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Abstract

Proteins facilitate most biological processes in a cell, including cell growth, prolifer-
ation, catalyzing metabolic reactions, replicating DNA, motility, and intercellular
communication. Nevertheless, proteins seldom act alone. Many times they team
up into “molecular machines”, called protein complexes, to undertake biological
functions at cellular and systems levels.

Given the assumption that proteins perform their tasks by interacting with each
other, determining the interactions is a task of great importance. This realisation
results in Protein-Protein Interaction (PPI) networks. These networks can be
represented as undirected graphs, in which nodes represent proteins and edges
represent interactions between pairs of proteins. These networks allow us to tackle
the problem of complex prediction with the aid of clustering techniques.

Unfortunately most of the standard clustering algorithms present in literature
suffer from several limitations and are not ideal for PPI networks. Some of them
operate only on unweighted graphs while others partition the set of input objects
forcing each element to belong to no more than one cluster. However it is well
known that proteins may belong to more than one complex, and therefore the
corresponding nodes may belong to more than one cluster.

In this work we applied the Dominant Sets framework, a recent method whose
purpose is to provide a general formulation of the clustering problem and an ele-
gant way to address it. It addresses the clustering problem from a novel point of
view, which is provided by game theory. The advantages of this game-theoretic
perspective are many, thus making Dominant Sets a very general framework, which
can be applied in a wide rage of scenarios, including protein complex prediction. It
allows handling weighted and unweighted data and detecting overlapping clusters.

Our results show that the quality of protein complexes predicted by Dominant
Sets algorithm is better than that obtained by other standard clustering tech-
niques, sometimes even more accurate, than that achieved by ClusterOne -the
state of the art for detecting protein complexes.

Moreover the Dominant Sets algorithm shows a high tendency to detect dimers,
namely protein complexes of size two. To find such small complexes is a hard task
and many authors agree that standard clustering algorithm for PPI underestimate
their number. To the best of our knowledge, this is the first attempt at defining
a method with the express aim of finding dimers, which raises the need to define
an evaluation methodology to validate the putative dimers produced by Dominant
Sets.
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Chapter 1

Protein Complexes

1.1 Introduction

In the past few decades a huge amount of research regarding proteins of all organ-

ism has been produced. However, proteins rarely act alone and, in most cases, in

order to perform their task in a biological system they work in groups.

These particular groups of proteins are called protein complexes. Proteins

complexes perform many crucial tasks within living beings, including catalyzing

metabolic reactions, replicating DNA, and transporting molecules from one place

to another. Being workhorses that assist a vast amount of biological processes,

their detection is needed for expanding our knowledge about cellular organiza-

tion and function. Their importance is reflected in the volume of recent research

conducted in the field of protein associations.

Only recently, Protein-Protein Interaction datasets have been proposed due to

the development of experimental procedures such as AP-MS and affinity purifica-

tion. These experiments produce weighted graphs, where each node represents a

protein, each link represent a possible interaction between proteins, and weights

on edges are related to their interaction confidence values.

1



1.2 Proteins and Proteins Complexes 2

1.2 Proteins and Proteins Complexes

Nowadays, it is possible to list the genes and the relative proteins for an increasing

number of organisms. The knowledge gathered in the past decades about cell bi-

ology, molecular biology, biochemistry, structural biology and biophysics allowed

us to expand our comprehension of the function and molecular properties of in-

dividual proteins. This knowledge is maintained into vast protein databases like

UniProt[6, 31].

However, proteins rarely act alone. In most of the cases they aggregate in

“molecular machines”, called protein complexes, that perform biological functions

at both cellular and system levels.

Proteins complexes assist most of the biological processes in a cell, including

gene expression, cell growth, proliferation, nutrient uptake, morphology, motility,

intercellular communication and apoptosis[61]. Moreover, they mediate biochem-

ical phenomena such as enzyme cooperativity and signal transduction. Therefore,

in order to fully understand the dynamics of biological processes within an organ-

ism it is not sufficient to just list its proteins. Indeed, it is necessary to determine

all the physical interactions between them.

Hence, it is not surprising that, even if until the late 1990’s the research con-

cerning the analysis of protein function was focused on single proteins, nowadays

most efforts are focused towards understanding how proteins interact with each

other. It is clear that, also considering a single protein, to fully comprehend its real

function in an organism, it is necessary to study it in the context of its interacting

partners.

The field studying proteins is often called proteomics, while with the term

interactome we usually refer to the complete map of protein interactions that

can occur in a living organism at any time. As pointed out before, interactome

mapping is one of the main topics of current biological research, in the same way

as the “genome” projects were 20 years ago[17].

However, there are remarkable differences between proteome and genome. In-

deed, while the former is quite static, the latter is quite dynamic, changing during

the development of an organism and in response to external stimuli[17]. Therefore,
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1.3 Why to detect Protein Complexes from PPI networks 3

Figure 1.1: A PPI network and a protein complex[44]

Protein-Protein Interactions represent one of the most complex levels of structural

organization in biological molecules.

1.3 Why to detect Protein Complexes from PPI

networks

We previously highlighted that proteins rarely act alone and they frequently bind

with each other in sophisticated groups called protein complexes, each of which

performs one or more precise biological tasks.

The existence of a long list of biochemical phenomena performed by protein

complexes in each living being makes clear why they are so important. Studying

them in detail corresponds to understanding how they are built and how they

work, allowing to expand our knowledge regarding biological systems.

Moreover, it is worth emphasizing that a better comprehension of their roles

allows us to realize how a protein complex disorder can affect the biological pro-

cesses in which it is involved, or vice versa. It is therefore not surprising that

numerous recent research efforts have shown that proteins are strongly related to
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diseases. Indeed, diseases are usually caused by an erroneous production of some

protein complex.

For example, if a particular protein of a complex is not produced, or is produced

in an incorrect amount, a fraction of all the complexes in which it is related could

be affected negatively. Moreover, it is worth emphasizing that physical interaction

between proteins depends on their physical structure. Hence, if for some reason

a single protein of a complex has the wrong shape, it may not be able to bind

with the other proteins in the complex. This issue can be further complicated by

the fact that changes in shape can be position-specific. As a result, the proteins

interacting with an altered protein can generate a protein complex that is unable

to perform its original task in an appropriate manner. Minor corruptions of these

sophisticated macromolecules may therefore lead to unpredictable results.

The great importance of protein complexes and their relation to (human) dis-

eases has lead to the development of a new paradigm to deal with diseases called

network medicine. Although correlations between protein complexes and com-

plex diseases have been suggested in the past, only recently a sufficient amount of

protein complexes have been identified.

This highlight the essentiality of studying and detecting protein complexes.

1.4 Yeast PPI networks

Protein-Protein Interaction networks represent networks where each node is a pro-

tein and there is an edge between a pair of proteins if they interact. Often, weights

representing interaction confidence values between pairs of proteins are also pro-

vided.

Since each living organism has a different proteome, namely a different set

of proteins, it is possible to outline a different PPI network for each of them.

Typically, since more than one study can be performed on a single organism, for

some living beings more than one PPI network is available.

However, the literature presents in depth studies for the proteomes of only very

few organisms. The yeast Saccharomyces cerevisiae is probably the best studied

of them. Nevertheless, even if all its 6,000 proteins are known, the total number

of Protein-Protein Interactions is only estimated. In fact, of all the 28,000 inter-
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actions estimated only a small part are contained in manually curated datasets.

In this manuscript, as has been the case for most previous work, we will operate

using datasets and gold standards of yeasts. [51].

Figure 1.2: Yeasts are one of the most widely used organisms for genetic studies
as cancer research. In the figure is reported a photo of the yeast Saccharomyces
cerevisiae. Other species, such as Candida, are opportunistic pathogens and cause
infections[46]

There are several reasons for using dataset of yeasts proteins rather than human

ones to assess the quality of clustering algorithm for PPI. Firstly, the set of Protein-

Protein Interactions in yeasts is more simple.

For example, while more than 95% of human genes are interrupted by an intron,

only less than 5% of all yeast genes contain an intron[51]. We briefly recall that

genes encode proteins and that introns and exons are portion of gene sequence.

The various portions of a gene that encode for a protein are called exons, and they

are separated by sequences called introns.

This gene structure allows to build different proteins merging different exons

of a gene. This process is known as alternative splicing as opposed to the scenario

where there are no introns and only one splice can be performed. When a gene

has only one splice, a single gene codifies for a single particular protein. When,

instead, a gene is subdivided into multiple coding sections, these can be merged

in various ways. Consequently, single genes may encode for multiple proteins.
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1.5 Protein Protein Interactions 6

Figure 1.3: An example of alternative splicing[66]. In this figure the coloured
pieces represent exons while the white gaps represent introns. As shown, different
combination of the exons leads to alternative splices, and hence to different proteins

The presence of only a limited amount of introns within yeast genes with respect

to those present in human genes, implies that alternative splicing is rarely seen to

occur in this type of eukaryote. Therefore, in most cases, each yeast gene encodes

for just one protein. This is one of the main reasons that often lead researchers to

use yeast datasets to validate the results of a clustering algorithm.

1.5 Protein Protein Interactions

During the last few years we saw a huge development of high-throughput exper-

imental technologies. This is one of the main reasons that lead to a considerable

increase in the number of detectable Protein-Protein Interactions. At the same

time remarkable progresses on large-scale technologies have taken place, and small-

scale experimental datasets have been published. Moreover, public data reposito-

ries have been made available, with the aim of integrating information from both

large and small scale experiments published in the literature.

Commonly with the term Protein-Protein Interaction we refer to physical in-

teractions between proteins that occur in a cell of a living organism. However, in

order to be included as a PPI, the physical contact between proteins has to be sig-

nificant, otherwise a PPI network would include the set of all proteins that attach
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1.6 Types of Protein-Protein Interactions 7

each other by chance. It is also necessary to exclude all interactions involved in

common scenarios during its life cycle, as when it is being made, folded, quality

checked or degraded. For example, all proteins at one point “touch” the ribosome,

many “touch” chaperones and most have at one point contact with degradation

machinery[17].

As a result, the basic definition of protein interactions can be viewed as the

physical interaction between proteins, while the definition used to build PPI net-

works has to consider a subset of more restricted cases. Usually, the interaction

interface is considered in order to establish the nature of the interaction. Indeed,

the interaction interface should be intentional and not accidental, namely the re-

sult of specific biomolecular events or forces. Moreover the interaction interface

should be non-generic, namely the bind sites should be evolved for specific pur-

poses, distinct from generic functions such as protein production or degradation.

Another key aspect for defining Protein-Protein Interactions is their biological

context. Indeed, not all the possible interactions occur in a particular cell at any

time. As previously mentioned, the proteome is dynamic and, also considering

the subset of interactions discussed above, a physical bind between proteins can

be static or permanent. It is well known that the cell machinery faces continuous

turnover and reassembly, during which some proteins are folded and discarded.

Hence, while some protein complexes having strong chemical bonds are stable

and static, others are built only to perform transient actions. For example, some

proteins are built only with the aim of activating the gene expression process[17].

Thus, protein interactions do not depend only on their interaction interface but

also on cell type, cell cycle phase and state, developmental stage, environmental

conditions, protein modifications, and presence of other binding partners.

1.6 Types of Protein-Protein Interactions

As pointed out before proteins attach each other physically depending on their

shape. In order to fold together and build a macromolecule their shape has to be

chemically complementary. Indeed, proteins bind to one another at specific sites

through a combination of chemical bonds as hydrophobic bonding, van der Waals

forces, and hydrogen bonds.
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1.7 Analysing and determining PPI: Binary and Co-Complex Methods 8

Moreover, the interaction interface can consist of small binding clefts of few

peptides, or large surfaces made up by hundreds of amino acids. Clearly, the

strength of the interactions depends on the type of chemical bonds involved, as

well as on the size of the binding sites.

As a result protein interactions can be divided roughly into stable and transient

interactions. Sets of proteins bound together in a protein complex by stable inter-

actions are static and they perform their activities without being built depending

on the scenario. Therefore they are always present in the cell.

On the other hand, protein complexes bound by transient interactions are

built and discarded every time the cell needs to perform some particular task.

Therefore, transient interactions are temporary and frequently require a specific

set of conditions or cellular changes to occur.

Due to their flexibility, protein complexes using transient interactions control

the majority of the cellular processes. Protein modification, transport, and cell

cycling, are only few of cellular processes performed by protein complexes built by

transient interaction between proteins.

1.7 Analysing and determining PPI: Binary and

Co-Complex Methods

A combination of various methods and techniques is usually necessary to detect

and validate protein interactions. In this section we present a brief review of some

of the most relevant methods currently applied.

As we pointed out before, the recent development of the field of proteomics was

also due to the large amount of innovative methods for detecting Protein-Protein

Interactions developed. Several methods and techniques to discover and validate

protein interactions are available, each of which has strengths and weaknesses.

We can classify these approaches in more than one way. For example, they can

be classified based on the scale of the experimentation. Indeed, we can determine

proteins interactions by using large or small scale experiments.

Another common way to classify them is by looking at the type of PPI data
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produced. Using this criteria two main technologies have been proposed: binary

methods and co-complex methods.

A technique is called binary if it measures the direct physical interaction be-

tween pairs of proteins. On the other hand a technique is a co-complex method if

it measures the physical interactions among groups of proteins, without providing

a measure of interaction between each pair of proteins. Hence, it is worth empha-

sizing that the latter considers groups of interacting proteins without specifying if

the interaction of each protein with another is direct or indirect[17].

Intuitively, the results produced by a co-complex method are conceptually dif-

ferent from those detected by a binary method. It turns out that a binary inter-

pretation cannot be assigned directly to data derived by a co-complex technique.

Usually, an algorithm or a complex model has to be applied in order to translate

data measuring the interaction among groups of protein into pairwise interac-

tions[26].

Marc Vidal, a geneticist at the Dana-Farber Cancer Institute in Boston, used

the simple example of a football match in order to point out the discrepancy of

these two approaches. Lets image a set of referees watching a football match.

“The pull-down mass-spectrometry approach will show you the players, referees

and field, but not who is passing to whom and in what direction the ball is

travelling,” he says. “This is where a binary approach comes in.”[8].

In the figure 1.4 is shown the difference between binary and co-complex method

for Protein-Protein Interaction detection. In the left side of the picture are reported

the true interactions occurring between 6 protein in a cell. In the right side of the

figure are represented two network, one on top derived by a binary method, and

the other returned by a co-complex method.

By finding pairwise interactions the binary method produces a network where

each link really occurs. While, the group detected in the right bottom panel by

a co-complex method is composed by a group of proteins that interact. However

it does reflect if two proteins of the group interact directly or indirectly. Giving a

binary interpretation of this group of interacting proteins we mark with a X the

deduced links that do not occur.
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Figure 1.4: Binary and Co-Complex methods to analyse Protein-Protein Interac-
tion[17]

The most widely used binary methodology for finding Protein-Protein Interac-

tions is the Y east-Two-Hybrid method, also called Y2H. While the most used co-

complex technique is Tandem Affinity Purification coupled to Mass Spectrometry

(TAP-MS). These two techniques are applied in large scale investigations. An-

other common co-complex approach, based on protein antibody recognition, is

co-immunoprecipitation (Co-IP).

1.7.1 Binary Methods

Yeast Two-Hybrid (Y2H) Method

One of the best known binary approaches for finding protein interactions is the

Y east-Two-Hybrid method. This molecular biology technique is widely used with

the aim of testing physical interactions between proteins or a single protein and a

DNA molecule. Its name is due to the fact that a genetically modified yeast strain

is used.

In order to verify an interaction between two proteins, A and B, the method

proceeds as follows. A functional transcription factor is divided in two pieces,

referred as DNA-binding domain (BD) and activation domain (AD).

In the next step the BD is fused to protein A, often referred as bait protein. It

is worth emphasizing that the bait protein is usually a known protein for which we
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are seeking new interaction partners. Protein B, the prey protein, can be a single

protein or a library of proteins for which we are testing the interactions with the

protein A. This B protein is fused to the AD.

As pointed out before this technique is applied inside the nucleus of yeast,

thus both proteins fused with the relative piece of the transcription factor are

introduced in the nucleus. If those two proteins will interact they will bind each

other. Given that AD and BD are fused to proteins A and B, respectively, the

two pieces of the transcription factor will be indirectly connected by the binding

between bait and pray.

The key point of this scheme is that, in most eukaryotic organisms, transcrip-

tion factors can function in proximity of each other without direct binding. This

means that even if the transcription factor was split into two fragments, it can still

activate the transcription process when its two fragments are indirectly connected.

Therefore, if the two proteins interact, the two pieces of the transcription factor

will be close together, leading the expression of a particular reporter gene included

in the yeast stand. This process can be detected because the transcription of

the reporter gene will result in a specific phenotype. In this way, a successful

interaction between the fused protein is linked to a change in the cell phenotype[71].

A high-throughput variant of this method is also available to study protein

interactions. Unfortunately, the application of this technique in large-scale exper-

iments is very expensive in terms of time and cost.

Protein-Fragment Complementation Assay - PCA

Another approach for identifying Protein-Protein Interactions, similar to the Y2H

method, is the P rotein-fragment Complementation Assay, also known as PCA.

In this method each one of the proteins of interest, called again bait and prey,

is covalently linked to an incomplete fragment of a third protein called reporter.

The interaction between the bait and the pray proteins brings the fragments of

the reporter protein close together, allowing them to form a functional reporter

protein.

The activity of this functional reporter can be measured. Moreover, differently

from the Y2H method, it provides a direct read-out that is not dependent on
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Figure 1.5: Yeast Two Hybrid System(Y2H)[10]. A. The pray protein Y is at-
tached to the transcription factor known as Activation Domain (AD), while the
bait protein X is attached to the DNA-binding Domain (DBD; referred to as BD
in text). B. If the two proteins bind with each other the RNA polymerase II can
bind the transcription factors and transcribes the reporter gene.

the transcription of another gene. Many different reporters can be applied. One

example of function reporter protein used is the Yeast Gal4, and it is also used in

classical yeast two-hybrid system. Therefore, the Y2H method is, in practise, an

archetypical PCA assay[70].

Figure 1.6: Protein Complementation Assay (PCA)[70]
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1.7.2 Co-complex approaches

Tandem Affinity Purification - (T)AP-MS

Tandem Affinity Purification, also called TAP method, allows high throughput

identification of protein interactions. In contrast to the Y2H approach its accuracy

can be compared to that of small-scale experiments. Another important difference

with the Y2H technique is that the interactions are detected within the correct

cellular environment[17].

However, following the TAP method it is necessary to apply two steps of protein

purification. These two steps avoid the detection of transient Protein-Protein

Interactions[69].

It is worth emphasizing that TAP experiments were performed with the aim of

building the Krogan et al. (2006) [34] and Gavin et al. (2006) [22] datasets. Such

datasets, which we also used in this work, used the TAP method to a genome-wide

scenario with the purpose of providing updated protein interaction data for yeast

organism.

In the TAP method a protein, called bait protein and tagged with a particular

molecular marker, is used to catch or “fish out” a group of proteins called pray

proteins. In the following step a biochemical technique, known as “pull-down”,

is used to separate them from the mix. What takes place is a co-purification of

protein groups.

It is worth emphasizing that the pull-down assay is used for two purposes.

Indeed, it can be used to confirm the existence of a Protein-Protein Interaction

predicted by other research techniques, or it can be applied as an initial screening

assay for identifying previously unknown Protein-Protein Interactions.

Co-immunoprecipitation - Co-IP

Once having identified that two proteins interact with each others, using one of

the methods presented in the previous sections, it is often necessary to verify their

binding by applying additional methods. Indeed, all the methods presented so far

count a certain amount of false positives and false negatives during the detection

of Protein-Protein Interactions.
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Figure 1.7: Pull-Down technique[61]

Co-immunoprecipitation (Co-IP) is one of the most widely used methods for

verifying PPIs. Therefore, it is worth emphasizing that it is not a screening ap-

proach, and it only checks interactions between suspected interaction partners.

