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Abstract

Database system are currently used by thousands of web applications. Some of these
applications serve critical services and have very high demands for high availability and
fast real-time responses.
Open source database management systems, in the last years, have had some new fea-
tures in terms of high availability and in terms of performance: although these are con-
cepts largely covered by commercial database are new on the database open source such
as PostgreSQL and MariaDB. In the past a cluster active-passive solution was the only
way to have an high-availability architecture but with the new features other types of
architectures are possible to obtain an high availability solutions.
The purpose of this thesis is to describe and compare the methods implemented on the
main open-source database management systems to achieve high-availability.
I’ll show the difference between the typologies of cluster and the downside of every
solutions: since usually this type of technology are used from middle-size to large envi-
ronment, i will demonstrate that with some disk-memory tuning on Linux based oper-
ating systems the performances can be significantly improved.
The acid test consists in a solution with two nodes and examines the throughput and the
response time of a website (i.e. e-commerce or newspapers) and the heavy-write load
in a TPC-C.
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Introduction

I.1 Problem Description and Motivation

The demand of high performance and reliability on the database has always been im-
portant concept in the modern internet world.
In the past the common high availability was obtained on hardware level but it meant in
most cases a downtime to reallocate the resource, i.e in a cluster solution where there is
a master and a slave the downtime given is equal to reallocate time from the primary to
the secondary host.
Modern Web application has to reach a near-zero downtime (or in the jargon 99.99% of
availability), and this requirement has consequences on the hardware architecture and
the software layer. Let’s consider a internet-banking site in terms of availability: it is
always available and the largest span of disservice is due to a scheduled downtime to
deploy software’s new releases. This is an example but there are many other cases of
mission-critical web application, such as hospital or industrial ones.
Web application architecture is formed by three distinct actors: the web server, the ap-
plication server and the database server. The best practice dictates that in front of each
layer there must be a balancer distributing the jobs on servers of the same layer: this way
let us have several identical servers doing simultaneously the same jobs. Regarding web
server and application server layer, each server has an identical copy of ”static” data,
while data on a database layer are constantly modeled by the applications: that layer is
the critical one of the web application architecture, because has to have synchronized
servers.

In this sort of architecture is easy to understand that the chance of an availability’s
bottleneck is represented by the database layers and to avoid it we can implement dif-
ferent solutions, each one has different drawbacks. The easier solution is represented by
a single database server on a virtual machine but ti means that we have a single point of
failure at the application layer: in the event of a system crash, the database is unavail-
able. Moreover all maintenance operation may cause a downtime, and being a virtual
system the resources given may be lower than a physical system.
Alternative solution of precedent options is have two or more database that works to-
gether, and in this case it can operate in synchronous or in asynchronous mode. Best
solution in terms of availability is that the databases are synchronized with a balancer
that divide the work load to these, but in this cases the performance can degraded. While
the best solution in terms of performance has to have the database in asynchronous mode
without balancer, but in this case is necessary a system downtime in case of failure, with
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Figure 1: Traditional Web Architecture

a potential data loss.

The problem described below is a historical issue of the computer science. During
the years the applications and the number of users on the web has increased and that has
generated new problems and issues to guarantee the service level desired.
Nowadays there are several commercial database solutions that address the problem in a
different way, but each and every one has high licensing fees and that’s not an affordable
option for every company.
Open-source world has two principal database management systems: PostgresSQL and
MySQL. The last one became Oracle’s property after the acquisition [oraa] Sun Mi-
crosystems in 2010 and since then many new fork was born. MariaDB is the main
DBMS born by MySQL and many companies (in private and public sector) use it for our
scope [mara].

The best solutions to ensure high-availability of a database service are implemented
in the commercial databases system for several years. This type of solutions consist to
have different databases in synchronous mode with an virtual IP address (VIP) as single
point of access.
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In September of 2010 PostgreSQL has implemented, in version 9.1 [posc], a new fea-
ture to allow synchronous replication, and MariaDB team in 2013 has released MariaDB
Galera Cluster 5.5.29 [marb] with the same feature. Before these releases the only way
for high-availability was an asynchronous replication thereby the balancer feature was
not an option.

The problem described is a real issue in many industrial realities. The historical
moment we are living has showed an increasing number of companies that started using
open source solutions. One of those is the IT Department of Veneto Region that since 8
years has begun to use the open source databases on its web architecture.
At first the databases were installed in a single instance, with no high availability system.
After 5 years, as the system involved become more critical, an active-passive cluster was
built, with an active node and an asynchronous second one available in case of failure.
This solution has some problems such as the time to switch the database or the amount
of time necessary to re-establish the initial condition after a fail-over. Obviously some
others problems are at stake: the maintenance of the system is very problematic and it
is mandatory to add others layers to manage the resource and the DBMS.

This work is born from the need to establish which solutions offer a real high-
availability and which their benefits are. A customer likes to work in an environment
that permits its maintenance without any collateral effects and usually his first request
is a solution without any downtime.
The second request that a customer demands is that the database operates at its best.
Ideally, his goal is an high-availability solution with two active nodes therefore the per-
formances of the system are doubled: this is clearly a best case scenario, but an actual
aim is to increase the total ranking of 80%.

I.2 Main Contributions
This thesis is an investigation of the new generation of open-source databases, and the
type of synchronous replication system that these databases permit. As you may well
notice this type of technology is available on the open-source product for a couple of
years, and in literature there is not yet a performance comparison.
The contribution that we want to give to the community is a performance analysis of
the synchronous replication on the open-source databases , in particular when these are
utilized in a web architecture; to do so we will test several different types of benchmark
in different situations, with an generic workload and with a web-based workload.

In order to achieve the thesis goal, is mandatory to know which open-source solution
let us obtain the desired results. At the beginning, we have confronted the open source
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database management systems and found which has the desired features. After that, the
second step was understand how they work and how we must develop the architecture
to obtain a high-available solution. During this phase, we have led a thorough study
of every aspect of the examined DBMSes and a complete analysis of the problems dis-
cussed in this essay. Thereafter we have created the test environment that we have used
to execute the tests. During this phase were created the three Linux machines used in
this work: one of those has installed the load-balancing software and the benchmark,
while the others two are the servers where the DBMSes reside. We did the setup of the
DBMSes and the first exploratory tests to understand how the replication mode of each
DBMSes really works.
Consequently, after we have fully understood how the DBMSes and each of their repli-
cation mode features work, we have began the balancing analysis phase: at this stage we
have elaborated which are the load-balancing mainly used on the open-source world and
which features they have. Thereafter during this step, we did the setup and the initial
tests of the load-balancing software considered. We have also verified the host’s per-
formances where the load-balancing software has been installed: in fact, it is necessary
to avoid bottleneck caused by the load-balancing machine and to achieve it we had to
increase the resources of this host. The last part of the setup phase has been dedicated
to install a resource statistics tool that is a basic element to comprehend the results ob-
tained during the tests phase.
At the end of the setup phase, we have grasped how the the DBMSes and of the load-
balancing software operate: it was possible to start with the real tests. We have done
multiple several tests to measure how the performance of the different solutions changes.
At this stage, we have tuned the hosts , in particular the I/O scheduler and the memory
policy. When the test were completed, we have carried out the analysis of the results
that showed which is the best test in terms of throughput and which is the bottleneck of
any test.

The tests environment used is not simplistic: it replicates a real production envi-
ronment where are involved a SAN storage system and a redundant gigabit Ethernet
network. This type of environment makes possible to understand how the performance
of database may vary if some operation system policies are modified, such as disk ac-
cess and use of the swap. Eventually we will demonstrate in this thesis which is the best
disk policy for any DBMSes when those use a SAN storage systems.

I.3 Outline
The remainder of this thesis is organized as follows. Chapter 1 provides an overview of
what is a failure, error and fault, the concept of distributed system and the definition of
database and several concept at the base of this object. In Chapter 2, is presented the
meaning of high availability, and what is the mechanism to give it with hardware and



I.3. Outline 5

software solution. In Chapter 3 is presented the environment where the tests was been
executed and which type of tests was done. In Chapter 4 is presented how the tests was
performed and the result of these. Finally, Chapter 5 concludes this thesis.
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1
Background

This chapter introduces high-availability and fault-tolerance terminology, A.C.I.D. pro-
prieties and others key principles which are mandatory to elaborate this dissertation.
The first part describes the Distributed Systems concepts and the latter lists several meth-
ods that can be used to improve the availability of database servers.

1.1 Failure, Error and Fault
As described in [Lap92], the functional safety of a complex system can be compromised
by three types of incidents: failures, faults, and errors. When one or more of these
occurs, the system can potentially be in state of accident.

Definition 1.1.1 (Failures) A failure is the suspension of a functional units ability to
accomplish a specified function. Since to complete a required function necessarily ex-
cludes certain behavior, and certain functions can be specified in terms of behavior to
avoid, then the occurrence of a behavior to avoid is a failure [Com98].

With previous definition, system can have three different states, because the concept
of normal (safe) and abnormal (unsafe) can be removed. These are:

• correct state: there is no dangerous situation

• incorrect safe states: a failure was detected and the system is in a safe state

• incorrect states: this is a dangerous, uncontrolled situation: there are potential
accessible accidents

Failures can be random or systematic. A random failure occurs unpredictably and
is the result of damage affecting the hardware parts of the system. Generally , random
failure can be quantified by its nature (wear, aging, etc.).
A systematic failure has a deterministic cause that can be eliminated by a reapplication
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Figure 1.1: Evolution of system state

of the production process (design, manufacture, documentation) or by recovery proce-
dures. Given its nature, a systematic failure is not quantifiable.

Despite all the precautions taken during the production of a component, it may be
subject to design flaws, verification flaws, usage defects, operational maintenance de-
fects, etc.

Definition 1.1.2 (Error) An error is the consequence of an internal defect occurring
during the implementation of the product (a variable or an erroneous program condi-
tion) [Com98].

A failure can be caused by an error.

Definition 1.1.3 (Fault) A fault is a non-conformity inserted in the product (for exam-
ple an erroneous code)[Com98].

A fault is the event that causes the error.
It should be noted that a safety state might be compromised by the appearance of

obstacles such as faults, errors, and failures.

Example 1.1.1 After three years of honorable service, an hard-drive has a faulty. Now
if the computer try to read it, the HDD incurs in an error that cause a failure. Note that
if the HDD is not read or is part of a raid solution, no error happens and there will be
no failure.
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Every obstacle can trigger another obstacle, which eventually will derive in one or more
errors: this (these) new error(s) may lead to the emergence of a new failure. The concept
previously exposed can be easily brought to a higher level: as a matter of fact, if a system
is in failure, it could cause a fault to another one which will be in its turn in a state of
failure.

A fault is either soft or hard. In the first case, a soft fault apparently disappears after
the failure and no repair is needed. In the second case, a hard fault does not disappear
and the unit must be repaired to regain the normal efficiency of the system. The soft
fault is also called intermittent or transient.

1.1.1 Hardware faults
One of the Major cause of failure is the fault of hardware components. Its failure rate
varies over the lifetime. In the infancy period is high due to manufacturing defects. After
a short time it becomes mature and the failure rate stabilizes on a low level. When the
component has arrived at the end of the lifetime is worn-out and the rate increase again.
Hardware reliability can be improved by removing the infancy and worn-out period. The

Figure 1.2: The Failure rate of the hardware components. It depends on the component
life time and is similar to the bathtub curve.

first can be removed by running the hardware through a burn-in in the factory before
deliver it to costumers, and the second reliability problem can be avoided replacing
the hardware components when become close to decay. The operation environments
has much influence on the hardware reliability. A rule of thumbs is that a temperature
reduction of 10 degree can increase the lifetime with a factor two. Shocks, vibrations
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and thermal changes cause mechanical stress on the hardware and reduces the lifetime
and can directly cause a failure.

1.1.2 Software faults

An other cause of failure is software faults. It is not exposed to physical faults, only
design faults. This means that once the problem is fixed, the fault is removed (in theory).
The software faults are classify in two types: Bohrbugs and Heisenbugs [Gra85]. It can
be considered as an analogy to hard and soft faults. The characteristics are:

• Bohrbugs: the fault manifests each time that the code is executed; are easy to
single out and correct;

• Heisenbugs: some occasions tend to cause an error; are non deterministic;

”The trend of improving reliability of hardware has not been followed up by soft-
ware technology and a larger fraction of failure is caused by software” [Gra90]

1.2 Distributed Systems

A system composed of independent physical nodes connected through a network is
called distributed system. A node is a computer that include a software and hardware
(not even special) components. Communication between nodes can be achieved by
sending messages over the network. Users of such system don’t have knowledge of
the node distribution because it is transparent. Message delivery can be reliable or
unreliable. In the first case the communication channel has three main characteristics:

• It doesn’t lose messages. It means that the network is ”secure” and any message
sent form one node is delivered to another.

• It doesn’t change messages. The message delivered is equal to sent sent one.

• It doesn’t copy messages. Any messages is delivery one time.

To save resource and increase the performance, the messages can be grouped together
to save processing and communications overhead. This features is called piggybacking
[CDKB11] and its purpose is increase the systems throughput at cost to delivery some
messages until there are more going to the same destination.



1.3. Elastic Scalability 11

1.2.1 Distributed Applications
In a distributed system environments the program executed on virtual node are called
distributed application. The virtual node is a computer abstraction that spread out
across the physical nodes (computers). For any physical nodes there are many virtual
nodes that execute several distributed applications. Each virtual node offers a service to
the others, and a user of the server is called client. However, the concept of a server is
not static, because any server can be a client of on other server and so on. Obviously
a single node can be both a server and a client, but it can be for two different separate
requests.

1.3 Elastic Scalability
A Software system is said to be scalable if it is able to handle increasing load simply by
using more computing resource. A system can be scaled up by adding more computing
resources, such as memory, CPU or disk space. In a cluster environments we said that is
scale-out if it allows to handle even larger workload by adding more physical machines.
If the system can respond to changes in load by growing and shrinking their processing
capacity on the fly, then it is an elastically scalable system.

1.4 Database definition

1.4.1 Transactions
A transaction is a unit of interaction with a DBMS and consists of any number or read
and write operations and finishes with either commit or abort. Formally:

Definition 1.4.1 Let D = {x1,x2, . . . ,xn} a data items stored in a database, r(xk) and
w(xk) a read and write operation on data item xk : xk ∈D respectively, and let C a com-
mit operation and A a abort operation. A transition Ti is a partial order wirh ordering
relation <i where:

1. Ti ⊆ {ri(xk),wi(xk)|x ∈ D}
⋃
{ai,ci};

2. ai ∈ Ti ⇐⇒ ci /∈ Ti

3. Let ai or ci, whichever is in Ti, for all other operations o′ ∈ Ti : o′ <i o

4. if ri(xk),wi(xk) ∈ Ti then either ri(xk)< wi(xk) or wi(xk)<i ri(xk)

Implicit assumption of above model is that a transaction writes a particular data item
only once time, and this is the reason why in the property four a pair of write operations
is not considered.
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History, conflict and A.C.I.D properties

To model concurrent execution of transactions history structure can be used. It indicates
the relative order in which the operations of transactions have been executed. History is
defined as a partial order if the operation might be executed concurrently.

Definition 1.4.2 (transaction history) Let T = {T1,T2, . . . ,Tn} a set of transactions, a
complete history H over T is a partial over with ordering relation <H where:

• H =
⋃n

i=1 Ti

•
⋃n

i=1 <i⊆<H

• ∀ two conflicting operation p,q ∈ H then p <H q or q <H p

By previous definition, a conflict[Pap86] between two transactions is defined as fol-
low:

Definition 1.4.3 (Transaction conflict) Let two different operations belonging to dif-
ferent concurrently executions transactions, read or write the same data item and not
both are read operations, the corresponding transactions conflict.

