
 

 
 

 

 

 

 

 

Department of Environmental Sciences, Informatics and Statistics 

Master Degree in Computer Science 

 

Final Thesis 

 

Face recognition on  
embedded devices 

 
A proof of concept for residential application 

 

 

 

Supervisor 

Ch. Prof. Marcello Pelillo 

 

Co-supervisor 

Ing. Antonio Milici 

 

Graduand  

Marco Petricca 

795687 

 

Academic Year 

2018 / 2019  



 

ii 

  



 

iii 

Abstract 

 

Face recognition is a well-known technique with a wide range of existing real 

world applications. Residential systems, like video intercom or security alarm, 

are instead nearly unfamiliar terrain to such methods with few commercial 

solutions available today in the market. A leading company in the sector has 

called for a research, with the purpose of assessing the feasibility of equipping 

their embedded video intercom systems with a feature for automatic 

identification and authorization of the calling subject. In this paper a 

combination of face detection and recognition methods on such system has 

been studied and evaluated, leading to a proof of concept in order to verify 

the feasibility assumptions, and support the claimant company decision 

process on investing for prototype development and final product extensions 

and adjustments. Early promising results suggest that the proposed system 

could prove usable, complying with constraints such as providing a reasonable 

recognition rate and execution time, running on embedded hardware and being 

user-friendly. 
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1. Introduction 

 

AI technologies are becoming increasingly present in everyday life, reaching a 

level of maturity and diffusion such as to leave their traditional academic 

applications and top technology companies boundaries. Thanks to embedded 

hardware evolution during the past years, it is possible to equip common devices 

with a range of whole new features, including AI based ones, through software 

development or dedicated hardware module add-ons (eg. microcontroller units 

available on the market). It is the case of a leading company in the industrial 

automation sector which has called for a research, with the aim of assessing the 

feasibility of equipping their embedded video intercom systems with a feature for 

real time automatic identification and authorization of the calling subjects, 

namely a face recognition functionality. 

Face recognition technologies have been used until recently most prominently 

by government and law enforcement agencies for security reasons, with a growing 

commercial interest and investment by private companies as the technology has 

become more accurate and less costly. The result is a continuously growing range 

of use cases and consequent developments for consumers and businesses 

applications. Some examples are photograph identification in social networking, 

automatic organization of pictures collection, safety and security in private areas, 

secure physical access control to buildings or personal devices, customized and 

improved products, services, advertisements and other marketing purposes. While 

face recognition provides new potentials for safety, security and business 

development, it also introduces complicated issues about the nature of consumer 

privacy and surveillance, with companies accumulating increasingly massive 

amount of consumer data and a legislation not yet fully developed or worldwide 

standardized to address the unique risks arising from the use of these technologies. 

Some of those include unintended privacy or data breaches due to obsolete or 

vulnerable security system designs, data monetization through sales to third 

party, and the irreplaceable nature of the biometric data ([25]). 

Generally, a face recognition system is made of a series of building blocks in 

charge of performing various tasks with the final goal of achieving a successful 

recognition of people from digital images or video frames. Those can be 

summarized in a capture device to acquire the subject images in a digital format, 
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a face description algorithm to create suitable representations of faces in a 

computer system, an image dataset to store the captured faces and their 

description, and a comparison method to evaluate the subject similarities. 

The recognition task begins with an image being fed as input to the system, 

upon which a face detection module searches for any face contained in it and, if 

found, sent to the face recognition module. Here facial features (eg. nose, eyes, 

etc.) are extracted from the detected face and compared to previous knowledge 

by using a suitable similarity measure. Therefore, the system verifies whether the 

subject belongs to one of the already known classes, or if it is unknown, and acts 

accordingly to the recognition results and its configuration, for example sending 

an authorization message to an access control module or to another application. 

To maximize the performances it is crucial for such system to exploit correctly 

the sources of variations between faces, which can originate from the subject 

appearance such as eyes location, nose shape or presence of glasses, or related to 

external sources like illumination, pose, scale or external objects occlusion. Those 

external factors might have a negative impact on the detection and recognition 

methods performances, thus a range of preprocessing methods and operations are 

applied to the modules input to address this, resulting in boosted execution speed 

and recognition scores. 

 

 

 

 

Figure 1.1 Phases of a face recognition system. 

 

 

This paper treats the design, development and evaluation of a proof of concept 

for a face recognition system intended for residential applications, under variable 

but controlled light conditions. The initial concept comes from a corporate 
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context, inheriting the characteristics objectives and schedules concreteness, 

whose success and consequent realization of the system depends also from a 

variety of non-technical factors such as: 

 The feasibility of a solution respecting the imposed constraints, in the form 

of a working proof of concept 

 The range of appliable product applications, in particular the possibility of 

retrofitting existing devices and installations, and draw inspiration for the 

design of more innovative and competitive products 

 The solution sustainability in the company business ecosystem as a direct 

consequence of its profitability 

 The observance of company deadlines for budgets and planning 

 Provide an effective delivery of the solution business proposal and business 

cases to the steering committee, as a support for decisions on the future 

development. 

 

The Research & Development department of the claimant company released 

a project draft, containing a series of guidelines to motivate the research and its 

consequent market opportunity, whose purpose is to provide current and future 

owners of an entry level existing video intercom system, possibly with analog 

capture devices, with face recognition capabilities for automatic access control 

purposes. The face recognition would be an optional add-on feature to install on 

the internal video receivers, which can be purchased separately by each tenant. 

The main advantages highlighted in the project draft are summarized below, 

 Infrastructure costs are kept low 

 Flexibility in multi-dwelling configuration, as only tenants who wish to 

enable the add-on function have to purchase a high-end internal video 

receiver, while others can keep the entry level internal video receivers 

 Data of the subjects is stored in the private internal video receiver, and 

not in a shared or cloud based infrastructure, allowing to overcome 

most of the privacy and remote connection related issues 

 The tenants can access their property hands free, meaning that no 

additional personal identification support containing access credentials 

(eg. RFID smartcard) is required. 
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The project draft also mention the challenges concerning the face recognition 

solution techniques, 

 The computational effort of the face recognition methods must be 

lightweight, to allow real time verification of subjects on a low power 

embedded device 

 The image transport chain originating from an external entry panel 

may deteriorate the image quality fed to the face recognition 

algorithms, hence the chosen methods have to compensate for the 

potential noise or low image quality 

 The subject face illumination may experience variations depending from 

daytime and installations specificity, with the face recognition 

algorithm being robust as much as possible to such changes. 

 

To answer all the above mentioned topics, a typical video intercom system has 

been put together, to reproduce as close as possible the real application 

environment. With the data produced by the video intercom system, an image 

dataset of fourteen subjects and 780 faces has been created, and used to study 

and evaluate the performances of a combination of face detection and recognition 

methods. The result is a pipeline composed by Viola-Jones face detector and 

Eigenfaces face recognition, which is able to achieve good performances and 

comply with the company project constraints. 

This paper describes in Section 2 the problem of faces recognition on an 

embedded video intercom system and its constraints, the related work on 

embedded systems in Section 3, and the explanation of the methods composing 

the pipeline in Section 4. The experimental system setup with the details on the 

generated dataset and its use as training and test set is described in Section 5, 

with the results achieved by the prototype system presented in Section 6. 

Conclusions and possible future improvements are proposed in Section 7.  
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2. Project description 

 

Scope of this project is to combine Artificial Intelligence techniques belonging 

to the Computer Vision area with a video intercom system, to assess if it is 

possible to detect and recognise a narrow set of known faces captured from its 

video stream; if a subject is detected and identified successfully the intercom 

system performs some defined actions, typically opening the lock connected to a 

door or gate. Since intercoms are widely spread devices, familiar and accepted by 

the majority of the population, users are well aware of the presence and operating 

sequence of such system and are willing to be identified by clearly showing their 

faces at close range, thus placing this project in a collaborative environment. 

The outcome of the project will allow to determine if it is possible to equip 

both new and selected existing products with an additional facial recognition 

feature, mainly aimed for residential applications. This last detail in fact limits 

the amount of subjects allowed to access, to generally less than five people. 