Moreover, immunoprecipitation experiments reveal direct and indirect inter-

actions. Therefore, given two proteins, a positive result does not specify if those

proteins interact directly or indirectly[7].

This assay is very similar to that of TAP, with the difference that in CO-IP an

antibody is used instead of a bait protein.

With the aim of understanding better the principles of co-immunoprecipitation

(Co-IP), we introduce the immunoprecipitation (IP) method.

Its principle is very straightforward and it is shown in figure 1.8. A particular

antibody is used together with the first input protein, called the target protein.

This antibody and the first protein are used joined together in a sample, such as
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a cell. The cell acts like a proteins mixture, and if the first protein interacts with

some other proteins in the mixture these will attach to one another. The resulting

complex is called immune complex and it is also attached to the antibody.

Figure 1.8: Immunoprecipitation Technique [61]

The immune complex is then captured, or precipitated, on a beaded support.

The antibody-binding protein is immobilized on that support, and any proteins

not precipitated on the beads are washed away. After washing of the beads, the

antibody, the bait protein and all the proteins associated to that bait are eluted by

boiling. The bound proteins can then be identified by Mass Spectrometry (MS).

Co-immunoprecipitation is an extension of IP that differs from it because, while

the latter is focused on an antigen, the former is focused on the interacting proteins

[61].
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Figure 1.9: Co-Immunoprecipitation Technique(Co-IP) [61]

1.8 Gene Ontology

The Gene Ontology is one of the most relevant projects in bioinformatics. It

started in 1998 with the aim of providing a consistent description of gene prod-

ucts in different databases. Indeed, one of the main issues in biology is that the

nomenclature for genes and their products is often divergent, even when the ex-

perts appreciate their similarities. Such issue is further complicated by the fact

that more than one name or identifier is frequently associated to each gene.

A simple example made by the authors of Gene Ontology involves a group

of biologists searching for all the proteins involved in bacterial protein synthesis.

Some databases could describe those proteins as molecules concerning “transla-

tion”, while others could use a different, but functionally equivalent, terminology

as “protein synthesis”[16].

In order to provide interoperability among genomic databases the Go consor-

tium developed the Gene Ontology (GO). The goal of this consortium is to produce

three structured species-independent vocabularies, called ontologies, describing the
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roles of genes and gene products in any organism. GO describes genes and pro-

teins in terms of the biological process in which they are involved, the cellular

components in which they act and their molecular functions.

Therefore, genes and proteins are described in three vocabularies using the

three following categories, also known as Categories of GO or GO Domains :

• Cellular component ;

• Molecular function;

• Biological process.

The molecular function of a gene product is its set of biochemical activities

at the molecular level. It describes the function performed by a protein without

any spatial or temporal specifications. Examples of broad functional terms of this

ontology are “enzyme” and “transporter”.

Cellular component refers the part of a cell, or its extracellular environment,

where a gene product performs its activities.

A biological process represents a list of biological events. It may sometimes be

difficult distinguish biological process from molecular function, but in general the

former has more than one step.

It is worth emphasizing that the Gene Ontology project does not have the aim

of unifying biological databases. Indeed, GO is not a database of gene sequences,

but rather it provides an abstract nomenclature in order to describe how proteins

act in a cellular context.

1.8.1 Ontologies and GO Terms

The structure of an ontology resembles the current representation of our biological

knowledge. Each one of the three ontologies presented so far is composed by a

set of GO Terms. Each GO Term can be seen as an attribute of some particular

gene or gene product. For example, the GO Term “GO:0006412” is a term of the

ontology Biological Process and refers the process known as “translation”. Each

GO Term has several related fields as ID, name, description, synonymous, and

relationships with other GO Terms.
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Hence, the ontologies describe terms and relationships between terms. GO

Terms are connected as nodes of a directed acyclic graph, thus all the connections

between a term and its parents and children are known. The relationships used are

directed because, for example, a mitochondria is an organelle but not all organelles

are a mitochondria.

Each ontology has a hierarchical structure in which child terms are more spe-

cialized than parent terms. An example of relationship between GO Term is pre-

sented in figure 1.10.

Figure 1.10: Chart of the GO Term GO:0006412[16]

Using the various terms form each Gene Ontology, a particular gene or gene

product can be annotated to several levels depending on the knowledge available.

In this way GO provides high flexibility, allowing to narrow and widen the focus

of the user’s query.

Moreover, for each gene and gene product annotated with a GO term the true
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path rule holds. The true path rule states that “the pathway from a child term all

the way up to its top-level parent(s) must always be true”[16]. Hence, a protein

annotated with a specific GO Term would also be annotated with all its ancestors.

For example, a protein annotated as “oxygen binding’ is also annotated as

“binding” because the latter GO Term is a parent of the former.

1.9 Gold Standard for protein complexes

With the aim of assessing the performance of a clustering algorithm applied to

PPI networks it is necessary to compare its predicted protein complexes with a set

of known interactions. These kind of sets are called gold standards. Some of them

are manually curated and widely applied in the literature, while others contain

both manually curated and computationally predicted complexes.

During the past years the Munich Information Center for P rotein Sequences

(MIPS) S. cerevisiae Protein-Protein Interaction dataset has been applied in sev-

eral analysis as gold standard reference[73] because of its quality and compre-

hensiveness. Therefore, we consider the MIPS interactions as a gold standard.

Moreover, following the guidelines of [44], we used a version the information of

Saccharomyces Genome Database (SGD) to provide an additional gold standard.

We compared the predicted complexes detected by the various clustering algo-

rithms with these two reference complexes. A brief review reporting the versions

used is reported in the table 1.1.

Source Gold
Standard

Version Notes

MIPS [41] 18 May 2006
We kept all MIPS categories containing
at least two proteins as protein com-
plexes

SGD [29] 11 Aug 2010
Gene Ontology (GO)-based protein
complex annotations from SGD

Table 1.1: Gold standards used for protein complexes
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1.9.1 MIPS

The MIPS dataset is a catalog organized hierarchically. Each category can contain

subcategories extending at most five hierarchy levels. An example of protein com-

plex that extends five hierarchy levels report the identifier 510.190.10.20.10 and it

is a multifunctional coactivator that regulates transcription by RNA polymerase

II.

It is worth emphasizing that not all the MIPS categories correspond to com-

plexes; in certain cases they may be a set of related complexes. For example, the

MIPS identifier 510.180 does not represent a complex, but rather it corresponds

to all “DNA-repair complexes”.

As suggested in [44], in order to avoid selection bias, we consider all the MIPS

categories containing at least three and at most 100 proteins as protein complexes.

Moreover, we excluded the MIPS category 550 and all its descendants, because

this category correspond to unconfirmed protein complexes that were predicted by

computational methods.

1.9.2 SGD

The Saccharomyces Genome Database (SGD) provides biological information for

the yeast Saccharomyces cerevisiae. It reports GO annotations for all the yeast

proteins. Providing these annotations for each protein it is possible to know its

function and the cellular component where the protein performs its activities.

Following the approach used in [38] and [44], we used these annotations to create

a dataset usable as gold standard.

The basic idea is mapping each protein into a protein complex using GO an-

notation. Three tools are necessary for this task:

• the mapping of yeast genes and proteins to GO terms[29];

• the GO structure [3];

• an inference engine to find proteins using a set of GO inference rules;

The engine used is available on [68], and taking as input the standard GO in-

ference rules it allows to find all the terms that are descendants of a particular GO
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term. Hence, running it using the relation “is a” with the GO term corresponding

to “protein complex” is it possible to find all the annotations related to protein

complexes. Therefore it is possible to extract from SGD all the yeast proteins

with those GO terms. However, it is necessary to remove all the proteins that are

supported only from evidence code inferred from electronic annotation (IEA). Fi-

nally, these proteins are grouped in protein complexes using their GO annotations.

Annotations with modifiers “not” or “colocalizes with” have been ignored [44].

1.10 Protein-Protein Interaction Datasets

As Protein-Protein Interaction datasets for yeast we use five dataset widely used

in the literature. Four of these dataset are weighted, reporting for each pair of

proteins a value between zero and one. In table 1.2 are reported all the datasets

used and relative details.

Details Collins
Krogan
Core

Krogan
Extended

Gavin BioGRID

Reference [15] [34] [34] [22] [58]
Number of proteins 1622 2708 3672 1855 5640

Number of interactions 9074 7123 14317 7669 59748
Weighted yes yes yes yes no

Table 1.2: Properties of the protein-protein interaction datasets used
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Chapter 2

Dominant Sets

2.1 Introduction

In this chapter we shall see the details of Dominant Sets framework, a recent

method whose purpose is to provide a general formulation of the clustering problem

and an elegant way to address it.

The formal definition of cluster proposed is called “dominant-set”, and it gen-

eralises the classical graph-theoretic notion of a maximal clique to edge-weighted

graphs. It addresses the clustering problem from a novel point of view, which is

provided by game theory. The advantages of this game-theoretic perspective are

many, making Dominant Sets a very general framework, which can be applied in a

wide range of scenarios. This game theoretic set-up allows the handling weighted

and unweighted data. Furthermore, by considering overlapping clusters, it permits

an object to belong to more than one cluster.

These features allow detecting overlapping protein complexes from any type of

Protein-Protein Interaction making Dominant Set a candidate for this purpose.

2.2 Overview and Motivation

As the other clustering algorithms, Dominant Sets tries to extract coherent groups

from the set of objects given as input. However, even if there is no shortage of

clustering algorithms in the literature, they have often been developed trying to
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address a specific instance of the problem. For the sake to exploit the powerful

ideas and the elegant mathematical and algorithmic treatments from such sophis-

ticated fields as linear algebra, graph theory, optimization and statistics they often

overlook the real essence of the clustering issue.

One of the limits of this approach is that it usually leads to either very specific

algorithms or to very general algorithms, which unfortunately produce groups that

are considerable clusters only for some particular applications. Other limitations,

frequently unbearable for general purposes, are the fact that the number of clusters

must be known in advance, or that the clustering process consists in practice in a

partitioning operation.

It is clear that there are many scenarios for which to force all the input elements

to belong to some group has little sense, leading in some cases to the creation of

extra classes which represent noise or inconsistent clusters. Moreover, partitioning

the set of objects implies that each element cannot belong to more than one cluster.

These intrinsic limitations of the are too restrictive in many applications, such

as clustering Protein-Protein Interactions network. It is in fact well-known that

proteins rarely work alone, but rather they attach each other dynamically during

the time to build protein complexes. Therefore, acting like gear of complex ma-

chineries, a protein can participate to more then one complex and hence it can

belong to more than one cluster.

To solve these limitations the Dominant Sets framework has been developed

starting from the essence of the clustering problem: the definition of cluster. It

suggests a new way to characterize it starting from the idea that a cluster should

satisfy two fundamental conditions: it should have high internal homogeneity, and

there should be high inhomogeneity between the entities in the cluster and those

outside of it. The formal formulation of cluster proposed is called “dominant-

set”, and its generalises the classical graph-theoretic notion of a maximal clique

to edge-weighted graphs.

However, the framework provides much more than a new characterization of

the concept of cluster. It establishes a correspondence between Dominant Sets and

the extrema of a quadratic form over the standard simplex. Computationally, this

allows to find clusters using straightforward continuous optimization techniques
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such as payoff-monotonic game dynamics, a class of dynamical systems arising in

evolutionary game theory.

The useful features of this game-theoretic perspective are various. It makes no

assumptions on the underlying data representation, in fact it does not require that

the objects to be clustered be represented as points in a vector space. It makes

no assumptions on the structure of the affinity matrix, being it able to work with

asymmetric and even negative similarity functions alike. It does not require a

priori knowledge on the number of clusters. It leaves clutter elements unassigned

and it allows extraction of overlapping clusters[50].

All these features make the Dominant Sets a very general framework applicable

in a wide rage of scenarios, and a suitable candidate to detect protein complexes

from Protein-Protein Interaction networks.

2.3 The Clustering problem

Cluster Analysis is an unsupervised learning process aimed to group a set of ob-

jects, according to their characteristics or to their relationships, in order to have

similar objects grouped together and dissimilar ones into different groups. This

activity is often also viewed as a particular case of the classification problem, called

unsupervised classification. What is roughly referred to as classification is actually

supervised classification, as a set of labels is also provided in addition to the set of

objects to classify. Clearly in cluster analysis the labels, which define the belonging

of a set of objects to a specific class, are initially unknown. Therefore, clustering

is an unsupervised classification, given that the grouping of objects corresponds

to assigning an initially unknown label to each object [60].

However, independently from the point of view, the clustering problem is not

easy to address. In fact, sometimes it is impossible to proceed to this asset without

any sort of bias. This concept is developed in an informal theorem called The ugly

duckling theorem[64]; it gets its name from a famous story of Hans Christian

Andersen because it shows that an ugly duckling is just as similar to a swan as

two swans are to each other. Figure 2.1 illustrates this point.

Looking at the object traits it is possible to group the elements reported in

the figure in more than one way. It is possible to group them according to their
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Figure 2.1: Example of clustering ambiguity

colour, or according to their shape obtaining completely different clusters. It is

even possible to cluster them using both the characteristics ending up with six

clusters overlapped, three by colour and three by shape. It is thus necessary to

provide further information about the nature of the clusters. This is one of the

main reasons for the existence of so many clustering algorithms in the literature.

By the same token algorithms employed for different problems show therefore

a large divergence amongst themselves. Indeed, starting from a specific instance

of a problem, particular techniques designed to find a convenient way to partition

the input elements have often been developed. Unfortunately, this leads not only

to a high fragmentation in the clustering algorithms scenario, which now counts

very specific algorithms for every specific task, but also to miss the essence of the

clustering problem, namely the definition of cluster.

The Dominant Sets framework introduced by Pavan and Pelillo [48, 49] aims

to reverse the terms of the problem. Instead of determining a suitable way to

partition the input data, it proposes a rigorous formulation of the notion of cluster

and an elegant way to apply it.

Before the Dominant Sets framework is presented at length we shall see a

common way to classify clustering algorithms, their data representation and their

limits.
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2.4 Central and Pairwise Clustering

As pointed out before there are many clustering algorithms present in the liter-

ature, and many ways to classify them. One of the most common classification

divides them into two main types: central clustering, or feature based clustering,

and pairwise clustering.

2.4.1 Central Clustering

In central clustering algorithms, also called feature-based algorithms, the elements

are viewed as objects with a list of features each with its own value. According

to this, each object is described in terms of vector of numerical attributes. In this

way it is possible to map each object to a point in Euclidean (geometric) vector

space.

It turns out that the distance between the points reflect the observed similarities

or dissimilarity between the respective objects. One of the advantages of this

representation is the existence of powerful analytical and computational tools not

available in others. Indeed, classical pattern recognition methods tightly related

to geometrical concepts have been developed during the past few decades, such as

linear discriminant analysis, perceptrons, and kernel machines.

However, the geometric approach suffers from intrinsic limitations. First of all

it is necessary to conduct a features selection or a features extraction step in order

to characterize the objects. A non-trivial step is also often required in order to

reduce the number of features, because vectors with high dimensionality reduce

the algorithm’s performance in terms of time.

Nonetheless, the characterization by features is not always possible. In fact,

the biggest issue of this representation is the presence of a huge quantity of ap-

plication domains where it is not possible to find satisfactory features or they

are inefficient for learning purposes. This situation arises quite commonly when

objects are described in terms of structural properties, such as parts and rela-

tions between parts. This lack led scientists to develop methods based on other

structural representations such as trees or graphs.
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2.4.2 Pairwise Clustering

The difficulty to express data that are explicitly related to one another, such as

the elements of a graph, leads us to the branch of algorithms which deal directly

with similarity between objects: the proximity-based algorithms.

In the pairwise clustering, the algorithm, instead of taking in input a set of

feature vectors, takes the pairwise similarities among the objects. Often these

similarities are represented as a matrix, where the element (i, j) expresses the

similarity between object i and object j.

Clearly this approach does not change only the prospective of the problem, but

it allows to overcome the limits cited in the previous section, allowing to cluster

objects which could be difficult to represent by features. Moreover this setting

is very general. In fact, using a convenient similarity measure, any feature-based

clustering problem can be turned into a similarity-based one [12].

Furthermore, the similarity matrix representing the input data can be seen as

the adjacency matrix of a graph. Indeed, mapping input objects to nodes of a

weighted graph, where weights represents the similarity relations between them,

is quite natural. Following this approach, a proximity-based algorithm is able to

exploit concepts and results from graph theory to extract the clusters from the

input data.

The largest part of these algorithms search combinatorial structures in the

similarity graph, such as a minimum spanning tree [74] or a minimum cut [23,

56, 72]. Some other authors [4, 54] argue that the maximal clique is the strictest

definition of a cluster, and several algorithms searches complete subgraphs, namely

a clique, have been proposed.

2.5 The formulation of the notion of cluster

In this section we shall see the reasons that led to develop the Dominant Sets

framework and hence how it tackles the limits of the other clustering algorithms.

In fact, as we shall see, many of them have been designed in a way too devote to

exploit the powerful mathematical treatments from graph theory, often forgetting

what is a cluster from a more general point of view. Several intrinsic limitations
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frequently arise due to the attempt to fit well known techniques without a rigor-

ous characterization of the problem. Being the essence of the clustering problem

related to the definition of cluster, Pavan and Pelillo proposed a new way of char-

acterizing it.

Hence, in this section we present the basic idea of Dominant Sets and their

rigorous formulation. Its authors showed a strong connection between the opti-

mization problem usable to find them and evolutionary game theory, exhibiting

the possibility to exchange them and take the most from both.

2.5.1 Why a new formulation

The clustering Dominant Sets algorithm is a graph-based pairwise clustering tech-

nique. As pointed out in the previous section, the pairwise clustering graph-based

algorithms present in the literature are roughly divided into those that try to

partition the graph with some technique and those that seek for cliques.

Graph-based clustering algorithms based on the former approach look for a

partition of the input graph in order to exploit the powerful ideas and the elegant

mathematical and algorithmic treatments from graph theory, such as minimum

cut or the minimum spanning tree. Looking for partitioning the input data into

coherent classes, these methods deal with a very specific version of the clustering

problem.

Moreover, the partitioning approach used by graph-based clustering algorithms

often leads to very well known limitations: the number of clusters must be known

in advance, all the input data have to be assigned to some class and each ele-

ment cannot belong to more than one cluster. Unfortunately, although proba-

bilistic model-based approaches do not suffer from some of these problems, this

oversimplified formulation of the clustering problem does not lead only to several

restrictions but also to miss that the real problem is more general.

In contrast with this approaches others methods search in the input data com-

plete subgraphs, namely a clique. They can be considered more suitable for sce-

narios in which overlapped clusters are allowed.

Unfortunately, it is worth emphasizing that while the minimum cut and the
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minimum spanning tree are notions that are explicitly defined on edge-weighted

graphs, the concept of a maximal clique is defined on unweighted graphs.

To take the advantages of the existing maximal clique algorithms some authors

[30, 4, 25] proposed to work on unweighted graph obtained by a threshold operation

performed on the original weighted graph. Once the threshold is set the elements of

the matrix below the threshold are considered zeros while the others are considered

ones.

Although such threshold operation can be used in some scenarios, there are

other cases in which the performance is significantly impaired. This is due to the

fact that setting the threshold is not always a simple task. Moreover it is clear

that binarization leads to loss of information.

As shown by Paccanaro et al in [44], the detection of protein complexes in

protein-protein interaction networks is one of the cases where the use of the weights

allows to obtain protein complexes more accurately. This is probably due to the

fact that the weights which measure the connections between proteins are obtained

synthetically and often they do not reflect their real tightness. Binarizing these

data often leads to discarding links with weights below the threshold, while to deal

with them permits to have a more accurate vision of the global structure of the

protein-protein interactions networks.

