
Master’s Degree programme in

Computer Science

Final Thesis

Remote Debugging Detection

in Android

Supervisor
Prof. Paolo Falcarin

Graduand
Mirco Venerba

Matriculation Number 872653

Academic Year
2022 / 2023

Contents
Abstract.. 4

List of figures... 6

1. Introduction..8

1.1. MATE attack.. 9

1.2. Anomaly detection...10

2. Related work.. 12

2.1. MATE attack.. 12

2.2. Anomaly detection...14

3. Background..17

3.1. System calls tracing.. 17

3.2. Android application..18

3.3. Anomaly detection...19

4. Solution.. 21

4.1. Manifest file... 22

4.2. Android library... 23

4.2.1. Application lifecycle...24

4.2.2. Debuggable applications...26

4.2.3. Types of debugger.. 27

4.2.4. Developer options... 28

4.2.5. Types of recharge... 29

4.2.6. Types of sensor...30

4.3. Ptracer library.. 34

4.3.1. System call monitoring..35

4.3.2. NFA model.. 36

4.4. Web server.. 39

4.4.1. Instruction analysis... 39

4.4.2. Sequences analysis.. 40

2

4.4.3. Incremental execution...42

4.5. Device analysis... 43

4.6. Considerations.. 46

5. Validation..48

5.1. Test environments... 49

5.2. Training executions... 52

5.3. Normal executions...55

5.4. Abnormal executions...59

5.5. Automatic tests..61

6. Future developments.. 62

6.1. JAVA library... 62

6.1.1. Unique identifier of the device...62

6.1.2. Improve the tracing mechanism..63

6.1.3. Improve the communication mechanism.. 63

6.1.4. Reproject using native libraries...63

6.2. C++ library...64

6.3. Web server.. 64

6.3.1. Improve multi-client connections...64

6.3.2. Machine learning...65

6.3.3. Next action.. 65

6.3.4. Web UI.. 65

7. Conclusions... 66

Bibliography...67

3

Abstract
The purpose of this master thesis is to design a software library that is able to

analyze and monitor the different types of data that an Android device makes

available (such as system calls and their sequences, sensors data which the most

important information come from the accelerometer and gyroscope, the different

settings of the device that we can set and much more) and through these, this library

will be able to identify anomalies that can be indicators of security problems or

indicators of the presence of a possible debugger.

To implement all of the above I had to design and build an architecture consisting of

an Android library which has to be imported into the application to be traced to

extract the data and a web server which receives and analyzes the data from the

Android application and if it finds any suspected sequence or some anomalies,

through an intermediary interface, the administrator decides which operation to take

as stopping the network communication of that device because it is considered

compromised or putting that device in a devices warning level list.

The Android library consists of two execution modes (the first consisting of the

current application verification mechanism and the second consisting of a training

phase for the web server), several interconnected modules (system call monitoring

using the Ptracer tool positioned between the application and the kernel being able

to intercept any interaction and monitoring of the multiple data that the Android

device can provide us such as sensors, settings, type of recharge, applications that

can be debugged and much more) and finally the communication module

implemented via web socket using two different channels for ptracer logs and

android logs.

The web server can be seen as the central node of the entire architecture and in fact

has the task of receiving from the device to be analyzed all the data described in the

previous paragraph. From these information, a model was created consisting of all

the possible combinations that identify normal, or rather ideal, behavior of an Android

application and this is used then to be able to compare each future execution. It can

be observed that the information collected in the model during the training phase are

4

extremely useful for detecting if an external actor is trying to debug, tamper or violate

the application since such attempts would alter its normal behavior, execution speed

and much more.

5

List of figures
Android application lifecycle………………………………………………………………23

Lifecycle logs……………………………………………………………………………….24

Debuggable applications………………………………………………………………….25

Debuggers detection………………………………………………………………………27

Developer options detection………………………………………………………………28

Recharge types…………………………………………………………………………….29

Game rotation vector sensor……………………………………………………………...30

Numeric values of sensor…………………………………………………………………31

Textual values of sensor…………………………………………………………………..31

Correctly used sensor values……………………………………………………………..32

Azimuth alerts………………………………………………………………………………32

Ptracer position…………………………………………………………………….………33

Syscall started………………………………………………………………………...……34

Reduced log for Ptracer………………………………………………...…………………35

Syscall finished……………………………………………………………………..………35

Even or odd number algorithm……………………………………………………………36

NFA for even or odd number algorithm……………………………….…………………37

Nfa for audio record application…………………………………………..………………37

Analysis of each instruction………………………………………………….……………40

List of executed instructions………………………………………………………………41

List of possible next instructions……………………………………….…………………42

List of executable paths…………………………………………...………………………42

Incremental execution paths……………………...………………………………………43

Device alert level………………………………………………………...…………………46

Calculator app………………………………………………………………………………50

Audio recorder app…………………………………………………………...……………51

Web server………………………………………………………………………….………52

Training of each syscall……………………………………………………………………53

Training of subsequences…………………………………………………………………54

Training of execution paths……………………………………………………….………54

Training of subsequences…………………………………………………………………55

6

First part of complete execution log……………………………...………………………57

Second part of complete execution log………...………………………………….…….58

Third part of complete execution log…….………………………………………….……59

Ptracer not started…………………………………………………………………………59

Debugger JDWP found……………………………………………………………………60

Possible remote attack…………………………………………………………………….60

7

1. Introduction
This chapter aims to provide a general introduction of the multiple topics that will be

covered within this thesis in order to conceive, design and develop the entire

architecture presented in the abstract.

In recent years we are witnessing huge technological transformations characterized

above all by the increasingly widespread use of devices such as smartphones,

tablets and smartwatches and all of these have literally invaded the daily lives of

millions of people. These, thanks to the many software applications made available

to users, that can be used for various purposes including leisure activities such as

video games and streaming, work activities that process more and more sensitive

data up to applications that perform operations of considerable importance that

involve the movement of money such as purchase operations on e-commerce

platforms or bank transactions.

However, this also brings a disadvantage that consists of large quantities of sensitive

information, such as personal information or credit cards but in general we can talk

about network traffic, sensor data, device settings and much more, made available

and collected by the applications that we use every day and this makes Android a

potential target for malicious users interested in obtaining sensitive information,

device control and possibly software piracy.

A main figure, in addition to the sensitive information described in the previous

paragraph, is made up of system calls which represent the only mechanism capable

of interfacing a user process with an operating system service, such as file system

management, networking and much more. This is because a process without making

system calls can only perform calculations and operate on its own memory which is

volatile.

Consequently, being able to map any interaction between the application and the

kernel is an effective way to have a complete view of the actual behavior of the

application to be monitored because any action, considered potentially harmful, must

involve at least one system call.

8

Consequently, the purpose of this thesis is to design a library that is able to analyze,

monitor and correlate the multiple types of data that an Android device makes

available, both at a low level such as system calls and at a high level as can be the

sensor data and the different device settings that we can set, and through these be

able to identify anomalies that can be indicators of security problems such as

reverse engineering or debugging attempts.

1.1. MATE attack

A very important figure when we talk about anomaly detection and debugger

detection consists of Man-At-The-End type attacks or also known as MATE attacks.

This category of attacks is particular, it consists of attacks that are difficult and

complex to analyze, model, evaluate and prevent and this is due to two main

reasons. The first consists in the fact that the attacker is a human being and behind

this there is a combination of motivation, creation and ingenuity while the second

consists in the fact that the attacker has physical, unlimited and authorized access to

the device to compromise.

The key point of information security is that all major protections and security resist

an attacker for a certain period of time, more or less long, but then after a period of

study, motivation and money all protections will eventually fall.

For this reason, in all the digital resources widely available today, starting from the

workplace to the personal one, up to home networks, the cloud and finally the

Internet of Things, traditional IT security is no longer sufficient.

In fact, a first example of a very simple and nowadays widely used attack is reverse

engineering, which consists of the process by which a detailed analysis of the

structure and functioning of the target to be compromised is performed, whether

physical, software or hardware, in order to extract its implementation and design

specifications.

Since this type of cyber attack not only allows you to extract the specifics, both of

implementation and design, but also vulnerabilities that can be subsequently

exploited by the attacker to compromise the target, this is also strictly prohibited by

9

the terms of use of the software and as a result, multiple types of measures are

created and designed to prevent and make them more complex.

Accordingly in the literature, mainly three techniques used to prevent MATE-type

attacks are described. These include obfuscation, tamper proofing and

watermarking.

Obfuscation consists in transforming an input source into another output source with

the same functionality but more complex to analyze and modify for the attacker.

Tamper proofing consists in inserting some automatic controls within the input source

code to verify its behavior to verify that it has not been compromised or altered and if

this is detected, behave accordingly. Finally there is watermarking which consists in

inserting other unique information encoded within the input source and these can

subsequently be extracted to obtain information regarding the origin, provenance

and consequently the uniqueness of actual copy.

1.2. Anomaly detection

The second fundamental topic to be discussed in order to be able to design, develop

and subsequently write my thesis is anomaly detection which consists in the

identification of rare events, elements or observations that are suspicious because

they differ significantly from the standard behaviors or models that are created in the

training phase.

