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Introduction

The estimation and forecasting of Value at Risk is one of the most studied fields in

risk management and financial econometrics. The idea behind this concept is very

simple, but there is not a unique solution to this problem. There is a wide litera-

ture made of different models able to predict VaR and practitioners are faced with

the non-trivial issue of choosing between the alternatives. Different models applied

to the same portfolio of securities, often lead to different estimates of VaR and to

significant errors. Empirical evidences tell us that, to perform a good estimate of

VaR, a dynamic volatility model is necessary.

Probably, the most influential work on this argument, that is a column of mod-

ern risk management, is the Autoregressive Conditional Heteroscedasticity ARCH

model for time-varying volatility proposed by Robert Engle (1982), employed to

model the conditional heteroscedasticity of financial returns series. A lot of variants

of this model are present in the literature and the great majority of them have been

used to VaR estimation purposes.

A different approach has raised and become a very useful tool in volatility esti-

mation, prediction and, consequently, in risk management: this is the Realized

Volatility, defined as the square root of the sum of intraday squared returns. The

most influential works on the argument are made by Andersen and Bollerslev (1998),

Andersen, Bollerslev, Diebold, and Labys (2003), Andersen, Bollerslev, Diebold and

Ebens (2001), and Barndorff, Nielsen and Shephard (2002, 2004), where they de-

scribe the Realized Volatility as a non-parametric method to measure the volatility

and suggested that standard time series procedures can be used to model it. In this
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viii INTRODUCTION

way, the volatility is simply observed and is model-free (instead, GARCH models

are quite complex and computationally expensive). Moreover, it has been shown by

Martens (2002), Koopman et. al. (2005) and others, that Realized Volatility models

are superior to ARCH-Type models in volatility forecasting.

Particularly, the Heterogeneus AutoRegressive Realized Volatility model of Corsi

(2009) (HAR, from now on) has become a standard to model the long memory fea-

tures of the volatility process: its simple form (as an additive cascade process made

of three different aggregated components, to capture the daily, weekly and monthly

contribution to the volatility process) and its consequent parsimony and computa-

tional efficency are uncommon qualities to find in other volatility-related models; all

this features are coupled with a consistent estimation of the volatility. We propose a

Filtered Historical Simulation (FHS) method, applied to the HAR-RV model, with

Realized Volatility measured on tick-by-tick data, to predict one-day-ahead Value at

Risk. Particularly, on this research we have applied the standard HAR-RV model,

the Asymmetric HAR-RV (AHAR) and these models with a GARCH specifications

for their residuals.

A great number of ticks are available during the trading day, but they are not present

overnight. On a similar research by Louzis, Xanthopoulos-Sisinis and Refenes (2011),

Realized Volatility has been re-scaled to take into account overnight returns and re-

lated volatility. We want to apply a different procedure, in order to test whether the

specification of a dynamic model to the overnight returns, in particular, a GARCH

model, could improve the Volatility forecasts to the aim of VaR computations.

Specifically, we applied to the overnight returns a standard GARCH(1,1) model

and the GJR-GARCH(1,1) model, to capture the asymmetries in the returns. The

main result is that the use of a dynamic model able to promptly adapt to the mod-

ifications of the market conditions, is a significant improvement with respect to the

re-scaling of the entire dataset based on a unique coefficient. This becomes evident

when the backtests are compared on pre and post 2008-2009 crisis periods, where

will show how the dinamical structure is superior the the re-scaled one. As an ad-
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ditional benchmark, we have used the FHS approach as proposed by Barone-Adesi,

Giannopoulos and Vosper (1999), that is the milestone of this empirical procedure.

The first chapter of the present thesis is dedicated to the volatility models, how

they are constructed and how they are able to estimate and predict volatility. The

second chapter will be devoted to the functioning of the FHS, as an improvement of

the more basic Historical Simulation. The third chapter is about the Value at Risk

estimation and the comparison methods employed. The fourth and final chapter

will present the data and the empirical results.
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Chapter 1

Volatility Models

1.1 An introduction to volatility for VaR pur-

poses

Historically, the volatility of a financial time series was simply estimated as the

square root of the variance of the logarithmic returns. Assuming the returns are

normally distributed, the estimated volatility was coupled with the expected rate of

return to compute the Value at Risk at the desired coverage level:

V aR(α) = µ̂+ σ̂ ∗ Φ−1(α),

where µ̂ is the expected return, σ̂ is the estimated volatility, Φ−1 is the quantile

function of a standard normal and α is the desired coverage level.

The assumption of normality and the use of historical volatility is the simplest way,

but often leads to mistakes, since financial time series are often non-normal.

Moreover, the employment of historical volatility can lead to mistakes itself, since it

do not take into account the current market conditions, but it is just an ”average”

of the past conditions.

Accordingly, empirical evidences suggest the use of a dynamic model to estimate

the volatility, on the current market conditions. One of the most influential work on

1



2 CHAPTER 1. VOLATILITY MODELS

the subject, is surely that of Engle(1982), who published a paper about its ARCH

model (which will be discussed later). Such a model and subsequent improvements,

are able to take into account the changes in the volatility behavior, providing a

dynamic estimation (and forecast) of it.

Concurrently, a different way to measure volatility has arised. Realized volatility

is measured as the square root of the sum of squared intraday returns. The higher

the frequency of the intraday returns, the higher the precision of this measure and,

at the same time, the higher the bias due to the microstructure of the financial

markets. Variuos techniques are available to correct the microstructure noise: here,

we have used the Two-Scale correction.

1.2 The models

The volatility models here analyzed are the the GJR-GARCH(1,1), HAR, HAR

with a GARCH(1,1) specification for the residuals, the AHAR, the AHAR with a

GARCH(1,1) specification for the residuals.

1.2.1 ARCH-type models

The first Autoregressive Conditional Heteroscedasticity model has been developed

by Engle (1982). An ARCH(q) is specified as:

Xt =σtεt,

σ2
t = ω+

q∑
i=1

αiε
2
t−i,

(1.1)

where εt represents a random standard normal innovation. The parameters can be

estimated via maximum likelihood.