A first formal discussion of database transaction properties can be found in [Gra81].
From then a the formal transaction definition has led to give four key properties of a
transaction: atomicity, consistency, isolation, and durability. The acronym ACID refers
to:

• Atomicity: All changes to data are performed as if they are a single operation.
That is, all the changes are performed, or none of them are. For example, in an ap-
plication that transfers funds from one account to another, the atomicity property
ensures that, if a debit is made successfully from one account, the corresponding
credit is made to the other account.

• Consistency: Data is in a consistent state when a transaction starts and when it
ends. For example, in an application that transfers funds from one account to
another, the consistency property ensures that the total value of funds in both the
accounts is the same at the start and end of each transaction.

• Isolation: The intermediate state of a transaction is invisible to other transac-
tions. As a result, transactions that run concurrently appear to be serialized. For
example, in an application that transfers funds from one account to another, the
isolation property ensures that another transaction sees the transferred funds in
one account or the other, but not in both, nor in neither.
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• Durability: After a transaction successfully completes, changes to data persist
and are not undone, even in the event of a system failure. For example, in an ap-
plication that transfers funds from one account to another, the durability property
ensures that the changes made to each account will not be reversed.

In the distributed environment the transaction can be distributed: its characteris-
tic is the execution of one or more operations individually or as a group and updates
data on two or more distinct nodes of a distributed database. It is easily understandable
that distributed transaction must provide ACID proprieties among multiple participating
databases, which are dispersed among different physical locations; particularly, isola-
tion property poses a special challenge for multi database transactions because the re-
quirement of serial transactions execution is more difficult in a distributed environment.

1.4.2 Isolation Levels
In each database system, and especially in the distributed database environment, a dis-
tinctive interest resides in the isolation property. The Isolation guarantees that if a con-
flict between transactions is possible then the transactions are isolated from each other.
There are different type of isolation level, and the ANSI SQL standard has specified
four main level of isolation (ANSI 1992):

• serializable

• repeatable read

• read committed

• read uncommitted

The highest level of isolation is the serializable level. This level emulates serial trans-
action execution as if transactions had been executed one after another, serially, rather
than concurrently therefore any overlapping is eliminated.
Repeatable read level provides that exist read and write locks acquired when the data
has been selected, and these locks are released at the end of the transaction. This level
introduce a problem, so phantom reads phenomenon can occur.
In Read committed isolation level the write lock has release at the transition end, while
the read lock are released when the single operation is terminated. As for the previous
level any lock are acquired when the data are selected.
Read uncommitted level is the lowest isolation level. It is possible have dirty read, so
one transaction may see not-yet-committed changes made by other transactions.

Lower isolation levels are less restrictive but they can introduce inconsistencies dur-
ing transaction executions. Less restrictive means also more performance. ANSI SQL
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defines three different read phenomena that the transactions can present when Ti read
data that Tj might have changed. These are:

• Dirty read: Assume a transaction Ti, modifies a data item, and another transaction
Tj read the same data item before that Ti ends (commits or abort). if Ti performs
an abort, Tj has read a data item that never really existed because it was never
committed.

• Non-repeatable reads: Assume a transaction Ti reads a data item and another
transaction Tj modifies or deletes that data item and commits. If Ti then attempts
to reread the data item, it will receives a modified value or discovers that the data
item has been deleted.

• Phantom reads: Assume a transaction Ti reads a set of data items satisfying some
search condition. Transaction Tj then creates data items that satisfy Ti search
conditions and commits. If Ti then repeats its read with the same search condition
it gets a set of data items different from the first read.

The ANSI isolation levels are defined in terms of the above phenomena, and accord-
ing to the ones they are disallowed to experience:

• Read committed prevents dirty reads

• Repeatable read prevents dirty read and Non-repeatable reads

• Serializable prevents dirty read, Non-repeatable reads and Phantom reads

Another recent and more utilized level added to the three common level defined
by ANSI, is snapshot level [BBG+95]. This new level avoids the phenomena defined
in ANSI but exhibits inconsistent behaviour in some situations because it can produce
other type of anomalies, as for example write skew [BBG+95] and read skew [FLO+05].
That consists in:

• Write skew: Assume two different data item z and y are related by a constraint
that z+ y > 0 and the initial values of the two data items satisfy the constraint. In
additional assume that the following order of operations on the transaction Ti and
Tj is executed:

ri(z),ri(y),r j(x),r j(y),wi(x),w j(y)

It is possible that the transactions modify the data items in a way that the constraint
is violated, such as Ti set x to 100 but Tj sets y to −150.
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• Read skew: Assume two different data item z and y are related by a constraint
that z+ y > 0 and the initial values of the two data items satisfy the constraint;
additionally let’s assume that the following order of operation on the transaction
Ti and Tj is executed:

ri(z),w j(z),w j(y),c j,ri(y)

It is possible that the reading of the sum x+ y by transaction Ti returns a result
that violates the constraint.

1.4.3 Concurrency control, scheduler and correctness criteria
Any DBMS has a Concurrency control mechanisms to ensure that transactions are
executed concurrently without violating the data integrity of a database: the aim of this
component is to provide different degrees of isolation to transaction execution.
Other important component of DBMS is the scheduler that manage the overlapping ex-
ecutions of transactions. It receives operations from users and makes sure that they are
executed in a correct way, in according to the specified isolation level.
This two component based our functionality on servizability theory, that has been de-
veloped to provide criteria to decide whether a history is serializable.
On the bases of this theory there’s the concept of equivalence. It was introduced in
order to provide syntactical rule to transform one history to another. With this theory it
becomes possible to determine if two history have the same effect and if is serializable.
Concurrency control mechanisms has two main approaches to state the equivalence of
histories and assesses if a history is serializable, and those are: conflict serviceability
and view serviceability.

Definition 1.4.4 (conflict serializable) Two operations are considered in conflict if they
both access the same data item and at least one of them is a write operation.

The rule of the concurrency control establishes the end result of any transactions, be-
cause it decides the order of execution of two conflicts operations. To ascertain which
order impose to the conflicting operations it needs to know the dependencies of prece-
dent operation.

Conflict Serviceability

This approach is usually applied to concurrency control of a single-version DBMSes.
To decide which order impose to the operations, conflict serviceability use serialization
graph structure. It captures these dependencies for a history H, and create a directed
graph denoted as SG(H) where the node are the transaction in the committed projection
of the history, and the edge exist only if two transaction have at least one operation in
conflict. Main features of the serialization graphs are:
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1. Two histories are conflict-equivalent if their serialization graphs are identical.

2. A history is serializable if the serialization graph has no cycles.

3. Two histories H and Y are view-equivalent if:

• they are over the same set of transactions and have the same operations.

• the have the same reads-from relations, ie for any two committed transac-
tions Tj and Ti and for any data item x, if Ti reads x from Tj in H then Ti
reads x from Tj in Y

• there have the same final writes, ie for each data item x, if wi is the final
write of x in H the it holds for Y too.

View-serializable and (S)P2L

View-servizability approach is used for multi-version DBMSs.

Definition 1.4.5 A history H is view-serializable if for any prefix H ′ of H, the committed
projection C(H ′) is view equivalent to some serial history.

Locking-based protocols are used to implement the isolation levels required. The
common standard protocol used is two-phase locking (2PL). It consist of two phases:

1. first phase acquiring locks without releasing any.

2. in the second phase locks are released without acquiring any others, and it does
not require the ND of transaction.

The most safe protocol is strict 2-Phases locking(S2PL). It has been traditionally
used to implement the serializable isolation level, though the ANSI SQL standard does
not mandate its use. It avoids the phenomena described above. This protocol does the
lock in read and write operation: a shared lock is created to read the data item and
an exclusive lock when a write operation exists. The first allows only the access of
concurrent reading, while the latter prevents both reading and writing of the same data
item by other transactions. All locks are released at the end of the transaction, following
the commit or abort operations.

Snapshot Isolation

Recent DBMSes implement Snapshot isolation to give a safe protocol like S2PL. A
transaction executed in snapshot isolation operates on a snapshot of committed data that
is taken upon at the begin of transaction. It guarantees that all reads operations is a
consistent snapshot of the database; while the writing performed during the transactions
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will be seen by subsequent reads within that same transaction.
A transaction can be aborted only due to write-write conflicts if operations try to modify
data item(s) that has been updated by concurrent transactions. For example, Let a begin
operation b and a commit operation c, and bi,ci ∈ Ti and c j ∈ Tj. This transaction are
concurrent if the following holds:

bi < c j < ci

As we can see there are conflicts in write operation, so this protocol is absence of con-
flicts between readers. It improves performance and make it more appealing than the
other traditional serializable isolation level. In most DBMSes the Snapshot isolation
is implemented using S2PL by to acquiring exclusive locks or writing data items. In
commit phase the concurrency control mechanisms check write-write conflict using the
following rules [FLO+05].
Here under, it is reported the three liveness degree that provide some requirements for
transaction commitments. These degrees are classified as greater as degree are stricter,
and degree i embodies all other degree smaller that i:

• First-commiter-wins: if the lock is available Ti performs a version check against
the executions of the concurrent transactions. Two outcomes are likely: if a con-
current transaction has modified the same data item and it has been already com-
mitted, Ti has to abort; otherwise it performs the operation.

• First-updater-wins: if the lock is unavailable, because another transaction Tj
has an exclusive access, Ti is blocked. if Tj commits, the version check result
in aborting Ti (First-commiter-wins). On the contrary, if Tj aborts, the resulting
version check grants the lock to Ti so that it can subsequently proceed.

Version check that used the First-commiter-wins and First-updater-wins is called version-
creation-time conflict check, because the key is that the version checks are performed at
the same time that the transactions attempts to create a version.

An alternate possibility is commit-time conflict check. It doesn’t use the S2PL but
transaction execute on the particular snapshot in the private universe[FLO+05]. This
way the transaction acquires the lock, performs version check with the First-commiter-
wins and transfers the version from the private universe to the database only at the end
of the transaction. This approach brings unnecessary delay because it postpones the
validation of the updates until the end of transaction.

1.4.4 Liveness
Replications protocols have more characteristics one of these is liveness. It can have a
blocking or not-blocking behaviour. The latter ensure that every transaction eventually
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terminates in commit or abort state. This propriety is not mandatory in fault-tolerant
databases, but it is insufficient as it does not give any information on the commitment of
a transaction [PG]. The simply protocol that wants to achieve the non-blocking property
can create and aborting a sample transaction; if the system responds it can be consid-
ered live. In the following, it is reported the three liveness degree that provide some
requirements for transaction commitments. This degree are classified as greater degree
are stricter, and degree i embodies all other degree smaller that i

1. Liveness 3 (the highest degree) ensures that every transactions commits. It is
important to point out that this is something rather difficult to achieve.

2. Liveness 2 ensures that read-only transaction are never aborted.

3. Liveness 1 does not require anything about transaction commitment, though it
ensures that every transaction eventually terminate (i.e. commits or aborts). This
is behaviour of standard databases systems with non-blocking protocols.

Figure 1.3: Degree of liveness.
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High Availability

The users should not only be satisfied with the specifications of the application that want
to use, but should also know some detail about how it fails, how often fails, how much
is downtime and the time recovery at normal state, etc. All this information is covered
by the application’s dependability.

Definition 2.0.6 (Dependability) Computer system dependability is the quality of the
delivered service such that reliance can justifiably be placed on this service. [Lap92]

It is usual to assert that the dependability of a system should suffice for the dependence
being placed on that system. Also the concept of dependence leads on to the one of trust,
which can conveniently be defined as accepted dependence. In general dependability is
the collective term used to delivery the quality of all aspects about how much the user (or
others system) can trust (or depend on) a system. In fact there are many aspects which
might be of interested not just a singular measure. The main attributes or measures for
dependability are the following.

Reliability

Definition 2.0.7 (Reliability) A measure of the continuous service accomplishments
(or, equivalently, of the time of failure) from a reference initial instant. [Lap92]

It is the probability that the system keeps operating correctly without failures for a de-
fined period of time. The widely used definition is Mean Time to Failure MTTF. This
is the average time from the system is set into service until it fails. An other possible
measure is the probability of continuously service accomplishments over a given time
interval.

Maintainability

Definition 2.0.8 (Maintainability) A measure of the continuous service interruption,
or equivalently, of the time to restoration. [Lap92]
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The measure for it is typically Mean Time To Repair MTTR. Considering maintain-
ability on computer environment, it often includes ensuring that sufficient resources are
available to the system, for example disk space or quite simply to apply software up-
date. However, if we consider maintainability for the database, others characteristics
are required. The backup is the major maintainability characteristic that the database
needs. It should be atomic because is reflect the state of the database at a single point
in time. Preferably the backup shouldn’t affect the normal operations of the database
system e.g. answering queries and performing updates.

Availability

Definition 2.0.9 (Availability) A measure of the service accomplishment with respect
to the alternation of accomplishments and interruption. [Lap92]

With the reliability and maintainability definition, is possible derive the measure of
Availability A as:

A =
MT T F

MT T F +MT T R
It is a redundant measure because is computed form the reliability and maintainability
measures but represents a single measure incorporating the essential information from
the other two. Likewise, we can define unavailability U as the time that the system does
not provide its specified service:

U = 1−A =
MT T R

MT T F +MT T R

The availability has been classified into the number of nines in the percentage of time it
is available [GR93].

The definitions reported above does not consider the usage intensity of the system.
As a matter of fact it might vary over time e.g. the system can have a higher request
intensity during day than during night. A service disruption during a busy period would
have worse effect that during hours with a low load. To satisfy for this deficiency,
it should therefore be useful to have this alternative definitions that reflect usage fre-
quency:

Definition 2.0.10 Availability is the fraction of request that a system performs correctly
and within specified time constraints.

The availability is classified into seven different classes (view table 2.1). If A is
availability its class C is expressed as:

C = log10
1

1−A
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Table 2.1: Classification of systems based on availability

System type
Unavailability

(percent)
Availability
(min/year)

Availability class
(percent)

Unmanaged 50,000 90 1
Managed 5,000 99 2
Well-managed 500 99.9 3
Fault-tolerant 50 99.99 4
High-availability 5 99.999 5
Very-high-availability 0.5 99.9999 6
Ultra-availability 0.05 99.99999 7

For general purpose typically class 2 are request, while commercially availability fault-
tolerant computer are class 4 and telecom switch are class 6.

Anyway, availability definitions is problematic when applied to query-oriented com-
puter systems such as database which continuous availability is not easily defined, since
availability of the systems is only measurable when a query is performed.

Safety

The last measure of dependability is not less important that the others. Safety is defined
as:

Definition 2.0.11 (Safety) A measure of continuous safeness, or equivalently, a mea-
sure of the time to catastrophic failure.[Lap92]

Catastrophic failures are events that cannot be justified with the advantages that the
system provides, but are independent events to the system. The quantitative measure for
safety is Mean Time To Catastrophic Failure MTTCF. A system which fails gracefully
avoiding catastrophic failures is called fail safe or fail soft.

2.0.5 Failure Classification

How described on chapter one, the system are prone to breakdowns. These failures can
be classified into four different type of failures [Cri91]:

• Omission failures: The system (or server) is in hang status, so doesn’t respond
to any input.

• Timing failures: The system (or server) responds correctly but the respond ar-
rives too early or too late. If it arrive too late, there is a performance failure.
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• Response failures: The system (or server) responds incorrectly. There are two
type of response failures: if the output is incorrect there’s a value failure, while if
there’s an internal state transition incorrect is a state transition failure

• Crash failures: The system (or server) does not respond to input until it restarts.
Is typical when omission failure happen. This failure has different branch; An
amnesia crash has occurred if it restarts in the initial state. If after the restart the
system has keep some state is a parial-amnesia crash, while is all state is retained
before the crash is pause crash. Instead if server is never restarted after a crash a
halting crash happen.

