squares of fitted values

	Value	df	Probability	
t-statistic	0.912367	47	0.3662	
F-statistic	0.832413	(1, 47)	0.3662	
Likelihood ratio	0.965575	1	0.3258	
F-test summary:				
			Mean	
	Sum of Sq.	df	Squares	
Test SSR	0.000396	1	0.000396	
Restricted SSR	0.022743	48	0.000474	
Unrestricted SSR	0.022347	47	0.000475	
LR test summary:				
	Value	df		
Restricted LogL	136.2061	48	_	
Unrestricted LogL	136.6889	47		

Unrestricted Test Equation: Dependent Variable: DTOP10 Method: Least Squares Date: 09/10/16 Time: 16:59 Sample: 1958 2012 Included observations: 55 HAC standard errors & covariance (Bartlett kernel, Newey-West automatic bandwidth = 3.9626, NW automatic lag length = 3)

Variable	Coefficient	Std. Error	t-Statistic	Prob.
RESID10(-1) DTOP10(-1) DTOP10(-6) DTOP10(-8) DTFP(-4) DTFP(-6) C	-0.158007 0.277504 0.358435 0.284776 -0.139473 -0.450167 0.010360	0.107498 0.152702 0.265492 0.185336 0.120475 0.377250 0.007419	-1.469858 1.817290 1.350076 1.536535 -1.157693 -1.193286 1.396408	0.1483 0.0756 0.1835 0.1311 0.2528 0.2387 0.1692
FITTED ²	-28.22917	45.93146	-0.614593	0.5418
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic) Prob(Wald F-statistic)	0.191348 0.070910 0.021805 0.022347 136.6889 1.588769 0.162181 0.002085	Mean dependent var S.D. dependent var Akaike info criterion Schwarz criterion Hannan-Quinn criter. Durbin-Watson stat Wald F-statistic		0.005038 0.022622 -4.679597 -4.387622 -4.566688 2.056015 3.875828

Table B.85: UK Model II, FMOLS Regression

Dependent Variable: TOP5 Method: Fully Modified Least Squares (FMOLS) Date: 09/08/16 Time: 19:57 Sample (adjusted): 1951 2012 Included observations: 62 after adjustments Cointegrating equation deterministics: C @TREND @TREND^2 Long-run covariance estimate (Bartlett kernel, Newey-West automatic bandwidth = 6.9496, NW automatic lag length = 3)

Variable	Coefficient	Std. Error	t-Statistic	Prob.
TFP C @TREND @TREND^2	2.263266 -1.306923 -0.038867 0.000337	0.736249 2.931437 0.009357 6.33E-05	3.074048 -0.445830 -4.153671 5.321343	0.0032 0.6574 0.0001 0.0000
R-squared Adjusted R-squared S.E. of regression Long-run variance	0.866405 0.859495 0.067875 0.020244	Mean depende S.D. dependen Sum squared r	t var	7.712537 0.181077 0.267207

Source: EViews output based on data of Feenstra et al. (2015) and Alvaredo et al. (2016).

Table B.86: UK Model II, FMOLS Hansen Instability Test

Cointegration Test - Hansen Parameter Instability Date: 09/10/16 Time: 17:13 Equation: TOP5_FMOLS Series: TOP5 TFP Null hypothesis: Series are cointegrated Cointegrating equation deterministics: C @TREND @TREND^2

Lc statistic	Stochastic Trends (m)	Deterministic Trends (k)	Excluded Trends (p2)	Prob.*
0.434506	1	2	0	> 0.2

*Hansen (1992b) Lc(m2=1, k=2) p-values, where m2=m-p2 is the number of stochastic trends in the asymptotic distribution

Table B.87: UK Model II, FMOLS ADF Unit Root Test of Residuals

Null Hypothesis: RESID5 has a unit root Exogenous: Constant Lag Length: 0 (Automatic - based on SIC, maxlag=10)

	t-Statistic	Prob.*
Augmented Dickey-Fuller test statistic Test critical values: 1% level 5% level 10% level	-2.644012 -3.542097 -2.910019 -2.592645	0.0899

*MacKinnon (1996) one-sided p-values.

Augmented Dickey-Fuller Test Equation Dependent Variable: D(RESID5) Method: Least Squares Date: 09/10/16 Time: 17:12 Sample (adjusted): 1952 2012 Included observations: 61 after adjustments

Variable	Coefficient	Std. Error	t-Statistic	Prob.
RESID5(-1) C	-0.219644 -0.000970	0.083072 0.005445	-2.644012 -0.178162	0.0105 0.8592
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.105936 0.090782 0.042520 0.106669 107.0861 6.990797 0.010480	Mean depende S.D. dependen Akaike info crit Schwarz criteri Hannan-Quinn Durbin-Watson	t var erion on criter.	-0.000716 0.044592 -3.445444 -3.376235 -3.418321 1.854293

Source: EViews output based on data of Feenstra et al. (2015) and Alvaredo et al. (2016).

Table B.88: UK Model II, FMOLS Engle-Granger Cointegration Test

Cointegration Test - Engle-Granger Date: 09/10/16 Time: 17:13 Equation: TOP5_FMOLS Specification: TOP5 TFP C @TREND @TREND^2 Cointegrating equation deterministics: C @TREND @TREND^2 Null hypothesis: Series are not cointegrated Automatic lag specification (lag=0 based on Schwarz Info Criterion, maxlag=10)

	Value	Prob.*	
Engle-Granger tau-statistic	-2.279315	0.8407	
Engle-Granger z-statistic	-10.30094	0.8246	

*MacKinnon (1996) p-values.

Intermediate Results:		
Rho - 1	-0.166144	
Rho S.E.	0.072892	
Residual variance	0.001346	
Long-run residual variance	0.001346	
Number of lags	0	
Number of observations	62	
Number of stochastic trends**	2	

**Number of stochastic trends in asymptotic distribution.

Engle-Granger Test Equation: Dependent Variable: D(RESID) Method: Least Squares Date: 09/10/16 Time: 17:13 Sample (adjusted): 1951 2012 Included observations: 62 after adjustments

Variable	Coefficient	Std. Error	t-Statistic	Prob.
RESID(-1)	-0.166144	0.072892	-2.279315	0.0262
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood Durbin-Watson stat	0.078354 0.078354 0.036687 0.082103 117.4601 1.736097	Mean depende S.D. dependen Akaike info crit Schwarz criteri Hannan-Quinn	t var erion on	-0.000451 0.038215 -3.756778 -3.722469 -3.743307

Table B.89: UK Model II, Unrestricted Error Correction Estimation

Dependent Variable: DTOP5 Method: Least Squares Date: 09/10/16 Time: 17:18 Sample (adjusted): 1957 2012 Included observations: 56 after adjustments HAC standard errors & covariance (Bartlett kernel, Newey-West automatic bandwidth = 4.1402, NW automatic lag length = 3)

Variable	Coefficient	Std. Error	t-Statistic	Prob.
RESID5(-1)	-0.117321	0.054932	-2.135757	0.0386
DTOP5(-1)	0.258272	0.123934	2.083949	0.0433
DTOP5(-2)	0.207085	0.092781	2.231979	0.0310
DTOP5(-3)	0.113415	0.156549	0.724470	0.4728
DTOP5(-4)	-0.098561	0.165103	-0.596965	0.5537
DTOP5(-5)	-0.037700	0.130371	-0.289173	0.7739
DTOP5(-6)	0.317146	0.198342	1.598990	0.1173
DTFP(-1)	0.453230	0.423628	1.069877	0.2908
DTFP(-2)	-0.161116	0.229546	-0.701890	0.4866
DTFP(-3)	0.104475	0.176132	0.593161	0.5563
DTFP(-4)	-0.213762	0.134822	-1.585510	0.1204
DTFP(-5)	0.095026	0.227891	0.416980	0.6788
DTFP(-6)	-0.423409	0.218197	-1.940489	0.0591
C	0.003736	0.007670	0.487165	0.6287
R-squared	0.318435	Mean depende	nt var	0.005414
Adjusted R-squared	0.107474	S.D. dependen	t var	0.028277
S.E. of regression	0.026714	Akaike info criterion		-4.194933
Sum squared resid	0.029973	Schwarz criterion		-3.688596
Log likelihood	131.4581	Hannan-Quinn criter.		-3.998627
F-statistic	1.509452	Durbin-Watson stat		2.104176
Prob(F-statistic)	0.154250	Wald F-statistic	;	4.092239
Prob(Wald F-statistic)	0.000245			

Source: EViews output based on data of Feenstra et al. (2015) and Alvaredo et al. (2016).

Table B.90: UK Model II, Restricted Error Correction Model (ECM)

Dependent Variable: DTOP5 Method: Least Squares Date: 09/10/16 Time: 17:19 Sample (adjusted): 1957 2012 Included observations: 56 after adjustments HAC standard errors & covariance (Bartlett kernel, Newey-West automatic bandwidth = 4.1565, NW automatic lag length = 3)

Variable	Coefficient	Std. Error	t-Statistic	Prob.
RESID5(-1) DTOP5(-1) DTOP5(-2) DTFP(-6) C	-0.127675 0.238797 0.264641 -0.271265 0.006073	0.060824 0.102313 0.076329 0.151752 0.003707	-2.099082 2.333985 3.467090 -1.787554 1.638388	0.0408 0.0236 0.0011 0.0798 0.1075
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic) Prob(Wald F-statistic)	0.165440 0.099984 0.026826 0.036701 125.7878 2.527508 0.051848 0.005892	0.003707 1.638388 Mean dependent var S.D. dependent var Akaike info criterion Schwarz criterion Hannan-Quinn criter. Durbin-Watson stat Wald F-statistic		0.005414 0.028277 -4.313849 -4.133014 -4.243740 2.002345 4.099207

Source: EViews output based on data of Feenstra et al. (2015) and Alvaredo et al. (2016).