Pavan and Pelillo generalise the classical graph-theoretic notion of a maximal

clique to edge-weighted graphs [48, 49], with the aim of overcoming the issues as-

sociated to the thresholding operation necessary to apply clique-based algorithms,

and those related to the partitioning approach.

They tried to characterise the original problem and to address the real essence

of it, namely, what is the definition of cluster and how to characterize it. Trans-

lating the reasonable and simple idea of cluster into a rigorous formulation, called

“dominant-set”, they present an elegant way to find clusters and a framework

which overcomes the limitations mentioned above.

Moreover they established a connection between the problem of finding Domi-

nant Sets and quadratic programming, allowing to use dynamics from evolutionary

game theory to find them. In this way the Dominant Sets framework provide the

advantages of the pairwise clustering exploiting also the solid theory and the the

long list of tools available from the graph theory, optimization and game theory.
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2.5.2 The Idea

An informal definition states that “a cluster is a set of entities which are alike, and

entities from different clusters are not alike” [30]. Hence a cluster should satisfy

two fundamental conditions[49]:

1. Internal Criterion: it should have high internal homogeneity;

2. External Criterion: there should be high inhomogeneity between the en-

tities in the cluster and those outside.

Recalling that Dominant Sets is a pairwise clustering algorithm graph-based it is

clear that in this context the entities are represented as nodes of a weighted graph.

Therefore the criteria reported above express the following concept. The weights

on the edges in a cluster should be large, while the weights on the edges that

connect the cluster’s nodes to nodes outside the cluster should be small.

Before we present the formal definition of cluster used in the Dominant Sets

framework it is important to understand the general idea behind it. The intuitive

idea is to percolate the weights from the edges to the nodes of the graph.

2.5.3 Formal definition of the input data

Before we present the rigorous formulation of the notion of cluster proposed by

the Dominant Sets framework it is necessary to present formal definitions used

to represent the input data. The input data to be clustered is represented as

an undirected edge-weighted graph without self-loops G = (V,E,w), where V =

{1, ..., n} is the vertex set, E ⊆ V × V is the edge set, and w : E → R∗+ is the

(positive) weight function. Vertices in G correspond to input data points and

edges represent relationships. The weights on the edges reflect similarity between

pairs of linked vertices. As usual, the graph G is represented with its weighted

adjacency (or similarity) matrix, which is the n×n symmetric matrix A = (aij)

defined as:

aij =

w(i, j), if (i, j) ∈ E

0, otherwise
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Clearly, the absence of selfloops, means that all the elements on the main diagonal

of A are zero.

2.5.4 Formal definition of Dominant Sets

Before we see how the internal and the exteral criterion presented in the previ-

ous section have been formalized it is necessary to introduce some useful definitions.

Let S ⊆ V be a non-empty subset of vertices and i ∈ V . The (average)

weighted degree of i w.r.t. S is defined as:

awdegS(i) =
1

|S|
∑
j∈S

aij

Observe that awdegi(i) = 0 for any i ∈ V . This term averages all the absolute

similarity aij between i and all the other nodes j in S.

Figure 2.2: Average weighted degree. The figure shows a set (S ) of elements and
the edges connecting i and all the other nodes of S

Moreover, if j /∈ S we define:

φS(i, j) = aij − awdegS(i)

Note that φi(i, j) = aij , for all i, j ∈ V with i 6= j. Intuitively, φS(i, j) measures

the similarity between nodes j and i, with respect to the average similarity between

node i and its neighbours in S. Note that φS(i, j) can be either positive or negative.
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Figure 2.3: φS(i, j) measures the absolute similarity between j and i, with respect
to the average similarity between node i and its neighbours in S

We are now in a position to formalize the notion of “percolation” of node-

weights, which is captured by the following recursive definition.

Definition 2.1. Let S ⊆ V be a non-empty subsets of vertices and i ∈ S. The

weight of i w.r.t S is

wS(i) =


1, if |S| = 1∑
j∈S\{i}

φS\{i}(j, i) wS\{i}(j), otherwise
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Figure 2.4:
To the left is reported an example of a set S and an element i which represents
the input of wS(i). The orange elements represent the elements iterated by the
sum at the first step of the recursion. In order to express φS\{i}(j, i) we used the
chart in figure 2.4. On the right side is represented the recursive step. The node
j on the left side become the node i of the recursive step on the right. The nodes
signed as prime are the nodes of the first recursive step.

Moreover, the total weight of S is defined to be:

W (S) =
∑
i∈S

wS(i)

Note that w{i,j}(i) = w{i,j}(j) = aij, for all i, j ∈ V (i 6= j). Also, observe

that wS(i) is calculated simply as a function of the weights on the edges of the

subgraph induced by S.

Intuitively, wS(i) gives us a measure of the overall similarity between vertex i

and the vertices of S\{i} with respect to the overall similarity among the vertices

in S\{i}.
Now that all the necessary definitions have been reported it is possible to pro-

vide the formal definition of the two criterions presented before, which characterize

a cluster. The following definition represents the formalization used by Dominant

Sets framework of the concept of cluster in an edge-weighted graph.

Definition 2.2. A nonempty subset of vertices S ⊆ V such that W (T ) > 0 for

any nonempty T ⊆ S, is said to be dominant if:

1. wS(i) > 0 Internal Homogeneity
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2. wS∪{i}(i) < 0, for all i /∈ S External Inhomogeneity

For example, looking the graph of figure 2.5 it turns out that w{4,5,6,7}(4) < 0

and w{8,9,10,11}(8) > 0. Indeed, this can be intuitively grasped just looking at the

values of the edges associated at the vertexes 4 and 8. We can notice that the

weight associated to vertex 4 is smaller than that of subset {5, 6, 7}; conversely,

the weight associated to vertex 8 is greater than that of subset {9, 10, 11}.

Figure 2.5: Example of edge-weighted graphs[49]

As other example consider the graph in figure 2.6. The subset of vertices

{1, 2, 3} is dominant. This is explained by observing that the weights of the edges

internal of {1, 2, 3} are 60, 70 and 90. While the weights of the edges that connect

internal nodes with external ones have values between 5 and 25. Hence, the values

of weights in the former set is larger then the second one.

Therefore, from this example it is clear that a dominant set has the property

of having an overall similarity among internal nodes higher than that between

internal nodes and external ones. This is the reason of considering Dominant Sets

as clusters of nodes.

By definition Dominant Sets capture compact structures, hence it is not sur-

prising that the definition of a dominant set is equivalent to the definition of

(strictly) maximal clique when applied to unweighted graphs [48]. Since maximal

cliques are a classic formalization of the notion of a cluster [1], [6], [8], [18] this

represents a further motivation to consider Dominant Sets as clusters.
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Figure 2.6: Example of dominant subset of vertices - {1,2,3}[49]

2.6 How to find Dominant Sets - Optimization

Problem

The authors of this framework proposed much more than a new way to present and

model clusters on graphs. They transform the combinatorial problem of finding

Dominant Sets in a graph into a pure optimization problem. Establishing a corre-

spondence between Dominant Sets and the extrema of a continuous quadratic form

over the standard simplex allows them to use continuous optimization techniques

to find them [49].

Consider a similarity graph G = (V,E,w) with n vertices, and its adjacency

matrix A. A vector with n components can be associated to a cluster of vertexes

to represent it. Each component of this vector is a real value that express how the

relative node is associated to the cluster. If a node is weakly associated to a cluster

the relative component of the vector of that cluster is a small value. Conversely,

if that node is highly connected to that cluster it is a large value.

In a good cluster its elements are strongly associated with each other, hav-

ing large values in the similarity matrix. Hence, a natural way of defining the

cohesiveness of a cluster is given by the following quadratic form:

f(x) = xTAx

This allows us to formulate the pairwise clustering problem as the problem of find-

ing a vector x that maximizes f . Imposing to this objective function probability
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constraints we yield to the following standard quadratic program.

maximize f(x)

subject to x ∈ ∆
(2.1)

where

∆ = {x ∈ Rn : x ≥ 0 ∧ eTx = 1}

is the standard simplex of the n-dimensional Euclidean space Rn.

Figure 2.7: Standard Simplex ∆ in R3 [12]

It is worth emphasizing that the problem (2.1) is a generalisation of the Motzkin-

Straus problem from graph theory [42], and that alternatively is it possible to write

xTAx as
∑

i

∑
j aijxixj.

According to this formulation, a maximally cohesive cluster corresponds to a

local solution of program (2.1). However, it is necessary show how this notion of

cluster is intimately related to Dominant Sets.

As reported in [49] a point x ∈ ∆ satisfies the Karush-Kuhn-Tucker (KKT)

conditions for problem (2.1) i.e., the first-order necessary conditions for local op-

timality (2.2), if there exist n + 1 real constants (Lagrange multipliers) µ1, ..., µn

and λ, with µi ≥ 0 for all i = 1, ..., n, such that:

(Ax)i − λ+ µi = 0 (2.2)
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for all i = 1, ..., n and
∑n

i=1 xiµi = 0

Note that, since both xi and µi are non negative for all i = 1, .., n, the latter

condition is equivalent to saying that i ∈ σ(x) implies µi = 0. Hence, the KKT

conditions can be rewritten as:

(Ax)i =

= λ, if i ∈ σ(x)

≤ λ, otherwise
(2.3)

for some real constant λ (indeed, it is immediate to see that λ = xTAx). A point

x ∈ ∆ satisfying (2.3) will be called a KKT point throughout.

Before to see the next definition we remember that given a vector x ∈ Rn,

the support of x is defined as the set of indices corresponding to its non-zero

components, that is:

σ(x) = {i ∈ V : xi 6= 0} (2.4)

We can now introduce a definition and a lemma useful for our purposes.

Definition 2.3. We say that a nonempty subset of vertices S admits weighted

characteristic vector xS ∈ ∆ if it has nonnull total weight W(S), in which case, we

set:

xSi =


wS(i)
W (S)

, if i ∈ S

0, otherwise

Notice that, by definition, Dominant Sets always admit a weighted charac-

teristic vector. Moreover xS has n components where n is the number of the

vertices of S. Summing up all the elements wS(i)
W (S)

we obtain 1, because ∀i wS(i) ≥
0 and

∑
i wS(i) = 1.

The next two results establish useful connections between KKT points of pro-

gram (2.1) and weighted characteristic vectors.

Lemma 2.6.1. Let σ = σ(x) be the support of a vector x ∈ ∆ which admits

weighted characteristic vector xσ. Then, x satisfies the KKT equality conditions

in (2.3) if and only if x = xσ. Moreover, in this case, we have:
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Wσ∪{j}(j)

W (σ)
= (Ax)j − (Ax)i = −µj (2.5)

for all i ∈ σ and j /∈ σ, where the µjs are the (nonnegative) Lagrange multipliers

of program (2.1).

Proposition 2.6.2. Let x ∈ ∆ be a vector whose support σ = σ(x) has positive

total weight W (σ) and, hence, admitting weighted characteristic vector xσ. Then,

x is a KKT point for (2.1) if and only if the following conditions hold:

1. x = xσ

2. wσ∪{j}(j) ≤ 0, for allj /∈ σ

A formal proof of the lemma 2.6.1 and of the preposition 2.6.2 is presented

in [49]. We can now introduce the core theorem of the section. One of the main

results presented in [48, 49] is an important theorem which establishes an inter-

esting connection between Dominant Sets and local solutions of program (2.1). A

a formal proof of the theorem is presented in [48] and in [49].

Theorem 2.6.3. If S is a dominant subset of vertices, then its weighted charac-

teristics vector xS is a strict local solution of program (2.1).

Conversely, if x∗ is a strict local solution of program (2.1) then its support

σ = σ(x∗) is a dominant set, provided that wσ∪{i}(i) /∈ 0 for all i 6= σ.

The theorem 2.6.3 establishes a one-to-one correspondence between strict local

maximizers of xTAx over ∆ and Dominant Sets. Hence, to the support of the

weighted characteristic vector xS, with S ⊆ V , corresponds to find a set of ver-

texes which is a dominant set in V, because xS is a strict local maximizer of the

optimization problem max xTAx (with A adjacency matrix of G).

By virtue of theorem 2.6.3 Dominant Sets are in correspondence with (strict)

solutions of quadratic program 2.1. This is very important because once the clus-

tering problem is formulated as a continuous optimization problem, we can use any

optimization technique to solve it. In the next section we shall see that payoff-

monotonic dynamics from evolutionary game theory lend themselves well to this

task.

Ca’Foscari University of Venice
Department of Environmental Sciences, Informatics and Statistics

38 of 128



2.7 From Local Optima to Game Theory 39

2.7 From Local Optima to Game Theory

Before seeing how is it possible to exploit evolutionary game theory for our pur-

poses, showing that first-order discrete-time replicator equations are a useful heuris-

tic for finding Dominant Sets, this section presents some principles of game theory

and evolutionary game theory.

2.7.1 Introduction to Game Theory

The goal of game theory is to model situations where two or more agents, called

players, have to take some decision with the purpose of maximizing their utility. It

is a wide field with mathematical models and techniques which change according

to the characteristics of the game. For a complete insight of the topic we refer to

[43][45][21]. Each player has several strategies and at each time it decides between

different options in order to maximize a payoff which depends on the moves played

by the co-players, which in turn try to maximize their payoff.

In this context with the term strategy we refer one of the options that the

player can choose. It is worth emphasizing that the decisions of each player depends

not only on on the options available for that particular player but also on the

actions of others.

Frequently, the concept of strategy is confused with that of move. An action

performed by a player during a game is a move, while a strategy specify the

action that a player take at any step. For example,in chess moving white’s Bishop

from one place to another is a move. While a strategy is a complete algorithm

from playing a game, declaring for a player what to do for every possible situation

during the game.

Supposing to have only two players with m and n moves respectively, A1, ..., Am

and B1, ..., Bm. Each time the players repeat the same game choosing a strategy

without knowing what the co-player does. If the players choose the moves Ai

and Bj respectively, the player A will receive an utility aij. The matrix m × n,

whose components are aij, is called payoff matrix A. A game of this type is

known as zero-sum game because what a player wins is equal to what the other
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loose. Moreover in this specific example the game is non-cooperative because

the players basically are in competition.

The strategies can be pure or mixed. In pure strategies the players play each

time the same move, let’s say Ai and Bi. This leads us to the concept of game

equilibrium. An equilibrium for a particular game is reached when none of the

two players takes advantages to change its move if the opponent does not change

its own.

Definition 2.4. A Nash equilibrium is a profile of strategies such that each player’s

strategy is an optimal response to the other player’s strategies[21].

There more than one way to check if a game has an equilibrium in the space

of pure strategies. Unfortunately some games does not admit equilibria in pure

strategies, namely at a certain point some players will prefer to change its move.

The equilibria is guaranteed for each game only in the case of mixed strategies.

A mixed strategy is an assignment of a probability to each pure strategy.

As pointed out before a mixed strategy is a probability distribution on the

whole set of possible moves. For a player A for example a mixed strategy is a

vector x ∈ Rm
+ such that

∑m
i=1 xi = 1. Hence, for the player A each component xi

is the probability to play the move Ai. By the same token for a player B a mixed

strategy is a vector y ∈ Rn such that
∑n

i=1 yi = 1. Given a couple (x, y) for the

players the average payoff for A, namely the loss for B, is:

E(x, y) =
m∑
i=1

n∑
j=1

aijxiyj

. The notion of equilibria is the same of the one given for the pure strategies,

which can be expressed formally by the following statement. A pair of strategy

(x̄,ȳ) is an equilibria for the game if E(x, ȳ) ≤ E(x̄, ȳ) ≤ E(x̄, y) for every strategy

x of A and every strategy y of B.

Going forward we will always assume that the game is a two-player symmetric

game where each player has the same payoff function. We define the expected

payoff that a player obtains by playing the strategy i against an opponent playing
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a mixed strategy x as

π(ei|x) = (Ax)i =
∑
j

aijxj

where ei is the vector with all components equal to zero excepting the ith-component

which is equal to 1. Sometimes this is identified with the pure strategy i.

The expected payoff received by adopting a mixed strategy y is thus

π(y|x) =
∑
i∈S

yiπ(ei|x) = yTAx

The exprected payoff of the entire population is given by

π(x) = π(x|x) = xTAx

We will also use the following notations:

π(y− x|x) = π(y|x)− π(x)

and

π(y− x) = π(y− x|y)− π(y− x|x)

The best replies β(x) against a mixed strategy x is the set of mixed strategies

that maximize the expected payoff when played against x, namely

β(x) = arg max
z∈∆

π(z|x)

With this formulation the notion of Nash equilibrium can be expressed as

follows. A pair (x,y) ∈ ∆2 is a Nash equilibrium if x ∈ β(y) and y ∈ β(x)

Since we will consider symmetric games, namely games where two players are

undistinguishable, only symmetric pairs (x,x) of strategies are of interest. Hence,

by abuse of language we call Nash equilibrium

∀y ∈ ∆, π(y− x|x) ≤ 0

This implies that ∀i ∈ S, π(ei|x) ≤ π(x) Notice that the payoff of every strategy

in the support of a Nash equilibrium x is constant, while the payoff is less or equal
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than π(x) for all strategies outside the support of x.

W can also formulate the KKT conditions (2.3) presented in the previous chap-

ter as follow

π(ei|x) = (Ax)i =

= λ, if i ∈ σ(x)

≤ λ, otherwise
(2.6)

and hence λ = π(x) because

π(x) =
∑
i∈σ(x)

xiπ(ei|x) =
∑
i∈σ(x)

xiλ = λ

Therefore, if x satisfies the KTT ∀i = 1, .., n this corresponds to π(ei|x) ≤ π(x)

which is the Nash equilibrium condition reported above for symmetric payoff ma-

trices. Hence, for this particular case, the Nash condition is equivalent to the

necessary condition for local optimality in (2.1). This shows the connection be-

tween our optimization problem and game theory.

In the next chapter we shall introduce some basic concepts of evolutionary

game theory and the Evolutionary Stable Strategy (ESS) notion.

2.7.2 Evolutionary Game Theory

Evolutionary game theory, is a discipline introduce in 1973 by J. Maynard Smith

[57] with the aim to model the evolution of animal behaviour using the principles

of noncooperative game theory. During these past years the evolutionary game

theory allowed to explain many complex aspects of biology. However, even if its

original purpose was to model the evolutionary Darwinian process, recently it has

been applied also in economy, sociology and philosophy. For a complete overview

of the topic we refer to [65, 55, 28].

At the beginning, evolutionary game theory was born with the aim to explain

the animal behaviour in a conflict situation. The concept of strategy is analogous

to that applied in classical game theory, however its success depends on several

factors, such as the alternative strategies and the frequency with which they are

applied by the other members of the population. Moreover, it is worth emphasizing
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that in this context it is relevant also how effective a strategy is against itself.

Indeed, if the individuals of a specie plays an effective strategy able to dominate

the other species they will end up to compete against each other.

Other conceptual differences are:

• in order to model animal behaviour players the agents are supposed to be

rational;

• the payoff in this context is in unit of fitness, namely it represents the repro-

ductive success;

• it is a game with more than one player played in a large population of

individuals which compete for a limited resource;

• players do not choose their strategy or have the ability to change it, they

are born with that strategy preprogrammed from nature, and their offspring

will inherit that same identical;

These variances are necessary to model the Darwin’s theory of evolution. How-

ever, as in the classical game-theoretic approach, the results of a game prove how

effective is each strategy. This schema models exactly the evolution process, test-

ing the capability of surviving and reproducing of the various strategies applied

by the individuals of a population. This is the main reason for which it is widely

applied to explain some of the most important biology questions, such as the group

selection, the altruism dynamics and the co-evolution [67].