2.1 High system availability
The problem of achieving high system availability can be addressed in several different
ways. The first technique that springs to mind is fault-tolerance, but it might not be
sufficient by itself. There are others possibility to achieve the desired availability that
can be faster and/or less expensive. Fault software or hardware are only one possibility
for service interruption but also maintenance operations can cause downtime. In this
section are explained the technique to give a high availability.

2.1.1 Fault-tolerance
As described in previous sections, fault is a reality and it is possible for the computer
system to handle them without external interventions. To do this is necessary masking a
fault so that it not cause a failure and the system (service) does not become unavailable.
In general fault-tolerance is not a goal in itself, but rather a mean to achieve better
dependability with respect to both availability and reliability.

The main keyword to fault-tolerance is Redundancy, either in time or space. Space
redundancy is the number of modules used to process a task and when the same module
does redundant work on a task by checking the result it is called time redundancy.

The redundancy can be used to the system to detect, mask and recover from faults.
If there are two or more modules that have the same functionality, is easy to find if
one (or more) is broke through the comparison of their results. If the result differs, at
least one of the modules has failed and the failure can be detected. In case of more of
two modules it is possible to find which is broken by taking a majority vote. When an
error has been detected and eventually masked, the failed module has to recover into a
consistent state.

Even though the hardware components are fault-tolerant, it cannot handle all kinds
of errors. The single modules is only prepared to handle a known set of error and if an
error is outside this set, the system will fail.
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2.1.2 Fault-avoidance
It is better to avoid faults at all instead of having to handle them. After they have
occurred it is difficult to correct and recover the system to the correct state. Avoid the
fault can be do with simple attentions. These can be grouped as following:

• High reliability: Quality assurance, highly skilled designers and programmers
must be keywords to keep in mind to have an high reliability and avoid the fault.
Any component of the system should be designed with a high tolerance and re-
silience with respect to the environments.

• Simplicity: A simpler design contain less fault the complex ones. It is valid for
hardware and software component (e.g. program with a less number of lines of
code will reduce the number of bugs)

• Automatic maintenance: Plan automatic maintenance procedure can remove
many human faults and help the recovery system.

• Friendly user interfaces: The human is one of major cause of fault, so imple-
menting easy user interface reduce the number of human mistakes.

• Environment Independence: Each component interacts with others, but with
less interactions there will be less hypothetical failures.

• Security: Malicious attacks can cause a failure and reduce the system availability.

• Resource control: Any component is designed to give a specific to handle a
given load. Overloading can cause some problem e.g the system reject the new re-
quest and therefore threatens the availability. The system should handle overflows
gracefully by rejecting requests, either by priority or at random. Alternatively, the
system can be dimensioned with a sufficient over-capacity to handle the peeks.

2.2 HA though hardware
Hardware reliability is the main part to implement a highly available system. Nowa-
days the system that are entry, middle or enterprise level have the possibility to give
each component redundant, and in most case any of this component can be replace
with a live system. Individual modules, in turn, may have also been designed with in-
ternal redundancy. In this case the high availability is given by hardware redundancy
and by software layer; Disk mirroring, redundant network connections is an example.
Furthermore, over the years reliability of individual hardware modules has improved
significantly due to improved designs and technological advancements.
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In a cluster system the hardware redundancy can be formed by combining multiple
physical machine or nodes. The cluster can be configured in one of the following mode:

• Active/cold configuration where one of the server is active and the second is a
cold backup. In this case the scope is only high availability.

• Active/passive configuration where one of the server is active while the second is
running the same workload (with some lag) and thus is a warm standby.

• Active/active configuration where both the server are serving workload actively.
This solution give high availability and load balancing.

In general the more high availability and less inefficiency you want, the more expen-
sive the systems are. Cluster solution can be geographically distributed in the cases that
once server is active and others no. This provide better isolation from faults that may
affect one site but not both sites at the same time. This solution unfortunately has some
drawbacks. First, it requires in any sites, redundant hardware such as disks for mirror-
ing and replications, Storage Area Networks (SAN), Network Area Storage (NAS), or
multi-path storage devices for shared storage, and bonded network interfaces for added
reliability. Second, we cannot just take any application and run it on a cluster and ex-
pect it to be highly available. Applications need to be made cluster-aware to exploit
high availability features. This is the case of database system that are different in de-
sign and functionality for standalone and cluster solution such for example concurrency
control, recovery and cache management. This add to the cost and complexity of build-
ing and deploying cluster-aware applications. Moreover there is the configuration and
operation cost of a cluster that is much higher that a single system, and not least the
licensing cost that in more cases is prohibitive for small or medium sized businesses.

2.3 HA for database systems
The previous section has mentioned that in case of high availability for database sys-
tem, the hardware solution is not sufficient because it faces only that type of faults. High
availability for database systems is given by hardware and software solutions. Although
the type of cluster are three, the two common approaches for providing high availabil-
ity for database system are two, because the active/cold solution is given by hardware
redundancy (multi-site) and by application solution given by system operation.

2.3.1 Parallel database system
Parallel database systems typically running on clusters of node that are in the same
site, and are a popular choose for enterprise solution with closed source software. The
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cluster typology used in this type of system is active/active. A parallel (or clustered)
database system executes database operations (such queries) in parallel across a collec-
tion of nodes. Each node runs a copy of the database management system (DBMS).
Data can be partitioned among the nodes, and in this case each nodes is owned by a
particular partition, or it is shared by all nodes. In all cases, any nodes have a copy of all
data. Failure of individual nodes in the cluster can be tolerated and the data can remain
accessible. Parallel database system is used to give high-availability, fault-tolerant an
in addition to improved performance. Parallel database architectures in use today are
mainly divided into shared nothing and data sharing.

Shared nothing (SN) architecture have the data partitioned among nodes and each
nodes hosts have one or more partitions on its locally attached storage. Obviously if
the cluster has two nodes, each has the same data of the other node. Access to these
partitions is restricted to only the node that hosts the data and so only the owner of a
data partition can cache it in memory. This type of implementation is simply because
the data ownership is clearly defined and there is no need for access coordination. This
type of solution have been a huge commercial success because they are easier to build
and are highly scalable [Sto86]. An example of SN database systems include IBM DB2
[PCZ02], Microsoft SQL Server [Cor], MySQL Cluster [Orab], Postgres-XC [posb] and
Mariadb with Percona or Galera cluster [Per] [Cod].

Data sharing (DS) architecture data are shared and accessed by each nodes. Data
is usually hosted on shared storage as for example by NFS share or by using SAN.
Since any node in the cluster can cache and access any piece of data in its memory, is
needed the access coordination in order to synchronize access to common data for read
and write operation. This operation a requires distributed locking, cache coherence and
recovery protocols with add the complexity of a data sharing system. More complexity
means have more overhead because access coordination must be ensure that the data are
consistent between all member of the cluster. Main advance of DS is that do not require
that the database is partitioned and thus have more flexibility in doing load balancing.
An example of DS database systems is Oracle Real Application Cluster (RAC) [Orac]
and mainframe IBM DB2 [IBMa].

2.3.2 Replication database systems
Replication database system is a technique where database is fully or partially replicated
locally or at a remote site to improve data availability and performance [ÖV11]. Any
database copy is referenced as primary (or master) replica if is the original copy of the
data, while is called secondary replica if is the replicated copy. If the master replica be-
comes unavailable, the data still remains accessible through the secondary replica. The
system can also have N-way replication where a primary replica is copied to N-1 other
replicas. More nodes the cluster has, the greater will be the overhead. Replication can
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be implemented into a single DBMS, or between multiple DBMS across more machines
that can be in single-site or multi-site. Changes from the master node to the secondary
nodes are periodically propagated. The type of propagation for keeping the secondary
replica up-to-date with the primary replica can be synchronous or asynchronous.

Synchronous (streaming) replica is the reference method when the organization needs
zero data loss. The systems thus becomes highly availability where in the event of a
failure of the primary data source, another mirror system should take over immediately
from the latest point of failure because it offers the advantage of keeping all the replicas
strongly consistent. However, due to the high operational costs associated with acquir-
ing locks, and excessive massage passing for two-phase commit, it is rarely used in
practice. This method consist to have all DBMS with a exact copy of database. For
this type of replication, the updating transaction must acquire exclusive access to all the
replicas which might involve lock requests across remote sites. This type of replication
is traditionally used over short distances, or when transmission delay between all nodes
is very low.

Asynchronous replica offers a trade-off in terms of minimizing overhead of normal
operation and data consistency. With asynchronous replication, it is possible for a trans-
action to get slightly different results when accessing different replicas because they
are updated only periodically. Although asynchronous replication has the advantage of
speed, there is an increased risk of data loss sing this method, because received data is
not verified. In fact the master replica sent the update on the other node but doesn’t wait
to have a response (positive or negative). Asynchronous replication slows writes to the
source volumes while the target volumes are update in the background. Typically, it is
used primarily in disaster recovery scenarios where the recovery site is located far away
and the application would experience severe performance degradation with synchronous
replication.

Motivation

The basic reason why the replication (sync or async) is implemented, is to give high
availability of the system and in some cases to improve the performance; This concepts
are the basis of disaster recovery planning and are the business requirement of the any
organization. The need to know what is being protected and why is essential for running
the organization. A well-documented requirement in the form of Business Continuity
Plan spells out these clearly taking in to account Risk Assessment and Business Impact
Analysis.
Building a replication solution must meet that the primary objectives the Business Con-
tinuity Plan.
Every organization must spell out its Recovery Point Objective (RPO) and the Recovery
Time Objective (RTO) to get the application running. The Recovery Point Objective
(RPO) is the maximum acceptable level of data loss following an unplanned event, like
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a disaster (natural or man-made), act of crime, or any other business or technical dis-
ruption that could cause such data loss. This represents the point in time, prior to such
an event or incident, to which lost data can be recovered. with the zero data loss (ZDL)
objective a business would like to have the up to data available in the event of failure
due to say a disaster recovery, hardware failure or any other disaster. Of course you get
the ZDL, a synchronous replication solution must be used.
The Recovery Time Objective (RTO) is a period of time within which business must be
restored following an unplanned event or disaster. The RTO is a functions o the extent
to which the interruption disrupts normal operations and the amount of revenue lost per
unit of time as a result of the disaster. These factors in turn depend on the affected
equipment and applications.

General architecture for replication

As said earlier, data replication is the process of generating, reproduction, and maintain
a defined set of data in one or more location [Haa01]. The benefits of data replication
include improved performance when centralize resources get overloaded, increased data
availability, and capacity relief.
It terms of architecture, several model exist and the main characteristics that divide these
in two groups are if the model are synchronous or asynchronous.
Following the main architecture for replication:

• Master-master replication model, have multiple sites with updating data privi-
lege [Kea09]. Also referred as multi-primary or multi-directional replication, this
kind of model requires detection and resolution of update conflict. Update con-
flict occurs when different sites try to commit competing or incompatible updates
to each of their own replica; below a more accurate description.

• Master-slave replication model, has only one of the data locations privilege to
read ad write data. All the rest of the replicas are in some cases read only, and in
others cases not action can be performed. In this way, all updates to the data are
committed through a central/primary location, and then are replicated to backup
or ”slave” sites. This model is also called primary-backup replication or single
directional replication. Obviously the problem of update collision disappears in
this kind of systems.

Compared to master-slave replication, multi-master replication models can continue to
update database when one of the master sites fails. The resource utilization rate in
also higher in multi-master systems, as any replicated system can perform updates to
databases. On the other hand the disadvantages of multi-master model are that con-
flict resolution may introduce extra communication latency in synchronous replication
systems, while asynchronous replication systems we lose the advantage of data consis-
tency.
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Models of replication

The replication models are how to the replication is done on the systems. The types
are different if the replication is synchronous or asynchronous. Today there are three
different type:

• Snapshot replication is taking an entire set of data and replicating it to another
database. This method is most powerful and easy to set up replication type. Any-
way, this method is typical used periodically because the data size grows with
every replication, becoming difficult to manage, time and resources consuming.
Another typical use is when the replication model is installed, so the first replica
nodes is a snapshot of the primary. This is in general an asynchronously replica-
tion model.

• Log-based replication model, propagates only changed data instead of the entire
data set in database. Changes are detected by scanning log maintained by the
database management systems (DBMS) and then sent to other replication loca-
tions. Typically this model operates asynchronously, however it has the advan-
tage of low overhead against other change capture strategies since it only uses the
existing logs in the DBMS. The DBMS change detection and the replication pro-
cesses don’t interfere withe the normal operation of the source database system,
because these are background processes.

• Trigger-base capture has a model where any modification to data has been reg-
istered for replication set off triggers inside the database. Those triggers in turn
either directly activate the replication process or push changed data into some
kind of queue. This model can either operate asynchronously or synchronously.
Since the processing of triggers happens at the same time as the processing of
users transactions, performance of the source databases is affected directly.

Conflict and deadlock

When the replication system is synchronous, the update-everywhere replication has
a high conflict rate and a high probability of deadlocks. In literature, some studies
[GHOS96] showed that in some situations the probability of deadlocks is directly pro-
portional to n3, where n is the number of replicas. The observation is not surprising:
as the number of replicas increases, the time to lock the resources will increase too and
transaction execution times will deteriorate. Also, the longer transaction time caused
additional communication overhead when the number of nodes increase. Evolution of
deadlock is the distributed deadlock. Certain database replication solution are prone
these more complicated deadlock. This happen if resource lock is acquired in different
order on different replicas.
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Example 2.3.1 (Distributed deadlock) Suppose to have two concurrent transaction T1
and T2 witch are competing for resource A while executing in a replicated database
system with two replicas Rx and Ry How to show in figure 2.1 the order of lock requests
by T1 and T2 is different on the two replicas. In the figure it is possible to notice that the

Figure 2.1: Example of distributed deadlock

transition T2 is blocked waiting for T1 on Rx and vice versa is true on Ry. As a result, in
replication schemes where a transaction commits only after all the replicas are ready to
do so, the transactions would be deadlocked without possibility to progress further.

To avoid this type of deadlock, it has been suggested that a group communication
systems be used as a means of reducing conflicts as well as ensuring consistent data on
multiple replicas [HT93]. The group communication systems are capable of ensuring
that a messages multi-cast in group will be delivered in the same total order on all nodes
of the systems.



30 2. High Availability



3
Database Architecture Test

In this chapter we present the databases that are used to execute the test of high-availability
and performance evaluation. We describe the background infrastructure in which we
have conducted the tests and the type of load balancing used to compare the master-
master and a variant of master-slave architecture for replication.

3.1 Infrastructure environment
Enterprise environments was chosen to execute all the comparisons between the differ-
ent DBMS and replication architecture. In absence of dedicated physical server, we’ve
utilized a virtual environment.
Our environment is composed of three Linux hosts: Inside the first two there are the
DBMSes, in the third we have configured the ”load-balancing” software and it’s where
the benchmark starts. To replicate an high fidelity production environment, all hosts are
Red Hat Enterprise Linux 6.4 64-bit [Hat]. Virtual Hosts are inside three different nodes
of a VMWare HA cluster [VMW] that are managed by a VMWare Virtual Center

3.1.1 Virtual environment
VMWare vSphere HA Cluster is the virtualization technology that has was adopted. The
physical cluster is composed of three nodes where the virtual machines reside. Physical
node are the IBM HS22 with 72GB of RAM and two cpu Intel X5570 without physical
hard drive, while the others characteristics are describe below:

Storage

The storage utilized by the physical nodes, as for the rest of environment, is an enter-
prise one: all storage are attached to the Storage Area Network (SAN), composed by
two main parts.
The first one is the real storage: it is a IBM DS8000 [IBMb]; the disks have a capac-
ity of 450GB each and 15.000 RPM (Revolutions per minute). In the sake of a better



32 3. Database Architecture Test

performance and reliability, IBM DS8000 joins the disks into a RAID 10 array solution.
Management of the array is transparent for any client host that is attached to the storage
system.
The second part is the IBM System Storage SAN Volume Controller [IBMc]: it’s a stor-
age virtualization system with a single point of control for storage resources. This means
that all resources of the real storage are managed and optimized by this system.