In fact, the structure of my project consists of a web server that analyzes the data it

receives and an Android device that extracts and forwards the multiple types of data

it may have.

The latest generation Android devices have access to multiple types of data, such as

sensors, settings, data flows and much more, and being super connected to the

internet and other high tech devices exponentially increases the risk of disclosure of

sensitive information.

For this reason, the Android operating system provides a modular permission system

that ensures that every application that runs explicitly requests what permissions are

required in order to function correctly. The problem with this thing is that once the

10

authorization has been granted, we don't know what happens next, that is, once the

authorization has been granted to a specific component, we have no way of knowing

whether the application is using it or not this privilege when requested or if it is

constantly listening and we don't even know what is done when this data is collected

because they can also be sent without knowing it to a specific remote server.

For these reasons, another important figure in this area is the intrusion detection

system or also better known as IDS. It is a tool designed to perform continuous

security monitoring, in order to identify, in advance, all attacks on the entire network

infrastructure. To be able to implement it, we can rely on multiple types of data and in

relation to those chosen, we can identify different types of IDS.

The first type consists of the Host Based Intrusion Detection System, or HIDS, which

consists of an analysis of the host for intrusions. Intrusions are detected by analyzing

system log file structure, system calls, file system changes, and more. The second

type consists of the Network Intrusion Detection System, or NIDS, which consists of

an analysis of the network traffic structure to identify intrusions, allowing you to

monitor not only the single host, but even an entire network by capturing network

traffic and looking for traces of attacks. Finally there is the Hybrid Intrusion Detection

System which consists of a system that combines the two approaches seen before,

in fact information retrieved from agents running on hosts is integrated with

information fetched from the local network.

This thesis focuses on the host-based intrusion detection system, HIDS, as the data

that is analyzed by the web server is extracted from the Android device to be

monitored.

11

2. Related work
This second chapter wants to describe what is the current state of the art of the two

main topics that are discussed within this thesis and these are MATE attack and

anomaly detection.

In recent years we have been witnessing enormous technological transformations

characterized above all by the increasingly widespread use of devices such as

smartphones, tablets and smartwatches and all of these have literally invaded the

daily lives of millions of people. These, thanks to the numerous software applications

made available to users, can be used for various purposes including leisure activities

such as video games and streaming, work activities that process increasingly

sensitive data up to applications that perform operations of considerable importance

involving the movement of money as purchase operations on e-commerce platforms

or bank transactions.

For this reason, these two topics have seen growing interest in recent years and

consequently the implementation of new prevention and protection techniques are

always on the agenda. In fact, within this thesis, a new approach will be described

which, through a training and model creation phase, will be able to prevent any

malicious attacks. Consequently, in order to design and develop this platform, we

had to read up on the current state of the art of the following two topics: MATE

attacks and anomaly detection.

2.1. MATE attack

A solution related to the protection of computer systems that is acquiring a

fundamentally important part concerns the protection of software. Usually, when we

think of a cyber attack we tend to think that the attacker is a person external to the

system being attacked, assuming that the people inside that system are trusted

users and in the absence of malicious intentions and instead in MATE attacks the

final user is the attacker.

12

In this scenario just described, software protection plays a very important role, in fact

an attacker could violate the intellectual property linked to a piece of code by illegally

appropriating the developed algorithms, understand how the code works through the

process of reverse engineering, copy and disclose without any authorization codes

or parts of it in violation of copyright laws, tamper with and modify a part of the code

so that it performs instructions for which it was not designed, take advantage of

some vulnerabilities present in the code and much more.

For this reason, a first technique consists in obfuscation, i.e. the modification of the

code or the flow of execution of the code itself while maintaining the original behavior

unaltered to increase its complexity in order to make the analysis and study more

complex and Tigress is the example that we will analyze below.

Tigress is an open source tool that enables source code obfuscation written in C and

C++ and is available for the Unix platform. This tool provides several obfuscation

methodologies among which you can observe the flattening of the control flow graph,

the merging of two functions into one, the division of a function into smaller functions,

the substitution of arithmetic expressions composed of numbers integers with more

complex expressions, the substitution of variables defined as integers with more

complex representations, the creation and use of predicates and opaque variables

and anti-branch analysis.

In addition to obfuscation, there are other techniques for software protection and

these are mainly device attestation with which the device properties are verified by

observing that they are legitimate and not counterfeit, dynamic code renewability

with which created a tool chain capable by following multiple policies of dynamically

modifying the code to make the attack more complex and finally the self debugging

with which other debuggers are prevented from connecting to the application as one

is connected from the beginning occupying the only position available.

An example of this implementation is the ASPIRE project which consists of a

software protection tool chain composed of the following functionalities: data hiding,

algorithm hiding, anti tampering, remote attestation, code renewability and self

debugging.

13

Finally there is the OWASP Mobile Application Security Testing Guide, or also known

as MASTG, which is a comprehensive handbook for mobile application security

testing and used as a foundational learning resource covering a variety of topics

from operating system internals to advanced reverse engineering techniques,

identifying the root of a device, checking executable files, checking timers and much

more.

2.2. Anomaly detection

We use our devices every day, from smartphones to smartwatches and internet of

things devices, as if we are always protected from everything and everyone, we

install applications without checking what information they will take from our device,

we leave sensors such as position sensors and various connections always enabled

and we pay everywhere with a simple click from the phone.

Consequently, given the enormous expansion of these technologies, the level of

confidentiality of the information that our device must extract, analyze and process

has had an increase in interest as their privacy and their security are always on the

agenda.

A first step, even if not sufficient nowadays, is the static analysis which consists in

the study and analysis of the code of a program through an evaluation process

based on the structure, form and content and therefore does not require the

execution of the program you are looking at. Since this thesis is based on an Android

project, any app in this operating system is programmed, compiled, installed and

executed following this scheme: java file -> class file -> Java Virtual Machine -> Just

In Time Compiler.

A first example of static analysis is the one that analyzes portions of code to identify

the parties that acquire sensitive data and their communication to the outside. An

example of software that implements static analysis is ProfileDroid which, through

this type of analysis, is also able to observe the multiple authorizations that are

requested from the user.

14

However, this first approach is not complete because the application can dynamically

download and execute code from a remote server and consequently pass control

over the static analysis without problems.

From this a new approach was born, i.e. dynamic analysis which consists of an

overview of the various levels of abstraction of the behavior of the application to be

traced in order to be able to observe the complete path of all the extracted and

communicated information in real time. TaintDroid is a first example of software that

allows you to perform the checks previously described and in fact by exploiting a

virtualized execution environment it allows real-time analysis of this data and through

this identify those that can be considered private, observe variables, files that are

opened and written, methods that are executed and much more but unfortunately it

has a disadvantage which consists in being able to monitor only the interpreted

instructions and not the native ones.

To solve the problem of downloading and executing code from a remote server, we

can consider the DroidTrace software which implements both types of analysis, the

static one to observe the portions of code that are being connected externally to

execute what has just described and the dynamic one to monitor the behavior of the

application.

A further evolution consists in sandboxing which consists in inserting the application

inside a bubble in order to be able to easily identify and detect any interaction with

the outside world and Aurasium is an example of this and in fact it is positioned at

the user level between the code and native libraries used. One disadvantage about

sandboxing is that this level of protection is easy to identify.

A fundamental part in the analysis and collection of data in the field of anomaly

detection consists in the invocations of system calls to detect and identify malicious

sequences or portions of code that acquire sensitive data. We can observe some

theoretical results starting from finite state, non-deterministic, stack automata, up to

the most modern VtPath, Dyck and VPStatic which try to solve the problem of

intrusion detection through static analysis.

Consequently, this thesis wants to create an interaction and protection mechanism

between an Android application and a web server. Information from multiple levels

15

will be collected from the device starting from low-level system calls up to multiple

high-level data such as sensors, settings and much more and then the web server

will use this information by providing an administrator with a control panel to decide

which operations to take.

16

3. Background
This chapter describes the multiple background concepts needed to be able to

design and develop this platform. The main fulcrum consists of some libraries that

are imported into the application to be traced, with which multiple types of data are

extracted, low-level ones such as system calls and high-level ones such as sensors

and settings.

The application that we want to trace and verify the execution must include two

libraries. The first consists of a native library called Ptracer that is positioned

between the kernel and the user level and it has the main function of extracting the

system calls that are executed. The second one consists of a high level Java library

that uses some listeners to receive and extract multiple high level information such

as the gyroscope and accelerometer sensors up to the type of recharge, settings that

we can set and much more.

Consequently, considering the complexity of this project, we have to analyze what

can be the crucial points and among which we can immediately observe the tracing

of system calls, the way that applications run in Android, the internal communication,

the structure of executable files and how external libraries are imported.

3.1. System calls tracing

Android is a Linux based mobile operating system and consequently system call

tracing also coincides with that of Linux. For this reason, a process tracing interface

is provided based on two main components that work as follows: the first called

"tracer" which allows to observe and monitor the execution of the second one which

is also called "tracee".