A significant improvement of the ARCH model (the Generalised ARCH) has been

realised by Bollerslev (1986) and has become a standard in time series volatility
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analysis. a GARCH(p,q) model is defined as:

Xt =σtεt,

σ2
t = ω +

q∑
i=1

αiε
2
t−i +

p∑
j=1

βjσ
2
t−j,

(1.2)

with εt a random standard normal innovation. The maximum likelihood approach is

applied here, too. The GARCH model is a more parsimonious way to describe the

conditional volatility process, since an equivalent ARCH model would have much

more parameters.

The GJR-GARCH model by Glosten, Jagannathan and Runkle (1993) permits to

capture the asymmetries in the innovations, adding a term when (for example) the

last innovation is negative. Therefore, the variance equation of a GJR-GARCH(1,1)

can be set as:

σ2
t = ω + αε2t−1 + γε2t−1I(εt−1 < 0) + βσ2

t−1 (1.3)

We have employed the GJR model as the asymmetric GARCH model used in Barone-

Adesi et al.(1999) on the application of the FHS (that will be explained in the next

chapter).

1.2.2 Realized Volatility

The starting point for the estimation of realized volatility is the availability of intra-

day data. Assume S(t) is the price of a financial asset, and define p(t) as log(S(t)).

Then, assume that p(t) is ruled by the following diffusion process:

dp(t) = µ(t)dt+ σ(t)dW (t) (1.4)

where µ(t) is a cadlàg finite variation process, W (t) is a standard brownian motion

and σ(t) is a stochastic process independent of W (t) (Corsi, 2009). The integrated
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variance associated with one day (t), is defined as:

IVt =

∫ t

t−1

σ2(ω)dP(ω) (1.5)

Accordingly, the integrated volatility is:

σt =
√
IVt (1.6)

As shown by Andersen et al. (2001, 2002a, 2002b), the integrated variance is ap-

proximable as the sum of squared intraday returns. Andersen et al. (2003) suggested

that the use of the usual time series modeling outperforms the popular GARCH and

stochastic volatility models. The realized volatility (over a one-day period) can be

defined as:

RV
(d)
t =

√√√√M−1∑
i=0

r2
t−i·∆ (1.7)

where ∆ = 1-day/M , M is the number of intraday returns (∆ can be viewed as

the arbitrary precision of the realized volatility measurement), rt−i·∆ = p(t− i·∆)−

p(t−(i+1)·∆) represent intraday returns sampled at ∆ frequency (Corsi’s notation,

2009).

1.2.3 HAR-RV models

The intuition of this model comes from the Heterogeneous Market Hypothesis by

Müller et al. (1993). The theory states that market participants with different

investing horizons and trading frequency, differently contribute to the market move-

ments. As a consequence, the HAR-RV model is composed of three parts: the daily

(just explained), weekly and monthly realized volatility components, to capture the

heterogeneity of the views of the different market participants. The weekly and

monthly pieces are just simple averages of the daily quantities:
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RV
(w)
t =

1

5

(
RV

(d)
t +RV

(d)
t−1 + · · ·+RV

(d)
t−4

)
RV

(m)
t =

1

22

(
RV

(d)
t +RV

(d)
t−1 + · · ·+RV

(d)
t−21

)
1

(1.8)

The components are then combined to obtain a simple model, equivalent to an

AR(22) with constrained parameters:

RV
(d)
t+1 = c+ β(d)RV

(d)
t + β(w)RV

(w)
t + β(m)RV

(m)
t + ωt+1 (1.9)

where ωt+1 is an independent, zero-mean noise, with a truncated left tail to ensure

the positivity of the volatility. Equation (1.9) represents the basic HAR-RV model.

Corsi et al.(2008) show that the HAR model presents heteroscedastic residuals.

They suggested the use of a GARCH(1,1) specification for the residuals to solve the

problem:

RV
(d)
t+1 = c+ β(d)RV

(d)
t + β(w)RV

(w)
t + β(m)RV

(m)
t + ut+1

ut+1 =ht+1εt+1

h2
t+1 = ω + αε2t + βh2

t

(1.10)

The other realized volatility model employed in this research is the Asymmetric

HAR-RV (AHAR) model, as designed by Louzis, Xanthopoulos-Sisinis and Refenes

(2012). The additional terms that are present in this model are thought to take into

account asymmetries in the HAR model, through the use of standardized returns

and absolute-standardized returns. The model writes as:

RV
(d)
t+1 = c+ β(d)RV

(d)
t + β(w)RV

(w)
t + β(m)RV

(m)
t

+ ϑ(d)z
(d)
t + ϑ(w)z

(w)
t + ϑ(m)z

(m)
t

+ γ(d)
∣∣∣z(d)
t

∣∣∣+ γ(w)
∣∣∣z(w)
t

∣∣∣+ γ(m)
∣∣∣z(m)
t

∣∣∣+ ut+1

(1.11)

1We assume a month made of 22 trading days
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where z
(h)
t =

∑h
i=1 rt−i+1

/√∑h
i=1 σ

2
RV,t−i+1 are the standardized innovations, for

h = 1, 5, 22. It is possible to add a GARCH specification for the residuals, as in

equation (1.10).



Chapter 2

Filtered Historical Simulation

Filtered Historical Simulation is an alternative to the variance-covariance method

in the estimation of the Value at Risk. It is an improvement of the simple His-

torical Simulation and presents advantages with respect to both methodologies. It

is distribution free: as it is for the historical simulation, no assumption about the

distribution of the returns is needed; using the historical (empirical) distribution

allows to take into account the fat tails and the volatility clusters that financial

data usually present. As Barone-Adesi and Giannopoulos (1996) pointed out, the

drawback of the historical simulation is that it is based on past historical returns

and relies on them without taking into account the changes in the market condi-

tions. The same kind of problem applies to the variance-covariance method, where

the var-cov matrix is estimated on historical data and is not able to capture current

market conditions.

The intuition behind the Filtered method consists in the standardization of the re-

turn series, dividing it by the conditional standard deviations series estimated by a

GARCH model. In this way, an almost i.i.d. innovation sample is obtained. Then, a

forecast of the day-ahead volatility is provided, and a number of the innovations ob-

tained before is randomly picked and multiplied by the volatility forecast to obtain

an empirical distribution that is responsive to the changes in the market conditions

(Barone-Adesi et al.,1999).