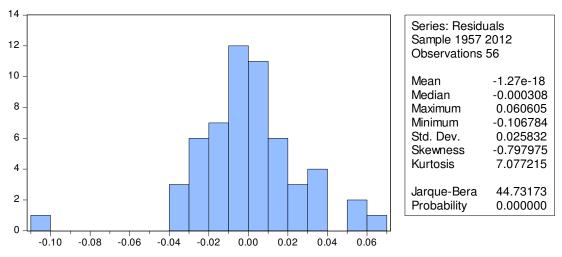


Figure B.10: UK Model II, ECM Jarque-Bera Normal Distribution Test

Table B.91: UK Model II, ECM Breusch-Godfrey Serial Correlation LM Test

Breusch-Godfrey Serial Correlation LM Test:

F-statistic	Prob. F(2,49)	0.9740
Obs*R-squared	Prob. Chi-Square(2)	0.9704

Test Equation: Dependent Variable: RESID Method: Least Squares Date: 09/10/16 Time: 17:25 Sample: 1957 2012 Included observations: 56 Presample missing value lagged residuals set to zero.

Variable	Coefficient	Std. Error	t-Statistic	Prob.
RESID5(-1)	0.001418	0.067334	0.021062	0.9833
DTOP5(-1)	0.071133	0.428635	0.165952	0.8689
DTOP5(-2)	-0.084282	0.398198	-0.211657	0.8333
DTFP(-6)	0.007037	0.226060	0.031128	0.9753
C	-3.52E-06	0.004426	-0.000796	0.9994
RESID(-1)	-0.076771	0.470595	-0.163136	0.8711
RESID(-2)	0.084489	0.412593	0.204775	0.8386
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.001073 -0.121244 0.027353 0.036662 125.8178 0.008775 0.999997	Mean depende S.D. dependen Akaike info crite Schwarz criteri Hannan-Quinn Durbin-Watson	t var erion on criter.	-1.27E-18 0.025832 -4.243494 -3.990325 -4.145341 1.993123

Table B.92: UK Model II, ECM Heteroskedasticity Test

Heteroskedasticity Test: White

- F-statistic Obs*R-squared		Prob. F(4,51) Prob. Chi-Square(4)	0.8982 0.8868
Scaled explained SS	2.889178	Prob. Chi-Square(4)	0.5765

Test Equation: Dependent Variable: RESID^2 Method: Least Squares Date: 09/10/16 Time: 17:26 Sample: 1957 2012 Included observations: 56 HAC standard errors & covariance (Bartlett kernel, Newey-West automatic bandwidth = 1.9717, NW automatic lag length = 3)

Variable	Coefficient	Std. Error	t-Statistic	Prob.
C RESID5(-1)^2 DTOP5(-1)^2 DTOP5(-2)^2	0.000718 -0.003269 0.085017 -0.060081	0.000381 0.022442 0.053166 0.048541	1.883432 -0.145678 1.599083 -1.237724	0.0653 0.8848 0.1160 0.2215
DTFP(-6)^2	-0.179064	0.156289	-1.145722	0.2573
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.020471 -0.056354 0.001676 0.000143 281.0879 0.266465 0.898167	Mean dependent var S.D. dependent var Akaike info criterion Schwarz criterion Hannan-Quinn criter. Durbin-Watson stat		0.000655 0.001630 -9.860284 -9.679449 -9.790174 1.849460

Table B.93: UK Model II, ECM RESET Test

Ramsey RESET Test Equation: TOP5_ECM Specification: DTOP5 RESID5(-1) DTOP5(-1 TO -2) DTFP(-6) C Omitted Variables: Squares of fitted values

	Value	df	Probability
t-statistic	1.643058	50	0.1066
F-statistic	2.699639	(1, 50)	0.1066
Likelihood ratio	2.944793	1	0.0862
F-test summary:			
			Mean
	Sum of Sq.	df	Squares
Test SSR	0.001880	1	0.001880
Restricted SSR	0.036701	51	0.000720
Unrestricted SSR	0.034821	50	0.000696
LR test summary:			
	Value	df	
Restricted LogL	125.7878	51	
Unrestricted LogL	127.2602	50	

Unrestricted Test Equation: Dependent Variable: DTOP5 Method: Least Squares Date: 09/10/16 Time: 17:26 Sample: 1957 2012 Included observations: 56 HAC standard errors & covariance (Bartlett kernel, Newey-West automatic bandwidth = 4.6125, NW automatic lag length = 3)

Variable	Coefficient	Std. Error	t-Statistic	Prob.
RESID5(-1) DTOP5(-1) DTOP5(-2) DTFP(-6)	-0.054763 0.135736 0.159123 -0.017632	0.076299 0.098449 0.091036 0.161725	-0.717739 1.378740 1.747918 -0.109022	0.4763 0.1741 0.0866 0.9136
FITTED ²	-0.001172 -0.001172 34.92140	0.004489	-0.261077 2.448405	0.7951 0.0179
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic) Prob(Wald F-statistic)	0.208192 0.129011 0.026390 0.034821 127.2602 2.629320 0.034635 0.000025	Mean dependent var S.D. dependent var Akaike info criterion Schwarz criterion Hannan-Quinn criter. Durbin-Watson stat Wald F-statistic		0.005414 0.028277 -4.330720 -4.113718 -4.246589 1.976878 7.531548

Table B.94: UK Model III, FMOLS Regression

Dependent Variable: TOP1 Method: Fully Modified Least Squares (FMOLS) Date: 09/08/16 Time: 20:01 Sample (adjusted): 1951 2012 Included observations: 62 after adjustments Cointegrating equation deterministics: C @TREND @TREND^2 Long-run covariance estimate (Bartlett kernel, Newey-West automatic bandwidth = 6.9830, NW automatic lag length = 3) Variable

Variable	Coefficient	Std. Error	t-Statistic	Prob.
TFP C @TREND @TREND^2	2.980620 -4.835432 -0.068803 0.000705	1.284024 5.112448 0.016319 0.000110	2.321311 -0.945815 -4.216099 6.386019	0.0238 0.3482 0.0001 0.0000
R-squared Adjusted R-squared S.E. of regression Long-run variance	0.841970 0.833796 0.115645 0.061573	Mean depende S.D. dependen Sum squared r	t var	6.828807 0.283666 0.775682

Source: EViews output based on data of Feenstra et al. (2015) and Alvaredo et al. (2016).

Table B.95: UK Model III, FMOLS Hansen Instability Test

Cointegration Test - Hansen Parameter Instability Date: 09/10/16 Time: 17:30 Equation: TOP1_FMOLS Series: TOP1 TFP Null hypothesis: Series are cointegrated Cointegrating equation deterministics: C @TREND @TREND^2

	Stochastic	Deterministic	Excluded	
Lc statistic	Trends (m)	Trends (k)	Trends (p2)	Prob.*
0.516342	1	2	0	0.1687

*Hansen (1992b) Lc(m2=1, k=2) p-values, where m2=m-p2 is the number of stochastic trends in the asymptotic distribution

Table B.96: UK Model III, FMOLS ADF Unit Root Test of Residuals

Null Hypothesis: RESID1 has a unit root Exogenous: Constant Lag Length: 0 (Automatic - based on SIC, maxlag=10)

		t-Statistic	Prob.*
Augmented Dickey-Ful Test critical values:	ler test statistic 1% level 5% level 10% level	-2.050230 -3.542097 -2.910019 -2.592645	0.2653

*MacKinnon (1996) one-sided p-values.

Augmented Dickey-Fuller Test Equation Dependent Variable: D(RESID1) Method: Least Squares Date: 09/10/16 Time: 17:30 Sample (adjusted): 1952 2012 Included observations: 61 after adjustments

Variable	Coefficient	Std. Error	t-Statistic	Prob.
RESID1(-1) C	-0.150674 -0.002045	0.073491 0.008091	-2.050230 -0.252779	0.0448 0.8013
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.066507 0.050685 0.063189 0.235576 82.92097 4.203443 0.044794	Mean depende S.D. dependen Akaike info crit Schwarz criteri Hannan-Quinn Durbin-Watson	t var erion on criter.	-0.001833 0.064854 -2.653146 -2.583937 -2.626023 1.859819

Source: EViews output based on data of Feenstra et al. (2015) and Alvaredo et al. (2016).

Table B.97: UK Model III, FMOLS Engle-Granger Cointegration Test

Cointegration Test - Engle-Granger Date: 09/10/16 Time: 17:30 Equation: TOP1_FMOLS Specification: TOP1 TFP C @TREND @TREND^2 Cointegrating equation deterministics: C @TREND @TREND^2 Null hypothesis: Series are not cointegrated Automatic lag specification (lag=0 based on Schwarz Info Criterion, maxlag=10)

	Value	Prob.*	
Engle-Granger tau-statistic	-1.867905	0.9448	
Engle-Granger z-statistic	-7.721539	0.9336	

*MacKinnon (1996) p-values.

Intermediate Results:		
Rho - 1	-0.124541	
Rho S.E.	0.066674	
Residual variance	0.003287	
Long-run residual variance	0.003287	
Number of lags	0	
Number of observations	62	
Number of stochastic trends**	2	

**Number of stochastic trends in asymptotic distribution.

Engle-Granger Test Equation: Dependent Variable: D(RESID) Method: Least Squares Date: 09/10/16 Time: 17:30 Sample (adjusted): 1951 2012 Included observations: 62 after adjustments

Variable	Coefficient	Std. Error	t-Statistic	Prob.
RESID(-1)	-0.124541	0.066674	-1.867905	0.0666
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood Durbin-Watson stat	0.053654 0.053654 0.057333 0.200508 89.78088 1.736867	Mean depende S.D. depender Akaike info crit Schwarz criteri Hannan-Quinn	it var erion on	-0.001274 0.058935 -2.863899 -2.829591 -2.850429

Table B.98: UK Model III, Unrestricted Error Correction Estimation

Dependent Variable: DTOP1 Method: Least Squares Date: 09/10/16 Time: 17:35 Sample (adjusted): 1958 2012 Included observations: 55 after adjustments HAC standard errors & covariance (Bartlett kernel, Newey-West automatic bandwidth = 5.3488, NW automatic lag length = 3)