Also, a key point to discuss regarding system call tracing is process and thread

management. A process is also known as a "heavy weight process" which can

define the instance of a program and in fact when it is started it is assigned a unique

number called process ID, or even PID, which uniquely identifies it in the system. A

thread is also known as a "light weight process" and differ from the former in the

17

context of execution, in fact each process is made up of one or more threads which

carry out the tasks of the parent process and they too, in the creation phase, are

assigned a unique number called a thread ID, or even TID or SPID, which also

uniquely identifies it in the system.

Consequently, the tracing mechanism is enabled through the "ptrace" system call

which allows you to specify the identifier of the process or thread to be traced and

once the tracing has started, no other tracers are allowed for the same process or

thread.

Within the project, in order to implement the extraction of system calls in the device

to be monitored, I imported the Ptracer library which is a project that supports Linux

x86_64 and AARCH64 platforms and uses the ptrace command to acquire system

calls and signals and subsequently, in addition to displaying them, it is also possible

to decode their parameters, the stack trace and makes possible to create NFA

models.

3.2. Android application

The main point to analyze in applications in all devices and operating systems is the

moment of their launch and in Android, being the operating system used by the

devices that are monitored with our platform, it is characterized by a Zygote process.

This process is created when the operating system is started and the references of

the code and resources used by the Android framework are loaded into it, such as

themes, activities and much more and then Zygote process is forked every time an

application is started by inserting, in addition to the references already possessed by

the parent process, also the code of the application itself which will then be

executed.

The second point to discuss regarding Android applications consists of the APK file,

its structure and external libraries. In fact, the application that we want to trace, will

import external libraries in order to subsequently extract the related data. An APK file

can be seen as a ZIP archive that contains all the files and directories that make up

our application such as JAVA files, resources files and compiled files. Inside it we

can observe some important folders such as the meta-inf folder which contains

18

signature files and manifest files, the assets folder which contains arbitrary files such

as text, xml, html, fonts, music and video, the res folder which contains uncompiled

resources such as strings, drawables and layouts and finally the lib folder which

contains the compiled code for each architecture such as armeabi, arm64-v8a, x86,

x86_64 and mips and in fact each of these is its own subdirectory.

The third and final point to discuss regarding Android applications is the

communication between processes. In fact, a very important figure consists in the

isolation of processes or in the fact that all processes in Android have separate

address space and consequently no process can directly access the memory of

another one and this useful to increase security and stability. However, it often

happens that one process wants to access another process because the latter offers

useful services. Consequently the latter must provide an interface or mechanism that

allows this interaction and this is called inter process communication or IPC. Since

the standard IPC mechanisms were not flexible enough, a new IPC event-based

mechanism called Binder was developed for Android. In fact, every interaction such

as a simple touch, the completion of an activity or an authorization to request a

certain permission are events and consequently their management and their actual

states are very important.

3.3. Anomaly detection

One last very important background aspect to be able to design and develop this

platform is anomaly detection. The latest generation devices provide us with large

amounts of data and consequently their very accurate analysis can provide us some

clues about debugger detection.

A first analysis can be done regarding the data extracted from the sensors installed

in the device such as light, temperature, accelerometer, gyroscope and many others

and these can provide us with a first hypothesis if the current application is executed

on a real device or on an emulator. However, it may happen that some devices do

not have some specific sensors or that latest generation emulators allow the

variation of the values of these sensors thus leading to false positives.

19

A second analysis can be done looking in the settings of the Android device and in

fact through them, we are able to access various information that can be indicators

that the device has the debugger connected. An example would be checking

developer settings or checking if the Android Debug Bridge is enabled.

Finally, a final type of analysis consists of timing checks, i.e. checking the duration of

system calls. When the debugger is connected and the execution reaches a

breakpoint in a certain instruction, its duration will be increased and consequently

having a training model on the durations and subsequences of the system calls we

can ideally be able to define an ideal behavior of an android application.

Consequently our architecture would like to be able, through models created in the

training phase, to analyze at a high level all these types of information that can be

extracted from an Android device in order to be able to verify and compare the

current behavior of the application to be traced with a previously mapped ideal

behavior and take appropriate actions when inconsistencies are found.

20

4. Solution
This chapter wants to illustrate the entire architecture that has been designed and

developed to allow remote debugging detection in Android. In order to design and

develop this complex architecture I had to divide the entire project into two main

components, the first consisting of some libraries that must be imported into the

application to be monitored and the second consisting of a web server which

analyzes the data received and in relation to it performs the appropriate actions.

Consequently, it can be observed that the whole process is composed of the

following phases:

● the first phase consists in extracting the data using the two libraries that I

have implemented, the first of which for low-level information such as system

calls, their sequences and subsequences and the second library for the

extraction of high-level information as can be the sensors, the settings, the

type of recharge and much more

● the second phase consists in the creation of statistical models by exploiting

the training method of the platform and using the previous data in order to

have in detail an ideal behavior of an Android application

● the third phase consists in the reception by the web server of the multiple

types of data extracted from the Android device to be monitored and then

subsequently these will be transformed into optimized data structures to be

able to process them

● the fourth phase consists in cataloging in real time mode the Android device

that has been monitored, i.e. through multiple incremental macro flags that

can be enabled for the different areas where a possible debugger connection

can be observed

● Finally, the fifth and final phase consists in taking the appropriate actions

when it is verified that an Android device has a very high alert level and these

can be disconnection from the network, continuous monitoring, blacklisting

and much more

21

When a developer wants to include my security tool in a generic Android application,

the first step to do is the following, i.e. the inclusion of the two libraries that I have

developed inside it. To be able to do it correctly there are several steps to do,

including making some changes in the manifest file to add any permissions and

references to some resources, loading the libraries into the project directory,

overriding some methods such as onPause and onResume in the main file etc.

Consequently, in the sections below I will illustrate what are the changes to be

performed within your code and I will also illustrate what are the types of data that

will be extracted and how they will be processed by dividing everything into two main

sections, the first dealing with the Android library for high-level information and the

second that deals with the Ptracer library for low-level information.

4.1. Manifest file

The manifest file is the main file of an Android project and is located in the root of the

project directory. This XML file has the task of describing the most important

information for our project such as the package name, the minimum SDK version,

the application name, the details of the different activities, the different services, the

broadcast receivers, the different permissions required to work properly and much

more. Below we try to illustrate the components of the manifest file contained within

our project.

First let's analyze the application element tag, i.e. all those attributes that are defined

within the application tag:

● android:extractNativeLibs="true": this attribute allows the package installer to

extract the native libraries contained within the project's resources directory

within the file system for later uses

● android:largeHeap="true": this attribute helps the application processes to be

created with a larger heap as a lot of data is extracted and stored waiting for

their communication with the server

● android:debuggable="true": this attribute is used to define whether the

Android application can be connected to a debugger and in fact applying it to

22

true allows an attacker to debug the application thus facilitating access to

parts of the application that must be maintained secure.

Secondly, let's analyze which receivers are used within the application. These

represent the mechanism by which applications are allowed to receive intents

transmitted by the system or by other applications even when other components of

the current application are not running:

● recharge.RechargeReceiver: this broadcast receiver has been developed to

allow the identification of the charging status of the device, in fact it allows

you to check which type of charging, AC and USB, is activated or disabled

Thirdly and lastly, let's analyze what permissions are required for our application to

run correctly:

● android.permission.QUERY_ALL_PACKAGES: this permission is necessary in

order to extract the list of all the applications that have been installed on the

device

● android.permission.INTERNET: this permission is necessary in order to

implement the communication of multiple types of data with the web server

via websockets

● android.permission.ACCESS_NETWORK_STATE: this permission is necessary

in order to be able to extract information regarding the internet networks

available at the moment and the relative connections

● android.permission.WRITE_EXTERNAL_STORAGE: this permission is

necessary to be able to write information and data in files contained in the

external storage waiting to be sent to the web server

4.2. Android library

The first library that I will illustrate in this chapter consists of the Android library that

must be integrated within the project resources. This library takes care of extracting

high-level information from the Android device to be monitored, such as data from

23

sensors, the state of the application in relation to the application lifecycle, any

applications that have the debuggable flag set to true, any types of debuggers that

can be connected while the user is using the device and finally the type of recharge

of the device.

4.2.1. Application lifecycle

The first type of useful information to analyze in order to identify a possible debugger

connected to an application installed on an Android device consists in identifying the

current state of the application to be traced in relation to the entire life cycle. In short,

we would like to be able to extract the periods of time in which the application is

running and the periods of time in which the application is in the background or not

running.

In order to do all, it is necessary to analyze the life cycle of an Android application

and this is illustrated in the figure below.

Image 1: Android application lifecycle

Two main methods that can be identified are onResume and onPause methods. The

first method occurs when the activity becomes visible and can start interacting with

24

the user while the second method occurs when the activity is paused and this can

precede putting it in the background or terminating its execution.

Consequently, in relation to the data that is extracted from the Android device, an

optimized data structure is created to be able to keep track of it and an example can

be observed below.