7



8 CHAPTER 2. FILTERED HISTORICAL SIMULATION

2.1 The original approach as benchmark

One of the main applications of FHS comes from Barone-Adesi et al. (1999). The

first step of their approach is to remove serial correlation and volatility clusters from

the returns series, by applying an ARMA-GARCH specification. For example, an

ARMA(1,1)-AGARCH(1,1) should remove any serial correlation and volatility clus-

ters from the series, obtaining an i.i.d. residuals series. The choice of an Asymmetric

GARCH model is made in order to take into account any asymmetry present in the

process.

The model specification wuold be similar to:

rt = µrt−1 + θεt−1 + εt

εt ∼ N(0, ht)

ht
1 = ω + α(εt−1 − γ)2 + βht−1

(2.1)

where µ is the autoregressive coefficient, θ is the moving average one, ω is a con-

stant, α and γ are the influence and the asymmetry of the last innovation and β is

the coefficient of the volatility of the previous day.

To obtain i.i.d. standardized residuals, the estimated residuals are divided by the

corresponding daily volatility estimated by the GARCH equation:

et =
εt√
ht

(2.2)

where et corresponds to the standardized residuals.

The procedure applies as follows:

• Randomly draw a standardized residual return, from the vector of standardized

residuals, calling it e∗;

• Multiply the picked standardized residual by the day-ahead volatility forecast,

to obtain an innovation forecast:

1We have employed the GJR-GARCH(1,1), with a conditional variance equation stated as:
σ2
t = ω + αε2t−1 + γε2t−1· I(εt−1 > 0) + βσ2

t−1
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z∗t+1 = e∗·
√
ht+1 (2.3)

This passage is crucial, because the standardized innovation is here scaled in

order to take into account the current market conditions (represented by the

volatility estimate);

• The simulation of the return is then computed as:

r∗t+1 = µrt + θz∗t + z∗t+1 (2.4)

where z∗t is estimated as in (2.3)

Then, the simulated empirical distribution of the returns for the day-ahead time

period, is constructed by repeating the procedure a high number of times (let’s say

10,000).

2.2 FHS with realized volatility

There is a very limited literature about the application of FHS to Realized Volatility

measures and where it is present, it is on non-ufficially-published working papers. In

particular, in an interesting research by Louzis, Xanthopoulos-Sisinis and Refenes

(2011), where a comparison between various VaR estimation techniques is provided,

FHS method is applied to Realized Volatility.

Since Realized Volatility is measured on intraday returns and it does not take into

account nightly volatility, usually, it is re-scaled to take into account the overnight

volatility:

RVt = Φ·
M∑
j=1

r2
t,j, Φ =

σ2
oc + σ2

co

σ2
oc

(2.5)

where σ2
oc and σ2

co are, respectively, the open-to-close and close-to-open sample vari-

ances. The realized volatility is the square root of the above formula.

One-day-ahead volatility forecasts are estimated applying the HAR, HAR-GARCH,

AHAR and AHAR-GARCH models to the re-scaled RV, on a moving window of
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1,000 observations (i.e., 1,000 obs. are used to estimate the parameters of the mod-

els and to estimate the 1, 001st).

Then, the daily returns are standardized, dividing them by the daily re-scaled real-

ized volatilities:

et =
rt
RVt

. (2.6)

To obtain a simulated return, it is sufficient to randomly pick a standardized return

(namely, e∗) and multiply it by the volatility forecast provided by the HAR models:

r∗t+1 = hart+1· e∗ (2.7)

The simulated empirical distribution of the one-day-ahead return is obtained, again,

repeating the procedure 10,000 times.

We have applied a slightly different procedure, without re-scaling the realized volatil-

ity to take into account the overnight volatility. Instead, we have applied a GARCH

specification to the overnight returns, in order to have a dynamic response, instead

of a fixed one.

The main difference of this approach with the previous one is the non-re-scaling of

the Realized Volatility: we keep it as it is calculated and we just apply a dynamic

model to the overnight returns.

We will use two innovations vector: one for the realized volatility (that is measured

on the daily movements) and the other for the overnight returns. The former, is

obtained as in (2.6), with the difference that RVt is not rescaled as in (2.5). The

standardized innovations will be obtained as:

e
(oc)
t =

roct
RVt

(2.8)

where roct represents the returns realized during the trading days (open-to-close).

For the latter, we need some volatility estimates. These volatilities are estimated

with the use of a GARCH(1,1) model with an exogenous variable that appears in
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the equation: the exogenous variable used is the lagged Realized Volatility:

ront = σtεt, εt ∼ N(0, 1)

σ2
t = ω + αε2t−1 + βσ2

t−1 + δRVt−1(2)

(2.9)

The lagged RV appears in the conditional variance equation since it is plausible that

the level of volatility realized during the day affects the following overnight return.

The GJR-GARCH(1,1) model with an exogenous variable has been applied to the

overnight returns, too: the exogenous variable is still the lagged RV. The related

conditional variance equation is:

σ2
t = ω + αε2t−1 + γε2t−1· I(εt−1 > 0) + βσ2

t−1 + δRVt−1 (2.10)

The same conditional variance equations are used to have volatility predictions.

Given the overnight volatilities estimates, in accordance with equation (2.8), we

create a vector of standardized innovations, that will be used to simulate overnight

returns:

e
(co)
t =

r
(co)
t

σ
(co)
t

(2.11)

where r
(co)
t represents the close-to-open returns and σ

(co)
t represents the volatility

estimates from the GARCH or GJR-GARCH models.

We have now all the ingredients to simulate the one-day-ahead return. Let us denote

with e∗(oc) the randomly picked open-to-close standardized innovation and with e∗(co)

the randomly selected close-to-open standardized innovation. The simulation will

be:

r∗t+1 = hart+1· e∗(oc) + σ
(co)
t+1e

∗(co) (2.12)

where hart+1 represents the RV forecast obtained by one of the previously introduced

HAR models and σ
(co)
t+1 the forecast provided by one of the GARCH models described.

Repeating the procedure, let’s say, 10,000 times, we obtain the empirical distribution

2Realized Volatility is always a non-negative measure, since it is measured as the sum of squared
numbers: therefore, it is not necessary to raise it to the square in the conditional variance equation
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of the one-day-ahead estimate.



