Optimization of the dark fermentation process for the recovery of volatile fatty acids (VFA). The work is divided into pilot-scale fermentation tests on mixtures of sewage sludge and food residues, investigating different process parameters that influence fermentation yields. A machine learning approach will be used for data management and the development of a model that will be able to correlate the process performance (s) on the basis of different inputs (operational parameters).
“VFA production from urban waste through acidogenic fermentation process: a machine learning approach”
Noohi Joobani, Ali
2022/2023
Abstract
Optimization of the dark fermentation process for the recovery of volatile fatty acids (VFA). The work is divided into pilot-scale fermentation tests on mixtures of sewage sludge and food residues, investigating different process parameters that influence fermentation yields. A machine learning approach will be used for data management and the development of a model that will be able to correlate the process performance (s) on the basis of different inputs (operational parameters).File in questo prodotto:
File | Dimensione | Formato | |
---|---|---|---|
882193-1259179.pdf
non disponibili
Tipologia:
Altro materiale allegato
Dimensione
2.38 MB
Formato
Adobe PDF
|
2.38 MB | Adobe PDF |
I documenti in UNITESI sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
Utilizza questo identificativo per citare o creare un link a questo documento:
https://hdl.handle.net/20.500.14247/4065