Each of the previous components, has an owner cache that permits to increase the
throughput of most frequently resource requests. This type of gain is not possible with
a traditional storage like a SAS disk.

Figure 3.1: Active/Active Multipath Configuration

Each nodes of VMWare cluster is attached to the Storage Area Network. The SAN
is composed of two redundant part called Fabric, that improve the high-availability and
the performance of the storage. Redundancy means that we’ll have for each device
attached to the SAN, a minimum of one connection for Fabric; obviously this statement
is valid also as for the real storage as for the storage virtualization.
In particular the physical nodes of the VMWare cluster have two fibre channel HBA
(host bus adapter) with 4GB dual-port each. Any HBA port is attached in one different
Fabric.
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The scheduler access adopted in VMWare for storage attached by SAN is a Round Robin
type. It means that automatically detects the loading on the I/O paths, and dynamically
re-balances the load. This is possible because the configuration of VMWare support
active/active path, i.e. all paths active with round-robin load balancing. So the final
maximal throughput that each physical VMWare node has toward the storage is (4+
4)∗2 GB.

Network

Network layer has a significant relevance on the database system because all communi-
cations between the server and the client are transmitted trough the network.
The Virtual machine has two virtual gigabit Ethernet port on different network. Main
network is public and utilized to communicated with the rest of world, such as client
and others server, while the second network is a heartbeat and it’ a private one. Physical
host instead has three real gigabit Ethernet port. These are aggregated with the IEEE
802.3ad protocols [IEEa] to avoid a single point of failure and to improve the perfor-
mance.
One feature on a virtual environment infrastructure as the one in VMWare is to man-

Figure 3.2: Pysical network configuration

age more different network with a restrict number of Ethernet port. It is possible with
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the IEEE 802.1Q protocol [IEEb] to trunk more VLAN on the same physical cable(s).
VMWare infrastructure can create on the physical NIC more virtual switch and those
tag the VLAN present on the virtual machines. In this environment a physical host has
3 NIC and almost two virtual switch to ensure that the private and public VLAN is
separated.

3.2 DBMS
Aim of this thesis is evaluate difference on open source DBMS it terms of performance
and high availability. The DBMSes have been chosen about the world popularity and
because an background goal is a future convergence of the application of the currently
existing.
The actually application has as DBMS PostgresSQL 8.4 [posa] and MySQL 5.1 [mys],
so these are the DBMS target.
In 2010, Oracle Corporation has purchased [oraa] Sun Microsystems and its open tech-
nology such as Java, SPARC Enterprise and MYSQL. From that acquisition, the prin-
cipal developer of MySQL has forked and other open source DBMS: MariaDB [mara].
This new DBMS is used by many users, ie Wikimedia fondation, Oracle and others big.

3.2.1 MariaDB
The biggest strength of MariaDB is, of course, its compatibility with MySQL. It is a
drop-in replacement for the same version of MySQL; that is, if an application works
with MySQL 5.5, it should work with MariaDB 5.5 without any modification. Obvious
precedent version also works without any modification.
The core of any database system is its data storage engine, and MariaDB offers several
powerful engines to choose. The current default storage engine is InnoDB, and it’s the
storage engine used in this thesis. Key advantages of InnoDB is that is designed for the
ACID properties: its transactions has commit, rollback and crash-recovery capabilities
to protect user data. Whenever there’s an update, insert or delete the lock is at row-level
and not at table-level. This is more important when the database is distributed, because
it’s less probable that two transactions at the same time modify the same row than two
transactions working at the same time on the same table.
Another characteristic of InnoDB storage engine is its own buffer pool for caching data
and indexes in main memory. It stores its tables and indexes in a tablespace, which may
consists of several files.

MariaDB can be a cluster solution if it is installed with Galera wsrep solution. This
component is a GNU GPL [gpl] solution that provide the following features:

• No fail-over requirements - the nodes are all active and are all masters
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• The application can read and write to or from any server

• Horizontal Scalability (scale out) for both reads and writes

• Automated online add node

• Easy node removal (scale in)

• No application change scale out

• Resilient to high latency networks

• No data lost

To utilize this feature it is necessary use an optional load-balancer whenever the applica-
tion connects to any server of the cluster and starts a transaction. When the application
commits, all the data changed within the transaction are moved to the other nodes of
the cluster. The commit will complete only when all the nodes have received the data,
which is applied locally at a later time. In this way the impact in terms of performance
is very limited.

3.2.2 PostgreSQL

One of the two most advanced object-relational database management systems free in
the world is PostgreSQL. It is developed by PostgreSQL Global Development Group
under GNU GPL license [gpl].
PostgreSQL supports most of the SQL standard and offers many other features such
as: complex queries, foreign keys, triggers, views, transactions integrity, multi-version
concurrency control: it doesn’t lack on any important feature that its competitors have,
ie an high availability in active/active solution. In fact, PostgreSQL do not has a native
asynchronous solution such as the log shipment or others low-level methods, and only in
recent versions (from 9.1) it able to have a slave server in read-only state synchronized
with the master server. This type of replication is the master-slave architecture with the
log-based model replication.
Load-balancing is not a PostgreSQL feature, and the common software balancing is not
sufficient because if is implemented a PostgreSQL streaming replication, is possible
to commit the database only from the master node. Third-party solution has been de-
veloped to give this type of functionality, and the most used in the world is PgPool-II
[pgpb].
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3.3 Benchmark

After the execution of benchmarks of the DBMS, with an overview of a global through-
put score, developer or/and database administrator can investigate where the system
bottleneck is. As demonstrated in many studies, two are the major limitations of a sys-
tem: the disk layer and the lack of memory. Nowadays the latter has less relevance than
many years ago, because the cost of the RAM is decreased. The first problem can be
bypassed with numerous and more efficient disks, like SSDs, but the problem, although
to a lesser extent, remains. One of the objective of this thesis is to understand how the
system changes if we change the storage layer and if there is an optimal solution for any
DBMS.
Following we describe the types of I/O scheduler chosen on the test, and how to the
operation system manage the memory swap.

3.3.1 I/O scheduler

As previously sated, the I/O scheduler has an important role in any computer system.
Actually there is three major scheduler implemented on any Linux kernel: noop, dead-
line, cfq. These burn in different times and with different reason, and principles and
differences are:

• Noop: This scheduler assumes that either the request order will be modified at
some other layer of the operating system or that the underlying device is a true
random access device. When the noop scheduler receives a request, it first checks
to see if it can be merged with any other outstanding request in the queue. If it
can be, it merges the two requests and moves onto the next request. If no suitable
merge can be found in the queue, the new request is inserted at the end of an
unordered first-in-first-out (FIFO) queue and the scheduler moves on to the next
request.

• DeadLine: It is based on noop Scheduler, but add two important features. First,
the unordered FIFO queue of the noop scheduler is replaced with a sorted queue
in an attempt to minimize seek times, and second, it attempts to guarantee a start
service time for requests by placing deadlines on each request to be serviced. To
achieve this, the deadline scheduler operates on four queues; one deadline queue
and one sector sorted queue for both reads and writes. When a request is to be
serviced, the scheduler first checks the deadline queue to see if any requests have
exceeded their deadline. If any have, they are serviced immediately. If not, the
scheduler services the next request in the sector sorted queue, that is, the request
physically closest to the last one which was serviced.
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• CFQ: it places all synchronous requests which are submitted into one queue per
process, then allocates time-slices for each of the queues to access the disk. The
queues are then served in a round robin fashion until each queue’s time-slice has
expired. The asynchronous requests are batched together in fewer queues and are
served separately.

To summarize, the noop scheduler is so called because it performs a bare minimum
of operations on the I/O request queue before dispatching it to the underlying physical
device. It cannot guarantee a specific service time for any given request. Since differ-
ent applications may have different performance requirements, service time guarantees
may be desirable. To address this shortcoming, the deadline scheduler was created. This
scheduler generally provides increased performance from the noop scheduler due to the
fact that the sorted queues attempt to minimize seek times. In addition, by guaranteeing
a start service time, the deadline scheduler can provide service time guarantees.
Completely Fair Queuing scheduler instead, is the default scheduler in the Linux dis-
tributed and attempts to provide fair allocation of the available I/O bandwidth to all
initiators of I/O requests.
Due the type of tests and the type of infrastructure, the tests were performed with the
noop and cfq scheduler. The deadline is not been considered because it is suggested for
real time application.

3.3.2 Swap Memory
Linux Kernel has the possibility to swap out run-time memory. This propriety permit at
the system to have an aggressively use of swap user or vice-versa try to avoid swapping
as much as possible.
Swappiness parameter can be set at run-time and can be set with values between 0 and
100 inclusive. Low value means the kernel will swap only to avoid an out of memory
condition. At the opposite an high value means that the kernel will swap aggressively
which may affect over all performance.
The default value is 60, and in this thesis we tested the behaviour with a default value
and with 0 value.

3.3.3 Load Balancing
With the DBMSes described in the previous chapter, it is clear that to have a real high
availability and a real parallel distribution of the load, is necessary to have a middle-
ware layer between the client and the server. Unlike the commercial solution, where
the DBMS has a layer that manage the load and the reliability of the system, the free
solutions such as PostgreSQL or MariaDB haven’t this layer. Fortunately this is not a
problem because other free solutions exist to avoid this deficiency.
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The main goal of load balancing is improving the performance by balancing the loads
among computers. To do this is necessary that the load balancing know witch are the
server live, and which is its load.
In literature the load balancing are divided into two main category policies: static poli-
cies [CK88] and dynamic policies [RR96].
Static policies base their decisions on statistical information about the system. They do
not take into consideration the current state of the system. Dynamic policies base their
decisions on the current state of the system. They are more complex than static policies.

The load Balancing used in this thesis have static policies. Their primary goal is to
test the maximal throughput of the system. This type of software has its workload, and
this is the reason for which a dedicate host exists, where the tests are started and the
load balancing is installed.

The load balancing used are three, and was chosen because is the most reliable
solution and the most used on the real production environment. Two of three are used to
test MariaDB DBMS, while the last one is used to test PostgreSQL. This chose is forced
because PostgreSQL DBMS is not able to have a active-active solution in write-all, and
so we need to use a dedicated load balancing.

Galera Load Balancing

Galera Load Balancing (GLB) is a TCP load balancer. Its aim is to make a user-space
TCP proxy which is as fast as possible. It is an open source project and it is licensed
over the GNU GPL license [gpl].
This balancer has the following features:

• list of back-end servers is configurable in run-time.

• supports server ”draining”, i.e. does not allocate new connections to server, but
does not kill existing ones, waiting for them to end gracefully.

• It is multi-threaded, so it can utilize multiple CPU cores. In fact even on a sin-
gle core CPU using several threads can significantly improve performance when
using poll()-based IO.

• Can monitor the health of destinations by polling using service-specific scripts
and adjust routing table automatically. In Galera cluster it also can (optionally)
discover newly added nodes and take them into use.

GLB supports five balancing ”policies”:

a) least connected: new connection will be directed to the server with least connections
(corrected for server ”weight”). This policy is default.
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b) round-robin: each new connection is routed to the next destination in the list in
circular order.

c) single: all connections are routed to a single server with the highest weight available.
All routing will stick to that server until it fails or a server with a strictly higher
weight is introduced.

d) random: connections are distributed randomly between the servers.

e) source tracking: connections originating from the same address are directed to the
same server.

Galera Load Balancing is the unique balancer that has a special feature that works
only with the Galera wsrep solution. It is a destination discovery features, that allow, if
destinations can supply information about other members of the cluster, to automatically
populate watchdog destination list.

HA Proxy

HA Proxy is TCP/HTTP load balancer. It is the historical software balancer used in
Linux like system. Unlike the previous balancer, it has the ability to improve the per-
formance of web sites by spreading requests across multiple servers, because it can be
a HTTP load balancer. This functionally is not used on this thesis, and it is used only
with the TPC balancing.
Many vendor utilized HA Proxy for the overt performance. HAProxy implements an
event-driven, single-process model which enables support for very high number of si-
multaneous connections at very high speeds. Multi-process or multi-threaded models
can rarely cope with thousands of connections because of memory limits, system sched-
uler limits, and lock contention everywhere. Event-driven models do not have these
problems because implementing all the tasks in user-space allows a finer resource and
time management. The down side is that those programs generally don’t scale well on
multi-processor systems. That’s the reason why they must be optimized to get the most
work done from every CPU cycle. [hap]
This product has more feature that of those required to this study. It is used in this thesis
for load balancing a TCP connection over the two DBMSes. Additionally feature such
as a watchdog or cli management are used indirectly to executed the test.

PgPool-II

Pgpool-II is a middle-ware that works between PostgreSQL servers and a PostgreSQL
database client. It is licensed under BSD license [bsd]. This software doesn’t have only
the load-balancing functionality, but implement more feature that PostgreSQL haven’t:
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• Connection Pooling: To reduce the effort that any new connections has, Pgpool-
II saves connections to the PostgreSQL servers, and reuse them whenever a new
connection with the same properties. It reduces connection overhead, and im-
proves system’s overall throughput.

• Replication: Previous PostgreSQL version haven’t the replication capacity be-
tween multi-server. This features can manage multiple PostgreSQL servers. Us-
ing the replication function enables creating a real-time backup on 2 or more
physical disks, so that the service can continue without stopping servers in case
of a disk failure.

• Load Balancing: If is present a native streaming replication, executing a read-
only query on any server will return the same result. Pgpool-II takes an advan-
tage of the replication feature to reduce the load on each PostgreSQL server by
distributing SELECT queries among multiple servers, improving system’s overall
throughput. At best, performance improves proportionally to the number of Post-
greSQL servers. Load balance works best in a situation where there are a lot of
users executing many queries at the same time.

• Limiting Exceeding Connections: There is a limit on the maximum number
of concurrent connections with PostgreSQL, and connections are rejected after
this many connections. Setting the maximum number of connections, however,
increases resource consumption and affect system performance. Pgpool-II also
has a limit on the maximum number of connections, but extra connections will be
queued instead of returning an error immediately.

• Parallel Query: Using the parallel query function, data can be divided among the
multiple servers, so that a query can be executed on all the servers concurrently to
reduce the overall execution time. Parallel query works the best when searching
large-scale data.

3.3.4 Oltpbenchmark
When a new DBMS is installed or when an DBMS upgrade is done, bench-marking is
the first operation that any database administrator want do. This is often overlooked but
the role and the benefits that it can bring is very important to prevent a several issue
performance on production environment.
Into database world exist many different types of benchmark, that can be execute carry-
on or by a specifics tool. When I began this thesis, the first problem that i have addressed
was which tools use to execute the test, and which test i would have execute. This
problem was resolved with the Oltpbenchmark tool, that is a an extensible batteries
included DBMS bench-marking tested that tailored for on-line transaction processing



3.3. Benchmark 41

(OLTP) and Web-oriented workloads [oltb]. This tool provides an aid to compare in
easy way the result, and give an immediate summary result.
The main feature are:

• Precise rate control (allows to define and change over time the rate at which re-
quests are submitted)

• Precise transactions mixture control (allows to define and change over time % of
each transaction type)

• Access Distribution control (allows to emulate evolving hot-spots, temporal skew,
etc..)

• Support trace-based execution (ideal to handle real data)

• Extensible design

• Support for statistics collection (microseconds latency and throughput precision,
seconds precision for OS resource utilization)

• Automatic rendering via JavaScript (and many available and gnuplot matlab scripts)

• Elegant management of SQL Dialect translations (to target various DBMSes)

• Store-Procedure friendly architecture

This tools is bundled with ten Workloads that all differ in complexity and system
demands. Given the type of DBMSes chosen and given the typology of application that
will be performed on them, two of ten workloads were selected: Epinios workload and
TPC workload.