Variable	Coefficient	Std. Error	t-Statistic	Prob.
RESID1(-1)	-0.151055	0.040013	-3.775161	0.0005
DTOP1(-1)	0.178103	0.098308	1.811683	0.0777
DTOP1(-2)	0.269242	0.110182	2.443609	0.0192
DTOP1(-3)	0.277273	0.131169	2.113867	0.0410
DTOP1(-4)	-0.104869	0.162381	-0.645819	0.5222
DTOP1(-5)	-0.036427	0.143748	-0.253410	0.8013
DTOP1(-6)	0.298649	0.180782	1.651984	0.1066
DTOP1(-7)	-0.021731	0.120101	-0.180941	0.8574
DTFP(-1)	1.117097	0.680785	1.640897	0.1089
DTFP(-2)	0.012090	0.420159	0.028775	0.9772
DTFP(-3)	0.172849	0.461031	0.374919	0.7098
DTFP(-4)	-0.341766	0.286162	-1.194308	0.2396
DTFP(-5)	0.200502	0.344084	0.582713	0.5634
DTFP(-6)	-0.821141	0.444424	-1.847650	0.0722
DTFP(-7)	-0.695771	0.394005	-1.765895	0.0852
C	0.006786	0.013833	0.490591	0.6265
R-squared	0.442456	Mean depende	nt var	0.006878
Adjusted R-squared	0.228016	S.D. dependen		0.050655
S.E. of regression	0.044507	Akaike info crite	erion	-3.148292
Sum squared resid	0.077254	Schwarz criteri	on	-2.564340
Log likelihood	102.5780	Hannan-Quinn	criter.	-2.922473
F-statistic	2.063306	Durbin-Watson	stat	2.027139
Prob(F-statistic)	0.035194	Wald F-statistic		9.974160
Prob(Wald F-statistic)	0.000000			

Table B.99: UK Model III, Restricted Error Correction Model (ECM)

Dependent Variable: DTOP1 Method: Least Squares Date: 09/10/16 Time: 17:35 Sample (adjusted): 1958 2012 Included observations: 55 after adjustments HAC standard errors & covariance (Bartlett kernel, Newey-West automatic bandwidth = 3.2323, NW automatic lag length = 3)

Variable	Coefficient	Std. Error	t-Statistic	Prob.
RESID1(-1) DTOP1(-1) DTOP1(-2) DTOP1(-3) DTFP(-6) DTFP(-7) C	-0.179031 0.191939 0.244962 0.286599 -0.501092 -0.498433 0.013388	0.053315 0.075568 0.089008 0.139338 0.310299 0.273631 0.006207	-3.357978 2.539956 2.752130 2.056864 -1.614870 -1.821547 2.157064	0.0015 0.0144 0.0083 0.0452 0.1129 0.0748 0.0360
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic) Prob(Wald F-statistic)	0.250839 0.157194 0.046504 0.103805 94.45419 2.678608 0.025296 0.000003	Mean depende S.D. dependen Akaike info crit Schwarz criteri Hannan-Quinn Durbin-Watson Wald F-statistic	t var erion on criter. stat	0.006878 0.050655 -3.180152 -2.924674 -3.081357 1.882440 8.300649

Source: EViews output based on data of Feenstra et al. (2015) and Alvaredo et al. (2016).

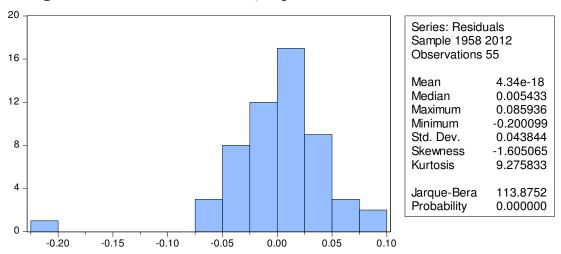


Figure B.11: UK Model III, ECM Jarque-Bera Normal Distribution Test

Table B.100: UK Model III, ECM Breusch-Godfrey Serial Correlation LM Test

Breusch-Godfrey Serial Correlation LM Test:

F-statistic	Prob. F(2,46)	0.4328
Obs*R-squared	Prob. Chi-Square(2)	0.3740

Test Equation: Dependent Variable: RESID Method: Least Squares Date: 09/10/16 Time: 17:40 Sample: 1958 2012 Included observations: 55 Presample missing value lagged residuals set to zero.

Variable	Coefficient	Std. Error	t-Statistic	Prob.
RESID1(-1)	-0.068854	0.082784	-0.831726	0.4099
DTOP1(-1)	-0.394089	0.517345	-0.761753	0.4501
DTOP1(-2)	0.019601	0.481424	0.040715	0.9677
DTOP1(-3)	0.144569	0.198305	0.729025	0.4697
DTFP(-6)	0.069640	0.440537	0.158080	0.8751
DTFP(-7)	-0.159499	0.483394	-0.329957	0.7429
С	0.002830	0.009693	0.291930	0.7717
RESID(-1)	0.501622	0.590646	0.849277	0.4001
RESID(-2)	0.116494	0.477434	0.243999	0.8083
R-squared	0.035761	Mean depende	nt var	4.34E-18
Adjusted R-squared	-0.131933	S.D. dependen	t var	0.043844
S.E. of regression	0.046647	Akaike info crite	erion	-3.143841
Sum squared resid	0.100093	Schwarz criterie	on	-2.815368
Log likelihood	95.45562	Hannan-Quinn	criter.	-3.016818
F-statistic	0.213250	Durbin-Watson	stat	1.993083
Prob(F-statistic)	0.986977			

Table B.101: UK Model III, ECM Heteroskedasticity Test

Heteroskedasticity Test: White

F-statistic	0.104192	Prob. F(6,48)	0.9956
Obs*R-squared	0.707112	Prob. Chi-Square(6)	0.9943
Scaled explained SS	2.228573	Prob. Chi-Square(6)	0.8975

Test Equation: Dependent Variable: RESID^2 Method: Least Squares Date: 09/10/16 Time: 17:40 Sample: 1958 2012 Included observations: 55 HAC standard errors & covariance (Bartlett kernel, Newey-West automatic bandwidth = 1.7935, NW automatic lag length = 3)

Variable	Coefficient	Std. Error	t-Statistic	Prob.
C RESID1(-1)^2 DTOP1(-1)^2 DTOP1(-2)^2 DTOP1(-3)^2 DTFP(-6)^2	0.002149 -0.022835 -0.048628 -0.035825 -0.021118 0.200367	0.001430 0.023261 0.048100 0.056951 0.062823 1.070743	1.503136 -0.981672 -1.010962 -0.629055 -0.336145 0.187129	0.1394 0.3312 0.3171 0.5323 0.7382 0.8523
DTFP(-7)^2	0.541959	0.650858	0.832684	0.4091
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.012857 -0.110536 0.005774 0.001601 209.1890 0.104192 0.995571	Mean depende S.D. dependen Akaike info crite Schwarz criterie Hannan-Quinn Durbin-Watson	t var erion on criter.	0.001887 0.005480 -7.352328 -7.096849 -7.253532 1.900423

Source: EViews output based on data of Feenstra et al. (2015) and Alvaredo et al. (2016).

Table B.102: UK Model III, ECM RESET Test

Ramsey RESET Test Equation: TOP1_ECM Specification: DTOP1 RESID1(-1) DTOP1(-1 TO -3) DTFP(-6) DTFP(-7) C Omitted Variables: Squares of fitted values

	Value	df	Probability
t-statistic	0.142529	47	0.8873
F-statistic	0.020314	(1, 47)	0.8873
Likelihood ratio	0.023767	1	0.8775
F-test summary:			
-			Mean
	Sum of Sq.	df	Squares
Test SSR	4.48E-05	1	4.48E-05
Restricted SSR	0.103805	48	0.002163
Unrestricted SSR	0.103760	47	0.002208
LR test summary:			
	Value	df	
Restricted LogL	94.45419	48	_
Unrestricted LogL	94.46607	47	

Unrestricted Test Equation: Dependent Variable: DTOP1 Method: Least Squares Date: 09/10/16 Time: 17:41 Sample: 1958 2012 Included observations: 55 HAC standard errors & covariance (Bartlett kernel, Newey-West automatic bandwidth = 3.1977, NW automatic lag length = 3)

Variable	Coefficient	Std. Error	t-Statistic	Prob.
RESID1(-1)	-0.185301	0.064262	-2.883532	0.0059
DTOP1(-1) DTOP1(-2)	0.199479 0.252269	0.071092 0.094178	2.805919 2.678647	0.0073 0.0102
DTOP1(-3) DTFP(-6)	0.291838 -0.527297	0.147261 0.350992	1.981768 -1.502306	0.0534 0.1397
DTFP(-7)	-0.522543	0.274139	-1.906122	0.0628
FITTED ²	0.014753 -1.378801	0.011189 6.963999	1.318490 -0.197990	0.1937 0.8439
R-squared	0.251162	Mean depend	ent var	0.006878
Adjusted R-squared	0.139633	S.D. depende		0.050655
S.E. of regression	0.046986	Akaike info cri	terion	-3.144221
Sum squared resid	0.103760	Schwarz criter	rion	-2.852245
Log likelihood	94.46607	Hannan-Quini	n criter.	-3.031311
F-statistic	2.251991	Durbin-Watso	n stat	1.882588
Prob(F-statistic) Prob(Wald F-statistic)	0.046279 0.000005	Wald F-statist	ic	7.507580

B.7. United States

Table B.103: U.S. Model I, FMOLS Regression

Dependent Variable: TOP10 Method: Fully Modified Least Squares (FMOLS) Date: 09/25/16 Time: 18:04 Sample (adjusted): 1951 2014 Included observations: 64 after adjustments Cointegrating equation deterministics: C Long-run covariance estimate (Bartlett kernel, Newey-West automatic bandwidth = 7.2549, NW automatic lag length = 3)

Variable	Coefficient	Std. Error	t-Statistic	Prob.
TFP C	0.914516 4.208424	0.098358 0.429711	9.297823 9.793623	0.0000 0.0000
R-squared Adjusted R-squared S.E. of regression Long-run variance	0.884063 0.882193 0.050587 0.014305	Mean depende S.D. dependen Sum squared re	t var	8.200650 0.147385 0.158660

Source: EViews output based on data of Feenstra et al. (2015) and Alvaredo et al. (2016).