When a subject presents itself in front of the intercom entry panel camera, it 

interacts with the device by pushing the call button of interest: this explicitly 

begins the identification procedure. The external device camera captures the 

subject image, which is encoded and transmitted to the internal video receiver, 

typically installed in an apartment or other private area. The latter device is 

capable of decode the video stream, extract a series of images, detect faces (if 

any) and, based on previously known subjects, assess the current user identity 

and allow or restrict its passage into the private area. 

It is necessary to consider that during different recognition sessions the users 

will be very likely subjected to variable conditions of illumination, different 

background, distance from camera or facial expression, which could pose a 

challenge for facial recognition methods. 
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Figure 2.1 Example of application in a residential building.  

 

 

2.1 Constraints  

 

Even though the abovementioned collaborative application environment is 

favourable, there exists a number of general constraints which have to be taken 

into account for defining an optimal solution, several of these derived from the 

claimant company guidelines and others coming from the nature of the project 

itself. 

The resulting system must be robust as much as possible to variable conditions 

of illumination, different background, distance from camera and facial expressions, 

as well as easy to use for the end customer through a user friendly interface, setup 

and use procedures. It also has to deliver sustainable performances in terms of 

speed and accuracy, and operate successfully on low power local embedded 

hardware. The local requirement had been chosen to minimize privacy issues and 

address any external connection (eg. Internet) issue which may arise. 
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Furthermore, the speed requirement relates not only to performances but also 

to the deadline for implementing a proof of concept for this system as well, as the 

applicant company has to make a decision for including a fully featured 

development project in its yearly budget, for equipping both new and selected 

existing products with a facial recognition feature. 
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3. Related work 

 

Face detection and recognition topics have been extensively discussed in the 

literature, resulting in a vast amount of work mainly focused on improving the 

accuracy through new methods with growing computational complexity. Even 

though the recent years performance increase of embedded systems, the 

development of computationally expensive methods on such hardware has proven 

challenging, with many solutions resorting to remote processing of the recognition 

steps, instead of relying on local hardware capabilities. 

Research and early applications of face detection and recognition methods on 

embedded systems are traceable back to early 2000s, and active as today. 

For general purpose applications, an ARMv5TE PDA based embedded system 

has been built by Chu et al. ([1]), where a face annotation application used Viola-

Jones face detection and ARENA face recognition. Zhao et al. ([2]) worked on a 

similar system using Viola-Jones and Eigenfaces with Euclidean distance methods, 

and running on Tiny6410 platform for portable and mobile applications. Broker 

et al. ([3]) described a hybrid face recognition algorithm by combining PCA and 

LDA methods on a Raspberry Pi 3 board. Although those systems are 

architecturally similar to the one proposed in this paper, none of them treats the 

video intercom use case specificity, as illumination for the subject is assumed to 

be invariable, the hardware platform used are general purpose or obsolete, and 

the content of those publications is more focused on describing the system 

development details on the hardware platform of choice. 

There have been also more specific domain embedded application studies, Zuo 

et al. ([4]) propose a 95% accuracy LDA based near real-time face recognition 

system for consumer applications (eg. For Smart TV integration) where both 

processing efficiency and robustness/accuracy are required. Kang et al. ([5]) made 

a PCA-based face recognition on an ARM CPU embedded module for robot 

application. Günlü ([6]) proposed a 97.4% accuracy LDA based system for Digital 

Signal Processors (DSP) on smart cameras, with a Viola-Jones code optimization 

for this specific platform. Shan et al. ([7]) developed a prototype of face 

recognition module on a mobile camera phone, for identifying the person holding 

the device and unlocking the keyboard. The authors used Viola-Jones face 

detection and a pose variability compensation technique, which synthesizes 
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realistic frontal face images from nonfrontal views, coupled with adaptive 

principal component analysis (APCA) and rotated adaptive principal component 

analysis (RAPCA), both insensitive to illumination and expression variations and 

not computationally intensive; resulting samples are used then for training with 

SVN or NN methods. 

Publications on embedded system development and integration have been 

published by Sahani et al. ([8]) and Manjunatha et al. ([9]) for home security 

solutions, both using the Eigenfaces method on ARM11 and Raspberry Pi 

platforms, while Android solutions for smartphones and tablet computers have 

been developed by Gao ([10]) with a combination of Viola-Jones and Eigenfaces 

methods, and Alam et al. ([11]) with Local Binary Pattern Histogram method. 

Face detection and recognition has also been studied for optimization of 

existing methods purposes; Bigdeli et al. ([12]) worked on improving the Viola-

Jones method instructions on a FPGA embedded face detection solution, with the 

aim of addressing the real-time image processing requirements in a wide range of 

applications, and achieving up to 110 times speedup using custom instructions. 

Pun et al. ([13]) and Aaraj et al. ([14]) treated as well code optimization for faster 

execution, the first proposing a semi-automatic scheme for face detection and eye 

location, and the latter exploiting parallel processing on two different methods for 

recognition and authentication, with a combination of PCA-LDA and Bayesian 

approach, yielding a speedup factor of 3 to 5 times. Ramani et al. ([15]) presented 

the design of a domain specific architecture (ArcFace) specialized for face 

recognition, describing an architectural design methodology which generates a 

specialized core with high performance and very low power characteristics, based 

on Viola-Jones and PCA methods. Theocharides et al. ([16]) and Al-shebani ([17]) 

also worked on the design of special-purpose hardware, the first for performing 

rotation invariant face detection, developing a 7 Watts 75% accuracy device, and 

the latter for FPGA applications using KNN method with the city-block metric. 

Summarizing, traditional methods such as Linear Discriminant Analysis 

(LDA), Eigenfaces and Viola-Jones methods are still a popular choice for 

embedded applications mainly due to their limited processing power requirements. 

Also in ([18]), Milosevic et al. studied face emotion recognition on embedded 

hardware (Raspberry Pi, Intel Joule, Movidius neural computing stick) with Deep 

Learning approaches, showing that low power consumption and short inference 
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time requirements, are limiting factors for real-time usage of more complex 

methods on embedded systems. 
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4. Evaluated solution 

 

Given the project and the imposed constraints, the feasibility of its solution 

has been evaluated through a supervised learning approach. The resulting system 

has to be able to distinguish between a narrow group of authorized subjects and 

everything else, also including generic objects, by detecting and comparing the 

found faces. To achieve this, it is necessary to first instruct or train the system to 

recognise the allowed subjects, by presenting a small set of representative pictures 

of their faces. The representativeness of the abovementioned set is defined mainly 

through variable illumination conditions, as the system will be used during day 

and night hours, and secondarily by facial expressions, as it is reasonable to 

suppose that users may present themselves with a non-neutral pose in front of the 

camera, eg. smiling or with closed eyes. Since the subjects are willing to be 

identified by clearly showing their faces when standing in front of the camera, it 

is also reasonable to assume that head and face position, their orientation and 

rotation are invariant. After performing the training phase, the system is able to 

perform recognition or validate users, by comparing the subject standing in front 

of the camera with its acquired knowledge. 

To maximize the difference (or similarity) between subjects due to facial 

features and not collateral unwanted sources (eg. background), a preliminary face 

detection step is performed on the stream during both training and validation 

phases, to extract (when available) only the subject face and exclude other 

unnecessary areas of the image. 

Considering that the training phase is expected to run for a fraction of times 

compared to the validation phase executions, potentially only once, a sensibly 

slower training phase is considered acceptable; on the contrary, validation has to 

be fast and lightweight. 

The Viola-Jones framework ([19]) and the Eigenfaces algorithm ([23]) have 

been selected respectively as face detection and face recognition methods. 

Although they are somewhat aged, they fit well the requirements and the 

constraints of the project, providing a convenient approach to build a proof of 

concept to assess the solution feasibility and its approximate performances. Once 

the training phase is performed to create the main data structure known as face 

subspace, the Eigenfaces execution time to evaluate face similarity through 
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projection onto the transformation matrix is reasonably fast. Comparable 

advantages are achieved by Viola-Jones face detection step. 

