Nella parte iniziale viene fornita una panoramica circa la misurazione del rischio di credito e il contesto normativo di riferimento (Accordi di Basilea). Dopo un'analisi delle tecniche statistiche tradizionali per la stima dell'insolvenza aziendale più note in letteratura, vengono introdotte tecniche alternative basate sul machine learning. L'obiettivo principale dell'elaborato consiste nel valutare la capacità di quest'ultime e, in particolar modo delle Reti neurali artificiali, di sovraperformare rispetto agli strumenti statistici tradizionali. A tale scopo vengono comparate le performance previsive del modello Logit con un Multilayer Perceptron in un dataset contenente circa 400 imprese italiane.

Reti neurali artificiali per la previsione dell'insolvenza aziendale

Boldrin, Stefano
2020/2021

Abstract

Nella parte iniziale viene fornita una panoramica circa la misurazione del rischio di credito e il contesto normativo di riferimento (Accordi di Basilea). Dopo un'analisi delle tecniche statistiche tradizionali per la stima dell'insolvenza aziendale più note in letteratura, vengono introdotte tecniche alternative basate sul machine learning. L'obiettivo principale dell'elaborato consiste nel valutare la capacità di quest'ultime e, in particolar modo delle Reti neurali artificiali, di sovraperformare rispetto agli strumenti statistici tradizionali. A tale scopo vengono comparate le performance previsive del modello Logit con un Multilayer Perceptron in un dataset contenente circa 400 imprese italiane.
2020-11-13
File in questo prodotto:
File Dimensione Formato  
857011-1247120.pdf

accesso aperto

Tipologia: Altro materiale allegato
Dimensione 3.06 MB
Formato Adobe PDF
3.06 MB Adobe PDF Visualizza/Apri

I documenti in UNITESI sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14247/8739