Chapter 3

VaR Estimation and Comparison

Methods

The Value at Risk has become one of the most used risk management tools. The

intuition is simple: the VaR represents the within a given confidence level and a

given time horizon. For example: a VaR(α = 0.05) = −10% means that, with a

confidence of 1 − α (= 95%), the maximum loss is −10%. Despite its simplicity,

there is not a unique way to estimate it. Instead there are a lot of parametric and

non-parametric ways. A common approach is to estimate the volatility and to have

a parametric VaR estimation assuming the return process is normally distributed:

V aR(α) = µ̂+ σ̂·Φ−1(α)

where µ̂ is the sample mean, σ̂ is the volatility estimated with any kind of volatility

model, and Φ−1() is the quantile function of a standard normal distribution.

To keep our VaR estimation model-free, we estimate it simply as the α quantile of

the empirical distribution, simulated as in the previous chapter:

V aR(α) = Ω−1(α) (3.1)

where Ω−1() is the quantile function of the one-day-ahead empirical distribution.

13
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3.1 Failure rate

One of the most common validation methods for the VaR valuation is the Failure

Rate. Firstly, the VaR forecast is compared with the effectively realized returns:

when the return exceeds VaR, there is a so-called Hitt:

Hitt =


1, if rt < V aRα

t

0 if rt ≥ V aRα
t

(3.2)

Then the number of Hits is divided by the number of observations, to get the Failure

Rate: a well constructed VaR estimation model, should give a failure rate that is

near the desired coverage level.

3.2 POF test

The POF(proportion of failure) test, designed by Kupiec (1995), is a Likelihood

Ratio test. On this kind of test, the ratio is defined as the maximum probability of

the observed result under the null hypothesis over the maximum probability of the

observed result under the alternative hypothesis. The null hypothesis of the POF

test is H0 : α = α̂, that is, the observed coverage level (the failure rate) is equal to

the desired one.

The test is:

LRPOF = −2 ln

(
(1− α)T−xpx[

1−
(
x
T

)]T−x ( x
T

)x
)

(3.3)

where T is the number of observations and x is the number of failures of the model.

The test is asymptoticaly χ2(1) distributed. The null hypothesis is rejected if the

test gives a number greater than the χ2 critical value, i.e., if the failure rate is far

from the desired coverage level.
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3.3 Coverage tests

Christoffersen (1998) figured out a test to check whether the failure rate is statis-

tically equal to the desired coverage level, without taking into account the history

of the ”hit process” Hitt. Accordingly, the null hypothesis of correct unconditional

coverage is E(Hitt) = α. On this test, the independence is considered an assump-

tion. The Likelihood Ratio test to verify if the failure rate (α̂) is equal to the

coverage level (α) is:

LRuc = 2[log ((1− α̂)n0α̂n1)− log ((1− α)n0αn1)] (3.4)

where n1 is the number of failures (number of hits in the Hit process), n0 = n− n1

and n is the number of observations.

LRuc is asymptotically distributed as a χ2(1). The null hypothesis is rejected if

there are too many or too few exceptions.

The LR Independence test of Christoffersen (1998) aims to test the independence

”against an explicit first-order Markov alternative”. The transitin probability matrix

is defined as:

Πt =

π00 π01

π10 π11

 (3.5)

where πij = Pr(Hitt = j|Hitt−1 = i). The maximum likelihood estimators of πij

are:

Πt =

 n00

n00+n01

n01

n00+n01

n10

n10+n11

n11

n10+n11

 (3.6)

with nij the number of Hitt = j|Hitt−1 = i. The LR test of Independence is then

defined as:

LRin = −2· ((n00 + n01) log(1− π̂2) + (n01 + n11) log(π̂2))

+2· (n00 log(1− π̂01) + n01log(π̂01) + n10log(1− π̂11) + n11log(π̂11))

(3.7)
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where π̂2 = (n01 + n11)/(n00 + n01 + n10 + n11). LRin ∼ χ2(1). Given that the

test is not dependent on the true desired coverage probability, this is only a test of

independence.

Statistically speaking, the hit process should be an i.i.d. Bernoulli process with

parameter α. Then, it is necessary to test if the VaR model generates a failure rate

equal to the desired coverage level, but conditioning on the available information at

time t− 1:

E(Hitt|Ωt−1) = α, ∀t. (3.8)

This can be done aggregating the two tests of before, leading to the Conditional

Coverage test, defined as a linear combination of the two tests:

LRcc = LRuc + LRin (3.9)

Using this test, a VaR forecast model can be rejected if it generates too much, too

few or too clustered Hits.

3.4 Loss Functions

3.4.1 Regulatory Loss Function

Sarma et al. (2003) on their ”Selection of VaR models”, used a simple loss function,

called it ”Regulatory Loss Function” defined as:

lt =


(rt − V aRα

t )2 , if rt < V aRα
t

0, if rt ≥ V aRα
t

(3.10)

Differently from the binomial loss function (i.e. the Hit process), the quadratic term

ensure that large failures are penalised more than the smaller ones.
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3.4.2 Firm’s Loss Function

Sarma et al. (2003) used this loss function, which, similarly to the loss function

described above, penalises more the failures greater in magnitude. The difference

is that here is taken into account the opportunity cost the institution faces when

reserving too much capital due to the VaR estimation. The Firm’s loss function is

defined as:

lt =


(rt − V aRα

t )2 , if rt < V aRα
t

−cV aRα
t , if rt ≥ V aRα

t

(3.11)

where c represents the opportunity cost.
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Chapter 4

Empirical Application

4.1 The Data

Our data set consists of a long tick-by-tick series for Standard and Poor’s 500 Futures

index, from 02-Jan-1996 to 14-Dec-2011 (3,956 observations). We used tick-by-tick

returns and employed the Zhang et al.(2005) two-scales estimator to obtain daily

realized volatility. It has been subsequently aggregated as in equation (1.8) to obtain

the weekly and monthly components of the HAR models. Here below is a plot of

the return series with the realized volatility.

Figure 4.1: Plot of the daily returns together with the measured realized volatility. Blue: daily

returns. Red: Realized Volatility

It is interesting to see a graphical comparison between the realized volatility as it is

measured and the re-scaled version:

19
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Figure 4.2: Graphical comparison between the realized volatility as it is measured and the

re-scaled version. Blue: Realized Volatility. Red: re-scaled RV.

As it was expected, in order to take into account the overnight volatility, the re-

scaling process leads to a greater (in magnitude) realized volatility. In fact, the

constant of equation (2.5) has resulted to be Φ = 1.6460.