Similar applications on embedded hardware confirm that, despite the age, both 

methods are still quite popular in such environment, see ([1]), ([2]) and ([3]) for 

insights. 

Given that the final outcome of the project is provide a proof of concept for 

the feasibility of such a system, the selected methods are meant as a convenient 

starting point, considering also the deadline requirement and their 

understandability for a non-specialized or non-technical steering committee. 

Moreover, if traditional techniques proves successful, a more sophisticated 

approach could only improve the results. 

While of great appeal nowadays, a Deep Learning approach had to be 

discarded due to the high amount of images needed to provide a sufficiently rich 

training set, and because the final user is very likely to not accept a complex or 

long setup routine and provide more than 5 or 6 images per subject. Such 

techniques are also demanding in terms of hardware requirements, and embedded 

systems are still usually inadequate in this respect as shown in ([18]). 

 

4.1 Viola-Jones framework for Face Detection 

 

Real world face images often includes unnecessary information for face 

recognition task, whose accuracy might be marred by. In order to minimize such 

collateral effects, it is a common practice to pre-process images in multiple ways 

before being fed to recognition algorithm. One of those steps is face detection, 

which locates the subject face (if any) and crop the image to the detected face 

boundaries, removing superfluous sections like the background. It also concur to 

render face recognition a much quicker step, as without knowing the position of 

the face in the image, it would be necessary to apply a face recognition algorithm 

at every pixel and scale, and such a process would be too slow. 

Existing face detection techniques can be grouped in three families: feature 

based, which searches for the locations of distinctive image features such as the 

eyes, nose, and mouth, and then verify if they are arranged in a plausible schema; 

template based, looking for small parts of an image which match a template and 
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can work with a range of pose and expression variability; or appearance based 

methods which scan the image using small overlapping rectangular patches in 

search for possible faces, further analysed by cascades of detectors. 

Considering the application target, the Viola-Jones method, a supervised 

appearance based frontal face detector, has been chosen for the detection task due 

its overall accuracy, detection speed and low power demands. It is a widely used 

method for real-time object detection and, as Eigenfaces, the majority of the 

computation time is required during the training phase, while the detection phase 

is very fast: Paul Viola and Michael Jones could indeed implement their real-time 

face detector on a low power early 2000 Compaq iPAQ embedded handheld 

device. 

Viola-Jones is a visual object detection framework composed by three main 

pillars: an image representation method for fast feature calculation known as 

Integral Image, an AdaBoost based learning algorithm for representative features 

selection, and a method for combining learned classifiers to reduce unnecessary 

computation on background areas of the image, and focus on more promising 

regions. The initial hypothesis the authors managed to demonstrate through the 

achieved results, was that a small amount of representative features can be 

combined to produce an efficient classifier for detecting faces in an image. The 

framework is able to achieve very good detection rates at acceptable frame rate, 

working only with information present in grayscale images and not relying on 

other auxiliary information. It was the first algorithm to introduce the concept of 

boosting to computer vision applications. 

The building blocks for classification are three types of scale invariant 

rectangular-like simple features, whose values are assessed by calculating the 

difference between the sum of the pixel contained in the white areas and the pixel 

in the black areas. The main reasons for using features in place of pixels are high 

computational speed, and the fact that features are able to encode specific domain 

knowledge which is not easy to learn from a limited amount of training samples. 
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Figure 4.1.1 Features used in Viola-Jones: two-rectangle (horizontal and 

vertical), three-rectangle and four-rectangle. 

 

 

Input images are evaluated in sub-windows of 24 x 24 pixels, and since the 

number of possible rectangle feature for an image is huge, it is mandatory for 

effective classification features to be discoverable and computable with few 

instructions. For the latter requirement the Integral image representation has 

been introduced by the authors, which can be calculated in one pass over the 

original image, allowing rectangular features values to be determined by using 

from six to nine array operations, depending on the feature structure. This 

balances the features simpleness with high computational efficiency. 

The value of the integral image representation ii at location x,y is the sum of 

the pixels of the quadrangle defined from the top left point of the image i to the 

given x,y pixel coordinate, 

 

 

𝑖𝑖(𝑥, 𝑦) = ∑ 𝑖(𝑥′, 𝑦′)

𝑥′≤𝑥,𝑦′≤𝑦

 

 

 

which fast calculation is due from the recurrences below, 

 

 

𝑠(𝑥, 𝑦) = 𝑠(𝑥, 𝑦 − 1) + 𝑖(𝑥, 𝑦) 
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𝑖𝑖(𝑥, 𝑦) = 𝑖𝑖(𝑥 − 1, 𝑦) + 𝑠(𝑥, 𝑦) 

 

 

where s(x,y) is the cumulative row sum. 

The other requirement, namely the ease of detection for effective classification 

features, is satisfied through a variant of the AdaBoost learning algorithm, for 

both effective features selection and classifier training, accomplished by combining 

a sequence of simple classification functions or weak learners to produce more 

powerful ones. The main modification, with respect to the original AdaBoost, 

consists on forcing the weak learners to depend on a single feature, thus each new 

classifier selected by the boosting process can be considered as a feature selection 

process. Weak learners can be seen as decision stumps which is the most simple 

instance of a decision tree, or as separating hyperplanes. 

During any iteration or hypothesis of the learning procedure, a weak learner 

hj(x) consisting of a feature fj, a threshold 𝜃j and a parity pj, is trained for selecting 

a single rectangle feature which yields the optimal threshold classification 

function, or equivalently better separates labelled examples classes. No single 

weak learner can achieve high performances on its own, in fact their error rate is 

usually just better than a random selection, as it is limited to a single feature. 

After the feature has been learned, the samples weights are readjusted as a 

function of whether they were correctly classified during the previous stage. This 

is done to highlight incorrectly classified points, with an additional learner being 

trained on those updated examples. The procedure is repeated for a defined 

number of rounds, obtaining in the end a final weighted combination of weak 

classifiers with its global threshold. It has been proven by Freund and Schapire 

that the training error of the combined classifier approaches zero exponentially in 

the number of rounds ([20]). Interestingly enough AdaBoost is not suffering from 

overfitting, a typical behaviour of learning methods whose model complexity is 

excessive for the given data, and tends to adapt to noise rather than generalize 

correctly. As the complexity of the combined classifier increases with the number 

of rounds, the test error is found to decrease even after the training error reaches 

its minimum. 

  



 

16 

The classification rule for a weak learner is,  

 

 

ℎ𝑗(𝑥) =  {
1   𝑖𝑓 𝑝𝑗𝑓𝑗(𝑥) < 𝑝𝑗𝜃𝑗

0               𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

 

 

 

 

Figure 4.1.2 Weak learners iterations  

 

 

The final classifier is a weighted linear combination of the weak learners, with 

weights inversely proportional to training errors, and yields the form, 

 

 

𝐻(𝑥) =  

{
 
 

 
 1  𝑖𝑓 ∑𝛼𝑡ℎ𝑡(𝑥) ≥

1

2
∑𝛼𝑡

𝑇

𝑡=1

𝑇

𝑡=1

0                        𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

 

 

where t is the iteration or hypothesis number and 𝛼 is a coefficient expressing the 

contribution of the weak learner at iteration t in the final classifier; the value of 

𝛼 depends on the t classifier error rate (or goodness). 
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Figure 4.1.3 Final classifier composition example 

 

 

It is worth to note that a detector consisting of a single strong classifier with 

many features would be inefficient since the evaluation time is constant, no matter 

the input, and its training phase could take weeks, mainly due the large amount 

of feature (difference of rectangles) hypotheses to examine at each stage. To 

increase the performances, the last section of Viola-Jones framework is a method 

for combining in a cascade fashion a series of growing complexity strong classifiers, 

with the aim of both increasing the detection rate and reducing the amount of 

evaluated input images sections, thus the training time, as progressing through 

the stages which the cascade is made of. This is accomplished by deploying 

simpler, thus efficient, strong classifiers in the early stages and more complex and 

slower strong classifiers in the following stages, with only positive detection image 

sections proceeding to the next classifier. A section of the input image will be 

marked as face only by getting through all the cascade stages. 