Table B.104: U.S. Model I, FMOLS Hansen Instability Test

Cointegration Test - Hansen Parameter Instability Date: 09/10/16 Time: 17:57 Equation: TOP10_FMOLS Series: TOP10 TFP Null hypothesis: Series are cointegrated Cointegrating equation deterministics: C

Lc statistic	Stochastic Trends (m)	Deterministic Trends (k)	Excluded Trends (p2)	Prob.*
0.661237	1	0	0	0.0124

*Hansen (1992b) Lc(m2=1, k=0) p-values, where m2=m-p2 is the number of stochastic trends in the asymptotic distribution

Table B.105: U.S. Model I, FMOLS ADF Unit Root Test of Residuals

Null Hypothesis: RESID10 has a unit root Exogenous: Constant Lag Length: 0 (Automatic - based on SIC, maxlag=10)

		t-Statistic	Prob.*
Augmented Dickey-Ful Test critical values:	ler test statistic 1% level 5% level 10% level	-2.962595 -3.538362 -2.908420 -2.591799	0.0440

*MacKinnon (1996) one-sided p-values.

Augmented Dickey-Fuller Test Equation Dependent Variable: D(RESID10) Method: Least Squares Date: 09/10/16 Time: 17:50 Sample (adjusted): 1952 2014 Included observations: 63 after adjustments

Variable	Coefficient	Std. Error	t-Statistic	Prob.
RESID10(-1) C	-0.133395 -0.001944	0.045026 0.002253	-2.962595 -0.862595	0.0043 0.3917
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.125786 0.111455 0.017879 0.019500 165.1415 8.776972 0.004344	Mean depende S.D. dependen Akaike info crite Schwarz criteri Hannan-Quinn Durbin-Watson	t var erion on criter.	-0.001782 0.018968 -5.179095 -5.111059 -5.152336 1.930231

Source: EViews output based on data of Feenstra et al. (2015) and Alvaredo et al. (2016).

Table B.106: U.S. Model I, FMOLS Engle-Granger Cointegration Test

Cointegration Test - Engle-Granger Date: 09/10/16 Time: 17:58 Equation: TOP10_FMOLS Specification: TOP10 TFP C Cointegrating equation deterministics: C Null hypothesis: Series are not cointegrated Automatic lag specification (lag=0 based on Schwarz Info Criterion, maxlag=10)

ValueProb.*Engle-Granger tau-statistic-2.5462730.2714Engle-Granger z-statistic-6.9227700.5593

*MacKinnon (1996) p-values.

Intermediate Results:		
Rho - 1	-0.108168	
Rho S.E.	0.042481	
Residual variance	0.000316	
Long-run residual variance	0.000316	
Number of lags	0	
Number of observations	64	
Number of stochastic trends**	2	

**Number of stochastic trends in asymptotic distribution.

Engle-Granger Test Equation: Dependent Variable: D(RESID) Method: Least Squares Date: 09/10/16 Time: 17:58 Sample (adjusted): 1951 2014 Included observations: 64 after adjustments

Variable	Coefficient	Std. Error	t-Statistic	Prob.
RESID(-1)	-0.108168	0.042481	-2.546273	0.0133
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood Durbin-Watson stat	0.087439 0.087439 0.017788 0.019934 167.5629 1.962813	Mean depende S.D. dependen Akaike info crit Schwarz criteri Hannan-Quinn	t var erion on	-0.001487 0.018621 -5.205091 -5.171359 -5.191802

Table B.107: U.S. Model I, Unrestricted Error Correction Estimation

Dependent Variable: DTOP10 Method: Least Squares Date: 09/10/16 Time: 18:20 Sample (adjusted): 1959 2014 Included observations: 56 after adjustments HAC standard errors & covariance (Bartlett kernel, Newey-West automatic bandwidth = 7.3705, NW automatic lag length = 3)

Variable	Coefficient	Std. Error	t-Statistic	Prob.
RESID10(-1)	-0.101922	0.053922	-1.890187	0.0664
DTOP10(-1)	0.103519	0.149238	0.693652	0.4921
DTOP10(-2)	0.171654	0.084876	2.022419	0.0502
DTOP10(-3)	-0.220089	0.115310	-1.908678	0.0639
DTOP10(-4)	0.177504	0.178620	0.993751	0.3266
DTOP10(-5)	0.296022	0.118813	2.491504	0.0172
DTOP10(-6)	-0.130997	0.139363	-0.939975	0.3532
DTOP10(-7)	0.155642	0.081246	1.915697	0.0630
DTOP10(-8)	0.285593	0.102894	2.775617	0.0085
DTFP(-1)	0.044128	0.106405	0.414718	0.6807
DTFP(-2)	0.238483	0.113341	2.104109	0.0420
DTFP(-3)	0.080425	0.175568	0.458082	0.6495
DTFP(-4)	0.138591	0.167109	0.829344	0.4121
DTFP(-5)	-0.102180	0.152624	-0.669493	0.5072
DTFP(-6)	-0.098222	0.206640	-0.475328	0.6373
DTFP(-7)	0.015483	0.169848	0.091161	0.9278
DTFP(-8)	-0.232377	0.224379	-1.035645	0.3069
C	-8.72E-05	0.003748	-0.023272	0.9816
R-squared	0.376728	Mean depende	nt var	0.006932
Adjusted R-squared	0.097896	S.D. dependen	t var	0.015022
S.E. of regression	0.014268	Akaike info crite	erion	-5.406505
Sum squared resid	0.007736	Schwarz criteri	on	-4.755499
Log likelihood	169.3821	Hannan-Quinn	criter.	-5.154111
F-statistic	1.351092	Durbin-Watson	stat	1.890141
Prob(F-statistic)	0.215416	Wald F-statistic	;	6.598706
Prob(Wald F-statistic)	0.000001			

Table B.108: U.S. Model I, Restricted Error Correction Model (ECM)

Dependent Variable: DTOP10 Method: Least Squares Date: 10/03/16 Time: 19:06 Sample (adjusted): 1959 2014 Included observations: 56 after adjustments HAC standard errors & covariance (Bartlett kernel, Newey-West automatic bandwidth = 5.5930, NW automatic lag length = 3)

Variable	Coefficient	Std. Error	t-Statistic	Prob.
RESID10(-1) DTOP10(-2) DTOP10(-3) DTOP10(-5) DTOP10(-7) DTOP10(-8) DTFP(-2) C	-0.099797 0.197644 -0.170077 0.321863 0.062138 0.346769 0.253573 -0.000876	0.053251 0.070748 0.079878 0.137719 0.090265 0.094273 0.127340 0.001928	-1.874095 2.793647 -2.129201 2.337089 0.688394 3.678367 1.991306 -0.454105	0.0670 0.0075 0.0384 0.0237 0.4945 0.0006 0.0522 0.6518
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic) Prob(Wald F-statistic)	0.269190 0.162613 0.013747 0.009071 164.9253 2.525787 0.026961 0.000052	Mean depende S.D. dependen Akaike info crit Schwarz criteri Hannan-Quinn Durbin-Watson Wald F-statistic	t var erion on criter. stat	0.006932 0.015022 -5.604476 -5.315140 -5.492301 1.687433 5.942275

Source: EViews output based on data of Feenstra et al. (2015) and Alvaredo et al. (2016).

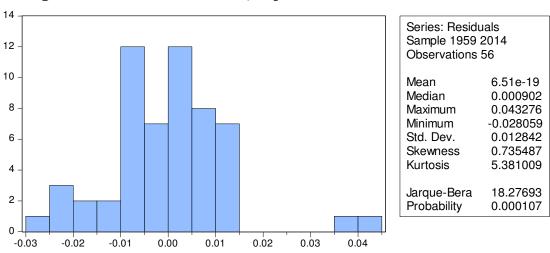


Figure B.12: U.S. Model I, ECM Jarque-Bera Normal Distribution Test

Table B.109: U.S. Model I, ECM Breusch-Godfrey Serial Correlation LM Test

Breusch-Godfrey Serial Correlation LM Test:

F-statistic1.881519PrObs*R-squared4.234672Pr	rob. F(2,46) 0.1639 rob. Chi-Square(2) 0.1204
--	--

Test Equation: Dependent Variable: RESID Method: Least Squares Date: 10/03/16 Time: 19:14 Sample: 1959 2014 Included observations: 56 Presample missing value lagged residuals set to zero.

Variable	Coefficient	Std. Error	t-Statistic	Prob.
RESID10(-1)	-0.001568	0.050278	-0.031192	0.9753
DTOP10(-2)	0.322354	0.253721	1.270507	0.2103
DTOP10(-3)	0.028856	0.134702	0.214219	0.8313
DTOP10(-5)	0.034902	0.136035	0.256566	0.7987
DTOP10(-7)	-0.019378	0.134364	-0.144218	0.8860
DTOP10(-8)	-0.047512	0.123534	-0.384604	0.7023
DTFP(-2)	0.053192	0.170928	0.311196	0.7571
С	-0.002668	0.003460	-0.771168	0.4446
RESID(-1)	0.194738	0.153796	1.266214	0.2118
RESID(-2)	-0.489427	0.308810	-1.584879	0.1198
R-squared	0.075619	Mean depende	nt var	6.51E-19
Adjusted R-squared	-0.105238	S.D. dependen	t var	0.012842
S.E. of regression	0.013501	Akaike info crite	erion	-5.611679
Sum squared resid	0.008385	Schwarz criterion		-5.250009
Log likelihood	167.1270	Hannan-Quinn criter.		-5.471460
F-statistic	0.418115	Durbin-Watson	stat	2.030619
Prob(F-statistic)	0.918796			

Table B.110: U.S. Model I, ECM Heteroskedasticity Test

Heteroskedasticity Test: White

F-statistic	0.184728	Prob. F(7,48)	0.9873
Obs*R-squared	1.469035	Prob. Chi-Square(7)	0.9834
Scaled explained SS	2.364191	Prob. Chi-Square(7)	0.9370

Test Equation: Dependent Variable: RESID^2 Method: Least Squares Date: 10/03/16 Time: 19:15 Sample: 1959 2014 Included observations: 56 HAC standard errors & covariance (Bartlett kernel, Newey-West automatic bandwidth = 3.1815, NW automatic lag length = 3)