Figure 4.3: Overnight volatilities vs. volatility of overnight returns.

On figure (4.3) are plotted the estimated overnight conditional volatilities from both

the GARCH and GJR-GARCH specifications vs. the volatility of overnight returns:

The conditional volatilities are clearly not constant, and can be highly inefficient

to summarize them with the simple volatility of the overnight returns, used in the

re-scaling constant of the realized volatility. It is also possible to see the different

response of the volatility estimates corresponding to days (actually, nights) with a

high degree of variability: the GJR-GARCH model produces more extreme peaks.
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4.2 Models and useful plots

The HAR-RV models are applied using a moving window of 1,000 observations,

moving of one observation at a time, and producing 2,596 out-of-sample, one-day-

ahead forecasts (from now on, the period considered for the out-of-sample forecasts

is 22-Dec-1999 to 14-Dec-2011).

Figure 4.4: Comparison between the standard HAR-RV forecasts and the same model with a

GARCH specification for the residuals.

Figure 4.5: Comparison between the Asymmetric HAR-RV forecasts and the same model with

a GARCH specification for the residuals.
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Figure 4.6: Comparison between the standard HAR-RV forecasts and the same model with a

GARCH specification for the residuals applied to the re-scaled RV.

Figure 4.7: Comparison between the Asymmetric HAR-RV forecasts and the same model with

a GARCH specification for the residuals applied to the re-scaled RV.

Figures from (4.4) to (4.7) provide a graphical comparison between forecasts pro-

duced by the different HAR models employed. Notice how the asymmetric models

are more capable to reproduce the peaks than the non-asymmetric ones.

The ARMA-GJR-GARCH model applied to the whole sample and used to produce

forecasts for the same for the FHS benchmark of Barone-Adesi et al. has produced

the following parameter estimations:
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Estimate Std. Error t-test p-value

constant 2.071990e-04 1.287900e-04 1.608813 0.1076572415

ar 5.135341e-01 2.661516e-01 1.929480 0.0536713429

ma -5.570538e-01 2.580120e-01 -2.159022 0.0308484250

omega 2.273779e-06 8.693936e-07 2.615363 0.0089132796

alpha 4.210006e-02 1.487446e-02 2.830358 0.0046495913

beta 9.096912e-01 3.998219e-03 227.524082 0.0000000000

gamma 8.617402e-01 2.411280e-01 3.573787 0.0003518549

Only the constant of the mean model is not significant, and some doubt arises for

the autoregressive coefficient.

Figure 4.8: Plot of estimated volatilities and forecasted ones. ARMA-GJR-GARCH model.

Figure (4.8) represents the plot of the in-sample forecasted volatilities versus the

conditional volatilities obtained by the model. They are in-sample since we have

used the whole sample to estimate the parameters of the model.

The application of the HAR models consists of a regression on a moving window of

1,000 observations, to produce 2956 out-of-sample, one-day-ahead forecasts; conse-

quently, given the high number of regression run, the parameters are not reported

here. Yet, the parameters are always significant.
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4.3 Application and Evaluations

Figure 4.9: Plot of standardized innovations. From the top: realized volatility standardized in-

novations; re-scaled realized volatility standardized innovations; GARCH (applied to the overnight

returns) standardized innovations; GJR-GARCH (applied to the overnight returns) standardized

innovations; GJR-GARCH (applied to daily close-to-close returns) standardized innovations, for

the benchmark FHS.

Figure (4.9) represents the plots of the standardized innovations used to produce

the simulations. Notice how they are almost i.i.d., that is the aim of the filtering

procedure. The RV-related innovations have a different scale compared with the

GARCH-related innovations, because of the different scales of the two measures

themselves and of the open-to-close and close-to-open returns. The issue is solved

when the RV-innovations and GARCH-innovations are multiplied by RV forecasts

and volatility forecasts, respectively, during the simulations.

As stated before, 10,000 simulations have been run for every time step, in order to

ensure a sufficiently high number of observations to produce empirical distributions.
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Figure 4.10: Plot of simulations. From the top: Benchmark approach; Daily open-to-close RV

+ overnight GARCH approach; re-scaled RV approach.

Figure (4.10) provides some examples of these simulations: it is possible to notice

how the considered approaches are able to reproduce the market behavior.

After the simulation, empirical distributions are available. Value at Risk is esti-

mated as in formula (3.1), for confidence levels of 0, 1, 0.05 and 0.01.

Figure 4.11: Example of plot of VaR estimates. The VaR estimates come from the simulations

with AHAR-RV model for RV + GJR-GARCH for overnight volatilities

The plot in figure (4.11) is an example of the VaR produced by the FHS. In

particular, are plotted the VaRs obtained by FHS on AHAR-RV for daily RV and

GJR-GARCH for overnight volatilities.

On the next subsections will be commented the results of the tests on the models,

together with tables representing the results.
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The suffix ”rRV” denotes the models which are based on the re-scaled RV, which

are the simple HAR model (HAR-rRV); HAR with GARCH disturbances (HAR-

GARCH-rRV); Asymmetric HAR (AHAR-rRV); Asymmetric HAR with GARCH

disturbances (AHAR-GARCH-rRV). The suffix ”G” denotes the models with non-

re-scaled RV and a GARCHX specification for the overnight returns: namely, sim-

ple HAR model plus a GARCHX applied to the overnight returns (HAR-RV-G);

HAR with GARCH disturbances plus overnight-GARCHX (HAR-GARCH-RV-G);

Asymmetric HAR plus overnight-GARCHX (AHAR-RV-G); Asymmetric HAR with

GARCH disturbances plus overnight-GARCHX (AHAR-GARCH-RV-G);The suffix

”A” denotes the models with non-re-scaled RV and a GJR-GARCHX specifica-

tion for the overnight returns: i.e., simple HAR model plus a GJR-GARCHX ap-

plied to the overnight returns (HAR-RV-A); HAR with GARCH disturbances plus

overnight-GJR-GARCHX (HAR-GARCH-RV-A); Asymmetric HAR plus overnight-

GJR-GARCHX (AHAR-RV-A); Asymmetric HAR with GARCH disturbances plus

overnight-GJR-GARCHX (AHAR-GARCH-RV-A);. ”GBA” is the FHS application

of Barone-Adesi and colleagues.
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4.3.1 Failure rates