Epinions workload

This benchmark is inspired from Epinions.com, that is a customer review website. This
is based on previous study [MA05], and uses the data collected with additional statistics
extracted from the website. Epinions workload can be similar to many others website
workload because it is centered around users interaction. It have nine different tables
with twenty-one columns and two primary key and ten indexes. The total transaction
that has is nine and it’s composed as show on table 3.1. Only update are executed by
Epinions workload.
The nine transactions, four interact only with user records, four interact only with item
records, and one that interacts with all of the tables in the database. Users have both an
n-to-n relationship with items (i.e., representing user reviews and ratings of items) and
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Table 3.1: Epinions workload transaction.
Transaction Type #Select #Upd/Del/Ins #Join Weights %Read
GetReviewItemById 1 0 1 16 16
GetReviewsByUser 1 0 1 16 16
GetAverageRatingByTrustedUser 1 0 1 16 16
GetItemAverageRating 1 0 0 16 16
GetItemReviewsByTrustedUser 2 0 0 16 16
UpdateUserName 0 1 0 5 0
UpdateItemTitle 0 1 0 5 0
UpdateReviewRating 0 1 0 5 0
UpdateTrustRating 0 1 0 5 0
Total 6 4 3 100 80.00

an n-to-n relationship with users (i.e., indicating a unidirectional ”trust”).

This workload has other three parameters that can be set: the time of execution, the
rate and the number of connections that are generated. These parameters have been set
respectively to 30 minutes, 10.000 and 100.

Due to the fact that our goal is to find a solution for database used from the website
like web-portal, the rate of previous category is balanced to have 80% of read and the
rest write.

TPC-C workload

TCP-C workload is the world common workload used to test the DBMS. It is the current
industry standard for evaluating the performance of OLTP systems. This benchmark
simulates systems working with large volumes of data and execute complex queries.
At low level it consists of nine tables and five procedures that simulate a warehouse-
centric order processing application. All of the transactions in TPC-C provide a ware-
house id as an input parameter that is the ancestral foreign key for all but one of TPC-C’s
tables.
The number of New-Order transactions executed per second (for a fixed mixture dictated
by the specification) is often used as the canonical measurement for the throughput of
a DBMS. One interesting aspect of TPC-C is that if the number of warehouses in the
database is sufficiently small, then the DBMS will likely become lock-bound. TPC-C
version implemented by Oltpbenchmark is said by developer a good faith implementa-
tion, although we ignore the thinking time requirement for the workers. This means that
each worker issues transactions without pausing, and thus only a small number of par-
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Table 3.2: TPC-C workload transaction.
Transaction Type #Select #Upd/Del/Ins #Join Weights %Read
NewOrder 4 4 1 0.14 7
Payment 5 5 0 0.15 7.5
OrderStatus 4 0 0 0.31 31
Delivery 3 4 0 0.9 3.85
StockLevel 1 0 1 0.31 31
Total 17 13 2 100 80.35

allel connections are needed to saturate the DBMS. This mitigates the need to increase
the size of the database in order to increase the number of concurrent transactions (In
the official version of TPC-C, each worker acts on behalf of a single customer account,
which is associated to a warehouse).
This workload, is composed by nine tables with ninety-two total columns. The primary
key presents is eight and the Foreign key are twenty-four with three different index. The
total transaction that has is five and are grouped in category on table 3.2.

The others parameters that can be set on this workload are: the time of execution,
the rate, the number of warehouse and the number of connections that are generated.
These parameters have been set respectively to 30 minutes, 10.000 , 8 and 100.

As for the previous workload the rate of these transaction are balanced to have 80%
of read and the 20% of write.
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4
Experiments

This chapter contains the descriptions, characteristics and the methods followed for the
experiments. In addition, we will explain the reasons of multiple experiments performed
and the results will be examined.
How exposed in previous chapter the workload used are TPC-C and Epinions and for
each workload several different benchmark are conducted. One of the results that these
tests should highlight is the overhead of each solution and define the base case.
The base case is defined as a solution without a balancer and without a cluster mode,
meaning that we’ll have a single DBMS powered-on in stand-lone mode. The same ty-
pology of tests are executed for each DBMS, even if the types of balancer are different.
Any of the preformed tests have the duration of 30 minutes and between any trial there
is a delay of 5 minutes. These parameters was chosen by the experience gained in the
first round of tests; we have noticed that if we conduct the trials without an adequate
delay from each others, a test can start with initial conditions different to the previous
one. The duration time was chosen to give a sufficient database stress. At the beginning
of this thesis there were two choices: run several test with minor duration time or run
one test with a long duration time. After the exploitative trial, we noticed that the first
choice’s results have a wide gap range between each others; instead, the second choice’s
results have practically the same range.

The results of each DBMSes test will be exposed on a table like 4.1 that shows the
throughput (request/second) for any given solution. The columns mode indicate which
actors are involved in the test: the values n1 and n2 are respectively the first and the
second DBMSes node, while the third value indicate the balancer used. If the second
DBMS is inside parentheses means that it is synchronized with the first node but without
any input connection even if behind a load-balancer: all benchmarks input connections
are served directly by the first DBMS node. The others columns contains the results of
the test.
At the end of any test is presented a further table that contains the percentage of gain/over-
head against the best case.
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Table 4.1: DBMS results example
Workload

I/O noop I/O cfq
mode

swappiness=0 swappiness=60 swappiness=0 swappiness=60
n1 — — — —
n1 + (n2) — — — —
n1 + n2 + glb — — — —
n1 + (n2) + glb — — — —
n1 + n2 + haproxy — — — —
n1 + (n2) + haproxy — — — —

This chapter explain also how the load-balancer software used on this thesis was
configured and which are the parameters used.
Below the description of any load-balancer and of any DBMSes benchmark.

4.1 Load-Balancing setting

How we stated in previous chapter, the performance of the synchronous solutions can
be tested using an load-balancing software. These softwares are open-source, so the
installation can be done as for the DBMSes. It is necessary to give a description about
how to replicate the experiment done, so the configurations are reported following. Also
is explains the reason about the parameters setting for each load-balancing software.

4.1.1 HAProxy configuration

The balancer configurations obtainable with HAProxy are multiple. The HAProxy ver-
sion used is the 1.4 and it is a stable version. It is possible manage different policies at
the same time, such as the possibility to create a chain of front-end or back-end having
weight equal or different. Each link of the chain can have different policy of load: it is
possible to set a round-robin policy or set a manual priority to any component. All of
these characteristics allow to create different types of solutions in high-availability.
The configuration used on this essay has the aim to balance the TPC-C connection in
round-robin and to obtain the maximal throughput. The configuration A.1 has been cre-
ated to achieve this goal; any new connection is managed by the policy stanza db write.
It describes the address bind and his behavior: in this case any connection is directed to
the stanza cluster mariadb that contains the back-end policy; it describes which are the
address where the connections must be balanced, their weight and the policy to do it.
As we can see from the configuration A.1, there is a peculiar setting option mysql-check
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user haproxy: it defines how to check the life of any node, while the option check on
the line of each node enables this control; this option is fundamental to achieve an high-
availability solution, because if one node dies the balancer must know it immediately to
avoid that the new connections are forwarded to the broken node.
Another peculiar setting on the configuration file establishes that each node has the
weight equal to one: it means that the load is equally distributed.

4.1.2 GLB configuration
The Galera load balancer is a new entry among the Linux balancer. This software is
categorized by the developer as beta and we used the 1.0.1 version.
Unlinke HAProxy, Galera load balancer has less options such as the balancing of the
HTTP connection: the main purpose of this balancer is to obtain high performances
hence it is optimized to work with the Galera solutions, like MariaDB or MySQL.
The settings used are the same ones of the HAProxy: TPC-C connections balanced
in round-robin manner, aiming to achieve the maximum throughput. The parameters
A.2 are fewer than the previous solution, but there is one that allows to increase the
performance: it is the threads parameter, and we have set it to 8 after the exploitative
tests that is the optimal for the host we are using.
To check if the back-end nodes are alive or dead, it is necessary to use an additional
script A.3: it tries a connection with the back-end and, if it fails, the node is considered
broken. As for the previous one, this feature is used to execute the tests that were aimed
at the calculation of the overhead as a balancer.

4.1.3 PgPool-II configuration
The only balancer that support the load-balancing for PostgreSQL is PgPool-II. The
version tested is the 3.2.7 and it is the first one available for PostgreSQL 9.3 . The in-
stallation package contains the balancer (PgPool-II) and the web-gui (PgPoolAdmin).
As we have described in the previous chapter, this balancer has many features but for
this essay are just used the load-balancing mode and the connection cache.
Considering that PostgreSQL permits a cluster solution when one node is in read-write
mode and the other nodes are in read-only mode, PgPool-II allows to define multiple
nodes while the traffic is divided according to the characteristics of each node. As pre-
viously stated about the other load-balancer, the goal of this software is to balance the
TPC-C connection in round-robin manner and to obtain the maximum throughput; as
we can see on the configuration file A.4, the nodes are defined with the same weight.
The feature that permits the liveness check is enabled by default, but the automatically
fail-over is disable on this tests.
After the exploitative tests, the default option that enables the memory cache was dis-
abled because it is incompatible with the benchmark.
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4.2 MariaDB benchmark
MariaDB is unique DBMS examined that support a real synchronized replica in active-
active architecture. This means it has two node that can be read and wrote at the same
time, obviously this let us have an high-availability solution without the use of others
tools. Prerequisite to take advantage of this feature is using a InnoDB storage engine.
MariaDB solutions has been tested with 24 different tests. These are organized as fol-
lowing: the first part of tests is needed to understand what is the impact factor of each
type of balancer (GLD or HAProxy). In fact a balancer could increase or decrease the
performance of the system. To figure out which solution to prefer, for each type of bal-
ancer two different tests are conducted: the first is with a balancer between two node,
while the second is the utilization of the balancer in single mode, or better with the nodes
in cluster mode but the balancer recognizes a single node. In these cases the balancer
receive the connection by the benchmark, but in one case makes into a load balancing
between the two nodes, while in the other case is a pass-through from the benchmark to
one node. These last tests are necessary to understand the balancer overhead.
The second part of tests are executed in stand-lone mode, so the connection from bench-
mark was done directly to the DBMS without pass through the balancer. With these
tests is possible to determine how system’s performances change in the presence of a
balancer, and if it increase or decrease the throughput of the system. In this phase we
have executed two tests: in single node or with two node active in synchronous mode
(cluster). With these two tests it is possible to calculate the overhead on a clustered
solution and understand which is the best operation system tuning.

The second purpose of this thesis is to estimate the impact of the I/O scheduler and
the memory policy. To get these information the tests described below were run four
times, and every time was changed one parameter of the machine. In particular we ran
4 different tests changing the following parameter: I/O scheduler (CFQ or NOOP) and
memory policy (swappiness=0 or swappiness=60).

For any workload there is a table that shows all results and the best case will be
analyzed more carefully.

4.2.1 DBMS configuration
Installation packages MariaDB Galera Cluster is trivial and on a RedHat/CentOS ma-
chine can be done with YUM after that the MariaDB YUM Repository is installed. The
MariaDB syntax and configuration files are similar to those of MySQL, but some pa-
rameters are new. For example the Galera Cluster directives are completely new and to
configure a clustered solution these must be correctly set.
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Configuration file can be located in /etc/my.cn f and the settings used in these tests is
4.1.
If a clustered solution is activated, the start-up of the first node differs from the others
node because it must initialize the cluster: after that the first node is active, the other
nodes can be joined at the cluster in easy way, without any others tricks. The start-up
mode consists in using the argument bootstrap instead the usual start, while to stop any
nodes is sufficient to use the argument stop.

Listing 4.1: MariaDB configuration’s file
[mysqld]

# Basic stuff

user = mysql

datadir = /opt/mariadb

connect_timeout = 5

max_connections = 110

wait_timeout = 100

log -error = /var/log/mysql.log

# Tuning settings

innodb_buffer_pool_size = 3372M

innodb_buffer_pool_instances = 2

innodb_log_file_size = 128M

innodb_log_files_in_group = 3

innodb_flush_log_at_trx_commit = 1

innodb_doublewrite = 1

innodb_file_per_table = 1

log -slave -updates = 1

innodb_flush_method = O_DIRECT

thread_cache_size = 32

query_cache_size = 128M

query_cache_limit = 32M

# Galera Mandatory settings

binlog_format = ROW

default_storage_engine = InnoDB

innodb_autoinc_lock_mode = 2

innodb_locks_unsafe_for_binlog = 1

# Galera settings

wsrep_cluster_name = ’galera_cluster ’

wsrep_cluster_address = gcomm ://192.169.1.1 ,192.169.1.2

wsrep_provider = /usr/lib64/galera/libgalera_smm.so

wsrep_sst_auth = "sstuser:s3cretPass"

wsrep_node_name = ’dbo01 ’

wsrep_node_address = 192.169.1.1

wsrep_provider_options = "gcache.size =512M;gcache.page_size =256M"

wsrep_slave_threads = 32
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wsrep_sst_method = xtrabackup

wsrep_auto_increment_control = 1

auto -increment -offset = 1

To set a MariaDB DBMS in a clustered solution, we need the add some others op-
tions to the configuration file. These have prefix wsrep and set up the behavior of the
cluster. In particular these one define the name of the cluster (wsrep cluster name),
which can join the cluster (wsrep cluster address), how much memory is dedicated for
the synchronized operation (wsrep provider options), the number of thread dedicated to
the synchronized operation (wsrep slave threads) and others minor options. Any node
have the same parameters except wsrep node name and wsrep node address that indi-
cate the name and the ip address of any nodes.
As previously mentioned, Galera Cluster must be used with Innodb, so is mandatory to
set appropriate option on this storage engine.

When there is a comparison of some tests, it’s important that the initial state is iden-
tical for each tests. One factor that may affect the results is the initial state of memory;
in fact if the DBMS has just started and no operation was done before, the memory
is empty and no data is cached. To avoid this problem and to have an identical initial
state for each test, an initial spoof test was performed and the benchmark was started in
a clustered mode. After that all tests in clustered mode was done, the second node is
stopped and the single node test was performed.

4.2.2 TPC-C workload results
The TPC-C workload has heavy-write load: although we have set the workload with a
80% of reading, the overall performances of the system are affected.
How we can see on the table 4.2 there are some interesting results: the first is that the
best results are obtained with the NOOP scheduler I/O with the memory swap policy
to the default value. This result is a logical consequence of scheduler I/O; in fact with
the storage layer utilized on this thesis, if the incoming I/O requests are not ordinated
then these are more fast. The swappiness to 60 contribute to increase the performance
because the swap is a dedicated space of the disk and this is subject to the same I/O
scheduler. When the page of memory becomes inactive, it is moved to the swap memory
but the reference is kept to the page table; after that the page is moved to the swap, if it
is necessary is sufficient read this area of memory and is not necessary create new page.
On the other side, the best results with the I/O scheduler CFQ are obtained with the
swappiness policy to 0. This result is still a consequence of the I/O scheduler, because
the CFQ policy utilizes a ordinate queue that has a slower performance than NOOP.
Since the swap activity utilizes the storage layer, if it is greatly slower it is better to
avoid it. This is the reason because the best result with the CFQ I/O scheduler was
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obtained with the swap policy to 0.
If we consider the column with I/O scheduler to NOOP and swappiness to 60, the two
best results (in bold type) were obtained with a standalone solution and with a GLB
balanced solution. Into all configurations can be noted that the best throughput was
obtained with the GLB balancer; this solution among the HAProxy are, on average,
slower than 0.7%.