Variable	Coefficient	Std. Error	t-Statistic	Prob.
С	0.000186	0.000126	1.481916	0.1449
RESID10(-1)^2	-0.004682	0.017516	-0.267324	0.7904
DTOP10(-2)^2	-0.032999	0.026201	-1.259478	0.2139
DTOP10(-3)^2	-0.034153	0.029944	-1.140540	0.2597
DTOP10(-5)^2	0.059025	0.038532	1.531854	0.1321
DTOP10(-7)^2	0.014790	0.035144	0.420837	0.6758
DTOP10(-8)^2	-0.039375	0.041604	-0.946443	0.3487
DTFP(-2)^2	-0.031525	0.151862	-0.207589	0.8364
R-squared	0.026233	Mean dependent var		0.000162
Adjusted R-squared	-0.115775	S.D. dependen	t var	0.000342
S.E. of regression	0.000361	Akaike info crite	erion	-12.88185
Sum squared resid	6.27E-06	Schwarz criterion		-12.59251
Log likelihood	368.6917	Hannan-Quinn criter.		-12.76967
F-statistic	0.184728	Durbin-Watson stat		1.233733
Prob(F-statistic)	0.987302			

Table B.111: U.S. Model I, ECM RESET Test

Ramsey RESET Test Equation: TOP10_ECM2 Specification: DTOP10 RESID10(-1) DTOP10(-2 TO -3) DTOP10(-5) DTOP10(-7) DTOP10(-8) DTFP(-2) C Omitted Variables: Squares of fitted values

	Value	df	Probability
t-statistic	0.993285	47	0.3257
F-statistic	0.986616	(1, 47)	0.3257
Likelihood ratio	1.163374	1	0.2808
F-test summary:			
			Mean
	Sum of Sq.	df	Squares
Test SSR	0.000186	1	0.000186
Restricted SSR	0.009071	48	0.000189
Unrestricted SSR	0.008884	47	0.000189
LR test summary:			
•	Value	df	
Restricted LogL	164.9253	48	
Unrestricted LogL	165.5070	47	

Unrestricted Test Equation: Dependent Variable: DTOP10 Method: Least Squares Date: 10/03/16 Time: 19:15 Sample: 1959 2014 Included observations: 56 HAC standard errors & covariance (Bartlett kernel, Newey-West automatic bandwidth = 5.8828, NW automatic lag length = 3)

Variable	Coefficient	Std. Error	t-Statistic	Prob.
RESID10(-1)	-0.082864	0.046502	-1.781942	0.0812
DTOP10(-2) DTOP10(-3)	0.133808 -0.079298	0.069208 0.082718	1.933423 -0.958651	0.0592 0.3426
DTOP10(-5)	0.186628	0.141969	1.314566	0.1950
DTOP10(-7) DTOP10(-8)	0.055587 0.242913	0.102309 0.088714	0.543329 2.738148	0.5895 0.0087
DTFP(-2)	0.143631	0.138748	1.035192	0.3059
C	-0.001397	0.001832	-0.762394	0.4496
FITTED ²	27.27225	16.45907	1.656974	0.1042
R-squared	0.284215	Mean depend	ent var	0.006932
Adjusted R-squared	0.162380	S.D. depende		0.015022
S.E. of regression	0.013749	Akaike info criterion		-5.589537
Sum squared resid	0.008884	Schwarz criterion		-5.264034
Log likelihood	165.5070	Hannan-Quinn criter.		-5.463340
F-statistic	2.332775	Durbin-Watson stat		1.676855
Prob(F-statistic)	0.033687	Wald F-statistic		6.119574
Prob(Wald F-statistic)	0.000021			

Table B.112: U.S. Model II, FMOLS Regression

Dependent Variable: TOP5 Method: Fully Modified Least Squares (FMOLS) Date: 09/10/16 Time: 18:34 Sample (adjusted): 1951 2014 Included observations: 64 after adjustments Cointegrating equation deterministics: C Long-run covariance estimate (Bartlett kernel, Newey-West automatic bandwidth = 7.2696, NW automatic lag length = 3)

Variable	Coefficient	Std. Error	t-Statistic	Prob.
TFP C	1.176834 2.678446	0.156731 0.684734	7.508613 3.911661	0.0000 0.0002
R-squared Adjusted R-squared S.E. of regression Long-run variance	0.834942 0.832280 0.079916 0.036323	Mean dependent var S.D. dependent var Sum squared resid		7.816020 0.195138 0.395967

Source: EViews output based on data of Feenstra et al. (2015) and Alvaredo et al. (2016).

Table B.113: U.S. Model II, FMOLS Hansen Instability Test

Cointegration Test - Hansen Parameter Instability Date: 09/10/16 Time: 18:35 Equation: TOP5_FMOLS Series: TOP5 TFP Null hypothesis: Series are cointegrated Cointegrating equation deterministics: C

	Stochastic	Deterministic	Excluded	
Lc statistic	Trends (m)	Trends (k)	Trends (p2)	Prob.*
0.686251	1	0	0	< 0.01

*Hansen (1992b) Lc(m2=1, k=0) p-values, where m2=m-p2 is the number of stochastic trends in the asymptotic distribution

Table B.114: U.S. Model II, FMOLS ADF Unit Root Test of Residuals

Null Hypothesis: RESID5 has a unit root Exogenous: Constant Lag Length: 0 (Automatic - based on SIC, maxlag=10)

		t-Statistic	Prob.*
Augmented Dickey-Full Test critical values:	er test statistic 1% level 5% level 10% level	-3.022237 -3.538362 -2.908420 -2.591799	0.0382

*MacKinnon (1996) one-sided p-values.

Augmented Dickey-Fuller Test Equation Dependent Variable: D(RESID5) Method: Least Squares Date: 09/10/16 Time: 18:35 Sample (adjusted): 1952 2014 Included observations: 63 after adjustments

Variable	Coefficient	Std. Error	t-Statistic	Prob.
RESID5(-1) C	-0.126816 -0.003158	0.041961 0.003320	-3.022237 -0.951091	0.0037 0.3453
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.130235 0.115977 0.026348 0.042349 140.7129 9.133914 0.003665	Mean depende S.D. dependen Akaike info crit Schwarz criteri Hannan-Quinn Durbin-Watson	t var erion on criter.	-0.002986 0.028024 -4.403584 -4.335548 -4.376825 1.865008

Source: EViews output based on data of Feenstra et al. (2015) and Alvaredo et al. (2016).

Table B.115: U.S. Model II, FMOLS Engle-Granger Cointegration Test

Cointegration Test - Engle-Granger Date: 09/10/16 Time: 18:36 Equation: TOP5_FMOLS Specification: TOP5 TFP C Cointegrating equation deterministics: C Null hypothesis: Series are not cointegrated Automatic lag specification (lag=0 based on Schwarz Info Criterion, maxlag=10)

	Value	Prob.*	
Engle-Granger tau-statistic	-2.722648	0.2051	
Engle-Granger z-statistic	-6.842140	0.5660	

*MacKinnon (1996) p-values.

Intermediate Results:		
Rho - 1	-0.106908	
Rho S.E.	0.039266	
Residual variance	0.000686	
Long-run residual variance	0.000686	
Number of lags	0	
Number of observations	64	
Number of stochastic trends**	2	

**Number of stochastic trends in asymptotic distribution.

Engle-Granger Test Equation: Dependent Variable: D(RESID) Method: Least Squares Date: 09/10/16 Time: 18:36 Sample (adjusted): 1951 2014 Included observations: 64 after adjustments

Variable	Coefficient	Std. Error	t-Statistic	Prob.
RESID(-1)	-0.106908	0.039266	-2.722648	0.0084
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood Durbin-Watson stat	0.096529 0.096529 0.026198 0.043238 142.7856 1.870437	Mean depende S.D. dependen Akaike info crit Schwarz criteri Hannan-Quinn	t var erion on	-0.002704 0.027562 -4.430800 -4.397067 -4.417511

Table B.116: U.S. Model II, Failed Unrestricted Error Correction Estimation

Dependent Variable: DTOP5 Method: Least Squares Date: 10/03/16 Time: 18:48 Sample (adjusted): 1971 2014 Included observations: 44 after adjustments HAC standard errors & covariance (Bartlett kernel, Newey-West automatic bandwidth = 8.7958, NW automatic lag length = 3)

		/		
Variable	Coefficient	Std. Error	t-Statistic	Prob.
RESID5(-1)	0.833017	0.250318	3.327829	0.0797
DTOP5(-1)	-0.224012	0.345975	-0.647480	0.5837
DTOP5(-2)	-0.628065	0.301276	-2.084684	0.1725
DTOP5(-3)	-1.480891	0.416693	-3.553914	0.0709
DTOP5(-4)	-0.713483	0.344041	-2.073831	0.1738
DTOP5(-5)	-0.178495	0.343536	-0.519581	0.6551
DTOP5(-6)	0.199702	0.356651	0.559936	0.6319
DTOP5(-7)	-0.147830	0.158541	-0.932440	0.4495
DTOP5(-8)	-0.314208	0.219898	-1.428882	0.2893
DTOP5(-9)	-0.591812	0.237561	-2.491198	0.1304
DTOP5(-10)	-0.202366	0.301902	-0.670305	0.5717
DTOP5(-11)	-0.041014	0.234937	-0.174573	0.8775
DTOP5(-12)	0.205744	0.297374	0.691869	0.5605
DTOP5(-13)	-0.390622	0.219765	-1.777450	0.2175
DTOP5(-14)	-0.125860	0.212549	-0.592147	0.6138
DTOP5(-15)	-0.602613	0.341684	-1.763653	0.2198
DTOP5(-16)	-1.151335	0.254078	-4.531428	0.2190
DTOP5(-17)	-0.184893	0.193557	-0.955241	0.0404
DTOP5(-18)	0.168752	0.214937	0.785125	0.4403
		0.155366		0.0622
DTOP5(-19)	-0.593661		-3.821055	
DTOP5(-20)	0.514244	0.094885	5.419663	0.0324
DTFP(-1)	0.621399	0.245846	2.527596	0.1273
DTFP(-2)	0.317832	0.206686	1.537750	0.2639
DTFP(-3)	0.926836	0.257432	3.600318	0.0692
DTFP(-4)	1.863174	0.363708	5.122724	0.0361
DTFP(-5)	0.607857	0.367356	1.654681	0.2398
DTFP(-6)	-1.322589	0.338916	-3.902407	0.0598
DTFP(-7)	-0.587041	0.482606	-1.216399	0.3479
DTFP(-8)	-1.891507	0.358482	-5.276429	0.0341
DTFP(-9)	-1.057109	0.709002	-1.490981	0.2745
DTFP(-10)	-2.182809	0.515143	-4.237288	0.0514
DTFP(-11)	-0.058819	0.388510	-0.151396	0.8936
DTFP(-12)	-0.360287	0.337338	-1.068029	0.3973
DTFP(-13)	-1.388259	0.174510	-7.955195	0.0154
DTFP(-14)	0.747809	0.506680	1.475900	0.2780
DTFP(-15)	0.922905	0.261726	3.526233	0.0719
DTFP(-16)	-0.628845	0.477407	-1.317209	0.3184
DTFP(-17)	-0.927050	0.423108	-2.191048	0.1598
DTFP(-18)	0.509501	0.667675	0.763097	0.5251
DTFP(-19)	2.092142	0.477994	4.376921	0.0484
DTFP(-20)	0.819521	0.433083	1.892293	0.1990
C	0.110217	0.044859	2.456992	0.1333
B-squared	0 002003	Mean depende	nt var	0.012130
R-squared Adjusted R-squared	0.992903 0.847414	S.D. dependen		
S.E. of regression	0.010037	Akaike info crit		0.025694 -7.547108
Sum squared resid		Schwarz criteri		
•	0.000201			-5.844017
Log likelihood	208.0364	Hannan-Quinn criter.		-6.915520
F-statistic	6.824590	Durbin-Watson		2.750672
Prob(F-statistic)	0.135849	Wald F-statistic	674.5320	

Source: EViews output based on data of Feenstra et al. (2015) and Alvaredo et al. (2016).

