Optimization of the dark fermentation process for the recovery of volatile fatty acids (VFA). The work is divided into pilot-scale fermentation tests on mixtures of sewage sludge and food residues, investigating different process parameters that influence fermentation yields. A machine learning approach will be used for data management and the development of a model that will be able to correlate the process performance (s) on the basis of different inputs (operational parameters).

“VFA production from urban waste through acidogenic fermentation process: a machine learning approach”

Noohi Joobani, Ali
2022/2023

Abstract

Optimization of the dark fermentation process for the recovery of volatile fatty acids (VFA). The work is divided into pilot-scale fermentation tests on mixtures of sewage sludge and food residues, investigating different process parameters that influence fermentation yields. A machine learning approach will be used for data management and the development of a model that will be able to correlate the process performance (s) on the basis of different inputs (operational parameters).
2022-07-20
File in questo prodotto:
File Dimensione Formato  
882193-1259179.pdf

non disponibili

Tipologia: Altro materiale allegato
Dimensione 2.38 MB
Formato Adobe PDF
2.38 MB Adobe PDF

I documenti in UNITESI sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14247/4065