Table 4.2: MariaDB-TPC results
TPC-C Workload

I/O noop I/O cfq
mode

swappiness=0 swappiness=60 swappiness=0 swappiness=60
n1 1057.8910 1094.9105 1080.0982 1064.8587
n1 + (n2) 980.2883 988.0496 910.4753 838.6430
n1 + n2 + glb 802.7463 1077.3802 699.1509 574.7270
n1 + (n2) + glb 916.0546 1027.9965 949.3333 929.4890
n1 + n2 + haproxy 760.1499 939.9956 653.9604 571.4477
n1 + (n2) + haproxy 977.2686 985.6206 891.9196 986.1674

The behavior of the system in standalone mode can be seen on the figure 4.2 4.3 4.4
4.5.
As we can observe on the image 4.1 the throughput of the DBMS is quite smooth except
for a few negative peaks that are caused by the disk flush. Of course when the throughput
drops the latency increase, though the latency average is about 100 ms.
If we consider the memory graphic, the swap memory used is increasing on the first
five minutes to stabilize when the total memory usage is constant over the 95%. It is
interesting to notice that the cache has more small negative peaks corresponding to the
disk flush.
The graph of disk have some write peaks and the average of that is about 15MB/sec,
while the read operation consumes less bandwidth, about 5MB/sec.
It is interesting to note that the network bandwidth has instead a major send-activity
then the receive, but it can be justified by the topology of workload that has been set
with the 80% of read activity.
The CPU activity is affected by the disk activity. In fact the negative peaks correspond to
the flush operation, while the normal pattern show that the system is working properly.
The lack of idle presence or system activity means that the disk layer is not a bottleneck
and the resources of the systems are adequate.



Figure 4.1: MariaDB TPC-C Throughput on a single node without a balancer
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Figure 4.2: MariaDB TPC-C benchmark: CPU load of node one in stand-lone mode

Figure 4.3: MariaDB TPC-C benchmark: disk load of node one in stand-lone mode
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Figure 4.4: MariaDB TPC-C benchmark: memory load of node one in stand-lone mode

Figure 4.5: MariaDB TPC-C benchmark: network throughput of node one in stand-lone mode
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The cluster solution with two nodes on the GLB, has the similar behavior of the
standalone configuration.
The figure 4.6 show the throughput of the DBMS, and you can see how the average
latency is about 100ms while the negative peaks of throughput correspond to the flush
operation on the two nodes. When one peak appears can be caused by the flush opera-
tion of the node 1 or node 2. The behavior of the node 1 can be seen on the figure 4.7
4.8 4.9 4.10 while for the node two on the figure 4.11 4.12 4.13 4.14.
It is interesting to notice that the CPU load of the two nodes has a major percentage
of idle then the standalone solution: it corresponds to a minor user load because the
percent of the system and system itself are the same.
The disk activity of the two nodes has the same bandwidth over the standalone solution.
This means that the disk is not a bottleneck for the cluster solution.
Even in this case, the memory has the same behavior of the standalone solution: the
swap free decrease for the first 5 minutes, while the memory usage is constant all over
the experiment. There are some small peaks in the cache line: these are caused by the
flush of the memory over the disk.
An interesting aspect is the network graph. The bandwidth to and from the balancer
is divided over the two nodes and when there is a negative peak on node 1 there is
a positive peak on the node 2 and vice-versa. The heartbeat bandwidth has the same
phenomenon of the data network and the throughput of this network is lower than the
physical limit.



Figure 4.6: Epinions Throughput on a cluster solution with two nodes active and the balancer GLB
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Figure 4.7: MariaDB TPC-C benchmark: CPU load of node one in streaming replication with GLB balancer

Figure 4.8: MariaDB TPC-C benchmark: disk load of node one in streaming replication with GLB balancer
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Figure 4.9: MariaDB TPC-C benchmark: memory and swap load of node one in streaming replication with GLB balancer

Figure 4.10: MariaDB TPC-C benchmark: network throughput of node one in streaming replication with GLB balancer
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Figure 4.11: MariaDB TPC-C benchmark: CPU load of node two in streaming replication with GLB balancer

Figure 4.12: MariaDB TPC-C benchmark: disk load of node two in streaming replication with GLB balancer
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Figure 4.13: MariaDB TPC-C benchmark: memory and swap load of node two in streaming replication with GLB balancer

Figure 4.14: MariaDB TPC-C benchmark: network throughput of node two in streaming replication with GLB balancer
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4.2.3 Epinions workload results

The Epinions workload has a load similar to a common web portal, that means that the
nine transactions have not a high write’s intensity. By the table 4.3, you can see some
interesting results. The foremost result we have obtained is that the two best configu-
rations are with the scheduler I/O set to NOOP or cfq and the swappiness set to 0. The
reason is due again to the type of storage layer used. In this case the DBMS does not
have a high number of operations read/write because the memory has sufficient capacity
to contain the entire database, and it is obvious that a policy that avoid the swap is the
better choice because all memory pages are inside the RAM.
The other result that the table 4.3 shows is that the better performance is obtained with
the solution in cluster among the GLB. Unlike the TPC-C workload where the stan-
dalone solution had the higher raking, the synchronous solution with the GLB balancer
had a 13.84% gain than the standalone solution. This result is possible if it is used the
scheduler I/O NOOP, while with the scheduler I/O CFQ the better solution is the stan-
dalone.
If you compare the solution that use the two balancer, an other clear result is that
HAProxy has poorer performance than GLB, and the average overhead about these so-
lution is the 0.04%.

Table 4.3: MariaDB-Epinions results
Epinions Workload

I/O noop I/O cfq
mode

swappiness=0 swappiness=60 swappiness=0 swappiness=60
n1 8033.9359 6578.6001 8013.6395 6928.3714
n1 + (n2) 6201.7492 6190.1735 7300.9570 7231.2530
n1 + n2 + glb 9143.9628 8694.1304 6428.4041 4785.7125
n1 + (n2) + glb 7588.1312 6778.5137 6741.9024 6315.0807
n1 + n2 + haproxy 8510.2935 8001.7623 7112.0127 6460.7784
n1 + (n2) + haproxy 7303.0546 7209.6801 6359.3836 6441.9358

The behavior of the system in standalone mode can be seen on the figure 4.16 4.17
4.18 and 4.19.
The image 4.15 illustrates the throughput and the latency of the DBMS. The average of
latency values is about 20ms and the peaks are the opposite of the throughput values.
These peaks are caused by the disk flush. In fact we can observe negative peak of cache
memory and the positive peak of disk write.
If you consider the memory graph, the swap memory is never used because the swappi-
ness value is to 0. There are other two interesting features on this graphics: the first one
is that the percent of memory usage is always about 95%, that means that the database
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is in the RAM, and the second one is that the frequency of the flush of memory is more
frequent while time passes. In fact the trend jagged of the cache and buffer value thins
during time, and at the opposite the negative peak of the throughput line are always
more frequent and less deep.
The types of transaction that was performed by the workload are such as to have a high
number of resulting rows, then it is trivial that the percentage of data sent is greater than
those received. The total network bandwidth used is less than the maximum obtainable
with a gigabit network, so this is not a bottleneck.
On the CPU graphic, there is a small percentage of wait activity that correspond of the
write activity, the percentage of SYS load is constant for the whole duration of the test
as well as the percentage of the user load. Overall the system has 10% of idle percent-
age, so the resources of the systems are sufficient for this workload, and the disk or the
network are not a bottleneck.



Figure 4.15: MariaDB Epinions throughput on a single node without a balancer
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Figure 4.16: MariaDB Epinions benchmark: cpu load of node one in streaming replication with GLB balancer

Figure 4.17: MariaDB Epinions benchmark: disk load of node one in streaming replication with GLB balancer
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Figure 4.18: MariaDB Epinions benchmark: memory load of node one in streaming replication with GLB balancer

Figure 4.19: MariaDB Epinions benchmark: network throughput of node one in streaming replication with GLB balancer
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The Epinions workload on the cluster solution with the balancer GLB involves an
almost perfect symmetry in the two systems analyzed.
If we start from the figure 4.20, we can notice that the throughput behavior is almost
regular. The negative peak, as you can see from the figure 4.22 and 4.26 that show the
behavior of the database disk, are caused by the storage activity. This trend may be
defined as normal because it is asymptotic and with duration of 1 second.
The DBMS latency is on average less than 50ms ,apart some cases it corresponds to
the negative peak of the throughput. The trend symmetry of the two nodes can be
observed over the disk graphs. In fact the negative and positive peaks of the node 1
images, are symmetric over the node 2 images. This behavior is obviously due to the
synchronization between nodes.
It is interesting to notice that the CPU load 4.21 4.25 of the two node has on average
23% of percentage idle: it means that the CPU is not a bottleneck otherwise the utilized
percent would be close to 100%. Another interesting point is that the percent of WAIT
and SYS are constants over all time of the experiment.
On the memory graph 4.23 4.27, we can see that the swap is never utilized by node 1 and
node 2. Also the trend of the cache value is constant, although there is a slight increase
at the beginning. The behavior of the memory used and free is quite the opposite.
Obviously there is a growing trend of memory occupied, and a decreasing trend of free
memory. This phenomenon is not located within the end of the 30-minutes test, but
it is easy to assume that at the moment of the end of free memory there is a gradual
decrease in the cache memory since this is used as a disk optimization. In the event that
the cache’s space would end and the system would need more memory you could use
the swap’s space, but this hypothesis would not be feasible because it would go against
the very reason of cache memory, a feature that is used to enhance the performance.
The network graphs 4.24 4.28 show the behavior of the data and heartbeat network
interfaces. The trend of the data interfaces is the same trend of standalone solution.
In fact the percentage of data sent is higher than the received ones because the kind
of executed queries returns many rows and much more data. Instead, the heartbeat
interface has lower level that data network and it is the opposite of the TPC-C workload.
This difference is due to the type of workload because the types of transactions on the
Epinions are different towards the TPC-C workload that has heavy-write load.



Figure 4.20: Epinions throughput on a cluster solution with two nodes active and the balancer GLB
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Figure 4.21: MariaDB Epinions benchmark: cpu load of node one in streaming replication with GLB balancer

Figure 4.22: MariaDB Epinions benchmark: disk load of node one in streaming replication with GLB balancer
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Figure 4.23: MariaDB Epinions benchmark: memory and swap load of node one in streaming replication with GLB balancer

Figure 4.24: MariaDB Epinions benchmark: network throughput of node one in streaming replication with GLB balancer
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Figure 4.25: MariaDB Epinions benchmark: cpu load of node two in streaming replication with GLB balancer

Figure 4.26: MariaDB Epinions benchmark: disk load of node two in streaming replication with GLB balancer
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Figure 4.27: MariaDB Epinions benchmark: memory and swap load of node two in streaming replication with GLB balancer

Figure 4.28: MariaDB Epinions benchmark: network throughput of node two in streaming replication with GLB balancer
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4.3 PostgreSQL benchmark
PostgreSQL 9.3 DBMS has not the possibility to be clustered in a solution with multiple
read-write nodes. To have a comparison with the DBMS MariaDB, the configuration
that comes nearest is the replication mode: it consists in a read-write master node while
the slave node is synchronized with the master in read-only mode. The only balancer
available for PostgreSQL in clustered solution is PgPool-II. As mentioned in the para-
graph 3.3.3, it has the capability to balance the read-only load between different nodes,
and this feature is not available on others balancer such as HAProxy and GLB.
The number of tests run is 16 for each workload because the number of balancers uti-
lized is just one. The test organization is like MariaDB so, at the beginning, the two
nodes are joined to give the throughput of the balancers solution. Like the precedent
DBMS, the tests with the balancer are divided in two parts: one test is a classic bal-
ancer where PgPool-II utilizes all nodes while the second test is run to determinate
the overhead of the balancer: in this case PgPool-II is merely a pass-through from the
benchmark to a single node.
The second part of tests are executed without the PgPool-II. Similarly to MariaDB two
different tests are performed: one is on the base case, so the benchmark was directly
connected to the DBMS without pass-through the balancer and only the master node
is powered-on, while the second test is like the first with the slave node powered-on
and in synchronized state. These tests are necessary to measure the overhead about the
streaming replication solution.

As previously stated: the second purpose of this thesis is understand the impact of
the I/O scheduler and the memory policy; given that, any test described below was run
four times, and every time was changed one parameter of the machine. In particular we
ran 4 different tests changing the following parameter: I/O scheduler (CFQ or NOOP)
and memory policy (swappiness=0 or swappiness=60).

At the begin, the DBMS has been optimized to have the best performance.

4.3.1 DBMS configuration
The packages of PostgreSQL can be installed by PostgreSQL Yum Repository. To ob-
tain a streaming replication solution like a production system several parameters and
auxiliary scripts must be enabled. Generally the basic stuff and the tuning settings in
the configuration file 4.2 are the same for any tests. These values were chosen after
repeated trials and are a basic tuning to obtain high performances.
To achieve a test environment like a production one, we have to enable the Write-ahead
logging (WAL). This feature is the journal of PostgreSQL and is mandatory when the
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slave node joins to the master node. In fact, unlike MariaDB where when the join of the
slave involves an automatic synchronization, PostgreSQL slave DBMS does a synchro-
nization read to the old WAL log and if it is not present the only remaining option is to
execute a master full backup on the slave, and redo a configuration of the slave. This
operation is time-expansive and when the database is too large it is the last chance at
disposal. Also in a high-availability solution where is possible to have a fail-over condi-
tion only for scheduled operations (like an software upgrade or maintenance activities)
is impractical to execute a full backup whenever happens.
When the nodes have a synchronized state, the future changes are performed by the
heartbeat network, and the WAL feature has a backup functionality to ensure the possi-
bility of a Restore Point in Time (RPT).
Because the WAL files are numerous and the occupied space is too high, a dedicate
file-systems has been created. Also, has been created two scripts to manage these file:
rsync to wal archive.sh and rsync from wal archive.sh. We can invoke this script with
archive command and restore command parameters: these operations are executed by
the master node and by the slave node. The purpose of that is to copy the original file
on dedicated file-systems; the slave DBMS invoke the restore command when has done
the first join to the cluster or after a restore.
In a production environment the WAL files copied by the master are archived by the
backup system on the TAPE (usually every hours) and the file-system used is very large
but in our test environment the file system is small and a crontab job executes the dele-
tion of this files.

Listing 4.2: PostgresSQL configuration’s file
# Basic stuff

listen_addresses = ’*’

max_connections = 110

lc_messages = ’en_US.UTF -8’

lc_monetary = ’en_US.UTF -8’

lc_numeric = ’en_US.UTF -8’

lc_time = ’en_US.UTF -8’

default_text_search_config = ’pg_catalog.english ’

log_destination = ’stderr ’

log_statement = none

log_min_error_statement = log

log_min_messages = log

client_min_messages = log

log_directory = ’pg_log ’

log_filename = ’postgresql.log ’

log_truncate_on_rotation = on

log_rotation_age = 1d

log_rotation_size = 0

log_line_prefix = ’< %m >’

log_timezone = ’Europe/Rome ’

timezone = ’Europe/Rome ’
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logging_collector = on

datestyle = ’iso , mdy ’

constraint_exclusion = partition

default_statistics_target = 100

default_transaction_isolation = ’repeatable read ’

# Tuning settings

maintenance_work_mem = 480MB

constraint_exclusion = on

checkpoint_completion_target = 0.9

effective_cache_size = 2816MB

work_mem = 18MB

wal_buffers = 32MB

checkpoint_segments = 64

shared_buffers = 960MB

# Wal settings

wal_level = hot_standby

wal_sync_method = fdatasync

wal_buffers = -1

max_wal_senders = 3

wal_keep_segments = 1

archive_mode = on

archive_command = ’/opt/postgres/rsync_to_wal_archive.sh %p %f

dbo02.hearbeat ’

checkpoint_segments = 30

checkpoint_timeout = 35min

checkpoint_completion_target = 0.8

# Streaming replication settings

synchronous_standby_names = ’slave ,dr ’

hot_standby = on

synchronous_commit = on

Listing 4.3: PostgresSQL recovery configuration’s file
standby_mode = ’on ’

primary_conninfo = ’host =192.169.1.1 port =5432 user=replicator

password=thepassword application_name=slave ’

trigger_file = ’/tmp/trig_f_postgres ’

recovery_target_timeline = ’latest ’

restore_command = ’/opt/postgres/rsync_from_wal_archive.sh %p %f

dbo02.hearbeat ’

As you can see from the configuration file 4.2 the parameter synchronous commit is
set to ON. This parameter can change the behavior of the replication mode. If it is ON
the DBMS’s behavior fulfills a synchronized replica, while if it is local the DBMS is set
in asynchronous mode. The configuration file differs between the master and the slave
just on this parameter. In fact the value of synchronous commit parameter on the slave
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node is local, because if the master node is dead and the slave becomes the new master
and if synchronous commit is ON any operation will be stuck-ed. These parameters can
be changed on the fly without the restart of the DBMS.