Table B.117: U.S. Model II, First-Difference Regression

Dependent Variable: DTOP5 Method: Least Squares Date: 09/25/16 Time: 20:28 Sample (adjusted): 1951 2014 Included observations: 64 after adjustments HAC standard errors & covariance (Bartlett kernel, Newey-West automatic bandwidth = 75.5525, NW automatic lag length = 3)

Variable	Coefficient	Std. Error	t-Statistic	Prob.
DTFP	0.168112	0.153039	1.098493	0.2764
С	-0.026829	0.002577	-10.40941	0.0000
@TREND	0.001995	0.000177	11.29243	0.0000
@TREND^2	-2.39E-05	2.57E-06	-9.308935	0.0000
R-squared	0.201446	Mean dependent var		0.005877
Adjusted R-squared	0.161518	S.D. dependen	it var	0.025503
S.E. of regression	0.023353	Akaike info criterion		-4.615724
Sum squared resid	0.032722	Schwarz criterion		-4.480794
Log likelihood	151.7032	Hannan-Quinn criter.		-4.562568
F-statistic	5.045274	Durbin-Watson stat		1.967326
Prob(F-statistic)	0.003492	Wald F-statistic		76.51012
Prob(Wald F-statistic)	0.000000			

Table B.118: U.S. Model III, FMOLS Regression

Dependent Variable: TOP1 Method: Fully Modified Least Squares (FMOLS) Date: 09/10/16 Time: 20:30 Sample (adjusted): 1951 2014 Included observations: 64 after adjustments Cointegrating equation deterministics: C Long-run covariance estimate (Bartlett kernel, Newey-West automatic bandwidth = 7.2647, NW automatic lag length = 3)

Variable	Coefficient	Std. Error	t-Statistic	Prob.
TFP C	1.798662 -0.856444	0.311047 1.358914	5.782607 -0.630242	0.0000 0.5309
R-squared Adjusted R-squared S.E. of regression Long-run variance	0.750407 0.746381 0.158295 0.143063	Mean depende S.D. dependen Sum squared r	it var	6.997199 0.314324 1.553561

Source: EViews output based on data of Feenstra et al. (2015) and Alvaredo et al. (2016).

Table B.119: U.S. Model III, FMOLS Hansen Instability Test

Cointegration Test - Hansen Parameter Instability Date: 09/10/16 Time: 20:31 Equation: TOP1_FMOLS Series: TOP1 TFP Null hypothesis: Series are cointegrated Cointegrating equation deterministics: C

	Stochastic	Deterministic	Excluded	
Lc statistic	Trends (m)	Trends (k)	Trends (p2)	Prob.*
0.662191	1	0	0	0.0122

*Hansen (1992b) Lc(m2=1, k=0) p-values, where m2=m-p2 is the number of stochastic trends in the asymptotic distribution

Table B.120: U.S. Model III, FMOLS ADF Unit Root Test of Residuals

Null Hypothesis: RESID1 has a unit root Exogenous: Constant Lag Length: 0 (Automatic - based on SIC, maxlag=10)

		t-Statistic	Prob.*
Augmented Dickey-Fulle Test critical values:	er test statistic 1% level 5% level 10% level	-3.024475 -3.538362 -2.908420 -2.591799	0.0380

*MacKinnon (1996) one-sided p-values.

Augmented Dickey-Fuller Test Equation Dependent Variable: D(RESID1) Method: Least Squares Date: 09/10/16 Time: 20:30 Sample (adjusted): 1952 2014 Included observations: 63 after adjustments

Variable	Coefficient	Std. Error	t-Statistic	Prob.
RESID1(-1) C	-0.122429 -0.006474	0.040479 0.006353	-3.024475 -1.019062	0.0036 0.3122
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.130403 0.116147 0.050425 0.155103 99.82113 9.147448 0.003641	Mean depende S.D. dependen Akaike info crite Schwarz criteri Hannan-Quinn Durbin-Watson	t var erion on criter.	-0.006433 0.053636 -3.105433 -3.037397 -3.078674 1.823804

Source: EViews output based on data of Feenstra et al. (2015) and Alvaredo et al. (2016).

Table B.121: U.S. Model III, FMOLS Engle-Granger Cointegration Test

Cointegration Test - Engle-Granger Date: 09/10/16 Time: 20:31 Equation: TOP1_FMOLS Specification: TOP1 TFP C Cointegrating equation deterministics: C Null hypothesis: Series are not cointegrated Automatic lag specification (lag=0 based on Schwarz Info Criterion, maxlag=10)

	Value	Prob.*	
Engle-Granger tau-statistic	-2.708512	0.2100	
Engle-Granger z-statistic	-6.610510	0.5855	

*MacKinnon (1996) p-values.

Intermediate Results:		
Rho - 1	-0.103289	
Rho S.E.	0.038135	
Residual variance	0.002537	
Long-run residual variance	0.002537	
Number of lags	0	
Number of observations	64	
Number of stochastic trends**	2	

**Number of stochastic trends in asymptotic distribution.

Engle-Granger Test Equation: Dependent Variable: D(RESID) Method: Least Squares Date: 09/10/16 Time: 20:31 Sample (adjusted): 1951 2014 Included observations: 64 after adjustments

Variable	Coefficient	Std. Error	t-Statistic	Prob.
RESID(-1)	-0.103289	0.038135	-2.708512	0.0087
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood Durbin-Watson stat	0.093288 0.093288 0.050369 0.159836 100.9477 1.827304	Mean depende S.D. dependen Akaike info crit Schwarz criteri Hannan-Quinn	t var erion on	-0.005819 0.052897 -3.123366 -3.089633 -3.110077

Table B.122: U.S. Model III, Failed Unrestricted Error Correction Estimation

Dependent Variable: DTOP1 Method: Least Squares Date: 10/03/16 Time: 18:53 Sample (adjusted): 1971 2014 Included observations: 44 after adjustments HAC standard errors & covariance (Bartlett kernel, Newey-West automatic bandwidth = 7.5897, NW automatic lag length = 3)

		<u> </u>		
Variable	Coefficient	Std. Error	t-Statistic	Prob.
RESID1(-1)	0.937681	0.366069	2.561489	0.1246
DTOP1(-1)	-0.928770	0.497705	-1.866103	0.2030
DTOP1(-2)	-0.579361	0.272551	-2.125703	0.1674
DTOP1(-3)	-1.508178	0.339385	-4.443855	0.0471
DTOP1(-4)	-1.362282	0.636094	-2.141635	0.1655
DTOP1(-5)	-0.421051	0.344399	-1.222568	0.3460
DTOP1(-6)	0.039660	0.428514	0.092553	0.9347
DTOP1(-7)	-0.180567	0.126124	-1.431664	0.2886
DTOP1(-8)	-0.303352	0.292625	-1.036655	0.4088
DTOP1(-9)	-0.637955	0.247085	-2.581925	0.1229
DTOP1(-10)	-0.314307	0.247681	-1.268997	0.3321
DTOP1(-11)	0.062014	0.541008	0.114627	0.9192
DTOP1(-12)	0.104489	0.210612	0.496121	0.6690
DTOP1(-13)	-0.107635	0.216586	-0.496959	0.6685
DTOP1(-14)		0.195417		
	-0.037723		-0.193040	0.8648
DTOP1(-15)	-0.596793	0.475455	-1.255202	0.3362
DTOP1(-16)	-0.933876	0.610898	-1.528693	0.2659
DTOP1(-17)	-0.294550	0.272921	-1.079250	0.3933
DTOP1(-18)	-0.012936	0.362299	-0.035706	0.9748
DTOP1(-19)	-0.338665	0.257350	-1.315973	0.3188
DTOP1(-20)	0.236513	0.074075	3.192902	0.0857
DTFP(-1)	0.499872	0.404313	1.236348	0.3418
DTFP(-2)	-0.100524	0.978549	-0.102728	0.9276
DTFP(-3)	1.053702	0.956404	1.101733	0.3854
DTFP(-4)	3.566829	0.990795	3.599967	0.0692
DTFP(-5)	1.824269	1.434839	1.271410	0.3314
DTFP(-6)	-2.990891	0.799900	-3.739078	0.0647
DTFP(-7)	-2.493568	1.914983	-1.302135	0.3226
DTFP(-8)	-3.889409	0.667649	-5.825532	0.0282
DTFP(-9)	-3.942456	1.405727	-2.804568	0.1071
DTFP(-10)	-4.883930	2.233528	-2.186644	0.1603
DTFP(-11)	-1.988676	1.140139	-1.744240	0.2232
DTFP(-12)	-1.852706	0.668504	-2.771419	0.1093
DTFP(-13)	-3.653025	0.826028	-4.422400	0.0475
DTFP(-14)	-0.584146	1.238241	-0.471755	0.6836
DTFP(-15)	1.468664	2.034754	0.721789	0.5454
DTFP(-16)	-0.439383	2.776988	-0.158223	0.8888
DTFP(-17)	-2.691781	1.584421	-1.698905	0.2314
DTFP(-18)	-0.968445	2.598497	-0.372694	0.7452
DTFP(-19)	3.831566	4.163056	0.920373	0.4545
DTFP(-20)	2.786458	2.305511	1.208607	0.3503
C	0.326571	0.120954	2.699966	0.1142
R-squared	0.989060	Mean depende		0.018980
Adjusted R-squared	0.764799	S.D. dependen		0.054756
S.E. of regression	0.026555	Akaike info criterion		-5.601137
Sum squared resid	0.001410	Schwarz criteri		-3.898047
Log likelihood	165.2250	Hannan-Quinn criter.		-4.969549
F-statistic	4.410292	Durbin-Watson		2.513169
Prob(F-statistic)	0.201881	Wald F-statistic	0	3660.481

Source: EViews output based on data of Feenstra et al. (2015) and Alvaredo et al. (2016).