A key concept in evolutionary game theory is that of evolutionary stable strat-

egy [57, 40, 39], which represents a strategy robust to the evolutionary selection

scheme. Let x ∈ ∆ the strategy played by a large population of individuals. Sup-

pose that in this population appears a small group ε ∈ (0, 1) of mutants designed

by nature to play a strategy y. We call x the incumbent strategy and y the

mutant strategy. The payoff in a match of this population is the same as in a match

with an individual who plays the mixed strategy w = εy + (1 − ε)x ∈ ∆. The

payoff of the incumbent strategy is thus π(x|w), and that of the mutant strategy

is π(y|w).

The intuition behind the evolutionary process suggests that the evolution will

select the incumbent strategy against the mutant one if its payoff is greater that
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the mutant strategy

π(x|w) > π(y|w)

Hence, the definition of evolutionary stable strategy (ESS) arise quite naturally: a

strategy x ∈ ∆ is said to be an ESS if the mutants remain a small portion of the

population, namely if the previous inequality holds for any mutant strategy y 6= x.

Likewise the Nash equilibrium, the ESS is a property of the game and it does

not suggest how the population can arrive at such strategy. Indeed, it only ex-

presses the necessary condition for a strategy in order to be robust to the evolu-

tionary pressure.

As pointed out before a process representing the selection mechanism that

governs the dynamical behaviour of the population over time is necessary. Repli-

cator equations are the most common approach to study the dynamics in a

game played in an evolutionary setting, determining the growing rate of the set of

individuals that are playing a given strategy. As we will see the growing rate of

a given strategy is obtained subtracting to average payoff of the entire population

the average payoff of that particular strategy.

It is worth emphasizing that evolutionary game theory is a model representing

the entire Darwinian process, figure 2.8. Indeed, the game played models the natu-

ral selection process while the replicator dynamics models the hereditary dynamics

applied after each generation.

Formally, let be J = {1, ..., n} the set of n strategies and W = (wij) the payoff

matrix n × n, where wij is hence the payoff when the strategy i is played versus

the strategy j. At the time t we denote with xi(t) the proportion of population’s

players which play strategy i. Remembering that we have n strategies we have

a state vector defined as x̄(t) = (x1(t), x2(t), ..., xn(t)) ∈ ∆. Belonging to the

standard simplex it is clear a probability distribution.

Now it is possible to define the average payoff of the strategy i as:

πi = (Wx)i =
∑
j

wijxj

where xj represents the probability of picking the strategy j, and wij the payoff
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Figure 2.8: Evolutionary Game Theory Model [67]

when the strategy i is played against the strategy j. The average fitness of the

entire population is hence π =
∑

i xiπi.

In evolutionary game theory the fact that the game is played over and over,

generation after generation, models the natural section process which result in the

evolution of the fittest strategies. The basic idea behind replicator dynamics is

that good strategies, namely strategies better than the average, will spread over

time, while bad strategies will get extinct. With the aim of describing the evolution

of behavioral phenotypes a set of differential equations have has been proposed.

A general class of evolution equations is given by:

xi =
dxi
dt

= xi(πi(x)− π(x)) continuous time (2.7)

xi(t+ 1) =
xi(t)πi(t)

π(t)
=

xi(t)πi(t)∑
j xj(t)πj(t)

discrete time (2.8)

Note that if πi > π, or respectively xi(t + 1) > xi(t) the strategy i spread over

time.

The simplex ∆ is invariant under these dynamics, which means that every tra-

jectory starting in ∆ will remain in ∆ for all future times. Moreover holds the
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following theorem

Theorem 2.7.1. If M = MT then the function x(t)TMx(t) is strictly increasing

with increasing t along any non-stationary trajectory x(t) under discrete-time (2.8)

replicator dynamics. Furthermore, any such trajectory converges to a stationary

point.

Finally, a vector x ∈ ∆ is asymptotically stable under (2.8) if and only if x is

a strict local maximizer of xTMx on ∆.

The previous result is known as the fundamental theorem of natural selection [28,

65] and it was formulated by R. A. Fisher in 1930, while that all trajectories of the

replicator dynamics converge to a stationary point has been proven more recently

[36, 37].

Hence, first-order discrete-time replicator equations are a simple and useful

heuristic for finding Dominant Sets. Indeed, let A denote the weighted adjacency

matrix of an edge weighted graph G. By letting M = A we know that the replica-

tor dynamical systems 2.8, starting from an arbitrary initial state, will iteratively

maximize the function xTMx over ∆ and will eventually be attracted with prob-

ability 1 by the nearest asymptotically stable point. By virtue of Theorem 2.7.1

this will then correspond to a strict local maximizer of xTMx in ∆ and hence, for

what said in the relative section , to a dominant set.

Since the process cannot leave the boundary of ∆, it is usual to start out the

relaxation process from some interior point, a common choice being the barycenter

of ∆. This prevents to be biased in favor of any particular solution during the

research.

2.8 Infection and immunization

Unfortunately, as we will emphasize in section 5.1, replicator dynamics, as do more

or less the other standard evolutionary dynamics, are afflicted by some computa-

tional problems. In order to overcome this issues we review briefly some principles

of a new class of evolutionary dynamics, inspired by infection and immunization

processes. For a complete overview of the topic we refer to [13, 14].
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These dynamics are built upon a central paradigm of evolutionary game theory

called invasion barrier.

The main concept is the following. Consider the set of all the populations

not in equilibrium. For any of these x there exists at least one mixed strategy y

that is a better response to x than x to itself. In this case we say that x has no

invasion barrier against y. Therefore, if small share of mutant agents “infect” the

current population, namely play an “infective strategy” y, they will spread until

the invasion barrier against them becomes positive. This amount to say until the

new population turns out to be “immune” against the “infective strategy” y.

This process remembers how a vaccine works: a small share of virus is intro-

duced in a body in order to lead its immune system to prevent future infections.

The authors of this recent class of evolutionary game dynamics propose to iter-

ate this process of infection and immunization in order to obtain a population for

which no infective strategy can be found anymore, because in that case a Nash

equilibrium has been reached. In their work they provide a formal proof that fixed

points of these dynamics are Nash equilibria and vice versa, independently from

the way they select infective strategies at each iteration.
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Chapter 3

Clustering methods for PPI

networks

3.1 Introduction

In this chapter we present some of the most well known clustering methods ap-

plied to PPI network present in literature. For each algorithm we present a brief

introduction with the main characteristics.

In addition to ClusterONE, the state of the art for detecting protein com-

plexes from Protein-Protein Interaction networks, were used Affinity Propagation,

CFinder, CMC, MCL, MCODE, RNSC and RRW.

Only some of these algorithms support the use of edge weights, particularly

Affinity Propagation, MCL, RRW and ClusterONE. In order to run algorithms

not supporting directly weights, namely similarity values between pairs of input

objects, (MCODE, RNSC, CMC and CFinder), we pre-binarized the input net-

works using the threshold values originally suggested by the authors of the datasets.

Interactions with a weight smaller than the proposed threshold were ignored; inter-

actions with a weight larger than the proposed threshold were kept. The suitability

of these thresholds have been checked using the heuristic proposed by Apeltsin et

al [2].

Only some of them could handle overlapping clusters, we allude to MCODE,

CFinder, CMC, RRW and ClusterONE. This amount to say that only ClusterONE

48
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Algorithm Version Weighted Overlapping Reference
ClusterONE 0.93 yes yes [44]

Affinity Propagation 5 Dec 2007 yes noa [20]
CFinder 2.0.5 no yes [47, 1]

CMC 2.0 yesb yes [35]
MCL 10-201 yes no [19, 63]

MCODE 1.31c no yes [5]
RNSC 2004 yes no [33]
RRW 8 Aug 2011 yes yes [38]

aCFinder has a weighted variant, but it turned out to be too slow for the protein complex detection task;

bOnly in the initial stage;;

Table 3.1: Details of the clustering algorithms applied

and RRW have the capability to handle at the same time weighted PPI data and

overlapping clusters.

The table 3.1 presents all the clustering algorithms evaluated in this review

with the relative version of the implementation used, the features and the original

paper’s authors.

3.2 ClusterONE

ClusterONE, also known as clustering withOverlappingNeighborhood Expansion,

is a method for detecting potentially overlapping protein complexes from protein-

protein interaction data. As shown in the original paper [44] and summarized

in section 5.5 this method exhibits better performance than the other clustering

methods present in literature.

The most important feature provided by it is the capability to handle at the

same time weighted PPI data and overlapping clusters. Indeed, due to the fact

that proteins may have multiple functions, they therefore correspond to nodes

may belong to more than one cluster; for example, 207 of 1,628 proteins in the

CYC2008 hand-curated yeast complex data set[52] participate in more than one

complex. Addressing in an explicit way this problem ClusterOne represent at the

moment the better method for PPI data clustering.
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3.2.1 The Algorithm

The ClusterONE algorithm uses a greedy approach with the aim of calculating a

score called cohesiveness and detecting groups of proteins in Protein-Protein In-

teraction networks that corresponds to protein complexes. Cohesiveness measures

how likely it is for a group of proteins to form a protein complex, and it was defined

as follows:

Let win(V ) denote the total weight of edges contained entirely by a group of

proteins V , and let wbound(V ) denote the total weight of edges that connect that

group with the rest of the network.

The cohesiveness of V is then given by

f(V ) =
win(V )

win(V ) + wbound(V ) + p|V |

Before we proceed, it is interesting to emphasize the role of p. p|V | is a penalty

term modelling the uncertainty in the input data. It is included in the cohesiveness

formula based on the hypothesis that, due to the limitations in the experimental

procedure, each Protein-Protein Interaction network can contain a certain amount

of yet undiscovered interactions .

Setting p > 0 corresponds to increasing the boundary weight wbound(V ) by p|V |,
assuming that every protein in V has p additional boundary edges. Therefore, an

user can use different values of p for different proteins, depending on its biological

assumption. A well-studied protein may have a lower p value assigned because it

is less likely to have undiscovered interactions.

Comparing the cohesiveness of two groups of protein it is possible to assess

which of them represents the best protein complex. Indeed, it is clear that a

subgraph with many reliable edges has a high win, while a well-separated subgraph

has a low wbound. Both of these characteristics increase f(V ) making cohesiveness

an easy way to asses the quality of groups of proteins.

First Step - Clusters construction

The algorithm consists of three steps. In the first step, ClusterONE grows groups

with high cohesiveness from selected seed proteins. It starts selecting as the first
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seed the protein with the highest degree, and grows a cohesive group from it using

a greedy procedure. When the growth process finishes the algorithm selects the

next seed. The next seed is chosen looking at the highest degree from the the

proteins not already included in any protein complex. The process ends when

there are no remaining proteins to consider.

A description of the greedy process used is reported below starting from v0[44].

1. let V0 = v0. Set the step number t = 0.

2. calculate the cohesiveness of Vt and let Vt+1 = Vt

3. for every external vertex v incident on at least one boundary edge, calculate

the cohesiveness of V ′ = Vt ∪ {v}. If f(V ′) > f(Vt+1), let Vt+1 = V ′.

4. for every internal vertex v incident on at least one boundary edge, calculate

the cohesiveness of V ′′ = Vt \ {v}. If f(V ′′) > f(Vt+1), let Vt+1 = V ′′.

5. if Vt 6= Vt+1, increase t and return to step 2. Otherwise, declare Vt a locally

optimal cohesive group.

It is worth emphasizing that during the growth process any vertex, including

the seed, can be removed from the group that the algorithm is building. However,

if the seed is not included in its group it will not longer be a seed in the next steps,

and hence no other groups can be built from it. Nevertheless it can be included

in a group if that group growing from a different seed absorbs it.

To clarify the above procedure, we consider the following graph. Seven of the

eleven nodes are marked by letters from A to G in figure 3.1. Assuming that

no unknown connections exist in our graph, i.e. p = 0, the cohesiveness of the

highlighted set is 10
15

.

In steps 3 and 4, ClusterONE can extend or contract the current set of vertexes.

The nodes C, F and G can be added, while the nodes A, B, D and E can be

removed. In this case the best choice is to add C to the set. Indeed, following this

way three boundary edges will be “converted” to internal ones without bringing in

any new boundary edges. After this step the group’s cohesiveness increases to 13
15

and making it locally optimal. This is clear, given that computing the cohesiveness

of the groups obtained adding F or G, it decrease to 14
17

and 14
18

respectively.
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Figure 3.1: ClusterONE, example of execution[44]

Second Step - Merge

A pair of cohesive groups computed in the first step is merged in the second one

according to their overlap. By default, highly overlapped groups are merged if

their overlap score ω is larger than 0.8.

The overlap score of two protein sets A and B is defined as follows[35]:

ω(A,B) =
|A
⋂
B|2

|A||B|

This step can be performed in two ways: merging one cluster after another, re-

computing the overlap score at each step; concurrently building a graph of overlaps.

The current implementation of clusterONE uses the following efficient procedure.

Firstly, given a set of clusters, it compute the overlap score for each pair of

clusters. After that, it builds a graph in which each node represents a cluster and

two nodes are connected if they overlap more than a certain threshold. Clusters

connected to each other by a path of edges are merged. The results of this step

are called protein complex candidates. Clearly, clusters isolated are promoted to

protein complexes candidate without any merging step.
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Third Step - Discard

In the final step of the algorithm, complex candidates that contain less than three

proteins are discarded. This approach is quite common in literature and it is due

to the fact that protein complexes of size two are difficult to detect. However, an

input parameter regulates the minimum size of the protein complexes returned as

output.

Protein complex candidates with a density below a given threshold σ are also

discarded. The density of a group of n proteins is defined as the sum of its weighted

internal edges, divided by n(n−1)
2

.

3.3 MCL

The MCL clustering algorithm is a graph clustering algorithm introduced by Stijn

van Dongen in [18].

Graph clustering is an important unsupervised learning technique widely stud-

ied in literature. This technique is very useful every time that a clear structure

lies on the input data. In fact, in those cases, the classical methods which treat

each object to be clustered as a point in a n-dimensional space have some difficult

to catch the underling structure. Therefore, sometimes addressing the clustering

problem modelling the input data as element of a graph may result more natural.

MCL uses the input similarity matrix as the adjacency matrix the of graph in

which nodes are the input objects and edges represent similarity between objects.

The edges could be weighted or unweighed, but overlapped output clusters are not

allowed.

MCL translates the clustering process to the problem of finding dense regions

of the input graph, that is there are many links within a cluster and fewer links

between clusters. From this perspective the authors of MCL model the fact that

starting from a cluster’s node and randomly traversing the graph, it should be be

more likely to stay within a cluster than travelling between clusters.

In order to exploit this evidence MCL uses Random Walks on the input graph

adopting Markov Chains. In this way it tries to discover where the flow tends to

gather and therefore where clusters are. For example, considering the figure 3.2,
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in one time step, a random walker at node 1 has a 33% chance of going to node

2,3 or 4, and 0% chance to nodes 5,6, or 7. From node 2, 25% chance for 1, 3, 4

or 5 and 0% for 6 and 7.

Figure 3.2: MCL example

It is then possible to build a set of transition matrices in which the columns

look like probability vectors. Each transition matrix k represent the probability

to move from one node i to another node j of the graph in k steps. The Markov

Chains ensure that, given the present state, the past and future states are inde-

pendent, and hence the probabilities for the next step only depend on the current

probabilities. Calculating successive powers of the associated adjacency matrix

the Markov Cluster Algorithm simulates a flow on the input graph.

It is worth emphasizing that often the input graph requires the adding of a self

loop on each graph’s node. In fact, if a transition matrix is multiplied for itself k

times emerges the problem so-called k-path clustering.

Basically the problem becomes clear, for example, when one node x is directed

connected to other two nodes i and j, which neighbours are connected to x in a

different manner. Indeed, lets suppose that, while i is highly connected with other

nodes, a turn connected to x, j is not.

At the beginning, the first transition matrix express in a proper manner the

difference between the connection among x and i and the connection among x

and j. But, intrinsically after each matrix multiplication, the resulted matrix

does not take into account the fact that i and j are connected to x in a different
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manner. The self loop supply to this lack demoting less popular neighbors and

thus permitting to the k-th matrix to be more representative.

Figure 3.3: MCL k-path clustering problem[19]. Considering Z2 as the set of paths
of length 2 from one node to another. We notice that Z2(a, b) = 1 and Z2(a, c) = 1
but a and b are more closely couple than a and c. Moreover considering Z3 we
have that Z3(a, b) = 2 and Z3(a, d) = 2 but again, a and b are more closely coupled
that a and d

Adding self loops solves the problem only temporarily, indeed in the long run

their effect disappears. For this reason some adjustments have to be performed

on the transition matrix. At each iteration it is necessary to raise each single

column to a non-negative power, and then re-normalizing. This operation is named

“Inflation”. This step enhances the contrast between regions of strong or weak flow

in the graph.

The inflation is the only parameter required by MCL and it tunes the gran-

ularity of the clustering. Larger inflation values result in smaller clusters, while

smaller inflation values generate only a few large clusters. The range of possible

inflation values for the MCL algorithm [63, 19] was sampled uniformly with a step

size of 0.1 until to reach a value which corresponds to better performance.

3.4 RSNC

RSNC, also known as Restricted Neighborhood Search Clustering, is a graph

clustering algorithm introduced by A.D King et al in [33].
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It requires as an input the number of clusters to be extracted and, even though,

it was designed with the precise purpose of clustering Protein-Protein Interaction

networks, it does not support the detection of overlapped clusters and it cannot

handle real values as similarity between pairs of proteins.

The lack of these features represents a remarkable limitation in protein com-

plexes detection. Indeed, PPI networks often provide a weight for each edge and,

as Paccanaro at al. show in [44], clustering algorithms achieve better performance

taking them into account. Moreover is well known that a protein could belong to

more than one protein complex.

As argued in the previous section, the process of clustering a graph G(V,E)

can be seen as the decomposition of its node set into subsets of nodes, each of

which is highly interconnected. Hence, it can be seen as the detection of subsets

of nodes which induce dense subgraphs.

With the aim of finding dense subgraphs RNSC calculates the value of a partic-

ular cost function, which depends on its edges. Being unable to deal with weighted

edges this cost function depends on their quantity.

It uses two types of score: the naive score and the scaled score. The value of

the former, for a node i, is the sum between the number of neighbours that are

not in the same cluster of i, and the number of node that are not neighbours of i

but that belong to the same cluster.

naive score(i) =
∣∣{x ∈ V \C, (i, x) ∈ E}

∣∣+
∣∣{x ∈ C, (i, x) /∈ E}

∣∣
where C ⊆ V represent the cluster of node i.

The scaled score, for a node i that belong to a cluster C, is its naive score

divided by the number of nodes in C plus the number of neighbours of i.

The algorithm computes a summarizing value for assessing a cluster summing

the values of these scores for each node in that cluster. An example of this measure

is proposed in figure 3.4.

scaled score(i) =
naive score(i)

|C|+ |{x ∈ V, (i, x) ∈ E}|
RNSC starts from a random solution. At each iteration the algorithm tries

to move a vertex from one cluster to another. If the value of the cost function
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Figure 3.4: RNSC example: we consider the purple node. The number of its
neighbours not in the highlighted cluster is 3 (red nodes); the number of its not
neighbours in the cluster is 1 (green node). The naive score is hence 4. The number
of its neighbours is 3 and the size of the cluster is 3, hence the scaled score is 4

3+3

decreases after one of these attempts the new cluster is kept. Therefore it is a

cost-based local search algorithm.

Moreover, in order to prevent a cycle it maintains a list of tabu moves[24],

also called forbidden moves, and it terminates when a specified number of moves,

which do not decrease the cost function, has been reached.

Unfortunately, being randomized, different runs of this algorithm, on the same

input data, can result in different clusters.