The stages purpose and complexity is variable, and depends on their position 

in the cascade: instead of focus in finding faces, the early stages task is more 

related to reject non-faces sections of input images while preserving all promising 

areas, even if at the end those will result being false positives. False positives will 

be managed by more complex subsequent stages, which are trained with 

increasing difficulty examples coming from previous classifiers outputs. This 

architecture is made possible by lowering the initial stages simpler classifiers 

threshold, through an additional modification to AdaBoost which had to be 

introduced in Viola-Jones to accommodate such customizable thresholds: in its 

original version, the boosting algorithm searches for the lowest achievable error 

rate, while the high detection required by Viola-Jones simpler classifiers, implies 

a suboptimal false positive rate. 
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The cascade training process involves also finding an acceptable compromise 

between classifiers complexity and overall performances, where the number of 

classifier stages, the number of features per stage and the threshold of each stage 

are traded off, with the aim of minimizing the expected number of features to 

evaluate N, given the target for false positive rate F and detection rate D. 

The two latter values are defined by the following, 

 

 

𝐹 =∏𝑓𝑖

𝐾

𝑖=1

 

 

 

𝐷 =∏𝑑𝑖

𝐾

𝑖=1

 

 

 

where K is the number of classifiers in the cascade, 𝑓𝑖 and 𝑑𝑖 are the false positive 

rate and the detection rate of the ith classifier. The expected number of features 

to evaluate N can be calculated by, 

 

 

𝑁 = 𝑛0 +∑ (𝑛𝑖∏ 𝑝𝑗𝑗<𝑖 )

𝐾

𝑖=1

 

 

 

where 𝑝𝑗 and 𝑛𝑖 are respectively the positive rate and the number of features of 

the ith classifier. 

Although finding the optimal trade-off of the abovementioned values is a 

difficult problem, to produce an effective and efficient classifier it is sufficient to 

select the minimum acceptable values for the false positive rate 𝑓𝑖 and the 

detection rate 𝑑𝑖. During the training of the cascade layers, AdaBoost will take 
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care of increasing the number of features until the given rates are achieved, or the 

number of layers of the cascade if the overall false positive rate F is not met. 

The final outcome of the whole training process is an over 30 stages pipeline, 

where the first classifier is designed to have as low as two rectangle features, 

detecting almost all faces and rejecting approximately 60% of the non-faces 

sections, while the final stages are composed of 200 features classifiers. 

 

 

 
 

Figure 4.1.4 Classifiers cascade schema, D=detected, ND=not detected 

 

 

The Viola-Jones method suffers of some known limitations, like its reduced 

effectiveness in detecting tilted or turned faces, its sensitivity to lightning 

conditions and multiple detections of the same face due to subwindows overlap. 

For lighting sensitivity issue, images can be pre-processed before training and 

validation phases by applying variance normalization, in order to minimize the 

impact of different lightning conditions. The computational effort necessary for 

this step is limited, as any sub window variance can be calculated using a pair of 

integral images, and during scanning the normalization can be achieved by post 

multiplying the feature values, avoiding to work directly on the image pixels. 

The multiple detection issue can be easily addressed, as two detections belongs 

to the same group if their bounding regions overlap. Post processing is applied to 

the detected sub windows, to combine overlapping detections and yielding a single 
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final detection. This may also contribute to the reduction of the amount of false 

positives. 

 

4.2 Eigenfaces method for Face Recognition  

 

In the recent years, the advancements of identification and security systems 

based on biometrics has drawn much attention, with a consequent spreading of 

their adoption, as they allow for convenient unique identification of individuals. 

Subjects are identified exploiting human body and personal behavioural 

characteristics, contributing to reduce the risk of unauthorized identity usage. 

Face recognition is one of those biometric identification technique, with a 

distinctive trait of not requiring the cooperation of the analysed subjects to work.  

Faces are probably the most common used characteristic for identification 

everyday, on which human beings developed very robust recognition abilities, 

succeeding to memorize and recognize thousands of faces despite sensible changes 

(eg. aging) and visual alterations (eg. clothes, glasses, head rotation, etc.). The 

development of a face recognition system could prove challenging and not just for 

technical reasons; the natural variation in appearance and expression in faces, or 

the occlusion, variability of scaling, rotation, size, lighting or point of view of real 

world unconstrained or non-collaborative environment, or even the privacy 

related issues of adopting such systems in public areas are all aspects increasing 

the task complexity. In general, face recognition methods gives best results when 

they work with full frontal images of faces and relatively uniform illumination 

conditions. 

Early applications of face recognition techniques dates back to 1966([21]), but 

it is not until 1991 that the first instance of automatic face recognition method 

“Eigenfaces for Recognition” is published by Turk and Pentland, proving the 

feasibility of such systems. The authors exploited the representation of faces 

introduced by Sirovich and Kirby([22]) to develop a supervised learning method 

that can locate and track faces, and recognise the subject by comparing its facial 

characteristics to those of already known individuals. 

Images in computer systems are composed by N pixels arranged in a two 

dimensional matrix, and can be thought as points in an image space, having the 
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same dimensions as the number of pixels. Even for simple images this space 

extension is massive, making the evaluation of similarities a computationally 

expensive and difficult task, mainly due to the curse of dimensionality issue. 

Support comes from the fact that face images does not randomly distribute in 

the image space, occupying instead a limited subarea of the whole image space 

spanning the so-called face subspace, a lower dimensional linear subspace in the 

image space, created in such a way to best encode variation among face images, 

and preserve most of the information. 

The face subspace is obtained using Principal Component Analysis (PCA) a 

dimensionality reduction method, which approximates vectors in the original 

space by finding a basis φ in an appropriate lower dimensional space, while 

keeping as much information as possible. Equivalently, assuming that the columns 

of the matrix ϕ𝑁𝑥𝑀 containing M images are the data points where each of the M 

images is of size N, the aim is to obtain an orthonormal basis of size M’ with 𝑀′ ≤

𝑀, that produces the smallest sum of squared reconstruction errors for all the 

columns of ϕ − ϕ̅, where the last term refers to the average column of the image 

matrix. The basis 𝜑 to accomplish this is obtained through PCA, and is composed 

by the M’ eigenvectors of (ϕ − ϕ̅)(ϕ − ϕ̅)𝑇 that correspond to the M’ largest 

eigenvalues of the images covariance matrix. 

PCA calculates a best coordinate system for image compression projecting the 

data along the directions where the data varies the most, with the M’ eigenvectors 

as output. The directions are determined by the abovementioned eigenvectors of 

the face images covariance matrix, which are pointing in the direction of 

maximum variance of the data. The resulting components are sorted 

corresponding to the largest eigenvalues, whose magnitude represents the amount 

of variance of the data along the eigenvector directions. 

The first principal component given by PCA is the linear combination of the 

original dimensions with the maximum variance, the second and following 

principal components are as well a linear combination of original dimensions, 

which are orthogonal to the previous principal components. For defining the 

number of components, it is possible to choose directly the value, or define the 

amount of variance of the original data to keep, with the result of discarding the 

n smaller eigenvectors. 
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Principal Component Analysis most relevant properties can be summarized as 

approximate reconstruction of the initial distribution x, orthonormality of the 

basis found and decorrelated principal components. 

 

 

 

Figure 4.2.1 A multivariate Gaussian distribution and its two first principal 

components directions 

 

 

𝑥 ≈  φ𝑘𝑦 

 

φ𝑘
𝑇φ𝑘 = 𝐼 

 

𝐸{𝑦𝑖𝑦𝑗}𝑖≠𝑗 =  0 
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Within this face recognition framework, principal components are called 

eigenfaces, as they can be visualized as an image which resembles a human face. 