Table B.123: U.S. Model III, First-Difference Regression

Dependent Variable: DTOP1 Method: Least Squares Date: 09/25/16 Time: 20:27 Sample (adjusted): 1951 2014 Included observations: 64 after adjustments HAC standard errors & covariance (Bartlett kernel, Newey-West automatic bandwidth = 198.5258, NW automatic lag length = 3)

Variable	Coefficient	Std. Error	t-Statistic	Prob.
DTFP	0.405991	0.211010	1.924041	0.0591
С	-0.055838	0.002817	-19.81836	0.0000
@TREND	0.003926	0.000204	19.26775	0.0000
@TREND^2	-4.84E-05	3.03E-06	-15.99461	0.0000
R-squared	0.181631	Mean dependent var		0.007174
Adjusted R-squared	0.140712	S.D. dependen	it var	0.051488
S.E. of regression	0.047729	Akaike info criterion		-3.186114
Sum squared resid	0.136681	Schwarz criterion		-3.051184
Log likelihood	105.9556	Hannan-Quinn criter.		-3.132958
F-statistic	4.438849	Durbin-Watson stat		2.026320
Prob(F-statistic)	0.006969	Wald F-statistic		222.0672
Prob(Wald F-statistic)	0.000000			

C. Further Results of Bounds Testing Analysis

C.1. Critical Bounds

Table C.1: Critical Values for Unrestricted Intercept and Unrestricted Trend Case

	0.100	0.050	0.025	0.010
k	I(0) I(1)	I(0) I(1)	<i>I</i> (0) <i>I</i> (1)	<i>I</i> (0) <i>I</i> (1)
1	-3.13 -3.40	-3.41 -3.69	-3.65 -3.96	-3.96 -4.26

Source: Own depiction based on Pesaran et al. (2001), p. 304.

C.2. Italy

Table C.2: Italy Model I, ARDL Regression

Dependent Variable: TOP10 Method: ARDL Date: 09/26/16 Time: 14:59 Sample (adjusted): 1978 2009 Included observations: 32 after adjustments Maximum dependent lags: 7 (Automatic selection) Model selection method: Schwarz criterion (SIC) Dynamic regressors (7 lags, automatic): TFP Fixed regressors: C @TREND Number of models evalulated: 56 Selected Model: ARDL(4, 2) Note: final equation sample is larger than selection sample

Variable	Coefficient	Std. Error	t-Statistic	Prob.*
TOP10(-1)	0.990238	0.228773	4.328475	0.0002
TOP10(-2)	-0.302910	0.307434	-0.985284	0.3347
TOP10(-3)	0.131810	0.148834	0.885619	0.3850
TOP10(-4)	-0.079068	0.080420	-0.983189	0.3357
TFP	0.435149	0.138796	3.135177	0.0046
TFP(-1)	-0.296469	0.234450	-1.264528	0.2187
TFP(-2)	-0.066290	0.157308	-0.421405	0.6774
C	1.693357	0.557733	3.036146	0.0059
@TREND	0.002763	0.000906	3.049062	0.0057
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.994212 0.992199 0.008106 0.001511 113.9641 493.8668 0.000000	Mean dependent var S.D. dependent var Akaike info criterion Schwarz criterion Hannan-Quinn criter. Durbin-Watson stat		8.010383 0.091773 -6.560258 -6.148020 -6.423612 2.086245

*Note: p-values and any subsequent tests do not account for model selection.

Table C.3: Italy Model I, ARDL Bounds Test

ARDL Bounds Test Date: 09/26/16 Time: 16:21 Sample: 1978 2009 Included observations: 32 Null Hypothesis: No long-run relationships exist

Test Statistic	Value	k	
F-statistic	5.118364	1	

Critical Value Bounds

Significance	I0 Bound	I1 Bound
10%	5.59	6.26
5%	6.56	7.3
2.5%	7.46	8.27
1%	8.74	9.63

Test Equation: Dependent Variable: D(TOP10) Method: Least Squares Date: 09/26/16 Time: 16:21 Sample: 1978 2009 Included observations: 32

Variable	Coefficient	Std. Error	t-Statistic	Prob.
D(TOP10(-1))	0.250168	0.202404	1.235987	0.2289
D(TOP10(-2))	-0.052741	0.136577	-0.386164	0.7029
D(TOP10(-3))	0.079068	0.080420	0.983189	0.3357
D(TFP)	0.435149	0.138796	3.135177	0.0046
D(TFP(-1))	0.066290	0.157308	0.421405	0.6774
С	1.693357	0.557733	3.036146	0.0059
@TREND	0.002763	0.000906	3.049062	0.0057
TFP(-1)	0.072389	0.100335	0.721476	0.4779
TOP10(-1)	-0.259930	0.088716	-2.929902	0.0075
R-squared	0.670711	Mean depender	nt var	0.006477
Adjusted R-squared	0.556175	S.D. dependent	var	0.012167
S.E. of regression	0.008106	Akaike info crite	erion	-6.560258
Sum squared resid	0.001511	Schwarz criterion		-6.148020
Log likelihood	113.9641	Hannan-Quinn criter.		-6.423612
F-statistic	5.855928	Durbin-Watson stat		2.086245
Prob(F-statistic)	0.000393			

Table C.4: Italy Model I, ARDL Cointegrating and Long-Run Form

ARDL Cointegrating And Long Run Form Dependent Variable: TOP10 Selected Model: ARDL(4, 2) Date: 09/26/16 Time: 16:23 Sample: 1974 2014 Included observations: 32

Cointegrating Form						
Variable	Coefficient	Std. Error	t-Statistic	Prob.		
D(TOP10(-1)) D(TOP10(-2)) D(TOP10(-3)) D(TFP) D(TFP(-1)) D(@TREND()) CointEq(-1)	0.250168 -0.052741 0.079068 0.435149 0.066290 0.002763 -0.259930	0.202404 0.136577 0.080420 0.138796 0.157308 0.000906 0.088716	1.235987 -0.386164 0.983189 3.135177 0.421405 3.049062 -2.929902	0.2289 0.7029 0.3357 0.0046 0.6774 0.0057 0.0075		
Cointeq = TOP10 - (0.27	'85*TFP + 6.5147	′ + 0.0106*@TF	REND)			
	Long Run Coefficients					
Variable	Coefficient	Std. Error	t-Statistic	Prob.		
TFP C @TREND	0.278495 6.514674 0.010629	0.337876 1.579250 0.000875	0.824253 4.125169 12.152719	0.4183 0.0004 0.0000		

Source: EViews output based on data of Feenstra et al. (2015) and Alvaredo et al. (2016).

Table C.5: Italy Model I, ARDL Breusch-Godfrey Serial Correlation LM Test

Breusch-Godfrey Serial Correlation LM Test:

F-statistic	Prob. F(2,21)	0.1690
Obs*R-squared	Prob. Chi-Square(2)	0.0828

Test Equation: Dependent Variable: RESID Method: ARDL Date: 09/26/16 Time: 15:24 Sample: 1978 2009 Included observations: 32 Presample missing value lagged residuals set to zero.

Variable	Coefficient	Std. Error	t-Statistic	Prob.
TOP10(-1)	0.555716	0.835256	0.665324	0.5131
TOP10(-2)	-0.125602	0.956701	-0.131287	0.8968
TOP10(-3)	-0.152996	0.266087	-0.574987	0.5714
TOP10(-4)	-0.001161	0.087647	-0.013245	0.9896
TFP	0.060528	0.165123	0.366567	0.7176
TFP(-1)	-0.359147	0.338461	-1.061118	0.3007
TFP(-2)	0.139572	0.325063	0.429370	0.6720
С	-1.411378	1.219088	-1.157733	0.2600
@TREND	-0.002799	0.002037	-1.373970	0.1839
RESID(-1)	-0.662795	0.816268	-0.811982	0.4259
RESID(-2)	-0.630584	0.380613	-1.656758	0.1124
R-squared	0.155745	Mean depende	nt var	5.32E-15
Adjusted R-squared	-0.246282	S.D. dependen	t var	0.006982
S.E. of regression	0.007794	Akaike info crite	erion	-6.604558
Sum squared resid	0.001276	Schwarz criterion		-6.100711
Log likelihood	116.6729	Hannan-Quinn criter.		-6.437547
F-statistic	0.387399	Durbin-Watson stat		2.260870
Prob(F-statistic)	0.938089			

Table C.6: Italy Model I, ARDL RESET Test

Ramsey RESET Test Equation: TOP10_ARDL Specification: TOP10 TOP10(-1) TOP10(-2) TOP10(-3) TOP10(-4) TFP TFP(-1) TFP(-2) C @TREND Omitted Variables: Squares of fitted values

	Value	df	Probability
t-statistic F-statistic	1.377355 1.897106	22 (1, 22)	0.1823 0.1823
		(-, ==)	
F-test summary:			Mean
	Sum of Sq.	df	Squares
Test SSR	0.000120	1	0.000120
Restricted SSR	0.001511	23	6.57E-05
Unrestricted SSR	0.001391	22	6.32E-05

Unrestricted Test Equation: Dependent Variable: TOP10 Method: ARDL Date: 09/26/16 Time: 15:25 Sample: 1978 2009 Included observations: 32 Maximum dependent lags: 7 (Automatic selection) Model selection method: Schwarz criterion (SIC) Dynamic regressors (7 lags, automatic): Fixed regressors: C @TREND

Variable	Coefficient	Std. Error	t-Statistic	Prob.*
TOP10(-1)	9.288441	6.028916	1.540649	0.1377
TOP10(-2)	-2.862545	1.882686	-1.520458	0.1426
TOP10(-3)	1.227937	0.809104	1.517650	0.1433
TOP10(-4)	-0.689151	0.449910	-1.531755	0.1398
TFP	4.034266	2.616609	1.541791	0.1374
TFP(-1)	-2.741375	1.789913	-1.531569	0.1399
TFP(-2)	-0.630031	0.437421	-1.440332	0.1639
С	-17.46289	13.91875	-1.254630	0.2228
@TREND	0.026543	0.017288	1.535347	0.1390
FITTED ²	-0.528239	0.383517	-1.377355	0.1823
R-squared	0.994672	Mean depend	ent var	8.010383
Adjusted R-squared	0.992492	S.D. depende	nt var	0.091773
S.E. of regression	0.007952	Akaike info criterion		-6.580473
Sum squared resid	0.001391	Schwarz criterion		-6.122430
Log likelihood	115.2876	Hannan-Quinn criter.		-6.428645
F-statistic	456.3263	Durbin-Watson stat		2.057126
Prob(F-statistic)	0.000000			

*Note: p-values and any subsequent tests do not account for model selection.