Furthermore, as other local search algorithms, RNSC is prone to find poor local

minima. With the aim of avoiding this problem, it makes some diversification

moves, mixing the contents of a cluster at random.

RNSC algorithm has a large number of tunable parameters. Following the

approach chosen by Brohee et al [11], all the possible combinations of the following

parameter values have been tried:

• Shuffling diversification length: 3, 5, 9

• Diversification frequency: 10, 20, 50
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• Number of experiments: 1, 3, 10

• Naive stopping tolerance: 10, 20, 50

• Scaled stopping tolerance: 1, 5, 15

• Tabu length: 1, 10, 50, 100

• Tabu tolerance: 1, 3, 5

The total number of parameter combinations tried was 2916. Since, as was said

before, the RNSC algorithm is randomized, each combination was tried 5 times

for each dataset and the one resulting in the best maximum matching ratio was

kept.

3.5 Affinity Propagation

The Affinity Propagation is a clustering algorithm proposed by B.J. Frey and D.

Dueck in 2007[20]. It handles real-valued similarities between the input object but

it cannot detect overlapped cluster.

AP is a k-centers clustering techniques using the input data to learn a set of

centers such that the sum of squared errors between each input object and its

nearest center is minimum. In this type of algorithm the centers are often selected

from the input data points. In this case they are referred as “exemplars”.

Often, this methods begin with an initial set of exemplars randomly selected

refining this set iteratively with the aim of decreasing the sum of squared errors.

Unfortunately, in this manner the clustering is sensitive to the initial selection of

exemplars.

Affinity Propagation tries to deal with this limitation taking a quite different

approach. It considers each data point as a node in a network, each of which sends

messages to all the other communicating its relative attractiveness for them. Each

node receiving this attractiveness communication responds sending back messages

about their relative availability. Given an availability message a node restart the

process responding again with an attractiveness value. Hence, two type of mes-

sages are exchanged: the “responsibility” information r(i, k), and the “availability”

information a(i, k).
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AP uses this message passing procedure between nodes with the aim of exam-

ining all the object as potential exemplars. Indeed, by exchanging messages each

object is trying to identify its best representative, namely its best exemplar, with

respect to a particular function. The name of this algorithm is due to the fact that

the magnitude of each message exchanged during the time resembles the affinity

that a particular data point has for another data point as its exemplar.

3.5.1 The Algorithm

With the aim of detecting the centers, Affinity Propagation uses three main matri-

ces, a similarity matrix, a responsibility matrix and an availability matrix, storing

the results in a criterion matrix. AP handles non-positive real number as similar-

ity values, hence, the similarity matrix is usually built by negating the distances

between objects given as input. The algorithm is reported below:

1. Initialize the availability matrix AN×N to zero

2. Updating all responsibilities r(i, k):

r(i, k)← s(i, k)−maxk′s.t.k′ 6=k{a(i, k′) + s(i, k′)}

3. Updating all availabilities a(i, k) :

a(i, k)← min{0, r(k, k) +
∑

i′s.t.i′ /∈{i,k}

max{0, r(i′, k)}}

a(k, k)←
∑

i′s.t.i′ 6=k

max{0, r(i′, k)}

4. c(i, k)← (i, k) + a(i, k). For point i, the point k that maximizes c(i, k) is its

exemplar;

5. If decisions made in step 4 did not change for a certain times of iteration or

a fixed number of iteration reaches, go to step 6. Otherwise, go to step 2

6. Each data point has its own exemplar, and the points with the same exemplar

constitute a community.
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The availability matrix is initialized with all the elements set to zero, while the

responsibility of a node i to j is the subtraction between the similarity among i and

j minus the maximum of the remaining similarities of the column j. At the next

step the criterion matrix is updated combining availabilities and responsibilities.

For each input object its exemplar is given by looking at the criterion matrix by

row. Indeed, the column of the criterion matrix with the highest value for each

row corresponds to the exemplar for the item of that row. Clearly, if a set of rows

share a particular exemplar, this amount to say that the objects related to that

row are in the same cluster.

Notice that s(i, i) is called preference value. The number of identified exemplars

is influenced by the values of the input preferences emerging also from the message-

passing procedure. At the beginning, if all the objects are equally suitable as

exemplars, the preference value is set to the same value. However this value can

be changed in order to produce a different number of clusters.

For the purpose of protein-protein interaction networks clustering, the prefer-

ence value was set equal for all data points. It was determined by sampling the

interval [−1; 1] uniformly with step size of 0.1 and settling on the preference value

that results in the best quality score.

3.6 CFinder

CFinder is one of the first overlapping clustering methods for PPI clustering pub-

lished in the literature[47, 1]. The standard implementation is divided in two

parts, a core part written in C++ used to cluster the input network, and a compo-

nent written in Java used to visualize the output protein complexes. The original

version of the algorithm operates on undirected, unweighted networks.

Taking as input a parameter k, CFinder detect all the k-cliques of the input

network. We recall that a k-clique is a complete subgraph of k nodes. It builds a

k-clique accessibility graph where two k-cliques are connected if they are adjacent,

namely if they share exactly k − 1 nodes. It is worth to emphasizing that large

values of k correspond to be very strict during the detection of dense regions, and

hence to recognize small group with higher density of links.

A detailed description of the algorithm is to be found in [47]. Later on, other
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versions of this algorithm have been proposed. One of the improvements added

was the substitution of the k-cliques search with the enumeration of the maximal

cliques with at least k vertexes of the input network. Indeed, each subset of a

maximal clique is also a clique, therefore a maximal clique of size n will be mapped

to a connected subgraph consisting of
(
n
k

)
vertices in the k-clique accessibility

graph. It is possible to shrink that subgraph into a single vertex that will represent

the whole maximal clique without affecting the connectivity properties of the k-

clique accessibility graph.

The current version provides the weighted extension of CFinder proposed in

[59], but, as the original one, cannot detect overlapped clusters. Unfortunately

this variant is computationally more prohibitive than the previous one. Indeed, the

reference implementation of CFinder (as downloaded from http://www.cfinder.org

on 8 Aug 2010) did not provide a result for the Collins dataset for a conservative

setting of k = 4 and I = 0.8 in 48 hours, therefore we included the unweighted

variant in our benchmarks.

3.7 CMC

CMC algorithm [35] is a clustering algorithm specifically designed to find protein

complexes in protein-protein interactions network. It assesses the probability that

two proteins are in the same protein complex using an iterative scoring algorithm

followed by a maximal clique finding process. As most of the clique-based algo-

rithms it is not able to handle weighted networks. However it allows as output

overlapped protein complexes.

During the search process the cliques found are properly merged with the aim of

building the final set of protein complexes. Two cliques are considered sufficiently

overlapped using a certain overlap threshold, while a merge threshold determines

when two cliques have to be merged together. It is worth emphasizing that two

cliques are merged when the network between them is denser than the merge

threshold. In the opposite case the smaller clique is discarded.

Both parameters can assume value beween zero and one. Obviously a low

overlap threshold implies the detection of only few big protein complexes, while
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high one will result in a large number of redundant complexes, with the degenerate

case where none of them is able to merge with others

As result, the tested range of the overlap threshold was limited to real values

between 0.2 and 0.8, sampled with a step size of 0.1. The merge threshold was

tested on uniformly sampled real values between 0 and 1 with a step size of 0.1.

The benchmarks have been obtained using the original implementation of the CMC

software (version 2). According to the suggestions of the authors of the algorithm

[35], a size limit of 4 was used instead of the default size limit.

3.8 MCODE

The MCODE algorithm, known as Molecular Complex Detection [5] is a clustering

algorithm for protein complexes. As the most of the algorithms exploiting the

clique notion, it cannot handle weighted input networks. However it is able to

detect overlapped protein complexes. The algorithm consists of three phases:

• vertex weighting;

• protein complex formation;

• post-processing.

During the first phase a particular score is assigned to each vertex with the

aim of measuring the “clique-ness” of its neighborhood.

In the second step, starting from the node with highest degree, a protein com-

plex is grown from each node. This growth process, used to establish protein

complexes, is regulated by a parameter called depth limit, which regulates how far

it has to continue from the seed node to the others. MCODE controls how much

difference is allowed between the scores of each node in a particular complex using

another parameter, the vertex weight percentage.

The post processing step applied at the end of the algorithm is divided in two

complementary operations: the haircut and the fluffing. Given a certain protein

complex, the haircut iteratively removes nodes that are connected by a single edge

to the rest of protein complex, conversely, the latter tries to expand it with nodes

outside the clusters highly connected with it.
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Unfortunatelly, even if MCODE produces overlapping complexes during the

fluffing phase, our experiments have shown that the algorithm performs better

when fluffing is turned off.

All the possible combinations of the following parameters have been tried:

• Depth limit: 3, 4, 5

• Vertex weight percentage: 10% to 50% in steps of 5%

• Haircut: on or off

• Fluffing: on or off

• Fluffing percentage: 0, 10% or 20%

3.9 RRW

The clsutering algorithm Repeated Random W alk[38], also known as RRW, is able

to handle weighted and unweighted graph, allowing the detection of overlapped

clusters. Starting from a node and using an affinity function, it grows a cluster.

The basic idea behind RRW is the following. Given a cluster of nodes the

algorithm tries to expand it with the aim of including proteins with high proximity

to that cluster. Random walks with restart are used to find the set of proteins

near a certain cluster.

RRW takes as input a parameter k that regulate this process. Indeed, starting

from a cluster of size one it iterates this expansion at most k times or until a

stopping condition is reached. Usually, the stopping condition is related to the

number of nodes in the cluster, allowing cluster of size ≤ k.

The process presented above is applied to all the nodes and it is followed by

a rank step which remove some cluster. Indeed, the clusters with a high overlap

score are post processed with the aim of removing clusters with an overlap above

a given threshold.

The RRW algorithm requires to specify the restart probability of the random

walk at each step and two threshold parameters, the overlap threshold and the

early cutoff. An other two parameters required are the minimum and maximum
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size of the clusters, however it is worth to emphasize that the authors, in their

original publication, recommend a maximum cluster size equal to eleven.

Therefore, the maximum size has been set equal to 11, tuning the remaining

parameters by trying all possible combinations of the following values:

• Restart probability: 0.5 to 0.9 in steps of 0.1

• Overlap threshold: 0.05 to 0.3 in steps of 0.05

• Early cutoff: 0.5 to 0.9 in steps of 0.1
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Chapter 4

Performance Evaluation

4.1 Introduction

In this chapter we shall present one of the most important steps that need to

be addressed during the application of a clustering algorithm on Protein-Protein

Interaction networks: the performance evaluation. Indeed, the quality assessment

of the results obtained by a clustering algorithm is substantially different for each

application.

Depending on the application the performance evaluation process can involve

standard measures or set of images for image segmentation or pattern recognition.

While in classic computer science applications standard methods to approach this

problem exist, in computational biology often there is no standard way to proceed.

As a consequence all the methods and measures used to assess the quality of the

predicted protein complexes have to take into account the major problem which

afflicts computational biology data: the lack of a complete knowledge.

As we shall see, the partial understanding that we have of all the mechanisms

present in a living cell, in particular of protein-protein interactions, forces us to

develop specific techniques to deal with this deficit.
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4.2 The performance evaluation problem

Assessing the performance of a clustering algorithm is one of the key steps during

its application. The general term “performance” is usually used to refer to a set

of parameters regarding the quality of an algorithm: output quality, time and

memory cost, etc.

However, in this work, the performance evaluation of a clustering algorithm for

protein complex detection corresponds to assessing the accuracy of the predicted

complexes. Indeed, it is worth emphasizing that often, in computational biology

and bioinformatics, the time and the memory cost of a program is not as crucial as

the accuracy of the results. Usually, if the execution time is reasonable, biologists

are more interested on the results’ precision, rather than on the time needed to

reach them.

Another important difference between the performance evaluation of an algo-

rithm applied to classical computer science scenarios and one applied in a computa-

tional biology scenario, is the way used to proof the quality of the results obtained.

For example, standard datasets of images are usually applied with the aim of as-

sessing the quality of the results achieved by a clustering algorithm. Sometimes,

the roughly quality of an image segmentation process is quite clear just looking at

it.

Unfortunately, assessing the quality of biological data is, in most of the cases,

not so trivial. In this sense, the lack of a complete groundtruth represents one

of the biggest problems to validate an algorithm’s results[32]. Indeed, as pointed

out in 1.4, it is quite common to have only partial information concerning the

biological system of organism.

Hence, not all the proteins taken as input from a clustering algorithm for PPI

are present in the gold standards used. The overlap between the gold standards

and the PPI networks available is therefore only partial. Having only partial

information it becomes necessary to develop measures and methods which take

into account this lack of knowledge during the process of performance evaluation.

If, for example, a predicted protein complex is not contained in the available

gold standards this does not mean that the predicted complex is necessarily wrong.
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Furthermore, methods to evaluate a predicted complex with only partial overlap

with some reference complex are necessary.

In the next sections we shall see the gold standards used, the measures and

methods applied to assess the the quality of the protein complexes predicted.

4.3 Quality Measures for protein complexes

To assess the performance of all the clustering algorithms used in this work we

needed to compare a set of predicted complexes with a set of gold standard protein

complexes. Unfortunately, as pointed out before, the match between a predicted

complexes and a gold standard is often only partial. This is one of the main issues

arising during their comparison. Furthermore, the proteins in a gold standard

complex can match proteins contained in more than one predicted complex and

vice versa.

As proposed in [44] we used three independent quality measures to assess the

similarity between a set of predicted complexes and a set of reference complexes:

• the fraction of protein complexes matched by at least one predicted complex;

• the geometric accuracy measure [35];

• the Maximum Matching Ratio [44].

It is worth emphasizing that all these measures try to assess the quality of a protein

complex predicted comparing it with the protein complexes present in a specific

gold standard. Hence, also if there is more than one gold standard in literature, it

is not possible to establish the quality of a predicted complex if it does not match,

at least partially one gold standard complex.

4.3.1 Fraction

The first measure used is the fraction of pairs between predicted and reference

complexes with an overlap score ω larger than 0.25. We chose this value as sug-

gested in [44]. It is worth emphasizing that, with a threshold larger than 0.25, if
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two complexes have the same size this implies that their intersection is at least

half of the complex size.

Recall that the overlap score between two protein sets A and B is defined as

follows:

ω(A,B) =
|A
⋂
B|

|A||B|
(4.1)

4.3.2 Geometry Accuracy

The second measure used is the geometric accuracy, introduced by Brohee and van

Helden [11]. It is is the geometric mean of two other measures: the clustering-wise

sensitivity (Sn), and the clustering-wise positive predictive value (PPV ). Both are

based on the confusion matrix T = [tij] of the complexes.

Lets consider n reference and m predicted complexes. The element tij of the

confusion matrix refers the number of proteins that are found both in reference

complex i and predicted complex j. Moreover, defining ni as the number of proteins

in reference complex i, Sn and PPV are:

Sn =

n∑
i=1

maxmj=1tij

n∑
i=1

ni

(4.2)

PPV =

m∑
j=1

maxni=1tij

m∑
j=1

n∑
i=1

tij

(4.3)

It is worth to emphasize that the the clustering-wise sensitivity can be inflated

putting every protein in the same cluster. While the positive predictive value can

be maximized putting every protein in its own cluster. For these reason these

two measures are balanced computing the geometric mean of the clustering-wise

sensitivity and the positive predictive value:

Acc =
√
Sn× PPV
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4.3.3 MMR

In [44] Paccanaro et al proposed a measure called the maximum matching ratio

(MMR) to evaluate a set of predicted protein complexes with respect to a set of

reference complexes.

The MMR represents the two sets of predicted complexes as a bipartite graph

where in one side there are the predicted complexes and in the other the refer-

ence ones. Each node of this graph represents a protein complex and each edge

connecting two nodes has a weigh reflecting the overlap between those complexes,

where the overlap score between two protein complexes is computed by (4.1).

To assess the quality of the predicted complexes it is necessary to select the

maximum weighted bipartite matching on this graph. Namely, a subset of edges

such that each predicted protein complex and each reference complex is incident

on at most one selected edge. Moreover, the sum of their weights have to be

maximal. The value of the MMR is given by the total weight of this particular

subset of edges, divided by the number of reference complexes.

Therefore this measure expresses how well the predicted complexes represent

the reference complexes. MMR offers an easy way to compare predicted complexes

with a gold standard, penalizing all those cases when a reference complex is pre-

dicted as two pieces by the clustering algorithm. Indeed, in those cases only one

piece, namely only one of the two predicted complexes, can match the respective

reference complex.

Motivations for the MMR measure

It is worth emphasizing that a component of the accuracy score tends to be lower

if there are predicted complexes which overlap significantly each others. For this

reason, clustering algorithms supporting overlapped clusters tends to be penalized,

and hence disadvantaged with respect to the others. In the following few sections,

we will show in detail this property of the geometric accuracy measure, motivating

the use of MMR.
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Problems of PPV

Looking at (4.3) is it possible to notice that the value of PPV can be misleading

if some proteins in reference complex i appear in either more than one predicted

complex or in none of them.

Indeed, as shown in [44], in this case ni is not equal to the sum of row i in the

confusion matrix T. In general, ni may be larger, smaller or equal to the sum of

row i. To be clear we denote the sum of row i with ti∗.

Lets us to consider the case when the whole set of reference and predicted

complexes is the same. In this case, tii = ni for every i. However, if complex a i is

overlapped with a complex j there will be other non-zero elements in T, as tij > 0.

Nonetheless, these non-zero elements cannot exceed tii. This amount to saying

that in all the cases maxmj=1tij = maxni=1tij = ni. The Sn and PPV measures are

then as follows:

Sn =

n∑
i=1

ni∑n
i=1 ni

= 1

PPV =

n∑
i=1

ni∑n
i=1 ti∗

≤ 1

The consequence of this fact is that a perfect clustering algorithm, that always

returns the reference complexes clustering the input data, may have a positive pre-

dictive value lower than a silly algorithm which places every protein in a separate

cluster. Indeed, assuming that we have k proteins, and the protein j is a member

of the complex cj, the positive predictive value for such a dummy algorithm is:

PPV =
k
k∑
j=1

cj

= 1

Let us to point out a concrete example regarding the MIPS catalog used to evaluate

our predicted complexes.

The MIPS catalog contains 1189 unique proteins, hence k = 1189, but its total
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size, counting also the duplicated protein contained in each complex, is 2451. This

amount to saying that
∑k

j=1 cj = 2541. Hence, the dummy algorithm, which places

every protein in a single cluster, will obtain a PPV score equal to 1189
2451

= 0.468.

While the algorithm that detects all the complexes in a perfect way, returning as

output the MIPS catalog itself, will obtain a PPV score equal to 0.3475. Hence,

it results clear that the PPV scores of an algorithms should be interpreted with

care.

Moreover, the geometric accuracy measure assumes that influences negatively

the protein complexes evaluation for our purposes. Indeed, it explicitly penalizes

predicted complexes that do not match any of the reference complexes. Unfor-

tunately, as pointed out at the beginning of this chapter, gold standard sets of

protein complexes are usually incomplete [32].

Hence, a predicted complex may not match any reference complex. However, a

predicted complex that does not match any reference complex is not necessarily an

undesired result, indeed it could still an undiscovered complex. Therefore, trying

to optimize the geometric accuracy might lead to do not detect any new complexes

from a PPI network.

With the aim of avoiding this problem the MMR divides the total weight of the

maximum matching with the number of reference complexes. However, using only

this measure to assess the quality of a set of predicted complexes, it is necessary

to quantify the functional homogeneity of the detected complexes with alternative

methods.

Problems of clustering-wise separation

In order to solve some of the problems related to PPV and Sn, Brohee and van

Helden [2] suggested the clustering-wise separation measure as an alternative met-

ric.