4.3.2 TPC-C workload results
The TPC-C workload utilized with the PostgreSQL DBMS has the same characteristics
of the tests done with the MariaDB.
On the table 4.4 is reported the throughput results of the tests and there are some in-
teresting results. As for the MariaDB, the first interesting results is that the best results
are obtained with the NOOP scheduler I/O with the memory swap policy to the default
value. The reason is yet the storage layer for the same reasons of the previous DBMS.
Another achievement is the unexpected throughput of the solution with the use of the
balancer PgPool-II. In fact you may well notice that on average the values are cut by al-
most 64 percentage points compared to the non-balanced solution. This result indicates
to us that this kind of solution goes against all the initial assumptions.

Table 4.4: PostgreSQL TPC-C results
TPC-C Workload

I/O noop I/O cfq
mode

swappiness=0 swappiness=60 swappiness=0 swappiness=60
n1 751.8255 760.3116 675.4058 644.3549
n1 + (n2) 643.1989 702.3574 594.7116 580.1802
n1 + n2 + PgPool-II 389.0048 405.1093 366.2339 365.5960
n1 + (n2) + PgPool-II 399.9360 412.2783 387.9132 350.7815

The Linux system where the PostgreSQL was configured in standalone mode has
a very different behavior compared to the same tests performed with MariaDB. The
first difference you may notice on the figure 4.29 where it is displayed the throughput
and the latency of the DBMS. The average latency is about to 110ms and the trend of
the throughput is not linear but have some negative behavior. These are caused by the
DBMS’s deadlocks that block some transactions until the first blocking transaction does
not end. This new phenomenon has been tested by reading the DBMS log file.
As you can notice, the CPU load on the figure 4.29 confirms the deadlock phenomenon.
In fact the CPU is not in IDLE state, while most of the CPU is in used state. This
means also that the system had not a network or disk I/O bottleneck and the disk graph
4.31 confirms it. The write peak value is less than the maximal bandwidth of the disk,
and occurs about every 30 seconds. The trend of readings is constant in time, and is
certainly not a bottleneck. The network activity, that can be seen on the figure 4.33, is
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the opposite of the MariaDB. The percentage of received data is higher than the sent
data, while the heartbeat interface is used to transfer the WAL-log on the second node.
Finally, the memory 4.32 has an higher value of cache, that justifies the low utilization
of the I/O. Instead it is also possible to observe that the cache percentage has a slight
increase, while the percentage of the used has a slight decrease. The swap is essentially
free although there is a tendency to increase.



Figure 4.29: PostgreSQL Epinions throughput on a single node without a balancer
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Figure 4.30: PostgreSQL Epinions benchmark: CPU load of node one in streaming replication with PgPool-II balancer

Figure 4.31: PostgreSQL Epinions benchmark: disk load of node one in streaming replication with PgPool-II balancer
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Figure 4.32: PostgreSQL Epinions benchmark: memory load of node one in streaming replication with PgPool-II balancer

Figure 4.33: PostgreSQL Epinions benchmark: network throughput of node one in streaming replication with PgPool-II balancer
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The workload TPC-C over the PostgreSQL in cluster mode has a very similar behav-
ior of the solution in standalone, except for the fact that the throughput is 0.64% less. As
we can see on figure 4.34 the latency has an average 260ms which is more than double
of the previous, while the trend of throughput is not regular but almost sinusoidal.
Also in this case it is clear from the log of the DBMS that there are numerous deadlocks
that causes this type of behavior. In addition, there is the presence of the balancer that
is not conducive to the performance of the system. On the graphs 4.36 and 4.40 we can
observe the behavior of the disk. From those we can notice that the node 2 has always
activity of write, caused by the WAL log and by the DBMS’s log; instead on the node
1 there are both read and write. We have to keep in mind that the the node 1 has the
faculty of reading and writing while the node 2 is read-only.
The WAL log has sent traffic from the node 1 through the heartbeat network to node 2.
The data’s network is used mostly by node 1 while the node 2 use it scarcely.
The performance of the CPU, that we can seen on the figure 4.35 and 4.39, is the same
of the standalone test. Idle state is not present on the node 1, while there is an high value
of user state that means the DBMS is working. On the node 2 the system has an high
percent of idle state. These trend justify the presence of deadlocks on the DBMS, as it
is reported in the DBMS’s log file.
The last interesting aspect of this system is the memory behavior. On the node 1, you
may notice on the figure 4.37 that there is an high value of cache: it means that the
database is cached on the memory and the percentage of write are the flush of memory.
The used value shows a slight decrease, while the occupation of the swap is on the rise.
On the second node it is possible to observe the behavior of the synchronization with the
first node. In fact every 2 minutes the system drops the old page from the memory and
reload the new one. This phenomenon causes the trend on the figure 4.41. The swap on
the second node is never used.



Figure 4.34: Epinions throughput on a cluster solution with two nodes active and the balancer PgPool-II
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Figure 4.35: PostgreSQL TPC-C benchmark: cpu load of node one in streaming replication with PgPool balancer

Figure 4.36: PostgreSQL TPC-C benchmark: disk load of node one in streaming replication with PgPool-II balancer
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Figure 4.37: PostgreSQL TPC-C benchmark: memory and swap load of node one in streaming replication with PgPool balancer

Figure 4.38: PostgreSQL TPC-C benchmark: network throughput of node one in streaming replication with PgPool-II balancer
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Figure 4.39: PostgreSQL TPC-C benchmark: cpu load of node two in streaming replication with PgPool-II balancer

Figure 4.40: PostgreSQL TPC-C benchmark: disk load of node two in streaming replication with PgPool-II balancer
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Figure 4.41: PostgreSQL TPC-C benchmark: memory and swap load of node two in streaming replication with PgPool balancer

Figure 4.42: PostgreSQL TPC-C benchmark: network throughput of node two in streaming replication with PgPool-II balancer
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4.3.3 Epinions workload results
The Epinions workload utilized for the PostgreSQL DBMS has produced two main re-
sults displayed on the table 4.5. The first one is that the two best configurations are with
the scheduler I/O set to NOOP or CFQ and the swappiness set to 0. This is the same
result of MariaDB and how stated in the previous paragraph the reason is due again to
the type of storage layer used. This type of workload does not use the swap because the
database dimension is less than the RAM of the hosts. This is the reason because with
the swappiness setting to 0 there are better results.
The second main result that can be noted on the table is that the solution with a balancer
is worse than without. In this case the balancer reduces about by 240% the throughput
of the system. This is the second result that contradicts the initial expectations: the so-
lution with the use of a balancer should have best performances.

Table 4.5: PostgreSQL-Epinions results
TPC-C Epinions

I/O noop I/O cfq
mode

swappiness=0 swappiness=60 swappiness=0 swappiness=60
n1 9453.1875 9332.3414 9387.3063 9271.4856
n1 + (n2) 9039.2923 8834.8602 8987.6464 8751.7635
n1 + n2 + PgPool-II 2748.1216 2563.9810 2567.4369 2422.7109
n1 + (n2) + PgPool-II 2506.8148 2452.5189 2362.8463 2300.1293

The system behavior with the Epinions workload has some trend like the TPC-C
workload. The figure 4.43 displays the latency and the throughput of this workload, and
from that it is possible to infer two important results. The first one is that the average
latency is about 5ms which is the best result obtained value while the second one is that
the trend of the throughput is very irregular.
From the figure 4.44 we can notice that the system has not a idle state, and the high
percentage of the CPU is in used state to elaborate the tasked of the DBMS. As in
previous cases, this behavior is not considered abnormal.
The behavior of network 4.47 shows that the heartbeat network sends every 1.30 minute
the WAL log to the second node, while the percentage of send and receive from the data
interfaces is the same of the TPC-C workload. The Disk load on the figure 4.45 shows
that the storage layer is never used to read the database, because it is in the memory,
while there is some peak of write that corresponds to the memory flush.
The reason is that the database was loaded into RAM, as we can observe in the graph
4.46. There is an higher value of cache that increases over time, as for the percentage of
used while the percentage of the free memory decreases over time.



Figure 4.43: PostgreSQL Epinions throughput on a single node without a balancer
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Figure 4.44: PostgreSQL Epinions benchmark: cpu load of node one in streaming replication with PgPool balancer

Figure 4.45: PostgreSQL Epinions benchmark: disk load of node one in streaming replication with PgPool balancer
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Figure 4.46: PostgreSQL Epinions benchmark: memory load of node one in streaming replication with PgPool balancer

Figure 4.47: PostgreSQL Epinions benchmark: network throughput of node one in streaming replication with PgPool balancer
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The overall behavior of the balanced solution can be seen in the graph 4.48. From
those it is possible to notice that the system’s latency is about of 50ms: that is a very
lower lever than of the TPC-C workload. The throughput performance is rather similar
to the test with the DBMS in standalone mode.
There are some considerations that reflect the behavior of the tests done in standalone
mode and balanced test done with the TPC-C workload. The first of those is the trend
of the CPU. As you may notice in the image 4.49 and 4.53, the node 1 has an higher
percentage of idle state and the node 2 has not CPU activity. If you compare the test
run in standalone we can note that the percentage of SYS state is the same, while the
percentage of the user state is about half. There is also another interesting value: at 17th
minute the node 1 has a dramatic 15% decrease of activity of the user, while the two
node has a 5% increase to the same minute. This phenomenon leads to a reduction in
throughput as you can see in the image 4.48.
Accordingly to the DBMS’s tuning, the performance of the memory 4.51 4.55 is similar
to the solution in standalone mode. In fact, the percentage of cache is very high, while
the trend in the percentage used is slowly rising. The node 2 instead has a similar trend,
although the cache values decrease to the same ones of the node 1. The memory used
instead remains constant. The disk behavior, that can be seen on 4.50 4.54, has the
same trend as a standalone solution. In fact, there is a total absence of read because
the database is in RAM (cache), while writes are caused by the flush of changes to the
database.
In conclusion, as you can see from the figures 4.52 and 4.56, the node 1 has a meager
use of sent in data’s network while we cannot note any use by node 2. The network
heartbeat as always is used for transmission of the WAL log.



Figure 4.48: Epinions throughput on a cluster solution with two nodes active and the balancer PgPool
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Figure 4.49: PostgreSQL Epinions benchmark: cpu load of node one in streaming replication with PgPool-II balancer

Figure 4.50: PostgreSQL Epinions benchmark: disk load of node one in streaming replication with PgPool-II balancer
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Figure 4.51: PostgreSQL Epinions benchmark: memory and swap load of node one in streaming replication with PgPool balancer

Figure 4.52: PostgreSQL Epinions benchmark: network throughput of node one in streaming replication with PgPool-II balancer
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Figure 4.53: PostgreSQL Epinions benchmark: cpu load of node two in streaming replication with PgPoll balancer

Figure 4.54: PostgreSQL Epinions benchmark: disk load of node two in streaming replication with PgPool balancer
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Figure 4.55: PostgreSQL Epinions benchmark: memory and swap load of node two in streaming replication with PgPool balancer

Figure 4.56: PostgreSQL Epinions benchmark: network throughput of node two in streaming replication with PgPool balancer
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5
Conclusion

In this thesis, we have studied the major Open Source Database Management Systems
that have synchronous replication features. We have studied their characteristics and
which benefits give in terms of high-availability.
At the beginning of this paper we have covered the fundamental theory concepts about
failure, error and fault, the background of the distributed system and the basic notions
of the database. In chapter 1, we stated the characteristics that the DBMS must have to
be a distributed database.
After that we have explained the basic concepts of a distributed DBMS and introduced
the concepts of high-availability, because it is not implied that a distributed software is
also reliable in terms of temporal continuity. Over the chapter 2, we presented the two
main DBMS’s category and their characteristics in terms of high-reliability.

At the end of the theoretical part, we have described the environment’s topology
used, particularly the characteristics of the hardware and software utilized. In chap-
ter 3, we have analyzed the features of the two DBMS chosen in this essay and the
characteristics of the balancer used to test the performance of the DBMSes. After that,
we described the characteristics of the benchmark chosen, and the feature of the two
workload used to test the performance. At the end of those chapters, we explained the
importance of the scheduler I/O and the memory policy in every Linux operation sys-
tems.
After the theoretical background has been introduced, the chapter 4 explains the pa-
rameters used to configure the two DBMSes, and the results obtained by the test. In
particular about the two best cases of each test, we have analyzed the operation system
behavior to view the performance of the memory, disk, CPU and network components.

5.1 Result review

By analyzing the test results, we can highlight some very interesting results.
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From the tests with MariaDB and the workload TPC-C, we can see in the table
5.1 that the best solutions are obtained with a standalone node. This result contradicts
the initial hypothesis, namely that a balanced solution could gain a 80% throughput.
Although it is slower than a solution in HA, the use of a balancer GLB has a gain of
9.04% over the synchronized solution, while the HAProxy balancer has an overhead of
4.86% over the same solution with the nodes synchronized.
If the goal of the customer was using two different hosts to improve the performance, the
workload TPC-C shows that this solution does not satisfies this target. Although the goal
is not met, you must consider the aspect of high reliability: to have an high-availability
solution it is necessary to have at least two different nodes, and with the oldest solution
the second node is always on the idles state and the fail-over time is more expensive
then an load-balancing solution. Also with a traditionally active-passive solution, there
are some problems with the machine maintenance, while with the balanced solution it
is easyer because we can stop one node at time.
Then these tests show us that, with an overhead of 1.60%, there are two benefits: the
possibility to maintenance the system without a disservice and real high-availability.

Table 5.1: MariaDB TPC-C result: gains and overhead for the best solution
Gain/overhead over base value

Base Value n1 n1+(n2) n1+n2 n1+(n2) n1+n2 n1+(n2)
glb glb HAProxy HAProxy

n1 00.00% -09.76% -01.60% -06.11% -14.15% -09.98%
n1 + (n2) 10.82% 00.00% 09.04% 04.04% -04.86% -00.25%
n1 + n2 + glb 01.63% -08.29% 00.00% -04.58% -12.75% -08.52%
n1 + (n2) + glb 06.51% -03.89% 04.80% 00.00% -08.56% -04.12%
n1 + n2 + HAProxy 16.48% 05.11% 14.62% 09.36% 00.00% 04.85%
n1 + (n2) + HAProxy 11.09% 00.25% 09.31% 04.30% -04.63% 00.00%

The tests with MariaDB and workload Epinions confirms some of the results ob-
tained with the previous workload. The main one is that the solutions with the balancer
HAProxy is slower than GLB. In fact there is an 6.93% of overhead between these so-
lutions.
The second fact that can be seen on table 5.2, is that the two solutions that use a balancer
are faster than the native solution active-active. The HAProxy solution has the 5.93%
of gain over the standalone solution, while the GLB solution the 13.82% of gain. If the
main goal of the customer is having an active-active configuration to achieve the objec-
tives described above, the right solution indicated by these results is using a Galera load
balancer.
This is the opposite result to those obtained with TPC-C workload, but you must con-
sider that there is quite a difference between the two workload and the Epinions whom
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goal is to simulate a real web portal.