Table C.7: Italy Model II, ARDL Regression

Dependent Variable: TOP5 Method: ARDL Date: 09/27/16 Time: 11:52 Sample (adjusted): 1980 2009 Included observations: 30 after adjustments Maximum dependent lags: 6 (Automatic selection) Model selection method: Schwarz criterion (SIC) Dynamic regressors (6 lags, automatic): TFP Fixed regressors: C @TREND Number of models evalulated: 42 Selected Model: ARDL(6, 0)

Variable	Coefficient	Std. Error	t-Statistic	Prob.*
TOP5(-1)	0.849982	0.146251	5.811820	0.0000
TOP5(-2)	-0.232415	0.191371	-1.214473	0.2380
TOP5(-3)	0.027893	0.198050	0.140836	0.8893
TOP5(-4)	-0.354938	0.162080	-2.189892	0.0400
TOP5(-5)	0.383602	0.086795	4.419659	0.0002
TOP5(-6)	-0.227552	0.060407	-3.766957	0.0011
TFP	0.326953	0.073771	4.431991	0.0002
С	2.545450	0.415419	6.127424	0.0000
@TREND	0.006687	0.000983	6.802004	0.0000
R-squared	0.997259	Mean depende	nt var	7.618951
Adjusted R-squared	0.996214	S.D. dependen	t var	0.113989
S.E. of regression	0.007013	Akaike info criterion		-6.838673
Sum squared resid	0.001033	Schwarz criterion		-6.418314
Log likelihood	111.5801	Hannan-Quinn criter.		-6.704196
F-statistic	954.9652	Durbin-Watson stat		2.162989
Prob(F-statistic)	0.000000			

*Note: p-values and any subsequent tests do not account for model selection.

Table C.8: Italy Model II, ARDL Bounds Test

ARDL Bounds Test Date: 09/27/16 Time: 12:51 Sample: 1980 2009 Included observations: 30 Null Hypothesis: No long-run relationships exist

Test Statistic	Value	k	
F-statistic	16.29864	1	

Critical Value Bounds

Significance	I0 Bound	I1 Bound	
10%	5.59	6.26	
5%	6.56	7.3	
2.5%	7.46	8.27	
1%	8.74	9.63	

Test Equation: Dependent Variable: D(TOP5) Method: Least Squares Date: 09/27/16 Time: 12:51 Sample: 1980 2009 Included observations: 30

Variable	Coefficient	Std. Error	t-Statistic	Prob.
D(TOP5(-1))	0.582273	0.115738	5.030940	0.0001
D(TOP5(-2))	0.156135	0.139784	1.116975	0.2766
D(TOP5(-3))	0.070030	0.140418	0.498725	0.6232
D(TOP5(-4))	-0.108949	0.074802	-1.456496	0.1600
D(TOP5(-5))	0.291896	0.067729	4.309764	0.0003
С	2.461366	0.490278	5.020348	0.0001
@TREND	0.006198	0.001220	5.080637	0.0000
TFP(-1)	0.316703	0.111365	2.843824	0.0097
TOP5(-1)	-0.535012	0.098154	-5.450730	0.0000
R-squared	0.810287	Mean depender	nt var	0.008995
Adjusted R-squared	0.738016	S.D. dependent var		0.016197
S.E. of regression	0.008290	Akaike info criterion		-6.504160
Sum squared resid	0.001443	Schwarz criterion		-6.083801
Log likelihood	106.5624	Hannan-Quinn criter.		-6.369684
F-statistic	11.21171	Durbin-Watson stat		2.105816
Prob(F-statistic)	0.000005			

Table C.9: Italy Model II, ARDL Cointegrating and Long-Run Form

ARDL Cointegrating And Long Run Form Dependent Variable: TOP5 Selected Model: ARDL(6, 0) Date: 09/27/16 Time: 12:52 Sample: 1974 2014 Included observations: 30

@TREND

Cointegrating Form							
Variable	Coefficient	Std. Error	t-Statistic	Prob.			
D(TOP5(-1))	0.403411	0.107397	3.756241	0.0012			
D(TOP5(-2))	0.170996	0.118255	1.445988	0.1629			
D(TOP5(-3))	0.198888	0.123885	1.605431	0.1233			
D(TOP5(-4))	-0.156050	0.065237	-2.392067	0.0262			
D(TOP5(-5))	0.227552	0.060407	3.766957	0.0011			
D(TFP)	0.326953	0.073771	4.431991	0.0002			
D(@TREND())	0.006687	0.000983	6.802004	0.0000			
CointEq(-1)	-0.553429	0.075634	-7.317226	0.0000			
Cointeq = TOP5 - (0.59	Cointeq = TOP5 - (0.5908*TFP + 4.5994 + 0.0121*@TREND)						
Long Run Coefficients							
Variable	Coefficient	Std. Error	t-Statistic	Prob.			
TFP C	0.590777 4.599416	0.099780 0.467885	5.920804 9.830228	0.0000 0.0000			

Source: EViews output based on data of Feenstra et al. (2015) and Alvaredo et al. (2016).

0.000328

36.815030

0.0000

0.012083

Table C.10: Italy Model II, ARDL Breusch-Godfrey Serial Correlation LM Test

Breusch-Godfrey Serial Correlation LM Test:

F-statistic	Prob. F(2,19)	0.1718
Obs*R-squared	Prob. Chi-Square(2)	0.0790

Test Equation: Dependent Variable: RESID Method: ARDL Date: 09/27/16 Time: 12:51 Sample: 1980 2009 Included observations: 30 Presample missing value lagged residuals set to zero.

Variable	Coefficient	Std. Error	t-Statistic	Prob.
TOP5(-1)	0.029023	0.164009	0.176961	0.8614
TOP5(-2)	0.110829	0.222694	0.497675	0.6244
TOP5(-3)	-0.175040	0.214188	-0.817226	0.4239
TOP5(-4)	0.084721	0.162036	0.522855	0.6071
TOP5(-5)	0.009174	0.083953	0.109275	0.9141
TOP5(-6)	-0.016188	0.058466	-0.276872	0.7849
TFP	-0.041259	0.074553	-0.553417	0.5864
С	-0.119694	0.416065	-0.287681	0.7767
@TREND	-0.000526	0.001015	-0.517613	0.6107
RESID(-1)	-0.141838	0.248588	-0.570577	0.5750
RESID(-2)	-0.498609	0.263135	-1.894876	0.0734
R-squared	0.169238	Mean depende	nt var	3.96E-16
Adjusted R-squared	-0.268005	S.D. dependen	t var	0.005968
S.E. of regression	0.006720	Akaike info criterion		-6.890751
Sum squared resid	0.000858	Schwarz criterion		-6.376979
Log likelihood	114.3613	Hannan-Quinn criter.		-6.726391
F-statistic	0.387057	Durbin-Watson stat		2.261185
Prob(F-statistic)	0.936853			

Table C.11: Italy Model II, ARDL RESET Test

Ramsey RESET Test Equation: TOP5_ARDL Specification: TOP5 TOP5(-1) TOP5(-2) TOP5(-3) TOP5(-4) TOP5(-5) TOP5(-6) TFP C @TREND Omitted Variables: Squares of fitted values

	Value	df	Probability
t-statistic	0.626757	20	0.5379
F-statistic	0.392824	(1, 20)	0.5379
F-test summary:			
			Mean
	Sum of Sq.	df	Squares
Test SSR	1.99E-05	1	1.99E-05
Restricted SSR	0.001033	21	4.92E-05
Unrestricted SSR	0.001013	20	5.07E-05

Unrestricted Test Equation: Dependent Variable: TOP5 Method: ARDL Date: 09/27/16 Time: 12:51 Sample: 1980 2009 Included observations: 30 Maximum dependent lags: 6 (Automatic selection) Model selection method: Schwarz criterion (SIC) Dynamic regressors (6 lags, automatic): Fixed regressors: C @TREND

Variable	Coefficient	Std. Error	t-Statistic	Prob.*
TOP5(-1)	2.781508	3.085351	0.901521	0.3780
TOP5(-2)	-0.757994	0.860762	-0.880608	0.3890
TOP5(-3)	0.093235	0.226408	0.411801	0.6849
TOP5(-4)	-1.162606	1.299100	-0.894932	0.3815
TOP5(-5)	1.252642	1.389361	0.901596	0.3780
TOP5(-6)	-0.730119	0.804192	-0.907891	0.3747
TFP	1.067363	1.183705	0.901714	0.3779
С	-0.282200	4.531209	-0.062279	0.9510
@TREND	0.022179	0.024738	0.896562	0.3806
FITTED ²	-0.151763	0.242140	-0.626757	0.5379
R-squared	0.997312	Mean depend	ent var	7.618951
Adjusted R-squared	0.996102	S.D. depende	nt var	0.113989
S.E. of regression	0.007117	Akaike info criterion		-6.791457
Sum squared resid	0.001013	Schwarz criterion		-6.324391
Log likelihood	111.8719	Hannan-Quinn criter.		-6.642039
F-statistic	824.3585	Durbin-Watson stat		2.107100
Prob(F-statistic)	0.000000			

*Note: p-values and any subsequent tests do not account for model selection.