Image 2: Lifecycle logs

These data offer us a lot of information in relation to the execution state of the

application to be monitored, in fact we can observe that in the timestamp

1463524485769 the user starts the application as the onCreate method is called

which in turn calls the onStart method which in turn calls onResume and it saves the

timestamp. Then from timestamp 1463524485769 to timestamp 1684165598963 the

application remains running and then passes in the background from timestamp

1684165598964 to timestamp 1893430564829 to then return to execution and finally

it stops the execution at timestamp 1976552734989.

25

4.2.2. Debuggable applications

A second type of very important information regarding debugging detection consists

in extracting the list of applications that are installed on the device by the user and

checking which of these can be connected to a possible debugger. This is allowed

through a flag contained in the manifest file of each application and which is called

android:debuggable which makes sure that the application itself is debuggable or

not.

In order to implement all this, we had to add some permissions within the Android

library through the use of the manifest file and in fact

android.permission.QUERY_ALL_PACKAGES helps us by allowing us, through a

package manager, to extract the list of all applications installed on the device. Then,

through additional flags such as ApplicationInfo.FLAG_SYSTEM and

ApplicationInfo.FLAG_UPDATED_SYSTEM_APP we can understand what the type

of each application is, i.e. if it is a system application or if it consists of an application

installed by the end user.

Finally, as a last step, receiving as output from the previous point the list of all the

applications installed on the device by the end user, we have to check which of these

can be connected to a possible debugger when they are used and for this we must

filter them using the ApplicationInfo.FLAG_DEBUGGABLE flag which allows to

check the value of the android:debuggable flag contained within the manifest file of

each application.

Below, we can see an example log of applications that are installed on the Android

device with the debuggable flag enabled.

26

Image 3: Debuggable applications

From these logs, we can see that two applications are installed in the Android device

with the debuggable flag active and they are called “AudioRecorder” and “Progetto

Android”. Consequently, only when one of these two applications is running, it can be

verified that there are debuggers connected because in other cases its connection is

prohibited by the manifest file.

4.2.3. Types of debugger

Another type of information that is very useful for the debugger detection problem

within the application that the user is running, consists in checking and verifying the

possible types of debuggers in the Android environment. The possible debuggers

are of two types, the first low level and consists of the GDB debugger while the

second high level one consists of the JDWP debugger.

Now let's start looking at the implementation and operation of the controls for the

GDB debugger identification. As written at the beginning of this chapter, the

application we want to monitor must include the two libraries that we have

developed, the first is low-level and the second one is high-level. The main feature of

the low-level one consists in the fact that it traces the execution of the application by

connecting to its PID and consequently, knowing that in the Linux environment a

process can only be traced by another process, we verify the name of the connected

process for verify that it is the correct process and not the GDB debugger.

In order to do all this, the proc/pid/status file comes in handy which provides us with

all the information of the process with that particular pid such as the name, the

status, the connected process and much more. Consequently, a very important line

is the one that begins with TracerPid which indicates the pid of the process

connected with the current one. If this TracerPid is equal to zero it means that there

is no connected process while if it is different, this indicates the pid of the connected

process.

Consequently the last step is to verify that the TracerPid is non-zero and if it is,

access the proc/TracerPid/status file and extract its name. If this equals ptracer,

which is the name of the low-level library, we know there can be no GDB debugger

27

attached whereas if the name is different we know there is a possible debugger

attached.

Now let's start looking at the implementation and operation of the controls for the

JDWP debugger. These checks are much simpler than the previous type of

debugger as the android.os.Debug.isDebuggerConnected function helps us, which

directly returns a boolean value that indicates whether the JDWP debugger is

connected or not.

Below we can see an example of log on the control and identification of possible

GDB or JDWP debuggers connected to the application that the user is running.

Image 4: Debuggers detection

It can be seen from the previous image that no GDB type debugger has been

identified while a JDWP debugger connected to the application has been identified in

the timestamp 1684165576578.

4.2.4. Developer options

Another type of information that is very useful for the debugger detection problem

consists of the developer settings where a very important figure is the usb debug

setting with which by connecting to a generic computer and using the android debug

bridge it is possible to access and modify device information, monitor and record

screen content and finally install applications which is a key factor to monitor for the

entire device security.

28

The following image shows an example of developer settings log where we can see

if the monitored device has the developer settings and the android debug bridge

enabled.

Image 5: Developer options detection

4.2.5. Types of recharge

Another type of useful information to extract for the debugger detection problem

consists in verifying the active type of recharge in the device while the user is

running the application to be monitored. In fact, a very important condition to verify is

the presence of a possible active connection between the device that the user is

using and a computer under control by an attacker. To be able to do this, the type of

USB charging helps us, which indicates that a connection has been established

between the device and a generic computer.

In order to verify this mechanism I had to implement a listener - receiver mechanism

divided as follows: in the first part the listener is managed by activating and

deactivating it in relation to the execution state of the application and consequently

whether it is running or whether it is in the background or not running while the

second part consists of a BroadcastReceiver which is included in the manifest file

and which via the onReceive event, called whenever the event changes, saves the

new state of charge of the device.

Below we can see an example log of the different types of recharge that are

extracted from the device.

29

Image 6: Recharge types

We can immediately observe different periods of time in relation to the type of

recharge of the Android device. From timestamp 1684165576578 to timestamp

1712254729101 the device is charging and the type of recharge is AC, from

timestamp 1712254729102 to timestamp 1728364538292 the device is not charging

and finally from timestamp 1728364538293 to timestamp 1772635472919 a

connection is established between the device and a generic computer because the

type of recharge is USB and consequently a possible debugger has been connected

in this period of time.

4.2.6. Types of sensor

A final type of high-level information that is very useful for the debugger detection

problem consists in the management and extraction of data from the multiple

sensors that are installed in the device to be monitored, such as the accelerometer,

the gyroscope, the temperature, the position, the ambient light and much more.

30

In relation to the debugger detection problem, a key check to verify consists in the

identification of a possible connection between the device that the user is using and

a generic computer under the control of the attacker. Consequently, if we assume

that the attacker is debugging the application we want to monitor, it means that the

attacker himself is actively using the generic computer causing the device to remain

in a stationary position over time.

In order to implement all this, two main sensors must be used, the first is the

accelerometer which provides us with useful information regarding the acceleration

on the three axes of the device while the second sensor consists of the gyroscope

which provides us with useful information regarding the inclination of the device.

Consequently, in order to obtain an accurate analysis based on these two sensors,

an advanced sensor called game rotation vector comes to our aid which immediately

puts these data together by directly providing us with three output data: azimuth,

pitch and roll which represent a measure in degrees in relation to the three axes of

the device. This can be seen in the figure below.

Image 7: Game rotation vector sensor

A fundamental point for the correct use and extraction of data from this sensor

consists in the calibration, a process that is started a couple of seconds after starting

the application, the time in which the user brings the device to a correct position and

stable for the future use of the application, and it is used to be able to subsequently

identify invalid device positions such as the phone too inclined, the screen not visible

31

to the user or the phone upside down. Below we can see an example of a log of

azimuth, pitch and roll data extracted from the game rotation vector sensor.

Image 8: Numeric values of sensor

In order to observe that the phone is stationary over time, I based myself on the

transformation of this data from numbers to textual values such as the north, south,

east and west coordinates for each axis of the device. This is because even if the

phone remains stationary over time, a slight variation of the number sensors can be

observed. Below we can see an example of text logs.

Image 9: Textual values of sensor

32

A final type of log that can be extracted from this sensor consists of the list of time

periods in which the device assumes invalid positions and as explained before, these

can be the phone too inclined, the screen not visible to the user or the overturned

phone. Consequently these logs below are very useful to understand, when the

device is positioned incorrectly, which are the axes of the device that assume an

invalid position.

Image 10: Correctly used sensor values

From the previous image it can be seen that from timestamp 1684165580105 to

timestamp 1684165580472 the device is not positioned correctly while it is in the

following period. If we check the specific logs for each axis of the device, in this case

we analyze those relating to the azimuth, we realize that in the period in which the

device is not positioned correctly, there is an active alert for an invalid position

compared to the initial calibration.

Image 11: Azimuth alerts

33

4.3. Ptracer library

This chapter aims to illustrate the second library that must be imported into the

application to be monitored. This library consists of the low-level one, i.e. the

extraction of system calls that occur within the device to be monitored. In fact, this

library consists of two main points, the first point which consists in easily interacting

with the Linux process tracking interface ptrace to acquire system call invocations

and the second point which consists in having a higher level vision of application

behavior by observing system call sequences and related stack traces.

In fact we can observe that everything described above is allowed by the positioning

of the library, in fact it is positioned at the level immediately above the Linux kernel

and thus identifies any interaction that takes place from and towards the higher

levels and this can be seen in the figure below.

Image 12: Ptracer position

34

4.3.1. System call monitoring

The main function of this library, being low-level, is to identify the events belonging to

system calls. In fact, when we talk about system call analysis and monitoring, we can

think of many factors such as the event that triggered this call, the pid-spid

combination that identifies the thread and the process that made this call, any

execution start and end timestamp in order to have a more detailed overview of the

relative duration, the entire stack trace that led to this call, what are the parameters

that are passed to the current call, what are the values of the program counter

registers, stack pointer and return pointer and finally any return value to be able to

observe whether the call was successful or not. Below we can see two examples of

logs where each highlights a type of event regarding system calls.