VaR 10% VaR 5% VaR 1%

HAR-rRV 0.1028 0.0544 0.0148

HAR-GARCH-rRV 0.1069 0.05784 0.01623

AHAR-rRV 0.0707 0.0284 0.0040

AHAR-GARCH-rRV 0.0859 0.0412 0.0098

HAR-RV-G 0.1140 0.0629 0.0145

HAR-GARCH-RV-G 0.1160 0.0639 0.0162

AHAR-RV-G 0.0967 0.0446 0.0101

AHAR-GARCH-RV-G 0.1045 0.0537 0.0121

HAR-RV-A 0.1106 0.0619 0.0152

HAR-GARCH-RV-A 0.1123 0.0652 0.0162

AHAR-RV-A 0.0947 0.0402 0.0098

AHAR-GARCH-RV-A 0.1004 0.0520 0.0128

GBA 0.1018 0.0504 0.0081

Table 4.1: Failure rates of the models. The bold numbers are the best performers of
every group (the re-scaled RV group, the overnight-GARCHX group, the overnight
GJR-GARCHX group).

Table (4.1) represents the failure rates of the considered models. The models that

present the closest failure rate to the required coverage level, are often Asymmetric

HAR models, with the exceptions of the simple HAR applied to the re-scaled RV,

that produces the closest failure rate to che coverage levels of 10% and 5%, with

respect to the asymmetric models fitted to the re-scaled RV. Notice that the AHAR

applied to the re-scaled RV presents a very low number of failures: this is unusual

and it needs further investigations. The better models, in absolute terms, are:

AHAR-GARCH-RV-A for the 10% VaR; The GBA benchmark for the 5% VaR;

AHAR-RV-G for the 1% VaR.
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4.3.2 POF test

VaR 10% VaR 5% VaR 1%

HAR-rRV 0.6080 0.2718 0.0128

HAR-GARCH-rRV 0.2156 0.0558 0.0017

AHAR-rRV 2.476e-08 5.204e-09 0.0002

AHAR-GARCH-rRV 0.0091 0.0249 0.9172

HAR-RV-G 0.0128 0.0019 0.0199

HAR-GARCH-RV-G 0.0044 0.0008 0.0017

AHAR-RV-G 0.5542 0.1747 0.9353

AHAR-GARCH-RV-G 0.4144 0.3501 0.2496

HAR-RV-A 0.0579 0.0041 0.0080

HAR-GARCH-RV-A 0.0283 0.0002 0.0017

AHAR-RV-A 0.3350 0.0119 0.9172

AHAR-GARCH-RV-A 0.9316 0.6031 0.1351

GBA 0.7412 0.9194 0.2880

Table 4.2: P-values for the POF (proportion of failures) test. A p-value lower than
0.05 denotes the rejection of the null hypothesis of correct coverage level. The bold
numbers represent the accepted models.

Table (4.2) represents the p-values of the POF test. More than half of the models

applied to the re-scaled RV presents an incorrect coverage. As suspected, the AHAR

applied to the re-scaled RV fails this test, denoting a Failure Rate too far from the

desired coverage level. It is interesting to see that almost all of the models that pass

this test are the Asymmetric HAR (with or without GARCH disturbances), with

a GARCH or GJR-GARCH-overnight specification. This evidences the importance

the asymmetries have in fitting RV models.
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4.3.3 Conditional Coverage test

VaR 10% VaR 5% VaR 1%

HAR-rRV 0.0521 0.0914 0.0420

HAR-GARCH-rRV 0.0262 0.0592 0.0073

AHAR-rRV 4.135e-08 2.330e-08 0.0001

AHAR-GARCH-rRV 0.0082 0.0721 0.5972

HAR-RV-G 0.0016 0.0023 0.0613

HAR-GARCH-RV-G 0.0009 0.0009 0.0073

AHAR-RV-G 0.0027 0.2757 0.6267

AHAR-GARCH-RV-G 0.0265 0.2476 0.4042

HAR-RV-A 0.0093 0.0029 0.0281

HAR-GARCH-RV-A 0.0031 0.0001 0.0073

AHAR-RV-A 0.0042 0.0284 0.5972

AHAR-GARCH-RV-A 0.0098 0.4227 0.2713

GBA 0.8930 0.5897 0.2583

Table 4.3: P-values for the Conditional Coverage test. A p-value lower than 0.05
denotes the rejection of the null hypothesis of correct coverage level. The bold
numbers represent the eccepted models.

Table (4.3) represents the p-values for the Conditional Coverage test. The HAR

applied to the re-scaled RV fails this test, too, denoting a number of hits that may

be too high or too law or denoting too clustered hits: in accordance with the previous

POF test, the reason is probably the too low number of exceptions. The AHAR-

GARCH-RV-A for the 10% VaR (the best model in terms of failure rates) results

with an incorrect conditional coverage. Instead, the GBA benchmark for the 5% VaR

and AHAR-RV-G for the 1% VaR are accepted by the test. The accepted models

are almost all of the Asymmetric-type, showing, again, the asymmetric behaviour

of RV.
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4.3.4 ”Regulatory” Loss Function

VaR 10% VaR 5% VaR 1%

HAR-rRV 0.02661 0.01218 0.00200

HAR-GARCH-rRV 0.02950 0.01419 0.00247

AHAR-rRV 0.01558 0.00547 0.00034

AHAR-GARCH-rRV 0.02462 0.01113 0.00138

HAR-RV-G 0.03414 0.01563 0.00329

HAR-GARCH-RV-G 0.03674 0.01735 0.00370

AHAR-RV-G 0.02573 0.01032 0.00164

AHAR-GARCH-RV-G 0.03288 0.01515 0.00326

HAR-RV-A 0.03366 0.01559 0.00323

HAR-GARCH-RV-A 0.03581 0.01714 0.00378

AHAR-RV-A 0.02463 0.01012 0.00157

AHAR-GARCH-RV-A 0.03262 0.01516 0.00350

GBA 0.03852 0.01638 0.00241

Table 4.4: Values of the ”Regulatory” Loss Functions. The bold numbers represents
the best performes of every group of models.