In fact the eigenfaces encode the variations of the face images set, from the most 

to the least relevant, depending on the associated eigenvalue, emphasizing both 

the significant local and global features of a face. 

Any image of the dataset can be represented by a linear combination of the 

calculated eigenfaces, or approximated by using a small set of those with higher 

eigenvalues, through a projection of the image onto the face subspace. This yields 

a weight vector for each projected image, which acts as a compact representation 

and can be used to compare images and discern similarities based on the distance 

between those weight vectors. As shown in the image below, the subject face 

characteristics can be easily recognised by humans through a reconstruction in a 

subspace spanned by the largest ten principal components (or eigenfaces) of a 

training set composed of three subjects and a total of 111 images. 

 

 

 

 

Figure 4.2.2 A face image (top left) and its approximated reconstructions  

 

 

Some preliminary steps are required in order to calculate a proper face space 

for the given set ¡ of M face images. The first one is to remove color information 

from the images, as it is redundant information and serves no purpose for the 

recognition task. Then the face distribution is centered, as PCA assumes data to 

be distributed as a Standard Gaussian with zero mean. The mean face Ψ is 

calculated averaging all M faces as following, 
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Ψ = 
1

𝑀
∑Γ𝑛

𝑀

𝑛=1

 

 

 

 

Figure 4.2.3 Example of an average face Ψ 

 

 

Each of the NxN pixels image is then transformed from a two dimensional 

matrix to a one dimensional vector of length 𝑁2, from which the average face Ψ 

is subtracted to center the faces distribution. The resulting vector of the image i 

is defined by, 

  

 

ϕ𝑖 = Γ𝑛 −  Ψ  

 

 

and is part of a matrix A, composed by all the centered training images. 
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Figure 4.2.2 Face image transformation 

 

 

To generate a face subspace from the set of M training images, PCA is applied 

on the matrix A, to extract a set of M orthonormal vectors un which best describes 

the distribution of the data, chosen such that each eigenvalues 𝜆 of the covariance 

matrix 𝐶 = 𝐴𝐴𝑇  is a maximum, with the corresponding eigenvectors being 

orthonormal. The covariance matrix 𝐶 is symmetric by construction, with its 

eigenvectors forming a basis where any of the matrix vectors can be written as a 

linear combination of the eigenvectors. 

Those values are defined by, 

 

 

𝐶 = 𝐴𝐴𝑇 = 
1

𝑀
∑ϕ𝑛ϕ𝑛

𝑇

𝑀

𝑛=1

 

 

 

𝜆𝑖 = 
1

𝑀
∑(u𝑖

𝑇ϕ𝑛)
2

𝑀

𝑛=1

 

 

 

The covariance matrix 𝐶 is a measure of the relation between two different 

images, whose size of 𝑁2𝑥 𝑁2 elements makes the eigenvectors and eigenvalues 

calculation a difficult task; anyway since the amount of images is much less than 

the dimension of the space 𝑀 ≪ 𝑁2, many of the eigenvectors will have an 
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associated value of zero, with only 𝑀 − 1 being meaningful. This suggests that 

the calculation effort can be largely reduced, and it is indeed accomplished by 

considering the eigenvectors vi of 𝐴𝑇𝐴 instead of matrix 𝐶, such that,  

 

 

𝐴𝑇𝐴v𝑖 = μ𝑖v𝑖 

 

 

by the definition of eigenvector. By multiplying both sides by A, 

 

𝐴𝐴𝑇𝐴v𝑖 = μ𝑖𝐴v𝑖 

 

 

μ𝑖 = 𝐴v𝑖 

 

𝜆𝑖 = μ𝑖 

 

 

thus 𝐶 = 𝐴𝐴𝑇 and 𝐴𝑇𝐴 have the same eigenvectors 𝐴v𝑖 and, being 𝐴𝑇𝐴 of size 

𝑀𝑥𝑀 ≪ 𝑁2𝑥 𝑁2, the computational cost is significantly reduced. Following this 

result it is possible to find the M eigenvectors vl of 𝐿 = 𝐴𝑇𝐴, where 𝐿𝑚𝑛 = ϕ𝑚
𝑇 ϕ𝑛, 

which determines linear combinations of the M faces of the training set to form 

the eigenfaces ul defined as, 

 

 

𝑢𝑙 = ∑v𝑙𝑖ϕ𝑖

𝑀

𝑖=1

 

 

 

with l = 1, 2, …, M.  

Summarizing, instead of directly calculating the eigenvectors of the vast 

covariance matrix 𝐶, the eigenvalues defining the face space and the corresponding 
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eigenvectors are obtained from a much smaller matrix 𝐿, where if 𝜆𝑖 are the 

eigenvectors of 𝐿, then 𝐴 𝜆𝑖 are the eigenvectors for 𝐶. 

The face subspace can be also calculated in an equivalently efficient and robust 

approach with Singular Value Decomposition (SVD), a more general matrix 

decomposition method from Linear Algebra, which for a matrix X is defined as, 

 

 

𝑋 = 𝑈𝐷𝑉𝑇 

 

 

where U and V matrices have orthonormal columns, and necessary eigenvalues 

can be extracted from the singular values of the diagonal matrix D. Matrix U 

serves the same function of matrix 𝐿 previously described, and contains the 

eigenvectors to compose the face subspace. 

The eigenvectors of the matrix 𝐿 span a basis set which to describe face images, 

and are used to find the similarities between subjects. This is done by projecting 

a face image Γ into the calculated face subspace with a lightweight operation, 

 

 

ω𝑘 = u𝑘
𝑇(Γ −  Ψ) 

 

 

where the amount of eigenvectors k defines the number of components of the face 

subspace. The output is a weight vector Ω𝑇 = [ω1, ω2, … , ω𝑘] that describes the 

relevance of each eigenfaces in the representation of the source image Γ 

 

 

 
Figure 4.2.3 Eigenfaces composition of a projected fa ce image 
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The weight vector Ω representing the image is compared with the previously 

learned faces counterparts, searching for the closest one according to Euclidian 

distance, 

 

 

ε𝑐
2 = ‖Ω − Ω𝑐‖

2 

 

 

where c is the vector describing the cth face class, calculated averaging all projected 

images vectors of a subject (or the cth subject if classes are composed by a single 

image). A face image Γ is classified as belonging to class c, if the distance ε𝑘
2 

results below a certain threshold 𝜃ε, otherwise it is considered an unknown non-

authorized subject. 

An additional threshold  𝜃f is used to detect whenever non-faces images are 

projected onto the face subspace, eg. face detector phase returning a false positive, 

as in this case the resulting reconstructed image will be likely to resemble a known 

face anyway. To prevent misclassification caused by this event, the face space 

distance between the mean centered original image ϕ and its reconstruction ϕ𝑓 is 

calculated as following, 

 

 

ϕ =  Γ −  Ψ 

 

 

ϕ𝑓 = ∑ω𝑖𝑢𝑖

𝑀′

𝑖=1

 

 

 

ε𝐹𝑆
2 = ‖ϕ − ϕ𝑓‖

2
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where M’ are the dimensions of the face subspace. If the 𝜃f threshold is below a 

defined value, the sample is considered a face whose distance from known subjects 

is to be evaluated, otherwise it is considered a non-face and discarded. 

 

 

       

 

Figure 4.2.4 Non-face image (left) and its reconstruction (right)  

 

 

As a result of the described procedure, by evaluating the distances it is possible 

to discriminate if an image never seen before could belong to the class of 

authorized subjects, all by using operations which mainly requires only point by 

point image multiplications and sums, with fast execution times. This approach 

moves the similarity calculations from an N-dimensional difference in image 

(pixel) space, to an M-dimensional difference in face space. 

Furthermore there are a number of practical aspects to consider, such as the 

number of eigenvectors M’ required to span an accurate face subspace, the 

distance threshold values or the presence of false positives input coming from the 

output of the face detection phase. The first can be dealt with by searching for 

the location along the decreasing eigenspectrum where the eigenvalues start to 

drop significantly, as smaller eigenvalues are related to fine subject details which 

might not be interesting for the recognition task, or through a practical approach 

by inspecting the recognition performances as the number of eigenvectors 
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increases. An appropriate distance threshold can be infer by inspecting the 

distances belonging to the two classes of subjects, to individuate the values 

yielding a good separation between authorized and non-authorized groups.  