The first image represents the event when a system call is initiated and has a

standard format where the event that triggered it is defined, the pid-spid identification

in order to subsequently trace the relative sequences and execution paths for each

pair process - thread, the stack trace that led to this system call, the syscall

parameters, the value of the registers and finally the start timestamp to then be able

to calculate its duration.

Image 13: Syscall started

However for the purpose of our project, and consequently for the analysis of the

durations of the system calls and for the monitoring of the execution paths, many

35

data that are described above are not necessary, perhaps they will be in the next

future evolutions of the tool. Consequently, by means of the additional flag

–backtrace=false used to start this library, it is possible to reduce the size of the logs

by extracting only those that are really necessary, such as the pid-spid pair, the start

timestamp and finally the name of the system call. Below we can see an example of

a reduced log.

Image 14: Reduced log for Ptracer

Finally, the last event to be captured concerning system calls consists in the moment

in which they terminate, i.e. it is necessary to be able to capture very important

information such as the end-of-execution timestamp in order to then be able to

calculate the duration, the return value in order to be able to observe whether the call

was successful or not and finally the pid-spid pair in order to then be able to create a

logical sequence useful both in the sequence control phase and in the control for

incremental executions. An example of this can be seen in the figure below.

Image 15: Syscall finished

4.3.2. NFA model

Another type of information that can be extracted using this low-level library consists

in the creation of finite state automata to analyze the entire execution paths that can

be executed within each application through an enforcement phase where, however,

they are automatically excluded any paths that lead to an error. However this

functionality has not been imported into the work of this thesis as the main focus was

36

the real time processing of the data extracted from the device in order to be able,

only from an analysis of these, to make a prediction of any pattern of attack.

A fundamental point to discuss consists in choosing the nfa instead of the dfa and

this happens because system calls that generate children, such as the fork

instruction, will result in two ε-transitions since from now on there will be two

machines executing computational activities at the same time.

A very simple example of nfa model is the one below which represents a simple

program used to tell if an input number is even or odd, in fact there are only two

possible execution paths and consequently only two executions are needed for the

enforcement phase.

Image 16: Even or odd number algorithm

37

Image 17: NFA for even or odd number algorithm

If, on the other hand, we analyze more complex programs that include fork

instructions, process management or a large number of activities or functions, we

can observe, again below, a small piece of example of an nfa model created in

relation to the audio recorder application, that we will see in the next section of the

validation and testing part, which will immediately become more complex.

Image 18: Nfa for audio record application

38

4.4. Web server

Finally, the third and final component of the architecture that I designed and

developed consists in the web server which has two main tasks. The first task

consists in receiving the multiple types of data from the two previously described

libraries and which have been imported into the application to be monitored while the

second task consists in the subsequent analysis of the multiple received data.

Consequently, the final task of the web server consists in the creation of advanced

and complete data structures through the joint analysis of all possible types of data

received from the device to be monitored, thus allowing to reach the final task of this

thesis which is to be able to create an incremental security state for each connected

device.

4.4.1. Instruction analysis

The first type of data that is analyzed and optimized by the web server is the analysis

of each type of system calls. This mechanism consists in the reception by the web

server of the events that are executed when a system call starts execution and when

execution ends. A fundamental point concerns the execution flags to execute the

native library as it is called by adding this additional flag "--backtrace false" which is

used to not extract the entire stack trace but only the following types of data in order

to minimize the amount of data exchanged between the web server and the device

to be monitored: pid, spid, system call, start timestamp, end timestamp and finally

the returned value.

A key point to analyze in the context of system calls consists in their duration. In fact

a possible debugger connected to the application to be monitored or any breakpoints

set by an attacker to study in a better way the application behavior would slow down

its execution time and consequently the differences of time between the start

timestamp and the finish timestamp of that system calls are greater than an average

value calculated in the training phase to build a reliable model and as close as

possible to an ideal behavior of a generic Android application.

39

That's why I created a data structure to contain the analyzes of each possible type of

system call by memorizing minimum duration, maximum duration, average duration,

variance and list of measurements in order to then subsequently be able to compare

the current value with the average value, maximum value and ideal value calculated

during the training phase. Below we can see an example of a log.

Image 19: Analysis of each instruction

From the previous image we can see two examples of system call analysis, the first

consists of clock_gettime instruction and the second one in the epoll_pwait

instruction where for each of them we can see minimum value, maximum value,

average value, variance, number of measurements and list of measurements.

4.4.2. Sequences analysis

The second type of useful information to analyze regarding system calls consists in

the study and analysis of their sequences or in the identification of possible

instructions that follow the current instruction. This is very important for tracing and

mapping the ideal behavior of a generic Android application in order to be able to

quickly and precisely identify when there is suspicious behavior which in a nutshell

translates into a sequence of calls not captured in the training phase.

40

A first example of a system call log file is the following, i.e. a list of the instructions

that are executed with the relative details such as the start execution timestamp, the

pid and spid pair, the name of the system call, any finish execution timestamp, any

duration and any returned value. In addition to this list which contains all the

unfiltered system calls, the same log file also contains two other filtered lists, the first

which contains the system calls which have terminated and the second which

contains the list of system calls which are not finished yet.

Image 20: List of executed instructions

A second very important example of log for mapping sequences of system calls

consists of the one represented by the following image where we can see which

instructions can follow the current call. If we consider that the current system call is

clock_gettime, the next one can only be clock_gettime, epoll_pwait, futex,

gettimeofday or read because otherwise an invalid sequence would be identified for

the data obtained during the training phase which would consequently represents a

suspicious behavior.

41

Image 21: List of possible next instructions

Finally, the last type of log that can be extracted from the application we are

monitoring is the following, that is to store what the internal execution path was for

each pid-spid pair. This is a very useful type of information in the long term in fact it

does not consist only in informing us what the next instruction is but it provides us

with information regarding what the entire sequence of instructions was for each

pid-spid pair and this can be very useful in identifying not only entire paths

considered safe from the data collected during the training phase but above all in

identifying any similarities with paths already seen during last execution phases and

in fact a subsequent analysis treated in the next section consists in calculating the

similarity with respect to previous executions because they can be a symptom of an

attacker who is studying the whole behavior of our application.

Image 22: List of executable paths

4.4.3. Incremental execution

A final type of very useful information that can be extracted from system calls

consists of incremental executions or in the verification of similarity in relation to the

last execution of this application. This is very useful as when there are very high

42

similarities to the previous execution, it can mean that a possible attacker is studying

the application behavior by trying and testing multiple execution paths.

An example of incremental execution could be the following, i.e. the attacker tests

the behavior of the application up to a point a and then terminates it and

subsequently resumes it up to the same point a but then proceeds up to a point b in

the future and so on until that the whole execution is not clear. Consequently by

storing the entire execution paths for each process and thread, a comparison

mechanism with the last execution is created and a future development could be not

only the comparison with the last execution path but the comparison in relation to all

previous execution paths.

Consequently, an example of incremental execution log can be seen in the following

image where we immediately see that two different subsequences have been found

with the relative percentage of similarity to the entire previous execution path. In

relation to the example of the following image we can conclude by confirming a total

of 20% similarity and this value could be compared with a default value in the

settings file to understand if it is a suspicious execution path or a safe execution

path.

Image 23: Incremental execution paths

4.5. Device analysis

The final task of this thesis was to identify the security status for each device that is

monitored and this is allowed by analyzing the multiple types of data that are

extracted from the device under consideration and then subsequently analyzed by

43

the web server. A key point to be able to design and develop this mechanism

consists in the identification of the devices which in this version, being a beta, is

carried out only using the IP address which will then evolve in the next versions in a

hashcode calculated in relation to the technical characteristics / identifiers of the

device itself.

In order to be able to design and implement this safety mechanism for each device,

an incremental scale of values was thought of starting from 0 which represents the

absolute safety level of the device up to the value 10 which represents the maximum

alert value for that particular device. For this reason it was also decided to divide

these levels into intervals of different safety levels starting from the safe level with a

single value of 0, then normal with a range of values 1-4, then warning with a range

of values 5-8 and finally the level blocked with a range of values 9-10. With these

range of values we are able to take certain future actions in relation to the security

level of the device itself, such as whitelisting, blacklisting or continuous monitoring.

This security level model is very simple, in fact it is based on an incremental model

where a unit is added to the security level for each control category that does not fall

within a certain range of values determined in the training phase. The different types

of control flags are listed below:

● Ptracer started: This flag verifies that the c++ library, called Ptracer, has been

started correctly to be able to trace system calls since otherwise the low-level

information could not be extracted.

● Sensor alerts: Represents the fact that during the execution of the application

to be monitored, several times the device has assumed invalid positions such

as the screen not visible to the user or the device upside down.

● Debugger found: This flag represents the most important one that verifies the

presence of a debugger connected to the application that the user is using. In

fact, if it is identified, the security level immediately passes to 10 which

corresponds to the maximum alert state.