Unfortunately this separation measure is also not suitable for our purposes.

The reasons are similar to the ones reported in the previous section, and are

related with overlapped clusters.

Lets us present some useful definitions before we introduce the clustering-wise

separation measure.
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The relative frequencies of the confusion matrix with respect to the marginal

row-wise or column-wise sums are:

F r
ij =

tij
m∑
j=1

tij

F c
ij =

tij
n∑
j=1

tij

The separation of predicted complex i and reference complex j is then given

by:

Sepij = F r
ijF

c
ij

The complex-wise and the cluster-wise separation scores are then calculated for

the whole set of references and predicted complexes as:

Sepco =

n∑
i=1

m∑
j=1

Sepij

m

Sepcl =

n∑
i=1

m∑
j=1

Sepij

n

The clustering-wise separation is then calculated as the geometric mean of

Sepco and Sepcl:

Sep =
√
SepcoSepcl

In order to underline the limits of this measure for our problem, we remark its

interpretation quoting Brohee and van Helden [2]:

“The maximal value Sepij = 1 indicates a perfect and exclusive correspondence

between complex j and cluster i: it indicates that the cluster contains all the

members of the complex and only them”
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Unfortunately, in a similar manner of PPV, this measure presents a problem when

the gold standard and/or the set of predicted complexes contains overlapped pro-

tein complexes.

Taking the same example reported before, we can compute the clustering-wise

separation of the MIPS catalog with themselves. It is equal to 0.3260, and even

if it is correct because the MIPS complexes are not well separated, it proposes a

misleading result. Indeed, the MIPS complexes match themselves perfectly, and

according with what quoted above it should be equal to 1.

We can notice that the MMR measure is, in some sense, similar to the clustering-

wise separation score. It also starts by calculating a single quality score for every

reference-predicted complex pair, the match score. However in a next step it finds

the maximum matching between reference and predicted complexes without pe-

nalizing overlaps.
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Chapter 5

Experimental Results

5.1 Implementation Used

We have previously defined the notion of Dominant Sets. There are several ways

to approach the problem of finding them; it is possible to tackle it from a com-

binatorial point of view, or to transform it into a purely optimization problem.

Moreover, we saw also that the latter corresponds to a game where Dominant Sets

are derived as a result of the competition of individuals playing a game involving

two players. From this perspective each player simultaneously selects an object

from the set of input objects and receives a payoff according to the graph simi-

larity matrix. Hence the payoff depends clearly on the similarity of the selected

objects. Moreover, remembering that clusters are sets of objects with high mutual

similarity, the players are inclined to select objects belonging to a common cluster.

Hence, the competition between the competitors induces the players to learn a

common notion of cluster by reaching an equilibrium by the respective hypothesis

of cluster membership. As already said, with the purpose to reach an equilibrium

we play the clustering game in an evolutionary setting.

As a first attempt we applied the replicator dynamics reported in the previous

chapter in a peel-off approach. Running this replicator equation directly on the

input similarity matrix we obtain a dominant set for each step. At each step the

nodes related to the equilibrium reached are removed, and the dynamics are run
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on the submatrix related to the remaining nodes. Clearly following this way the

output corresponds to a partition of the input nodes.

Algorithm 1 Patitional clustering algorithm

1: procedure patitional clustering(G = (V,E,w))
2: P ← ∅
3: while V 6= ∅ do
4: S ← Dominant Sets(G)
5: P ← P ∪ {S}
6: V ← V \S
7: end while
8: end procedure

However approaching the detection of protein complexes from Protein-Protein

Interaction Network by partitioning the input set of proteins leads to a set of

clusters without any overlap. While this lack could be sometimes negligible for the

measure indexes used to assess the quality of protein complexes, it is a considerable

shortage from a biological point of view. Not allowing proteins to belong to more

than one cluster the output clusters not resembling the real biological structure of

protein complexes.

A pairwise clustering approach based on dominant sets and replicator dynamics

that allows overlapping clusters has been proposed by Torsello et al. in [62]. In

their work, in order to enumerate all the dominant sets, the authors iteratively

render unstable the ESS reached at each step. This can be achieved adding new

strategies that are best replies to the extracted ESSs. Unfortunately, replicator

dynamics, as more or less the other standard evolutionary dynamics, turn out to be

computationally inefficient. This is probably due to the fact that in literature these

dynamics have been used on games with typically a small number of strategies.

Unluckily clustering Protein-Protein Interaction networks may involve thousands

strategies and hence efficiency cannot be overlooked. If the number of nodes is

quite high, it requires a long time in order to converge, and the computational cost

to reach a new ESS spreads over time because at each iteration new strategies are

added.

For these reasons we applied an implementation of a recent class of evolutionary

game dynamics, proposed in [13, 14] and inspired by infection and immunization
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processes, that needs a linear number of iterations with respect to the number of

strategies.

5.2 Refining of Dominant Sets to Protein Com-

plexes

As pointed out before in order to detect Dominant Sets we used the implementation

of the evolutionary dynamics inspired by infection and immunization processes

proposed in [13]. Unfortunately this implementation looks for clusters that follow

the Dominant Sets definition in very a strict way. We recall that Dominant Sets

generalise the classical graph-theoretic notion of a maximal clique to edge-weighted

graphs. Hence the Dominant Sets found tend to resemble the clique structure.

However, the structure of protein complexes is a clique only from an ideally point of

view. Indeed, a high number of false positive and false negative links, or unreliable

weights, occurs in PPI network[10]. Therefore looking for structures that look

exactly like cliques leads to detecting inaccurate clusters that often are subset of

real protein complexes.

Observing the protein complexes detected we noticed a large amount of com-

plexes composed by a single protein. Going forward when we talk about dominant

sets of size one we will often call them singletons. From the point of view of the

implementation used each of these nodes represent a cluster, namely they cannot

form a coherent group with any other nodes. This leads to protein complexes

showing low quality for each of three quality measure used. This phenomena is

appreciable in the results reported in the figures 5.1 and 5.2.
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Figure 5.1: Quality of predicted complexes by Dominant Sets and ClusterONE
with respect to the MIPS gold standard

Figure 5.2: Quality of predicted complexes by Dominant Sets and ClusterONE
with respect to the SGD gold standard
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In order to relax the strict notion of dominant sets we introduced a further step

of refinement. Since the notion of dominant set does not correspond to the one of

protein complex, after the first step, where the dominant sets of the input network

are found, it is necessary to determine which of them have to be promoted to

protein complexes. The idea consists in refining the Dominant Sets found adding

to the appropriate clusters the singletons.

It is worth emphasizing that joining dominant sets of size one to other clusters

does not leads to loosing any significant clusters. Indeed, clusters with size one are

meaningless in our biological context, because a protein complex is by definition

an aggregate of more than one protein. Moreover, we recall that all the other

algorithms applied discard the protein complexes of size less than three. This is a

quite common approach in literature and is due to the fact that protein complexes

of size two are intrinsically hard to detect.

However, we have not yet defined a suitable and meaningful way to implement

this refinement step. Indeed, in order to add dominant sets of size one to other

clusters, it necessary to find out how to determine the appropriate clusters, and

what is the appropriate way to join them. The basic idea of our approach is to

measure iteratively the cohesiveness [44] of the dominant sets, and then, in order

to increase it, we try to add a singleton to each of them .

We recall that the cohesiveness of a set of vertexes V is given by

f(V ) =
win(V )

win(V ) + wbound(V )

where win(V ) denotes the total weight of edges contained entirely by a group of

proteins V , and wbound(V ) denotes the total weight of edges that connect the group

with the rest of the network. Clearly a subgraph with many reliable edges has a

high win, and a well-separated subgraph has a low wbound, both having the effect

of increasing f(V ).

Therefore cohesiveness provides an easy and efficient way to assess if the sin-

gleton that we are trying to add to a given dominant set is increasing or decreasing

the cohesion of that particular dominant set. Applying iteratively this procedure

it is possible to refine the dominant sets adding to them protein complexes that

otherwise we should discard.
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However, measuring only the cohesiveness of a set of vertexes before and after

the addition of an extra node, we have no way of knowing how many links connect

the singleton to the set of vertexes. In this way all the nodes linked by few links

to our dominant sets will be included in it. Lets consider the following scenario:

a set of vertexes V which the total sum of edges weight contained entirely in V

is 4, and an extra vertex connected to only one of those nodes by a weak link

(figure 5.3). In this case f(V ) = 4
4+ε

while f(V ∪ {singleton}) = 4+ε
4+ε

, hence

Figure 5.3: Example of join between a dominant set and a singleton

f(V ) < f(V ∪ {singleton}). Therefore cohesiveness suggest us to add the extra

vertex to V . Nonetheless, it is worth emphasizing that V is a coherent group in

which all the nodes are highly similar (e.g similarities equal to 1) while the singleton

is connected to only one of those nodes by a very weak link that represents the

low similarity between them. In this particular case the cohesiveness is deceived

by that fact that the extra vertex that we are trying to add is isolated except for

the link to the dominant set.

For this reason we set a threshold of minimum connections needed between the

extra vertex and a dominant set. The threshold was empirically determined to be

around the 30%. This means that, before proceeding with the cohesiveness test,

we check if the singleton that we are trying to add to a dominant set is connected

at least to 20% of its nodes. If both of the requirements are satisfied the dominant

set is promoted to protein complex.

However, it is worth to emphasize that the Dominant Set originally found

cannot be discarded or modified as described so far without keeping into account

their importance. Indeed, to be a Dominant Sets is a strict requirement, and in
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some way it suggest a core of proteins which with high probability work together

in a complex. We recall that proteins often contribute to more than one complex,

and that sometimes complexes acts like gears that a biological system reuse for

some particular function into other complexes. By the same token we decide to

not modify directly detected the Dominant Sets as the first step, but rather to

automatically promote all of them to protein complexes adding new complexes

based on the latter except for the addition of a certain number of singletons.

Following the procedure pointed out before we significantly improved the qual-

ity of the predicted protein complexes, as shown in figure 5.4 and 5.5.

Figure 5.4: Quality of predicted complexes by Dominant Sets and Refined Domi-
nant Sets with respect to the MIPS gold standard

Ca’Foscari University of Venice
Department of Environmental Sciences, Informatics and Statistics

80 of 128



5.3 Testing - General Consideration 81

Figure 5.5: Quality of predicted complexes by Dominant Sets and Refined Domi-
nant Sets with respect to the SGD gold standard

5.3 Testing - General Consideration

One of the most known procedure for evaluating the performance of a machine

learning algorithm starts by dividing the data into a training and a test set. The

parameters of the algorithm are tuned on the training set, and the optimal settings

are then used to establish the performance score on the testing set.

It turns out that is possible to apply this approach only if the input data can

be split into problem instances such that:

• each instance is a complete input for the learning algorithm on its own

• each instance is independent from the others

Unfortunately, for graph clustering algorithm neither of these two assumptions

hold. Moreover, in biological contexts, where the input dataset is a single bio-

logical network, removing a fraction of edges from a network would change its

structural properties. Indeed, biological networks cannot be easily decomposed

Ca’Foscari University of Venice
Department of Environmental Sciences, Informatics and Statistics

81 of 128



5.3 Testing - General Consideration 82

and the attempt to split them could substantially affect the outcome of the clus-

tering algorithm.

Removing edges from a network is dissimilar to removing a set of problem

instances from the input dataset in order to put them in the testing set. In some

sense it is similar to adding noise to a feature vector in a standard machine learning

algorithm.

Evaluating the performance of clustering algorithms on graphs is therefore a

tricky problem. Nevertheless, it is important to avoid the typical biases in the

evaluation of a well-known method applied to a new scenario. Substantial care

should be taken in order to avoid over-optimization of algorithm parameters to a

given dataset or to a given quality score[9].

To this end, we have decided on the following:

1. Each of the algorithms have been tested on five different datasets: three

high-throughput experimental datasets [22, 34], a computationally derived

network that integrates the results of these studies [15], and a compendium

of all known yeast protein-protein interactions [58];

2. We used more than one quality score to assess quality of each set of protein

complexes detected by the relative algorithm: the fraction of matched com-

plexes with a given overlap score threshold, the geometric accuracy [11] and

the maximum matching ratio[44];

3. We used two different gold standards: the MIPS compendium of protein

complexes [41] and a set derived from the Gene Ontology annotations of the

Saccharomyces Genome Database [29];

4. For each clustering algorithm tested, except for Dominant Sets, we tuned

the input parameters in order to achieve the best performance for protein

complexes detection in Protein-Protein Interaction Network. This procedure

has been conducted in a separate way for each measure, for each dataset

and with respect to each gold standard. In this way we obtain different

input parameters for each scenario, with the purpose to obtain the most

optimistic score. On the other hand, we avoid this approach for Dominant.

Namely our results were obtained without tuning the parameters. Hence, the

Ca’Foscari University of Venice
Department of Environmental Sciences, Informatics and Statistics

82 of 128



5.4 Parameter settings for each algorithm 83

score of Dominant Sets represent its real performance when it is adapted for

detecting overlapping protein complexes form high-throughput experimental

PPI network, while the scores of generic clustering algorithm used measure

their performance when they are optimized on a specific dataset with respect

to a specific gold standard.

5.4 Parameter settings for each algorithm

We establish the parameters running each algorithm several times with a different

combination of settings unless the authors of the original algorithm suggested some

particular settings for detecting protein complexes in Protein-Protein Interaction

Network. The set of parameter combinations tried for each algorithm and its

details is reported in the relative section of chapter 3.

It is worth emphasizing that, since the MIPS gold standard and the SGD

gold standard are not entirely consistent with respect to the membership of some

proteins in some complexes, we decided to test these two gold standards separately

as done in [44].

It is quite interesting to notice that, as we will show in the section 5.5, the opti-

mal parameter values for non-overlapping algorithms seem to vary wildly between

dataset. Indeed, parameters that work well for a given PPI network may not be

suitable at all for others. Algorithms that allow overlapping clusters seem to show

more stable performance if their parameters remain within a certain range.

As we will see the classical clustering algorithms tested use often several input

parameters. If this is not so relevant to the purpose of comparing our algorithm

with the others it is a remarkable lack of flexibility. Indeed, in a real scenario it is

not possible to asses the quality of the results in order to tune the input parameter.

One of the advantages of Dominant Sets approach is its needing of only one

input parameter, which depends on the size of the network.
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Collins Krogan Core Krogan Extended Gavin BioGRID
Preference -0.9 0.35 0.4 -0.15 -0.15

Table 5.1: Affinity Propagation parameter settings for MIPS

5.4.1 The MIPS Gold Standard

Affinity Propagation

CFinder

Collins Krogan Core Krogan Extended Gavin BioGRID
k -clique template
size

3 3 3 4 N\A

Table 5.2: CFinder parameter settings for MIPS. N/A for the BioGRID dataset
indicates that even the unweighted CFinder implementation did not give any result
within 24 hours.

CMC

Collins Krogan Core Krogan Extended Gavin BioGRID
Overlap threshold 0.7 0.7 0.7 0.7 N\A

Merge threshold 0.5 0.4 0.5 0.5 N\A

Table 5.3: CMC parameter settings for MIPS. N/A for the BioGRID dataset
indicates that the algorithm produced a prohibitively large number of clusters
(more than 6000) for all parameter settings we have tried

MCODE

Collins Krogan Core Krogan Extended Gavin BioGRID
Depth limit 3 3 3 3 3
Vertex weight
percentage

20% 20% 10% 10% 10%

Fluff complexes no no no no no
Fluff threshold N\A N\A N\A N\A N\A
Haircut com-
plexes

yes yes yes yes yes

Table 5.4: MCODE parameter settings for MIPS
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MCL

Collins Krogan Core Krogan Extended Gavin BioGRID
Inflation 4.9 2.3 2.3 3.2 3.3

Table 5.5: MCL parameter settings for MIPS

RNSC

Collins Krogan Core Krogan Extended Gavin BioGRID
Shuffling diversifi-
cation length

5 9 9 9 9

Diversification Fre-
quency

50 20 20 20 20

Number of experi-
ments

3 3 3 3 3

Naive stopping tol-
erance

10 10 20 20 20

Scaled stopping tol-
erance

5 5 1 5 5

Tabu length 100 10 50 100 10
Tabu tolerance 1 3 1 5 1

Table 5.6: RNSC parameter settings for MIPS

RRW

Collins Krogan Core Krogan Extended Gavin BioGRID
Restart probability 0.5 0.5 0.5 0.6 0.9
Overlap threshold 0.2 0.2 0.2 0.1 0.2

Early cutoff 0.5 0.6 0.7 0.6 0.6

Table 5.7: RRW parameter settings for MIPS

ClusterONE

Even if ClusterONE allows a large set of parameters it was designed explicitly for

detecting overlapping protein complexes form high-throughput experimental PPI
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network. Its authors, in [44], suggest the default parameters of their implementa-

tion. Since their benchmarks used the same datasets and the same gold standards

used in this work, we applied this algorithm without adjusting any parameters.

Hence the merging and the density threshold ware left to 0.8 and 0.3 respectively.

However it is worth emphasizing that, for unweighted networks, the implicit

parameter density threshold is automatically set to 0.6 or 0.5 depending on the

network transitivity. This is due to the fact that some datasets are obtained

with particular methods used to detect protein-protein interaction, while others

are obtained by a mixture of these methods. In our case for example while the

datasets Collins[15], Krogan[34] and Gavin[22] have been built by TAP tagging

experiments only, the BioGRID dataset [58] contains a mixture of TAP tagging

and Y2H low-throughput experimental results. This makes the latter network

structurally very different, with a high fraction of star-like structures. Differences

in structural properties of these networks are pointed out in [44].

Counting the probability of triangles given three proteins connected by at least

two edges is it possible to quantify this phenomena. This measure is known as

transitivity or global clustering coefficient. In other words, transitivity express the

probability of finding a third edge among triplets of proteins where at least two of

the possible three connections exists. Hence, if the network contains many star-

like structures the transitivity has a low value. In that cases, in order to discard

trivial clusters, ClusterONE uses a high value for the density threshold.

Dominant Sets

The implementation of Dominant Sets used in this work takes only one input

parameter. This parameter is called tolerance and it regulates the convergence

process. In particular when the solution reached in a particular iteration differs less

then this parameter from the one reached at the previous iteration the convergence

process is interrupted. In practice this process is related to the precision of the

clusters detected.

Generalising the classical graph-theoretic notion of a maximal clique to edge-

weighted graphs, Dominant Sets considers compact clusters as accurate. However

the notion of protein complexes is not so strict, indeed protein complexes are not
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cliques. For this reason we used a relatively high tolerance, interrupting the con-

vergence process quite early. In this way we detect groups of object which represent

“roughly cliques” resembling the real biological structure of protein complexes.

In practice this parameter is related to the size of the network. Indeed, the

higher the number of nodes in the network the higher is the probability to have an

interaction between a pair of proteins. This aspect could lead to detect clusters

too large and inaccurate. The relationship between the size of the network and

the tolerance parameter allows us to determine the latter simply by looking at the

structure of the network.

The values used in our benchmark are reported below. We used these settings

also for the SGD standard. It is possible to notice that the higher the number of

edges in the dataset the lower the tolerance value becomes.