For the latter, if a false positive image (eg. non face) passes all face detector 

classificator stages and is fed as input to Eigenfaces, it has to be managed 

evaluating if the image will be used for training phase, or for subject validation 

phase. In the training case, a false positive sample can be detected by calculating 

its face space distance with respect to an existing face subspace. If ε𝐹𝑆 
2 > 𝜃f  

namely the face space distance exceeds the defined threshold, the sample is 

successfully detected as a non-face and treated accordingly. In the subject 

validation phase, the false positive sample will be evaluated similarly to the 

training phase approach described above, with the additional task of requesting a 

new image to the source video stream, an almost effortless operation as the video 

stream provides a more than adequate amount of images with a frequency of 25 

frames per second. 

The Eigenfaces method has some known limitations, some of them being PCA 

direct consequences: it strongly relies on the direction of maximum variance to 

construct the auxiliary structures, but this could not be the best method for 

classification. In addition it assumes an underlying Gaussian distribution of the 

data, and most important its linear separability. If those conditions aren’t valid, 

the principal components may not approximate efficiently the data, resulting in 

a flawed face subspace. 

There’s also another issue directly related to PCA behaviour in following the 

directions of maximum variance. Suppose the set of images of a subject are taken 

with widely variable illumination conditions, PCA may parse this as the main 

source of variance, with the result of having principal components emphasizing 

the intrapersonal variability within a subject, rather than the extrapersonal 

variability between subjects. 

Other limitations concern the input face images format and variability, as 

illumination, face orientation and alignment changes between training set samples 

may affect the recognition performances. Different face scaling or sizes affects the 

performances even more considerably, as pixel correlation between images is lost.  
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As a general rule it is appropriate to train the model with a collection of images 

characterizing the variability of conditions, and uniform the input face 

proportions.  
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5. Experimental setup 

 

5.1 Hardware description 

 

The feasibility of proposed solution has been evaluated through a 

demonstrative system using face detection (Viola-Jones) and face recognition 

(Eigenfaces) algorithms, composed by the following hardware: 

1. DVC/IP, external entry panel equipped with VGA CMOS sensor camera, 

LED illuminator, ARM CPU with video encoding capabilities and call 

button, running a LTIB Linux distribution. 

2. XTS IP 7, internal video receiver equipped with ARM CPU with video 

decoding capabilities, 7 inches touchscreen, running a YOCTO Linux 

distribution. 

Both devices are POE powered and communicates through a set of proprietary 

and open IP based protocols. The external entry panel is responsible for digitize 

and, when necessary, provide additional light to brighten the environment and 

the subject face. Due to its wide angle lens configuration the recorded stream has 

to be linearly transformed with a de-warping filter according to a block stretching 

matrix, to adjust the frames proportions. The stream is then encoded by the 

DVC/IP on board CPU to 25fps H.264, and sent through RTP protocol to 

internal video receiver for detection, recognition and authorization phases. 

On the internal video receiver side, the H.264 stream is decoded into BGRA 

RAW (4 bytes: blue, green, red, alpha), with its frames being sampled and used 

as input data for computer vision techniques during both training and validation 

phases. The resolution of the video stream is limited as a result of the choice of 

the DVC/IP entry panel device with its VGA (640x480) camera CMOS sensor; 

while more powerful devices were available, this choice allowed to simulate the 

most common application case, with low quality and possibly noisy images used 

as input. 
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5.2 Faces dataset 

 

The face dataset has been generated by sampling the RAW stream, decoded 

from the received entry panel video. Two-dimension images of fourteen test 

subject have been gathered with different ambient lighting level, facial expression 

and combinations of both according to the table below; subjects are looking 

directly to the camera with their face perpendicular to the objective, in order to 

simulate the most common real world application use case. The dataset includes 

also variations of the same set of images, where subjects are using glasses to alter 

their facial appearance, having around 55 images per subject and a total of 780 

pictures in the dataset. 

 

 

Full environmental 

light, subject uniformly 

illuminated 

Partial environmental 

light, subject 

illuminated on one side 

No environmental light, 

subject illuminated 

from entry panel LED 

Neutral expression Neutral expression Neutral expression 

Closed eyes Closed eyes Closed eyes 

Smiling Smiling Smiling 

Looking in different 

directions 

Looking in different 

directions 

Looking in different 

directions 

Repeating a predefined 

sentence 

Repeating a predefined 

sentence 

Repeating a predefined 

sentence 

 

Table 5.2.1 Dataset structure for standard images  
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Figure 5.2.2 Some dataset sample images  

 

 

The number of pictures necessary to cover the given combinations may, at 

first glance, appear high for a consumer user willing to generate the dataset of its 

family members, but in fact only two to four properly recorded session (which 

includes all characteristic views) per subject should be necessary, as the camera 

sensor sampling rate is 25 frames per second. The extension of ambient lighting 

changes through the day also affects the number of necessary recording sessions. 

To simulate system real world usage, it has been decided to create a completely 

new dataset, instead of relying on one of the many already available. Moreover, 

one of Eigenfaces drawbacks consists in its susceptibility to face position and 

proportions, meaning those have to be invariant between training and test set, 

and the provided external entry panel camera uses a lens configuration which 

distorts the face appearance even after filter processing, thus results with mixed 

datasets may be biased. 



 

35 

    

 

Figure 5.2.3 Proportion differences between the generated dataset and the 

Faces94 collection 

 

 

5.3 Face recognition training set 

 

The training set for the experimental setup is generated from the face dataset 

resized to 90 x 90 and grayscaled, using an increasing number of eigenvectors 

(from 1 to training set size), to assess their impact on system performances and 

the overall score. A total of 111 pictures, corresponding to 14% of the faces 

dataset, or 35% of the first three subjects images, have been used for training set 

construction, while the remaining images and subjects compose the test set for 

the user validation phase. 

A face detection step using Viola-Jones framework is performed on the faces 

dataset to remove unnecessary details from the images (eg. background), since 

those do not contribute positively to subject identification. Since in the majority 

of cases subject will place itself in a central position with respect to the camera 

which is installed at eye level, face search area is limited to the upper central part 

of the input image, to minimize distracting elements such as other subjects, or 

face like objects. A backup search over the whole image is triggered in case no 

face is found in the limited area. 
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Figure 5.3.1 Face detection example, with search area and detection area 

(left), and detected face (right)  

 

 

 

      

 

Figure 5.3.2 Training set examples 

 

 

5.4 Face recognition test set 

 

The test set is a mixture of images from the faces dataset, images of other 

subjects and some non-face images. A total of 668 images are present in the test 

set, corresponding to 86% of the faces dataset; first 121, or equivalently 19% of 

the test set, are standard or altered samples from the authorized class of subjects 
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and the remaining are unknown subjects or non faces images. This partition 

structure of the test set has been chosen for simulating the most common real 

world use case, where the number of authorized subjects is far less than the other 

class; anyway it is necessary to have a reasonable amount of authorized samples, 

in order to avoid situations where the outcome of the analysis could be highly 

influenced by the population size. 

The face detection step has been performed on the whole dataset, to simulate 

false positives during face detection phase. 

A graphical summary of the experiment steps is reported below. 

 

 

 
Figure 5.4.1 Experiment steps  
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5.5 Face recognition training phase 

 

During the training phase, images from the training set are provided to 

Eigenfaces algorithm, to calculate the mean face and create a face subspace, the 

main output of this phase. Any element of the training set can be then compressed 

and reconstructed, by projecting it onto the calculated face subspace. 

 

 

 

 

 

Figure 5.5.1 A subset of the training set (top) , its projection and 

reconstruction on the face subspace (bottom) 

 

 

Since the face subspace vectors have the same dimension of the input pictures, 

they can be displayed as images called Eigenfaces, ordered from the largest to the 

smallest eigenvector, hence from largest to tiniest details of training set faces. 