● Instructions much time: Represents the fact that while monitoring the device

that the user is using, there are many system calls that have a duration

greater than the maximum one captured during the training phase.

44

● Subsequences found: This flag tells us that during the monitoring phase many

subsequences similar to the previous execution have been identified which

consequently can identify an attacker who is analyzing the behavior of our

application.

● Debuggable applications: This flag provides useful information regarding the

possible presence of applications that are installed on the device to be

monitored and that have the debuggable flag in the manifest file set to true.

● Developer options: This flag warns us about whether or not developer settings

are active, usb or wireless debug options are a key factor in attaching a

debugger.

● Sequence not secure: This flag warns us that while monitoring the execution

of the application there have been many invalid sequences of syscall, or

rather that they have not been traced during the training phase.

● Stationary device: This flag provides useful information that the device has

assumed a stationary position during the execution phase which means that

there is a possible attacker on a device that is debugging our application with

a generic computer.

● Charging type: This last flag provides us with useful information regarding a

possible connection with a generic computer if the type of recharging is the

USB one.

An example of this level of security for devices that are connected to the web server

can be seen in the figure below where we can immediately observe the devices in

relation to the security range. In our case, only one warning level device appears to

be connected as it has a security level between 5 and 8 and we can also observe

what its suspicious aspects are as the presence of some applications with active

debuggable flags, active developer settings, some sequences of system calls not

mapped during the training phase, the stationary device positions many times and

finally the charging type which is the USB one which implies a connection with a

generic computer.

45

Image 24: Device alert level

4.6. Considerations

In this chapter we have described what are the main points for identifying a possible

debugger connected to the application that the user is using and at least the main

points are the debuggable flag in the manifest file to be able to allow a debugger to

connect, the developer settings enabled, the type of USB recharge as it is

synonymous with a connection between the device and a generic computer, the

motion sensor data in fact if the device is stationary it means that the attacker would

be using a possible computer, the durations of system calls as a longer duration is a

synonymous with a debugger connected because execution is slowed down or a

breakpoint is fixed and the execution is stopped and finally the sequence of system

calls to verify incremental executions as an attacker would be trying to study the

behavior of the application itself.

It can be observed that there is no verified and reliable way to identify a possible

debugger connected to the application that the user is using or an attacker's

behavior pattern as they are only heuristics and statistics and above all this is a

46

recent topic and there are not many scientific articles that we can read, study and

implement any already tested algorithms. Consequently, my thesis work was to

create a new high-level mechanism to implement a possible security level of a

networked device.

To be able to implement this, I created a configuration file within the web server to be

able to modify in relation to our objectives and requirements, the multiple variables

that define the security levels and the necessary number of times that a particular

event must occur before activating the flag of that specific section.

However, this model represents a high-level method for associating a security level

to each device, in fact one of the future objectives of this tool consists in the

implementation of machine learning algorithms in order to better train the model and

have data most reliable for creating an ideal behavior of any Android application.

47

5. Validation
A fundamental chapter of this thesis consists in the validation of the architecture that

has been described in the previous chapter. The control and validation process that

we will see in this chapter consists of multiple phases including:

● The first phase where the test environment designed and developed to be

able to test and validate the entire developed architecture including the two

libraries and the web server is described

● The second phase consists of the training of the model created and used to

identify an ideal behavior of an Android application through controlled

executions of that particular application in order to then be able to observe

any suspicious behavior because it was not tracked / stored in the training

phase.

● The third phase consists of the one inherent to normal executions, i.e. all

those executions that are performed by users to verify that the two imported

libraries detect or not any incorrect / suspicious behavior based on the data

collected and analyzed during the training phase and comparing them with the

data collected during this last run.

● The fourth phase consists of that relating to executions of the abnormal type,

i.e. all those executions which are carried out in order to verify that, when

various suspicious factors occur during the current execution, the system

functions correctly, i.e. detecting the alert flags and mapping between security

levels and each device are performed correctly.

● Finally, the fifth phase consists of the one concerning the actions that can be

taken when the system detects that a device has a high warning level and

these can be, for example, disconnecting from the network, continuous

monitoring and much more.

48

5.1. Test environments

In order to subsequently discuss the different phases that make up the whole

process of checking and validating the architecture developed for this master thesis,

I had to include the two libraries developed in some Android applications that people

can use to demonstrate its possible real use.

I managed to include the two libraries in two different android applications. The first

application consists of an audio recorder that allows using four buttons to start a

recording, pause the recording, listen to the recorded audio and finally stop listening

to the recorded audio while the second application consists of a simple open source

calculator.

However, a future development consists in importing these two libraries also into

more complex and consequently more used open source applications such as

Mozilla Firefox or Vlc. In order to do this, an important development to do is a native

C++ rewrite of all the high-level features present in this master thesis. This is

necessary to be able to import all the functions in the same logical level and

immediately above the kernel level in order to have immediate access to all the

possible extracted data without any necessary modification of the code of the

monitored application.

A point of fundamental importance consists in the list of permissions that are

required to be able to run the application correctly and are as follows: the first

permission consists of the permission necessary to be able to extract the list of all

the applications that are installed on the device, the second permission is necessary

to allow the application access to the internet used for the communication of the

extracted data to the web server and finally the third permission which consists in the

permission to be able to write information in memory outside the application and this

is necessary for keep data in memory waiting to be sent to the web server.

Below we can see some screenshots of the Audio Recorder application, the

calculator and the web server.

A fundamental point to discuss is the architecture of the entire developed project.

The communication between application and web server consists of two separate tcp

49

sockets, the first which is used for low level data communication and consequently

used by the c++ library while the second used for high level data and consequently

by the java library.

In fact, when an application with the libraries imported inside is started, a

configuration message is shown where it is possible to insert the various data of the

web server before being able to use the application such as the IP address of the

web server and the relative ports for the two tcp sockets.

Image 25: Calculator app

50

Image 26: Audio recorder app

Finally, one last screenshot concerns the web server, in this beta version it is a

simple command line tool but a possible future development consists in the

implementation of a management panel in the form of a web page where it will be

easier to view the events that occur, more configuration options etc.

In the next image we can observe the functioning of the web server as a command

line tool, specifically the two commands necessary for the correct execution. The first

is necessary to enter the project directory while the second is necessary to start the

entire web server. A key point consists in the recovery phase, i.e. the time necessary

for the web server to open and read the contents of the various files where all the log

data of previous executions have been saved, such as the list of previously

51

connected devices, data relating to each system call, system call sequences, and

more.

Image 27: Web server

5.2. Training executions

A second fundamental point to be discussed in this chapter consists of the training

phase, i.e. the phase in which we try to create a model that is as equivalent as

possible to the behavior of a generic Android application. As we saw in the previous

chapter, the data extracted and subsequently analyzed are divided into two types,

the first for low-level data such as system calls, while the second for high-level data

such as sensors, settings and recharge type etc.

As we can imagine, the first type of data, i.e. the low-level one, concerns system

calls, their statistics, execution paths and finally their subsequences and all these

types of information can be considered a good starting point to be able to create a

good training model as we can identify the execution paths in relation to the degree

of reliability of the device. Differently, on the second type of data, i.e. the high-level

one, it is not possible to carry out a very reliable training phase as these data are

different in relation to the user and his type of use as tracking data from a sensor to

identify how much a device can move while the user is using it or how much a device

is stationary over time are not key determining factors for the problem that we must

solve.

Below we can see some examples of screenshots regarding the training phase of

the model using all the data extracted with the low-level library.

The first type of information that we can use when running the web server in training

mode consists of the characteristics concerning the system calls that occur when the

user is running the application. An example can be seen in the figure below, two

52

types of system calls can be observed, the first consisting of all those system calls

that have not been found previously and consequently a message in the form "

instruction now is mapped” while the second type consists of all those system calls

that have been found previously and consequently a message appears in that

specific line comparing the current duration with the duration interval of that specific

system call.

Image 28: Training of each syscall

A second type of information that is very useful in creating a model that is as reliable

as possible consists in managing the possible sequences of system calls. In fact, in

the following image we can see what the system calls can be after the current

system call. This can be seen as a graph where each path indicates an execution

path verified during the training phase. Consequently, a first point to be able to trace

suspicious and non-suspicious executions consists in verifying the current path

within this previously described graph and if this path is present then it means that it

was traced during the training phase while if not mapped it means that it is a

suspicious execution.

In order to implement this, it is impossible to automatically teach a computer which

paths are valid and which paths are suspicious. As a result I thought of the following

mechanism which we can see in the figure below. Whenever a sequence not yet

mapped within this graph is detected, the administrator is asked whether this

possible sequence is valid or not, in order to then proceed with the insertion in the

valid sequences list or not.

53

Image 29: Training of subsequences

Finally, a last possible consideration in the training phase consists of some test

executions where the sequence of system calls and the related security level are

stored in each one in relation to what was described in the previous chapter.

Consequently, below we can see an example of a log where three executions have

been stored with the relative level of security.