Collins Krogan Core Krogan Extended Gavin BioGRID
Tollerance 10−2 10−2 10−4 10−2 10−7

Table 5.8: Dominant Sets parameter settings for MIPS and SGD

5.4.2 The SGD Gold Standard

Affinity Propagation

Collins Krogan Core Krogan Extended Gavin BioGRID
Preference 0.4 0.35 0.3 -0.6 -0.7

Table 5.9: Affinity Propagation parameter settings for SGD

CFinder

Collins Krogan Core Krogan Extended Gavin BioGRID
k -clique template
size

3 3 4 4 N\A

Table 5.10: CFinder parameter settings for SGD. N/A for the BioGRID dataset
indicates that CFinder did not give any result within 24 hours.
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CMC

Collins Krogan Core Krogan Extended Gavin BioGRID
Overlap threshold 0.7 0.7 0.7 0.7 N\A

Merge threshold 0.5 0.4 0.3 0.5 N\A

Table 5.11: CMC parameter settings for SGD. N/A for the BioGRID dataset
indicates that the algorithm produced a prohibitively large number of clusters
(more than 6000) for all parameter settings we have tried

MCODE

Collins Krogan Core Krogan Extended Gavin BioGRID
Depth limit 3 3 3 3 3
Vertex weight
percentage

20% 20% 10% 10% 10%

Fluff complexes no no no no no
Fluff threshold N\A N\A N\A N\A N\A
Haircut complexes yes yes yes yes yes

Table 5.12: MCODE parameter settings for SGD

MCL

Collins Krogan Core Krogan Extended Gavin BioGRID
Inflation 4.6 2.0 2.6 4.7 3.2

Table 5.13: MCL parameter settings for SGD
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RNSC

Collins Krogan Core Krogan Extended Gavin BioGRID
Shuffling diversi-
fication length

9 3 9 9 9

Diversification
Frequency

50 20 50 10 10

Number of ex-
periments

3 3 10 3 1

Naive stopping
tolerance

50 50 50 20 20

Scaled stopping
tolerance

5 5 1 15 15

Tabu length 100 50 50 100 1
Tabu tolerance 1 1 1 1 1

Table 5.14: RNSC parameter settings for SGD

RRW

Collins Krogan Core Krogan Extended Gavin BioGRID
Restart probability 0.5 0.5 0.5 0.6 0.9
Overlap threshold 0.2 0.2 0.2 0.1 0.2

Early cutoff 0.5 0.6 0.7 0.6 0.6

Table 5.15: RRW parameter settings for SGD

5.5 Quality of the Predicted Complexes

We tested all eight algorithms presented in the section 4 and the one based on

Dominant Sets, on the five large scale yeast PPI datasets presented in section 1.10.

In order to assess the quality of the protein complexes predicted we compared them

to two reference set: one derived from the MIPS catalog of protein complexes[41],

and another from Gene Ontology-based complex annotations in the SGD[44]. For

each set of protein complexes predicted we computed three different scores based on

three different measures: the fraction of protein complexes matched by at least one

predicted complex, the geometric accuracy measure and the maximum matching

ratio.
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Our results show that the Dominant Sets framework is a suitable candidate to

detect protein complexes from protein-protein interaction networks. The quality

of protein complexes predicted by the Dominant Sets algorithm from the most

reliable datasets is more accurate, than that obtained by ClusterONE -the state

of the art for detecting protein complexes. Remarkable results are also achieved

for unweighted datasets. Dominant Sets is proven to be quite susceptible to those

datasets which are known to be more noisy, where those less accurate weights on

the graph’s edges have lead to results comparable with those obtained with other

standard clustering techniques. However it is important to keep in mind that most

of the alternative clustering algorithm cannot deal with overlapped clusters and

weighted datasets at the same time.

5.5.1 Quality score by MIPS gold standard

In this section are reported some benchmark results obtained comparing the pro-

tein complexes predicted by each clustering algorithm with the gold standard ob-

tained from the MIPS catalog of protein complexes.

For each dataset is reported a plot with all the clustering algorithms in the

x− axis and the individual quality scores of the predicted complexes with respect

to the MIPS catalog in the y−axis. The total height of each bar is the value of the

composite score. Numbers are the value for each score. The clustering algorithms

are grouped in two main groups in order to separate clustering algorithms that

cannot handle overlaps (RNSC, AP, MCL) from those that can.
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Figure 5.6: Quality of the predicted protein complexes from Collins dataset w.r.t
the MIPS gold standard

Figure 5.7: Quality of the predicted protein complexes from Gavin dataset w.r.t
the MIPS gold standard

Ca’Foscari University of Venice
Department of Environmental Sciences, Informatics and Statistics

91 of 128



5.5 Quality of the Predicted Complexes 92

Figure 5.8: Quality of the predicted protein complexes from Krogan Extended
dataset w.r.t the MIPS gold standard

Figure 5.9: Quality of the predicted protein complexes from Krogan Core dataset
w.r.t the MIPS gold standard
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Figure 5.10: Quality of the predicted protein complexes from BioGRID dataset
w.r.t the MIPS gold standard
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From the previous figures it is clear that the clustering algorithm based on

Dominant Sets outperforms the other approaches in almost all datasets.

Consider the composite score obtained by summing all the three quality score

as a summary score for the protein complexes predicted by each algorithm. It

possible to notice that for all the datasets, except for Krogan Core, the best results

are always achieved by Dominant Sets. In particular, we obtained significative

improvements for the unweighted dataset BioGRID (figure 5.10). In order to

remark this behaviour tables 5.16, 5.17, 5.18 and 5.20 show the composite score

values and its percentage increase with respect to Dominant Sets for each approach.

Algorithm Frac Acc MMR Composite Score Percentage increase
RNSC 0.418 0.419 0.192 1.029 +25.7%
AP 0.243 0.291 0.1 0.634 +103.9%
MCL 0.196 0.348 0.09 0.634 +103.9%

MCODE 0.11 0.285 0.05 0.445 +190.6%
RRW 0.397 0.344 0.178 0.919 +40.7%

ClusterONE 0.466 0.44 0.195 1.101 +17.4%
Dominant Sets 0.598 0.42 0.275 1.293

Table 5.16: Quality of the predicted protein complexes from BioGRID dataset
w.r.t the MIPS gold standard and percentage increase of the composite quality
score achieved by Dominant Sets

Algorithm Frac Acc MMR Composite Score Percentage increase
RNSC 0,626 0,481 0,317 1,424 +20,5%
AP 0,652 0,441 0,335 1,428 +20,2%
MCL 0,687 0,502 0,331 1,52 +12,9%

MCODE 0,565 0,444 0,283 1,292 +32,8%
CFINDER 0,565 0,485 0,28 1,33 +29,0%

CMC 0,652 0,47 0,335 1,457 +17,8%
RRW 0,661 0,444 0,346 1,451 +18,3%

ClusterONE 0,713 0,498 0,375 1,586 +8,2%
Dominant Sets 0,765 0,501 0,45 1,716

Table 5.17: Quality of the predicted protein complexes from Gavin dataset w.r.t
the MIPS gold standard and percentage increase of the composite quality score
achieved by Dominant Sets
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Algorithm Frac Acc MMR Composite Score Percentage increase
RNSC 0,61 0,49 0,31 1,41 +31,8%
AP 0,64 0,48 0,35 1,47 +26,4%
MCL 0,739 0,536 0,399 1,674 +11,0%

MCODE 0,597 0,492 0,328 1,417 +31,1%
CFINDER 0,555 0,492 0,308 1,355 +37,1%

CMC 0,597 0,503 0,314 1,414 +31,4%
RRW 0,672 0,446 0,375 1,493 +24,4%

ClusterONE 0,782 0,555 0,418 1,755 +5,9%
Dominant Sets 0,807 0,554 0,497 1,858

Table 5.18: Quality of the predicted protein complexes from Collins dataset w.r.t
the MIPS gold standard and percentage increase of the composite quality score
achieved by Dominant Sets

Algorithm Frac Acc MMR Composite Score Percentage increase
RNSC 0,397 0,383 0,175 0,955 +45,2%
AP 0,397 0,345 0,174 0,916 +51,4%
MCL 0,596 0,439 0,271 1,306 +6,2%

MCODE 0,279 0,322 0,12 0,721 +92,4%
CFINDER 0,346 0,369 0,167 0,882 +57,3%

CMC 0,36 0,367 0,171 0,898 +54,5%
RRW 0,5 0,359 0,246 1,105 +25,5%

ClusterOne 0,669 0,438 0,317 1,424 -2,6%
Dominant Sets 0,64 0,417 0,33 1,387

Table 5.19: Quality of the predicted protein complexes from Krogan Core dataset
w.r.t the MIPS gold standard and percentage increase of the composite quality
score achieved by Dominant Sets

Algorithm Frac Acc MMR Composite Score Percentage increase
RNSC 0,35 0,364 0,15 0,864 +51,4%
AP 0,338 0,333 0,166 0,837 +56,3%
MCL 0,433 0,409 0,192 1,034 +26,5%

MCODE 0,15 0,271 0,1 0,521 +151,1%
CFINDER 0,217 0,315 0,11 0,642 +103,7%

CMC 0,369 0,336 0,176 0,881 +48,5%
RRW 0,465 0,354 0,22 1,039 +25,9%

ClusterONE 0,573 0,422 0,282 1,277 +2,4%
Dominant Sets 0,599 0,391 0,318 1,308

Table 5.20: Quality of the predicted protein complexes from Krogan Extended
dataset w.r.t the MIPS gold standard and percentage increase of the composite
quality score achieved by Dominant Sets
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As emphasized by the previous tables, except for Krogan Core, Dominant sets

shows an overall quality improvement ranging from 2,4% to 17,4% in protein com-

plexes detection from Protein-Protein Interaction Networks.

In particular, focusing our attention to the single components of this overall

quality, results that Dominant Sets outperform all the other clustering approaches

in two of three quality measures. Indeed, appreciable improvements concern the

fraction of protein complexes matched by at least one predicted complex and the

maximum matching ratio (the blue and green measures in all the plots).

The geometric accuracy is instead slightly lower than the one achieved by

ClusterONE. In order to explain this behaviour it is important to emphasize that,

as explained in details in the section 4.3.2 and 4.3.3, the geometric accuracy is

the geometric mean of two other measures, the PPV and the Sn. Unfortunately,

one of this two component, the PPV, tends to be lower if a protein appears in

more than one predicted cluster. Hence this measure is affected in the wrong

way if several predicted complexes are overlapped, puting overlapping clustering

algorithms at a disadvantage. For this reason Paccanaro at. el in [44] proposed the

MMR. The maximum matching ratio was explicitly designed to assess the quality

of overlapped protein complexes.

The results achieved by Dominant Sets show a MMR significantly better than

the one obtained by the other approaches. This aspect is crucial and leads to

reconsider our results for the better.
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Dataset Algorithm Frac MMR Composite Score Percentage Increse

Collins
MCL 0,739 0,399 1,138 +14,59%

ClusterONE 0,782 0,418 1,2 +8,67%
Dominant Sets 0,807 0,497 1,304

Gavin
MCL 0,687 0,331 1,018 +19,35%

ClusterONE 0,713 0,375 1,088 +11,66%
Dominant Sets 0,765 0,45 1,215

Krogan Extended
RRW 0,465 0,22 0,685 +33,87%

ClusterONE 0,573 0,282 0,855 +7,25%
Dominant Sets 0,599 0,318 0,917

Krogan Core
MCL 0,596 0,271 0,867 +11,88%

ClusterONE 0,669 0,317 0,986 -1,62%
Dominant Sets 0,64 0,33 0,97

BioGRID
RNSC 0,418 0,192 0,61 +43,11%

ClusterONE 0,466 0,195 0,661 +32,07%
Dominant Sets 0,598 0,275 0,873

Table 5.21: Frac and MMR of the 3 algorithms that achieved the highest score
for each dataset with respect to MIPS gold standard. The percentage increase
achieved by Dominant Sets is also reported

The table 5.21 reports for each dataset the three algorithms that achieved

the best fraction of protein complexes matched by at least one predicted complex

and the maximum matching ratio with respect to the MIPS gold standard. The

composite score has been obtained summing these two measures. It is worth

emphasizing that, except for Krogan Core, Dominant sets shows for this composite

score an improvement ranging from 7,25% to 32,7% in protein complexes detection.
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5.5.2 Quality score by SGD gold standard

In this section are reported some benchmark results obtained comparing the pro-

tein complexes predicted by each clustering algorithm with the gold standard SGD.

All the plots reported in this section use the same format describe in the section

5.5.1.

Figure 5.11: Quality of the predicted protein complexes from Collins dataset w.r.t
the SGD gold standard
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Figure 5.12: Quality of the predicted protein complexes from Gavin dataset w.r.t
the SGD gold standard

Figure 5.14: Quality of the predicted protein complexes from Krogan Core dataset
w.r.t the SGD gold standard
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Figure 5.13: Quality of the predicted protein complexes from Krogan Extended
dataset w.r.t the SGD gold standard

Figure 5.15: Quality of the predicted protein complexes from BioGRID dataset
w.r.t the SGD gold standard

The quality of the protein complexes obtained comparing the predicted com-

plexes by each algorithm to the gold standard SGD follows the same trend than
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the one shown comparing them to the gold standard MIPS. Moreover, it is worth

emphasizing the behaviour obtained on Krogan Core dataset. Recalling that pro-

tein complexes predicted from this dataset show an overall quality lower of 2.6%

with respect to ClusterOne, we can see that this margin is reduced to -0.2% if we

compare our predicted complexes with the SGD gold standard. This lead us to

reconsider for the better the disadvantage between our algorithm and ClusterOne

on this particular dataset.

Algorithm Frac Acc MMR Composite Score Percentage increase
RNSC 0,502 0,61 0,277 1,389 +16,6%
AP 0,275 0,436 0,14 0,851 +90,4%
MCL 0,3 0,46 0,15 0,91 +78,0%

MCODE 0,14 0,393 0,05 0,583 +177,9%
RRW 0,485 0,534 0,263 1,282 +26,4%

ClusterOne 0,554 0,633 0,265 1,452 +11,6%
Dominant Sets 0,657 0,585 0,378 1,62

Table 5.22: Quality of the predicted protein complexes from BioGRID dataset
w.r.t the SGD gold standard and percentage increase of the composite quality
score achieved by Dominant Sets

Algorithm Frac Acc MMR Composite Score Percentage increase
RNSC 0,711 0,694 0,425 1,83 +14,2%
AP 0,773 0,656 0,437 1,866 +12,0%
MCL 0,75 0,689 0,438 1,877 +11,3%

MCODE 0,578 0,609 0,36 1,547 +35,0%
CFINDER 0,609 0,668 0,36 1,637 +27,6%

CMC 0,742 0,642 0,444 1,828 +14,3%
RRW 0,758 0,667 0,471 1,896 +10,2%

ClusterOne 0,789 0,706 0,476 1,971 +6,0%
Dominant Sets 0,82 0,716 0,553 2,089

Table 5.23: Quality of the predicted protein complexes from Gavin dataset w.r.t
the SGD gold standard and percentage increase of the composite quality score
achieved by Dominant Sets
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Algorithm Frac Acc MMR Composite Score Percentage increase
RNSC 0,64 0,67 0,388 1,698 +28,6%
AP 0,71 0,656 0,45 1,816 +20,2%
MCL 0,836 0,723 0,518 2,077 +5,1%

MCODE 0,634 0,643 0,42 1,697 +28,6%
CFINDER 0,604 0,648 0,412 1,664 +31,2%

CMC 0,582 0,622 0,344 1,548 +41,0%
RRW 0,754 0,656 0,494 1,904 +14,7%

ClusterOne 0,828 0,731 0,532 2,091 +4,4%
Dominant Sets 0,851 0,719 0,613 2,183

Table 5.24: Quality of the predicted protein complexes from Collins dataset w.r.t
the SGD gold standard and percentage increase of the composite quality score
achieved by Dominant Sets

Algorithm Frac Acc MMR Composite Score Percentage increase
RNSC 0,47 0,54 0,26 1,27 +37,3%
AP 0,49 0,51 0,3 1,3 +34,2%
MCL 0,64 0,64 0,35 1,63 +7,0%

MCODE 0,352 0,46 0,198 1,01 +72,7%
CFINDER 0,418 0,494 0,243 1,155 +51,0%

CMC 0,418 0,511 0,24 1,169 +49,2%
RRW 0,606 0,561 0,361 1,528 +14,1%

ClusterOne 0,667 0,663 0,418 1,748 -0,2%
Dominant Sets 0,685 0,612 0,447 1,744

Table 5.25: Quality of the predicted protein complexes from Krogan Core dataset
w.r.t the SGD gold standard and percentage increase of the composite quality
score achieved by Dominant Sets

Algorithm Frac Acc MMR Composite Score Percentage increase
RNSC 0,417 0,536 0,236 1,189 +36,8%
AP 0,519 0,514 0,285 1,318 +23,4%
MCL 0,492 0,594 0,253 1,339 +21,4%

MCODE 0,209 0,383 0,1 0,692 +135,0%
CFINDER 0,262 0,47 0,155 0,887 +83,3%

CMC 0,417 0,524 0,252 1,193 +36,3%
RRW 0,54 0,529 0,311 1,38 +17,8%

ClusterOne 0,594 0,628 0,364 1,586 +2,5%
Dominant Sets 0,61 0,606 0,41 1,626

Table 5.26: Quality of the predicted protein complexes from Krogan Extended
dataset w.r.t the SGD gold standard and percentage increase of the composite
quality score achieved by Dominant Sets
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Dataset Algorithm Frac MMR Composite Score Percentage Increse

Collins
MCL 0,836 0,518 1,1353 +8,12%

ClusterONE 0,828 0,532 1,36 +7,65%
Dominant Sets 0,851 0,613 1,464

Gavin
RRW 0,758 0,471 1,229 +11,96%

ClusterONE 0,789 0,476 1,265 +8,77%
Dominant Sets 0,823 0,553 1,376

Krogan Extended
RRW 0,54 0,311 0,851 +19,86%

ClusterONE 0,594 0,364 0,958 +6,47%
Dominant Sets 0,61 0,41 1,02

Krogan Core
MCL 0,64 0,35 0,99 +14,34%

ClusterONE 0,667 0,418 1,085 4,33%
Dominant Sets 0,685 0,447 1,132

BioGRID
RNSC 0,502 0,277 0,779 +32,86%

ClusterONE 0,554 0,265 0,819 +26,37%
Dominant Sets 0,657 0,378 1,035

Table 5.27: Frac and MMR of the 3 algorithms that achieved the highest score for
each dataset with respect to SGD gold standard. The percentage increase achieved
by Dominant Sets is also reported

5.6 Concluding Remarks

The results achieved show that the Dominant Sets framework is a suitable candi-

date to detect protein complexes from protein-protein interaction networks. Our

benchmarks showed that the clustering algorithm based Dominant Sets outper-

formed the other approaches both on weighted and unweighted PPI networks.

It matches more complexes and provides a better one-to-one mapping with the

reference complexes used in almost all the data sets.

MCL and ClusterONE yielded the closest score to Dominant Sets. However

it is important to notice that MCL cannot handle overlaps and ClusterONE, the

state of the art for detecting protein complexes, has been designed explicitly for

protein complexes detection in Protein-Protein Interaction.
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Chapter 6

Assessing the Quality of Putative

Dimers

6.1 Introduction

During our experiments the Dominant Sets algorithm showed a high tendency

to detect dimers, namely protein complexes of size two. Figure 6.1 compares the

quantity of dimers predicted by Dominant Sets and ClusterONE for each datasets.

Figure 6.1: Quantity of predicted dimers
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The higher number of dimers detected by the Dominant Sets algorithm is of

remarkable interest. Indeed, some authors argue that the clustering algorithms

currently available have substantial difficulties to recognize protein complexes of

size two[27]. Their detection is hampered by the structure itself of this particular

complexes.

As pointed out in [27], also the state of the art for detecting protein complexes

in PPI networks underestimates the number of dimers. This is due to the fact that

this particular type of complex has only one edge connecting two proteins, and in

some sense there is a lack of association evidence that makes their extraction form

a PPI network very difficult. The figure 6.2 shows the complex size distribution

detected by ClusterOne, highlighting the underestimation of complexes of size two

and three.