Table 5.2: MariaDB Epinions result: gains and overhead for the best solution
Gain/overhead over base value

Base Value n1 n1+(n2) n1+n2 n1+(n2) n1+n2 n1+(n2)
glb glb HAProxy HAProxy

n1 00.00% -22.81% 13.82% -05.55% 05.93% -09.10%
n1 + (n2) 29.54% 00.00% 47.44% 22.35% 37.22% 17.76%
n1 + n2 + glb -12.14% -32.18% 00.00% -17.01% -06.93% -20.13%
n1 + (n2) + glb 05.88% -18.27% 20.50% 00.00% 12.15% -03.76%
n1 + n2 + HAProxy -05.60% -27.13% 07.45% -10.84% 00.00% -14.19%
n1 + (n2) + HAProxy 10.01% -15.08% 25.21% 03.90% 16.53% 00.00%

The PostgreSQL analysis is easyer than the MariaDB, because from the table 5.3 it
is clear that the balancer PgPool-II does not meet the requirements of the customer. If
we make a more detailed analysis, we can see that the gain of the solution where the
balancer knows all hosts over the solution where the balancer knows a single host is
about 0.70%. Clearly this result indicates that the balancer generates overhead. In fact
the overhead from the solution without the balancer over the solution with the balancer
is the 42.32%.
The unique positive aspect is that the overhead over the solution in cluster without the
balancer is 7.62%, that is lesser than the overhead of MariaDB with the same workload.
The two customer’s goals are not completely satisfied with the PostgreSQL. The reason
is simple: to have an high-availability solution, it is better that the nodes works together
at the same time while with the PostgreSQL we are obliged to have one node active and
one node passive. To manage the resources is necessary to adopt others software that
can check the live state of the node and in case do a fail-over. In this case the Virtual IP
address, that is local on the master machine, is moved to the node 2.
The second request of the customer is a solution that allows the maintenance of the
machine without create a disservice and without hard procedures. To achieve this target
PostgreSQL does not offers any solution, because when a fail-over happens on the repli-
cation mode, the secondary node becomes the first node, while the broken node leave
the ”cluster”. The broken node can be re-joined to the cluster but the time necessary to
do it may depending on the size of the database, and in any case is not automatically.
This procedures involve risks and could become time consuming.
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Table 5.3: PostgreSQL TPC-C result: gains and overhead for the best solution
Gain/overhead over base value

Base Value n1 n1+(n2) n1+n2 n1+(n2)
PgPool-II PgPool-II

n1 00.00% -07.62% -46.72% -47.09%
n1 + (n2) 08.25% 00.00% -42.32% -42.72%
n1 + n2 + PgPool-II 87.68% 73.37% 00.00% -00.70%
n1 + (n2) + PgPool-II 89.00% 74.59% 00.70% 00.00%

The PostgreSQL with the workload Epinions, has the same results of the TPC-C
workload. The overhead of the balancer solution is about the 70% and is greater than
the overhead with the TPC-C workload. In this case the solution with two nodes is
4.83% worse than the single node, and this value is smaller than the previous workload.
With this results it is clear that the balancer PgPool-II is not able to optimize the load,
and the only effect that entails is the addition of a layer that increases the overhead.

Table 5.4: PostgreSQL Epinions result: gains and overhead for the best solution
Gain/overhead over base value

Base Value n1 n1+(n2) n1+n2 n1+(n2)
PgPool-II PgPool-II

n1 00.00% -04.38% -70.93% -70.48%
n1 + (n2) 04.58% 00.00% -69.60% -72.27%
n1 + n2 + PgPool-II 243.99% 228.93% 00.00% -08.78%
n1 + (n2) + PgPool-II 277.10% 260.59% 09.63% 00.00%

From the tests with PostgreSQL we obtain an interesting results over the MariaDB.
If we compare the throughput of the standalone solution with the Epinions workload,
it turns out that PostgreSQL is 17% faster than MariaDB (9453.1874 VS 8033.9359).
The outcome is the opposite with the TPC-C workload. In fact the PostgreSQL solution
is worse than the 30% over MariaDB (760.3116 VS 1094.9105), and in accord of the
analysis done over the Linux behaviour is clear that an intense activity of I/O degrades
the performance of PostgreSQL.

5.1.1 Architecture and Tuning review
A background goal of this thesis is to understand how the I/O scheduler and the memory
policy can change the performance of the DBMS. After that some differences of the
results have been analyzed, we can state that:
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• if the scheduler I/O is CFQ then is better avoid the memory swap of the system.
The type of I/O load is indifferent because the swap use the disk layer and the
CFQ policy has worse performance so it is recommended to avoid additional load
of I/O with the use of the swap.

• if the scheduler I/O is NOOP then is the type of DBMS load that decides which
is the best memory policy. The TPC-C workload has more disk I/O load of the
Epinions, because the types of transaction are more complicated. Vice-versa, the
transactions of Epinions are ”easyer” and do not require intermediate results to
complete the task. So the memory policy that avoid the swap is better if the
database is Web-Service oriented, while is better using the swap if there is an
heavy-write load.

Everything considered, we can affirm that the best solution to satisfy the initial re-
quirements is MariaDB in replication mode with the Galera Load Balancing. This is an
high-availability solution that may improve the performance of the system.

PostgreSQL has better performance without the balancer, and when is used with
the second node synchronized is a valid alternative to MariaDB, because offers a zero
data lost solution with a minimal time of disservices when the fail-over of the node 1
happens.
If the DBMS is used by the web-applications and the performance is the first aim, then
the DBMS that must be chosen is PostgreSQL.

5.2 Experience gained

At the end of the work, there are some new notions that I have learned besides the results
of this essay. My database’s background has increased, because I have deepened how
the PostgreSQL and MariaDB work, and generally speaking the theory of the DBMS.
I studied the benchmark of databases, discovering a great tool, oltpbenchmark, and the
different types of workload that the literature offers. What surprised me was the gain
we have obtained with the system optimization, an effort the we have to make even
nowadays: obviously it is always highly recommended to invest a bit of time to systems
tuning. In particular, the tuning of Linux systems is an activity currently entrusted but
this thesis emphasize that we must not underestimate it or take it for granted.
Finally, I have learned which open source balancers exist, and which features they have.
I also confirmed my personal idea that most of the time they are just a bottleneck, and
if there are hardware balancer there is a good reason for that.
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5.3 Bugs opened
Working on this thesis, I have utilized many software for the first time. It is my habit
to try to deepen and thoroughly understand the software that I use, and thanks to this
principle I could make a small contribution to the open source community by reporting
and fixing some minor bugs. These are:

• GLB: the installation of GLB includes a script to manage the balancer as a dae-
mon. This script had many logical errors with many variables reversed. In ad-
dition to these minor problems, the most serious error was how the balancer was
invoked. I Have created a patch that has been deployed [glb].

• PgPool-II: the script to do the setup, checked if the prerequisite software was
installed on the system. This control was commented on the stable version and
the BUG [pgpa] has be signaled.

• oltpbenchmark: The most serious bug i have fixed on this thesis regards the bench-
mark used. This bug has been discovered because when i started the test with the
Epinions on PostgreSQL, the throughput was about the 22 req/sec versus the 8000
of MariaDB. This result was very odd and once analyzed I found that the defini-
tion of the two databases was different. In fact on the PostgreSQL the definition
was missing the declaration of three index that MariaDB had. This bug has been
signaled and fixed [olta].

5.4 Future works
This work started out with this goal: to find out which high-availability solution exists
over the open-source database management system and understand which is the best
solution in terms of performance.

Below follows a list of topics that should be of interest for further investigations:

• Once verified that the solution with more nodes has worse performance over the
standalone solution, Is it possible to reduce the latency over the nodes to increase
throughput? Might be interesting to look for new solutions to increase the ef-
ficiency of communication between nodes, perhaps through a quorum disk or
through the fibre channel communication.

• I have tested the two major solution open-source, but there are other interesting
open-source DBMS such SQLite, Firebird, Ingres. Are these DBMS faster that
the two major?
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• could be interesting to test the Linux’s tuning behave over the closed-source
DBMS, and compare the performance of the two types.

• The classic high-availability solution is implemented with two nodes but how
the system behaves if others nodes are added? The performances improve or
decrease?

• I have executed the Linux’s tuning of two parameters, but there are some others
optimization that can improve the performance. Another further work could be to
investigate on the possible optimization of the operating system.

• Today, there are some company that need to have a database replicated on multi
site connected with a fast connection. Is the latency of this link sufficient to imple-
ment this type of solution or would be better to have an asynchronous replication
mode?
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A
Some technicalities

Listing A.1: Haproxy configuration’s file
global

log 127.0.0.1 local2

chroot /var/lib/haproxy

pidfile /var/run/haproxy.pid

maxconn 200

user haproxy

group haproxy

daemon

stats socket /var/lib/haproxy/stats mode 0600 level admin

defaults

log global

mode tcp

option tcplog

option dontlognull

retries 3

option redispatch

maxconn 200

timeout connect 5000ms

timeout client 50000ms

timeout server 50000ms

frontend db_write

bind 192.168.2.105:3306

default_backend cluster_mariadb

backend cluster_mariadb

mode tcp

option tcpka

balance roundrobin

option mysql -check user haproxy

server dbo01 192.168.2.111:3306 check weight 1

server dbo02 192.168.2.112:3306 check weight 1
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Listing A.2: GLB configuration’s file
LISTEN_ADDR="192.168.2.105:3306"

CONTROL_ADDR="127.0.0.1:8011"

THREADS="8"

MAX_CONN="200"

DEFAULT_TARGETS="192.168.2.111:3306 192.168.2.112:3306"

OTHER_OPTIONS="-w exec:’/opt/gian/glb_mysql.sh -d 2 -uroot -

pthepassword ’"

Listing A.3: GLB script to check the liveness of node
#!/bin/sh -u

#

# Copyright (C) 2012 Codership Oy <info@codership.com >

# This is a script for glbd exec watchdog backend to monitor the

availability

# of MySQL server.

ADDR=$1; shift

DONOR_STATE =2

if [ "$1" = "-d" ]; then

shift; DONOR_STATE=$1; shift

fi

HOST=$(echo $ADDR | cut -d ’:’ -f 1); HOST=${HOST:-"127.0.0.1"}

PORT=$(echo $ADDR | cut -s -d ’:’ -f 2); PORT=${PORT:-"3306"}

QUERY="SHOW STATUS LIKE ’wsrep_local_state ’; SHOW STATUS LIKE ’

wsrep_incoming_addresses ’"

while read CMD; do

[ "$CMD" != "poll" ] && break;

RES=$(mysql -B --disable -column -names -h$HOST -P$PORT $* -e "

$QUERY")

if [ $? -eq 0 ]; then

STATE=$(echo $RES | cut -d ’ ’ -f 2)

OTHERS=$(echo $RES | cut -d ’ ’ -f 4)

STATE=${STATE:-"4"}

else

STATE=

OTHERS=

fi

# convert wsrep state to glbd code

case $STATE in

4) STATE="3"

;;

3) STATE="2"
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;;

2) STATE="$DONOR_STATE"

;;

1|5) STATE="1"

;;

0|*) STATE="0"

esac

echo "$STATE $OTHERS"

done

Listing A.4: PgPool-II configuration’s file
listen_addresses = ’*’

port = 9999

socket_dir = ’/tmp ’

pcp_port = 9898

pcp_socket_dir = ’/tmp ’

enable_pool_hba = off

pool_passwd = ’pool_passwd ’

authentication_timeout = 60

ssl = off

num_init_children = 110

max_pool = 10

child_life_time = 30

child_max_connections = 0

connection_life_time = 30

client_idle_limit = 0

log_destination = ’stderr ’

print_timestamp = on

log_connections = off

log_hostname = off

log_statement = off

log_per_node_statement = off

log_standby_delay = ’none ’

syslog_facility = ’LOCAL0 ’

syslog_ident = ’pgpool ’

debug_level = 0

pid_file_name = ’/var/run/pgpool/pgpool.pid ’

logdir = ’/var/log/pgpool ’

connection_cache = on

reset_query_list = ’ABORT; DISCARD ALL ’

replication_mode = off

replicate_select = off

insert_lock = on

lobj_lock_table = ’’

replication_stop_on_mismatch = off

failover_if_affected_tuples_mismatch = off

load_balance_mode = on

ignore_leading_white_space = on

white_function_list = ’’
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black_function_list = ’nextval ,setval ’

master_slave_mode = on

master_slave_sub_mode = ’stream ’

sr_check_period = 0

sr_check_user = ’postgres ’

sr_check_password = ’thepassword ’

delay_threshold = 0

follow_master_command = ’pg_ctl promote ’

parallel_mode = off

pgpool2_hostname = ’’

system_db_hostname = ’localhost ’

system_db_port = 5432

system_db_dbname = ’pgpool ’

system_db_schema = ’pgpool_catalog ’

system_db_user = ’pgpool ’

system_db_password = ’’

health_check_period = 0

health_check_timeout = 20

health_check_user = ’postgres ’

health_check_password = ’thepassword ’

health_check_max_retries = 0

health_check_retry_delay = 1

failover_command = ’’

failback_command = ’’

fail_over_on_backend_error = on

search_primary_node_timeout = 10

recovery_user = ’nobody ’

recovery_password = ’’

recovery_1st_stage_command = ’’

recovery_2nd_stage_command = ’’

recovery_timeout = 90

client_idle_limit_in_recovery = 0

use_watchdog = off

trusted_servers = ’’

ping_path = ’/bin ’

wd_hostname = ’’

wd_port = 9000

wd_authkey = ’’

delegate_IP = ’’

ifconfig_path = ’/sbin ’

if_up_cmd = ’ifconfig eth0:0 inet $_IP_$ netmask 255.255.255.0 ’

if_down_cmd = ’ifconfig eth0:0 down ’

arping_path = ’/usr/sbin # arping command path ’

arping_cmd = ’arping -U $_IP_$ -w 1’

clear_memqcache_on_escalation = on

wd_escalation_command = ’’

wd_lifecheck_method = ’heartbeat ’

wd_interval = 10

wd_heartbeat_port = 9694
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wd_heartbeat_keepalive = 2

wd_heartbeat_deadtime = 30

wd_life_point = 3

wd_lifecheck_query = ’SELECT 1’

wd_lifecheck_dbname = ’postgres ’

wd_lifecheck_user = ’postgres ’

wd_lifecheck_password = ’thepassword ’

relcache_expire = 0

relcache_size = 256

check_temp_table = on

memory_cache_enabled = off

memqcache_method = ’shmem ’

memqcache_memcached_host = ’localhost ’

memqcache_memcached_port = 11211

memqcache_total_size = 67108864

memqcache_max_num_cache = 1000000

memqcache_expire = 0

memqcache_auto_cache_invalidation = on

memqcache_maxcache = 409600

memqcache_cache_block_size = 1048576

memqcache_oiddir = ’/var/log/pgpool/oiddir ’

white_memqcache_table_list = ’’

black_memqcache_table_list = ’’

ssl_key = ’’

ssl_cert = ’’

ssl_ca_cert = ’’

ssl_ca_cert_dir = ’’

backend_hostname0 = ’192.168.2.111 ’

backend_port0 = 5432

backend_weight0 = 1

backend_data_directory0 = ’/opt/postgres/data ’

backend_flag0= ’DISALLOW_TO_FAILOVER ’

other_pgpool_hostname0 = ’’

other_pgpool_port0 =

other_wd_port0 =

heartbeat_destination0 = ’host0_ip1 ’

heartbeat_destination_port0 = 9694

heartbeat_device0 = ’’

backend_hostname1 = ’192.168.2.112 ’

backend_port1 = 5432

backend_weight1 = 1

backend_data_directory1 = ’/opt/postgres/data ’

backend_flag1= ’DISALLOW_TO_FAILOVER ’
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