Image 30: Training of execution paths

The next step of what was previously described consists of the check phase, i.e. the

phase in which any subsequences are identified in relation to the saved executions.

In fact, the figure below shows an example of subsequences that have been

identified in the current execution in relation to the list of executions saved during the

training phase. For each of these subsequences, we can observe that some

information are managed including the security level associated with the execution in

which the subsequence was found, the validity of the current subsequence being

54

classified as valid or suspicious in relation to the range of the security level of actual

execution details, how long the subsequence is in relation to the saved execution

and finally the sequence of system calls present in the subsequence.

Image 31: Training of subsequences

5.3. Normal executions

The second execution mode consists of the check mode, i.e. the mode where the

execution of the application that the user is using at the moment is verified using the

data that were collected during the training phase in order to be able to compare and

verify them later the real reliability of the current execution.

Below we can see a complete example of the logs that are generated in the web

server divided into three parts as in order to be shown below they have been

reduced by eliminating any similar lines in order to be able to attach all the potential

functionalities of this project.

A fundamental point to be discussed consists in the possibility of modifying the tool

in all its parts to one's liking and in relation to one's requirements. In fact, the settings

file contains a lot of modifiable information starting for example from the address of

the web server, the two ports necessary for communication with the two libraries, the

paths in which to save the data of the current execution, any settings regarding the

sequences, percentages, counters for the different flags and much more.

55

The first part of the log is characterized by some fundamental points including the

recovery phase during which the data that was saved during the training phase is

extracted and restored and the subsequent connection of the client to the web server

via the two separate sockets each used from a specific library.

The second part of the log includes the same logic in all three following photos as we

can observe what is happening in real time in the client and then eventually if

something is suspected the security level of that particular client will be automatically

increased. In fact we can observe several points within these logs:

● The first point to analyze consists of debuggable applications, in fact the

fourth line of the log shows an application installed on the device with this flag

active in the manifest file. Consequently, immediately afterwards the security

level of that device is set from level zero to level one and a message is also

generated explaining the level change and this will happen for any variation of

the security level.

● The second point is the active developer settings and the security level is

increased again accordingly.

● The third point consists in identifying the moments in which the device is

stationary, which and how many instructions have a longer duration, any

subsequences present, any unmapped sequences and much more.

● Finally, the last two aspects to consider are the type of recharging of the

device which provides us with very useful information regarding a possible

connection to a generic computer and the identification of a possible

connected real debugger.

Finally, in the third part of the log we can observe the closure of the two sockets

used for each library imported into the application and finally the termination of the

web server. This last step takes place only subsequently as the last operation that

will be carried out will be the saving of all the logs relating to the last execution and

the greater the execution time is, the greater the size of the saved logs will be.

56

Image 32: First part of complete execution log

57

Image 33: Second part of complete execution log

Image 34: Third part of complete execution log

58

5.4. Abnormal executions

During the validation and testing phase of this tool, some very interesting case

studies emerged to analyze as they represent particular cases to be taken into

consideration while monitoring the application that the user is using.

The first fundamental point to take into consideration consists in the management of

the security levels which have been extensively discussed in the previous chapter. In

order to be able to implement them at a high level, possible ranges for the values

have been thought of, thus dividing everything into different macro levels as safe,

warning and blocked.

Consequently, another fundamental point to take into consideration consists of the

two libraries that have been developed and that must necessarily be included in any

Android application to be monitored. A first possible attack by an attacker consists in

disabling a library which can be the low-level one or the high-level one indifferently.

Consequently, when the web server identifies that there is no exchange of messages

with any library, the security level of that particular device is increased to the

maximum level, thus representing a blocked device as it is not possible to trace

types of data needed for monitoring. Below we can see an example of a log where

the low-level library has been disabled by the attacker.

Image 35: Ptracer not started

Another very interesting case study consists in the identification of a debugger

connected to the application as the purpose of this thesis consists in the

59

development of a mechanism with which it is possible to identify in advance a

possible debugger by monitoring multiple types of data extracted from that particular

device. Consequently, the libraries that I have developed, if they identify a connected

physical debugger, increase the security level of that particular device to the

maximum and in fact an example can be seen in the following figure.

Image 36: Debugger JDWP found

Another very interesting case study to take into consideration consists in observing

the movement of the device in the long term and a possible type of USB recharge.

This is because a possible attack by an attacker consists in connecting the device to

a generic computer and then monitoring it remotely, making it remain in a stationary

position over time.

Image 37: Possible remote attack

Finally, a last point to take into consideration consists in the cases in which the

device currently connected to the web server has a very high level of security and for

this reason it is necessary to decide what actions to take. In fact, a future study

regarding this tool, in addition to machine learning for data analysis, consists in the

advanced management of connected devices to manage them by level or by

whitelist and blacklist.

60

5.5. Automatic tests

A last point to be discussed consists in the creation of automated tests to be able to

both verify the correct functioning of the designed and developed tool but above all

to be able to automatically extract data which can then be used for a subsequent

training phase for the inclusion of subsequent techniques of machine learning within

this project.

Consequently, in order to implement this, we must remember that the information

that we can extract from an Android device are of two types, the first at a low level

which consists of system calls with their sequences, characteristics, duration,

common subsequences, incremental executions and the second at a high level for

sensor data, developer settings, charging type, device stationary and much more.

I thought of a hybrid solution as each library communicates autonomously to the web

server using its reserved channel. Consequently, in order to do this, I used two

different technologies for each type of information that can be extracted. To automate

low-level information I used the MacroDroid Android application which allows you to

create customizable macros to be able to launch applications, press on the screen,

access the file manager, save the execution results in some variables and so on, all

in a automatic and repeatable while for high-level data I created a fake java client

that randomly communicates the different data in the same format as the library

imported within the applications to be monitored.

Consequently, a development that I am carrying out in these weeks consists in the

transformation of the high-level logs that have been discussed in the previous

chapter in the form of a csv file in order to then be able to analyze them in a simpler

way and thus be able to integrate them more easily with some future algorithms of

machine learning.

I will also update this section over the next few weeks to cover the creation of the csv

file and the mock java client that I will do.

61

6. Future developments
This chapter aims to explain what are the possible future developments of this tool

that has been illustrated within this master thesis work. As can be seen from the

structure of the chapter inherent to the solution designed to solve this problem, also

in this chapter it is necessary to reason on the basis of the various components that

make up the entire platform which are the high-level library, the low-level library and

the web server.

6.1. JAVA library

The JAVA library consists of the high-level library or rather the extraction of data

such as sensors, settings, type of recharge and the life cycle of the application from

the application that you want to monitor. During the testing and validation phase we

were able to observe some future developments which will be illustrated below.

6.1.1. Unique identifier of the device

The first future development consists in identifying the device where the Android

application to be monitored is installed in a unique way. This for the moment consists

only of an ip address that we know very well to be modifiable, variable, subject to

potential attacks by an attacker, etc.

It turns out to be very convenient to be able to identify and monitor a specific device

in the long term and consequently be able to find some detail, identifier or

combination of data that is different for each device that can connect to the web

server, it is necessary to subsequently bring this tool in an advanced stage of testing

and production.

Consequently I thought of some data that can be used to uniquely identify each

device and some examples can be the imei code, the mac address or a hash code

obtained by coding multiple characteristics extracted from that particular device but

some of this information cannot be extracted from this high level library due to some

blocks of Google for privacy and security reasons.

62

6.1.2. Improve the tracing mechanism

Another point of fundamental importance to improve consists in the tracing

mechanism of the multiple types of data that this library can extract. We have seen

from previous chapters that there are many different pieces of information needed for

the debugger detection problem and at the moment each of these is extracted from a

different thread that remains running for as long as the application is running.

Consequently, a possible improvement consists in the possible redesign through the

use of fewer threads or the use of some specially created particular data structures.

Furthermore, a further development in this point consists in the creation of further

settings for filtering, reduction of messages or time variables to decide how often to

communicate for each type of information.

6.1.3. Improve the communication mechanism

A further point to be discussed regarding future developments consists in the

communication mechanism of the multiple types of data that are extracted from the

device. At this moment this communication takes place via a tcp socket shared with

the web server. However we have seen that there are many different types of

information and some of them such as sensors vary constantly.

Consequently, the optimization of the data encoding before sending it to the web

server represents an important fundamental point in addition to memorizing them if

during the execution of the application there should be disconnections from the

network, closure of the socket, etc.

6.1.4. Reproject using native libraries

If we think back to everything that has been described in the previous chapters, we

realize that in order to extract all the types of information useful for our problem, two

different libraries are needed which must be important within the application to be

monitored. Consequently, a first fundamental point consists in rewriting this

high-level library into a low-level library perhaps written in C++ in order to be able to

63

include it within the other library thus creating only one package necessary for

monitoring.

Another point to discuss is the impossibility of extracting useful information to

uniquely identify the device due to security and privacy issues limited by Google.

Consequently a possible rewriting in native and consequently the different

positioning of the library within the Android hierarchy would bypass this limitation.