 

 

 

 

Figure 5.5.2 The first six eigenfaces 
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5.6 Face recognition testing phase 

 

Once the face subspace has been created, face distance (or similarity) can be 

evaluated by projecting each test image on this subspace: this operation produces 

a set of weight per picture, which are compared to the training set weights using 

Euclidian distance. If the resulting values are less than the defined thresholds, the 

test image is associated with the closest training set image. Once evaluated the 

test images are considered belonging to “authorized” or “unauthorized” subjects 

classes. 

The resulting weight are also used to calculate the distance from test set image 

and the face subspace itself, by evaluating the Euclidian distance between the test 

set images and their reconstruction.  

 

 

    

 

  Figure 5.6.1 - Some test set images (left) and their reconstruction in the face 

subspace (right) using the first 30 eigenvectors  
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The obtained distances are used to discern each of the four possible outcomes, 

and act accordingly the following schema: 

 

 

Number Description Authorize 

1 Test image is a face and is a known subject   Yes 

 

2 Test image is a face and is an unknown subject   No 

 

3 Test image is not a face, but its reconstruction is a 

known subject 

No 

4 Test image is not a face, and its reconstruction is 

an unknown subject 

No 

 

Table 5.6.2 Outcomes for classification process  
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6. Experimental results 

 

The application of the Eigenfaces algorithm has been tested on the described 

test set, assessing its performance by increasing the number of Eigenvectors used 

to create the face subspace, from 1 to 111 (the training set size) with multiple 

runs and randomized training subject images position. The number of subjects in 

the training set, their face position and the distance threshold are instead 

invariant. 

A good classifier for the project intended goal is expected to avoid all False 

positive type of errors (authorizing an incorrect subject), while keeping the False 

negatives (not authorizing a valid subject) as low as possible. It is also important 

for the solution to be able to generalize the authorized subject facial features, in 

order to recognize properly those, when slightly variations or alterations are 

present. 

As a starting point, each test image has been considered to belong to an 

authorized subject, thus allowing access, if its reconstruction distance from the 

face subspace is less than 4.000 units, and distance from the closest training 

sample is less than 2.200 units. Those initial thresholds have been empirically 

determined by considering preliminary scores. The results are shown below using 

various graphical methods. 

The performances of the proposed solution shall be evaluated mainly in terms 

of number of errors on the test set, where a reconstructed face is considered 

incorrectly classified if: 

 

1- The original image is a known subject, but it is either classified as unknown 

subject or non-face, leading to a false negative 

2- The original image is an unknown subject, but it is classified as known 

subject, leading to a false positive 

3- The original image is a non-face, but it is either classified as face, known 

or unknown subject, leading to a false positive 

 

Although the focus of this chapter is on the final recognition performances, it 

is worth to note that the face detection phase took 1.25 seconds to process each 
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image for a total of 835 seconds for the 668 given images, with a 99.2% detection 

rate of which 0.8% are false positives. 

Figures 6.1a and 6.1b represent the precision of the Eigenfaces application on 

the given test set in terms of number of incorrect classifications or errors. These 

preliminary results shows that, while the algorithm performances are poor with 

few eigenvectors, it is able to improve in reconstructing and recognising the test 

set by using at least the ten largest eigenvectors, while performs similarly by 

increasing even more the amount of eigenvectors considered. The overall 

performances are anyway not acceptable as the percentage of errors is above 20% 

of the test set size, most of them belonging to the false positive type of error, 

resulting in non-authorized subject being able to access. Figure 6.1a shows the 

total amount of errors further subdivided in false positives and false negatives.  

 

 

 

 

 Figure 6.1a Comparison of number of errors on the test set 
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Figure 6.1b shows the data in terms of error percentage on the test set, where 

false positives percentage is calculated on the non authorized class samples and 

the percentage of false negatives on the authorized class samples only. 

 

 

 
 

Figure 6.1b Percentage of errors on the test set  

 

 

To investigate the causes of such high classification error the resulting scores 

of various test samples have been analysed. A subset of the test images is shown 

in Figure 6.2 exhibiting the details and scores of Eigenfaces method obtained 

using around 100 eigenvectors, namely the amount which minimizes the overall 

error. 

Subjects test images are divided in two sections; authorized are marked by a 

green box, while non-authorized by a red one. The images are then grouped in 

blocks of two, where for each test image (left) the corresponding closest detected 
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training sample is shown on its right side, with the distances from the closest 

training sample and the face subspace displayed on the bottom. The algorithm is 

able to classify all the provided test samples subset correctly, excluding the two 

highlighted in orange belonging to the low environmental light group of images. 

This is a known limitation of the Eigenfaces method, which is sensitive to lighting 

variations, and in this case it is incorrectly considering the amount of background 

“blackness” between images as a major source of similarity, rather than exploiting 

the subjects facial traits. 

 

 

 

 

Figure 6.2 Recognition result samples details  

 

 

The adopted approach for addressing this issue is composed of two 

improvements, image contrast enhancement and additional dedicated threshold.  
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Contrast enhancement consists in adjusting the images with the aim of further 

separating the face from the background, and highlight the face traits to make 

them emerge as the relevant information to consider. This is applied to both 

training and test set before being used as input for Viola-Jones detector, and 

consequently for Eigenfaces recognition phase.  

The modification is not indiscriminately applied on all the dataset, as contrast 

is enhanced only on images having an amount of illumination inferior to a certain 

threshold, which is calculated by looking at the mean value of normal and low 

light samples in defined areas, namely the first left column and top edges. The 

value of this “blackness” threshold has been set to 50, as the abovementioned areas 

have been found to have a pixel mean value of 100 in daylight images, and around 

30 in low light images. An example of the effect of its application on a face image 

is shown in Figure 6.3. 

 

 

 
Figure 6.3 Contrast enhancement result (right) on a test sample with 

highlighted evaluation spots (left) 
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Applying the contrast enhancement successfully results in an increased 

distance between non authorized test samples and training samples (Figure 6.4), 

but it doesn’t yield any direct effect on the classification performances, with 

percentage of errors remaining above 20%. Figure 6.5 shows indeed there’s almost 

no difference in percentage of errors between the initial approach and the runs 

with contrast adjustment. 

 

 

 

 

Figure 6.4 Effect of contrast enhancement on the mean distance between 

classes (low light samples) 
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Figure 6.5 Percentage of errors on the test set with contrast enhancement  

 

 

Since contrast enhancement results in a better separation between samples, 

it’s reasonable to suppose that it can be exploited to increase performances. By 

turning attention to the low environmental illumination images group, it emerges 

that the separation between those authorized and non-authorized subjects exists, 

even though the distance comes with a different proportion when compared to 

normal illumination samples. 
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This concept is shown in Figure 6.6, by plotting data coming from a sample 

execution of the system on the whole test set; low light samples are on the left 

side of the graph (blue and purple asterisks), and normal light on the right (green 

and red circles). To exploit this, the two main subject classes are furtherly 

splitted, by configuring a threshold for normal illumination, and adding a lower 

one for darker samples. 

 

 

 

 

Figure 6.6 Distances from authorized class samples  

 

 

The threshold for distances from authorized training samples, and the face 

space distance for the low illumination images group are both set to 1500 units. 

The resulting classification performances are sensibly improved thanks to this 

addition, as the system manages to separate correctly the two main classes 
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avoiding the false positives issue caused by low light test images. Figure 6.7a 

illustrates the reduced number of errors of the recognition phase. 

 

 

 

 

Figure 6.7a Comparison of number of errors on the test set with enhanced 

contrast and separate thresholds 
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The percentage of errors shown in Figure 6.7b has dropped from 25% to less 

than 1%, all due by false negatives errors which accounts for less than 5% of the 

authorized subject samples. 

 

 

 
 

Figure 6.7b Percentage of errors on the test set with enhanced contrast and 

separate thresholds 
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Figure 6.7c is an overall comparison in terms of total number of errors between 

the initial approach, and its revised double threshold version. 