The loss functions are necessary to understand which is the model that causes the

lower losses. Table (4.4) represents the values of the Regulatory Loss Function

applied to the VaR models. The AHAR-GARCH model applied to the re-scaled

RV produces the lowest losses, in absolute terms. This is, however, an unuseful

result: from the previous tests, it generates too few exceptions, and is sistematically

rejected from the tests. The model that presents the lowest loss functions of the

HAR + GARCHX-overnight group is the AHAR-RV-G, for any coverage level. The

best performer of the HAR + GJR-GARCHX-overnight group is the AHAR-RV-A

model, for all the coverage levels. The benchmark GBA is outperformed from both

the last two models.
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4.3.5 Firm’s Loss Function

VaR 10% VaR 5% VaR 1%

HAR-rRV 0.04418 0.03431 0.03500

HAR-GARCH-rRV 0.04664 0.03575 0.03458

AHAR-rRV 0.03325 0.02894 0.03361

AHAR-GARCH-rRV 0.04181 0.03356 0.03380

HAR-RV-G 0.05080 0.03736 0.03690

HAR-GARCH-RV-G 0.05323 0.03873 0.03688

AHAR-RV-G 0.04257 0.03206 0.03549

AHAR-GARCH-RV-G 0.04932 0.03645 0.03637

HAR-RV-A 0.05036 0.03757 0.03710

HAR-GARCH-RV-A 0.05229 0.03872 0.03687

AHAR-RV-A 0.04145 0.03278 0.03540

AHAR-GARCH-RV-A 0.04922 0.03714 0.03668

GBA 0.05739 0.04421 0.04833

Table 4.5: Values of the Firm’s Loss Functions. The bold numbers represents the
best performes of every group of models.

The Firm’s Loss Function is an improvement of the aforementioned loss function:

it incorporates an opportunity cost, due to a wrong capital allocation, which comes

from an overestimation of the VaR. The opportunity cost is, usually, a risk-free rate:

we have employed the 1-Month London Interbank Offered Rate (LIBOR), based on

U.S. Dollar. Table (4.5) represents the values of the Firm’s Loss Function applied to

the VaR models. Notice how the AHAR-GARCH 1% model applied to the re-scaled

RV produce a Firm’s Loss Function even worse than the same model for the 10%

VaR: this is an additional sign that probably the model is not correct for a VaR

estimation application. Something similar, but in a less serious way, happens to the

AHAR-RV-G and AHAR-RV-A (again, the best performers of the relative groups):

the Firm’s Loss Function is slightly better for the 5% VaR for both the models, than

the one for the 1% VaR. In particular, the 5% VaR produced by AHAR-RV-G is the
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best performer in absolute terms. The benchmark GBA is outperformed by all the

other models, for all the coverage levels: even if it is correctly specified, it generates

a wrong capital allocation.
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4.4 A post-crisis Analysis

The analysis has been run on a post crisis basis, too. This has been done in order

to show that a simple re-scaling of the realized volatility over the whole sample, is,

at least, a limiting procedure to achieve the goal of VaR estimation. Instead, the

use of a dynamic model applied to overnight volatilities is a better way.

The same tests have been repeated, considering a sample from 1-Jul-2009 to 14-Dec-

2011 (599 observations). The time period considered is more than two years, so the

analysis is valid, since a VaR backtest should be run on one year of observations

(252), at least.

4.4.1 Failure rates

VaR 10% VaR 5% VaR 1%

HAR-rRV 0.1116 0.07 0.03

HAR-GARCH-rRV 0.1133 0.0766 0.03

AHAR-rRV 0.08 0.045 0.0016

AHAR-GARCH-rRV 0.0966 0.0633 0.0183

HAR-RV-G 0.1133 0.065 0.0116

HAR-GARCH-RV-G 0.1116 0.065 0.0183

AHAR-RV-G 0.0883 0.0483 0.0066

AHAR-GARCH-RV-G 0.0966 0.0583 0.0133

HAR-RV-A 0.1016 0.0683 0.0216

HAR-GARCH-RV-A 0.1016 0.0716 0.0216

AHAR-RV-A 0.0883 0.0516 0.0116

AHAR-GARCH-RV-A 0.0933 0.065 0.0166

GBA 0.095 0.0666 0.0133

Table 4.6: Failure rates of the models. The bold numbers are the best performer of
every group.
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Table (4.6) represents the failure rates of the considered models on the post-crisis

period. The best performing models are still the Asymmetric HAR, with the ex-

ception for the HAR-RV-A models for 10% VaR that are the best, regarding the

GJR-GARCH-Overnight-type of models. In absolute terms, HAR-RV-A and HAR-

GARCH-RV-A rank first for the 10% VaR; AHAR-RV-A ranks first for both 5% and

1% VaR. The FHS benchmark of Barone-Adesi is always outperformed by AHAR

models, for every coverage level.

4.4.2 POF test

VaR 10% VaR 5% VaR 1%

HAR-rRV 0.3488 0.0335 7.062e-05

HAR-GARCH-rRV 0.2853 0.0052 7.062e-05

AHAR-rRV 0.0917 0.5678 0.0110

AHAR-GARCH-rRV 0.7844 0.1494 0.0661

HAR-RV-G 0.2853 0.1063 0.6893

HAR-GARCH-RV-G 0.3488 0.1063 0.0661

AHAR-RV-G 0.3320 0.8506 0.3823

AHAR-GARCH-RV-G 0.7844 0.3609 0.4349

HAR-RV-A 0.8920 0.0503 0.0128

HAR-GARCH-RV-A 0.8920 0.0218 0.0128

AHAR-RV-A 0.3320 0.8521 0.6893

AHAR-GARCH-RV-A 0.5824 0.1063 0.1341

GBA 0.6808 0.0740 0.4349

Table 4.7: P-values for the POF (proportion of failures) test. A p-value lower than
0.05 denotes the rejection of the null hypothesis of correct coverage level. The bold
numbers represent the accepted models.

Table (4.7) represents the p-values of the POF test on a post-crisis time period. The

difference between re-scaled RV models and non-re-scaled RV models is evident: no

one of the non-re-scaled RV models with a GARCHX specification for the overnight

returns are rejected by the test, against 3 rejections on the GJR-GARCHX-overnight
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group and 5 rejections in the re-scaled RV group. The benchmark presents a correct

coverage level.