6.2. C++ library

The second component of our infrastructure that we have developed consists of the

low-level c++ library necessary for the extraction of system calls and all the

information that can be extracted from them such as sequences, subsequences,

characteristics of each syscall, details of any incremental executions and much

more. Also this library, like all the other components of the infrastructure, has many

future developments and these are described in the future developments chapter of

Matteo De Giorgi's master thesis [8].

6.3. Web server

The last component of the infrastructure created to be able to solve the debugger

detection problem consists of the web server which has the main task of receiving

the multiple types of information extracted from the device, their subsequent

analysis, the creation of the security level of that particular device and finally the

decision of any actions to be taken.

6.3.1. Improve multi-client connections

The first future development of the web server consists in its redesign thinking about

a possible interaction with multiple devices at the same time as for the moment only

one device is supported at a time due to the too much amount of data that is

extracted and communicated and the complexity of the structures data necessary for

their storage and analysis.

64

Consequently, it is necessary to study and implement new efficient data structures

due to the high number of stored information, the speed with which new information

is stored and efficient algorithms for analyzing large amounts of data and different

information.

6.3.2. Machine learning

A development that I am carrying out in these weeks consists in automating the

testing and validation phase using MacroDroid and a fictitious JAVA client as

previously described and I am also trying to transform the high-level information into

a csv file which will subsequently be used to train some machine learning algorithms.

6.3.3. Next action

A fundamental point to plan concerns the actions to be undertaken after calculating

the level of security of a given device connected to the web server and this serves to

be able to monitor it on a long-term basis in a specific environment in relation to its

level of security. For the moment the security levels, as previously described, are

divided into macro levels where for each one we can initially think of a whitelist,

blacklist or greylist in relation to different levels of security.

6.3.4. Web UI

One last future development of the web server consists of a web page style redesign

in order to allow a better view of everything that is happening to the different Android

devices to be monitored. This is because the current version of the web server

consists of a command line tool and consequently any operation or information we

want to display must be printed in the output stream, making the entire output

increasingly messy and complex to understand.

Consequently, its redesign thinking a web page divided into modules would

represent the best solution and for this, each module represents a type of

information to be shown and it is also possible to set some possible interaction with

the different modules to be able to have greater detail of them.

65

7. Conclusions
With this thesis I wanted to design and develop this remote debugging detection tool

in Android as this represents a new problem, there is no tool capable of verifying, by

analyzing multiple types of data, if a possible debugger is connected to the

application or if an attacker is trying to understand the functioning of the behavior of

the application that we want to monitor using for example incremental executions.

This thesis can be understood as a continuation of that of another classmate since

he had developed the low-level library to be able to extract the system calls, the

relative sequences and a possible finite state automaton to show the possible

execution paths of the application in question.

Consequently the work of this thesis was to develop two main points. The first

consists of a high-level library, which will be included together with the other library,

and will be used to be able to extract further data such as sensors, settings, charging

type, applications that can be connected to a debugger and the lifecycle of that

specific application while the second point consists of a web server necessary for

both the analysis of all this data collected and for subsequent management in order

to be able to observe what happened during the execution of that specific

application.

However, this thesis discusses a high-level heuristic project, in fact the model

created by me for the management of the security level of each device connected to

the web server represents the simplest way to be able to develop it as through an

initial study of the macro areas that can identify an attached debugger, and then a

flag was created for each of these areas to identify valid and invalid ones for each

monitored execution. In our testing and validation phase each area had the same

weight making sure that the security level belonged to the range 0-10 but this can be

changed within the project.

A very interesting future development that we are carrying out consists in the

inclusion of machine learning algorithms to automatically analyze if an execution is

valid or not. In fact, in this period I am trying to encode the information contained in

the logs at a high level format within a csv file to be able to parse it more easily.

66

Bibliography
1. Iker Burguera, Urko Zurutuza, and Simin Nadjm-Tehrani. Crowdroid:

Behavior-based malware detection system for android. pages 15–26, 10

2011. ISBN 9781450310000. doi: 10.1145/2046614.2046619.

2. Alessandro Cabutto, Paolo Falcarin, Bert Abrath, Bart Coppens, and Bjorn De

Sutter. Software protection with code mobility. pages 95–103, 10 2015. doi:

10.1145/2808475. 2808481.

3. Abhishek Chaturvedi, Sandeep Bhatkar, and Ramachandran Sekar. Improving

attack detection in host-based ids by learning properties of system call

arguments. 01 2005.

4. Gianluca Dini, Fabio Martinelli, Andrea Saracino, and Daniele Sgandurra.

Madam: A multi-level anomaly detector for android malware. In Mathematical

Methods, Models, and Architectures for Network Security Systems, 2012.

5. H.H. Feng, O.M. Kolesnikov, P. Fogla, W. Lee, and Weibo Gong. Anomaly

detection using call stack information. In 2003 Symposium on Security and

Privacy, 2003., pages 62–75, 2003. doi: 10.1109/SECPRI.2003.1199328.

6. Steven A Hofmeyr, Stephanie Forrest, and Anil Somayaji. Intrusion detection

using sequences of system calls. Journal of computer security, 6(3):151–180,

1998.

7. Zhen Liu, S.M. Bridges, and R.B. Vaughn. Combining static analysis and

dynamic learning to build accurate intrusion detection models. In Third IEEE

International Workshop on Information Assurance (IWIA’05), pages 164–177,

2005. doi: 10.1109/IWIA.2005.6.

8. De Giorgi Matteo. System Calls Monitoring in Android: An Approach to Detect

Debuggers, Anomalies and Privacy Issues. Master’s degree, Università Ca’

Foscari Venezia, 2022.

9. Yuan Zhang, Min Yang, Bingquan Xu, Zhemin Yang, Guofei Gu, Peng Ning,

X. Sean Wang, and Binyu Zang. Vetting undesirable behaviors in android

67

apps with permission use analysis. In Proceedings of the 2013 ACM SIGSAC

Conference on Computer & Communications Security, CCS ’13, page

611–622, New York, NY, USA, 2013. Association for Computing Machinery.

ISBN 9781450324779. doi: 10.1145/2508859.2516689. URL https://doi.org/

10.1145/2508859.2516689.

10.Rubin Xu, Hassen Saïdi, and Ross J. Anderson. Aurasium: Practical policy

enforcement for android applications. In USENIX Security Symposium, 2012.

11.M. Ceccato, P. Tonella, C. Basile, P. Falcarin, M. Torchiano, B. Coppens, B.

De Sutter, Understanding the behaviour of hackers while performing attack

tasks in a professional setting and in a public challenge, Empirical Software

Engineering 24 (1) (2019) 240–286. doi: 10.1007/s10664-018-9625-6. URL

https://doi.org/10.1007/s10664-018-9625-6

12.T. O. Foundation, Owasp mobile security testing guide (2018). URL

https://mobile-security.gitbook.io/mobile-security-testing-guide/

13.B. Abrath, B. Coppens, S. Volckaert, J. Wijnant, B. De Sutter, Tightly-coupled

self-debugging software protection, in: Proceedings of the 6th Workshop on

Software Security, Protection, and Reverse Engineering, SSPREW ’16, ACM,

New York, NY, USA, 2016, pp. 7:1–7:10. doi:10.1145/3015135.3015142

14.P. Faruki, H. Fereidooni, V. Laxmi, M. Conti, M. Gaur, Android code protection

via obfuscation techniques: past, present and future directions, CoRR

abs/1611.10231.

15.S. Banescu, A. Pretschner, A tutorial on software obfuscation, in: Advances in

Computers, Vol. 108, Elsevier, 2018, pp. 283–353

16.J. Hoffmann, T. Rytilahti, D. Maiorca, M. Winandy, G. Giacinto, T. Holz,

Evaluating analysis tools for android apps: Status quo and robustness against

obfuscation, in: Proceedings of the Sixth ACM Conference on Data and

Application Security and Privacy, 2016, pp. 139–141.

17.J. Park, H. Kim, Y. Jeong, S.-j. Cho, S. Han, M. Park, Effects of code

obfuscation on android app similarity analysis., JoWUA 6 (4) (2015) 86– 98.

68

18. J. Wan, M. Zulkernine, C. Liem, A dynamic app anti-debugging approach on

android art runtime, 2018, pp. 560–567. doi:10.1109/DASC/

PiCom/DataCom/CyberSciTec.2018.00105.

19.Y. Jing, Z. Zhao, G.-J. Ahn, H. Hu, Morpheus: automatically generating

heuristics to detect Android emulators, in: Proceedings of the 30th Annual

Computer Security Applications Conference on - ACSAC ’14, ACM Press,

New Orleans, Louisiana, 2014, pp. 216–225. doi: 10.1145/2664243.2664250.

URL http://dl.acm.org/citation.cfm?doid=2664243.2664250

20.K. Lim, Y. Jeong, S. je Cho, M. Park, S. Han, An Android Application

Protection Scheme against Dynamic Reverse Engineering Attacks, Journal of

Wireless Mobile Networks, Ubiquitous Computing, and Dependable

Applications 7 (3) (2016) 40–52. doi:10.22667/JOWUA. 2016.09.31.040. URL

https://doi.org/10.22667/JOWUA.2016.09.31.040

69