Figure 6.2: Complex size distribution. The blue line represents the complexes
curated in literature, while the orange line represent the novel complexes predicted
using ClusterOne in [27]

This particular kind of complex has important biological roles but finding and

validating them is still an open problem. To the best of our knowledge, this is

the first attempt at defining a method with the express aim of finding dimers,

which raises the need to define an evaluation methodology to validate the putative

dimers produced by Dominant Sets.
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6.2 Dimers Evaluation through Gold Standards

As a first attempt for evaluating a set of putative dimers predicted by any clustering

algorithm we tried to quantify how many of them are known dimers, and hence

included in some protein complex gold standard. For this step we used the gold

standards reported in the table 6.1.

Source Gold
Standard

Version Notes

MIPS [41] 18 May 2006
We kept all MIPS categories containing
at least two proteins as protein com-
plexes

SGD [29] 11 Aug 2010
Gene Ontology (GO)-based protein
complex annotations from SGD

CYC2008 [53] v.2 1 Nov 2010

Comprehensive catalogue of 408 man-
ually curated protein complexes from
small-scale experiments reported in lit-
erature

Table 6.1: Gold standards used for evaluating dimers

Unfortunately these gold standards and our PPI networks overlap only par-

tially, namely only some proteins are shared between them. For this reason we

cannot verify all the putative dimers predicted, but only the fraction shared with

the gold standard. We can determine the proteins shared before the process of

dimers detection. With this aim we apply three preprocessing steps on the gold

standards. By computing the set of proteins shared between our PPI networks and

the gold standard we are implicitly quantifying the best prediction that any clus-

tering algorithm for finding dimers can achieve in that particular gold standard.

Lets see in detail these three steps.

Firstly, we removed from the gold standards all the protein complexes with size

greater than two. We kept only the dimers reported in each gold standard, namely

pairs of proteins linked by a single edge. It turns out that, in this context, the set

of protein complexes in our gold standards correspond to a set of edges. Going

forward we will always refer to the gold standards as the results of this filtering

step.
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Source Gold
Standard

Number of
Complexes

Number of
Dimers

Percentage of
dimers

MIPS 266 63 23.7%
SGD 323 68 21%

CYC2008 408 172 42%

Table 6.2: Properties of the gold standard datasets used for dimers evaluation

After this first step we checked how many of these edges are also present in our

PPI networks. We refer a dataset set ds as a graph

Gds = (Vds, Eds)

and a gold standard gs as a graph Ggs = (Vgs, Egs). The intersection between the

gold standards gs and the set of edges Eds of the dataset ds is hence defined as

Egs(ds) = Eds ∩ Egs

and it represents the set of all the dimers contained in our dataset set ds with

respect to to the gold standard gs. Therefore the cardinality of Egs(ds) is the

maximum quantity of dimers of ds that we can verify with the gold standard gs.

The Figure 6.3 represents the procedure described.

However, in the set of edges Egs(ds) there may be a set of protein pairs con-

nected but isolated with respect to all the other nodes. These isolated pairs of

proteins are clearly detected by any clustering algorithm applied because they are

isolated clusters of size 2. We will refer with APds the set of Always P redicted

complexes of the dataset ds. Hence, as third step we remove from all the datasets

all the proteins connected to only one other protein. Removing these proteins also

from Egs(ds) we obtain the set that represents the best dimer prediction that a

clustering algorithm can achieve in a dataset ds with respect to a gold standard

gs. We summarize the results of these steps in the tables 6.3,6.4 and 6.5.
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Figure 6.3: Filtering of gold standard

Dataset Dimers predictable
Dimers always

predicted
Best prediction

Collins 34 12 22
Gravin 26 0 26

Krogan Core 32 2 30
Krogan Extended 33 0 33

Table 6.3: MIPS dimers shared with the datasets
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Dataset Dimers predictable
Dimers always

predicted
Best prediction

Collins 42 20 22
Gravin 34 2 32

Krogan Core 35 3 32
Krogan Extended 38 0 38

Table 6.4: SGD dimers shared with the datasets

Dataset Dimers predictable
Dimers always

predicted
Best prediction

Collins 84 40 44
Gravin 70 5 65

Krogan Core 84 5 79
Krogan Extended 88 0 88

Table 6.5: CYC2008 dimers shared with the datasets

After these three preprocessing steps we cluster the PPI networks with the aim

of detecting dimers. For this step we applied Dominant Sets and ClusterONE.

The entire set of clusters returned by each method has been filtered keeping

only protein complexes of size two, namely the putative dimers. For a given dataset

ds we refer the output graph returned by a clustering method as

Gc
ds = (V c

ds, E
c
ds)

and its variant with only clusters of size two as

Gc=2
ds = (V c=2

ds , Ec=2
ds )

Therefore, to verify which of these putative dimers are true positives with respect

to a gold standard gs it is necessary to intersect Ec=2
ds with Egs(ds)

TP = Ec=2
ds ∩ Egs(ds)

.
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Clearly, directly comparing the quantity of true positive predicted dimers (TP )

with the total number of dimers predictable (Egs(ds)) in a given dataset ds with

respect to a gold standard gs does not tell to us so much. Indeed, this fraction

could be misleading. Let us consider, for example, a clustering algorithm to detect

dimers which returns as output every single pair of proteins in the network. Clearly

this algorithm will achieve a perfect score, maximizing the fraction TP
Egs(ds)

. This is

due to the fact that it returns all the edges, including all the dimers shared with

every gold standard, and hence TP = Egs(ds).

For this reason, in order to asses the quality of our results, we compute 2

quality measures: precision and recall. A third composite measure, known as F-

measure or F1, is also computed. We recall that these measures, widely applied

for clustering analysis, are defined as follows:

Precision =
TP

TP + FP
(6.1)

Recall =
TP

TP + FN
(6.2)

F −measure =
(β2 + 1) · Precision ·Recall
β2 · Precision+Recall

(6.3)

Notice that when β = 0 the equation (6.3) coincides with (6.1), and hence the recall

does not affect the F-measure leading to F − measure = Precision. Increasing

β gains the weight of recall. For our purpose we set β = 1 assigning to recall the

same weight of precision.

In particular, for a given dataset ds the measures became:

Precision =
TP + |APds|
|Ec=2

ds |

Recall =
TP

|Egs(ds)|

where, as explained before, Egs(ds) refers the best prediction achievable on the

dataset ds with respect to the gold standard ds, and Ec=2
ds is the set of all the

putative dimers predicted on ds by a clustering algorithm. As pointed out before,
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there may be in ds a set of dimers isolated in the network, namely a set of proteins

each of which is connected to only one other protein. We refer this set as APds.

In the tables 6.6, 6.7 and 6.8 are presented the results obtained applying the

measure described above.

Dataset
Total

predicted
TP+AP TP Precision Recall F1

One DS One DS One DS One DS One DS One DS

Collins 128 166 15 22 3 10 0.117 0.133 0.136 0.455 0.126 0.206
Gavin 36 138 3 12 3 12 0.083 0.087 0.115 0.462 0.096 0.146

KroganC 142 169 11 15 9 13 0.077 0.089 0.3 0.433 0.123 0.148
KroganE 135 167 9 14 9 14 0.067 0.084 0.273 0.424 0.108 0.14

Table 6.6: Dimers Evaluation by MIPS gold standard

Dataset
Total

predicted
TP+AP TP Precision Recall F1

One DS One DS One DS One DS One DS One DS

Collins 128 166 22 28 2 8 0.172 0.169 0.091 0.364 0.119 0.231
Gavin 36 138 7 15 5 13 0.194 0.109 0.156 0.406 0.173 0.172

KroganC 142 169 13 19 10 16 0.092 0.112 0.313 0.5 0.142 0.183
KroganE 135 167 12 17 12 17 0.089 0.102 0.316 0.447 0.139 0.166

Table 6.7: Dimers Evaluation by SGD gold standard

Dataset
Total

predicted
TP+AP TP Precision Recall F1

One DS One DS One DS One DS One DS One DS

Collins 128 166 43 54 3 14 0.336 0.325 0.068 0.318 0.113 0.321
Gavin 36 138 12 28 7 23 0.333 0.203 0.108 0.354 0.163 0.258

KroganC 142 169 24 31 19 26 0.169 0.183 0.241 0.329 0.199 0.235
KroganE 135 167 25 26 25 26 0.185 0.156 0.284 0.295 0.224 0.204

Table 6.8: Dimers Evaluation by CYC2008 gold standard

6.3 Dimers Evaluation through Yeast Two Hy-

brid Experiments

Assessing the quality of a set of dimers is a tricky task. Comparing the pu-

tative dimers given as output by a clustering algorithm with a set of manually
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curated complexes could be considered the first step of quantifying their quality.

Our benchmarks support the intuition that clustering algorithms based on Domi-

nant Sets are suitable candidates for finding dimers, providing a better one-to-one

matching with reference complexes in all the data sets. Unfortunately the PPI

networks and the gold standards overlap only partially. In particular, only few

proteins involved in some dimers are shared between them. With this lack of

ground truth concerning dimers we cannot proceed with some relevant statistical

test. The tables 6.3, 6.4 and 6.5 underline this issue.

For this reason we try to asses the quality of a set of dimers also using Y2H

experiments. As reported in the section 1.7.1 the Y2H method allows us to ver-

ify the physical interaction between a pair of proteins. This approach to detect

protein-protein interaction is widely used in literature and many researches have

been published on yeast proteins. Large and small scale experiments are available.

A common way to access these data is using the Biological General Repository

for Interaction Datasets, an online interaction repository that counts 37.439 pub-

lications from major model organism species. We used the most recent version

of BioGRID (3.2.96 - December 25th, 2012) extracting 1566 studies on yeast Sac-

charomyces cerevisiae proteins based on Y2H method. Of these studies 1552 are

small scale experiments while 14 are large scale experiments.

It is worth emphasizing the difference between small and large scale experi-

ments. Indeed, their different nature lead us to exploit them in a different manner.

Usually, in small scale experiments only few proteins are involved. Often, this

is due to the fact that they concern a very specific biological event or scenario.

(e.g.“Valproic acid- and lithium-sensitivity in prs mutants of Saccharomyces cere-

visiae”). Focusing only on few proteins, researchers provide reliable protein-protein

interactions. However, if two proteins appear in a given small scale Y2H exper-

iment but their interaction is not reported, this does not imply that those two

proteins do not interact. Indeed, it could be the case that the topic of that publi-

cation was not the interaction between them. Hence, the interaction between that

particular pair of proteins could be not even checked.

On the other hand, large scale experiments usually counts at least 100 inter-

actions. Being so wide usually the interaction reported in this kind of studies are
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less reliable. Nonetheless often their authors check every single possible interaction

between all the proteins reported.

Therefore, in some sense, while the presence of a particular interaction is highly

reliable in small scale Y2H experiments, in large scale experiments is the absence

of interaction between a pair of protein reported on it that is highly reliable.

The idea here proposed uses yeast two hybrid experiments to assign a probabil-

ity of physical interaction between the proteins of each putative dimers detected.

Moreover, using Y2H data we compute also the probability that no other proteins

interact with a given predicted dimer.

6.4 Estimating the reliability of an edge

As pointed out before we filtered the BioGRID dataset extracting only the physical

interactions checked by Y2H and concerning the yeast Saccharomyces cerevisiae.

Starting from this set of interactions we built the entire network. Unfortunately

this large list of protein interactions comes from different sources, from different

authors and has different accuracy. Moreover we recall that the 2YH method, as

all the other methods for protein-protein interaction detection, has a large amount

of false positives and false negatives[10].

Hence, with the aim of using this data it is necessary to establish a probability

representing the reliability of each physical interaction. How we compute this

network and the weight of its edges is the main purpose of this section. Having

this set of probabilities we can assign an accuracy value also to the putative dimers

detected by a clustering algorithm. Indeed, in order for a pair of proteins to be a

dimer, they have to be connected together with high probability, while they have

to be connected to others protein with low probability (ideally zero). Therefore,

in order to evaluate the quality of the predicted dimers as first step we assign to

each Y2H interaction a value reflecting its accuracy. After that, with these data,

we asses the quality of each putative dimer.

It is worth emphasizing why we used data obtained by the Y2H method. In-

deed, someone can argue that protein-protein interaction data obtained by many

other approaches are available.

The causes of this choice are intrinsically related to the nature of the yeast
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two hybrid approach. Indeed, this molecular biology technique is used to discover

protein-protein interactions by testing for physical interactions between two pro-

teins. While other methods, as (T)AP-MS, measure physical interactions between

groups of proteins without distinguishing whether they are direct or indirect.

Therefore, checking pairs instead of groups of proteins, the Y2H method seems

to be the most suitable approach for validating dimers.

6.4.1 Integration of Y2H datasets

In order to estimate the probability of a physical interaction between a any pair

of proteins in our Y2H data we proceed as follows. Given a pair of proteins (a, b)

and defining DS as the set of all yeast two hybrid experiments available on yeast

as

DS = DSsmalls ∪DSlarges = ds1 ∪ ds2 ∪ ... ∪ dsn

where DSsmalls is the subset of all the small scale experiments and DSlarges is the

one of large scale experiments, we define

P (a & b) =

1, if a & b ∈ dsx where dsx ∈ DSsmalls
h
n
, otherwise

(6.4)

where h is the number of dsx ∈ DSsmalls, namely the number of large scale yeast

two hybrid publications, where both the proteins a and b appear. While n is the

number of large scale publications where a and b interact. This represents the

probability that the protein a and the protein b are linked together building a

protein complex a & b of size 2.

It is worth emphasizing that the equation (6.4) models what we pointed out

in the previous section: the interaction of a pair of proteins in a small scale ex-

periment is more reliable but its absence cannot be interpreted as non-interaction.

Hence, if the interaction of a pair of proteins cannot be proved by some small

scale experiment, we compute its accuracy as the number of large scale datasets

which support that hypothesis divided by the number of datasets that contain

those proteins.

After the reliability estimation of each interaction, for a putative dimer a & b
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we compute the probability to be a real dimer as

Pd(a & b) = P (a & b) ·
∏

x incident to a

(1− P (x & a))
∏

x incident to b

(1− P (b & x)) (6.5)

Intuitively, equation (6.5) means that in order to be a dimer, with respect to a set

of yeast two hybrid experiments, a pair of proteins have to be linked together with

high probability and linked to any other proteins with low probability. Therefore,

putative dimers with an high value of Pd(a & b) are more likely true dimers.

6.5 Experimental Results

For each putative dimer, predicted by ClusterONE and Dominant Sets, we com-

pute its probability of being a true dimer using the physical interaction network

built as pointed out before. Unfortunately, only a fraction of all the putative

dimers predicted have been studied in some of Y2H experiments present in liter-

ature. The tables 6.9 and 6.10 show, for each dataset, the fraction of predicted

dimers contained in at least one Y2H experiment.

Dataset Total predicted Validated on Y2H
Collins 128 54
Gavin 36 14

Krogan Core 142 46
Krogan Extended 135 40

Table 6.9: Dimer predicted by ClusterOne and validated on Y2H experiments

Dataset Total predicted Validated on Y2H
Collins 166 73
Gavin 138 37

Krogan Core 169 50
Krogan Extended 167 52

Table 6.10: Dimer predicted by Dominant Sets and validated on Y2H experiments
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Using our Y2H network we were able to produce, for each clustering method,

a list of dimers with an associated probability, that is a sublist of the predicted

dimers.

Since the results predicted by a computational method are commonly validated

in laboratory, we sort the predicted dimers according to their probability in a

decreasing way. In this way we can provide to biologists only a portion of our

predicted dimers, those we highest probability.

In order to build these portions of dimers that have to be validated by further

steps we split this ordered list of dimers into buckets. The first bucket contains

the first five elements of the putative dimers list, namely the dimers with the

highest probability of being true dimers. The second bucket contains the first ten

elements of the list. We iterate this procedure increasing the size of each bucket

of five elements until to build a bucket containing all the dimers.

In figure 6.4, 6.5, 6.6 and 6.7 we plot, for each dataset, the average of the

probabilities associated to each bucket. Hence, the x-axis represents the size of

each bucket of dimers, while the y-axis represent their average probability of being

true dimers.

Indeed, each segment of these plots compare the the average probability of

being a true dimer of the first n-elements predicted by each method.
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Figure 6.4: Average quality of the predicted dimers from the Collins dataset with
respect to our Y2H network

Figure 6.5: Average quality of the predicted dimers from the Gavin dataset with
respect to our Y2H network

Ca’Foscari University of Venice
Department of Environmental Sciences, Informatics and Statistics

117 of 128



6.5 Experimental Results 118

Figure 6.6: Average quality of the predicted dimers from the Krogan Core dataset
with respect to our Y2H network

Figure 6.7: Average quality of the predicted dimers from the Krogan Extended
dataset with respect to our Y2H network

As it is possible to see for all the datasets each bucket of dimers predicted by

Dominant Sets shows an higher average probability of being a set of true dimers
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than those predicted by ClusteONE. In particular, remarkable improvements are

achieved for the Gavin, Krogan Core and Krogan Extended datasets.

Hence, this approach, as the one based on gold standards, supports the intuition

that putative dimers detected by Dominant Sets have on average higher probability

to be real dimers than those obtained with ClusterONE.
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Chapter 7

Discussion and Conclusions

In this thesis, we applied a framework based on Dominant Sets in order to detect

overlapping protein complexes from Protein-Protein Interaction networks. We

have shown that the notion of Dominant Sets fits properly with the notion of

protein complexes, allowing us to extract from PPIs datasets, sets of core protein

complexes. Using further steps of refinement we promote the Dominant Sets to

protein complexes adding to them the unclustered proteins in an appropriate way.

We measure the cohesiveness of each Dominant Set, expanding it with clusters of

size one if this operation conducts to remarkable improvements of cohesiveness.

Overlapped protein complexes detected in this fashion show noticeable quality

with respect to those obtained with other standard clustering techniques. However,

it is important to keep in mind that most of the alternative clustering algorithms

cannot deal at the same time with overlapped clusters and weighted datasets.

Moreover, the quality of protein complexes predicted by the Dominant Sets

algorithm is, in most of the cases, even more accurate than that obtained by

ClusterOne -the state of the art for detecting protein complexes.

Our experiments highlighted also that Dominant Sets algorithm shows a high

tendency to detect dimers, namely protein complexes of size two. This particular

kind of complexes has important biological roles. To the best of our knowledge,

this is the first attempt at defining a computational method with the express aim

of finding dimers, which raises the need to define an evaluation methodology to

validate the putative dimers.
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Thus, we provide two different methodologies to validate putative dimers. The

first attempt is based on matching them on three different gold standard datasets.

Using this first approach our tests support the intuition that putative dimers

detected by Dominant Sets have better quality with respect to those obtained

with ClusterONE. Indeed, they show an higher F-measure for all the dataset and

all the gold standards used.

However, the availability of relative small ground truth datasets led us to de-

velop a second methodology for assessing the quality of putative dimers, which

drives to a novel prospective. This approach exploits binary Y2H set of Protein-

Protein Interactions.

We built a network of physical protein interactions aggregating the entire set

of published Y2H interactions. We estimated the reliability of each edge of this

network in order to establish, for each putative dimer, a probability related to

the likelihood of being a dimer. Also this approach supports the intuition that

putative dimers detected by Dominant Sets have on average higher probability to

be real dimers than those obtained with ClusterONE.

In Chapter 6 we presented the issues related to the evaluation of putative dimers

and a first attempt of defining an evaluation methodology to validate putative

dimers. This renders our proposal a novel contribution. Unfortunately, the limited

knowledge present in literature makes this problem difficult to address from a

statistical point of view. For this reason, as a future work, we want estimate

a reliability term for each publication based on the Y2H method. Adding this

reliability term to the Y2H network built we expect a quality improvement of this

physical Protein-Protein Interaction network. Progress on this wide network is

expected to increase its predictive capability for evaluating putative dimers.
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