4.4.3 Conditional Coverage test

VaR 10% VaR 5% VaR 1%

HAR-rRV 0.0779 0.0390 0.0003

HAR-GARCH-rRV 0.0576 0.0126 0.0003

AHAR-rRV 0.1329 0.8181 0.0003

AHAR-GARCH-rRV 0.4048 0.1937 0.0893

HAR-RV-G 0.1473 0.1247 0.2160

HAR-GARCH-RV-G 0.1922 0.1247 0.0893

AHAR-RV-G 0.0555 0.8873 0.0609

AHAR-GARCH-RV-G 0.7085 0.4245 0.2157

HAR-RV-A 0.2908 0.0553 0.0277

HAR-GARCH-RV-A 0.2908 0.0216 0.0277

AHAR-RV-A 0.0555 0.8121 0.2160

AHAR-GARCH-RV-A 0.4444 0.1247 0.1363

GBA 0.9049 0.0927 0.2157

Table 4.8: P-values for the Conditional Coverage test. A p-value lower than 0.05
denotes the rejection of the null hypothesis of correct coverage level. The bold
numbers represent the accepted models.

Table (4.8) represents the p-values for the Conditional Coverage test. The situation

is identical to the one of the previous test: in general, the re-scaled RV models are

more rejected by the test, in particular, regarding the 1% VaR estimates.
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4.4.4 ”Regulatory” Loss Function

VaR 10% VaR 5% VaR 1%

HAR-rRV 0.00723 0.00369 0.00065

HAR-GARCH-rRV 0.00765 0.00395 0.00076

AHAR-rRV 0.00343 0.00101 4.890e-06

AHAR-GARCH-rRV 0.00571 0.00243 0.00015

HAR-RV-G 0.00768 0.00373 0.00076

HAR-GARCH-RV-G 0.00807 0.00393 0.00078

AHAR-RV-G 0.00533 0.00203 0.00026

AHAR-GARCH-RV-G 0.00693 0.00321 0.00061

HAR-RV-A 0.00777 0.00365 0.00062

HAR-GARCH-RV-A 0.00801 0.00373 0.00064

AHAR-RV-A 0.00510 0.00184 0.00015

AHAR-GARCH-RV-A 0.00685 0.00291 0.00043

GBA 0.00949 0.00433 0.00036

Table 4.9: Values of the ”Regulatory” Loss Functions. The bold numbers represents
the best performes of every group of models.

Table (4.9) represents the values of the Regulatory Loss Function applied to the

VaR models. The AHAR-GARCH model applied to the re-scaled RV produces the

lowest losses, in absolute terms. It can be accepted for what concerns the 10%

and 5% VaR, but has to be rejected the 1% VaR estimation, since this failed the

statistical tests. The best performer of the HAR + GARCHX-overnight group is the

AHAR-RV-G. The best performer of the HAR + GJR-GARCHX-overnight group

is the AHAR-RV-A model. The benchmark GBA is outperformed by the best RV

models.
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4.4.5 Firm’s Loss Function

VaR 10% VaR 5% VaR 1%

HAR-rRV 0.00736 0.00385 0.00094

HAR-GARCH-rRV 0.00777 0.00412 0.00104

AHAR-rRV 0.00361 0.00124 0.00031

AHAR-GARCH-rRV 0.00584 0.00264 0.00045

HAR-RV-G 0.00783 0.00398 0.00112

HAR-GARCH-RV-G 0.00822 0.00412 0.00114

AHAR-RV-G 0.00548 0.00228 0.00063

AHAR-GARCH-RV-G 0.00707 0.00345 0.00097

HAR-RV-A 0.00792 0.00389 0.00098

HAR-GARCH-RV-A 0.00801 0.00373 0.00064

AHAR-RV-A 0.00524 0.00209 0.00052

AHAR-GARCH-RV-A 0.00699 0.00314 0.00079

GBA 0.00964 0.00461 0.00081

Table 4.10: Values of the Firm’s Loss Functions. The bold numbers represents the
best performes of every group of models.

Table (4.10) represents the values of the Firm’s Loss Function applied to the VaR

models. The situation is almost identical to the one of the previous loss function.

The best model in absolute terms is still the AHAR-rRV; however, given its failures

on the statistical tests for what concerns the 1% VaR estimate, the best model on

this coverage level is the AHAR-RV-A. The benchmark is still outperformed by all

the best RV models.
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Conclusions

The main purpose of this research was to check whether the specification of a dy-

namic model to the overnight returns, in order to obtain an estimate of the close-to-

open volatilities, is a better approach than the simple re-scale with a constant over

all the sample period, to the aim of VaR forecast and employing the Filtered His-

torical Simulation as an improvement of the more inefficient Historical Simulation.

The results of the application to the whole sample suggest that the adoption of a

dynamic specification to model the overnight volatilities lead to more appropriate

VaR estimations, in terms of statistical tests, with respect to the re-scaled RV. We

can discard the AHAR-rRV model, given its incorrectness about VaR estimation

emerged from the statistical tests, subsequent to a too low number of exceptions

generated. Accordingly, the performances in terms of loss functions of the Asym-

metric HAR models with GARCHX or GJR-GARCHX overnight models are, at

least, comparable to the AHAR-GARCH-rRV model. Specifically, they outperform

on the 5% VaR loss functions.

The advantages deriving from the use of such a dynamic specification are no more

evident when the models are applied to the post-crisis subsample. Our procedure

performes worse in terms of loss functions, but, in general, is more suitable to a VaR

estimation purpose, in terms of statistical accuracy tests. In particular, for what

concernes the 10% and 5% VaR, the best model has resulted the AHAR-rRV and,

given its failures on the tests about the 1% VaR, the best model in absolute term

on that coverage level is the AHAR-RV-A.

In addition, what emerges from our analysis is that Filtered Historical Simulation
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applied to Realized Volatility models are able to sistematically outperform the Asym-

metric GARCH benchmark of Barone-Adesi et al.. Even if the tests tells us that

it is well suited to a VaR estimation purpose, it is sistematically outperformed by

the other models in terms of loss functions. In particular, Asymmetric-HAR-type

of models are able to reproduce better than the others the market conditions, that

changes over time.

On practical applications, we would suggest the employment of the Asymmetric-

HAR-RV model to fit the open-to-close realized volatility, together with the use of

an asymmetric model to fit the overnight volatilities. The application of asymmetries

ensures a better response to the modificaions of the market conditions.
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