 

 

 
 

Figure 6.7c Comparison of total number of errors between the two approaches  
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Details on updated results on the previously selected subset of the test images 

when the revised approach is applied are shown in Figure 6.8. 

 

 

 

 

Figure 6.8 Recognition result samples details with enhanced contrast and 

separate thresholds 
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Beside the recognition performances on the test set, it is interesting to dwell 

on some internal results of the experiment, obtained with both contrast 

enhancement and separate thresholds improvements applied. 

Figure 6.9a represents the mean distance between images reconstruction and 

the face subspace; here the number of eigenvectors directly impacts the 

performances of Eigenfaces method, contributing to the definition of more precise 

face subspace boundaries.  

 

 

 

 

Figure 6.9a Comparison of mean distances from the face subspace  
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Also, the number of eigenvectors necessary to define a face subspace with good 

performances in approximating the authorized subjects correctly is modest. As 

shown in Figure 6.9b, using previously configured thresholds almost all face 

images are inside the face space, even with a modest amount of eigenvectors. 

 

 

 

 

Figure 6.9b Number of faces outside face subspace for the two classes  
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Figure 6.10 shows how the number of eigenvectors contributes to the distance 

between test and training images (authorized subjects), with both classes 

projected on the face subspace. It is a measure of how well the Eigenfaces method 

performs in approximating the images on the lower dimensional face subspace, 

and can be interpreted as training and test errors. It is not unexpected to observe 

that by increasing the number of eigenvectors the error decreases, as the resulting 

subspace describes with increasing precision the given samples. 

 

 

 

 

Figure 6.10 Test samples mean distance from training set samples 

 

 

Anyway increasing the number of eigenvectors introduces overfitting, which 

can be deducted by looking at the eigenvectors images in Figure 6.11, or 

eigenfaces: while largest eigenvectors describes significant facial features, smaller 
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ones shows only fine details or even noise, which generally speaking could 

contribute negatively to the ability of generalize to previously unseen samples. 

Anyway in this specific application environment this is not necessarily an 

inconvenient, as the number of small eigenvectors or the amount of subject 

specific details to consider can be seen as a tuning parameter between the 

generalization capacity of Eigenfaces and a more tailor-made instance of the 

discriminator. 

It is also worth to note from Figure 6.11 that Eigenfaces seems to deviate from 

uniform grey where some facial feature differs among the set of training faces, as 

a sort of map of variations between faces. 

 

 

 

Figure 6.11 All the Eigenfaces calculated from the training set samples  
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Figure 6.12 Variance explained by eigenvectors 

 

 

Beside this specific application considerations, a reasonable way of searching 

for the optimal number of eigenvectors to describe the face space is to look for 

the location along the decreasing eigenspectrum, where the eigenvalues drop 

significantly. By looking at Figure 6.12 more than half of the training set variance 

is explained by the first 15 eigenvectors, while the following convey less and less 

variance. Their contribution is anyway remarkable with respect to the system 

performances also considering the expected limited impact on the system training 

time as shown in Figure 6.13, as the best recognition performances are achieved 

using around 90% (or more) of the available eigenvectors or training set. 

It is also evident from Figure 6.13 that roughly from 95% to 75% of the face 

recognition execution time, depending on the amount of eigenvectors used, is 

expected to be spent in the auxiliary tasks of the training phase, such as accessing 
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to the video stream to collect frames, or save them in image files. Increasing the 

number of eigenvectors has moderate effect on the system training speed, and 

negligible impact on the testing phase of a subject. The Viola-Jones detection 

time is not shown in the Figure 6.13 for scaling purposes, moreover because the 

typical training set for this application is expected to be much smaller than the 

one considered in this paragraph and it could be misleading to consider it in the 

below graph. The amount of time estimated for the calculations can also be used 

as a starting point for the claimant company, in terms of evaluating the 

requirements for next generation hardware design. Since the integration on the 

final device is not yet developed at the time of writing, the execution times were 

simulated on another machine with plotted values properly scaled to reproduce 

the internal video receiver speed. The scaling factor has been calculated by 

evaluating the performances of both machines CPUs in matrix multiplication 

operations. 

 

 
Figure 6.13 Execution time simulation 
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Figures 6.14 and 6.15 shows from two different perspectives how increasing 

the number of eigenvectors to describe the face subspace improves the ability of 

the algorithm to separate classes, although smaller eigenvectors don’t contribute 

much to the recognition. In Figure 6.14 the minimum distance from an 

authorized subject training sample for each test sample is plotted, having on the 

left of the dashed line the authorized subject partion of the test set.  

 

 

 

 

Figure 6.14 Distances trends for test set samples 
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In Figure 6.15 the worst samples of the two test set partitions are shown, 

with the largest “margin” between them corresponding to the highest amount of 

eigenvectors, but with an absolute value in term of errors almost identical to the 

one obtained with the amount of eigenvectors yielding the least errors, as was 

show in Figure 6.7, and by dashed red line in Figure 6.12. 

 

 

 

 

Figure 6.15 Distances between classes worst samples  
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7. Conclusion and future work 

   

It has been shown through a proof of concept that it is possible to build a 

system capable of identify and authorize a group of subjects through facial 

recognition, running on embedded hardware with good performances in terms of 

precision, simulated execution time and speed under variable but controlled light 

conditions. Moreover the proposed solution answered to all of the technical 

requirements and constraints requested by the claimant company, as well as the 

majority of the other demands this analysis is meant to answer to. 

The Viola-Jones and Eigenfaces algorithms were chosen as the facial detection 

and recognition methods, being compliant with the constraints posed by the 

application case, namely a reduced size training set, a lightweight calculation 

process and the capability to run on low power hardware. Some of the known 

Eigenfaces drawbacks have been addressed through the introduction of 

preliminary processing, in particular the face detection step using Viola-Jones 

method, while others have been prevented by the nature of the application type, 

like the frontal appearance of subjects, their willingness to be identified, and the 

reduced amount of subjects to identify due the residential type of application. 

The system has been trained and tested on a dataset of 780 images, specifically 

generated for evaluating the video intercom application case, achieving an initial 

recognition performance of around 75%. This score has been enhanced by adding 

two specific improvements for low light images, namely contrast enhancement to 

emphasize the facial traits, and a dedicated threshold to achieve correct 

classification within this subclass. The final resulting pipeline is able to 

discriminate successfully more than 99% of the test set composed of 668 samples, 

where recognition errors belongs to the false negative detections type only, which 

compared to false positive errors is a more acceptable issue given the project 

environment. 

There are several situations and improvements to consider for improving the 

proposed system and extend its suitability to a wider applications and conditions 

range, for example using larger datasets and cross-validation techniques to obtain 

a better estimate of the system performances, or extending the authentication 

procedure to manage the case when more than one subject is present in front of 

the camera. A further analysis to consider is the impact on recognition 
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performances when complexities like occlusion are extensively present (for 

example due to clothing) or when a larger group of authorized subject has to be 

recognised. 

An improved and uniform illumination can better address the low light issues 

of the chosen methods, especially Eigenfaces, by acting at its root cause, for 

example by providing the external panel with a variable power light source, 

regulated accordingly to the time of the day or environment light level. 

Eigenfaces performances can also be improved by using a different distance 

concept, such as Mahalanobis distance instead of the traditional Euclidian 

distance, which measures the ratio between the squared distance and the 

corresponding variance. It has been shown by Yambor et al. ([24]) that 

Mahalanobis distance proves superior when 60% of the eigenvectors were used. 

Experiments with more recent face recognition methods can be carried out, to 

determine if alternative algorithms can comply with the system constraints and 

improve its overall performances, or pave the way to other application cases. 

Further developments of the prototype and their declinations on finished 

products may also help in understanding how to design a new device with native 

face recognition features, as for example in real world applications it is advisable 

to ensure the system capability of discern between real subjects presenting in from 

of the camera and photos of the same subjects, by introducing an identification 

routine or use a capture device with 3D reconstruction capabilities.  
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